Zur Synthese von Ethenoxid in einem Mikroreaktionssystem

  • Das Ziel dieser Arbeit war die Evaluierung der Einsatzmöglichkeiten eines mikrostrukturierten Reaktorsystems in der heterogenen Katalyse. Hierzu wurde eine Reaktion herangezogen, welche typische Problemstellungen der heterogenen Katalyse abbildet. Zu diesen Problemen gehören Temperaturkontrolle, sichere Handhabung von explosiven Gasgemischen und das Erzielen von zufriedenstellenden Selektivitäten. Die Reaktion sollte außerdem bereits gut untersucht worden und die Prozessparameter aus der Literatur bekannt sein. Aus diesem Grund wurde die Partialoxidation von Ethen zu Ethenoxid an Silberkatalysatoren gewählt. Es konnte gezeigt werden, dass die Reaktion in einem Mikrostrukturreaktorsystem sicher durchführbar ist. Vor allem wurde an einer ganzen Reihe von Beispielen veranschaulicht, dass eine herausragende Eigenschaft des Mikrostrukturreaktors seine inhärente Explosionssicherheit ist. Gasgemische, welche sich mitten im explosiven Gemischbereich befanden, konnten bei Drücken von 2 bis 20 bar und Temperaturen von 230 bis 310 °C sicher gehandhabt werden. So konnte gezeigt werden, dass der Mikrostrukturreaktor sich dazu eignet Reaktionen mit explosiven Gasgemischen durchzuführen. Die Verwendung von Mikrostrukturreaktoren in der heterogenen Katalyse befindet sich noch im Anfangsstadium. Um Probleme bei der Übertragung von Katalysatorsystemen auf ein System mit Mikrostruktur zu vermeiden, erfolgte zunächst der Einsatz von Vollsilberkatalysatoren. Die Mikrostruktur wurde deshalb aus dem katalytisch aktiven Material selbst hergestellt. Die Herstellung wurde auf drei unterschiedliche Weisen (LIGA-, Ätz- und Sägeverfahren) durchgeführt. So konnte gezeigt werden, dass eine Kostenreduzierung bei der Darstellung von Mikrostrukturen möglich ist. Der Nachteil der Nutzung von Vollsilber war, dass sich deutlich schlechtere Selektivitäten bei der Partialoxidation von Ethen ergaben. Es konnte jedoch gezeigt werden, dass mit dem Mikrostrukturreaktor die Selektivitäten für Vollsilber im Schnitt 10 % über denen für Rohrreaktorexperimenten bei gleichen Umsätzen lagen. Die effektive Wärmeabführung und die homogene Verteilung der Wärme über den Mikrostrukturreaktor scheinen eine Verbesserung der Selektivität zu erbringen. Kinetische Untersuchungen zeigten, dass sowohl durch Anheben des Partialdrucks von Ethen als auch von Sauerstoff eine Erhöhung der Reaktionsgeschwindigkeit erzielt werden kann. Dabei wurde für Ethen eine formale Reaktionsordnung bei der Bildung von Ethenoxid von 0,53 gefunden, während sie für Sauerstoff 0,78 betrug. Mit diesen Untersuchungen wurde verdeutlicht, dass ein Erhöhen des Sauerstoffpartialdrucks einen positiven Einfluss auf die Selektivität hat. So konnte durch Anheben der Sauerstoffkonzentration von 5 %, wie es in industriellen Prozessen aus Sicherheitsgründen notwendig ist, auf bis zu 95 % eine Verbesserung der Selektivität von bis zu 15 % erzielt werden. Über diesen Sachverhalt wurde zwar bereits in der Literatur (16) berichtet, jedoch erfolgten die Untersuchungen hierfür unter Hochvakuumbedingungen. Der Mikrostrukturreaktor ermöglichte einen Nachweis dieses Phänomens auch unter Hochdruckbedingungen, wie sie für industrielle Reaktoren üblich sind. Damit konnte ein in der heterogenen Katalyse bekanntes Problem, nämlich die Übertragung von Erkenntnissen aus Ultrahochvakuumexperimenten auf Hochdruckbedingungen (pressure-gap), untersucht werden. Eine wissenschaftliche Prüfung, ob dem Ergebnis die gleichen Ursachen sowohl im Ultrahochvakuum als auch bei Hochdruckbedingungen zugrunde liegen, muss noch erfolgen. Es zeigte sich aber auch, dass durch eine Verweilzeiterhöhung keine weitere Verbesserung der Raum-Zeit-Ausbeute möglich ist. Vielmehr wurde klar, dass Reaktionsgeschwindigkeit und Selektivität mit längeren Verweilzeiten abnehmen. Als Grund hierfür konnte die Bildung von elementarem Kohlenstoff an der Silberoberfläche festgestellt werden. Aufgrund der Limitierung bei der Verweilzeit wurden maximale Umsätze von 24 % erzielt. Der Einsatz von 1,2-Dichlorethan als Oxidationsinhibitor für Vollsilber wurde ebenfalls untersucht. Dabei konnte die Selektivität auf bis zu 69 % gesteigert werden. Es erfolgte jedoch eine Einbuße an Aktivität von etwa 42 %. Es ist bekannt, dass die Oberflächenmorphologie von Silberkatalysatoren unter Reaktionsbedingungen starke Veränderungen erfährt. (68) Es wurde aufgezeigt, dass dies für die Oberfläche von mikrostrukturierten Silberfolien ebenfalls festzustellen ist. Dabei wurde gleichzeitig festgestellt, dass die Katalysatoren trotz unterschiedlicher Herstellungsmethoden und den daraus resultierenden unterschiedlichen Oberflächenmorphologien vergleichbare Aktivitäten aufweisen. Industriell verwendete Katalysatoren basieren auf alpha-Aluminiumoxid als Trägermaterial. Dabei wurde bereits seit vielen Jahren an Optimierungen des Katalysators gearbeitet. Durch das Einstellen der spezifischen Oberfläche und Partikelgröße des Silbers und den Einsatz von Alkali- und Erdalkalimetallen als Promotoren werden so Katalysatoren hergestellt, welche eine Selektivität von 80 % besitzen. Die Übertragung dieser Erkenntnisse auf ein Mikrostrukturreaktorsystem kann nicht ohne weiteres vorgenommen werden. Es wurden verschiedene Darstellungsmöglichkeiten für eine alpha-Aluminiumoxidschicht in einem Mikrostrukturreaktor untersucht. Dabei zeigte sich, dass nur die direkte Darstellung von alpha- Aluminiumoxid ohne Phasenumwandlung aus anderen Modifikationen erfolgversprechend ist. Eine Darstellung der Aluminiumoxidschicht durch Sol-Gel- oder CVD-Prozesse war nicht erfolgreich, da die für die Phasenumwandlung von gamma-Aluminiumoxid nach alpha-Aluminiumoxid notwendige Temperatur von 1100 °C die Ausbildung einer Eisenoxidschicht an der Oberfläche der mikrostrukturierten Edelstahlfolien zur Folge hatte. Diese eignete sich nicht als Träger. Alternativ wurde erfolgreich der Einsatz von aluminiumhaltigen Edelstählen untersucht. Diese bilden beim Ausheizen bei 1100 °C eine alpha-Aluminiumoxidschicht an der Oberfläche aus, welche mittels Sputtern mit Silber geträgert wurde. Katalytische Untersuchungen zeigten, dass mit dem Einsatz von alpha-Aluminiumoxidträgern eine Verbesserung der Selektivität im Vergleich zu Vollsilber von 17 % erreicht werden kann. Gleichzeitig konnte anhand eines Gegenüberstellens von katalytischen Daten mit TEM-Aufnahmen der Sputterschichten festgestellt werden, dass eine geschlossene Silberschicht an der Oberfläche notwendig ist, um eine zufriedenstellende Aktivität und Selektivität zu erzielen. Während bei Schichtdicken von 1 nm noch einzelne Silberinseln an der Oberfläche zu finden sind, liegt bei einer Schichtdicke von 5 nm eine fast geschlossene Silberschicht vor. Ein Anheben der Schichtdicke ergab keine weitere Verbesserung der Aktivität oder Selektivität. Dagegen ergab der Einsatz von 1,2-Dichlorethan eine weitere Steigerung der Selektivität auf 77 %. Industriell eingesetzte Rohrbündelreaktoren erreichen im Sauerstoffverfahren eine Selektivität von 80 %. Die hier erzielten 77 % Selektivität bei vergleichbaren Umsätzen zeigt, dass der Einsatz eines Mikrostrukturreaktors für die Synthese von Ethenoxid möglich ist, vor allem unter dem Gesichtspunkt, dass Potenzial für die Optimierung von Reaktoren und die Katalysatorpräparation besteht. Die Nutzung von Reaktionsbedingungen, wie Ethen in reinem Sauerstoff, und der daraus resultierenden Verbesserung für Aktivität und Selektivität, ermöglichen Raum-Zeit-Ausbeuten, die über denen von Industriereaktoren liegen. Ob Mikrostrukturreaktoren in industriellen Prozessen jemals eingesetzt werden, hängt allein von ökonomischen Faktoren ab. Dazu müsste die Selektivität über die bestehenden 80 % angehoben werden. Zur Zeit entfallen 80 % der Produktionskosten von Ethenoxid auf den Rohstoff Ethen, so dass jeder Prozentpunkt, um den die Selektivität angehoben werden könnte, eine deutliche Kosteneinsparung mit sich brächte und darüber entschiede, ob ein neuer Prozess eingeführt wird. Hierzu wäre es auch notwendig, die Kosten für die Produktion der Mikrostrukturreaktoren pro Volumeneinheit um mehrere Größenordnungen zu reduzieren. Außerdem müssten Lösungen entwickelt werden, welche die Peripherie des Reaktors betreffen, vor allem die Heizung und die Gasversorgung. Im Rahmen dieser Arbeit sollte überprüft werden, welche Leistungsfähigkeit ein Mikrostrukturreaktorprozess im Vergleich zu einem bestehenden Prozess besitzt. Es konnte dargestellt werden, dass Raum-Zeit-Ausbeuten über denen eines Industriereaktors erzielt werden können bei vergleichbareren Selektivitäten. Außerdem konnte gezeigt werden, dass der Mikrostrukturreaktor ein geeignetes Werkzeug ist, welches helfen kann, Reaktionen unter bisher nicht einfach zugänglichen Bedingungen durchzuführen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Harry KestenbaumGND
URN:urn:nbn:de:hebis:30-0000004145
Referee:Ferdi SchüthORCiDGND, Matthias WagnerORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/06/21
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/04/22
Release Date:2004/06/21
Tag:Ethenoxidation; Heterogene Katalyse; Mikroreaktor; Silber
HeBIS-PPN:121885038
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik / 660 Chemische Verfahrenstechnik
Licence (German):License LogoDeutsches Urheberrecht