Publikationsserver der Universitätsbibliothek Marburg

Titel:The connection between action and perception
Autor:Veto, Peter
Weitere Beteiligte: Schubö, Anna (Prof. Dr.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0105
URN: urn:nbn:de:hebis:04-z2018-01053
DOI: https://doi.org/10.17192/z2018.0105
DDC:150 Psychologie
Titel (trans.):Die Kopplung zwischen Handlung und Wahrnehmung
Publikationsdatum:2018-10-15
Lizenz:https://creativecommons.org/licenses/by-nc-nd/4.0/

Dokument

Schlagwörter:
biological motion perception, action-perception coupling, ambiguous perception, perception, Psychophysik, Wahrnehmung, rivalry, action, action-to-perception transfer, Psychologie, size perce, Handlung, Aktion

Summary:
This thesis consists of three main studies that cover complementary aspects of action-to-perception transfer. In the recent decades, cognitive psychology has started a paradigm shift from its traditional approach to put the stimulus first and treat the action as response to a less one-directional view of perception and action. Quite trivially, action influences perception by changing the external world: we move objects, we locomote or we move our sensory organs. More crucially, action also influences perception internally. Study II and III will address this question directly, by studying perceptual effects of action on physically unchanged stimuli. Study I deals with biological motion. I will argue that the perception of biological motion may present a naturalistic example for direct action-to-perception transfer. The cues of animate locomotion are detected rapidly and effortlessly, and allow quick retrieval of detailed information about the actor, as we related to our immense experience with moving our own bodies in ways that correspond to the physical “laws” which the dynamics of these cues represent. In sum, the studies reported in this thesis provide novel insight on shared action-perception representations, their perceptual consequences and their relation to cognitive models of the world. In Study I, we showed that biological motion cues distort the perceived size of the actor’s figure: a biological motion stimulus is perceived larger than matched control stimuli and lets subsequent stimuli appear smaller. Provided the importance of biological motion, this is in line with other studies that relate subjective importance to perceived size – however, the connection with animate motion has not been reported earlier. If there are shared action-perception representations, do they operate on different representational levels? In Study II, we coupled a stimulus that was in competition with another to action more or less strongly. While the degree of action-perception coupling did not affect overt reports of stimulus’ visibility, oculomotor measures were modulated. This suggests different degrees of action perception coupling on different representational levels, with varying access to awareness. Does in turn the internal cognitive model of the world penetrate action perception coupling? In Study III, we showed that the effect of action-perception congruency on perceptual stability critically depends on the internal cognitive model of action perception coupling. Studies II and III together indicate that no single mechanism or representation can account for all action-perception findings. In the general discussion, I will consider the needed adjustments to current models as well as alternative theoretical approaches.

Bibliographie / References

  1. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436, doi:10.1163/156856897X00357
  2. Pelli, D. G. (1997). The video toolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442, doi:10.1163/15685689X00366.
  3. Meng, M., & Tong, F. (2006). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, (7):2, 539-551, http://journalofvision.org/4/7/2/, doi:10.1167/4.7.2.
  4. Tsuchiya, N., Koch, C., Gilroy, L. A., & Blake, R. (2006). Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. Journal of Vision, 6, (10):6, 1068-1078, doi:10.1167/6.10.6.
  5. Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink toolbox: Eye tracking with Matlab and the psychophysics toolbox. Behavior Research Methods, Instruments, & Computers, 34, 613-617, doi:10.3758/BF03195489.
  6. Chang, D. H. & Troje, N. F. (2009). Acceleration carries the local inversion effect in biological motion perception. Journal of Vision, 16(9), 1-17.
  7. Repp, B. H. & Knoblich, G. (2007). Action can affect auditory perception. Psychological Science, 18(1), 6-7.
  8. Di Pace, E., & Saracini, C. (2014). Action imitation changes perceptual alternations in binocular rivalry. PloS ONE, 9(5), e98305
  9. Di Pace, E. & Saracini, C. (2014). Action imitation changes perceptual alternations in binocular rivalry. PLoS ONE, 9(5), e98305.
  10. Sperandio, I., Lak, A. & Goodale, M. A. Afterimage size is modulated by size-contrast illusions. J. Vis. 12, 1-10 (2012).
  11. Lange, J. & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26(11), 2894-2906.
  12. Boring, E. G. (1930). A new ambiguous figure. American Journal of Psychology, 42, 444-445.
  13. Ikeda, H. & Watanabe, K. (2009). Anger and happiness are linked differently to the explicit detection of biological motion. Perception, 38(7), 1002-1011.
  14. Simion, F., Regolin, L. & Bulf, H. A predisposition for biological motion in the newborn baby. PNAS, 105, 809-813 (2008).
  15. Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. PNAS, 105(2), 809-813.
  16. Einhäuser, W., Martin, K. A. C., & König, P. (2004). Are switches in perception of the Necker cube related to eye-position? European Journal of Neuroscience, 20(10), 2811-2818.
  17. O'Regan, J. K. & Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939-1031 (2001).
  18. O'Regan, J. K. & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939-1031.
  19. Zwickel, J., & Prinz, W. (2012). Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research, 76(2), 171-182.
  20. Coulson, M. (2004). Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. Journal of Nonverbal Behavior, 28(2), 117-139.
  21. Metzger, W. (1934). Beobachtung über phänomenale Identität. Psychologische Forschung, 19, 1-60.
  22. Metzger, W. Beobachtung über phänomenale Identität. Psychol. Res. 19, 1-60 (1934).
  23. Silvera, D. H., Josephs, R. A. & Giesler, R. B. Bigger is better: The influence of physical size on aesthetic preference judgments. J. Behav. Decis. Mak. 15, 189-202 (2002).
  24. Silvera, D. H., Josephs, R. A., & Giesler, R. B. (2002). Bigger is better: The influence of physical size on aesthetic preference judgments. Journal of Behavioral Decision Making, 15(3), 189-202.
  25. Jokisch, D. & Troje, N. F. (2003). Biological motion as a cue for the perception of size. Journal of Vision, 3(4), 252- 264.
  26. Shi, J., Weng, X., He, S. & Jiang, Y. Biological motion cues trigger reflexive attentional orienting. Cogn. 117, 348-354 (2010).
  27. Shi, J., Weng, X., He, S., & Jiang, Y. (2010). Biological motion cues trigger reflexive attentional orienting. Cognition, 117(3), 348-354.
  28. Veto, P., Einhäuser, W., & Troje, N. F. (2017). Biological motion distorts size perception. Scientific Reports, 7(10), 42576.
  29. Troje, N. F. (2008). Biological motion perception. In A. I. Basbaum, M. C. Bushnell, D. V. Smith, G. K. Beauchamp, S. J. Firestein, P. Dallos, D. Oertel, R. H. Masland, T. D. Albright, J. H. Kaas, & E. P. Gardner (Eds.), The Senses: A Comprehensive Reference (pp. 231-238). Oxford, Elsevier.
  30. Troje, N. F. Biological motion perception in The Senses: A Comprehensive Reference (ed. A. I. Basbaum, M. C.
  31. Vanrie, J., Dekeyser, M., & Verfaillie, K. (2004). Bistability and biasing effects in the perception of ambiguous point- light walkers. Perception, 33(5), 547-560.
  32. Hirai, M., Chang, D. H. F., Saunders, D. R. & Troje, N. F. Body configuration modulates the usage of local cues to direction in biological-motion perception. Psychol. Sci. 22, 1543-1549 (2011).
  33. Hirai, M., Chang, D. H. F., Saunders, D. R., & Troje, N. F. (2011). Body configuration modulates the usage of local cues to direction in biological-motion perception. Psychological Science, 22(12), 1543-1549.
  34. Grossman, E. D. & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41(10), 1475-1482.
  35. Meng, M. & Tong, F. (2006). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4(7), 539-551.
  36. Hill, H. & Johnston, A. (2001). Categorizing sex and identity from the biological motion of faces. Current Biology, 11(11), 880-885.
  37. Murray, G. R. & Schmitz, J. D. Caveman politics: Evolutionary leadership preferences and physical stature. Soc. Sci. Q. 92, 1215-1235 (2011).
  38. Murray, G. R. & Schmitz, J. D. (2011). Caveman politics: Evolutionary leadership preferences and physical stature. Social Science Quarterly, 92(5), 1215-1235.
  39. Cutting, J. E. (1981). Coding theory adapted to gait perception. Journal of Experimental Psychology: Human Perception and Performance, 7(1), 71-87.
  40. Lupyan, G. Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems. Rev. Philos. Psychol. 6, 547-569 (2015).
  41. Posner, M. I. & Cohen, Y. Components of visual orienting in Attention and Performance Vol. X (ed. Bouma, H. & Bouwhuis, D.) 531-556 (Erlbaum, 1984).
  42. Abraham, H., Reimer, B., Seppelt, B., Fitzgerald, C., Mehler, B, & Coughlin, J. F. (2017). Consumer interest in automation: Preliminary observations exploring a year's change. [White paper]. Retrieved January 4, 2018, from MIT Agelab: http://agelab.mit.edu/sites/default/files/MIT%20-
  43. Veto, P., Schütz, I., & Einhäuser, W. (in press). Continuous flash suppression: Manual action affects eye movements but not the reported percept. Journal of Vision
  44. Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096-1101.
  45. Wheatstone, C. (1838). Contributions to the Physiology of Vision. Part the First. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London, 128, 371-394.
  46. Tsuchiya, N., Koch, C., Gilroy, L. A., & Blake, R. (2006). Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry. Journal of Vision, 6(10), 1068-1078.
  47. Wexler, M., & van Boxtel, J. J. (2005). Depth perception by the active observer. Trends in Cognitive Sciences, 9(9), 432- 438.
  48. Sonoda, K. & Wada, T. (2017). Displaying system situation awareness increases driver trust in automated driving. IEEE Transactions on Intelligent Vehicles, 2(3), 185-193.
  49. Kidd, D. G., Cicchino, J. B., Reagan, I. J., & Kerfoot, L. B. (2017). Driver trust in five driver assistance technologies following real-world use in four production vehicles. Traffic Injury Prevention, 18(1), 44-50.
  50. James, W. (1912). Essays in Radical Empiricism. New York: Longmans, Green, and Company.
  51. Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. (2002). Estimating the efficiency of recognizing gender and affect from biological motion. Vision Research, 42(20), 2345-2355.
  52. Atkinson, A. P., Tunstall, M. L., & Dittrich, W. H. (2007). Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures. Cognition, 104(1), 59-72.
  53. Tyler, S. C. & Grossman, E. D. Feature-based attention promotes biological motion recognition. JoV, 11, 1-16 (2011).
  54. Grosjean, M., Shiffrar, M., & Knobilch, G. (2007). Fitts's law holds for action perception. Psychological Science, 18(2), 95-99.
  55. Mather, G. & Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society of London. Series B: Biological Sciences, 258(1353), 273-279.
  56. Bertenthal, B. I. & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5(4), 221-225.
  57. Jörges, B. & López-Moliner, J. (2017). Gravity as a strong prior: Implications for perception and action. Frontiers in Human Neuroscience, 11(203), 1-16.
  58. Lindqvist, E. Height and leadership. REStat 94, 1191-1196 (2012).
  59. Lindqvist, E. (2012). Height and leadership. Review of Economics and Statistics, 94(4), 1191-1196.
  60. Müsseler, J. (1999). How independent from action is perception? An event-coding account for more equally-ranked crosstalks. In G. Ascherleben, T. Bachman, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 121-147). Amsterdam: Elsevier.
  61. Müsseler, J. (1999). How independent from action is perception? An event-coding account for more equally-ranked crosstalks. In G. Ascherleben, T. Bachman, & J. Müsseler (Eds.), Cognitive contributions to the perception of spatial and temporal events (pp. 121-147). Amsterdam: Elsevier.
  62. Müsseler, J. How independent from action is perception? An event-coding account for more equally-ranked crosstalks in Cognitive Contributions to the Perception of Spatial and Temporal Events (ed. G. Aschersleben, T. Bachman & J.
  63. Fahle, M. W., Stemmler, T., & Spang, K. M. (2011). How much of the "unconscious" is just pre-threshold? Frontiers in Human Neuroscience, 5(120), 1-6.
  64. Inagaki, T. & Itoh, M. (2013). Human's overtrust in and overreliance on advanced driver assistance systems: A theoretical framework. International Journal of Vehicular Technology, vol. 2013, p. 8.
  65. Sheikh, A. A. & Korn, E. R. (1994). Imagery in sports and physical performance. Amityville, New York: Baywood Publishing Company Inc.
  66. Thornton, I. M. & Vuong, Q. C. Incidental processing of biological motion. Curr. Biol. 14, 1084-1089 (2004).
  67. Thornton, I. M. & Vuong, Q. C. (2004). Incidental processing of biological motion. Current Biology, 14(12), 1084- 1089.
  68. Miller, L. E. & Saygin, A. P. (2013). Individual differences in the perception of biological motion: Links to social cognition and motor imagery. Cognition, 128(2), 140-148.
  69. Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention: Action planning primes action- related stimulus dimensions. Psychological Research, 71(1), 22-29.
  70. Sperandio, I., Savazzi, S. & Marzi, C. A. Is simple reaction time affected by visual illusions? Exp. Brain Res. 201, 345- 350 (2010).
  71. Pylyshyn, Z. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behav. Bran Sci. 22, 341-423 (1999).
  72. Marsh, A. A., Yu, H. H., Schechter, J. C. & Blair, R. J. R. Larger than life: Humans' nonverbal status cues alter perceived size. PLoS ONE 4, 1-8 (2009).
  73. Marsh, A. A., Yu, H. H., Schechter, J. C., & Blair, R. J. R. (2009). Larger than life: Humans' nonverbal status cues alter perceived size. PLoS ONE, 4(5), 1-8.
  74. Althoff, T., Sosic, R., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale physical activity data reveal worldwide activity inequality. Nature, 547(7663), 336-339.
  75. Duguid, M. M. & Goncalo, J. A. Living large: The powerful overestimate their own height. Psychol. Sci. 23, 36-40 (2012).
  76. Duguid, M. M. & Goncalo, J. A. (2012). Living large: The powerful overestimate their own height. Psychological Science, 23(1), 36-40.
  77. Mather, G., Radford, K., & West, S. (1992). Low-level visual processing of biological motion. Proceedings of the Royal Society London B, Biological Sciences, 249(1325), 149-155.
  78. Wohlschläger, A. & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 397-412.
  79. Wohlschläger, A., & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology: Human Perception and Performance, 24, 397-412.
  80. Gravano, S., Zago, M., & Lacquaniti, F. (2017). Mental imagery of gravitational motion. Cortex, 95,172-191.
  81. Hemeren, P.E. (2008). Mind in Action: Action recognition and the perception of biological motion. Lund University Cognitive Studies 140, Lund University, Sweden.
  82. Van Vleet, T. M., Hoang-duc, A. K., DeGutis, J., & Robertson, L. C. (2011). Modulation of non-spatial attention and the global/local processing bias. Neuropsychologia, 49(3), 352-359.
  83. Keetels, M., & Stekelenburg, J. J. (2014). Motor-induced visual motion: hand movements driving visual motion perception. Experimental Brain Research, 232, 2865-2877.
  84. Keetels, M. & Stekelenburg, J. J. (2014). Motor-induced visual motion: Hand movements driving visual motion perception. Experimental Brain Research, 232(9), 2865-2877.
  85. Keetels, M. & Stekelenburg, J. J. Motor-induced visual motion: Hand movements driving visual motion perception. Exp. Brain Res. 232 2865-2877 (2014).
  86. Hecht, H., Vogt, S., & Prinz, W., (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65(1), 3-14.
  87. Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation.. Cognition, 68(1), 77-94.
  88. Wexler, M., Kosslyn, S. M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68, 77-94.
  89. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of Neuroscience Methods, 164, 177-190.
  90. Beets, I. A. M., Rösler, F., & Fiehler, K. (2010). Nonvisual motor learning improves visual motion perception: Evidence from violating the two-thirds power law. Journal of Neurophysiology, 104(3), 1612-1624.
  91. Casile, A. & Giese, M. A. (2006). Non-visual motor learning influences the recognition of biological motion. Current Biology, 16(1), 69-74.
  92. Casile, A. & Giese, M. A. Nonvisual motor training influences biological motion perception. Curr. Biol. 16, 69-74 (2006).
  93. Necker, L. A. (1832). Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid. London Edinburgh Philosophical Magazine and Journal of Science, 1(5), 329-337.
  94. Saunders, D. R., Suchan, J., & Troje, N. F. (2009). Off on the wrong foot: local features in biological motion. Perception, 38(4), 522-532.
  95. Levelt, W. J. M. (1965). On binocular rivalry. Soesterberg, The Netherlands: Institute for Perception RVO-TNO.
  96. Beets, I. A. M., 't Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to- perception transfer: Only percept-dependent action affects perception. Vision Research, 50, 2633-2641.
  97. Beets, I. A. M., 't Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W. & Fiehler, K. Online action-to-perception transfer: Only percept-dependent action affects perception. Vis. Res. 50, 1633-1641 (2010).
  98. Beets, I. A. M., 't Hart, B. M., Rösler, F., Henriques, D. Y. P., Einhäuser, W., & Fiehler, K. (2010). Online action-to- perception transfer: Only percept-dependent action affects perception. Vision Research, 50(24), 2633-2641.
  99. Bassett, D. R., Wyatt, H. R., Thompson, H., Peters, J. C., & Hill, J. O. (2010). Pedometer-measured physical activity and health behaviors in U. S. adults. Medicine & Science in Sports & Exercise, 42(10), 1819-1825.
  100. Johnson & M. Shiffrar (Eds.) People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (pp. 82-100). New York: Oxford University Press.
  101. Pollick, F. E., Paterson, H. M., Bruderlin, A., & Sanford, A. J. (2001). Perceiving affect from arm movement. Cognition, 82(2), 51-61.
  102. Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 9, 129-154 (1997).
  103. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129-154.
  104. Veltkamp, M., Aarts, H., & Custers, R. (2008). Perception in the service of goal pursuit: Motivation to attain goals enhances the perceived size of goal-instrumental objects. Social Cognition, 26(6), 720-736.
  105. Veltkamp, M., Aarts, H. & Custers, R. Perception in the service of goal pursuit: Motivation to attain goals enhances the perceived size of goal-instrumental objects. Soc.Cogn. 26, 720-736 (2008).
  106. Vanrie, J. & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36(4), 625-629.
  107. Vanrie, J. & Verfaillie, K. Perception of biological motion: A stimulus set of human point-light actions. Behav. Res. Methods Instrum. Comput. 36, 625-629 (2004).
  108. Beintema, J. A. & Lappe, M. (2001). Perception of biological motion without local image motion. Proceedings of the National Academy of Science, 99(8), 5661-5663.
  109. Shiffrar, M., Lichtey, L., & Haptulla-Chatterjee, S. (1997). Percepts of biological motion across apertures. Perception & Psychophysics, 59(1), 51-59.
  110. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349-355.
  111. Schütz-Bosbach, S. & Prinz, W. (2007). Perceptual resonance: Action-induced modulation of perception. Trends in Cognitive Sciences, 11(8), 349-355.
  112. Naber M., Frässle S., & Einhäuser W. (2011). Perceptual rivalry: Reflexes reveal the gradual nature of visual awareness. PLoS One, 6, e20910.
  113. Troje, N. F., Westhoff, C. & Lavrov, M. Person identification from biological motion: Effects of structural and kinematic cues. Percept. Psychophys., 67, 667-675 (2005).
  114. Troje, N. F., Westhoff, C., & Lavrov, M. (2005). Person identification from biological motion: Effects of structural and kinematic cues. Perception & Psychophysics, 67(4), 667-675.
  115. Knoblich, G. & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12(6), 467-472.
  116. Savazzi, S., Emanuele, B., Scalf, P. & Beck, D. Reaction times and perceptual adjustments are sensitive to the illusory distortion of space. Exp. Brain Res. 218, 119-128 (2012).
  117. Deen, B. & McCarthy, G. (2010). Reading about the actions of others: Biological motion imagery and action congruency influence brain activity. Neuropsychologia, 48(6), 1607-1615.
  118. Pavlova, M., Krageloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of point-light biological motion displays by young children. Perception, 30(8), 925-933.
  119. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210-220.
  120. Kozlowski, L. T. & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21(6), 575-580.
  121. Arrighi, R., Cartocci, G., & Burr, D. (2011). Reduced perceptual sensitivity for biological motion in paraplegia patients. Current Biology, 21(22), 910-911.
  122. Masters, R., Poolton, J., & van der Kamp, J. (2010). Regard and perceptions of size in soccer: better is bigger. Perception, 39(9), 1290-1295.
  123. Wang, L., Zhang, K., He, S., & Jiang, Y. (2010). Searching for life motion signals: Visual search asymmetry in local but not global biological-motion processing. Psychological Science, 21(8), 1083-1089.
  124. Wang, L., Zhang, K., He, S. & Jiang, Y. Searching for life motion signals: Visual search asymmetry in local but not global biological-motion processing. Psychol. Sci. 21, 1083-1089 (2010).
  125. Neri, P., Morrone, M. C., & Burr, D. C. (1998). Seeing biological motion. Nature, 395(6705), 894-896.
  126. Mataric, M. J. Sensory-motor primitives as a basis for imitation: Linking perception to action and biology to robotics in Imitation in Animals and Artifacts (ed. C. Nehaniv & K. Dautenhahn) 391-422 (Cambridge, MA: MIT Press, 2000).
  127. Anderson, L. C., Bolling, D. Z., Schelinski, S., Coffman, M. C., Pelphrey, K. A., & Kaiser, M. D. (2013). Sex differences in the development of brain mechanisms for processing biological motion. Neuroimage, 83, 751- 760.
  128. Troje, N. F. & Chang, D. H. F. (2013). Shape-independent processes in biological motion perception. In K. L.
  129. Troje, N. F. & Chang, D. H. F. Shape-independent processes in biological motion perception in People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception (ed. Johnson, K. L. & Shiffrar, M.) 82-100 (Oxford University Press, 2013).
  130. Polsinelli, M., Milanesi, G. & Ganesan, A. T. Size adaptation: A new aftereffect. Science, 166, 245-247 (1969).
  131. Polsinelli, M., Milanesi, G., & Ganesan, A. T. (1969). Size adaptation: a new aftereffect. Science, 166(3902), 245- 247.
  132. Itto, Y. & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673.
  133. Johansson, G. Spatio-temporal differentiation and integration in visual motion perception. Psychol Res, 38, 379-393 (1976).
  134. Johansson, G. (1976). Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 38(4), 379-393.
  135. Stephen, D. G., Stepp, N., Dixon, J. A., & Turvey, M. T. (2008). Strong anticipation: Sensitivity to long-range correlations in synchronization behavior. Physica A: Statistical and Theoretical Physics, 387, 5271-5278.
  136. Jokisch, D., Daum, I., Suchan, B. & Troje, N. F. Structural encoding and recognition of biological motion: Evidence from event-related potentials and source analysis. Behav. Brain Res., 157, 195-204 (2005).
  137. Jokisch, D., Daum, I., Suchan, B., & Troje, N. F. (2005). Structural encoding and recognition of biological motion: Evidence from event-related potentials and source analysis. Behavioral Brain Research, 157(2), 195-204.
  138. Dubois, D., Rucker, D. D. & Galinsky, A. D. Super size me: Product size as a signal of status. J. Cons. Res. 38, 1047- 1061 (2011).
  139. Dubois, D., Rucker, D. D., & Galinsky, A. D. (2011). Super size me: Product size as a signal of status. Journal of Consumer Research, 38(6), 1047-1061.
  140. Aschersleben, G. & Prinz, W. (1995). Synchronizing actions with events: the role of sensory information. Perception & Psychophysics, 57(3), 305-317.
  141. Barclay, C. D., Cutting, J. E., & Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Perception & Psychophysics, 23(2), 145-152.
  142. Barclay, C. D., Cutting, J. E. & Kozlowski, L. T. Temporal and spatial factors in gait perception that influence gender recognition. Percept. Psychophys., 23, 145-152 (1978).
  143. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276-315.
  144. Gibson, J. J. (2015). The ecological approach to visual perception (Classic Edition). New York, NY: Taylor & Francis.
  145. Wang, L., Yang, X., Shi, J., & Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84(1), 217-224.
  146. Wang, L., Yang, X., Shi, J. & Jiang, Y. The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217-224 (2014).
  147. Montepare, J. M., Goldstein, S. B. & Clausen, A. The identification of emotions from gait information. J. Nonverbal Behav., 11, 33-42 (1987).
  148. Montepare, J. M., Goldstein, S. B., & Clausen, A. (1987). The identification of emotions from gait information. Journal of Nonverbal Behavior, 11(1), 33-42.
  149. Troje, N. F. & Westhoff, C. The inversion effect in biological motion perception: Evidence for a "life detector"? Curr. Biol. 16, 821-824 (2006).
  150. Troje, N. F. & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a "life detector"? Current Biology, 16(8), 821-824.
  151. Lacquaniti F., Terzuolo C., & Viviani P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1), 115-130.
  152. Brascamp, J. W., Klink, P. C., & Levelt, W. J. (2015). The 'laws' of binocular rivalry: 50 years of Levelt's propositions. Vision Research, 109, 20-37.
  153. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology, 122(3), 371-396.
  154. Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117.
  155. Fox, R. & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218(4571), 486-487.
  156. Yap, A. J., Mason, M. F. & Ames, D. R. The powerful size others down: The link between power and estimates of others' size. J. Exp. Soc. Psychol. 49, 591-594 (2013).
  157. Yap, A. J., Mason, M. F., & Ames, D. R. (2013). The powerful size others down: The link between power and estimates of others' size. Journal of Experimental Social Psychology, 49(3), 591-594.
  158. James, W. (1890). The principles of psychology. New York: Holt.
  159. Brainard, D. H. The psychophysics toolbox. Spatial Vis. 10, 433-436 (1997).
  160. Ahissar, M. & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457-464.
  161. Lacquaniti, F., Carrozzo, M., & Borghese, N. (1993). The role of vision in tuning anticipatory motor responses of the limbs. In A. Berthoz, C. Gielen, V. Henn, K. P. Hoffmann, M. Imbert, F. Lacquaniti & A. Roucoux (Eds), Multisensory Control of Movement (pp. 379-393). Oxford: Oxford University Press.
  162. Blaker, N. M. & van Vugt, M. (2014). The status-size hypothesis: How cues of physical size and social status influence each other. In J. T. Cheng, J. L. Tracy, & C. Anderson (Eds.), The Psychology of Social Status (pp. 119-137). New York: Springer.
  163. Blaker, N. M. & van Vugt, M. The status-size hypothesis: How cues of physical size and social status influence each other in The Psychology of Social Status (ed. Cheng, J. T., Tracy, J. L. & Anderson, C.), 119-137 (Springer, 2014).
  164. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849-937.
  165. Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11(4), 461-481.
  166. Hall, C. R., Rodgers, W. M., & Barr, K. A. (1990). The use of imagery by athletes in selected sports. The Sport Psychologist, 4(1), 1-10.
  167. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vis. 10, 437-442 (1997).
  168. Ivanenko, Y. P., Grasso, R., Macellari, V., & Lacquaniti, F. (2002). Two-thirds power law in human locomotion: Role of ground contact forces. NeuroReport, 13(9), 1171-1174.
  169. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176-180.
  170. Uithol, S., van Rooij, I., Bekkering, H., & Haselager, P. (2011). Understanding motor resonance. Social Neuroscience, 6(4), 388-397.
  171. Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13(3), 283-286.
  172. Zacks, J. M. (2004). Using movement and intentions to understand simple events. Cognitive Science, 28(6), 979-1008.
  173. Vallortigara, G., Regolin, L. & Marconato, F. Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PloS Biol., 3, 1312-1316 (2005).
  174. Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PloS Biology, 3(7), 1312-1316.
  175. Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40(8), 925-930.
  176. Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925-930.
  177. Wohlschläger, A. Visual motion priming by invisible actions. Vis. Res. 40, 925-930 (2000).
  178. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201-211.
  179. Mitsumatsu, H. (2009). Voluntary action affects perception of bistable motion display. Perception, 38, 1522-1535.
  180. Mitsumatsu, H. Voluntary action affects perception of bistable motion display. Percept. 38, 1522-1535 (2009).
  181. Maruya, K., Yang, E., & Blake, R. (2007). Voluntary action influences visual competition. Psychological Science, 18(12), 1090-1098.
  182. Maruya, K., Yang, E. & Blake, R. Voluntary action influences visual competition. Psychol. Sci. 18, 1090-1098 (2007).
  183. Maruya, K., Yang, E., & Blake, R. (2007). Voluntary action influences visual competition. Psychological Science, 18(12), 1090-1098.
  184. Troje, N. F. (2013). What is biological motion?: Definition, stimuli and paradigms. In M. D. Rutherford, & V. A. Kuhlmeier (Eds.), Social Perception: Detection and Interpretation of Animacy, Agency, and Intention (pp. 13- 36). Cambridge, MA: MIT Press.
  185. Troje, N. F. What is biological motion?: Definition, stimuli and paradigms in Social Perception: Detection and Interpretation of Animacy, Agency, and Intention (ed. M. D. Rutherford & V. A. Kuhlmeier) 13-36 (Cambridge, MA: MIT Press, 2013).
  186. Veto, P., Uhlig, M., Troje, N. F., & Einhäuser, W. (submitted manuscript). What you see is what you expect: Cognitive assumptions influence the action-to-perception transfer in ambiguous perception.
  187. Engel, A. K., Maye, A., Kurthen, M. & König, P. Where's the action? The pragmatic turn in cognitive science. Trends Cogn. Sci. 17, 202-209 (2013).
  188. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where's the action? The pragmatic turn in cognitive science. Trends in Cognitive Sciences, 17(5), 202-209.
  189. Meier, B. P., Robinson, M. D. & Caven, A. J. Why a big mac is a good mac: Associations between affect and size. Basic Appl. Soc. Psych. 30, 46-55 (2008).
  190. Meier, B. P., Robinson, M. D., & Caven, A. J. (2008). Why a big mac is a good mac: Associations between affect and size. Basic and Applied Social Psychology, 30(1),46-55.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten