Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss des Nipahvirus-Matrixproteins auf die Lokalisation von viralen Nukleokapsiden und inclusion bodies
Autor:Ringel, Marc
Weitere Beteiligte: Maisner, Andrea (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0603
DOI: https://doi.org/10.17192/z2017.0603
URN: urn:nbn:de:hebis:04-z2017-06033
DDC: Medizin
Titel (trans.):Influence of Nipah virus matrix protein on the localization of viral nuclocapsids and inclusion bodies
Publikationsdatum:2018-05-07
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
transport, Matrixprotein, Zytoskelett, matrixprotein, Nipahvirus, nucloecapside, assembly, Transport, trafficking, Assembly, Nipah virus, Nukleokapside

Zusammenfassung:
Zusammenfassung Das Nipahvirus (NiV) ist ein hochpathogenes, BSL-4 klassifiziertes Paramyxovirus. Das Hüll-assoziierte Matrixprotein (NiV-M) spielt eine zentrale Rolle beim Virus-Assembly und der Bildung infektiöser Viruspartikel, weil es den Kontakt zwischen den im Zytoplasma gebildeten Nukleokapsiden (RNPs) und den NiV-Oberflächen-Glykoproteinen vermittelt. Um diese wichtige Funktion zu erfüllen, muss das NiV-M an die Plasmamembran gelangen, wobei es in einigen Zelltypen vorher durch den Zellkern transportiert wird. Im ersten Teil dieser Arbeit konnte mit Hilfe verschiedener Kernimport- und Kernexport-Mutanten und Immunfluoreszenzanalysen in fixierten und lebenden Zellen gezeigt werden, dass das NiV-M auch in Zelltypen, in denen es bislang nicht im Zellkern nachweisbar war, einen Kerntransit durchlaufen muss, bevor es an die Plasmamembran transportiert wird. Im zweiten Teil der Arbeit wurde untersucht, wo und wie das NiV-M mit viralen RNPs interagiert. Erste Untersuchungen hatten gezeigt, dass virale RNPs in infizierten Zellen in großen zytoplasmatischen inclusion bodies (IB) akkumulieren. Diese liegen teilweise perinukleär und teilweise an der Plasmamembran vor, wo letztendlich das Virus-Assembly stattfindet. Um zu klären, ob das NiV-M beim Transport der RNPs an die Plasmamembran und für die Bildung der unterschiedlich lokalisierten IB eine Rolle spielt, wurde der Einfluss des NiV-Ms auf die IB-Verteilung untersucht. Sowohl Infektions- als auch Kotransfektionsstudien zeigten, dass für die Bildung von peripheren IB an der Plasmamembran und das Virus-Assembly die Expression von funktionellem, korrekt durch den Kern transportiertem NiV-M essentiell ist. Transport-defekte NiV-M Mutanten oder fremde Matrixproteine wie z.B. von Masern- oder Ebolaviren, konnten keine IB-Bildung an der Plasmamembran induzieren. Sie kolokalisierten allerdings mit perinukleären IB, was vermuten lässt, dass diese ein eigenes zelluläres Kompartiment bilden, das stark exprimierte, zytosolische Proteine rekrutieren kann. Die IB an der Plasmamembran bilden sich unabhängig davon, wenn funktionelles NiV-M vorhanden ist. Die Vermutung, dass sich perinukleäre und periphere IB prinzipiell unterscheiden, konnte auch auf ultrastruktureller Ebene durch elektronenmikroskopische Studien bestätigt werden. Im letzten Teil dieser Arbeit wurde durch Studien mit verschiedenen Zytoskelett-Inhibitoren gezeigt, dass eine Zerstörung der Aktinfilamente durch Cytochalasin D den M-Transport und die IB-Bildung an der Plasmamembran verhindern kann. Dies lässt vermuten, dass das Aktinzytoskelett aber nicht die Mikrotubuli eine wesentliche Rolle für das NiV-M vermittelte Virus-Assembly spielen. Insgesamt konnten in dieser Arbeit neue grundlegende Kenntnisse über den intrazellulären Transport des NiV-Ms und die Entstehung von Plasmamembran-assoziierten inclusion bodies gewonnen werden, beides essentielle Voraussetzungen für eine effiziente Neubildung und Freisetzung infektiöser Nipahviren.

Bibliographie / References

  1. Wittwer K (2016) Ability of different matrix proteins to transport Nipah virus nucleocapsids. Bachelorarbeit (Philipps-Univesität Marburg).
  2. Wear MA, Schafer DA, & Cooper JA (2000) Actin dynamics: assembly and disassembly of actin networks. Curr Biol 10(24):R891-895.
  3. Dietzel E, Kolesnikova L, & Maisner A (2013) Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J 10:249.
  4. Diederich S, et al. (2012) Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 86(7):3736-3745.
  5. Johnston JA, Ward CL, & Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883-1898.
  6. Wong KT, et al. (2003) A golden hamster model for human acute Nipah virus infection. Am J Pathol 163(5):2127-2137.
  7. Noco (0,25 µM bis 2 µM) für 6 h inkubiert. Als Kontrolle wurden die Zellen mit 0,025 % DMSO inkubiert. 6 h nach der Inhibitorzugabe wurden die Zellen mit 4 % PFA fixiert, mit 0,1 % TX-100 permeabilisiert und Aktin und Tubulin, wie in Kapitel IV.4.1.6 beschrieben, gefärbt.
  8. Tahara M, Takeda M, & Yanagi Y (2007) Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 81(13):6827-6836.
  9. Cathomen T, et al. (1998) A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17(14):3899- 3908.
  10. Murray K, et al. (1995) A morbillivirus that caused fatal disease in horses and humans. Science 268(5207):94-97.
  11. Bauer A, et al. (2014) ANP32B is a nuclear target of henipavirus M proteins. PLoS One 9(5):e97233.
  12. Dell'Angelica EC (2009) AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 21(4):552-559.
  13. Khan SU, et al. (2012) A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent nipah virus transmission in Bangladesh. PLoS One 7(8):e42689.
  14. Capul AA, et al. (2007) Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol 81(17):9451-9460.
  15. Mottet G, Mühlemann A, Tapparel C, Hoffmann F, & Roux L (1996) A Sendai virus vector leading to the efficient expression of mutant M proteins interfering with virus particle budding. Virology 221(1):159-171.
  16. Koehler A, et al. (2015) A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner. J Virol 90(3):1444-1454.
  17. Drexler JF, et al. (2012) Bats host major mammalian paramyxoviruses. Nat Commun 3:796.
  18. Lamp B (2013) Bedeutung des Matrixproteins für das Assembly hochpathogener Nipahviren. Doktorarbeit (Philipps-Universität Marburg).
  19. Blocquel D, Beltrandi M, Erales J, Barbier P, & Longhi S (2013) Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: evidence for an elongated coiled-coil homotrimer. Virology 446(1-2):162-172.
  20. Pager CT & Dutch RE (2005) Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol 79(20):12714-12720.
  21. Marsh GA, et al. (2012) Cedar virus: a novel Henipavirus isolated from Australian bats. PLoS Pathog 8(8):e1002836.
  22. Fletcher DA & Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485-492.
  23. Welch MD & Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247-288.
  24. García-Mata R, Bebök Z, Sorscher EJ, & Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146(6):1239-1254.
  25. Rockx B, et al. (2011) Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 85(15):7658-7671.
  26. Hooper P, Zaki S, Daniels P, & Middleton D (2001) Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3(4):315-322.
  27. Terry LJ, Shows EB, & Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412-1416.
  28. Bharat TA, et al. (2011) Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol 9(11):e1001196.
  29. Oda S, et al. (2015) Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression. J Virol 90(4):1839-1848.
  30. Johansson K, et al. (2003) Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278(45):44567-44573.
  31. Ray G, Schmitt PT, & Schmitt AP (2016) C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles. J Virol 90(7):3650-3660.
  32. Maar D, et al. (2012) Cysteines in the stalk of the nipah virus G glycoprotein are located in a distinct subdomain critical for fusion activation. J Virol 86(12):6632-6642.
  33. Johnston GP, et al. (2017) Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress. J Virol 91(10).
  34. Becker N (2017) Das Nipahvirus Matrixprotein: Einfluss von Mutationen auf die Membranassoziation und die Interaktion mit RNPs. Bachelorarbeit (Philipps- Universität Marburg).
  35. Förster A, Maertens GN, Farrell PJ, & Bajorek M (2015) Dimerization of matrix protein is required for budding of respiratory syncytial virus. J Virol 89(8):4624-4635.
  36. RNeasy® Mini Kit Qiagen, Hilden SYBR Green qPCR Kit Thermo Fisher, Dreieich DNA Probe Purification Kit Omega bio-tek, USA Gel Extraction Kit Omega bio-tek, USA Plasmid DNA Mini Kit I Omega Omega bio-tek, USA Plasmid DNA Maxi Kit Omega Omega bio-tek, USA Q5® Site-Directed Mutagenesis Kit NEB, Frankfurt a.M.
  37. Santangelo PJ & Bao G (2007) Dynamics of filamentous viral RNPs prior to egress. Nucleic Acids Res 35(11):3602-3611.
  38. einem Intervall von 30 sec aufgenommen. Die Auswertung erfolgte mit Hilfe der Nikon NIS-Elements Software.
  39. Sauerhering L (2014) Einfluss von Wirtsfaktoren auf die Nipahvirus-Infektion humaner und porciner Bronchial-Epithelzellen. Doktorarbeit (Philipps-Universität Marburg).
  40. Liljeroos L, Huiskonen JT, Ora A, Susi P, & Butcher SJ (2011) Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proc Natl Acad Sci U S A 108(44):18085-18090.
  41. Goldsmith CS, et al. (2003) Elucidation of Nipah virus morphogenesis and replication using ultrastructural and molecular approaches. Virus Res 92(1):89-98.
  42. Halpin K, et al. (2007) Emerging viruses: coming in on a wrinkled wing and a prayer. Clin Infect Dis 44(5):711-717.
  43. Vogt C, Eickmann M, Diederich S, Moll M, & Maisner A (2005) Endocytosis of the Nipah virus glycoproteins. J Virol 79(6):3865-3872.
  44. Chiu W, et al. (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6(3):325-330.
  45. Negrete OA, et al. (2005) EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436(7049):401-405.
  46. Bonaparte MI, et al. (2005) Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A 102(30):10652-10657.
  47. Yoneda M, et al. (2006) Establishment of a Nipah virus rescue system. Proc Natl Acad Sci U S A 103(44):16508-16513.
  48. Etablierung des live cell imaging in kotransfizierten Vero76-Zellen
  49. Pentecost M, et al. (2015) Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins. PLoS Pathog 11(3):e1004739.
  50. Cormack BP, Valdivia RH, & Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1 Spec No):33-38.
  51. Chua KB, et al. (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354(9186):1257-1259.
  52. Luby SP, et al. (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 12(12):1888-1894.
  53. de Wit E, et al. (2014) Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog 10(3):e1004001.
  54. Nozawa N, Yamauchi Y, Ohtsuka K, Kawaguchi Y, & Nishiyama Y (2004) Formation of aggresome-like structures in herpes simplex virus type 2-infected cells and a potential role in virus assembly. Exp Cell Res 299(2):486-497.
  55. Lahaye X, et al. (2009) Functional characterization of Negri bodies (NBs) in rabies virus- infected cells: Evidence that NBs are sites of viral transcription and replication. J Virol 83(16):7948-7958.
  56. Tamin A, et al. (2002) Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology 296(1):190-200.
  57. Chua KB, et al. (2000) High mortality in Nipah encephalitis is associated with presence of virus in cerebrospinal fluid. Ann Neurol 48(5):802-805.
  58. Moll M, Klenk HD, & Maisner A (2002) Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76(14):7174-7186.
  59. Shaner NC, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567-1572.
  60. Hoenen T, et al. (2012) Inclusion bodies are a site of ebolavirus replication. J Virol 86(21):11779-11788.
  61. Flitney EW, Kuczmarski ER, Adam SA, & Goldman RD (2009) Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 23(7):2110-2119.
  62. Becker S, Rinne C, Hofsäss U, Klenk HD, & Mühlberger E (1998) Interactions of Marburg virus nucleocapsid proteins. Virology 249(2):406-417.
  63. Dolnik O, et al. (2014) Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in marburg virus-infected cells. PLoS Pathog 10(10):e1004463.
  64. Sadler AJ & Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8(7):559-568.
  65. Gupta S, De BP, Drazba JA, & Banerjee AK (1998) Involvement of actin microfilaments in the replication of human parainfluenza virus type 3. J Virol 72(4):2655-2662.
  66. Chua KB, et al. (2002) Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 4(2):145-151.
  67. Schudt G, Kolesnikova L, Dolnik O, Sodeik B, & Becker S (2013) Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci U S A 110(35):14402- 14407.
  68. Rodgers W (2002) Making membranes green: construction and characterization of GFP-fusion proteins targeted to discrete plasma membrane domains. Biotechniques 32(5):1044-1046, 1048, 1050-1041.
  69. Chan YP, Koh CL, Lam SK, & Wang LF (2004) Mapping of domains responsible for nucleocapsid protein-phosphoprotein interaction of Henipaviruses. J Gen Virol 85(Pt 6):1675-1684.
  70. Sun W, et al. (2014) Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes. J Virol 88(22):13099-13110.
  71. Cathomen T, Naim HY, & Cattaneo R (1998) Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72(2):1224-1234.
  72. Runkler N, Pohl C, Schneider-Schaulies S, Klenk HD, & Maisner A (2007) Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9(5):1203-1214.
  73. Huber M, et al. (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185(1):299-308.
  74. Melvin AT, Woss GS, Park JH, Waters ML, & Allbritton NL (2013) Measuring activity in the ubiquitin-proteasome system: from large scale discoveries to single cells analysis. Cell Biochem Biophys 67(1):75-89.
  75. Chen BJ & Lamb RA (2008) Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372(2):221-232.
  76. Leibovitz's Medium mit 10 % FCS und 1 mM Trolox (6-hydroxy-2,5,7,8- tetramethylchromane-2-carboxylic acid), eine Vitamin B6-Derivat, welches dem oxidativen Stress entgegenwirkt, durchgeführt. Die Aufnahmen wurden mit einem Plan APO 60x Oil und einem Texas Red HYQ-Filter (Ex. 532-587 nm und Em. 608-683 nm) in
  77. Stahelin RV (2014) Membrane binding and bending in Ebola VP40 assembly and egress. Front Microbiol 5:300.
  78. Goldstein LS & Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39-71.
  79. Yacovone SK, et al. (2016) Migration of Nucleocapsids in Vesicular Stomatitis Virus- Infected Cells Is Dependent on both Microtubules and Actin Filaments. J Virol 90(13):6159-6170.
  80. Marfori M, et al. (2011) Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta 1813(9):1562-1577.
  81. Wang L, et al. (2001) Molecular biology of Hendra and Nipah viruses. Microbes Infect 3(4):279-287.
  82. Harcourt BH, et al. (2000) Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 271(2):334-349.
  83. Harcourt BH, et al. (2001) Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 287(1):192-201.
  84. Loureiro ME, et al. (2011) Molecular determinants of arenavirus Z protein homo- oligomerization and L polymerase binding. J Virol 85(23):12304-12314.
  85. Takimoto T & Portner A (2004) Molecular mechanism of paramyxovirus budding. Virus Res 106(2):133-145.
  86. Ciancanelli MJ & Basler CF (2006) Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80(24):12070- 12078.
  87. Perez M, Greenwald DL, & de la Torre JC (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78(20):11443-11448.
  88. Park MS, et al. (2003) Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol 77(2):1501-1511.
  89. Chua KB, et al. (2000) Nipah virus: a recently emergent deadly paramyxovirus. Science 288(5470):1432-1435.
  90. Halpin K, Bankamp B, Harcourt BH, Bellini WJ, & Rota PA (2004) Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 85(Pt 3):701-707.
  91. Park A, et al. (2016) Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. PLoS Pathog 12(5):e1005659.
  92. Lamp B, et al. (2013) Nipah virus entry and egress from polarized epithelial cells. J Virol 87(6):3143-3154.
  93. Yob JM, et al. (2001) Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 7(3):439-441.
  94. Watkinson RE & Lee B (2016) Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 590(15):2494-2511.
  95. Dietzel E, et al. (2015) Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability. J Virol 90(5):2514-2522.
  96. Wu Z, et al. (2014) Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012. Emerg Infect Dis 20(6):1064-1066.
  97. Shaw ML, Cardenas WB, Zamarin D, Palese P, & Basler CF (2005) Nuclear localization of the Nipah virus W protein allows for inhibition of both virus-and toll-like receptor 3-triggered signaling pathways. J Virol 79(10):6078-6088.
  98. Marc Ringel, Pauline Schepsky, Kevin Wittwer, Boris Lamp and Andrea Maisner (2016): Nuclear trafficking of Nipah virus matrix protein is cell-type independent. 35th Annual Meeting for the American Society for Virology (ASV 2016), 18.06. -22.06.2016, Blacksburg, Virginia, USA.
  99. CDC (CfDCaP) (1999) Outbreak of Hendra-like virus--Malaysia and Singapore, 1998-1999. MMWR Morb Mortal Wkly Rep 48(13):265-269.
  100. Shenoy-Scaria AM, Gauen LK, Kwong J, Shaw AS, & Lublin DM (1993) Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol 13(10):6385-6392.
  101. Lamb RA & Kolakofsky D (2001) Paramyxoviridae: The viruses and their replication. In Fields Virology. (Lippincott Williams & Wilkins, Philadelphia) 4 th Ed.
  102. Lamb RA & Parks GD (2013) Paramyxoviridae: The viruses and their replication. In Fields Virology. (Lippincott Williams & Wilkins, Philadelphia) 6 th Ed.
  103. Harrison MS, Sakaguchi T, & Schmitt AP (2010) Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol 42(9):1416- 1429.
  104. Chang A & Dutch RE (2012) Paramyxovirus fusion and entry: multiple paths to a common end. Viruses 4(4):613-636.
  105. Bose S, Malur A, & Banerjee AK (2001) Polarity of human parainfluenza virus type 3 infection in polarized human lung epithelial A549 cells: role of microfilament and microtubule. J Virol 75(4):1984-1989.
  106. Patch JR, Crameri G, Wang LF, Eaton BT, & Broder CC (2007) Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol J 4:1.
  107. Kristensson K, Dastur DK, Manghani DK, Tsiang H, & Bentivoglio M (1996) Rabies: interactions between neurons and viruses. A review of the history of Negri inclusion bodies. Neuropathol Appl Neurobiol 22(3):179-187.
  108. Cervantes-Ortiz SL, Zamorano Cuervo N, & Grandvaux N (2016) Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology. Viruses 8(5).
  109. Katayama H, et al. (2004) Role of actin microfilaments in canine distemper virus replication in vero cells. J Vet Med Sci 66(4):409-415.
  110. Diederich S, Thiel L, & Maisner A (2008) Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology 375(2):391-400.
  111. Takimoto T, Murti KG, Bousse T, Scroggs RA, & Portner A (2001) Role of matrix and fusion proteins in budding of Sendai virus. J Virol 75(23):11384-11391.
  112. Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111 ( Pt 17):2477-2486.
  113. Kosugi S, et al. (2009) Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem 284(1):478-485.
  114. Tan WS, Ong ST, Eshaghi M, Foo SS, & Yusoff K (2004) Solubility, immunogenicity and physical properties of the nucleocapsid protein of Nipah virus produced in Escherichia coli. J Med Virol 73(1):105-112.
  115. Sauerhering L, et al. (2016) Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells. J Gen Virol 97(7):1511- 1519.
  116. Longhi S (2015) Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 589(19 Pt A):2649-2659.
  117. Habchi J & Longhi S (2015) Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 16(7):15688-15726.
  118. Battisti AJ, et al. (2012) Structure and assembly of a paramyxovirus matrix protein. Proc Natl Acad Sci U S A 109(35):13996-14000.
  119. Mottet-Osman G, et al. (2007) Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis. J Virol 81(6):2861-2868.
  120. Afonso CL, et al. (2016) Taxonomy of the order Mononegavirales: update 2016. Arch Virol 161(8):2351-2360.
  121. Dworetzky SI, Lanford RE, & Feldherr CM (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol 107(4):1279- 1287.
  122. Lo MK & Rota PA (2008) The emergence of Nipah virus, a highly pathogenic paramyxovirus. J Clin Virol 43(4):396-400.
  123. Wollert T, et al. (2009) The ESCRT machinery at a glance. J Cell Sci 122(Pt 13):2163-2166.
  124. Wang LF, et al. (2000) The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J Virol 74(21):9972- 9979.
  125. Mitra R, Baviskar P, Duncan-Decocq RR, Patel D, & Oomens AG (2012) The human respiratory syncytial virus matrix protein is required for maturation of viral filaments. J Virol 86(8):4432-4443.
  126. Iwasaki M, et al. (2009) The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 83(20):10374- 10383.
  127. Bharaj P, et al. (2016) The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response. PLoS Pathog 12(9):e1005880.
  128. Diederich S, Moll M, Klenk HD, & Maisner A (2005) The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 280(33):29899-29903.
  129. Strecker T, et al. (2006) The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3:93.
  130. Ward BM (2011) The taking of the cytoskeleton one two three: how viruses utilize the cytoskeleton during egress. Virology 411(2):244-250.
  131. Patch JR, et al. (2008) The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virol J 5:137.
  132. Lim RY, Aebi U, & Fahrenkrog B (2008) Towards reconciling structure and function in the nuclear pore complex. Histochem Cell Biol 129(2):105-116.
  133. Schudt G, et al. (2015) Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells. J Infect Dis 212 Suppl 2:S160-166.
  134. Negrete OA, et al. (2006) Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2(2):e7.
  135. Weise C, et al. (2010) Tyrosine residues in the cytoplasmic domains affect sorting and fusion activity of the Nipah virus glycoproteins in polarized epithelial cells. J Virol 84(15):7634-7641.
  136. Wang YE, et al. (2010) Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog 6(11):e1001186.
  137. Moll M, Diederich S, Klenk HD, Czub M, & Maisner A (2004) Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol 78(18):9705-9712.
  138. Kolesnikova L, Mühlberger E, Ryabchikova E, & Becker S (2000) Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions. J Virol 74(8):3899-3904.
  139. Hyatt AD, Zaki SR, Goldsmith CS, Wise TG, & Hengstberger SG (2001) Ultrastructure of Hendra virus and Nipah virus within cultured cells and host animals. Microbes Infect 3(4):297-306.
  140. Schepsky P (2016) Untersuchungen zur Bildung und Lokalisation von Nipahvirus inclusion bodies mit Hilfe der Lebendzellmikroskopie. Masterarbeit (Philipps- Universität Marburg).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten