Publikationsserver der Universitätsbibliothek Marburg

Titel:VAP-Proteine sind wesentliche Bestandteile nativer HCN2-Kanalkomplexe und regulieren die Funktion deskardialen If -Schrittmacherstroms
Autor:Silbernagel, Nicole
Weitere Beteiligte: Decher, Niels (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0570
URN: urn:nbn:de:hebis:04-z2016-05705
DOI: https://doi.org/10.17192/z2016.0570
DDC: Naturwissenschaften
Titel (trans.):VAP proteins are essential components of native HCN2 channel complexes and are regulating the function of the cardiac If pacemaker current
Publikationsdatum:2017-09-14
Lizenz:https://rightsstatements.org/vocab/InC/1.0/

Dokument

Schlagwörter:
Bradykardie, VAP-Proteine, HCN, VAP proteins, bradycardia, HCN-Kanal, Ionenkanal, patch clamp, ion channel, Patch Clamp

Zusammenfassung:
HCN-Kanäle erfüllen die Schrittmacherfunktion in erregbaren Zellen des Herzmuskelgewebes und in vielen Neuronen des zentralen Nervensystems. Sie kontrollieren die Feuerrate der Neurone und somit die Frequenz der Aktionspotentiale.Sie haben die Eigenschaft während einer Hyperpolarisation der Membran zu aktivieren und so diese zu depolarisieren. In dieser Arbeit konnte gezeigt werden, dass das VAPB-Protein ein endogener Interaktionspartner des HCN2-Kanals ist und einen modulatorischen Effekt auf die Herzfrequenz, sowie die neuronale Distribution hat. Das VAPB-Protein hat einen zeitunabhängigen, jedoch konzentrationsabhängigen Einfluss auf die Stromamplitude. Das Öffnungsverhalten, sowie die Aktivierungskinetik bleiben hierbei unbeeinflusst. Zusammengefasst sprechen die Ergebnisse dieser Arbeit dafür, dass das VAPB-Protein einen „Trafficking“-Effekt auf das HCN2-Protein hat, das heißt einen Einfluss auf dessen zytosolischen Transport an die Membran. „Patch-Clamp“-Experimente der spontan aktiven Herzmuskelzelllinie HL-1 zeigten unter „Knock-Down“ Bedingungen mittels shVAPB eine verlängerte diastolische Depolarisation mit der Folge einer gesteigerten Aktionspotentialbreite (APD50). In vivo Experimente mit VAPB-„Knock-Out“-Mäusen bestätigten den Einfluss des VAPB-Proteins auf die Herzfrequenz.

Bibliographie / References

  1. Ludwig et al. 2003. “Absence Epilepsy and Sinus Dysrhythmia in Mice Lacking the Pacemaker Channel HCN2.” EMBO Journal 22(2):216-24.
  2. Ludwig et al. 1998. “A Family of Hyperpolarization-Activated Mammalian Cation Channels.” Nature 393(6685):587-91.
  3. Mitne-Neto et al. 2007. “A Mutation in Human VAP-B-MSP Domain, Present in ALS Patients, Affects the Interaction with Other Cellular Proteins.” Protein Expression and Purification 55(1):139-46.
  4. Nishimura et al. 2004. “A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis.” American journal of human genetics 75(5):822-31.
  5. Kiernan et al. 2011. “Amyotrophic Lateral Sclerosis.” Lancet 377(9769):942-55.
  6. Isenmann et al. 1998. “A Splice-Isoform of Vesicle-Associated Membrane Protein-1 (VAMP-1) Contains a Mitochondrial Targeting Signal.” Molecular biology of the cell 9(7):1649-60.
  7. Hu et al. 2013. “Binding of the Auxiliary Subunit TRIP8b to HCN Channels Shifts the Mode of Action of cAMP.” The Journal of general physiology 142(6):599-612.
  8. Grant 2009. “Cardiac Ion Channels.” Circulation: Arrhythmia and Electrophysiology 2(2):185-94.
  9. Moosmang et al. 2001. “Cellular Expression and Functional Characterization of Four Hyperpolarization-Activated Pacemaker Channels in Cardiac and Neuronal Tissues.” European Journal of Biochemistry 268(6):1646-52.
  10. Kanekura et al. 2006. “Characterization of Amyotrophic Lateral Sclerosis-Linked P56S Mutation of Vesicle-Associated Membrane Protein-Associated Protein B (VAPB/ALS8).” Journal of Biological Chemistry 281(40):30223-33.
  11. Monteggia et al. 2000. “Cloning and Localization of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Family in Rat Brain.” Molecular Brain Research 81(1-2):129-39.
  12. Keller et al. 1978. “Correlation between Serum Concentration and Pharmacological Effect on Atrioventricular Conduction Time of the Antiarrhythmic Drug Propafenone.” European journal of clinical pharmacology 13(1):17-20.
  13. Kaupp, U. Benjamin and Reinhard Seifert. 2002. “Cyclic Nucleotide-Gated Ion Channels.” Physiol Rev 82(3):769-824.
  14. Moosmang et al. 1999. “Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain.” Biological Chemistry 380(7-8).
  15. Maller, Butcher und Krebs. 1979. “Early Effect of Progesterone on Levels of Cyclic Adenosine 3':5'-Monophosphate in Xenopus Oocytes.” The Journal of biological chemistry 254(3):579-82.
  16. Furst et al. 2003. “Electron Cryomicroscopy Structure of N-Ethyl Maleimide Sensitive Factor at 11 ?? Resolution.” EMBO Journal 22(17):4365-74.
  17. Milanesi et al. 2006. “Familial Sinus Bradycardia Associated with a Mutation in the Cardiac Pacemaker Channel.” The New England journal of medicine 354(2):151-57.
  18. Ueda et al. 2004. “Functional Characterization of a Trafficking-Defective HCN4 Mutation, D553N, Associated with Cardiac Arrhythmia.” Journal of Biological Chemistry 279(26):27194-98.
  19. Halliwell und Adams 1982. “Voltage-Clamp Analysis of Muscarinic Excitation in Hippocampal Neurons.” Brain Research 250(1):71-92.
  20. Harris und Constanti 1995. “Mechanism of Block by ZD 7288 of the HyperpolarizationActivated Inward Rectifying Current in Guinea Pig Substantia Nigra Neurons in Vitro.” Journal of neurophysiology 74(6):2366-78.
  21. Herrmann, S., F. Hofmann, J. Stieber, and a Ludwig. 2011. “HCN Channels in the Heart: Lessons from Mouse Mutants.” British journal of pharmacology.
  22. Chen et al. 2005. “HCN Subunit-Specific and cAMP-Modulated Effects of Anesthetics on Neuronal Pacemaker Currents.” The Journal of neuroscience : the official journal of the Society for Neuroscience 25(24):5803-14.
  23. Ho et al. 1994. “High Selectivity of the If Channel to Na+ and K+ in Rabbit Isolated Sinoatrial Node Cells.” Pflügers Archiv European Journal of Physiology 426(1- 2):68-74.
  24. Kabashi et al. 2013. “Investigating the Contribution of VAPB/ALS8 Loss of Function in Amyotrophic Lateral Sclerosis.” Human Molecular Genetics 22(12):2350-60.
  25. Hille 1978. “Ionic Channels in Excitable Membranes.” Biophysical Journal 22(February 1977):283-94.
  26. Moroni et al. 2000. “Kinetic and Ionic Properties of the Human HCN2 Pacemaker Channel.” Pflügers Archiv European Journal of Physiology 439(5):618-26.
  27. Lillie und Kobinger 1984. “Decrease in Bradycardic Effect of AQ-A 39 and Alinidine in Guinea-Pig Sinoatrial Node Depolarized by High External K+-Concentration.” Naunyn-Schmiedeberg's Archives of Pharmacology 328(2):210-13.
  28. Ishii et al. 1999. “Molecular Characterization of the Hyperpolarization-Activated Cation Channel in Rabbit Heart Sinoatrial Node.” Journal of Biological Chemistry 274(18):12835-39.
  29. Moss und Kass 2005. “Long QT Syndrome: From Channels to Cardiac Arrhythmias.” The Journal of clinical investigation 115(8):2018-24.
  30. Goethals, Raes und van Bogaert 1993. “Use-Dependent Block of the Pacemaker Current I(f) in Rabbit Sinoatrial Node Cells by Zatebradine (UL-FS 49). On the Mode of Action of Sinus Node Inhibitors.” Circulation 88(5 Pt 1):2389-2401.
  31. Hardel et al. 2008. “Recycling Endosomes Supply Cardiac Pacemaker Channels for Regulated Surface Expression.” Cardiovascular Research 79(1):52-60.
  32. Much et al. 2003. “Role of Subunit Heteromerization and N-Linked Glycosylation in the Formation of Functional Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels.” Journal of Biological Chemistry 278(44):43781-86.
  33. Macri et al.. 2002. “Separable Gating Mechanisms in a Mammalian Pacemaker Channel.” Journal of Biological Chemistry 277(39):35939-46.
  34. Herrmann, Stieber und Ludwig 2007. “Pathophysiology of HCN Channels.” Pflügers Archiv European Journal of Physiology 454(4):517-22.
  35. Jeon, Strettoi und Masland 1998. “The Major Cell Populations of the Mouse Retina.” The Journal of neuroscience : the official journal of the Society for Neuroscience 18(21):8936-46.
  36. Kaiser et al. 2005. “Structural Basis of FFAT Motif-Mediated ER Targeting.” Structure 13(7):1035-45.
  37. Netter et al. 2012. “The HCN4 Channel Mutation D553N Associated with Bradycardia Has a C-Linker Mediated Gating Defect.” Cellular Physiology and Biochemistry 30(5):1227-40.
  38. Uhlén et al. 2015. “Tissue-Based Map of the Human Proteome.” Science 347 (6220 ).
  39. Han et al. 2011. “Trafficking and Gating of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Are Regulated by Interaction with Tetratricopeptide Repeat-Containing Rab8b-Interacting Protein (TRIP8b) and Cyclic AMP at Distinct Sites.” The Journal of biological chemistry 286(23):20823-34.
  40. Tristani-Firouzi und Etheridge 2010. “Kir 2.1 Channelopathies: The Andersen-Tawil Syndrome.” Pflügers Archiv European Journal of Physiology 460(2):289-94.
  41. Lvov et al. 2008. “VAMP2 Interacts Directly with the N Terminus of Kv2.1 to Enhance Channel Inactivation.” Pflügers Archiv European Journal of Physiology 456(6):1121-36.
  42. Hofmann et al. 2012. “Ventricular HCN Channels Decrease the Repolarization Reserve in the Hypertrophic Heart.” Cardiovascular Research 95(3):317-26.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten