Publikationsserver der Universitätsbibliothek Marburg

Titel:Standardisierte akustische Stimulation bei Frühgeborenen: Auswirkungen auf Herzfrequenz und Aktivität
Autor:Wirth, Lara
Weitere Beteiligte: Maier, Rolf Felix (Prof. Dr. med.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0574
DOI: https://doi.org/10.17192/z2017.0574
URN: urn:nbn:de:hebis:04-z2017-05745
DDC: Medizin
Titel (trans.):Effects of standardized acoustic stimulation in premature infants: a randomized controlled trial.
Publikationsdatum:2017-10-04
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Herzfrequenz, maternal voice, respiratory rate, music, Atemfrequenz, Musik, Mutterstimme, neonatology, Perinatale Medizin, Musik, Aktivität, heart rate, acoustic stimulation, Frühgeborene, Neonatologie, Neonatologie, activity, Atemfrequenz, preterms, Herzfrequenz, akustische Stimulation, Aktivität

Zusammenfassung:
Hintergrund: Anders als der Fötus intrauterin sind Frühgeborene im stationären Umfeld zahlreichen lauten, unregelmäßigen und ungezielten akustischen Stimuli ausgesetzt. Eine angemessene sensorische Stimulierung wie im Mutterleib scheint aber für eine normale neurophysiologische Entwicklung notwendig zu sein. Fragestellung: Wie wirkt sich eine standardisierte akustische Stimulation auf die Herzfrequenz, die Atemfrequenz und die Aktivität bei Frühgeborenen aus? Methodik: 62 Frühgeborene mit einem Gestationsalter von 30 < 37 Wochen und einem postnatalen Alter < 10 Tagen wurden mittels Randomisierung auf drei Gruppen verteilt. In zwei Gruppen erfolgte 14 Tage lang täglich zwischen 20 und 21 Uhr eine standardisierte akustische Stimulation von jeweils 30 Minuten Dauer. Die Stimulation erfolgte entweder mit Wiegenliedern oder mit gesprochener Mutterstimme jeweils von einem CD-Player über Passivlautsprecher mit einer Lautstärke von 55 bis 65 dB(A). Die dritte Gruppe erhielt keine standardisierte Stimulation und diente als Kontrollgruppe. Herz- und Atemfrequenz wurden jeweils 15 Minuten vor, 30 Minuten während und 15 Minuten nach Intervention minütlich erfasst. Zusätzlich wurde an den Studientagen 1, 7 und 14 jeweils vor, während und nach der Stimulation die Aktivität mittels Aktometer gemessen. Ergebnisse: Im Vergleich zur Kontrollgruppe reduzierten Wiegenlieder die Herzfrequenz während bzw. 15 Minuten nach Stimulation um 6,23 – 3,32 bzw. 10,72 – 6,95 Schläge/Minute und die Mutterstimme um 6,5 – 3,24 bzw. 10,41 – 6,72 Schläge/Minute (jeweils p < 0,01 im Vergleich zur Kontrollgruppe). Auch die Atemfrequenz sank während bzw. 15 Minuten nach Stimulation bei Wiegenliedern um (95%-Konfidenzintervall) 5,51 – 1,61 bzw. 5,90 – 2,09 Atemzüge/Minute und bei Mutterstimme um 4,44 – 1,29 bzw. 4,82 – 1,15 Atemzüge/Minute (jeweils p < 0,01 im Vergleich zur Kontrollgruppe). Zwischen den beiden Formen der akustischen Stimulation zeigte sich kein signifikanter Unterschied. Ein „Gewöhnungseffekt“ im Laufe des 14-tägigen Studienzeitraumes wurde bei keiner der beiden Interventionen beobachtet. Frühgeborene mit einem höheren Gestationsalter reagierten mit einer deutlicheren Senkung der Herzfrequenz als unreifere Frühgeborene (p < 0,05). Die Aktivität der Frühgeborenen war während Stimulation reduziert (Wiegenlieder vs. Kontrollgruppe: p = 0,04; Mutterstimme vs. Kontrollgruppe: p < 0,01), wobei die Mutterstimme einen stärkeren Effekt zeigte (Mutterstimme vs. Wiegenlieder: p = 0,04). Schlussfolgerung: Eine regelmäßige standardisierte akustische Stimulation führte zu einer Senkung der Herz- und Atemfrequenz sowie einer verminderten Aktivität bei Frühgeborenen mit einem Gestationsalter von 30 < 37 Wochen. Ob es sich hierbei um einen Reaktion in Form einer Stressminderung handelt, muss in zukünftigen Studien weiter untersucht werden.

Bibliographie / References

  1. Darcy AE, Hancock LE, Ware EJ (2008). A descriptive study of noise in the neonatal intensive care unit: ambient levels and perceptions of contributing factors. Adv Neonatal Care, 8 (5), 16-26.
  2. Standley JM (2002). A meta-analysis of the efficacy of music therapy for premature infants. J Pediatr Nurs, 17 (2), 107-113.
  3. Chorna OD, Slaughter JC, Wang L, Stark AR, Maitre NL (2014). A pacifier-activated music player with mother's voice improves oral feeding in preterm infants. Pediatrics, 133 (3), 462-468.
  4. Abou Turk C, Williams AL, Lasky RE (2009). A randomized clinical trial evaluating silicone earplugs for very low birth weight newborns in intensive care. J Perinatol, 29 (5), 358-363.
  5. Morison SJ, Holsti L, Grunau RE, Whitfield MF, Oberlander TF, Chan HWP, Williams L (2003). Are there developmentally distinct motor indicators of pain in preterm infants? Early Hum Dev, 72 (2), 131-146.
  6. Dong Y, Chen S, Yu J (2012). A systematic review and meta-analysis of long-term development of early term infants. Neonatology, 102 (3), 212-221.
  7. Wharrad HJ, Davis AC (1997). Behavioural and autonomic responses to sound in pre-term and full-term babies. Br J Audiol, 31 (5), 315-329.
  8. Holsti L, Grunau RE, Oberlander TF, Whitfield MF, Weinberg J (2005). Body movements: an important additional factor in discriminating pain from stress in preterm infants. Clin J Pain, 21 (6), 491-498.
  9. Field TM, Demsey JR, Hatch J, Ting G, Clifton RK (1979). Cardiac and behavioral responses to repeated tactile and auditory stimulation by preterm and term neonates. Dev Psychol, 15, 404-416.
  10. Segall ME (1972). Cardiac responsivity to auditory stimulation in premature infants. Nurs Res, 21 (1), 15-19.
  11. Saint-Exupéry Ad (2004). Der kleine Prinz, 14. Auflage 2004. Karl Rauch, Düsseldorf.
  12. Rivkees SA (2003). Developing circadian rhythmicity in infants. Pediatr Endocrinol Rev, 1 (1), 38-45.
  13. Bowden V, Greenberg C, Donaldson N (2000). Developmental care of the newborn. Online J Clin Innovat, 15 (7), 1-77.
  14. Hepper PG, Shahidullah BS (1994). Development of fetal hearing. Arch Dis Child, 71 (2), 81- 87.
  15. Pujol R, Lavigne-Rebillard M (1992). Development of neurosensory structures in the human cochlea. Acta Otolaryngol, 112 (2), 259-264.
  16. Hall JW (2000). Development of the ear and hearing. J Perinatol, 20 (8), 12-20.
  17. Franck C, Vorwerk W, Köhn A, Rißmann A, Vorwerk U (2014). Die Prävalenz von Hörstörungen bei Frühgeborenen in Sachsen-Anhalt und deren pädaudiologische Diagnostik. Arztebl Sachs Anh, 25 (12), 53-55.
  18. Amini E, Rafiei P, Zarei K, Gohari M, Hamidi M (2013). Effect of lullaby and classical music on physiologic stability of hospitalized preterm infants: a randomized trial. J Neonatal Perinatal Med, 6 (4), 295-301.
  19. Lubetzky R, Mimouni FB, Dollberg S, Reifen R, Ashbel G, Mandel D (2010). Effect of music by Mozart on energy expenditure in growing preterm infants. Pediatrics, 125 (1), 24-28.
  20. Lorch C, Lorch V, Diefendorf AO, Earl PW (1994). Effect of stimulative and sedative music on systolic blood pressure, heart rate and respiratory rate in premature infants. J Music Ther, 31 (2), 105-118.
  21. Boyle EM, Poulsen G, Field DJ, Kurinczuk JJ, Wolke D, Alfirevic Z, Quigley MA (2012). Effects of gestational age at birth on health outcomes at 3 and 5 years of age: population based cohort study. BMJ, 344, e896.
  22. Alipour Z, Eskandari N, Ahmari Tehran H, Eshagh Hossaini SK, Sangi S (2013). Effects of music on physiological and behavioral responses of premature infants: a randomized controlled trial. Complement Ther Clin Pract, 19 (3), 128-132.
  23. Walworth D, Standley J, Robertson A, Smith A, Swedberg A, Peyton J (2012). Effects of neurodevelopmental stimulation on premature infants in neonatal intensive care: Randomized controlled trial. J Neonatal Nurs, 18 (6), 210-216.
  24. Reynolds GD, Lickliter R (2002). Effects of prenatal sensory stimulation on heart rate and behavioral measures of arousal in bobwhite quail embryos. Dev Psychobiol, 41 (2), 112- 122.
  25. Philbin MK, Klaas P (2000). Evaluating studies of the behavioral effects of sound on newborns. J Perinatol, 20 (8), 61-70.
  26. Doheny L, Hurwitz S, Insoft R, Ringer S, Lahav A (2012a). Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J Matern Fetal Neonatal Med, 25 (9), 1591-1594.
  27. Krueger C (2010). Exposure to maternal voice in preterm infants: a review. Adv Neonatal Care, 10 (1), 13-18.
  28. Pillekamp F, Hermann C, Keller T, Gontard A von, Kribs A, Roth B (2007). Factors influencing apnea and bradycardia of prematurity - implications for neurodevelopment. Neonatology, 91 (3), 155-161.
  29. Gerhardt KJ, Abrams RM (2000). Fetal exposures to sound and vibroacoustic stimulation. J Perinatol, 20 (8), 21-30.
  30. Crade M, Lovett S (1988). Fetal response to sound stimulation: preliminary report exploring use of sound stimulation in routine obstetrical ultrasound examinations. J Ultrasound Med, 7 (9), 499-503.
  31. Lecanuet JP, Schaal B (1996). Fetal sensory competencies. Eur J Obstet Gynecol Reprod Biol, 68 (1-2), 1-23.
  32. Al-Qahtani NH (2005). Foetal response to music and voice. Aust N Z J Obstet Gynaecol, 45 (5), 414-417.
  33. Young J, Fröhlich A (Hrsg.) (1997). Frühgeborene. Fördern und pflegen. Ullstein Mosby, Berlin/Wiesbaden.
  34. Bozzette M (2008). Healthy preterm infant responses to taped maternal voice. J Perinat Neonatal Nurs, 22 (4), 307-316.
  35. Graham FK, Clifton RK (1966). Heart-rate change as a component of the orienting response. Psychol Bull, 65 (5), 305-320.
  36. Vranekovic G, Hock E, Isaac P, Cordero L (1974). Heart rate variability and cardiac response to an auditory stimulus. Biol Neonat, 24 (1), 66-73.
  37. Groome LJ, Loizou PC, Holland SB, Smith LA, Hoff C (1999). High vagal tone is associated with more efficient regulation of homeostasis in low-risk human fetuses. Dev Psychobiol, 35 (1), 25-34.
  38. Nöcker-Ribaupierre M (Hrsg.) (2003). Hören - Brücke ins Leben: Musiktherapie mit früh- und neugeborenen Kindern, 1. Aufl 2003. Vandenhoeck & Ruprecht, Göttingen.
  39. Bench J, Parker A (1971). Hyper-responsivity to sounds in the short-gestation baby. Dev Med Child Neurol, 13 (1), 15-19.
  40. Strauch C, Brandt S, Edwards-Beckett J (1993). Implementation of a quiet hour: effect on noise levels and infant sleep states. Neonatal Netw, 12 (2), 31-35.
  41. Schlaug G, Jäncke L, Huang Y, Staiger JF, Steinmetz H (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33 (8), 1047-1055.
  42. Berg KM, Berg WK, Graham FK (1971). Infant heart rate response as a function of stimulus and state. Psychophysiology, 8 (1), 30-44.
  43. Williams AL, Sanderson M, Lai D, Selwyn BJ, Lasky RE (2009). Intensive care noise and mean arterial blood pressure in extremely low-birth-weight neonates. Am J Perinatol, 26 (5), 323- 329.
  44. Aita M, Johnston C, Goulet C, Oberlander TF, Snider L (2012). Intervention Minimizing Preterm Infants' Exposure to NICU Light and Noise. Clin Nurs Res, 22 (3), 337-358.
  45. Wagner MJ (1994). Introductory Musical Acoustics, 3. Aufl. 1994. Contemporary Pub Co, Raleigh.
  46. May L, Byers-Heinlein K, Gervain J, Werker JF (2011). Language and the newborn brain: does prenatal language experience shape the neonate neural response to speech? Front Psychol, 2, 222.
  47. Ullal-Gupta S, Vanden Bosch der Nederlanden CM, Tichko P, Lahav A, Hannon EE (2013). Linking prenatal experience to the emerging musical mind. Front Syst Neurosci, 7, 48.
  48. Kemper KJ, Hamilton C (2008). Live harp music reduces activity and increases weight gain in stable premature infants. J Altern Complement Med, 14 (10), 1185-1186.
  49. Filippa M, Devouche E, Arioni C, Imberty M, Gratier M (2013). Live maternal speech and singing have beneficial effects on hospitalized preterm infants. Acta Paediatr, 102 (10), 1017-1020.
  50. Arnon S, Shapsa A, Forman L, Regev R, Bauer S, Litmanovitz I, Dolfin T (2006). Live music is beneficial to preterm infants in the neonatal intensive care unit environment. Birth, 33 (2), 131-136.
  51. Singer D (2012). Long-term survival of preterm neonates. Bundesgesundheitsbla 55 (4), 568- 575.
  52. Howson C, Kinney M, Lawn J (Hrsg.) (2012). March of Dimes, PMNCH, Save the Children, WHO. Born Too Soon: The Global Action Report on Preterm Birth. World Health Organization, Geneva.
  53. Krueger C, Parker L, Chiu S, Theriaque D (2010). Maternal voice and short-term outcomes in preterm infants. Dev Psychobiol, 52 (2), 205-212.
  54. Kisilevsky S, Hains SMJ, Jacquet AY, Granier-Deferre C, Lecanuet JP (2004). Maturation of fetal responses to music. Dev Sci, 7 (5), 550-559.
  55. Kisilevsky BS, Pang L, Hains SM (2000). Maturation of human fetal responses to airborne sound in low- and high-risk fetuses. Early Hum Dev, 58 (3), 179-195.
  56. Kisilevsky BS, Muir DW, Low JA (1992). Maturation of human fetal responses to vibroacoustic stimulation. Child Dev, 63 (6), 1497-1508.
  57. Gray L, Philbin MK (2000). Measuring sound in hospital nurseries. J Perinatol, 20 (8), 100- 104.
  58. Brust JC (2001). Music and the neurologist. A historical perspective. Ann N Y Acad Sci, 930, 143-152.
  59. Neal DO, Lindeke LL (2008). Music as a nursing intervention for preterm infants in the NICU. Neonatal Netw, 27 (5), 319-327.
  60. Butt ML, Kisilevsky BS (2000). Music modulates behaviour of premature infants following heel lance. Can J Nurs Res, 31 (4), 17-39.
  61. Standley JM (2012). Music therapy research in the NICU: an updated meta-analysis. Neonatal Netw, 31 (5), 311-316.
  62. McIntire DD, Leveno KJ (2008). Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstet Gynecol, 111 (1), 35-41.
  63. Maier RF, Obladen M (Hrsg.) (2011). Neugeborenenintensivmedizin: Evidenz und Erfahrung, 8. Aufl. 2011. Springer, Berlin Heidelberg New York.
  64. Brown G (2009). NICU noise and the preterm infant. Neonatal Netw, 28 (3), 165-173.
  65. American Academy of Pediatrics. Committee on Environmental Health (1997). Noise: a hazard for the fetus and newborn. Pediatrics, 100 (4), 724-727.
  66. Lasky RE, Williams AL (2009). Noise and light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics, 123 (2), 540-546.
  67. Bremmer P, Byers JF, Kiehl E (2003). Noise and the premature infant: physiological effects and practice implications. J Obstet Gynecol Neonatal Nurs, 32 (4), 447-454.
  68. DeCasper AJ, Fifer WP (1980). Of human bonding: newborns prefer their mothers' voices. Science, 208 (4448), 1174-1176.
  69. Morris BH, Philbin MK, Bose C (2000). Physiological effects of sound on the newborn. J Perinatol, 20 (8), 55-60.
  70. Silva CMd, Cacao JMR, Silva KCDS, Marques CF, Merey LSF (2013). Physiological responses of preterm newborn infants submitted to classical music therapy. Rev Paul Pediatr, 31 (1), 30-36.
  71. DeCasper AJ, Spence MJ (1986). Prenatal maternal speech influences newborns' perception of speech sounds. Infant Behav Dev, 9, 133-150.
  72. Cassidy JW (1999). Presentation of Aural Stimuli to Newborns and Premature Infants: An Audiological Perspective. J Music Ther, 35 (2), 70-87.
  73. Brandon DH, Holditch-Davis D, Belyea M (2002). Preterm infants born at less than 31 weeks' gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr, 140 (2), 192-199.
  74. Johnston CC, Filion F, Nuyt AM (2007). Recorded maternal voice for preterm neonates undergoing heel lance. Adv Neonatal Care, 7 (5), 258-266.
  75. Krueger C, Holditch-Davis D, Quint S, Decasper A (2004). Recurring auditory experience in the 28- to 34-week-old fetus. Infant Behav Dev, 27 (4), 537-543.
  76. Doheny L, Morey JA, Ringer SA, Lahav A (2012b). Reduced frequency of apnea and bradycardia episodes caused by exposure to biological maternal sounds. Pediatr Int, 54 (2), 1-3.
  77. Krueger C, Horesh E, Crossland BA (2012). Safe sound exposure in the fetus and preterm infant. J Obstet Gynecol Neonatal Nurs, 41 (2), 166-170.
  78. Graven SN (2000). Sound and the developing infant in the NICU: conclusions and recommendations for care. J Perinatol, 20 (8), 88-93.
  79. Byers JF, Waugh WR, Lowman LB (2006). Sound level exposure of high-risk infants in different environmental conditions. Neonatal Netw, 25 (1), 25-32.
  80. Morlet T, Collet L, Duclaux R, Lapillonne A, Salle B, Putet G, Morgon A (1995). Spontaneous and evoked otoacoustic emissions in pre-term and full-term neonates: is there a clinical application? Int. J Pediatr Otorhinolaryngol, 33 (3), 207-211.
  81. Als H, Butler S, Kosta S, McAnulty G (2005). The Assessment of Preterm Infants' Behavior (APIB): furthering the understanding and measurement of neurodevelopmental competence in preterm and full-term infants. Ment Retard Dev Disabil Res Rev, 11 (1), 94-102.
  82. Janata P, Birk JL, van Horn JD, Leman M, Tillmann B, Bharucha JJ (2002). The cortical topography of tonal structures underlying Western music. Science, 298 (5601), 2167-2170.
  83. Birnholz JC, Benacerraf BR (1983). The development of human fetal hearing. Science, 222 (4623), 516-518.
  84. Tenreiro S, Dowse HB, D'Souza S, Minors D, Chiswick M, Simms D, Waterhouse J (1991). The development of ultradian and circadian rhythms in premature babies maintained in constant conditions. Early Hum Dev, 27 (1-2), 33-52.
  85. Cassidy JW (2009). The effect of decibel level of music stimuli and gender on head circumference and physiological responses of premature infants in the NICU. J Music Ther, 46 (3), 180-190.
  86. Standley JM (1998). The effect of music and multimodal stimulation on responses of premature infants in neonatal intensive care. Pediatr Nurs, 24 (6), 532-538.
  87. Yoshikawa S, Ikeda K, Kudo T, Kobayashi T (2004). The effects of hypoxia, premature birth, infection, ototoxic drugs, circulatory system and congenital disease on neonatal hearing loss. Auris Nasus Larynx, 31 (4), 361-368.
  88. Coleman JM, Pratt RR, Stoddar RA, Gerstmann, Abel H (1998). The effects of male and female singing and speaking voices on selected physiological and behavioral measures of premature infants in the intensiv care unit. Int J Arts Med, 5 (8), 4-11.
  89. Cevasco AM (2008). The effects of mothers' singing on full-term and preterm infants and maternal emotional responses. J Music Ther, 45 (3), 273-306.
  90. Keith DR, Russell K, Weaver BS (2009). The effects of music listening on inconsolable crying in premature infants. J Music Ther, 46 (3), 191-203.
  91. Caine J (1991). The effects of music on the selected stress behaviors, weight, caloric and formula intake, and length of hospital stay of premature and low birth weight neonates in a newborn intensive care unit. J Music Ther, 28 (4), 180-192.
  92. Loewy J, Stewart K, Dassler A, Telsey A, Homel P (2013). The Effects of Music Therapy on Vital Signs, Feeding, and Sleep in Premature Infants. Pediatrics, 131 (5), 902-918.
  93. Wachman EM, Lahav A (2011). The effects of noise on preterm infants in the NICU. Arch Dis Child Fetal Neonatal Ed, 96 (4), 305-309.
  94. Philbin MK (2000). The influence of auditory experience on the behavior of preterm newborns. J Perinatol, 20 (8), 77-87.
  95. Standley JM, Moore RS (1995). Therapeutic effects of music and mother's voice on premature infants. Pediatr Nurs, 21 (6), 509-512, 574.
  96. Chapman JS (1978). The relationship between auditory stimulation and gross motor activity of short-gestation infants. Res Nurs Health, 1 (1), 29-36.
  97. Malloy G (1979). The relationship between maternal and musical auditory stimulation and the developmental behavior of premature infants. Birth Defects Orig Artic Ser, 15 (7), 81-98.
  98. Kemper KJ, Shaw T (2007). The research failed, but the patients are doing well. Pediatrics, 119 (1), 221-222.
  99. Fifer WP, Moon CM (1994). The role of mother's voice in the organization of brain function in the newborn. Acta Paediatr Suppl, 397, 86-93.
  100. Sung M, Adamson TM, Horne RSC (2009). Validation of actigraphy for determining sleep and wake in preterm infants. Acta Paediatr, 98 (1), 52-57.
  101. Djordjevic D, Linderkamp O, Brüssau J, Cierpka M (2007). Zusammenhänge zwischen dem Wohlbefinden der Mutter und der Herzfrequenzvariabilität von Frühgeborenen. Prax Kinderpsychol Kinderpsychiatr, 56 (10), 852-869.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten