Nitridierung von Vanadium und Niob mit einer Thermowaage bzw. dem Rapid Thermal Processing

  • Die Übergangsmetalle Vanadium und Niob wurden in einer neuartigen Thermowaage bzw. mit dem Rapid Thermal Processing (RTP) unter Verwendung von Ammoniak und Stickstoff als Prozessgas nitridiert. In der Thermowaage, die die in situ Aufzeichnung von Massenänderungen während der Reaktion möglich macht, wurde die Nitridierung hauptsächlich an pulverförmigen Proben durchgeführt. Es stellte sich heraus, dass sowohl Temperatur- und Druckerhöhung, als auch eine Verlängerung der Temperzeit zu größeren Massenzunahmen führten. Die Bildung der unterschiedlichen Nitridphasen war aber allein von der Temperatur während des Versuches und dem verwendeten Prozessgas abhängig. Die detektierten Massenzunahmen bei der Erhöhung von Temperzeit und Druck wurden nur von der vermehrten Einlagerung von Stickstoff bzw. Sauerstoff in das Metall verursacht, die keine neue Phasenbildung zur Folge hatte. Sauerstoff wurde in allen getemperten Proben gefunden, was die Untersuchung von dünnen Schichten in der Thermowaage verhinderte, da aufgrund des erhöhten Sauerstoffgehaltes die Schichten vollständig oxidierten. Der Sauerstoff wurde hauptsächlich von dem Glasreaktor geliefert. Ein dort abgelagerter Belag, der sich durch Korrosion der Edelstahlgasleitung gebildet hatte, wirkte vermutlich katalytisch. Aus diesem Grund war die Thermowaage in dieser Konfiguration nicht für Nitridierungsversuche geeignet und konnte ihren eigentlichen Zweck, die genaue Untersuchung des Reaktionsmechanismus mit Hilfe der Massenänderung und der anschließenden massenspektrometrischen Untersuchung des Prozessgases nach der Reaktion, nicht erfüllen. 200 nm und 500 nm Vanadium- und Niob-Schichten wurden im RTP nitridiert. Auch hier konnte man eine Bildung von Oxiden bzw. Oxynitriden beobachten, diese bildeten sich aber durch die Ausdiffusion von Sauerstoff aus dem Substrat in die Metallschicht, was anhand von SNMS- und TEM/EFTEM/EELS-Untersuchungen eindeutig belegt werden konnte. Um dieses Phänomen zu untersuchen wurden Schichten auch auf Saphir-Substrat, welches gegenüber der Ausdiffusion von Sauerstoff inert sein sollte, aufgebracht. Für die beiden verwendeten Metalle wurden unterschiedliche Ergebnisse gefunden. Während bei den Vanadium-Schichten nur aus dem SiO2-Substrat Sauerstoff ausdiffundierte, wurde dies bei den Niob-Schichten bei beiden Substraten festgestellt. Die Temperatur während der Versuche (V: 600 und 700°C; Nb: 800°C) scheint also auch einen Einfluss auf die Ausdiffusion von Sauerstoff zu haben. Dabei zeigt Saphir eine etwas größere Temperatur-Stabilität als SiO2. Ein Einfluss des Prozessgases auf die Reaktion an der Grenzfläche Metall/Substrat konnte nicht nachgewiesen werden. Zwar kam es bei der Verwendung von Wasserstoff zur Bildung von mehr und sauerstoffreicheren Phasen, was dafür spricht, dass die Substrate stärker angegriffen werden, aber auch beim Einsatz von Inert-Gas (N2) wurde eine Ausdiffusion von Sauerstoff aus den Substraten beobachtet. Allerdings wirkte sich die Schichtdicke der Probe auf die Ausdiffusion von Sauerstoff und die Bildung der Oxid-Phase aus. Da von der Oberfläche der Schicht eindiffundierender Stickstoff die Diffusion von Sauerstoff behindert, kann Sauerstoff mit zunehmender Schichtdicke weiter in das Metall vordringen. Bei dünneren Schichten wird er eher aufgestaut und es bilden sich Oxide mit höherem Sauerstoffgehalt. Ein Einfluss der unterschiedlichen Herstellungsverfahren (Elektronenstrahlverdampfung / Magnetronsputtern) für die Ausgangsschichten auf die Ausdiffusion von Sauerstoff aus dem Substrat konnte, trotz der größeren Kristallinität der gesputterten Proben, nicht nachgewiesen werden.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Antje Berendes
URN:urn:nbn:de:hebis:30-0000004117
Referee:Bernd O. KolbesenGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2004/06/17
Year of first Publication:2004
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/05/13
Release Date:2004/06/17
Tag:Niob; Nitrid; Thermowaage; Vanadium
Rapid Thermal Processing
HeBIS-PPN:121827410
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht