Publikationsserver der Universitätsbibliothek Marburg

Titel:Functional characterization of the Ustilago maydis effector protein Ten1
Autor:Erchinger, Philipp
Weitere Beteiligte: Kahmann, Regine (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0707
DOI: https://doi.org/10.17192/z2017.0707
URN: urn:nbn:de:hebis:04-z2017-07072
DDC: Biowissenschaften, Biologie
Titel (trans.):Funktionelle Charakterisierung des Ustilago maydis Effektorproteins Ten1
Publikationsdatum:2018-06-26
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ustilago maydis, Effektor

Summary:
Ustilago maydis, the causal agent of corn smut disease, is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the host plant is largely governed by a plethora of secreted effector proteins, many of which are encoded in gene clusters. The deletion of cluster 10A consisting of 10 effector-encoding genes results in strongly reduced virulence after maize seedling infection. In the present study, the gene UMAG_03744 (termed ten1) could be identified as a major virulence factor of gene cluster 10A. Via quantitative reverse transcription PCR an induction of ten1 during the biotrophic development of the fungus was detected. ten1 deletion strains showed a virulence phenotype mainly reflected by a reduced tumor size on seedling leaves. Moreover, by complementing the cluster 10A deletion strain for ten1, the strong virulence defect of the cluster mutant was partially rescued. After overexpression in U. maydis hyphae, secreted Ten1 protein could be detected in axenic culture supernatant. Furthermore, using immunoelectron microscopy, the translocation of secreted Ten1 to plant cells could be shown after maize seedling infection, manifested by a significant accumulation of the protein in the plant cytoplasm and especially in plant nuclei. Through a yeast two-hybrid screen ZmPP26, a type 2C maize protein phosphatase (PP2C) could be identified as interaction partner of Ten1. This interaction was supported by coimmunoprecipitation experiments after transient co-expression of Ten1 and ZmPP26 in Nicotiana benthamiana. Moreover, ZmPP26 could be detected by mass spectrometry after immunoprecipitation of Ten1 from U. maydis-infected leaf tissue. Via yeast two-hybrid assays the ZmPP26-interacting domain of Ten1 was mapped. The engineered protein Ten1m, harboring amino acid substitutions in the interacting domain, showed no interaction with ZmPP26 in yeast two-hybrid assays. By complementing the cluster 10A deletion strain with Ten1m, the virulence defect of the cluster mutant could not be rescued, suggesting that the interaction of Ten1 and ZmPP26 may be biologically relevant.

Bibliographie / References

  1. Han, S., Min, M.K., Lee, S.-Y., Lim, C.W., Bhatnagar, N., Lee, Y., Shin, D., Chung, K.Y., Lee, S.C., Kim, B.-G., et al. (2017). Modulation of ABA signaling by altering VxGΦL motif of PP2Cs in Oryza sativa. Mol. Plant, in press. doi: 10.1016/j.molp.2017.08.003.
  2. Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2014b). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 21, 133-139.
  3. Raghavendra, A.S., Gonugunta, V.K., Christmann, A., and Grill, E. (2010). ABA perception and signalling. Trends Plant Sci. 15, 395-401.
  4. Shi, Y., Mowery, R.A., Ashley, J., Hentz, M., Ramirez, A.J., Bilgicer, B., Slunt-Brown, H., Borchelt, D.R., and Shaw, B.F. (2012). Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding. Protein Sci. 21, 1197-1209.
  5. Rabe, F., Bosch, J., Stirnberg, A., Guse, T., Bauer, L., Seitner, D., Rabanal, F.A., Czedik-Eysenberg, A., Uhse, S., Bindics, J., et al. (2016). A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. ELife 5, e20522.
  6. Henty-Ridilla, J.L., Li, J., Day, B., and Staiger, C.J. (2014). ACTIN DEPOLYMERIZING FACTOR4 Regulates Actin Dynamics during Innate Immune Signaling in Arabidopsis. Plant Cell 26, 340-352.
  7. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D.G., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
  8. Melcher, K., Ng, L.-M., Zhou, X.E., Soon, F.-F., Xu, Y., Suino-Powell, K.M., Park, S.-Y., Weiner, J.J., Fujii, H., Chinnusamy, V., et al. (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602-608.
  9. Clackson, T., and Wells, J. (1995). A hot spot of binding energy in a hormone-receptor interface. Science 267, 383-386.
  10. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 −ΔΔCT Method. Methods 25, 402-408.
  11. Lo Presti, L., Zechmann, B., Kumlehn, J., Liang, L., Lanver, D., Tanaka, S., Bock, R., and Kahmann, R. (2017). An assay for entry of secreted fungal effectors into plant cells. New Phytol. 213, 956-964.
  12. Bogan, A.A., and Thorn, K.S. (1998). Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1-9.
  13. Albert, I., Böhm, H., Albert, M., Feiler, C.E., Imkampe, J., Wallmeroth, N., Brancato, C., Raaymakers, T.M., Oome, S., Zhang, H., et al. (2015). An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1, 15140.
  14. Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S., et al. (2008). Antagonistic Interaction between Systemic Acquired Resistance and the Abscisic Acid-Mediated Abiotic Stress Response in Arabidopsis. PLANT CELL ONLINE 20, 1678-1692.
  15. Kämper, J. (2004). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol. Genet. Genomics 271, 103-110.
  16. Irmler, A., and Forchhammer, K. (2001). A PP2C-type phosphatase dephosphorylates the PII signaling protein in the cyanobacterium Synechocystis PCC 6803. Proc. Natl. Acad. Sci. 98, 12978-12983.
  17. Leung, J., Bouvier-Durand, M., Morris, P., Guerrier, D., Chefdor, F., and Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-1452.
  18. Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.-J., Cullimore, J.V., et al. (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. 108, 19824-19829.
  19. Lee, M.W., Jelenska, J., and Greenberg, J.T. (2008). Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J. 54, 452-465.
  20. Brachmann, A., König, J., Julius, C., and Feldbrügge, M. (2004). A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol. Genet. Genomics.
  21. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors. Plant Cell 27, 1332-1351.
  22. Tanaka, S., Brefort, T., Neidig, N., Djamei, A., Kahnt, J., Vermerris, W., Koenig, S., Feussner, K., Feussner, I., and Kahmann, R. (2014). A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. ELife 3.
  23. Broomfield, P.E., and Hargreaves, J.A. (1992). A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr. Genet. 22, 117-121.
  24. Dutheil, J.Y., Mannhaupt, G., Schweizer, G., M.K. Sieber, C., Münsterkötter, M., Güldener, U., Schirawski, J., and Kahmann, R. (2016). A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Genome Biol. Evol. 8, 681-704.
  25. Gillissen, B., Bergemann, J., Sandmann, C., Schroeer, B., Bölker, M., and Kahmann, R. (1992). A two- component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68, 647-657.
  26. Liu, Z., Wu, Y., Yang, F., Zhang, Y., Chen, S., Xie, Q., Tian, X., and Zhou, J.-M. (2013b). BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc. Natl. Acad. Sci. 110, 6205-6210.
  27. B j e r r u m , O . J . , a n d S c h a f e r -N i e l s e n , C . ( 1 9 8 6 ) . Buffer systems and transfer parameters for semidry electroblotting with a horizontal apparatus. Electrophor. VCH Weinh. Ger. 315-327.
  28. Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. (2011). Callose Deposition: A Multifaceted Plant Defense Response. Mol. Plant. Microbe Interact. 24, 183-193.
  29. Voigt, C.A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front. Plant Sci. 5.
  30. Matei, A., and Doehlemann, G. (2016). Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions. Curr. Opin. Microbiol. 34, 60-66.
  31. Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses. Plant Physiol. 173, 2383-2398.
  32. Yan, C., Wu, F., Jernigan, R.L., Dobbs, D., and Honavar, V. (2008). Characterization of Protein-Protein Interfaces. Protein J. 27, 59-70.
  33. Brefort, T., Tanaka, S., Neidig, N., Doehlemann, G., Vincon, V., and Kahmann, R. (2014). Characterization of the Largest Effector Gene Cluster of Ustilago maydis. PLoS Pathog. 10, e1003866.
  34. Rae, B.P., and Elliott, R.M. (1986). Characterization of the Mutations Responsible for the Electrophoretic Mobility Differences in the NS Proteins of Vesicular Stomatitis Virus New Jersey Complementation Group E Mutants. J. Gen. Virol. 67, 2635-2643.
  35. Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., et al. (2012). Chitin- Induced Dimerization Activates a Plant Immune Receptor. Science 336, 1160-1164.
  36. Shinya, T., Nakagawa, T., Kaku, H., and Shibuya, N. (2015). Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr. Opin. Plant Biol. 26, 64-71.
  37. Laemmli, U.K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680-685.
  38. Schuster, M., Schweizer, G., and Kahmann, R. (2017). Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes. Fungal Genet. Biol.
  39. Mueller, A.N., Ziemann, S., Treitschke, S., Aßmann, D., and Doehlemann, G. (2013). Compatibility in the Ustilago maydis-Maize Interaction Requires Inhibition of Host Cysteine Proteases by the Fungal Effector Pit2. PLoS Pathog. 9, e1003177.
  40. White, D. G. (1999). Compendium of Corn Diseases, 3rd ed. APS Press, St. Paul.
  41. Taniguti, L.M., Schaker, P.D.C., Benevenuto, J., Peters, L.P., Carvalho, G., Palhares, A., Quecine, M.C., Nunes, F.R.S., Kmit, M.C.P., Wai, A., et al. (2015). Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane. PLOS ONE 10, e0129318.
  42. Petit-Houdenot, Y., and Fudal, I. (2017). Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. Front. Plant Sci.
  43. Running, M.P., Clark, S.E., and Meyerowitz, E.M. (1995). Confocal microscopy of the shoot apex. Methods Cell Biol. 49, 217-229.
  44. Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopathol. 43, 205-227.
  45. Christensen, J. J. (1963). Corn smut caused by Ustilago maydis. Monograph no. 2. Amer. Phytopath. Society.
  46. Day, P.R., and Anagnostakis, S.L. (1971). Corn Smut Dikaryon in Culture. Nature. New Biol. 231, 19-20.
  47. Oerke, E.-C. (2006). Crop losses to pests. J. Agric. Sci. 144, 31.
  48. Wise, A.A., Liu, Z., and Binns, A.N. (2006). Culture and Maintenance of Agrobacterium Strains. In Agrobacterium Protocols, (New Jersey: Humana Press), pp. 3-14.
  49. Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275-296.
  50. Rabe, F., Ajami-Rashidi, Z., Doehlemann, G., Kahmann, R., and Djamei, A. (2013). Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis: SA signalling and degradation in U. maydis. Mol. Microbiol. 89, 179-188.
  51. Southern, E.M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
  52. Banuett, F., and Herskowitz, I. (1989). Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl. Acad. Sci. 86, 5878-5882.
  53. Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.-H., and Sheen, J. (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464, 418-422.
  54. Banuett, F., and Herskowitz, I. (1996). Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122, 2965-2976.
  55. Denancé, N., Sánchez-Vallet, A., Goffner, D., and Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 4.
  56. Konishi, M., Hatada, Y., and Horiuchi, J. -i. (2013). Draft Genome Sequence of the Basidiomycetous Yeast- Like Fungus Pseudozyma hubeiensis SY62, Which Produces an Abundant Amount of the Biosurfactant Mannosylerythritol Lipids. Genome Announc. 1, e00409-13-e00409-13.
  57. Spanu, P.D., and Panstruga, R. (2017). Editorial: Biotrophic Plant-Microbe Interactions. Front. Plant Sci. 8.
  58. Allen, T.W., Quayyum, H.A., Burpee, L.L., and Buck, J.W. (2004). Effect of foliar disease on the epiphytic yeast communities of creeping bentgrass and tall fescue. Can. J. Microbiol. 50, 853-860.
  59. Vleeshouwers, V.G.A.A., and Oliver, R.P. (2014). Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Mol. Plant. Microbe Interact. 27, 196-206.
  60. Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-Triggered Immunity: From Pathogen Perception to Robust Defense. Annu. Rev. Plant Biol. 66, 487-511.
  61. Du, J., Verzaux, E., Chaparro-Garcia, A., Bijsterbosch, G., Keizer, L.C.P., Zhou, J., Liebrand, T.W.H., Xie, C., Govers, F., Robatzek, S., et al. (2015). Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1, 15034.
  62. Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., and Gurr, S.J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186-194.
  63. Fernandez-Alvarez, A., Elias-Villalobos, A., Jimenez-Martin, A., Marin-Menguiano, M., and Ibeas, J.I. (2013). Endoplasmic Reticulum Glucosidases and Protein Quality Control Factors Cooperate to Establish Biotrophy in Ustilago maydis. Plant Cell 25, 4676-4690.
  64. Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343-345.
  65. Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999). Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963- 972.
  66. Kerk, D., Templeton, G., and Moorhead, G.B.G. (2007). Evolutionary Radiation Pattern of Novel Protein Phosphatases Revealed by Analysis of Protein Data from the Completely Sequenced Genomes of Humans, Green Algae, and Higher Plants. PLANT Physiol. 146, 351-367.
  67. Moorhead, G.B.G., De Wever, V., Templeton, G., and Kerk, D. (2009). Evolution of protein phosphatases in plants and animals. Biochem. J. 417, 401-409.
  68. Panayotatos, N., Radziejewska, E., Acheson, A., Pearsall, D., Thadani, A., and Wong, V. (1993). Exchange of a single amino acid interconverts the specific activity and gel mobility of human and rat ciliary neurotrophic factors. J. Biol. Chem. 268, 19000-19003.
  69. Giraldo, M.C., and Valent, B. (2013). Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11, 800-814.
  70. Cokol, M., Nair, R., and Rost, B. (2000). Finding nuclear localization signals. EMBO Rep. 1, 411-415.
  71. Gómez-Gómez, L., and Boller, T. (2000). FLS2: An LRR Receptor-like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Mol. Cell 5, 1003-1011.
  72. Yu, X., Feng, B., He, P., and Shan, L. (2017). From Chaos to Harmony: Responses and Signaling Upon Microbial Pattern Recognition. Annu. Rev. Phytopathol. 55.
  73. Neidig, N. (2013). Funktionelle Analyse des Ustilago maydis Effektorproteins Tin3 im Gencluster 19A. PhD dissertation: Department of Biology, Philipps University Marburg, Germany (http://archiv.ub.uni- marburg.de/diss/z2013/0355/pdf/dnn.pdf; retrieved: August 21, 2017).
  74. Sharma, R., Mishra, B., Runge, F., and Thines, M. (2014). Gene Loss Rather Than Gene Gain Is Associated with a Host Jump from Monocots to Dicots in the Smut Fungus Melanopsichium pennsylvanicum. Genome Biol. Evol. 6, 2034-2049.
  75. Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids. PLoS ONE 9, e86490.
  76. Schuster, M., Schweizer, G., Reissmann, S., and Kahmann, R. (2015). Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet. Biol.
  77. Lorenz, S., Guenther, M., Grumaz, C., Rupp, S., Zibek, S., and Sohn, K. (2014). Genome Sequence of the Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an Efficient Producer of Biosurfactant Mannosylerythritol Lipids. Genome Announc. 2, e00053-14-e00053-14.
  78. Que, Y., Xu, L., Wu, Q., Liu, Y., Ling, H., Liu, Y., Zhang, Y., Guo, J., Su, Y., Chen, J., et al. (2014). Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics 15, 996.
  79. Fesel, P.H., and Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 90, 53-60.
  80. Spellig, T., Bottin, A., and Kahmann, R. (1996). Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. MGG Mol. Gen. Genet. 252, 503-509.
  81. González, M., Brito, N., and González, C. (2012). High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes. BMC Microbiol. 12, 213.
  82. Gietz, R.D., and Schiestl, R.H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34.
  83. Robert-Seilaniantz, A., Grant, M., and Jones, J.D.G. (2011). Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annu. Rev. Phytopathol. 49, 317-343.
  84. Moreira, I.S., Fernandes, P.A., and Ramos, M.J. (2007). Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins Struct. Funct. Bioinforma. 68, 803-812.
  85. Roth, Z., Yehezkel, G., and Khalaila, I. (2012). Identification and Quantification of Protein Glycosylation. Int. J. Carbohydr. Chem. 2012, 1-10.
  86. Brachmann, A., Weinzierl, G., Kämper, J., and Kahmann, R. (2001). Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol. Microbiol. 42, 1047-1063.
  87. Aichinger, C., Hansson, K., Eichhorn, H., Lessing, F., Mannhaupt, G., Mewes, W., and Kahmann, R. (2003). Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol. Genet. Genomics 270, 303-314.
  88. de Jong, W.W., Zweers, A., and Cohen, L.H. (1978). Influence of single amino acid substitutions on electrophoretic mobility of sodium dodecyl sulfate-protein complexes. Biochem. Biophys. Res. Commun. 82, 532-539.
  89. Kämper, J., Kahmann, R., Bölker, M., Ma, L.-J., Brefort, T., Saville, B.J., Banuett, F., Kronstad, J.W., Gold, S.E., Müller, O., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97-101.
  90. Kyriakis, J.M. (2014). In the Beginning, There Was Protein Phosphorylation. J. Biol. Chem. 289, 9460-9462.
  91. Jones, J.D.G., Vance, R.E., and Dangl, J.L. (2016). Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395-aaf6395.
  92. Tsukuda, T., Carleton, S., Fotheringham, S., and Holloman, W.K. (1988). Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell. Biol. 8, 3703-3709.
  93. Song, S.-K., Hofhuis, H., Lee, M.M., and Clark, S.E. (2008). Key Divisions in the Early Arabidopsis Embryo Require POL and PLL1 Phosphatases to Establish the Root Stem Cell Organizer and Vascular Axis. Dev. Cell 15, 98-109.
  94. Wei, K., and Pan, S. (2014). Maize protein phosphatase gene family: identification and molecular characterization. BMC Genomics 15, 773.
  95. Skibbe, D.S., Doehlemann, G., Fernandes, J., and Walbot, V. (2010). Maize Tumors Caused by Ustilago maydis Require Organ-Specific Genes in Host and Pathogen. Science 328, 89-92.
  96. Mann, D.J., Campbell, D.G., McGowan, C.H., and Cohen, P.T.W. (1992). Mammalian protein serine/threonine phosphatase 2C: cDNA cloning and comparative analysis of amino acid sequences. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1130, 100-104.
  97. Umbrasaite, J., Schweighofer, A., Kazanaviciute, V., Magyar, Z., Ayatollahi, Z., Unterwurzacher, V., Choopayak, C., Boniecka, J., Murray, J.A.H., Bogre, L., et al. (2010). MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis. PLoS ONE 5, e15357.
  98. Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A.R., Feussner, I., et al. (2011). Metabolic priming by a secreted fungal effector. Nature 478, 395-398.
  99. Testerink, C., and Munnik, T. (2011). Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62, 2349-2361.
  100. Rodriguez, P.L., Leube, M.P., and Grill, E. (1998). Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol. Biol. 38, 879-883.
  101. Soon, F.-F., Ng, L.-M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H.E., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., et al. (2012). Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases. Science 335, 85-88.
  102. Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. 95, 975-980.
  103. Maeda, T., Tsai, A.Y., and Saito, H. (1993). Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5408-5417.
  104. Scheler, C., Durner, J., and Astier, J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16, 534-539.
  105. Wu, C.-H., Abd-El-Haliem, A., Bozkurt, T.O., Belhaj, K., Terauchi, R., Vossen, J.H., and Kamoun, S. (2017). NLR network mediates immunity to diverse plant pathogens. Proc. Natl. Acad. Sci. 201702041.
  106. Nair, R., Carter, P., and Rost, B. (2003). NLSdb: database of nuclear localization signals. Nucleic Acids Res. 31, 397-399.
  107. Nguyen Ba, A.N., Pogoutse, A., Provart, N., and Moses, A.M. (2009). NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10, 202.
  108. Cohen, S.N., Chang, A.C., and Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U. S. A. 69, 2110-2114.
  109. Brameier, M., Krings, A., and MacCallum, R.M. (2007). NucPred Predicting nuclear localization of proteins. Bioinformatics 23, 1159-1160.
  110. Thomma, B.P.H.J., Nürnberger, T., and Joosten, M.H.A.J. (2011). Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant Cell 23, 4-15.
  111. Liu, B., Li, J.-F., Ao, Y., Li, Z., Liu, J., Feng, D., Qi, K., He, Y., Zeng, L., Wang, J., et al. (2013a). OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction. Plant Signal. Behav. 8, e22980.
  112. Liu, L., Hu, X., Song, J., Zong, X., Li, D., and Li, D. (2009). Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J. Plant Physiol. 166, 531-542.
  113. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J. 57, 230-242.
  114. Doehlemann, G., van der Linde, K., Aßmann, D., Schwammbach, D., Hof, A., Mohanty, A., Jackson, D., and Kahmann, R. (2009). Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells. PLoS Pathog. 5, e1000290.
  115. Schweighofer, A., and Meskiene, I. (2015). Phosphatases in Plants. In Plant Phosphoproteomics, W.X. Schulze, ed. (New York, NY: Springer New York), pp. 25-46.
  116. Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J. Plant Physiol. 168, 534-539.
  117. Mendoza-Mendoza, A., Berndt, P., Djamei, A., Weise, C., Linne, U., Marahiel, M., Vraneš, M., Kämper, J., and Kahmann, R. (2009). Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Mol. Microbiol. 71, 895-911.
  118. Ahuja, I., Kissen, R., and Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends Plant Sci. 17, 73-90.
  119. Morrison, E.N., Emery, R.J.N., and Saville, B.J. (2015). Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. PLOS ONE 10, e0130945.
  120. Sheard, L.B., and Zheng, N. (2009). Plant biology: Signal advance for abscisic acid. Nature 462, 575-576.
  121. Dodds, P.N., and Rathjen, J.P. (2010). Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548.
  122. Toruño, T.Y., Stergiopoulos, I., and Coaker, G. (2016). Plant Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annu. Rev. Phytopathol. 54.
  123. Schweighofer, A., Hirt, H., and Meskiene, I. (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci. 9, 236-243.
  124. Macho, A.P., and Zipfel, C. (2014). Plant PRRs and the Activation of Innate Immune Signaling. Mol. Cell 54, 263-272.
  125. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell 126, 969-980.
  126. Lee, J.-Y., and Lu, H. (2011). Plasmodesmata: the battleground against intruders. Trends Plant Sci. 16, 201- 210.
  127. Song, S.-K., Lee, M.M., and Clark, S.E. (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133, 4691-4698.
  128. Steentoft, C., Vakhrushev, S.Y., Joshi, H.J., Kong, Y., Vester-Christensen, M.B., Schjoldager, K.T.-B.G., Lavrsen, K., Dabelsteen, S., Pedersen, N.B., Marcos-Silva, L., et al. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478-1488.
  129. West, G.M., Pascal, B.D., Ng, L.-M., Soon, F.-F., Melcher, K., Xu, H.E., Chalmers, M.J., and Griffin, P.R. (2013). Protein Conformation Ensembles Monitored by HDX Reveal a Structural Rationale for Abscisic Acid Signaling Protein Affinities and Activities. Structure 21, 229-235.
  130. Deshpande, N., Wilkins, M.R., Packer, N., and Nevalainen, H. (2008). Protein glycosylation pathways in filamentous fungi. Glycobiology 18, 626-637.
  131. Shubchynskyy, V., Boniecka, J., Schweighofer, A., Simulis, J., Kvederaviciute, K., Stumpe, M., Mauch, F., Balazadeh, S., Mueller-Roeber, B., Boutrot, F., et al. (2017). Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. J. Exp. Bot. erw485.
  132. Singh, A., Giri, J., Kapoor, S., Tyagi, A.K., and Pandey, G.K. (2010). Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 11, 435.
  133. Horton, P., Park, K.-J., Obayashi, T., and Nakai, K. (2005). Protein Subcellular Localization Prediction With WoLF PSORT. (Published by Imperial College Press and distributed by World Scientific Publishing Co.), pp. 39-48.
  134. McCullum, E.O., Williams, B.A.R., Zhang, J., and Chaput, J.C. (2010). Random Mutagenesis by Error-Prone PCR. In In Vitro Mutagenesis Protocols, J. Braman, ed. (Totowa, NJ: Humana Press), pp. 103-109.
  135. Robin, J.B., Arffa, R.C., Avni, I., and Rao, N.A. (1986). Rapid visualization of three common fungi using fluorescein-conjugated lectins. Invest. Ophthalmol. Vis. Sci. 27, 500-506.
  136. Torres, M.A. (2006). Reactive Oxygen Species Signaling in Response to Pathogens. PLANT Physiol. 141, 373- 378.
  137. Sambrook, J., Fritsch, E., and Maniatis, T. (1989). Molecular cloning: A laboratory manual: Vol. 2 (S.l.: Cold Spring Harbor). References 109
  138. Farfsing, J.W. (2004). Regulation des Mais-induzierten mig2-Genclusters in Ustilago maydis. PhD dissertation: Department of Biology, Philipps University Marburg, Germany (http://archiv.ub.uni- marburg.de/diss/z2004/0537/; retrieved: May 16, 2017).
  139. Doehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F., Stitt, M., Pons-Kühnemann, J., Sonnewald, U., Kahmann, R., et al. (2008). Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56, 181-195.
  140. Moeder, W., Ung, H., Mosher, S., and Yoshioka, K. (2010). SA-ABA antagonism in defense responses. Plant Signal. Behav. 5, 1231-1233.
  141. Spartz, A.K., Ren, H., Park, M.Y., Grandt, K.N., Lee, S.H., Murphy, A.S., Sussman, M.R., Overvoorde, P.J., and Gray, W.M. (2014). SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+- ATPases to Promote Cell Expansion in Arabidopsis. Plant Cell.
  142. Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Curr. Opin. Plant Biol. 38, 68-77.
  143. Ausubel, F. (2002). Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology (New York: Wiley; ISBN 9780471250920).
  144. Watkins, A.M., Bonneau, R., and Arora, P.S. (2016). Side-Chain Conformational Preferences Govern Protein- Protein Interactions. J. Am. Chem. Soc. 138, 10386-10389.
  145. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263- 273.
  146. van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R., and Doehlemann, G. (2011). Systemic virus- induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol. 189, 471-483.
  147. Varden, F.A., De la Concepcion, J.C., Maidment, J.H., and Banfield, M.J. (2017). Taking the stage: effectors in the spotlight. Curr. Opin. Plant Biol. 38, 25-33.
  148. Hu, W., Yan, Y., Hou, X., He, Y., Wei, Y., Yang, G., He, G., and Peng, M. (2015). TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco. PLOS ONE 10, e0129589.
  149. Leung, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 Genes Encode Homologous Protein Phosphatases 2C Involved in Abscisic Acid Signal Transduction. PLANT CELL ONLINE 9, 759-771.
  150. Couto, D., Niebergall, R., Liang, X., Bücherl, C.A., Sklenar, J., Macho, A.P., Ntoukakis, V., Derbyshire, P., Altenbach, D., Maclean, D., et al. (2016). The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLoS Pathog 12, e1005811.
  151. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, I., and Kahmann, R. (1990). The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60, 295-306.
  152. Kerk, D., Bulgrien, J., Smith, D.W., Barsam, B., Veretnik, S., and Gribskov, M. (2002). The Complement of Protein Phosphatase Catalytic Subunits Encoded in the Genome of Arabidopsis. PLANT Physiol. 129, 908-925.
  153. Bebber, D.P., Holmes, T., and Gurr, S.J. (2014). The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398-1407.
  154. Cao, Y., Liang, Y., Tanaka, K., Nguyen, C.T., Jedrzejczak, R.P., Joachimiak, A., and Stacey, G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. ELife 3.
  155. Ton, J., Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14, 310-317.
  156. Beck, M., and Hurt, E. (2016). The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73-89.
  157. Fernandez-Alvarez, A., Elias-Villalobos, A., and Ibeas, J.I. (2009). The O-Mannosyltransferase PMT4 Is Essential for Normal Appressorium Formation and Penetration in Ustilago maydis. Plant Cell 21, 3397-3412.
  158. Day, B., Henty, J.L., Porter, K.J., and Staiger, C.J. (2011). The Pathogen-Actin Connection: A Platform for Defense Signaling in Plants. Annu. Rev. Phytopathol. 49, 483-506.
  159. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845-858.
  160. Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
  161. Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. MGG Mol. Gen. Genet. 204, 383-396.
  162. Righetti, P.G., Stoyanov, A., and Zhukov, M.Y. (2001). The proteome revisited: theory and practice of all relevant electrophoretic steps (Amsterdam ; New York: Elsevier Science).
  163. Mauch-Mani, B., and Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant Biol. 8, 409-414. References 107
  164. Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28, 1102, 1104.
  165. Martı ńez-Espinoza, A.D., Garcı á-Pedrajas, M.D., and Gold, S.E. (2002). The Ustilaginales as Plant Pests and Model Systems. Fungal Genet. Biol. 35, 1-20.
  166. Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M., and Doehlemann, G. (2012). The Ustilago maydis Effector Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity. PLoS Pathog. 8, e1002684.
  167. Banks, G.R., Shelton, P.A., Kanuga, N., Holden, D.W., and Spanos, A. (1993). The Ustilago maydis nar 1 gene encoding nitrate reductase activity: sequence and transcriptional regulation. Gene 131, 69-78.
  168. Hind, S.R., Strickler, S.R., Boyle, P.C., Dunham, D.M., Bao, Z., O'Doherty, I.M., Baccile, J.A., Hoki, J.S., Viox, E.G., Clarke, C.R., et al. (2016). Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2, 16128.
  169. Doehlemann, G., Reissmann, S., Aßmann, D., Fleckenstein, M., and Kahmann, R. (2011). Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol. Microbiol. 81, 751-766.
  170. Fuchs, S., Grill, E., Meskiene, I., and Schweighofer, A. (2013). Type 2C protein phosphatases in plants: PP2Cs. FEBS J. 280, 681-693.
  171. Schreiner, P., Chen, X., Husnjak, K., Randles, L., Zhang, N., Elsasser, S., Finley, D., Dikic, I., Walters, K.J., and Groll, M. (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453, 548-552.
  172. Cook, D.E., Mesarich, C.H., and Thomma, B.P.H.J. (2015). Understanding Plant Immunity as a Surveillance System to Detect Invasion. Annu. Rev. Phytopathol. 53, 541-563.
  173. Holliday, R. (1974). Ustilago maydis. In King, R.C. (ed.) Handbook of Genetics 1, Plenum Press, New York/USA: 575-595.
  174. Ustilago maydis as a Pathogen. Annu. Rev. Phytopathol. 47, 423-445.
  175. Djamei, A., and Kahmann, R. (2012). Ustilago maydis: Dissecting the Molecular Interface between Pathogen and Plant. PLoS Pathog. 8, e1002955. References 103
  176. Lanver, D., Tollot, M., Schweizer, G., Lo Presti, L., Reissmann, S., Ma, L.-S., Schuster, M., Tanaka, S., Liang, L., Ludwig, N., et al. (2017). Ustilago maydis effectors and their impact on virulence. Nat. Rev. Microbiol.
  177. Bruce, S.A., Saville, B.J., and Neil Emery, R.J. (2011). Ustilago maydis Produces Cytokinins and Abscisic Acid for Potential Regulation of Tumor Formation in Maize. J. Plant Growth Regul. 30, 51-63.
  178. Snetselaar, K., and McCann, M. (2017). Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Mycologia 109, 140-152.
  179. Hotson, A., Chosed, R., Shu, H., Orth, K., and Mudgett, M.B. (2003). Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta: Plant-specific SUMO cysteine protease. Mol. Microbiol. 50, 377- 389.
  180. Bohlmann, R. (1996). Isolierung und Charakterisierung von filamentspezifisch exprimierten Genen aus Ustilago maydis. PhD dissertation: Department of Biology, Ludwig-Maximilians-University München, Germany (https://opac.tib.eu/DB=1/LNG=EN/XMLPRS=N/ PPN?PPN=236164600; retrieved: August 21, 2017).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten