Publikationsserver der Universitätsbibliothek Marburg

Titel:MOVPE Growth Studies on Dilute Bismide Containing III/Vs & Development of an MOVPE In-Situ Gas Phase Analysis Setup
Autor:Nattermann, Lukas Klaus
Weitere Beteiligte: Volz, Kerstin (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0772
DOI: https://doi.org/10.17192/z2017.0772
URN: urn:nbn:de:hebis:04-z2017-07721
DDC: Physik
Titel (trans.):MOVPE Wachstumsstudien an verdünnt Bi-haltigen III/V Halbleitern & Entwicklung eines Experiments zur MOVPE In-Situ Gas Phasen Analyse
Publikationsdatum:2018-06-26
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Massenspektrometrie, in situ mass spectrometry, III/V Halbleiter, In-Situ Massenspektrometrie, MOVPE, Bismut, Halbleiter, Epitaxie, III/V semiconductors, MOCVD

Summary:
The strong rise of mobile and tethered data communication has a significant impact on global electricity consumption. Due to inefficient InyGa1 yAszP1 z telecommunication lasers (around 2 % efficiency with cooling efforts), 3 % of global electricity is consumed for optical data transfer. The low efficiency of those InyGa1 yAszP1 z telecommunication lasers is caused by loss processes, such as Auger recombination and IVBA, which lead to the heating of the devices. Other fields of III/V optoelectronics are also seeking more efficient candidates for device materials, like the search for 1 eV sub-cell alloys in multi-junction solar cells as well as a laser material on Si base. Different Bi containing III/V alloys are discussed as promising candidates. For example, GaAs1 xBix on GaAs with 10% Bi would be a highly efficient laser material for optical data transmission and provide a temperature insensitive band gap with 1.55 μm emission wavelength. The main reason for the high potential of III-Bi-V semiconductors is the fact that already small fractions of Bi, substituting group V host atoms, lead to a significant change of the band structure, which leads to suppression of Auger recombination and IVBA for sufficient compositions. However, the deposition of these highly metastable materials is challenging and still the subject of current research. In the present work, different dilute Bi containing III/V alloys were investigated. GaAs1 xBix, GaAs1 y xPyBix, GaAs1 y xNyBix, and GaP1 xBix were epitaxial grown using MOVPE and characterized using various structural and optical characterization techniques. The challenge here was to deposit structures with sufficient Bi fractions, while simultaneously realizing high quality layers and interfaces. The deposition of GaAs1 xBix with Bi fractions close to 10% has not been realized thus far. In the present work, the reasons for the Bi incorporation limit were under investigation. Therefore, alternative Bi MOs were used to unveil the influence of the thermal decomposition characteristics of the different precursors and the associated surface processes at the growth surface. It was shown that the incorporation limit is not dependent on the type of hydrocarbon residues (different precursors). Rather it was shown that the growth using different MOs led to nearly identical growth characteristics. Therefore it was concluded that at the temperature used neither the Bi incorporation limit is related to a specific hydrocarbon molecule at the growth surface, nor is an insufficient decomposition of one of the alternative MOs responsible. Quaternary layers GaAs1 y xPyBix and GaAs1 y xNyBix were deposited. They enable the lattice matched growth on GaAs, while simultaneously the band gap can be tuned independently over a wide range. GaAs1 y xPyBix was investigated as a potential candidate for a 1eV sub-cell material in multi-junction solar cells. It was possible to demonstrate the first PL activity in this quaternary alloy, which makes the material interesting for further optoelectronic applications. Furthermore, it was found that the smaller covalent radius of the P atoms led to an increased Bi incorporation limit. Hence, GaAs1 y xPyBix, GaAs1 y xNyBix, and GaAs1 xBix structures were deposited and compared. The two different quaternary materials in comparison to GaAs1 xBix showed that with increasing P (or N) incorporation the Bi incorporation limit was increased. Thereby, it was possible to prove the assumption that local strain is a crucial factor for the Bi incorporation limit. This is an important finding for future III-Bi-V studies, as it might open up the possibility of strain-engineering the Bi incorporation into III/Vs. Moreover, GaP1 xBix layers were deposited on GaP and GaP on Si. GaP1 xBix was a relatively new material, and the first deposition by MOVPE was successfully demonstrated. Furthermore, it was possible to incorporate high quality structures and Bi fractions up to 8.5 %. Originally considered to be a promising candidate for a laser material on Si, it was found that despite the large band gap reduction, the alloy is unlikely to lead to efficient light emitters. This is mainly related to a breakdown of the band edge Bloch character due to short-range alloy disorder and the indirect band gap. However, the findings are highly interesting for the Bi community from a theoretical point of view. Finally, it was possible to realize an improved GaAs1 xBix laser structure with an emission wavelength of 1015 nm at room temperature. The second project of this work was the development of a new in-situ setup of a MS connected to an MOVPE system. The new setup is meant to enable in-situ investigations of the deposition procedures discussed above. Especially of interest is the decomposition of MO precursors and analysis of MOVPE process desorption products. Therefore, with the support of Carl Zeiss SMT GmbH, a 3D ion trapped based MS prototype was prepared, and an in-situ setup to the MOVPE system was developed. The main challenge was to maintain the balance between transferring the analyte as unmodified as possible from the reactor chamber into the mass spectrometer and simultaneously not influencing the MOVPE process itself. Despite initial difficulties, the setup was successfully developed, and the potential was demonstrated by investigating the decomposition of TBAs. The main advantages of the new setup are the short measurement time for a mass spectrum over a large range and the ultra sensitive ionization conditions. The investigations on further MOs and growth processes are still under investigation at the moment of submission of this work and will be published separately. Altogether, it can be concluded that the investigations of this work led to various new insights into the growth of bismide containing III/V materials. Furthermore, the developed in-situ setup of the MS at an MOVPE system allows decomposition and growth investigations on a new level, which was demonstrated by TBAs decomposition experiments.

Bibliographie / References

  1. N. Bahlawane, et al., Mass-spectrometric monitoring of the thermal induced decomposition of trimethylgallium, tris(tert-butyl)gallium, and triethylanti- mony at low pressure conditions Elsevier Inc., Am. Soc. Mass Spectrom. 19 (2008) 947-954. http://dx.doi.org/10.1016/j.jasms.2008.04.015, 1044-0305.
  2. P. Ludewig, N. Knaub, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs multi quantum well structures, J. Cryst. Growth 370 (2013) 186-190, http://dx.doi. org/10.1016/j.jcrysgro.2012.07.002, Jul..
  3. K. Forghani, Y. Guan, A.W. Wood, A. Anand, S.E. Babcock, L.J. Mawst, T.F. Kuech, Self-limiting growth when using trimethyl bismuth (TMBi) in the metal- organic vapor phase epitaxy (MOVPE) of GaAs 1-x Bi x , J. Cryst. Growth 395 (2014) 38-45, http://dx.doi.org/10.1016/j.jcrysgro.2014.03.014.
  4. E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, K. Volz, Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs, J. Cryst. Growth 408 (2014) 71-77, http://dx.doi.org/10.1016/j.jcrysgro.2014.09.006, Dec..
  5. L. Nattermann, P. Ludewig, L. Meckbach, B. Ringler, D. Keiper, C. von Hänisch, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs using different metalorganic precursors, J. Cryst. Growth 426 (2015) 54-60, http://dx.doi. org/10.1016/j.jcrysgro.2015.05.015.
  6. E. Sterzer, A. Beyer, L. Duschek, L. Nattermann, B. Ringler, B. Leube, A. Stegmüller, R. Tonner, C. von Hänisch, W. Stolz, K. Volz, Efficient nitrogen incorporation in GaAs using novel metal organic As-N precursor (DTBAA), J. Crys. Growth, 439, 19-27 (2016) DOI: 10.1016/j.jcrysgro.2015.12.032
  7. E. Sterzer, A. Beyer, L. Nattermann, W. Schorn K.Schlechter, S. Pulz, J. Sunder- meyer, W. Stolz, K. Volz Novel nitrogen/gallium precursor [Ga(bdma)H2] for MOVPE, J. Crys. Growth, 454, 173-179 (2016) DOI: 10.1016/j.jcrysgro.2016.08.061
  8. E. Sterzer, B. Ringler, L. Nattermann, A. Beyer, C. von Hänisch, W. Stolz, K. Volz, GaIn)(NAs) growth using di-tertiary-butyl-arsano-amine (DTBAA, J. Cryst. Growth (2017), http://dx.doi.org/10.1016/j.jcrysgro.2017.01.014.
  9. I. Moussa, H. Fitouri, A. Rebey, B. El Jani, Atmospheric-pressure metalorganic vapour phase epitaxy optimization of GaAsBi alloy, Thin Solid Films 516 (23) (2008) 8372-8376, http://dx.doi.org/10.1016/j.tsf.2008.04.062.
  10. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Molecular beam epitaxy growth of GaAs 1-x Bi x , Appl. Phys. Lett. 82 (14) (2003) 2245-2247, http://dx.doi.org/10.1063/1.1565499.
  11. K. Alberi, O.D. Dubon, W. Walukiewicz, K.M. Yu, K. Bertulis, A. Krotkus, Valence band anticrossing in GaBi x As 1Àx , Appl. Phys. Lett. 91 (5) (2007) 051909, http:// dx.doi.org/10.1063/1.2768312.
  12. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing, J. Appl. Phys. 111 (11) (2012) 113108, http://dx.doi.org/10.1063/1.4728028.
  13. S.J. Sweeney, S.R. Jin, Bismide-nitride alloys: promising for efficient light emitting devices in the near-and mid-infrared, J. Appl. Phys. 113 (4) (2013) 043110, http://dx.doi.org/10.1063/1.4789624.
  14. K. Forghani, Y. Guan, M. Losurdo, G. Luo, D. Morgan, S.E. Babcock, A.S. Brown, L. J. Mawst, T.F. Kuech, GaAs 1ÀyÀz P y Bi z , an alternative reduced band gap alloy system lattice-matched to GaAs, Appl. Phys. Lett. 105 (11) (2014) 111101, http://dx.doi.org/10.1063/1.4895116.
  15. J.C. Harmand, A. Caliman, E.V.K. Rao, L. Largeau, J. Ramos, R. Teissier, L. Travers, G. Ungaro, B. Theys, I.F.L. Dias, GaNAsSb how dies it compare with other dilute III-V-nitride alloys?, Semicond Sci. Technol. 17 (8) (2002) 778-784, http://dx. doi.org/10.1088/0268-1242/17/8/306.
  16. C.A. Broderick, P.E. Harnedy, R.J. Manning, E.P. O'Reilly, P. Ludewig, Z.L. Bushell, K. Volz, Determination of band offsets in dilute bismide GaBixAs1 -x quantum wells using polarization-resolved photovoltage spectroscopy and 12-band kp calculations (2015), http://dx.doi.org/10.1088/0268-1242/30/9/094009.
  17. P. Ludewig, L. Nattermann, W. Stolz, K. Volz MOVPE growth mechanisms of dilute bismide III/Vs, Semicond. Sci. Technol., 30, 9 (2015) DOI: 10.1088/0268-1242/30/9/094017
  18. D.M. Wood, A. Zunger, Epitaxial effects on coherent phase diagrams of alloys, Phys. Rev. B 40 (6) (1989) 4062-4089, http://dx.doi.org/10.1103/PhysRevB.40.4062.
  19. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S. Watkins, C. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Valence-band anticrossing in mismatched III-V semiconductor alloys, Phys. Rev. B 75 (4) (2007) 045203, http://dx.doi.org/ 10.1103/PhysRevB.75.045203, Jan..
  20. M. Usman, C.A. Broderick, A. Lindsay, E.P. O'Reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, Phys. Rev. B 84 (24) (2011) 245202, http://dx.doi.org/10.1103/PhysRevB.84.245202, Dec..
  21. A.F. Phillips, S.J. Sweeney, A.R. Adams, P.J.A. Thijs, The temperature dependence of 1.3-and 1.5-/spl mu/m compressively Strained InGaAs (P) MQW Semiconductor Lasers, IEEE J. Selcted Top Quantum Electron. 5 (3) (1999) 401- 412, http://dx.doi.org/10.1109/2944.788398.
  22. S.J. Sweeney, A.F. Phillips, A.R. Adams, E.P. O'Reilly, P.J.A. Thijs, The effect of temperature dependent processes on the performance of 1 5-lm compressively strained InGaAs(P) MQW semiconductor diode lasers, IEEE Photon. Technol. Lett. 10 (8) (1998) 1076-1078, http://dx.doi.org/10.1109/ 68.701507, Aug..
  23. K. Oe, H. Okamoto, New semiconductor alloy GaAs 1-x Bi x grown by metal organic vapor phase epitaxy, Jpn. J. Appl. Phys., vol. 37, no. Part 2, No. 11A, pp. L1283-L1285, Nov. 1998, http://dx.doi.org/10.1143/JJAP.37.L1283.
  24. A. Brauers, "Alternative Precursors for III-V MOVPE -Promises and Problems," vol. 22, pp. 1-18, 1991.
  25. N. I. Buchan, C. A. Larsen, and G. B. Stringfellow, "A mass spectrometric study of the simultaneous reaction mechanism of TMIn and PH3 to grow InP," J. Cryst. Growth, vol. 92, no. 3-4, pp. 605-615, 1988.
  26. G. Zimmermann et al., "Amino-arsine and -phosphine compounds for the MOVPE of III-V semiconductors," J. Cryst. Growth, vol. 129, no. 1-2, pp. 37-44, 1993.
  27. A. Stegmüller and R. Tonner, "A quantum chemical descriptor for CVD precursor design: Predicting decomposition rates of TBP and TBAs isomers and derivatives," Chem. Vap. Depos., vol. 21, no. 7-9, pp. 161-165, 2015.
  28. P. Ludewig, N. Knaub, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs multi quantum well structures, J. Cryst. Growth 370 (July) (2013) 186-190.
  29. J. A. Woollam Co. Inc., A Short Course in Ellipsometry (n.d.).
  30. I. Moussa, H. Fitouri, A. Rebey, B. El Jani, Atmospheric-pressure metalorganic vapour phase epitaxy optimization of GaAsBi alloy, Thin Solid Films 516 (23) (2008) 8372-8376.
  31. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (11) (2001) 5815.
  32. S.J. Sweeney, S.R. Jin, Bismide-nitride alloys: promising for efficient light emitting devices in the near-and mid-infrared, J. Appl. Phys. 113 (4) (2013) 043110.
  33. S.J. Sweeney, S.R. Jin, Bismide-nitride alloys: promising for efficient light emitting devices in the near-and mid-infrared, J. Appl. Phys. 113 (4) (2013) 043110.
  34. T.M. Christian, B. Fluegel, D.A. Beaton, K. Alberi, A. Mascarenhas, Bismuth- induced Raman modes in GaPBi, J. Appl. Phys. 55 (108002) (2016).
  35. W. M. Sawyer, Carbon for Electric Lights, Electric Dynamic Light Company, (1880).
  36. C. A. Larsen, S. H. Li, and G. B. Stringfellow, "Decomposition mechanisms of TBAs," J. Cryst. Growth, vol. 94, pp. 663-672, 1989.
  37. S.J. Sweeney et al., Dependence of threshold current on QW position and on pressure in 1.5 mm InGaAs(P) lasers, Phys. Status Solidi B 211 (1999) 525.
  38. C.A. Broderick, M. Usman, E.P. O'Reilly, Derivation of 12-and 14-band k • p Hamiltonians for dilute bismide and bismide-nitride semiconductors, Semicond. Sci. Technol. 28 (December (12)) (2013) 125025.
  39. C.A. Broderick, P.E. Harnedy, R.J. Manning, E.P.O'Reilly, P. Ludewig, Z.L. Bushell, K. Volz, Determination of band offsets in dilute bismide GaBi x As 1Àx quantum wells using polarization-resolved photovoltage spectroscopy and 12-band kp calculations, 2015.
  40. C.A. Broderick, P.E. Harnedy, R.J. Manning, E.P. O'Reilly, P. Ludewig, Z.L. Bushell, K. Volz, Determination of band offsets in dilute bismide GaBixAs1−x quantum wells using polarization-resolved photovoltage spectroscopy and 12-band kp calculations, 2015.
  41. G. B. Stringfellow, "Development and current status of organometallic vapor phase epitaxy," J. Cryst. Growth, vol. 264, no. 4, pp. 620-630, 2004.
  42. W. Bennarndt, G. Boehm, M.-C. Amann, Domains of molecular beam epitaxial growth of Ga(In)AsBi on GaAs and InP substrates, J. Cryst. Growth 436 (2015) 56-61.
  43. E. Sterzer et al., "Efficient nitrogen incorporation in GaAs using novel metal organic As-N precursor di-tertiary-butyl-arsano-amine (DTBAA)," J. Cryst. Growth, vol. 439, pp. 19-27, 2016.
  44. G. Zimmermann, Einfluss neuartiger Ausgangsmaterialien in der MOVPE auf die physikalischen Eigenschaften von III/V Halbleitern, 1st ed. Marburg: Cuvillier Verlag Göttingen, 1994.
  45. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I.P. Marko, S.R. Jin, K. Hild, S. Chatterjee, W. Stolz, S.J. Sweeney, K. Volz, Electrical injection Ga (AsBi)/(AlGa)As single quantum well laser, Appl. Phys. Lett. 102 (24) (2013).
  46. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I.P. Marko, S.R. Jin, K. Hild, S. Chatterjee, W. Stolz, S.J. Sweeney, K. Volz, Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser, Appl. Phys. Lett. 102 (24) (2013).
  47. C. Girard, Excess functions and equilibrium phase diagrams of four ternary metallic systems: Al-Ga-In, Al-Bi-Ga, Bhi-Ga-Zn, Al-Ga-Sb, PhD thesis, University of Provence, Marseille, (1985).
  48. M.P. Polak, P. Scharoch, R. Kudrawiec, First-principles calculations of bismuth induced changes in the band structure of dilute Ga-V-Bi and In-V-Bi alloys: chemical trends versus experimental data, Semicond. Sci. Technol. 30 (9) (2015) 94001.
  49. The authors acknowledge support from the German Science Foundation (GRK 1782: "Functionalization of Semiconductors") and the German Federal Ministry of Education and Research through the project "MehrSi".
  50. Further Publications Peer-Review Paper Listed below are the scientific papers which were published during my PhD but which do not directly bear a relation to the Bi containing III/Vs or the MS setup.
  51. K. Forghani, Y. Guan, M. Losurdo, G. Luo, D. Morgan, S.E. Babcock, A.S. Brown, L.J. Mawst, T.F. Kuech, GaAs1−y−zPyBiz, an alternative reduced band gap alloy system lattice-matched to GaAs, Appl. Phys. Lett. 105 (11) (2014) 111101.
  52. K. Forghani, Y. Guan, M. Losurdo, G. Luo, D. Morgan, S.E. Babcock, A.S. Brown, L. J. Mawst, T.F. Kuech, GaAsPBi, an alternative reduced band gap alloy system lattice-matched to GaAs, Appl. Phys. Lett. 105 (111101) (2014).
  53. E. Sterzer et al., "(GaIn)(NAs) growth using di-tertiary-butyl-arsano-amine (DTBAA)," J. Cryst. Growth, 2017.
  54. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, W. Stolz, GaP- nucleation on exact Si (0 0 1) substrates for III/V device integration, J. Cryst. Growth 315 (1) (2011) 37-47.
  55. T. Bawden, Global warming: Data centres to consume three times as much energy in next decade, experts warn, 2016, [Online; posted 23-Jan-2016].
  56. Z.L. Bushell, P. Ludewig, N. Knaub, Z. Batool, K. Hild, W. Stolz, S.J. Sweeney, K. Volz, Growth and characterisation of Ga(NAsBi) alloy by metal-organic vapour phase epitaxy, J. Cryst. Growth 396 (2014) 79-84.
  57. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, D.O. Scanlon, J. Buckeridge, T.S. Jones, M.J. Ashwin, T.D. Veal, Growth and properties of GaSbBi alloys, Appl. Phys. Lett. 103 (14) (2013) 142106.
  58. M.P.C.M. Krijn, Heterojunction band offsets and effective masses in III-V quaternary alloys, Semicond. Sci. Technol. 6 (1) (1999) 27-31.
  59. A. Stegmüller and R. Tonner, "Hydrogen Elimination Mechanism in the Absence of Low-Lying Acceptor Orbitals in EH2(t-C4H9) (E = N-Bi)," Inorg. Chem., vol. 54, no. 13, pp. 6363-6372, 2015.
  60. K. Wang, Y. Gu, H.F. Zhou, L.Y. Zhang, C.Z. Kang, M.J. Wu, W.W. Pan, P.F. Lu, Q. Gong, S.M. Wang, InPBi single crystals grown by molecular beam epitaxy, Sci. Rep. 4 (2014) 5449.
  61. G. Zimmermann, H. Protzmann, W. Stolz, and E. O. Göbel, "In-situ formation of As-H functions by Beta-elimination of specific metalorganic arsenic compounds for the MOVPE of III/V semiconductors," J. Cryst. Growth, vol. 124, pp. 136-141, 1992.
  62. P. W. Lee, T. R. Omstead, D. R. McKenna, and K. F. Jensen, "In situ mass spectroscopy studies of the decomposition of organometallic arsenic compounds in the presence of Ga(CH3)3 and Ga(C2H5)3," J. Cryst. Growth, vol. 93, no. 1-4, pp. 134- 142, 1988.
  63. C. Kittel, Introduction to Solid States Physics, New York, NY, 8 edition, 2013.
  64. E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, K. Volz, Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs, J. Cryst. Growth 408 (2014) 71-77.
  65. E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, K. Volz, Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs, J. Cryst. Growth 408 (December) (2014) 71-77.
  66. B. Kunert, K. Volz, I. Nemeth, and W. Stolz, "Luminescence investigations of the GaP-based dilute nitride Ga(NAsP) material system," J. Lumin., vol. 121, no. 2 SPEC. ISS., pp. 361-364, 2006.
  67. B. Breddermann, A. Bäumner, S.W. Koch, P. Ludewig, W. Stolz, K. Volz, J. Hader, J.V. Moloney, C.A. Broderick, E.P. O'Reilly, Luminescence properties of dilute bismide systems, J. Lumin. 154 (2014) 95-98, Oct. <http:// www.sciencedirect.com/science/article/pii/S0022231314002518>.
  68. C. A. Larsen, N. I. Buchan, and G. B. Stringfellow, "Mass spectrometric studies of phosphine pyrolysis and OMVPE growth of InP," J. Cryst. Growth, vol. 85, pp. 148-153, 1987.
  69. M. Yoshida, H. Watanabe, and F. Uesugi, "Mass Spectrometric Study of Ga(CH3)3 and Ga(C2H5) 3 Decomposition Reaction in H2 and N2," J. Electrochem. Soc. Solid-State Sci. Technol., vol. 132, no. 3, pp. 677-679, 1985.
  70. M. A. Grayson, Measuring Mass -From Positive Rays to Proteins, Chamical Heritage Press Philadelphia, (2002).
  71. C. A. Larsen, S. H. Li, N. J. Buchan, and G. B. Stringfellow, "Mechanisms Of GaAs Growth Uusing Tertiarybutylarsine And Trimethylgallium," J. Cryst. Growth, vol. 94, pp. 673-682, 1989.
  72. P. Roussel and E. Virey, MOCVD and MBE epitaxy trends for compound semiconductors. Solid State Technology, 2012.
  73. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Molecular beam epitaxy growth of GaAs 1Àx Bi x , Appl. Phys. Lett. 82 (14) (2003) 2245-2247.
  74. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Molecular beam epitaxy growth of GaAs1−xBix, Appl. Phys. Lett. 82 (14) (2003) 2245-2247.
  75. L. Nattermann et al., "MOVPE growth of Ga(AsBi)/GaAs using different metalorganic precursors," J. Cryst. Growth, vol. 426, pp. 54-60, 2015.
  76. L. Nattermann, P. Ludewig, L. Meckbach, B. Ringler, D. Keiper, C. Von Hänisch, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs using different metalorganic precursors, J. Cryst. Growth 426 (2015) 54-60.
  77. L. Nattermann, P. Ludewig, L. Meckbach, B. Ringler, D. Keiper, C. Von Hänisch, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs using different metalorganic precursors, J. Cryst. Growth 426 (2015) 54-60.
  78. L. Nattermann, A. Beyer, P. Ludewig, T. Hepp, E. Sterzer, and K. Volz, "MOVPE growth of Ga(PBi) on GaP and GaP on Si with Bi fractions up to 8%," J. Cryst. Growth, vol. 463, pp. 151-155, 2017.
  79. C. H. Chen, C. A. Larsen, G. B. Stringfellow, D. W. Brown, and A. J. Robertson, "MOVPE growth of InP using isobutylphosphine and tert-butylphosphine," J. Cryst. Growth, vol. 77, no. 1-3, pp. 11-18, 1986.
  80. R. L. Moon, "MOVPE: is there any other technology for optoelectronics?," J. Cryst. Growth, vol. 170, no. 1-4, pp. 1-10, 1997.
  81. I. Garcia, B. Galiana, I. Rey-Stolle, and C. Algora, "MOVPE technology for the growth of III-V semiconductor structures," 2007 Spanish Conf. Electron Devices, Proc., pp. 17-20, 2007.
  82. T.M. Christian, D.A. Beaton, K. Alberi, B. Fluegel, A. Mascarenhas, Mysterious absence of pair luminescence in gallium phosphide bismide, Appl. Phys. Express 8 (061202) (2015).
  83. G. Zimmermann et al., "New Developments of Less Toxic Group-V Precursors for the Metalorganic Vapour Phase Epitaxy of III - V-Semiconductors : In -Situ-Formation of As -H Functions by Thermal β-Elimination of Specific As-Trialkyl Compounds," J. Appl. Phys., vol. 35, pp. 2035-2042, 1996.
  84. R. Dorn et al., "New group III aluminium and gallium hydride precursors for metal-organic vapour-phase epitaxy," Mater. Sci. Eng. B, vol. 17, no. 1-3, pp. 21-24, 1993.
  85. K. Oe, H. Okamoto, New semiconductor alloy GaAs1−xBix grown by metal organic vapor phase epitaxy, Jpn. J. Appl. Phys. 37 (November (Part 2)) (1998) L1283-L1285, No. 11A.
  86. E. Sterzer et al., "Novel nitrogen/gallium precursor [Ga(bdma)H2] for MOVPE," J. Cryst. Growth, vol. 454, pp. 173-179, 2016.
  87. J. T. Francis, S. W. Benson, and T. T. Tsotsis, "Observation of the methyl radical during the surface decomposition reaction of trimethylgallium," J. Phys. Chem., vol. 95, no. 12, pp. 4583-4586, 1991.
  88. C. A. Larsen, C. H. Chen, M. Kitamura, G. B. Stringfellow, D. W. Brown, and A. J. Robertson, "Organometallic vapor phase epitaxial growth of InP using new phosphorus sources," Appl. Phys. Lett., vol. 48, no. 22, pp. 1531-1533, 1986.
  89. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Thery and Practice, Academic Press (Elsevier), 2 edition, (1999).
  90. D. F. Foster, C. Glidewell, and D. J. Cole-Hamilton, "Probing the Mechanisms of Growth of Gallium Arsenide by Metalorganic Vapor Phase Epitaxy Using Experimental and Theoretical Studies of Designed Precursors," J. Electron. Mater., vol. 23, no. 2, 1994.
  91. C. A. Larsen, N. I. Buchan, and G. B. Stringfellow, "Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs," Appl. Phys. Lett., vol. 52, no. 6, pp. 480-482, 1987.
  92. K. Forghani et al., "Self-limiting growth when using trimethyl bismuth ( TMBi ) in the metal-organic vapor phase epitaxy ( MOVPE ) of GaAs 1 {À} y Bi y," J. Cryst. Growth, vol. 395, pp. 38-45, 2014.
  93. K. Forghani, Y. Guan, A.W. Wood, A. Anand, S.E. Babcock, L.J. Mawst, T.F. Kuech, Self-limiting growth when using trimethyl bismuth (TMBi) in the metal-organic vapor phase epitaxy (MOVPE) of GaAs 1 À y Bi y, J. Cryst. Growth 395 (2014) 38-45.
  94. P. Ludewig, L. Nattermann, W. Stolz and K. Volz, Semiconductor Science and Technology 30, 094017 (2015).
  95. M. P. Polak, P. Scharoch and R. Kudrawiec, Semiconductor Science and Technology 30, 094001 (2015).
  96. L. Jones, H. Yang, T.J. Pennycook, M.S.J. Marshall, S. Van Aert, N.D. Browning, M. R. Castell, P.D. Nellist, Smart align -a new tool for robust non-rigid registration of scanning microscope data, Adv. Struct. Chem. Imag. (2015) 1-16.
  97. N. Ashcroft and D. Mermin, Solid State Physics, Saunders Collage Publishing, 1976.
  98. NIST Mass Spectrometry Data Center, Standart Reference Database Nr 69, 2017.
  99. C. Krammel, L. Nattermann, E. Sterzer, K. Volz, P. M. Koenraad, Structural and Electronic Properties of Isovalent Boron Atoms in GaAs submitted to Journal of Applied Physics (Special Issue) (2017)
  100. M. Mashita et al., "THE PYROLYSIS TEMPERATURE OF TRIETHYLGALLIUM IN THE PRESENCE OF ARSINE OR TRIMETHYLALUMINUM," J. Cryst. Growth, vol. 77, pp. 194-199, 1986.
  101. A.F. Phillips et al., The temperature dependence of 1.3 mm and 1.5 mm compressively strained InGaAs(P) MQW semiconductor lasers, IEEE J. Sel. Top. Quantum Electron. 5 (1999) 401.
  102. M. Usman, C.A. Broderick, A. Lindsay, E.P. O'Reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, Phys. Rev. B 84 (24) (2011) 245202.
  103. M. Usman, C.A. Broderick, A. Lindsay, E.P. O'Reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, Phys. Rev. B 84 (December (24)) (2011) 245202.
  104. I. P. Marko and S. J. Sweeney, IEEE J. Sel. Topics Quan- tum Electron. 23, 1501512 (2017).
  105. K. Alberi, O.D. Dubon, W. Walukiewicz, K.M. Yu, K. Bertulis, A. Krotkus, Valence band anticrossing in GaBi x As 1Àx , Appl. Phys. Lett. 91 (5) (2007) 051909.
  106. K. Alberi, O.D. Dubon, W. Walukiewicz, K.M. Yu, K. Bertulis, A. Krotkus, Valence band anticrossing in GaBixAs1−x, Appl. Phys. Lett. 91 (5) (2007) 051909.
  107. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S. Watkins, C. Wang, X. Liu, Y.-J. Cho, J. Furdyna, Valence-band anticrossing in mismatched III-V semiconductor alloys, Phys. Rev. B 75 (January (4)) (2007) 045203.
  108. D.P. Samajdar, T.D. Das, S. Dhar, Valence band anticrossing model for GaSb1 À xBix and GaP1 À xBix using k.p method, Mater. Sci. Semicond. Process. 40 (2015) 539-542.
  109. D.P. Samajdar, S. Dhar, Valence band structure of InAs(1−x)Bi(x) and InSb(1−x)Bi(x) alloy semiconductors calculated using valence band anticrossing model, Sci. World J. 2014 (2014) 704830.
  110. S.J. Pennycock, Z-contrast stem for materials science, Ultramicroscopy 30 (1989) 58-69.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten