Identifizierung und funktionelle Charakterisierung von Interaktionspartnern für Vertreter der Hitzestresstranskriptionsfaktoren aus Lycopersicon peruvianum und Arabidopsis thaliana

  • Die Ergebnisse der vorliegenden Dissertation beleuchten neue Aspekte der pflanzlichen Hitzestressantwort. Die Ergebnisse der experimentellen Arbeiten können erheblich die Planung und Durchführung zukünftiger Untersuchungen erleichtern, sowie das Verständnis der Regulation von Hitzestresstranskriptionsfaktoren als terminale Komponenten der zellulären Stressantwort verbessern. Zum ersten Mal wurde die Interaktion zwischen einem Hitzestresstranskriptionsfaktor und einem cytoplasmatischen Hitzestressprotein der Hsp20 Familie nachgewiesen. Die Aktivität des LpHsfA2 hängt von zahlreichen Faktoren ab, die den zellulären Zustand während und nach der Stressperiode widerspiegeln. Der bisher am besten verstandene Regulationsmechanismus, das Verhältnis des Kernimports im Vergleich zum Kernexport, welches stark durch die Heteroligomerisierung mit HsfA1 beeinflusst wird, wird durch den Einfluss von Hsp17.4-CII auf den Aggregationszustand und die Aktivität von HsfA2 erweitert. Nach massiver Akkumulierung von HsfA2 unter Hitzestressbedingungen führt die spezifische Interaktion mit Hsp17.4-CII zu einer reversiblen Inaktivierung des Transkriptionsfaktors und zu einer Bindung in hochmolekularen Komplexen. Die Interaktion ist hochspezifisch. Die nur durch wenige AS-Austausche charakterisierte Isoform Hsp17.3-CII bindet LpHsfA2 nicht. Im Gegensatz dazu ist der solubilisierende Einfluss der Hitzestressproteine der Klasse CI klassen-, nicht aber speziesspezifisch. Das Wechselspiel aus Inaktivierung durch Bindung an Hsp17.4-CII und anschliessende Resolubilisierung durch Hsp17-CI, sowie Kernimport nach erfolger Heterooligomerisierung mit HsfA1, führt zu einer fein abgestimmten Regulation der zellulären Lokalisation von HsfA2 und somit auch zur Modulation seiner Funktion als Transkriptionsaktivator. Die in der Arbeit gewählten experimentellen Bedingungen bewirken eine Aggregation von HsfA2 auch unter Kontrollbedingungen und ähneln der Situation in einer Pflanzenzelle während der Erholungsphase nur teilweise. In vivo wird der massiven Aggregation von HsfA2 und Hsp17.4-CII durch den Einfluss von HsfA1 und Hsp17-CI entgegengewirkt. Die gefundene in vitro Situation bietet somit ein wertvolles experimentelles Artefakt, um die Wechselwirkungen der Proteine während der Erholungsphase der Pflanze zu untersuchen und verstehen zu lernen. Aufgrund verschiedener experimenteller Hinweise kann davon ausgegangen werden, dass es sich bei der gezeigten spezifischen Interaktion nicht um ein auf die Gattung Lycopersicon beschränktes Phänomen handelt. In ersten Experimenten konnten Hinweise auf einen ähnlichen Regulationsmechanismus in A. thaliana gefunden werden (spezifische Interaktion zwischen AtHsfA2 und AtHsp17.7-CII). Allerdings zeigen die Ergebnisse der Experimente, in denen Proteine aus A. thaliana untersucht wurden, Abweichungen zu dem für die Tomatenproteine erarbeiteten Bild. Weitere Untersuchungen an Arabidopsis müssen hierzu durchgeführt werden, um Klarheit über den grundlegenden Regulationsmechanismus sowie speziesspezifische Besonderheiten zu bringen. Das aus den experimentellen Befunden resultierende Bild zeigt thermotolerante Tomatenzellen, in denen LpHsfA2 in einer transkriptionel inaktiven Form durch Bindung mit löslichem Hsp17.4- CII in Gegenwart von Hsp17-CI stabilisiert wird. Der Transkriptionsfaktor ist in diesem Zustand bereit für eine rasche Reaktivierung bei einem wiederkehrenden Hitzestress. Auch wenn mittlerweile die vier wichtigsten Regulatoren dieses Netzwerkes identifiziert werden konnten (LpHsfA1, LpHsfA2, LpHsp17.4-CII und LpHsp17-CI), kann nicht ausgeschlossen werden, dass weitere Faktoren beteiligt sind. Die Identifizierung solcher Faktoren, sowie weiterführende Arbeiten an Tomatenzellen, zum Beispiel durch Ausschalten einzelner Faktoren mit Hilfe von RNAi Konstrukten, wird in Zukunft helfen, noch mehr Details dieses interessanten Phänomens zu klären. Trotz der sehr guten Kenntnis der molekularen Eigenschaften der 21 AtHsf in Bezug auf ihre funktionellen Domänen wird erst das Verständnis der Art und Weise, wie diese Moleküle miteinander oder mit Co-Regulatoren interagieren und wie sie in die zellulären Regulationsnetzwerke eingebunden sind, zu einem Gesamtbild der Funktion der Hitzestresstranskriptionsfaktoren führen. Insbesondere gilt dies, seit die Analyse der Transkritionsprofile der AtHsf mit Hilfe von Micro-Array Analysen gezeigt haben, dass die Aufgaben der Hsf weit über die Regulation der Hitzestressantwort hinausgehen könnten. So könnten einige Vertreter der Hsf eine Rolle in der Pathogenabwehr spielen, bzw. im Laufe der Evolution ausschließlich entwicklungsspezifische Funktionen übernommen haben. Um die geschilderte Fragestellung effektiv zu bearbeiten, wurde in dieser Arbeit das Hefe-Zwei-Hybridsystem zur Charakterisierung der Interaktionseigenschaften der 21 AtHsf eingesetzt. Die zeitsparende Bearbeitung vieler Proben war hierbei ein Kernziel, das erfolgreich bearbeitet werden konnte: Die etablierte Hochdurchsatzmethode kann zukünftige Untersuchungen von Protein-Protein-Interaktionen stark beschleunigen. Die standardisierte Verwendung von Mikrotiterplatten und Mehrkanalpipetten in Kombination mit den etablierten Tranformations-, Analyse und PCR-Verfahren macht eine Bearbeitung großer Probenmengen möglich. Die Synthese dieser Technik mit der Kenntniss des gesamten Genoms von A. thaliana sowie der Fülle an Transkriptionsdaten einzelner Gene unter verschiedenen Umgebungsbedingungen stellt zukünftigen Untersuchungen ein potentes Instrumentarium ganz allgemeiner Art zur Verfügung. Im vorliegenden Fall wurde die etablierte YTH Methode dazu verwendet, Erkenntnisse über das Interaktionsverhalten der AtHsf untereinander zu gewinnen. Die Zusammenfassung aller auftretenden Interaktionen liefert für einige Gruppen von Hsf interessante Einsichten. In vielen Fällen (z.B. AtHsfA4/A5; AtHsfA1/A9) konnte für Vertreter eine Interaktion gezeigt werden, für die bereits physiologische Zusammenhänge bekannt sind. Das erstellte Interaktom kann dazu dienen, bereits bekannte Hsf-Hsf Interaktionen durch einen weiteren experimentellen Befund zu belegen, sowie bisher unbekannte Verbindungen aufzudecken. Zur Identifizierung unbekannter Interaktionspartner mussten zunächst geeignete Bibliotheken hergestellt werden. Mit Hilfe dieser Bibliotheken konnten zahlreiche putative Interaktionspartner identifiziert und durch das Interaktom bereits bekannte Interaktionspartner für fast alle Köder in den Bibliotheken gefunden werden. Dies bestätigt sowohl die gute Abdeckung der mRNA Population der Zellen, aus denen die Bibliotheken gewonnen wurden, als auch die Reproduzierbarkeit und Funktionalität des YTH Screenings. Die Tatsache, dass in der Population der putativen Interaktionspartner für AtHsf gehäuft Transkriptionsfaktoren auftreten, lässt auf die Art der Vernetzung der AtHsf in den Proteinnetzwerken schließen: Die Regulation der Zielgene erfolgt möglicherweise bevorzugt durch eine direkte Wechselwirkung von Transkriptionsfaktoren verschiedener Familien. Neben der Etablierung der Methoden zur beschleunigten Untersuchung zahlreicher Proben stellte auch die Standardisierung der experimentellen Folgeschritte einen wichtigen Aspekt dar, um eine reproduzierbare Aussage über die Relevanz einer Interaktion treffen zu können. Interessante Ansatzpunkte, sowie Vorschläge für weiterführende experimentelle Arbeiten sollen im Folgenden für die wichtigsten Klone thesenartig dargestellt werden: Ein möglicher Co-Regulator für AtHsfA5 Das mit Hilfe der AtHsfA5-CTD identifizierte unbekannte Protein, codiert durch den Lokus At5g01370, bietet einen Ansatzpunkt für eine gezielte Untersuchung der Rolle und Regulation des AtHsfA5. Die spezifische Interaktion zwischen HsfA5 und HsfA4, die sowohl in A. thaliana als auch in Tomate existiert, sowie das auffällige Fehlen einer hemmenden Aktivität von AtHsfA5 auf HsfA4 an den bisher untersuchten Reporterkonstrukten in Pflanzenzellen, zeichnen diesen TF als einen besonders interessanten Vertreter der AtHsf aus. Es muss wegen der Pflanzenspezifität des Hemmeffektes über die Existenz eines HsfA5 spezifischen Co-Repressors nachgedacht werden. In diesem Zusammenhang kann die Analyse des identifizierten Proteins helfen, einen solchen Regulator zu charakterisieren. Die im Rahmen dieser Arbeit dokumentierten Ergebnisse legen nahe, dass das von At5g01370 codierte Protein mit der NLS-Region von AtHsfA5 interagiert. Da die entscheidenden Experimente bisher nur in Hefe durchgeführt wurden, steht eine Reproduktion in einem pflanzlichen Expressionssystem für weiterführende Arbeiten im Vordergrund. Die Versuche, die Transkriptionseigenschaften von AtHsfA5 durch Co-Expression des unbekannten Proteins oder Co-Transformation eines RNAi induzierenden Plasmides zu beeinflussen, sind bisher mangels Kenntnis der Zielgene von AtHsfA5 fehlgeschlagen. Weitere Schritte bei der Bearbeitung dieser Fragestellung müssen demnach die Suche nach einem geeigneten Testsystem, sowie die experimentelle Bestätigung einer Interaktion beider Proteine in planta sein. Im Rahmen der Promotion wurde der Lokus des identifizierten Gens auf das Vorhandensein einer T-DNA Insertion hin überprüft. Eine entsprechende Linie existiert nicht, so dass transgene Pflanzen durch Transformation von Überexpressions- oder RNAi-Kassetten hergestellt werden müssten. Es ist nicht auszuschließen, dass schon die Deletion einer der beiden chromosomalen Kopien des Gens zu einem lethalen Phänotyp führt und daher keine T-DNA Insertionslinien existieren. In diesem Fall kann möglicherweise der Phänotyp einer Überexpressionspflanze Aufschlüsse über einen Zusammenhang der Funktion des unbekannten Proteins und der Rolle des AtHsfA5 liefern. AtHsfB2a interagiert mit AtDLC8 (At3g15930) Die Interaktion des Dynein Leichte Kette 8 Proteins (DLC8) mit AtHsfB2a bietet ebenfalls Ansätze für weitere Untersuchungen. Durch die mit Hilfe des Interaktoms identifizierte spezifische Interaktion zwischen AtHsfB2a und HsfB2b hebt sich diese Subgruppe der Klasse B der AtHsf von den übrigen Vertretern ab. Die im Ergebnisteil beschriebenen Befunde, vornehmlich aus Experimenten mit Säugersystemen, deuten eine regulatorische Rolle für DLC Proteine allgemein an (zum Beispiel beschrieben für die Interaktion zwischen dem TF Bim aus der Bcl2 Familie und DLC8 (Day et al., 2004)). Eine detaillierte Charakterisierung der im YTH gefundenen Interaktion zwischen DLC8 und AtHsfB2a könnte eine pflanzenspezifische, regulatorische Funktion der DLC Proteine zeigen, die losgelöst von den Transportfunktionen des Dynein Komplexes existiert. Das Fehlen geeigneter Reportersysteme für AHsfB2a stellt in diesem Zusammenhang ein großes Problem dar. Auch für den Lokus At3g15930 existieren keine TDNA Linien, obwohl der gesamte umgebende chromosomale Kontext zahlreiche Insertionen aufweist. Die Herstellung und Kultivierung von Überexpressions- oder „knock down“ Pflanzen für das DLC8 Protein muss zeigen, ob dieses in Verbindung mit HsfB2a essentielle Aufgaben während der Entwicklung bzw. bei der Stressabwehr von A. thaliana übernimmt. Interaktion von AtHsfA9 mit AtDr1 (At5g23090) Der mit Hilfe von AtHsfA9 identifizierte Klon AtDr1 stellt möglicherweise eine Verbindung zwischen den AtHsf und einem sehr allgemeinen Regulationsmechanismus in Pflanzen dar, über den bisher nur sehr wenig bekannt ist. Die meisten Repressoren, die aus nicht-pflanzlichen Systemen beschrieben wurden, üben ihre Funktion genspezifisch aus, d.h. sie binden entweder Promoter-spezifisch an die entsprechenden Zielgene oder an spezifische Bindungspartner. Einer der wenigen Repressoren, die eine generelle Funktion ausüben, ist Dr1. In Säugerzellen zum Beispiel verringert Dr1 die generelle Effektivität der RNA-Polymerase II. Da kürzlich die Existenz und Funktionalität der pflanzlichen Homologe von Dr1 in Reis bewiesen wurde, bietet die nun gefundene Verbindung mit der Gruppe der AtHsf einen viel versprechenden Ansatzpunkt. Allerdings war es im Rahmen der vorliegenden Arbeit nicht möglich, mit Hilfe geeigneter Reportersysteme eine Repression von Promotoren durch Dr1 zu zeigen. Die Etablierung eines solchen Systems (auch endogener chromosomaler Reportersysteme) steht daher im Vordergrund weiterer Untersuchungen. Im Rahmen der Arbeit konnten transgene T-DNA Insertionslinien des Lokus At5g23090 charakterisiert werden, sie liegen für weitere Untersuchungen bereit. Allen voran steht die Analyse des Transkriptionsniveaus verschiedener Zielgene in Wildtyppflanzen sowie in den beschriebenen Mutanten. Weitere Schritte sind die Herstellung und Analyse transgener Pflanzen, die veränderte Mengen an Dr1 und AtHsfA9 aufweisen. Neben der Identifizierung der Vernetzungen der AtHsf mit Dr1 als einem generellen Regulator der Genexpression kann eventuell auch die molekulare Wirkungsweise des Dr1 Repressors in Pflanzen mit Hilfe solcher Experimente entschlüsselt werden. AtHsfB1 interagiert mit AtbZip44 (At1g75390) Die aus den durchgeführten YTH Screenings resultierende wahrscheinlich wichtigste Vernetzung der AtHsf mit bisher unbekannten Co-Regulatoren stellt das Zusammenspiel der Hsf mit den bZip Transkriptionsfaktoren da. Die Kombination des inaktiven HsfB1 mit AtbZip44 führt zu einer verstärkten Aktivierung von Zielgenen, zu denen auch die Gene von HsfA3 und HsfC1 gehören. Obwohl eine direkte Interaktion beider Transkriptionsfaktoren für die synergistische Aktivierung nicht stattfindet, deutet die am Promoter von AtHsfC1 und AtHsfA3 gefundene Konstellation eine bisher unbekannte Rolle für AtHsfB1 an, die von der kürzlich beschriebenen Rolle von LpHsfB1 in Tomatenzellen abweicht. Die gefundenen experimentellen Ergebnisse lassen folgende Hypothese zu: AtHsfB1, der sowohl in Wurzel- als auch in Sprossgewebe unter zahlreichen Stressbedingungen induziert wird, bindet an Promotoren und besetzt dort spezifische Bindestellen, die klassischen HSE. Aufgrund fehlender Aktivatormotive führt diese Bindung zu keiner Aktivierung der Zielgene. Die Promotoren befinden sich jedoch nun in einem Zustand, in dem die Bindung weiterer Aktivatoren, im beschriebenen Fall AtbZip44, zu einer raschen und starken Aktivierung des Gens führt. Durch das Zusammenwirken von zwei unabhängig voneinander bindenden Transkriptionsfaktoren könnte ein erhöhtes Maß an Flexibilität und Sensitivität der Genregulation erreicht werden. Auch eine generelle induzierte Toleranz gegenüber Stress könnte durch die differentielle Expression von AtHsfB1 und weiteren Faktoren erklärt werden. In diesem Fall würde HsfB1 auch nach Beendigung eines Stresszustandes noch an den Promotoren wichtiger Zielgene gebunden bleiben, ohne diese unnötig zu aktivieren. Bei Wiederkehren der Stresssituation wäre eine rasche Reaktivierung durch Synergismen mit kurzlebigen, potenten Aktivatoren, wie zum Beispiel AtbZip44, möglich. Durch die Wechselwirkung von AtHsfB1 mit Vertretern verschiedener Familien von Transkriptionsfaktoren, möglicherweise auch Repressoren, kann so eine Vielzahl von Zielgenen reguliert werden. Die weitere Untersuchung des AtbZip44 erscheint aus zwei Gründen besonders lohnend: (1) AtbZip44 beeinflusst die Synthese der AS Prolin. Prolin stellt ein weit verbreitetes Osmolyt dar, welches als Hydroxyl-Radikal-Fänger fungiert, Plasmamembranen unter Stressbedingungen schützt sowie die Toleranz von Pflanzen gegenüber Frost und Hochsalzbedingungen erhöht. (2) Für AtHsfA5 wurde eine direkte Interaktion mit AtbZip44 in vitro gezeigt. Ob ein Komplex zwischen AtHsfA5 und AtbZip44 eine Transkription an geeigneten Reportern bewirkt, ist allerdings noch offen, und muss durch geeignete Experimente gezeigt werden. Neben umfangreichen Screeningarbeiten, der basalen Charakterisierung aller interessanten Klone und der Detailcharakterisierung der Interaktion zwischen AtHsfB1 und AtbZip44 konnten zusätzlich erste Vorarbeiten mit transgenen Pflanzen für die interessantesten Kandidaten durchgeführt werden. Als Ergebnis der Arbeit stehen somit einige vielversprechende Ansatzpunkte für weitere Studien zur Verfügung, ebenso die standardisierte Technik und die notwendigen konservierten Bibliotheken, um in kurzer Zeit Screenings mit weiteren Köderproteinen durchzuführen. Die Ergebnisse der vorliegenden Arbeit tragen dazu bei, zukünftige Experimente besser zu planen, sowie die Rolle der Hsf als terminale Komponenten der pflanzlichen Stressantwort weiter zu entschlüsseln und zu verstehen. Die Entschlüsselung der Funktion aller Proteine eines Gesamtorganismus, deren posttranslationale Modifizierungen, die Möglichkeit stabiler sowie transienter Interaktionen mit anderen Proteinen und somit die Vernetzung aller Proteine zu einem Gesamtnetzwerk stellt die große Herausforderung des Zeitalters der „proteomics“ dar. Verliefen während der Entschlüsselung der Genome von Organismen die Informationen auf Nukleinsäureebene noch linear, so dass mit Hilfe eines hohen Automatisierungsgrades ein rascher Fortschritt erzielt werden konnte, so erfordert die so genannte „post-genomics“ Ära hohe finanzielle und personelle Investitionen. Die Nicht-Linearität der Proteinfunktionen, die durch Modifikationen und Wechslwirkungen beeinflusst werden, hat rasch gezeigt, dass ein komplexer Organismus nicht lediglich durch die Kenntnis der Summe seiner Gene verstanden werden kann. Das Zeitalter der „proteomics“ erfordert trotz potenter Hochdurchsatzmethoden und weit fortgeschrittener Computeranalysen mehr denn je ausgefeilte Testmethoden und eine individuelle Untersuchung einzelner Proteine und deren Wechselwirkungen, um schließlich die Kernfrage der Biologie, wie Leben funktioniert, beantworten zu können.

Download full text files

  • Promotion_Markus_Port.pdf
    deu

    Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Markus Port
URN:urn:nbn:de:hebis:30-33799
Publisher:Univ.-Bibliothek
Place of publication:Frankfurt am Main
Advisor:Lutz Nover
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2006/11/22
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2006/01/02
Release Date:2006/11/22
Page Number:139
First Page:1
Last Page:139
Note:
Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:348035756
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Weitere biologische Literatur (eingeschränkter Zugriff)
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität; nur lokal zugänglich)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG