Albumin-Nanopartikel als Trägersysteme für Antisense-Oligonukleotide zur Anwendung in der Brustkrebstherapie

  • Die meisten nanopartikulären Ansätze im Bereich der Arzneiformenentwicklung befinden sich am Anfang der klinischen Evaluation, sodass das wirkliche Potenzial nanotechnologischer Produkte sich erst in den kommenden Jahren abzeichnen wird. Die Zusammenführung von „Drug-Targeting“ und „sustained release“ mit nanotechnologischer Entwicklung könnte in Zukunft zu einem Fortschritt in der Medizin beitragen. Auf dem Gebiet der Antisense-Oligonukleotid (ASO)-Therapie stellt der ASOTransfer in Zielzellen eine entscheidende Hürde dar. ASO benötigt, um im Körper an den Wirkort zu gelangen, einen zuverlässigen Träger, der vor dem Abbau in physiologischen Milieu schützt, den Transport über extra- und intrazelluläre Barrieren im Körper gewährleistet und die ASO zielgerichtet an den Wirkort bringt. Der Einbau von ASO in kolloidale Trägersysteme wie Nanopartikel vermittelt eine effiziente Aufnahme in Zellen bei gleichzeitigem Schutz vor abbauenden Enzymen im Körper. Des Weiteren kann eine gezielte Aufnahme in Zielzellen erreicht werden, die normalerweise nicht auftritt. Bisherige Trägersysteme bestanden meist aus Nanopartikeln von synthetischen Materialien, die entweder die ASO an der Oberfläche adsorbiert oder in der Partikelmatrix inkorporiert hatten. Als Trägermaterialien wurden oft Polyalkylcyanoacrylate verwendet. Sie sind aufgrund ihrer negativen Ladung und Hydrophobizität nicht geeignet ohne Zugabe von Hilfsstoffen, welche in höheren Konzentrationen toxisch wirken, anionische hydrophile Substanzen wie ASO zu adsorbieren. Außerdem besteht bei Nanopartikeln mit adsorbierten ASO die Gefahr, dass es bei einer intravenösen Gabe zu einer Desorption der ASO kommt und somit ASO die Zielzellen nicht in verpackter Form erreicht. Im Rahmen dieser Arbeit wurden NP auf Basis von humanem Serumalbumin (HSA) als Trägersystem für ASO entwickelt. Durch Oberflächenmodifikation dieser Trägersysteme wurde eine Kopplung von anti-HER2 Antikörper ermöglicht und ein AK-vermitteltes Drug-Targeting erreicht. HSA als natürliches Makromolekül zeichnet sich durch geringe Toxizität und gute Biodegradierbarkeit aus. Ein weiterer Vorteil besteht darin, dass ein Wirkstoff mit vorhandenen Bindungsstellen im HSA-Molekül Wechselwirkungen eingehen kann, was eine erfolgreiche Einbindung gewährleistet. Zusätzlich eignen sich aus HSA hergestellte NP aufgrund funktioneller Gruppen an der Partikeloberfläche für die Kopplung von Antikörpern und ermöglichen somit eine zielgerichtete Arzneistofftherapie. Die entwickelten Trägersysteme wurden hinsichtlich kolloidaler Parameter wie Teilchengröße, Oberflächenladung, ASOBeladungseffizienz, Stabilität in physiologischen Medium und ihrem Vermögen, einen ASO-Effekt zu erzielen, in Zellkultur evaluiert. 4.1 Optimierung der Beladung von NP mit ASO Zunächst wurden HSA-NP hergestellt, bei denen die Beladung durch Inkorporieren des ASO in die Partikelmatrix erfolgte. Die Evaluierung des Desolvatationsprozesses ergab eine Abhängigkeit der ASO-Beladung vom zugesetzten Desolvatationsmittel Ethanol. Eine Mindestmenge eines 1,8-fachen Überschusses an Ethanol ist für die vollständige Desolvatation des HSA und damit für die Einbindung des daran adsorbierten ASO erforderlich. Ebenso beeinflusste die Quervernetzung der Partikel die ASO-Beladungseffizienz. Je mehr Glutaraldehyd zugesetzt wurde, desto stabiler waren die NP. Nimmt die Menge des Glutaraldehyds von 40% auf 200% zu, löste sich um so weniger ASO während der Waschschritte aus der Partikelmatrix heraus. Jedoch hat das Ausmaß der Quervernetzung einen entscheidenden Einfluss auf die Biodegradierbarkeit des Partikelsystems. Zu stark quervernetzte NP (Quervernetzung von 200%) können von intrazellulären Enzymen nicht mehr abgebaut werden, infolge dessen gelangt das eingebundene ASO nicht zu seinem Wirkort ins Zytoplasma. Im Folgenden wurde versucht über die Einführung einer permanenten kationischen Ladung (EDC/Cholamin-Reaktion) im HSA-Molekül ein Trägerpolymer mit höherer Beladungskapazität im Vergleich zu nativem HSA zu etablieren. Ein geringer Anteil von kationisiertem HSA (cHSA) in der HSA-Partikelmatrix reichte aus, um die ASOBeladungseffizienz um ein 2,5-faches signifikant zu steigern. Das Ziel der Oberflächenmodifikation der HSA-NP war eine Positivierung des Zetapotentials, um die Bindung negativ geladener Wirkstoffe wie ASO über elektrostatische Wechselwirkungen zu ermöglichen. Die Umsetzung der HSA-NP mit EDC und Cholamin führte zu einer deutlichen Verschiebung des Zetapotentials von ca. –20,0 mV in den positiven Bereich (+38,6 mV). Durch die Inkubation mit ASO konnten so große Menge an ASO effizient an die Partikeloberfläche (NP+) gebunden werden. Ein Vergleich dieser Ergebnisse zeigte, dass die Beladung mit ASO in der Reihenfolge von Albumin-NP (HSA-NP) mit einer Beladungseffizienz von 7,6 µg ASO / mg NP zu Nanopartikeln, die in der Partikelmatrix inkorporierten Anteil an kationisiertem Albumin enthielten (cHSA-NP) mit 18,2 µg ASO / mg NP, zu Oberflächen-kationisierten Nanopartikeln (NP+) mit 100 µg ASO / mg NP signifikant zunahm. 4.2 Mit ASO-beladene NP in der Zellkultur HSA-NP wurden von allen verwendeten Brustkrebszell-Linien gut vertragen. Nach Zellaufnahme der HSA-NP wurden bei niedriger Quervernetzung (40%) die Partikel gut intrazellulär abgebaut und das ASO in das Zytoplasma freigesetzt. Es konnte im CLSM gezeigt werden, dass die ASO-Freisetzung innerhalb von 24 h zunahm. Alle Versuche mittels den entwickelten ASO-beladenen Trägersystemen einen Antisense Effekt nachzuweisen schlugen fehl. Da die Beladung der HSA-NP nicht weiter erhöht werden konnte, richtete sich ein neuer Ansatz auf eine verbesserte Aufnahme der NP über einen Rezeptor-vermittelten Mechanismus. 4.3 Antikörper-vermittelte Anreicherung von NP in Zielzellen Die Anwendung von monoklonalen Antikörpern mit einer Spezifität gegenüber Tumorzellen ist eine relativ neue und spannende Modalität in der Krebstherapie. Eine der vielversprechenden Zielstrukturen für eine solche Immunotherapie stellt der HER2-Membranrezeptor dar, dessen Überexpression mit einer schlechten Prognose assoziiert ist. HER2 ist ein Produkt des Proto-Onkogens erbB2, das für einen 185 kDa Transmembrantyrosinkinase Wachstumsfaktorrezeptor kodiert. Dieser Rezeptor ist in normalem Gewebe bei Erwachsenen nur geringfügig exprimiert [Press et al., 1990], aber ist bei ungefähr 30% der Patienten mit humanem Magenkarzinom, Lungen- und Brustkrebs überexprimiert. Gegenwärtig dient HER2 als Tumormarker für die zielgerichtete Behandlung mit dem humanisierten anti-HER2 AK Trastuzumab (Herceptin®) von Patientinnen bei metastasierendem Brustkrebs. Jedoch können bessere Ergebnisse erreicht werden, wenn Trastuzumab in Kombination mit anderen Zytostatika verabreicht wird. Antikörper haben bei alleiniger Gabe eine ausreichende Antitumoraktivität, aber sie können auch konjugiert mit Zytostatika sowie Toxinen und Radionukliden, genutzt werden, um diese zu den Tumoren bringen. Im Prinzip kann die Trägereigenschaft von Antikörpern gesteigert werden, wenn ein Antikörper an ein Arzneistoffreservoir, wie Nanopartikel oder Liposomen geknüpft ist. Der Vorteil dieses innovativen Ansatzes für eine zellspezifische Anreicherung im Vergleich zu herkömmlichen Biokonjugaten ist, dass eine höhere Arzneistoffträgerkapazität mit einer verbesserten Spezifität für eine zielgerichtete Pharmakotherapie kombiniert werden kann. Wegen seiner erhöhten Expression in Tumorzellen, seiner extrazellulären Verfügbarkeit und seiner Fähigkeit nach Antikörperbindung internalisiert zu werden, stellt HER2 eine geeignete Zielstruktur für die Tumortherapie mit zellspezifischen Nanopartikeln dar. Das Ziel dieser Arbeit war es, die Funktion Antikörpermodifizierter Protein-basierter Nanopartikel zu untersuchen und eine spezifische Aufnahme in HER2-überexprimierende Zell-Linien zu verbessern. Ein spezifisches Targeting wurde in verschiedenen Krebszell-Linien mit unterschiedlichen HER2- Expressionsleveln durch FACS-Analyse bewiesen. Die Versuche beinhalteten Inhibitionsexperimente durch Vorinkubation mit Trastuzumab, um die Selektivität der Bindungsstellen auf der Zelloberfläche zu unterstreichen. Die zelluläre Aufnahme dieser Nanopartikel, ebenso wie die zelluläre Verteilung, konnte im CLSM beobachtet werden. Diese ermutigenden Ergebnisse heben den potenziellen Wert Antikörper-modifizierter Nanopartikel für eine spezifische Anreicherung in Tumorzellen hervor. Anti-HER2-NP binden effizient an HER2-überexprimierende Zellen (85%) und werden anschließend internalisiert. Im Anschluss wurde die Beladung von ASO in HSA-NP mit den erhaltenen Erkenntnissen Antikörpermodifizierter HSA-NP kombiniert. Zunächst wurde die Freisetzung von farbmarkierten ASO aus AK-modifizierten HSA-NP in SK-Br-3- und MCF7-Zellen untersucht. Durch die spezifische Aufnahme der AK-modifizierten HSA-NP gelangt bereits innerhalb der ersten Stunde deutlich mehr ASO in die Zelle. Die Zellaufnahme und Freisetzung in das Zytosol der Zelle ist abhängig vom HER2- Protein auf der Zelloberfläche und nimmt über 24 h stark zu. SK-Br-3-Zellen reichern das farbmarkierte ASO stärker als die MCF7-Zellen an. Wirksame ASOKonzentrationen können in SK-Br-3-Zellen mit einer sehr geringen Partikelkonzentration von nur 50 µg anti-HER2-NP/ml erzielt werden, während in MCF7- Zellen eine weit aus höhere Partikelkonzentration notwendig ist. Da die HER2- überexprimierenden Zellen, die für einen Antisense-Testung zur Verfügung standen, sich nicht für den Nachweis eines Antisense-Effektes eigneten, konnte die entwickelte Kombination von ASO-beladenen AK-modifizierten Albumin- Nanopartikeln nicht weiter getestet werden. In Kombination mit einem in die Nanopartikel inkorporierten Arzneistoff wird eine wirksame intrazelluläre Arzneistoffabgabe erwartet. Die Anwendung Antikörpermodifizierter Nanopartikel kann Arzneistoff-Trägereigenschaften mit einer zielgerichteten Tumortherapie kombinieren. Diese neue Generation von immunospezifischen Nanopartikeln sollte auf jeden Fall noch weiter im Einzelnen untersucht werden, um die Wirksamkeit dieser Arzneistoffträgersysteme unter in vitro und in vivo Bedingungen zu belegen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Heidrun Wartlick
URN:urn:nbn:de:hebis:30-12195
Referee:Jörg KreuterGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2005/07/08
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2005/02/11
Release Date:2005/07/08
HeBIS-PPN:129493058
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht