Publikationsserver der Universitätsbibliothek Marburg

Titel:Structure-Based Design of a Blood Coagulation Factor XIII Blocker
Autor:Stieler, Martin
Weitere Beteiligte: Klebe, Gerhard (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0081
URN: urn:nbn:de:hebis:04-z2017-00819
DOI: https://doi.org/10.17192/z2017.0081
DDC:615 Pharmakologie, Therapeutik
Titel (trans.):Structure-Based Design of a Blood Coagulation Factor XIII Blocker
Publikationsdatum:2017-02-23
Lizenz:https://creativecommons.org/licenses/by/4.0

Dokument

Schlagwörter:
Antikoagulans, Medizinische Chemie, Transglutaminases, Blutgerinnung, Faktor XIII, Blood Coagulation, Factor XIII, Medical Chemistry, Transglutaminasen, Blutgerinnung, Faktor XIII, Transglutaminasen, Anticoagulants, Antikoagulans

Zusammenfassung:
FXIII belongs to the family of transglutaminases, mainly catalyzing the cross-linking of proteins by formation of an isopetide bond between a glutamine and a lysine side chain. FXIII represents the last enzyme of the blood coagulation cascade providing final stability to the blood clot by cross-linking of fibrin fibers. Consequently, inhibition of FXIII would still allow the formation of a weak blood clot, most likely resulting in a lower bleeding risk by using a FXIII blocker compared to other anticoagulants. The primary goal of the thesis was to obtain a crystal structure of factor XIII in its active conformation (FXIIIa) and subsequently to use the gained information about the chemical composition of the active site for the development of FXIIIa blockers. In collaboration with the biotech company Zedira GmbH FXIIIa° could be crystallized in complex with the covalently-attached inhibitor ZED1301. The crystal structure shows that an enormous conformational change occurs during the transition from the inactive to the active state, whereby two β-barrel domains move out of space exposing the active site for inhibitors or substrates. The inhibitor ZED1301 binds covalently by its warhead (α,β-unsaturated carboxylic ester) to Cys 314 of the active site. The binding of the ligand induces the formation of a hydrophobic tunnel by rotation of the indole ring of Trp 370. The natural function of this tunnel is most likely the shielding of the intermediately formed thioester from hydrolytic cleavage. The substrate binding site can be subdivided into three areas: The catalytic site, an area located N-terminal named α-space as well as an area located C-terminal named β-space. In the β-space a hydrophobic pocket is formed, presumably induced by the tryptophan indole ring of the inhibitor. Apart from the usage for the structure-based development of FXIIIa-blockers, the crystal structure of FXIIIa° provides mechanistic insights at atomic level that in turn are of fundamental importance for the development of inhibitors for FXIIIa and other human transglutaminases. In the crystal structure of transglutaminase 2 in complex with a covalent inhibitor (named TG2a*) published in 2007, the enzyme adopts an active state, as in case of FXIIIa°, however not with a globular but linear conformation. Based on the new structural and mechanistic insights obtained by the crystal structure of FXIIIa° and further experimental data from the literature, it has been attempted to explain the occurrence of two different active conformations adopted by FXIII and TG2. First, at closer inspection of the crystal structure of TG2a*, strand III of the three-stranded β-sheet of the β-barrel 1 domain is displaced, forming a five-stranded β-sheet out of the four-stranded β-sheet of the β-barrel 1 domain and strand II of the original three-stranded β-sheet. The displaced strand III now adopts an α-helical structural element in the region of the β-space which thus is enormously reduced in size. Remarkably, amino acids forming the α-helix belong to calcium binding site 2. Consequently, occupancy of calcium binding site 2 does not allow a linear domain arrangement because the β-barrel 1 domain would clash with the three-stranded β-sheet. Since only the occupancy of calcium binding site 2 enables the formation of the catalytic dyad, the linear state should not exhibit transamidase activity. By use of a homology model based on the crystal structure of FXIIIa°, it could be shown that TG2 can adopt a conformation equivalent to FXIII in the active state (FXIIIa°). This is in accordance with the observation that some FXIII inhibitors of the α(wh)xxxPW-type have the same affinity against FXIII and TG2. However, due to their size these inhibitors should not be able to bind to the active site of the linear state of TG2 (TG2a*) since they would clash with the α-helix in β-space. Inhibitors of the α(wh)xxxPW-type bind most likely only to the globular active conformation of TG2 as suggested in the present thesis. Consequently, the inhibitor seems to determine if TG2 adopts the linear or globular active state. This is also indicated by FRET measurements performed by the Keillor lab in Canada showing that, depending on the inhibitor, the enzyme adapts to different conformational states. One state corresponds to the linear conformation, the other state to a more compact conformation. The measurement of the distances between the N- and the C-terminus of the inactive and the active globular state shows that the distances between the N- and the C-terminus decrease during the transformation to the active conformation. Thus, the compact state found by the FRET experiment corresponds most likely the globular active state. Transferring these findings to the endogenous biochemical function of transglutaminase 2, the complementarity of substrates binding to the linear or the globular active state determines whether the linear active state is formed and the glutamine residue is hydrolyzed in the catalytic center (deamidation) or the globular active state is formed and the glutamine residue is cross-linked with the lysine residue of a co-substrate by formation of an iso-peptide bond. The hypothesis of the substrate-induced chemoselectivity could give an explanation that simultaneously particular glutamine residues of a protein become deamidated whereas other glutamine residues of the same protein become transamidated. Whether a substrate is deamidated or transamidated can also be affected by the chemical environment (i.e. pH value). Analysis of the crystal structures also shows that the calcium concentration might impair the ratio of the linear (TG2a*) to the globular (TG2a) state, since the occupancy of calcium binding sites presumably does not allow the formation of the linear state. Consequently, with increasing calcium concentration the adoption of the globular state should be preferred. However, at this point it cannot be determined which influencing factor (substrate complementary or calcium concentration) plays the prominent role concerning the chemoselectivity. Nevertheless, an investigation of the transamidation of FXIII substrates of different sizes by Siebenlist and co-workers shows that the higher the molecular weight the lower the calcium concentration which is required for substrate turnover. It appears that the calcium concentration is less mandatory in case of binding of macromolecular substrates to FXIII. This indicates that calcium shifts the equilibrium from the inactive state to a pre-active species where the catalytic center becomes exposed subsequently to a conformational change of the two β-barrel domains. Thus, at high calcium concentrations even low molecular weight substrates with minor affinity might bind to FXIII. At this point it should be mentioned that FXIII exists in the inactive state as a dimer and calcium might also shift the equilibrium between the dimeric and the monomeric state. As already described, the substrate induces depending on its structural and chemical constitution the formation of the linear or globular active state. Reversely, also the present conformation of the active TG2 (TG2a* or TG2a) might determine which inhibitors are potently bound. If the hypothesis that the enzyme adopts the globular active state depending on certain influencing factors turns true, a potential inhibitor of the linear active state could exhibit a strikingly lower affinity in the organism under certain conditions as the in-vitro experiment suggested. Therefore, it might be useful to develop both, TG2-blockers active on the linear and the globular state. Consequently, drugs might result for diseases where the deamidase or the transamidase activity is disease relevant.

Bibliographie / References

  1. X. Jin, J. Stamnaes, C. Klock, T. R. DiRaimondo, L. M. Sollid, C. Khosla, Activation of Extracellular Transglutaminase 2 by Thioredoxin. J Biol Chem 286, 37866-37873 (2011).
  2. [127] N. Radeva, J. Schiebel, X. J. Wang, S. G. Krimmer, K. Fu, M. Stieler, F. R. Ehrmann, A. Metz, T. Rickmeyer, M. Betz, J. Winquist, A. Y. Park, F. U. Huschmann, M. S. Weiss, U. Mueller, A. Heine, G. Klebe, Active Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad. J Med Chem 59, 9743-9759 (2016).
  3. J. W. Keillor, C. M. Clouthier, K. Y. P. Apperley, A. Akbar, A. Mulani, Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 57, 186-197 (2014).
  4. [109] N. W. Moriarty, R. W. Grosse-Kunstleve, P. D. Adams, electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta crystallographica. Section D, Biological crystallography 65, 1074-1080 (2009).
  5. P. J. Hajduk, J. Greer, A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6, 211-219 (2007).
  6. [131] R. L. Rich, D. G. Myszka, Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotech 11, 54-61 (2000).
  7. F. Duckert, E. Jung, D. H. Shmerling, A Hitherto Undescribed Congenital Haemorrhagic Diathesis Probably Due to Fibrin Stabilizing Factor Deficiency. Thromb Diath Haemost 5, 179-186 (1960).
  8. A. J. Cassidy, M. A. M. van Steensel, P. M. Steijlen, M. van Geel, J. van der Velden, S. M. Morley, A. Terrinoni, G. Melino, E. Candi, W. H. I. McLean, A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome. Am J Hum Genet 77, 909-917 (2005).
  9. [124] P. Linke, K. Amaning, M. Maschberger, F. Vallee, V. Steier, P. Baaske, S. Duhr, D. Breitsprecher, A. Rak, An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery. Journal of biomolecular screening, (2015).
  10. [136] A. Mero, M. Schiavon, F. M. Veronese, G. Pasut, A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. Journal of controlled release : official journal of the Controlled Release Society 154, 27-34 (2011).
  11. G. Hasegawa, M. Suwa, Y. Ichikawa, T. Ohtsuka, S. Kumagai, M. Kikuchi, Y. Sato, Y. Saito, A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373, 793-803 (2003).
  12. J. T. Radek, J. M. Jeong, J. Wilson, L. Lorand, Association of the a-Subunits of Recombinant Placental Factor-Xiii with the Native Carrier B-Subunits from Human Plasma. Biochemistry-Us 32, 3527-3534 (1993).
  13. M. Hadjivassiliou, P. Aeschlimann, A. Strigun, D. S. Sanders, N. Woodroofe, D. Aeschlimann, Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64, 332-343 (2008).
  14. L. Lorand, P. T. Velasco, S. N. P. Murthy, P. Lefebvre, D. Green, Autoimmune antibody in a hemorrhagic patient interacts with thrombin-activated factor XIII in a unique manner. Blood 93, 909-917 (1999).
  15. G. Langer, S. X. Cohen, V. S. Lamzin, A. Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3, 1171-1179 (2008).
  16. L. Muszbek, V. C. Yee, Z. Hevessy, Blood coagulation factor XIII: Structure and function. Thromb Res 94, 271-305 (1999).
  17. D. J. Selkoe, C. Abraham, Y. Ihara, Brain Transglutaminase - Invitro Crosslinking of Human Neurofilament Proteins into Insoluble Polymers. P Natl Acad Sci-Biol 79, 6070-6074 (1982).
  18. [133] M. J. Roberts, M. D. Bentley, J. M. Harris, Chemistry for peptide and protein PEGylation. Adv Drug Deliver Rev 64, 116-127 (2012).
  19. A. Inbal, L. Muszbek, Coagulation factor deficiencies and pregnancy loss. Semin Thromb Hemost 29, 171-174 (2003).
  20. C. L. Nikolajsen, T. F. Dyrlund, E. T. Poulsen, J. J. Enghild, C. Scavenius, Coagulation factor XIIIa substrates in human plasma: identification and incorporation into the clot. J Biol Chem 289, 6526-6534 (2014).
  21. A. Sali, T. L. Blundell, Comparative Protein Modeling by Satisfaction of Spatial Restraints. J Mol Biol 234, 779-815 (1993).
  22. [108] P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126-2132 (2004).
  23. P. G. Doiphode, M. V. Malovichko, K. N. Mouapi, M. C. Maurer, Evaluating factor XIII specificity for glutamine-containing substrates using a matrix-assisted laser desorption/ionization timeof-flight mass spectrometry assay. Anal Biochem 457, 74-84 (2014).
  24. [126] N. Radeva, S. G. Krimmer, M. Stieler, K. Fu, X. J. Wang, F. R. Ehrmann, A. Metz, F. U. Huschmann, M. S. Weiss, U. Mueller, J. Schiebel, A. Heine, G. Klebe, Experimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin. J Med Chem 59, 7561-7575 (2016).
  25. S. Y. Kim, S. I. Chung, K. Yoneda, P. M. Steinert, Expression of Transglutaminase-1 in Human Epidermis. J Invest Dermatol 104, 211-217 (1995).
  26. E. Candi, S. Oddi, A. Paradisi, A. Terrinoni, M. Ranalli, P. Teofoli, G. Citro, S. Scarpato, P. Puddu, G. Melino, Expression of transglutaminase 5 in normal and pathologic human epidermis. J Invest Dermatol 119, 670-677 (2002).
  27. W. G. Jiang, R. J. Albin, A. Douglas-Jones, T. E. Mansel, Expression of transglutaminases in human breast cancer and their possible clinical significance. Brit J Cancer 88, S46-S46 (2003).
  28. L. Muszbek, Z. Bereczky, Z. Bagoly, I. Komaromi, E. Katona, Factor Xiii: A Coagulation Factor with Multiple Plasmatic and Cellular Functions. Physiol Rev 91, 931-972 (2011).
  29. L. Lorand, Factor XIII and the clotting of fibrinogen: from basic research to medicine. J Thromb Haemost 3, 1337-1348 (2005).
  30. L. Hsieh, D. Nugent, Factor XIII deficiency. Haemophilia 14, 1190-1200 (2008).
  31. R. Dardik, J. Loscalzo, A. Inbal, Factor XIII (FXIII) and angiogenesis. J Thromb Haemost 4, 19-25 (2006).
  32. L. Muszbek, R. Adany, G. Szegedi, J. Polgar, M. Kavai, Factor-Xiii of Blood-Coagulation in Human-Monocytes. Thromb Res 37, 401-410 (1985).
  33. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr D 66, 486-501 (2010).
  34. E. F. Luscher, [Fibrin-stabilizing factor from thrombocytes]. Schweizerische medizinische Wochenschrift 87, 1220-1221 (1957).
  35. [134] J. W. Lichtman, J. A. Conchello, Fluorescence microscopy. Nat Methods 2, 910-919 (2005).
  36. [135] R. Yuste, Fluorescence microscopy today. Nat Methods 2, 902-904 (2005).
  37. [120] D. A. Erlanson, R. S. McDowell, T. O'Brien, Fragment-based drug discovery. J Med Chem 47, 3463-3482 (2004).
  38. [121] D. C. Rees, M. Congreve, C. W. Murray, R. Carr, Fragment-based lead discovery. Nat Rev Drug Discov 3, 660-672 (2004).
  39. [125] S. Perspicace, D. Banner, J. Benz, F. Muller, D. Schlatter, W. Huber, Fragment-Based Screening Using Surface Plasmon Resonance Technology. Journal of biomolecular screening 14, 337-349 (2009).
  40. B. Fleckenstein, Y. Molberg, S. W. Qiao, D. G. Schmid, F. von der Mullbe, K. Elgstoen, G. Jung, L. M. Sollid, Gliadin T cell epitope selection by tissue transglutaminase in Celiac disease - Role of enzyme specificity and pH influence on the transamidation versus deamidation reactions. J Biol Chem 277, 34109-34116 (2002).
  41. L. Lorand, J. M. Jeong, J. T. Radek, J. Wilson, Human Plasma Factor-Xiii - Subunit Interactions and Activation of Zymogen (Reprinted from Biochemistry, Vol 32, Pg 3527-3534, 1993).
  42. W. Dieterich, T. Ehnis, M. Bauer, P. Donner, U. Volta, E. O. Riecken, D. Schuppan, Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3, 797-801 (1997).
  43. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, G. S. Sittampalam, Impact of highthroughput screening in biomedical research. Nat Rev Drug Discov 10, 188-195 (2011).
  44. A. Inbal, A. Lubetsky, T. Krapp, D. Castel, A. Shaish, G. Dickneitte, L. Modis, L. Muszbek, A. Inbal, Impaired wound healing in factor XIII deficient mice. Thromb Haemostasis 94, 432-437 (2005).
  45. [103] J. W. Keillor, K. Y. P. Apperley, A. Akbar, Inhibitors of tissue transglutaminase. Trends Pharmacol Sci 36, 32-40 (2015).
  46. [104] J. C. Powers, J. L. Asgian, O. D. Ekici, K. E. James, Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102, 4639-4750 (2002).
  47. [122] O. Cala, I. Krimm, Ligand-Orientation Based Fragment Selection in STD NMR Screening. J Med Chem 58, 8739-8742 (2015).
  48. E. Iismaa, R. M. Graham, Mechanism of allosteric regulation of transglutaminase 2 by GTP. P Natl Acad Sci USA 103, 19683-19688 (2006).
  49. [130] R. D. Bach, O. Dmitrenko, C. Thorpe, Mechanism of thiolate-disulfide interchange reactions in biochemistry. J Org Chem 73, 12-21 (2008).
  50. J. W. Zhang, M. Lesort, R. P. Guttmann, G. V. W. Johnson, Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273, 2288-2295 (1998).
  51. [107] D. de Sanctis, A. Beteva, H. Caserotto, F. Dobias, J. Gabadinho, T. Giraud, A. Gobbo, M. Guijarro, M. Lentini, B. Lavault, T. Mairs, S. McSweeney, S. Petitdemange, V. Rey-Bakaikoa, J. Surr, P. Theveneau, G. A. Leonard, C. Mueller-Dieckmann, ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. J Synchrotron Radiat 19, 455-461 (2012).
  52. J. Sohn, T. I. Kim, Y. H. Yoon, J. Y. Kim, S. Y. Kim, Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J Clin Invest 111, 121-128 (2003).
  53. [101] Schechte.I, A. Berger, On Size of Active Site in Proteases .I. Papain. Biochem Bioph Res Co 27, 157-& (1967).
  54. K. Laki, L. Lorand, On the Solubility of Fibrin Clots. Science 108, 280-280 (1948).
  55. A. J. Mccoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007).
  56. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213-221 (2010).
  57. S. Mishra, A. Saleh, P. S. Espino, J. R. Davie, L. J. Murphy, Phosphorylation of histones by tissue transglutaminase. J Biol Chem 281, 5532-5538 (2006).
  58. L. Muszbek, J. Polgar, Z. Boda, Platelet Factor-Xiii Becomes Active without the Release of Activation Peptide during Platelet Activation. Thromb Haemostasis 69, 282-285 (1993).
  59. Lin, S. Y. Wang, Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia. Eur J Hum Genet 23, 218-223 (2015).
  60. SYBYL-X 2.0, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA R. A. Laskowski, M. W. Macarthur, D. S. Moss, J. M. Thornton, Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26, 283-291 (1993).
  61. J. M. Pei, N. V. Grishin, PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23, 802-808 (2007).
  62. T. J. Janus, S. D. Lewis, L. Lorand, J. A. Shafer, Promotion of Thrombin-Catalyzed Activation of Factor-Xiii by Fibrinogen. Biochemistry-Us 22, 6269-6272 (1983).
  63. W. G. Jiang, L. Ye, A. J. Sanders, F. Ruge, H. G. Kynaston, R. J. Ablin, M. D. Mason, Prostate transglutaminase (TGase-4, TGaseP) enhances the adhesion of prostate cancer cells to extracellular matrix, the potential role of TGase-core domain. J Transl Med 11, (2013).
  64. D. Aeschlimann, V. Thomazy, Protein crosslinking in assembly and remodelling of extracellular matrices: The role of transglutaminases. Connect Tissue Res 41, 1-+ (2000).
  65. [119] W. L. DeLano, J. W. Lam, PyMOL: A communications tool for computational models. Abstr Pap Am Chem S 230, U1371-U1372 (2005).
  66. J. Stamnaes, D. M. Pinkas, B. Fleckenstein, C. Khosla, L. M. Sollid, Redox Regulation of Transglutaminase 2 Activity. J Biol Chem 285, 25402-25409 (2010).
  67. S. D. Lewis, T. J. Janus, L. Lorand, J. A. Shafer, Regulation of Formation of Factor-Xiiia by Its Fibrin Substrates. Biochemistry-Us 24, 6772-6777 (1985).
  68. [128] J. Schiebel, S. G. Krimmer, K. Rower, A. Knorlein, X. J. Wang, A. Y. Park, M. Stieler, F. R. Ehrmann, K. Fu, N. Radeva, M. Krug, F. U. Huschmann, S. Glockner, M. S. Weiss, U. Mueller, G. Klebe, A. Heine, High-Throughput Crystallography: Reliable and Efficient Identification of Fragment Hits. Structure 24, 1398-1409 (2016).
  69. [123] J. K. Kranz, C. Schalk-Hihi, Protein thermal shifts to identify low molecular weight fragments. Methods in enzymology 493, 277-298 (2011).
  70. [114] S. Boros, E. Ahrman, L. Wunderink, B. Kamps, W. W. de Jong, W. C. Boelens, C. S. Emanuelsson, Site-specific transamidation and deamidation of the small heat-shock protein Hsp20 by tissue transglutaminase. Proteins 62, 1044-1052 (2006).
  71. [129] J. Schiebel, N. Radeva, S. G. Krimmer, X. J. Wang, M. Stieler, F. R. Ehrmann, K. Fu, A. Metz, F. U. Huschmann, M. S. Weiss, U. Mueller, A. Heine, G. Klebe, Six Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study. Acs Chem Biol 11, 1693-1701 (2016).
  72. [132] R. E. Kontermann, Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotech 22, 868-876 (2011).
  73. B. Ahvazi, K. M. Boeshans, W. Idler, U. Baxa, P. M. Steinert, F. Rastinejad, Structural basis for the coordinated regulation of transglutaminase 3 by guanine nucleotides and calcium/magnesium. J Biol Chem 279, 7180-7192 (2004).
  74. [112] S. P. Liu, R. A. Cerione, J. Clardy, Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. P Natl Acad Sci USA 99, 2743-2747 (2002).
  75. [106] J. J. Gorman, J. E. Folk, Structural features of glutamine substrates for human plasma factor XIIIa (activated blood coagulation factor XIII). J Biol Chem 255, 419-427 (1980).
  76. [111] I. K.-S. Máté Á. Demény, László Fésüs, Structure of Transglutaminases: Unique Features Serve Diverse Functions. (Springer, 2016), pp. 1-41.
  77. [105] K. Fickenscher, A. Aab, W. Stuber, A Photometric Assay for Blood-Coagulation Factor-Xiii. Thromb Haemostasis 65, 535-540 (1991).
  78. [102] K. Hardes, M. Z. Hammamy, T. Steinmetzer, Synthesis and characterization of novel fluorogenic substrates of coagulation factor XIII-A. Anal Biochem 442, 223-230 (2013).
  79. V. C. Yee, L. C. Pedersen, I. Letrong, P. D. Bishop, R. E. Stenkamp, D. C. Teller, 3-Dimensional Structure of a Transglutaminase - Human Blood-Coagulation Factor-Xiii. P Natl Acad Sci USA 91, 7296-7300 (1994).
  80. J. L. Wang, X. Yang, K. Xia, Z. M. Hu, L. Weng, X. Jin, H. Jiang, P. Zhang, L. Shen, J. F. Guo, N. Li, Y. R. Li, L. F. Lei, J. Zhou, J. A. Du, Y. F. Zhou, Q. A. Pan, J. A. Wang, J. Wang, R. Q. Li, B. S. Tang, TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing.
  81. S. Bailey, The Ccp4 Suite - Programs for Protein Crystallography. Acta Crystallogr D 50, 760-763 (1994).
  82. C. S. Greenberg, C. C. Miraglia, The Effect of Fibrin Polymers on Thrombin-Catalyzed Plasma Factor-Xiiia Formation. Blood 66, 466-469 (1985).
  83. [118] P. Labute, The generalized Born/volume integral implicit solvent model: Estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem 29, 1693-1698 (2008).
  84. L. Muszbek, Z. Bagoly, Z. Bereczky, E. Katona, The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovascular & hematological agents in medicinal chemistry 6, 190-205 (2008).
  85. [115] J. Stamnaes, B. Fleckenstein, L. M. Sollid, The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Bba-Proteins Proteom 1784, 1804-1811 (2008).
  86. B. Ahvazi, H. C. Kim, S. H. Kee, Z. Nemes, P. M. Steinert, Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation.
  87. J. S. K. Chen, K. Mehta, Tissue transglutaminase: an enzyme with a split personality. Int J Biochem Cell B 31, 817-836 (1999).
  88. M. Lesort, J. Tucholski, M. L. Miller, G. V. W. Johnson, Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog Neurobiol 61, 439-463 (2000).
  89. Piacentini, "Tissue" transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Bba-Bioenergetics 1757, 1357-1365 (2006).
  90. S. Mishra, L. J. Murphy, Tissue transglutaminase has intrinsic kinase activity - Identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279, 23863-23868 (2004).
  91. L. Muszbek, G. Haramura, J. Polgar, Transformation of Cellular Factor-Xiii into an Active Zymogen Transglutaminase in Thrombin-Stimulated Platelets. Thromb Haemostasis 73, 702- 705 (1995).
  92. S. Gundemir, G. Colak, J. Tucholski, G. V. W. Johnson, Transglutaminase 2: A molecular Swiss army knife. Bba-Mol Cell Res 1823, 406-419 (2012).
  93. [110] H. Tatsukawa, Y. Furutani, K. Hitomi, S. Kojima, Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 7, (2016).
  94. L. Huang, A. M. Xu, W. Liu, Transglutaminase 2 in cancer. Am J Cancer Res 5, 2756-2776 (2015).
  95. D. M. Pinkas, P. Strop, A. T. Brunger, C. Khosla, Transglutaminase 2 undergoes a large conformational change upon activation. Plos Biol 5, 2788-2796 (2007).
  96. E. Candi, S. Oddi, A. Terrinoni, A. Paradisi, M. Ranalli, A. Finazzi-Agro, G. Melino, Transglutaminase 5 cross-links loricrin, involucrin, and small proline-rich proteins in vitro. J Biol Chem 276, 35014-35023 (2001).
  97. Wang, Transglutaminase 6 interacts with polyQ proteins and promotes the formation of polyQ aggregates. Biochem Bioph Res Co 437, 94-100 (2013).
  98. M. V. Karpuj, H. Garren, H. Slunt, D. L. Price, J. Gusella, M. W. Becher, L. Steinman, Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington's disease brain nuclei. P Natl Acad Sci USA 96, 7388-7393 (1999).
  99. A. M. Sulic, K. Kurppa, T. Rauhavirta, K. Kaukinen, K. Lindfors, Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Tar 19, 335-348 (2015).
  100. G. C. Coutts, A. M. El Nahas, T. S. Johnson, Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int 76, 383-394 (2009).
  101. Mehta, Transglutaminase Regulation of Cell Function. Physiol Rev 94, 383-417 (2014).
  102. J. M. Wodzinska, Transglutaminases as targets for pharmacological inhibition. Mini-Rev Med Chem 5, 279-292 (2005).
  103. [113] N. S. Caron, L. N. Munsie, J. W. Keillor, R. Truant, Using FLIM-FRET to Measure Conformational Changes of Transglutaminase Type 2 in Live Cells. Plos One 7, (2012).
  104. F. A. Momany, R. Rone, Validation of the General-Purpose Quanta(R)3.2/Charmm(R) ForceField. J Comput Chem 13, 888-900 (1992).
  105. G. Klebe, Virtual ligand screening: strategies, perspectives and limitations. Drug discovery today 11, 580-594 (2006).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten