Production of recombinant human endothelin B receptor in different hosts and its subsequent solubilization and purification

  • The endothelin B receptor belongs to the rhodopsin-like G-protein coupled receptors family. It plays an important role in vasodilatation and is found in the membranes of the endothelial cells enveloping blood vessels. During the course of this work, the production of recombinant human ETB receptor in yeast, insect and mammalian cells was evaluated. A number of different receptor constructs for production in the yeast P. pastoris was prepared. Various affinity tags were appended to the receptor N-and C-termini to enable receptor detection and purification. The clone pPIC9KFlagHisETBBio, with an expression level of 60 pmol/mg, yielded the highest amount of active receptor (1.2 mg of receptor per liter of shaking culture). The expression level of the same clone in fermentor culture was 17 pmol/mg, and from a 10L fermentor it was possible to obtain 3 kg of cells that contained 20-39 mg of the receptor. For receptor production in insect cells, Sf9 (S. frugiperda) suspension cells were infected with the recombinant baculovirus pVlMelFlagHisETBBio. The peak of receptor production was reached at 66 h post infection, and radioligand binding assays on insect cell membranes showed 30 pmoL of active receptor /mg of membrane protein. Subsequently, the efficiency of different detergents in solubilizing the active receptor was evaluated. N-dodecyl-beta-D-maltoside (LM), lauryl-sucrose and digitonine/cholate performed best, and LM was chosen for further work. The ETB receptor was produced in mammalian cells using the Semliki Forest Virus expression system. Radioligand binding assays on membranes from CHO cells infected with the recombinant virus pSFV3CAPETBHis showed 7 pmol of active receptor /mg of membrane protein. Since the receptor yield from mammalian cells was much lower than in yeast and insect cells, this system was not used for further large-scale receptor production. After production in yeast and insect cells, the ETB receptor was saturated with its ligand, endothelin-1, in order to stabilize its native form. The receptor was subsequently solubilized with n-dodecyl-beta-D-maltoside and subjected to purification on various affinity matrices. Two-step affinity purification via Ni2+-NTA and monomeric avidin proved the most efficient way to purify milligram amounts of the receptor. The purity of the receptor preparation after this procedure was over 95%, as judged from silver stained gels. However, the tendency of the ETB receptor produced in yeast to form aggregates was a constant problem. Attempts were made to stabilize the active, monomeric form of the receptor by testing a variety of different buffer conditions, but further efforts in this direction will be necessary in order to solve the aggregation problem. In contrast to preparations from yeast, the purification of the ETB receptor produced in insect cells yielded homogeneous receptor preparations, as shown by gel filtration analysis. This work has demonstrated that the amounts of receptor expressed in yeast and insect cells and the final yield of receptor, isolated by purification, represent a good basis for beginning 3D and continuing 2D crystallization trials.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Danka Elez
URN:urn:nbn:de:hebis:30-0000003840
Referee:Bernd LudwigGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2004/03/31
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2004/03/01
Release Date:2004/03/31
HeBIS-PPN:119960214
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht