Über Zeitverarbeitung in der MSO : Modellierung der neuronalen Prozesse in der medialen superioren Olive

  • Die vorliegende Arbeit beschäftigt sich mit der Modellierung der neuronalen Prozesse, die auditorischen Lokalisationsleistungen zugrunde liegen. Viele der hierzu aktuell diskutierten Modellvorstellungen lassen sich auf ein von L. Jeffress bereits in der Mitte des letzten Jahrhunderts vorgeschlagenes Netzwerkmodell zurückführen: Nach Jeffress werden interaurale Laufzeitunterschiede (ITDs) zwischen beiden auditorischen Pfaden in einem Netzwerk von Detektorneuronen (Koinzidenzdetektoren) ausgewertet. Systematische Laufzeitunterschiede resultieren aus der Architektur des Netzwerks, die sogenannte Delay-Lines realisieren soll. Trotz einer Reihe von Evidenzen für das im auditorischen Diskurs inzwischen als Paradigma geltende Modell, findet Kritik am Jeffress-Modell in jüngerer Zeit zunehmend Beachtung und Interesse. So argumentieren B. Grothe und D. McAlpine gegen die Übertragung des Delay-Line Modells auf die Verhältnisse bei Säugern. Zentrales Moment ihrer Kritik ist eine Afferenz der MSO aus einem weiteren Teilgebiet der Olive (MNTB). Wesentlicher Effekt der von der Projektion gebildeten inhibitorischen Synapse ist eine relative Verschiebung der Best-Delays der MSO-Zellen zur Präferenz contralateraler Delays. Damit besteht nicht nur zu der nach dem Jeffress-Modell notwendigen Aufteilung der Best-Delays ein Widerspruch, die ITDs liegen bei tiefen Frequenzen für kleine Säuger aufgrund deren geringer Kopfgröße außerhalb des Bereichs physiologisch auftretender Delays. In dieser Arbeit werden die Ergebnisse von Grothe und McAlpine durch Compartmental Modeling analysiert. Gegenüber einer Simulationsstudie aus den Gruppen von Grothe und McAlpine werden von uns durch explizite Modellierung der Dendriten zusätzliche Effekte der Inhibiton beschrieben. Wir stellen dar, wie die Topographie von Inhibiton und Excitation die Verarbeitungsprozesse in Bipolar-Zellen durch dendritische Low-Pass Filterung und Kontrastverst ärkung zwischen minimaler und maximaler Spikerate unterstützt. Unsere Ergebnisse können die empirisch nachgewiesene Verteilung excitatorischer (distaler) und inhibitorische (proximaler) Synapsen erklären. In der abschliessenden Analyse der von den Bipolar-Zellen generierten Spike Trains wird das von Grothe und McAlpine entworfene alternative ITD-Codierungsmodell auf der Basis von Ratencodes problematisiert: Bislang erklärt ihr Vorschlag nicht, wie organismische Lokalisationsleistungen auf der Basis weniger Spikes realisiert werden können.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Claus WeilandORCiDGND
URN:urn:nbn:de:hebis:30-0000004818
Referee:Wolfgang Plassmann, Christian Winter
Advisor:Wolfgang Plassmann
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/12/02
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/11/09
Release Date:2004/12/02
Page Number:74
HeBIS-PPN:125186703
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht