Pharmakokinetik und Pharmakodynamik der R(plus)-alpha-Liponsäure

  • Das R( )-Enantiomer der rac-a-Liponsäure ist als Coenzym wichtiger Multienzymkomplexe (Pyruvatund a-Ketoglutarat-Dehydrogenase) essentiell für die Zell- und Stoffwechselfunktion. Gerade in den wichtigen Prozessen der Zelle, die Substrate für die Atmungskette bereitstellen (Glykolyse, Citratcyclus), spielt die R( )-a-Liponsäure eine entscheidende Rolle. Zusätzlich besitzt dieser Wirkstoff die Eigenschaft als Chelatkomplex-Bildner, Radikalfänger und Antioxidans zu wirken, und er kann damit den Organismus vor "oxidativem Stress" schützen. Klinische und präklinische Studien geben Hinweise, daß R( )-a- Liponsäure einen positiven Effekt auf die Insulinsensitivität, die Insulin stimulierte Glukoseaufnahme und die Glukoseoxidation hat, weiterhin die Glukoneogenese hemmt und damit eine positive Wirkung auf den Krankheitsverlauf des Typ II - Diabetes hat. Das Ziel dieser Arbeit war es, die in der Literatur beschriebenen lang anhaltenden Wirkungen (Pharmakodynamik) der R( )-a-Liponsäure (12 - 24 h nach Gabe des Wirkstoffes) mit meßbaren Konzentrationen dieser Substanz im Organismus in Zusammenhang zu bringen, um erste Ansätze für die Korrelation zwischen Pharmakokinetik und Pharmakodynamik, also für die Konzentrations-(Dosis)- Wirkungsbeziehung, zu geben. Außerdem sollte geklärt werden, weshalb die Mehrfachgabe zu einer deutlichen Absenkung der nach Einfachgabe wirksamen Dosis führte. Eine wichtige Grundlage dazu ist die genaue Kenntnis der Pharmakokinetik der Wirksubstanz und ihrer wichtigsten Stoffwechselprodukte. Bisher ist nur die Pharmakokinetik der R( )- und S(-)-a-Liponsäure nach Gabe der razemischen a-Liponsäure untersucht worden. Da noch keine Erkenntnisse über die Pharmakokinetik der Metaboliten oder der R( )-a-Liponsäure nach Gabe des reinen R-Enantiomers bestanden, lag der Schwerpunkt der Arbeit auf den Untersuchungen der Pharmakokinetik des R( )- Enantiomers und der Metaboliten nach Gabe von R( )-a-Liponsäure als Trometamolsalz (Dexlipotam) und rac-a-Liponsäure am Tier (Einfach- und Mehrfachgabe) und am Menschen (Einfachgabe). Untersuchungsmodell Ratte: Erster Ausgangspunkt der kinetischen Untersuchungen war das zentrale Kompartiment, abgebildet durch den Blutkreislauf. Die resultierende Plasmakonzentrations-Zeitkurve nach oraler (p.o.), intravenöser (i.v.) oder intraperitonealer (i.p.) Gabe von Dexlipotam konnte mathematisch, basierend auf einem Zwei-Kompartiment-Modell, beschrieben werden. Charakteristisch für die Pharmakokinetik der R( )-a-Liponsäure war die kurze terminale Halbwertszeit (0,6 - 1,6 h) und die hohe, mit dem hepatischen Blutfluß vergleichbare, totale Plasma-Clearance. Diese Eigenschaften führten zu einem schnellen Absinken der Plasmakonzentration auf Werte unterhalb der Nachweisgrenze (6 h nach Gabe des Wirkstoffes). Mit Hilfe der Mikrodialyse wurde nach 1-stündiger Infusion von Dexlipotam die freie ungebundene R( )-a-Liponsäure-Konzentration im Interstitium des Muskels bestimmt. Der zeitliche Verlauf der Gewebekonzentration konnte basierend auf der physiologischen Grundlage eines peripheren Kompartiments (Zwei-Kompartiment-Modell) beschrieben werden. Es zeigte sich, daß nur der freie ungebundene Anteil der im Plasma vorliegenden Konzentration (20 %) für die Distribution in das Gewebe zur Verfügung steht. Die ermittelten Halbwertszeiten der Muttersubstanz im Plasma und im Muskel lagen in vergleichbarer Größenordnung und gaben keinen Hinweis auf eine unterschiedliche Kinetik im Plasma und im Gewebe. Sowohl nach p.o. als auch nach einmal täglicher i.v. Mehrfachgabe über 3 - 4 Wochen konnte keine Anreicherung im Plasma bestimmt werden. Dieser Befund erklärte somit nicht die nach Mehrfachgabe erforderliche Dosisreduktion. Die in weiteren Untersuchungen bestimmten Gewebekonzentrationen in der Leber, in der Niere, im Muskel und im Herzen, die sich aus dem freien ungebundenen und dem reversibel gebundenen Anteil der extrazellulären und intrazellulären Konzentration zusammensetzten, zeigten einen zur Plasmakinetik korrespondierenden Zeitverlauf. Nur einzelne spezifische Geweberegionen zeigten nach p.o. (Aorta) und nach i.v. (Nerven) Mehrfachgabe eine Anreicherung des Wirkstoffes. In in-vitro Testmodellen wurde weiterhin die Pharmakokinetik auf zelluläre Ebene untersucht. Es zeigte sich, daß Hepatozyten in der Lage sind, R( )-a-Liponsäure aufzunehmen und die durch b-Oxidation entstandenen Metaboliten Bisnorliponsäure (BNLA) und Tetranorliponsäure (TNLA) zu bilden und aus der Zelle heraus zu transportieren. Im Hinblick auf die Konzentrations-Wirkungsbeziehung rückten die Metaboliten Tetranorliponsäure und Bisnorliponsäure in das Interesse, da diese Stoffwechselprodukte wie die Muttersubstanz über einen aktiven Dithiolan-Ring verfügen, der möglicherweise das für die Wirkung verantwortliche Strukturelement darstellt. Im Interstitium des Muskels wurde der Metabolit TNLA in vergleichbaren Konzentrationen wie die Muttersubstanz gemessen, der Metabolit BNLA war dort nur in Spuren meßbar. Im Plasma hingegen waren die maximalen TNLA-Konzentrationen um den Faktor 3 geringer als die Muttersubstanz- Konzentrationen. Der Metabolit BNLA war im Plasma nur in geringem Ausmaß, um den Faktor 15 geringer als die Muttersubstanz, meßbar. Untersuchungsmodell Mensch: Im Menschen wurden die Metaboliten TNLA, BNLA, 6,8-Bis(methylmercapto)octansäure (BMOA), 4,6- Bis(methylmercapto)hexansäure (BMHA) und 2,4-Bis(methylmercapto)butansäure (BMBA) im Plasma und im Urin pharmakokinetisch untersucht. Die Metaboliten BMOA, TNLA und BNLA zeigten Halbwertszeiten in vergleichbarer Größenordnung wie die Muttersubstanz (0,5 - 0,9 h). Für die Metaboliten BMBA und BMHA wurden höhere terminale Halbwertszeiten (2 h) ermittelt. Aufgrund der insgesamt kurzen Halbwertszeiten konnte eine Kumulation der Metaboliten nach Mehrfachgabe ausgeschlossen werden. Mit Hilfe eines pharmakokinetischen Modells (Zwei-Kompartiment-Modell) war es möglich, die Bildung der Stoffwechselprodukte BNLA, TNLA, BMOA, BMHA und BMBA im Plasma zeitlich simultan zu beschreiben. Dadurch konnte der Metabolisierungsweg der a-Liponsäure im Organismus genauer erklärt und die resultierenden Konzentrationen der Metaboliten auf Basis der Muttersubstanz-Konzentrationen errechnet werden. Es war nicht möglich, die gemessenen Konzentrationen, weder von der Muttersubstanz noch von den möglichen wirksamen Metaboliten, in den verschiedenen Kompartimenten (Blutkreislauf, Gewebe oder Zelle) mit der lang anhaltenden Wirkung in einen zeitlichen Zusammenhang zu bringen. Weitere Untersuchungen mit empfindlicheren Meßmethoden und weitergehende zusätzliche Konzentrationsbestimmungen in den Kompartimenten in der Zelle (z.B. Mitochondrien) sind erforderlich, um die Korrelation zwischen der Pharmakokinetik und der Pharmakodynamik der R( )-a-Liponsäure oder möglicher wirksamer Metaboliten zu beschreiben.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dorothee Krone
URN:urn:nbn:de:hebis:30-0000002398
Referee:Theodor DingermannORCiDGND, Hartmut Derendorf
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2003/07/10
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2002/12/12
Release Date:2003/07/10
Page Number:297
HeBIS-PPN:113408374
Institutes:Biochemie, Chemie und Pharmazie / Pharmazie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht