Koinzidenz-Spektroskopie an Oberflächen : Zwei-Elektron-Photoemission von Cu(111)

  • Ziel dieser Arbeit war die Entwicklung eines Mess-Systems zur energie- und winkelaufgelösten Spektroskopie von koinzidenten Elektronenpaaren, die in Reaktionen an einer Oberfläche emittiert wurden. Das Hauptinteresse galt hierbei dem Zwei-Elektronen-Photoemissionsprozess an Oberflächen. Das Prinzip des Spektrometers stellt eine Erweiterung der existierenden COLTRIMS-Spektrometer (COld Target Recoil Ion Momentum Spectroscopy) für Gasphasen-Experimente auf den Themenkreis der Oberflächenphysik dar. Anders als bei den in der Photoelektronen-Spektroskopie häufig eingesetzten elektrostatischen Analysatoren, wird hier eine Flugzeittechnik verwendet. Die Elektronen, die in der Reaktion erzeugt wurden, werden h ierzu mit einem schwachen homogenen elektrostatischen Feld vom Target abgesaugt und in Richtung eines orts- und zeitauflösenden Detektors beschleunigt. Zusätzlich wird ein homogenes Magnetfeld überlagert, das einen Einschluss der Elektronen bis zu einem maximalen Transversal-Impuls gewährleistet. Durch Messung der Flugzeiten und Auftrefforte auf dem Detektor können - unter Kenntnis d er elektrischen und magnetischen Feldstärken - die Startimpulse der Elektronen rekonstruiert werden. Auf diese Weise konnten Elektronen von 0 eV bis zu 50 eV mit einem Raumwinkel von nahezu 2p gleichzeitig abgebildet werden. Durch diesen sehr großen Aktzeptanzbereich, konnte eine wesentliche Erhöhung der Koinzidenzeffizienz der Anordnung gegenüber anderen Systemen erreicht werden (> 10 hoch 2 - 10 hoch 6 je nach Mess-System). Wesentlich hierfür ist des weiteren die Fähigkeit des Detektors mehrere Treffer mit verschwindender Totzeit zu verarbeiten. Mit dem beschriebenen System wurde die Zwei-Elektronen-Photoemission an Oberflächen untersucht. Die Experimente hierzu wurden im wesentlichen am Hamburger Synchrotron Strahlungslabor (HASYLAB) durchgeführt. Als Target wurde die (111)-Oberfläche eines einkristallines Kupfer-Targets verwendet. Mehrere Messreihen mit Photonenenergien im Bereich h? = 40 eV bis h? = 100 eV wurden aufgezeichnet. Durch die vollständige Vermessung des gesamten Impulsraumes der beiden Elektronen, stellt dies die erste kinematisch vollständige Untersuchung (bis auf die Spin-Freiheitsgrade) der Zwei-Elektronen-Photoemission an Oberflächen dar. Im Anschluss an vorangegangene Experimente [HER98], konnte auch hier in den Zwei-Elektronen-Energieverteilungen (innerhalb der experimentellen Auflösung) als Maximal-Energie des Paares der Wert E1 + E2 = h? - 2W0 festgestellt werden, der auf eine Selbst-Faltung der Bänder für die Zwei-Elektronen-Photoemission hindeutet. Die Form der Spektren wird wesentlich durch das Transmissionsverhalten der Elektronen beim Durchgang durch die Oberfläche bestimmt. Die auftretende energieabhängige Brechung der Trajektorie führt dabei zu einer starken Unterdrückung niederenergetischer Elektronen. In der Betrachtung der Kinematik der Emission konnten deutliche Analogien des Effektes zum analogen Prozess der Doppel-Photoionisation an freien Atomen bzw. Molekülen gefunden werden. Die Bewegung des Schwerpunktsimpulses des Paares ist daher durch die Richtung des Polarisationsvektor des Lichtes bestimmt. Im Gegensatz zur Emission am freien System, tritt hier allerdings - je nach Orientierung des Polarisationsvektors - ein Symmetriebruch auf, da Elektronen entweder auf die Oberfläche zu oder von ihr weg emittiert werden. Ein Bruchteil der in den Festkörper emittierten Intensität kann schließlich wieder am Gitter reflektiert werden und die Oberflächenbarriere noch überwinden. Die Energie- und Winkelverteilungen der Elektronen zeigen, dass, je nach Energieaufteilung des Paares, zwischen den Beiträgen durch einen "shake-off"-Mechanismus und einem "knock-out"-Mechanismus unterschieden werden kann. Auch hierin zeigt sich eine Ähnlichkeit des Zwei-Elektronen-Photoemissionsprozesses an Oberflächen mit der Doppel-Ionisation von Helium-Atomen. Während bei der Doppel-Ionisation von Helium diese Unterscheidung allerdings erst bei höheren Photonenenergien (> 100 eV) möglich ist, kann hier schon bei ca. 60 eV zwischen beiden Prozessen getrennt werden. Der Grund hierfür liegt sehr wahrscheinlich in der Abschirmung der Elektronen im Festkörper begründet, die die direkte Coulomb-Wechselwirkung der Elektronen im Endzustand reduziert. Insbesondere der starke Beitrag des "shake-off"-artigen Prozesses ist ein deutlicher Hinweis darauf, dass die gegenwärtigen theoretischen Modelle zur Beschreibung der Zwei-Elektronen-Photoemission nicht ausreichend sein können, da nur die Wechselwirkung im End-Zustand berücksichtigt wird. Vielmehr ist die Einbeziehung von Grundzustandswellenfunktionen jenseits des Bildes unabhängiger Teilchen nötig.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mirko Hattaß
URN:urn:nbn:de:hebis:30-0000004398
Referee:Horst Schmidt-BöckingGND, Reinhard DörnerORCiDGND
Document Type:Doctoral Thesis
Language:German
Year of Completion:2004
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/07/02
Release Date:2004/08/13
Page Number:148
HeBIS-PPN:123084261
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht