Publikationsserver der Universitätsbibliothek Marburg

Titel:Geometric, Feature-based and Graph-based Approaches for the Structural Analysis of Protein Binding Sites : Novel Methods and Computational Analysis
Autor:Fober, Thomas
Weitere Beteiligte: Hüllermeier, Eyke (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0126
URN: urn:nbn:de:hebis:04-z2013-01262
DOI: https://doi.org/10.17192/z2013.0126
DDC: Informatik
Titel (trans.):Geometrische, merkmalbasierte und graphbasierte Ansätze für die strukturelle Analyse von Proteinbindetaschen : Neue Methoden und deren Vergleich
Publikationsdatum:2013-08-14
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Feature Vectors, Proteinbindetasche, Merkmalvektoren, Graphs, Punktmenge, Punktwolken, Protein Binding Sites, Distances, Labeled Point Clouds, Graphen, Distanzen

Summary:
In this thesis, protein binding sites are considered. To enable the extraction of information from the space of protein binding sites, these binding sites must be mapped onto a mathematical space. This can be done by mapping binding sites onto vectors, graphs or point clouds. To finally enable a structure on the mathematical space, a distance measure is required, which is introduced in this thesis. This distance measure eventually can be used to extract information by means of data mining techniques.

Bibliographie / References

  1. Corman, T. H., Stein, C., Leiserson, C. E., and Rivest, R. L. (2001). Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts.
  2. Nocedal, J. and Wright, S. J. (2000). Numerical Optimization. Springer, Berlin, Germany.
  3. Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99– 121.
  4. Fröhlich, H., , Wegner, J. K., Sieker, F., and Zell, A. (2005). Optimal assignment kernels for attributed molecular graphs. In International conference on Machine learning, pages 225 – 232, Bonn, Germany.
  5. Zeng, Z., Wang, J., and Zhou, L. (2007). Out-of-core coherent closed quasi- clique mining from large dense graph databases. ACM Transactions on Database Systems, 32(2):Article 13.
  6. Goodrich, M. T., Mitchell, J. S. B., and Orletsky, M. W. (1994). Practical methods for approximate geometric pattern matching under rigid motions. In Annual Symposium on Computational Geometry, pages 103 – 112, Stony Brook, New York, United States.
  7. Weskamp, N., Hüllermeier, E., Kuhn, D., and Klebe, G. (2007). Multiple graph alignment for the structural analysis of protein active sites. IEEE Transactions on Computational Biology and Bioinformatics, 4(2):310–320.
  8. Spriggs, R., Artymiuk, P., and Willett, P. (2003). Searching for Patterns of Amino Acids in 3D Protein Structures. Journal of Chemical Information and Computer Sciences, 43(2):412–421.
  9. Powers, R., Copeland, J. C., Germer, K., Mercier, K. A., Ramanathan, V., and Revesz, P. (2006). Comparison of protein active site structures for functional annotation of proteins and drug design. PROTEINS: Structure, Function, and Bioinformatics, 65:124–135.
  10. Weskamp, N., Hüllermeier, E., and Klebe, G. (2009). Merging chemical and bio- logical space: Structural mapping of enzyme binding pocket space. Proteins: Structure Function and Bioinformatics, 76:317–330.
  11. Grindley, H., Artymiuk, P., Rice, D., and Willett, P. (1993). Identification of Tertiary Structure Resemblance in Proteins using a Maximal Common Sub- graph Isomorphism Algorithm. Journal of Molecular Biology, 229(3):707–721.
  12. Xu, L. and Oja, E. (1990). Improved Simulated Annealing, Boltzmann Machine, and Attributed Graph Matching. In EURASIP Workshop on Neural Networks, pages 151–160. Springer-Verlag London, UK.
  13. Zhang, K., Wang, J., and Shasha, D. (1995). On the Editing Distance Be- tween Undirected Acyclic Graphs and related problems. Combinatorial Pat- tern Matching, 937(1):395–407.
  14. Srinivasan, A., King, R., Muggleton, S., and Sternberg, M. (1997). Carcinogen- esis Predictions Using ILP. In 7th International Workshop on Inductive Logic Programming, pages 273–287. Springer-Verlag London, UK.
  15. Hazan, E., Safra, S., and Schwartz, O. (2003). On the complexity of approxi- mating k-dimensional matching. In Approximation, Randomization, and Combi- natorial Optimization. . . Algorithms and Techniques, volume 2764, pages 59–70.
  16. Yoshida, K. and Motoda, H. (1995). CLIP: Concept Learning from Inference Patterns. Artificial Intelligence, 75(1):63–92.
  17. Mitchell, E., Artymiuk, P., Rice, D., and Willett, P. (1990). Use of Techniques Derived from Graph Theory to Compare Secondary Structure Motifs in Pro- teins. Journal of Molecular Biology, 212(1):151–166.
  18. Heffernan, P. J. and Schirra, S. (1992). Approximate decison algorithm for point set congruence. In 8th Annual ACM Symposium on Computational Geometry, pages 93–101.
  19. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man and Cyber- netics, 18(1):183 – 190.
  20. Neuhaus, M. and Bunke, H. (2007a). Automatic learning of cost functions for graph edit distance. Information Sciences, 177(1):239–247.
  21. Patrick Pfeffer, Thomas Fober, Eyke Hüllermeier, Gerhard Klebe: GARLig: A fully Automated Tool for Subset Selection of Large Fragment Spaces via a Self-Adaptive Genetic Algorithm. Journal of Chemical Information and Modeling, 50(9), 1644–1659, 2010.
  22. Wang, X. and Wang, J. (2000). Fast Similarity Search in Three-Dimensional Structure Databases. Journal of Chemical Information and Computer Sciences, 40(2):442–451.
  23. Shatsky, M., Shulman-Peleg, A., Nussinov, R., and Wolfson, H. J. (2006). The multiple common point set problem and its application to molecule binding pattern detection. Journal of Computational Biology, 13(2):407–428.
  24. Dror, O., Benyamini, H., Nussinov, R., and Wolfson, H. (2003). MASS: Multiple Structural Alignment by Secondary Structures. Bioinformatics, 19(1):i95–104.
  25. Wheeler, T. J. and Kececioglu, J. D. (2007). Multiple alignment by aligning alignments. Bioinformatics, 23(13):i559–i568.
  26. Thomas Fober, Eyke Hüllermeier, Marco Mernberger: Evolutionary Construc- tion of Multiple Graph Alignments for the Structural Analysis of Biomolecules.
  27. Shindyalov, I. and Bourne, P. (2001). A Database and Tools for 3-D Protein Structure Comparison and Alignment using the Combinatorial Extension (CE) Algorithm. Nucleic Acids Research, 29(1):228–229.
  28. Kinoshita, K., Murakami, Y., and Nakamura, H. (2007). eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape. Nucleic Acid Research, 35(suppl 2):W398–W402.
  29. Mizuguchi, K. and Go, N. (1995). Comparison of Spatial Arrangements of Sec- ondary Structural Elements in Proteins. Protein Engineering Design and Selec- tion, 8(4):353–362.
  30. Wolfson, H. J. and Rigoutsos, I. (1997). Geometric hashing: An overview. IEEE Computational Science and Engineering.
  31. Yan, X., Zhu, F., Han, J., and Yu, P. (2006). Searching Substructures with Super- imposed Distance. In International Conference on Data Engineering, volume 88.
  32. Zhang, S., Hu, M., and Yang, J. (2007). Treepi: A novel graph indexing method. In 23th International Conference on Data Engineering, pages 966–975.
  33. Myers, R., Wilson, R., and Hancock, E. (2000). Bayesian Graph Edit Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(6):628–635.
  34. Wang, J., Zhang, K., and Chirn, G. (1994b). The Approximate Graph Matching Problem. In 12th IAPR International Conference on Computer Vision & Image Processing, volume 2, pages 284–288.
  35. Pelillo, M. (1998). A Unifying Framework for Relational Structure Matching. In 14th International Conference on Pattern Recognition, volume 2.
  36. Wang, J., Zhang, K., and Chirn, G. (1994a). Approximate Graph Matching using Probabilistic Hill Climbing algorithms. In 6th International Conference on Tools with Artificial Intelligence, pages 390–396.
  37. Justice, D. and Hero, A. (2006). A Binary Linear Programming Formulation of the Graph Edit Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1200–1214.
  38. Neuhaus, M. and Bunke, H. (2005). Self-organizing Maps for Learning the Edit Costs in Graph Matching. IEEE Transactions on Systems, Man and Cybernetics, B35(3):503–514.
  39. Yan, X., Yu, P., and Han, J. (2005). Substructure Similarity Search in Graph Databases. In ACM SIGMOD International Conference on Management of Data, pages 766–777. ACM Press New York, NY, USA.
  40. Kondor, R. and Borgwardt, K. M. (2008). The skew spectrum of graphs. In International Conference on Machine Learning, pages 496–503.
  41. Sander, O., Sing, T., Sommer, I., Low, A. J., Cheung, P. K., Harrigan, P. R., Lengauer, T., and Domingues, F. S. (2007). Structural Descriptors of gp120 V3 Loop for the Prediction of HIV-1 Coreceptor Usage. PLoS Computational Biology, 3(3):555–564.
  42. Karypis, G. (2006). CLUTO -family of data clustering software tools v 2.1.1. http://glaros.dtc.umn.edu/gkhome/views/cluto.
  43. Neuhaus, M. and Bunke, H. (2006). A Convolution Edit Kernel for Error- tolerant Graph Matching. In 18th International Conference on Pattern Recog- nition, volume 4, pages 220–223.
  44. Sanfeliu, A. and Fu, K. (1983). A Distance Measure Between Attributed Rela- tional Graphs for Pattern Recognition. IEEE Transactions on Systems, Man and Cybernetics, 13(3):353–362.
  45. Schmidt, D. and Druffel, L. (1976). A Fast Backtracking Algorithm to Test Di- rected Graphs for Isomorphism Using Distance Matrices. Journal of the ACM, 23(3):433–445.
  46. Sprinzak, J. and Werman, M. (1994). Affine point matching. Pattern Recognition Letters, 15:337–339.
  47. Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Man and Cybernetics, 4(2):100–107.
  48. Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal Molecular Biology, 48(3):443–453.
  49. J. C., Arnone, M. I., Rowen, L., Cameron, R. A., McClay, D. R., Hood, L., and Bolouri, H. (2002). A genomic regulatory network for development. Science, 295(5560):1669–1678.
  50. Bunke, H. and Shearer, K. (1998). A Graph Distance Metric Based on the Max- imal Common Subgraph. Pattern Recognition Letters, 19(3-4):255–259.
  51. Shasha, D., Wang, J., and Giugno, R. (2002). Algorithmics and Applications of Tree and Graph Searching. In Proceedings. 21th ACM SIGMOD-SIGACT- SIGART Symposium on Principles of Database Systems, pages 39–52. ACM Press New York, NY, USA.
  52. Shatsky, M., Niussinov, R., and Wolfson, H. J. (2004). A method for simulta- neous alignment of multiple protein structures. Proteins: Structure, Function, and Bioinformatics, 56:143–156.
  53. Okada, K. and Ling, H. (2007). An efficient earth mover's distance algorithm for robust histogram comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5):840–853.
  54. Hoffmann, B., Zaslavskiy, M., Vert, J.-P., and Stoven, V. (2010). A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3d: application to ligand prediction. BM, 11(1):99–115.
  55. Neuhaus, M. and Bunke, H. (2004). A Probabilistic Approach to Learning Costs for Graph Edit Distance. In 17th International Conference on Pattern Recogni- tion, volume 3, pages 389–393.
  56. Kabsch, W. (1976). A solution of the best rotation to relate two sets of vectors. Acta Crystallographica, 32:922–923.
  57. Sokal, R. R. and Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38:1409–1438.
  58. Gärtner, T. (2003). A survey of kernels for structured data. SIGKKD Explo- rations, 5(1):49 – 58.
  59. Mollineda, R., Vidal, E., and Casacuberta, F. (2002). A windowed weighted approach for approxiate cyclic string matching. In Kasturi, R., Laurendeau, D., and Suen, C., editors, 16th International Conference on Pattern Recognition, pages 188–191, Quebec, Canada.
  60. Neuhaus, M. and Bunke, H. (2007b). Briding the Gap between Graph Edit Distance and Kernel Machines. World Scientific, New Jersey.
  61. Yan, X. and Han, J. (2003). CloseGraph: Mining Closed Frequent Graph Pat- terns. In 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 286–295. ACM Press New York, NY, USA.
  62. Gerstein, M. and Levitt, M. (1998). Comprehensive Assessment of Automatic Structural Alignment Against a Manual s´Standard, the Scop Classification of Proteins. Protein Science, 7(2):445–456.
  63. de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000). Com- putational Geometry. Springer, New York.
  64. Haussler, D. (1999). Convolution kernels on discrete structures. Technical re- port, University of California at Santa Cruz.
  65. Holm, L. and Park, J. (2000). DaliLite Workbench for Protein Structure Com- parison. Bioinformatics, 16(6):566–567.
  66. Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining. Morgan Kauf- mann, Burlington, Massachusetts, USA.
  67. Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and anal- ysis of computer experiments. Statistical Science, 4(4):409–423.
  68. Kleywegt, G. and Jones, T. (1997). Detecting Folding Motifs and Similarities in Protein Structures. Methods in Enzymology, 277:525–545.
  69. Vriend, G. and Sander, C. (1991). Detection of Common Three-dimensional Substructures in Proteins. Proteins: Structure, Function and Genetics, 11(1):52– 58.
  70. Xenarios, I., Salwinski, L., Duan, X., Higney, P., Kim, S., and Eisenberg, D. (2002). DIP, the database for interacting proteins: A research tool for study- ing cellular networks of protein interactions. Nucleic Acids Research, 30:303– 305.
  71. Munoz, D., Vandapel, N., and Hebert, M. (2008). Directional associative markov network for 3-d point cloud classification. In Fourth Interna- tional Symposium on 3D Data Processing, Visualization and Transmission, Paris, France.
  72. Pérot, S., Sperandio, O., Miteva, M. A., Camproux, A.-C., and Villoutreix, B. O. (2010). Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovry. Drug Discovery Today, 15(15/16):656–667.
  73. In: Dubitzky W., Wolkenhauer O., Cho K.-H., Yokota H. (Eds): Encyclopedia of Systems Biology. Springer, New York, (to appear).
  74. Deza, M. M. and Deza, E. (2009). Encyclopedia of Distances. Springer, Heidel- berg, Germany.
  75. Messmer, B. and Bunke, H. (1998b). Error-Correcting Graph Isomorphism us- ing Decision Trees. International Journal of Pattern Recognition and Artificial Intelligence, 12:721–742.
  76. Schwefel, H.-P. (1993). Evolution and Optimum Seeking. John Wiley & Sons, Inc., New York, USA.
  77. Thomas Fober, Gerhard Klebe, Eyke Hüllermeier: Efficient Construction of Multiple Geometrical Alignments for the Comparison of Protein Binding Sites.
  78. Journal Articles Thomas Fober, Marco Mernberger, Gerhard Klebe, Eyke Hüllermeier: Evolu- tionary Construction of Multiple Graph Alignments for the Structural Analysis of Biomolecules. Bioinformatics, 25(16): 2110–2117, 2009.
  79. Thomas Fober, Marco Mernberger, Vitalik Melnikov, Ralph Moritz, Eyke Hül- lermeier: Extension and Empirical Comparison of Graph-Kernels for the Anal- ysis of Protein Active Sites. In Workshop Knowledge Discovery and Machine Learn- ing, Darmstadt, Germany, 2009.
  80. Thomas Fober, Marco Mernberger, Gerhard Klebe, Eyke Hüllermeier: Finger- print Kernels for Protein Structure Comparison. Molecular Informatics, 31(6-7): 443–452, 2012.
  81. Yu Yi, Thomas Fober, Eyke Hüllermeier: Fuzzy Operator Trees for Modeling Rating Functions. International Journal of Computational Intelligence and Applica- tions, 8(4), 413–428, 2009.
  82. Robin Senge, Thomas Fober, Maryam Nasiri, Eyke Hüllermeier: Fuzzy Pattern Trees — Ein alternativer Ansatz zu Fuzzy-Modellierung. at — Automatisierung- stechnik, 60(10): 622–629, 2012.
  83. Thomas Fober, Marco Mernberger, Eyke Hüllermeier: Graph-based methods for protein structure comparison. Wiley Interdisciplinary Reviews, submitted.
  84. Thomas Fober, Marco Mernberger, Ralph Moritz, Eyke Hüllermeier: Graph- Kernels for the Comparative Analysis of Protein Active Sites. In German Con- ference on Bioinformatics, Halle (Saale), Germany, 2009.
  85. Imen Boukhris, Zied Elouedi, Thomas Fober, Marco Mernberger, Eyke Hüller- meier: Similarity Analysis of Protein Binding Sites: A Generalization of the Maximum Common Subgraph Measure based on Quasi-Clique Detection. In IEEE International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 2009.
  86. Eyke Hüllermeier, Thomas Fober, Marco Mernberger: Fuzzy logic. In: Dub- itzky W., Wolkenhauer O., Cho K.-H., Yokota H. (Eds): Encyclopedia of Systems Biology. Springer, New York, USA, (to appear).
  87. Thomas Fober, Eyke Hüllermeier: Fuzzy Modeling of Labeled Point Cloud Superposition for the Comparison of Protein Binding Sites. In IFSA/EUSFLAT World Conference, Lisboa, Portugal, 2009.
  88. Pedrycz, W. and Gomide, F. (2007). Fuzzy systems engineering: toward human- centric computing. Wiley, New York.
  89. Pfeffer, P., Fober, T., Hüllermeier, E., and Klebe, G. (2009). Garlig: A fully automated tool for the subset selection of large fragment spaces via a self- adaptive genetic algorithm or the comparative evaluation of 5 different scor- ing functions used for de novo design. Journal of Chemical Information and Modelling, 50(9):1644–1659.
  90. Wang, Y., Fan, K., and Horng, J. (1997). Genetic-based Search for Error- correcting Graph Isomorphism. IEEE Transactions on Systems, Man and Cy- bernetics, 27(4):588–597.
  91. October 2001 — March 2007: Student in Computer Science (minor Economics) at Universität Dortmund, Germany. Degree: Diplom (German Master) 1997 — 2000: Gymnasiale Oberstufe, Iserlohn, Germany (German high school) 1991 — 1997: Realschule, Iserlohn, Germany (German secondary school) 1987 — 1991: Grundschule, Iserlohn, Germany (German primary school) Research Stays January 16 th — 28 th , 2012 : The Cambridge Crystallographic Data Centre, Cam- bridge, United Kingdom. Organization of Conferences
  92. Höfle, B., Geist, T., Rutzinger, M., and Pfeifer, N. (2007). Glacier surface seg- mentation using airborne laser scanning point cloud and intensity data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Infor- mation Sciences, Espoo, Finland.
  93. Riesen, K. and Bunke, H. (2010). Graph Classification and Clustering based on Vector Space Embedding. World Scientific, London, UK.
  94. Robles-Kelly, A. and Hancock, E. (2005). Graph Edit Distance from Spec- tral Seriation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):365–378.
  95. Yan, X., Yu, P., and Han, J. (2004). Graph Indexing: A Frequent Structure-based Approach. In ACM SIGMOD International Conference on Management of Data, pages 335–346. ACM New York, NY, USA.
  96. Vishwanathan, S., Borgwardt, K. M., Kondor, I. R., and Schraudolph, N. N. (2008). Graph kernels. Journal of Machine Learning Research, 9:1–41.
  97. Ralaivola, L., Swamidass, S., Saigo, H., and Baldi, P. (2005). Graph Kernels for Chemical Informatics. Neural Networks, 18(8):1093–1110.
  98. Bunke, H. and Jiang, X. (2000). Graph matching and similarity. Intelligent sys- tems and interfaces, 15:281 – 304.
  99. Harary, F. (1994). Graph Theory. Westview Press, Boulder, USA.
  100. Raymond, J., Gardiner, E., and Willett, P. (2002). Heuristics for Similarity Searching of Chemical Graphs Using a Maximum Common Edge Subgraph Algorithm. Jorunal of Chemical Information and Computer Sciences, 42(2):305– 316.
  101. Singh, A. and Brutlag, D. (1997). Hierarchical protein Structure Superposition Using Both Secondary Structure and Atomic Representations. In Interna- tional Conference on Intelligence Systems for Molecular Biology, volume 5, pages 284–293.
  102. Michiel Stock, Thomas Fober, Eyke Hüllermeier, Serghei Glinca, Gerhard Klebe, Tapio Pahikkala, Antti Airola, Bernard De Baets, Willem Waegeman: Identification of functionally-related enzymes by learning-to-rank methods and cavity-based similarity measures. IEEE/ACM Transactions on Computational Biology and Bioinformatics, submitted.
  103. Kinoshita, K. and Nakamura, H. (2003). Identification of Protein Biochemical Functions by Similarity Search using the Molecular Surface Database eF-site. Protein Science, 12(8):1589–1595.
  104. Kinoshita, K. and Nakamura, H. (2005). Identification of the Ligand Binding Sites on the Molecular Surface of Proteins. Protein Science, 14(3):711–718.
  105. Siggelkow, S. and Burkhardt, H. (2002). Improvement of histogram-based im- age retrieval and classification. In 16th International Conference on Pattern Recognition, volume 3, page 30367.
  106. Shawe-Taylor, J. and Cristianini, N. (2003). Kernel Methods for Pattern Analysis. Cambridge University Press, Cambrigde.
  107. Gärtner, T. (2008). Kernels for structured data. World Scientific, Singapore.
  108. Hendlich, M., Rippmann, F., and Barnickel, G. (1997). LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. Journal of Molecular Graphics and Modelling, 15:359–363.
  109. Hopcroft, J. E. and Wong, J. K. (1974). Linear time algorithm for isomorphism of planar graphs. In Constable, R. L., Ritchie, R. W., Carlyle, J. W., and Harrison, M. A., editors, Sixth annual ACM symposium on Theory of computing, pages 172–184, Seattle, Washington. ACM.
  110. Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginalized Kernels Be- tween Labeled Graphs. In 20th International Conference on Machine Learning, pages 321–328.
  111. Raymond, J. and Willett, P. (2002). Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design, 16(7):521–533.
  112. Hajek, P. (1998). Metamathematics of fuzzy logic. Kluwer, Dordrecht.
  113. objective Evolutionary Optimization through Preference Learning from User Feedback. In 21th Workshop Computational Intelligence, Dortmund, Germany, 2011.
  114. Bunke, H., Jiang, X., and Kandel, A. (2000). On the Minimum Common Super- graph of two Graphs. Computing, 65(1):13–25.
  115. Norvig, P. (1991). Paradigms of Artificial Intelligence Programming. Morgan Kauf- mann, Burlington, Massachusetts, USA.
  116. Chalk, A. J., Worth, C. L., Overington, J. P., and Chan, A. W. E. (2004). PDBLIG: Classification of small molecular protein binding in the protein data bank. Journal of Medical Chemistry, 47(15):3807–3816.
  117. Watson, J. D., Laskowski, R. A., and Thornton, J. M. (2005). Predicting protein function from sequence and structural data. Current Opinion in Structural Biology, 15(3):275–284.
  118. Shindyalov, I. and Bourne, P. (1998). Protein Structure Alignment by Incremen- tal Combinatorial Extension (CE) of the Optimal Path. Protein Engineering Design and Selection, 11(9):739–747.
  119. Shulman-Peleg, A., Nussinov, R., and Wolfson, H. (2004). Recognition of Func- tional Sites in Protein Structures. Journal of Molecular Biology, 339(3):607–633.
  120. Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer Computations, pages 85 – 103, New York, USA. Plenum Press.
  121. Hendlich, M., Bergner, A., Günther, J., and Klebe, G. (2003). Relibase: Design and development of a database for comprehensive analysis of protein-ligand interactions. Journal of Molecular Biology, 326:607–620.
  122. Chao, K. and Zhang, L. (2009). Sequence Comparison. Springer, Heidelberg, Germany.
  123. Wassermann, S. and Faust, K. (1994). Social Network Analysis: Methods and Ap- plications. Cambridge University Press.
  124. Orengo, C. and Taylor, W. (1996). SSAP: Sequential Structure Alignment Pro- gram for Protein Structure Comparison. Methods in Enzymology, 266:617–35.
  125. Christmas, W., Kittler, J., and Petrou, M. (1995). Structural Matching in Com- puter Vision using Probabilistic Relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):749–764.
  126. Papadopoulos, A. and Manolopoulos, Y. (1999). Structure-based Similarity Search with Graph Histograms. In 10th International Workshop on Database and Expert Systems Applications, pages 174–178.
  127. Holder, L., Cook, D., and Djoko, S. (1994). Substructure Discovery in the Sub- due System. In AAAI Workshop on Knowledge Discovery in Databases, pages 169–180.
  128. Thomas Fober, Serghei Glinca, Gerhard Klebe, Eyke Hüllermeier: Superposi- tion and Alignment of Labeled Point Clouds. IEEE/ACM Transactions on Com- putational Biology and Bioinformatics, 8(6), 1653–1666, 2011.
  129. Gibrat, J. F., Madej, T., and Bryant, S. H. (1996). Surprising similarities in struc- ture comparison. Current Opinion in Structural Biology, 6(3):377–385.
  130. Shatsky, M. (2006). The Common Point Set Problem with Applications to Protein Structure Analysis. PhD thesis, Tel Aviv University, Tel Aviv, Israel.
  131. Read, R. and Corneil, D. (1977). The Graph Isomorphism Disease. Journal of Graph Theory, 1(1):339–363.
  132. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32:D277 – D280.
  133. Munshi, A. (2011). The OpenCL Specification. Khronos OpenCL Working Group, Beaverton, Oregon, USA.
  134. Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank cita- tion ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project.
  135. Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction problem. Journal of the ACM, 21(1):168 – 173.
  136. Havel, T. F., Kuntz, I. D., and Crippen, G. M. (1983). The theory and practice of distance geometry. Bulletin of Mathematical Biology, 45(5):665–720.
  137. Gerstein, M. and Levitt, M. (1996). Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures. In International Conference on Intelligent Systems for Molecular Biology, volume 4, pages 59–67.
  138. Kawabata, T. and Nishikawa, K. (2000). Protein Structure Comparison Using the Markov Transition Model of Evolution. Proteins, 41(1):108–122.
  139. Weisel, M., Proschak, E., Kriegl, J. M., and Schneider, G. (2009). Form follows function: Shape analysis of protein cavities for receptor-based drug design. PROTEOMICS, 9(2):451–549.
  140. Dehaspe, L., Toivonen, H., and King, R. (1998). Finding Frequent Substruc- tures in Chemical Compounds. In 4th International Conference on Knowledge Discovery and Data Mining, pages 30–36. AAAI Press.
  141. Peris, G. and Marzal, A. (2002). Fast cyclic edit distance computation with weighted edit costs in classification. In Kasturi, R., Laurendeau, D., and Suen, C., editors, 16th International Conference on Pattern Recognition, vol- ume 4, pages 184–187, Quebec, Canada.
  142. Suganthan, P. N., Teoh, E., and Mital, D. (1995). Pattern recognition by graph matching using the potts MFT neural networks. Pattern Recognition, 28(7):997–1009.
  143. Werman, M., Peleg, S., and Rosenfeld, A. (1985). A distance metric for multi- dimensional histograms. Computer, Vision, Graphics, and Image Processing, 32:328–336.
  144. Zadeh, L. (1983). A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications, 9:149–184.
  145. Schmitt, S., Kuhn, D., and Klebe, G. (2002). A new method to detect related function among proteins independent of sequence and fold homology. Jour- nal of Molecular Biology, 323(2):387–406.
  146. Holm, L. and Sander, C. (1993). Protein Structure Comparison by Alignment of Distance Matrices. Journal of Molecular Biology, 233(1):123–138.
  147. Thomas Fober Sachsenring 16 35041 Marburg Germany thomas@mathematik.uni-marburg.de http://www.uni-marburg.de/fb12/kebi/people/thomas Education Since October 2007: PhD-student in Computer Science at the Department Mathematics and Computer Science, Philipps-Universität Marburg, Germany.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten