Molecular dynamics simulations of RNA hairpins

Molekulardynamik-Simulationen von RNA-Hairpins

  • Molecular dynamics (MD) simulation serves as an important and widely used computational tool to study molecular systems at an atomic resolution. No experimental technique is capable of generating a complete description of the dynamical structure of the biomolecules in their native solution environment. MD simulations allow us to study the dynamics and structure of the system and, moreover, helps in the interpretation of experimental observations. MD simulation was first introduced and applied by Alder and Wainwright in 1957 \cite{Alder57}. However, the first MD simulation of a macromolecule of biological interest was published 28 years ago \cite{McCammon77}. The simulation was concerned with the bovine pancreatic trypsin inhibitor (BPTI) protein, which has served as the hydrogen molecule'' of protein dynamics because of its small size, high stability, and relatively accurate X-ray structure available in 1977 \cite{Deisenhofer75}. This method is now widely used to tackle larger and more complex biological systems \cite{Groot01,Roux02} and has been facilitated by the development of fast and efficient methods for treating the long-range electrostatic interactions \cite{Essmann95}, the availability of faster parallel computers, and the continuous development of empirical molecular mechanical force fields \cite{Langley98,Cheatham99,Foloppe00}. It took several years until the first MD simulations of nucleic acid systems were performed \cite{Levitt83,Tidor83,Prabhakaran83,Nilsson86}. These investigations, which were also performed in vacuo, clearly demonstrated the importance of proper handling of electrostatics in a highly charged nucleic acid system, and different approaches, such as reduction of the phosphate charges and addition of hydrated counterions, have been applied to remedy this shortcoming and to maintain stable DNA structures. A few years later, the first MD simulation of a DNA molecule, including explicit water molecules and counterions was published \cite{Seibel85}. Various MD simulations on fully solvated RNA molecules with explicit inclusion of mobile ions indicated the importance of proper treatment of the environment of highly charged nucleic acids \cite{Lee95,Zichi95,Auffinger97,Auffinger99}. Given the central roles of RNA in the life of cells, it is important to understand the mechanism by which RNA forms three dimensional structures endowed with properties such as catalysis, ligand binding, and recognition of proteins. Furthermore, the increasing awareness of the essential role of RNA in controlling viral replication and in bacterial protein synthesis emphazises the potential of ribonucleicacids as targets for developing new antibacterial and new antiviral drugs. Driven by fruitful collaborations in the Sonderforschungsbereich RNA-Ligand interactions" the model RNA systems in this study include various RNA tetraloops and HIV-1 TAR RNA. For the latter system, the binding sites of heteroaromatic compounds have been studied employing automated docking calculations \cite{Goodsell90}. The results show that it is possible to use this tool to dock small rigid ligands to an RNA molecule, while large and flexible molecules are clearly problematic. The main part of this work is focused on MD simulations of RNA tetraloops.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jessica Koplin
URN:urn:nbn:de:hebis:30-20410
Referee:Gerhard StockORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2005/11/25
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/10/11
Release Date:2005/11/25
Tag:Hairpins; MD; RNA; Simulation; UUUU
MD; RNA; UUUU; hairpins; simulation
HeBIS-PPN:134320298
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht