Wasserstoffbrücken als strukturbildendes Element : Synthese und Berechnung supramolekularer Komplexe

  • Die nicht-kovalente Synthese sowie die Berechnung der supramolekularen Komplexe wurden anhand dreier unterschiedlicher Stoffklassen demonstriert. Ziel war es, supramolekulare Dimere zu kristallisieren, die durch zwei Wasserstoffbrücken zusammengehalten werden. Die zuerst untersuchten Indol-Derivate waren potentiell selbstkomplementär. Während der Donor im starren Indol-Ring lag, befand sich der Akzeptor in der Seitenkette, was zu konformationell flexiblen Verbindungen führte. Durch Variation des Abstandes von Donor und Akzeptor, was einer Verlängerung der Seitenkette durch zusätzliche CH2-Gruppen entsprach, sollte herausgefunden werden, bei welcher geometrischen Anordnung dimere Komplexe entstehen Die Ergebnisse zeigten, daß die gewünschten Dimere erst bei einer Kettenlänge von drei CH2-Gruppen um Kristall zu beobachten waren. Diese konformationell flexiblen Verbindungen wiesen somit große Unterschiede zwischen berechneter und realer Komplexgeometrie auf, die darauf zurückzuführen sind, daß im Kristall eine Vielzahl von Molekülen wechselwirken, während in der Rechnung mit dem Kraftfeldprogramm MOMO nur zwei Moleküle berücksichtigt werden. Somit führt die „Sandwich“-Form zu einer günstigeren van-der-Waals-Energie als die planare Form. Im zweiten Abschnitt dieser Arbeit konzentrierten sich unsere Untersuchungen auf die Substanzklasse der Acetylhydrazone, welche ebenfalls potentiell selbstkomplementäre Verbindungen darstellen. Im Gegensatz zu den Indol-Derivaten wurde hier der Abstand zwischen Donor und Akzeptor konstant gehalten, um zu untersuchen, wie sich unterschiedliche Reste der Acetylhydrazone auf die Konformation der Moleküle und somit auch auf die Komplexgeometrie auswirken. Zu diesem Zweck wurde eine Reihe von Verbindungen mit Resten unterschiedlicher sterischer Hinderung synthetisiert. Ziel war es auch in dieser Verbindungsklasse gezielt Dimere mit zwei Wasserstoffbrücken zu kristallisieren. Eine Suche in der CSD zeigte schnell, daß Acetylhydrazone zwei Vorzugskonformationen besitzen: eine, in der Donor und Akzeptor eine anti-Anordnung besitzen, was in der Regel zu kettenförmigen Wasserstoffbrücken führt, und eine syn-Anordnung, die zu den gewünschten Dimeren führen sollte. Es galt nun zu untersuchen, welche dieser Reste zur syn-Konformation führt und welches die Vorzugskonformation der Acetylhydrazone ist. Die Untersuchungen zeigten, daß zwei sterisch anspruchsvolle Reste zur syn-Anordnung von Donor und Akzeptor führen und somit zu Dimeren im Kristall. Verbindungen mit zwei sterisch wenig anspruchsvollen Resten lagen hingegen in der anti-Konformation vor und bildeten wie erwartet Polymere. Für die Acetylhydrazone konnte folgende These aufgestellt werden: Die syn-Konformation entsteht, wenn beide Reste drei oder mehr (Kohlenstoff-) Atome besitzen, anderenfalls entsteht die anti-Anordnung. Die Rechnungen lieferten, bis auf eine Ausnahme, supramolekulare Dimere mit zwei Wasserstoffbrücken. Für jene Verbindungen, die ebenfalls in der syn-Konformation in Dimeren kristallisieren, ist die Übereinstimmung zwischen der berechneten und der realen Komplexgeometrie sehr gut. Im letzten Kapitel dieser Arbeit sollten heteromolekulare Komplexe, also solche, die aus zwei unterschiedlichen Molekülen bestehen, untersucht werden. Die erste der eingesetzten Verbindungen sollte zwei Donor-Gruppen enthalten, während die zweite Verbindung zwei Akzeptoren besitzen sollte. Dabei wurde eine Reihe von Diol-Dion-Komplexen untersucht. Dabei gelang es nur einen dieser Komplexe zu kristallisieren und experimentell zu untersuchen. Leider lagen keine Dimere vor, sondern es bildete sich ein 2:1-Komplex (Diol/Dion), der kettenförmige Wasserstoffbrücken ausbildete. Erfreulich war hingegen, daß eine Konformationänderung des Dions zu beobachten war; denn gegenüber der Kristallstruktur der reinen Verbindung lag 25 im Komplex als planare Verbindung vor. Gleichzeitig wurden die möglichen Komplexgeometrien mit MOMO berechnet. Die meisten der berechneten Komplexe wiesen Dimere mit den gewünschten zwei Wasserstoffbrücken auf.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Alexander Degen
URN:urn:nbn:de:hebis:30-0000004907
Referee:Ernst Egert
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/12/14
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/10/21
Release Date:2004/12/14
HeBIS-PPN:125382146
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht