Publikationsserver der Universitätsbibliothek Marburg

Titel:Multiband Gutzwiller-Theorie des Bandmagnetismus von LaO-Eisen-Arsenid
Autor:Schickling, Tobias
Weitere Beteiligte: Gebhard, Florian (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0088
URN: urn:nbn:de:hebis:04-z2012-00880
DOI: https://doi.org/10.17192/z2012.0088
DDC:530 Physik
Titel (trans.):Multiband Gutzwiller theory of bandmagnetism in LaO-iron-arsenide
Publikationsdatum:2012-03-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
LaOFeAs, iron arsenide, Gutzwiller theory, Supraleitung, Hubbard-Modell, Eisenpniktide, Eisenarsenid, korrelierte Elektronen, LaOFeAs, correlated electrons, Gutzwiller-Theorie, iron pnictides

Zusammenfassung:
In dieser Arbeit wenden wir die Gutzwiller-Theorie auf verschiedene Modelle von LaOFeAs an. Im Jahr 2008 wurde entdeckt, dass dotiertes LaOFeAs unterhalb einer kritischen Temperatur von Tc=28 K supraleitend wird. Schon bald nach dieser Entdeckung wurden weitere eisenbasierte Materialien gefunden, die eine zu LaOFeAs ähnliche atomare Struktur besitzen und ebenfalls supraleitend sind. Diese Materialien bilden die Klasse der eisenbasierten Supraleiter. Viele Eigenschaften dieser Klasse stimmen erstaunlich gut mit den Eigenschaften der Kuprate überein. Daher besteht die Möglichkeit, dass eine Erforschung dieser Klasse das Verständnis von Hochtemperatursupraleitung verbessern könnte. Trotz großer Anstrengung können Dichtefunktionalrechnungen nicht das kleine magnetische Moment in undotiertem LaOFeAs reproduzieren. Solche Rechnungen überschätzen das magnetische Moment um einen Faktor 2-3. Mit Hilfe unseres Gutzwiller-Ansatzes können wir die lokalen Coulomb-Wechselwirkungen besser berücksichtigen. Wir zeigen, dass es notwendig ist, die 3d-Orbitale des Eisens und die 4p-Orbitale des Arsens explizit zu behandeln. Somit finden wir in einem großen Parameterbereich der lokalen elektronischen Wechselwirkungen ein kleines magnetisches Moment, das im Bereich der Werte der experimentellen Messungen liegt. Weiterhin zeigen wir, dass man den Magnetismus in LaOFeAs als Bandmagnetismus von Landau-Gutzwiller-Quasiteilchen verstehen kann.

Bibliographie / References

  1. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki. Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO 1−x F x . Physical Review Letters, 101:087004, 2008.
  2. C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai. Magnetic order close to superconductivity in the iron-based layered LaO 1−x F x FeAs systems. Nature, 453:899, 2008.
  3. D. H. Lu, M. Yi, S.-K. Mo, A. S. Erickson, J. G. Analytis, J.-H. Chu, D. J. Singh, Z. Hussain, T. H. Geballe, I. R. Fisher, and Z.-X. Shen. Electronic structure of the iron-based superconductor LaOFeP. Nature, 455:81, 2008.
  4. M. Zbiri, H. Schober, M. Johnson, S. Rols, R. Mittal, Y. Su, M. Rotter, and D. Johrendt. Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe 2 As 2 : Effect of structural phase transition, structural relaxation, and magnetic ordering. Physical Review B, Literaturverzeichnis 79:064511, 2009.
  5. G. Wu, Y. L. Xie, H. Chen, M. Zhong, R. H. Liu, B. C. Shi, Q. J. Li, X. F. Wang, T. Wu, Y. J. Yan, J. J. Ying, and X. H. Chen. Superconductivity at 56 K in samarium-doped SrFeAsF. Journal of Physics: Condensed Matter, 21:142203, 2009.
  6. S. Graser, T. A. Maier, P. J. Hirschfeld, and D. J. Scalapino. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New Journal of Physics, 11:025016, 2009.
  7. I. I. Mazin and J. Schmalian. Pairing symmetry and pairing state in ferropnic- tides: Theoretical overview. Physica C: Superconductivity, 469:614, 2009.
  8. L. Wang, U. Köhler, N. Leps, A. Kondrat, M. Nale, A. Gasparini, A. de Vis- ser, G. Behr, C. Hess, R. Klingeler, and B. Büchner. Thermal expansion of LaFeAsO 1−x F x : Evidence for high-temperature fluctuations. Physical Review B, 80:094512, 2009.
  9. K. Ishida, Y. Nakai, and H. Hosono. To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report. Journal of the Physical Society of Japan, 78:062001, 2009.
  10. M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann. Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO. Physical Review B, 80:085101, 2009.
  11. S. Zhou and Z. Wang. Electron Correlation and Spin Density Wave Order in Iron Pnictides. Physical Review Letters, 105:096401, 2010.
  12. H. Ishida and A. Liebsch. Fermi-liquid, non-Fermi-liquid, and Mott phases in iron pnictides and cuprates. Physical Review B, 81:054513, 2010.
  13. E. Bascones, M. J. Calderón, and B. Valenzuela. Low Magnetization and Anisotropy in the Antiferromagnetic State of Undoped Iron Pnictides. Physical Review Letters, 104:227201, 2010.
  14. S. L. Skornyakov, N. A. Skorikov, A. V. Lukoyanov, A. O. Shorikov, and V. I. Anisimov. LDA+DMFT spectral functions and effective electron mass enhancement in the superconductor LaFePO. Physical Review B, 81:174522, 2010.
  15. P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, and K. Held. Dichotomy between Large Local and Small Ordered Magnetic Moments in Iron- Based Superconductors. Physical Review Letters, 104:197002, 2010.
  16. L. Boeri, M. Calandra, I. I. Mazin, O. Dolgov, and F. Mauri. Effects of magnetism and doping on the electron-phonon coupling in BaFe 2 As 2 . Physical Review B, 82:020506(R), 2010.
  17. C. Liu, Y. Lee, A. Palczewski, J.-Q. Yan, T. Kondo, B. Harmon, R. McCal- lum, T. Lograsso, and A. Kaminski. Surface-driven electronic structure in LaFeAsO studied by angle-resolved photoemission spectroscopy. Physical Review B, 82:075135, 2010.
  18. H.-F. Li, W. Tian, J.-Q. Yan, J. L. Zarestky, R. McCallum, T. Lograsso, and D. Vaknin. Phase transitions and iron-ordered moment form factor in LaFeAsO. Physical Review B, 82:064409, 2010.
  19. F. Yang, H. Zhai, F. Wang, and D.-H. Lee. Electronic instabilities in iron- based superconductors: A variational Monte Carlo study. Physical Review B, 83:134502, 2011.
  20. J. Schmalian. Failed Theories of Superconductivity. In L. N. Cooper and D. Feldman, editors, BCS: 50 Years. World Scientific, Singapore, 2011.
  21. O. K. Andersen and L. Boeri. On the multi-orbital band structure and itinerant magnetism of iron-based superconductors. Annalen der Physik, 523:8, 2011.
  22. T. Schickling, F. Gebhard, and J. Bünemann. Antiferromagnetic Order in Multi- band Hubbard Models for Iron Pnictides. Physical Review Letters, 106:146402, 2011.
  23. D. Stanek, O. P. Sushkov, and G. S. Uhrig. Self-consistent spin-wave theory for a frustrated Heisenberg model with biquadratic exchange in the columnar phase and its application to iron pnictides. Physical Review B, 84:064505, 2011.
  24. Z. P. Yin, K. Haule, and G. Kotliar. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature materials, 10:1, 2011.
  25. M. Aichhorn, L. Pourovskii, and A. Georges. Importance of electronic correlati- ons for structural and magnetic properties of the iron pnictide superconductor LaFeAsO. Physical Review B, 84:054529, 2011.
  26. G. Seibold and J. Lorenzana. Time-Dependent Gutzwiller Approximation for the Hubbard Model. Physical Review Letters, 86:2605, 2001.
  27. J. Bünemann, F. Gebhard, T. Schickling, and W. Weber. Numerical Minimisa- tion of Gutzwiller Energy Functionals. arXiv, 1111.4112, 2011.
  28. J. Bünemann, T. Schickling, and F. Gebhard. Fermi surface of two dimensional Hubbard models. arXiv, 1108.4284, 2011.
  29. W. Metzner. Variational theory for correlated lattice fermions in high dimensions. Zeitschrift für Physik B: Condensed Matter, 77:253, 1989.
  30. J. Bünemann and W. Weber. Generalized Gutzwiller method for n ≥ 2 correlated bands: First-order metal-insulator transitions. Physical Review B, 55:4011, 1997.
  31. J. Bünemann, W. Weber, and F. Gebhard. Multiband Gutzwiller wave functions for general on-site interactions. Phys. Rev. B, 57:6896, 1998.
  32. G. Seibold, E. Sigmund, and V. Hizhnyakov. Unrestricted slave-boson mean-field approximation for the two-dimensional Hubbard model. Physical Review B, 57:6937, 1998.
  33. L. Yang, B. Xie, Y. Zhang, C. He, Q. Ge, X. Wang, X. Chen, M. Arita, J. Jiang, K. Shimada, M. Taniguchi, I. Vobornik, G. Rossi, J. Hu, D. Lu, Z. Shen, Z. Lu, and D. Feng. Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy. Physical Review B, 82:104519, 2010.
  34. Z. P. Yin, S. Lebègue, M. J. Han, B. P. Neal, S. Y. Savrasov, and W. E. Pickett. Electron-Hole Symmetry and Magnetic Coupling in Antiferromagnetic LaFeAsO. Physical Review Letters, 101:047001, 2008.
  35. Auslandsstudium im Rahmen des Erasmus-Programms am University College Cork, Irland Februar 2009
  36. L. N. Cooper. Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 104:1189, 1956.
  37. E. Müller-Hartmann. Correlated fermions on a lattice in high dimensions. Zeitschrift für Physik B: Condensed Matter, 74:507, 1989.
  38. M. C. Gutzwiller. Correlation of Electrons in a Narrow s Band. Physical Review, 137:A1726, 1965.
  39. Qureshi, Y. Drees, J. Werner, S. Wurmehl, C. Hess, R. Klingeler, B. Büchner, M. Fernández-Díaz, and M. Braden. Crystal and magnetic structure of the oxypnictide superconductor LaFeAsO 1−x F x : A neutron-diffraction study. Physical Review B, 82:184521, 2010.
  40. D. J. Singh and M.-H. Du. Density Functional Study of LaFeAsO 1−x F x : A Low Carrier Density Superconductor Near Itinerant Magnetism. Physical Review Letters, 100:237003, 2008.
  41. M. C. Gutzwiller. Effect of Correlation on the Ferromagnetism of Transition Metals. Physical Review Letters, 10:159, 1963.
  42. J. Hubbard. Electron Correlations in Narrow Energy Bands. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 276:238, 1963.
  43. D. J. Singh. Electronic structure of Fe-based superconductors. Physica C: Superconductivity, 469:418, 2009.
  44. J. Rath and A. J. Freeman. Generalized magnetic susceptibilities in metals: Application of the analytic tetrahedron linear energy method to Sc. Physical Review B, 11:2109, 1975.
  45. F. Gebhard. Gutzwiller correlated wave functions in finite dimensions d : A systematic expansion in 1/d. Physical Review B, 41:9452, 1990.
  46. G. T. Wang, Y. Qian, G. Xu, X. Dai, and Z. Fang. Gutzwiller Density Functional Studies of FeAs-Based Superconductors: Structure Optimization and Evidence for a Three-Dimensional Fermi Surface. Physical Review Letters, 104:047002, 2010.
  47. K. Ho, J. Schmalian, and C. Wang. Gutzwiller density functional theory for correlated electron systems. Physical Review B, 77:073101, 2008.
  48. T. Schickling. Gutzwiller-Theorie für Mehrband-Modelle in zwei Dimensionen. Diplomarbeit, Philipps-Universität Marburg, 2009.
  49. T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen, and W. We- ber. Gutzwiller Theory of Band Magnetism in LaOFeAs. Phys. Rev. Lett., 108:36406, 2012.
  50. J. Paglione and R. L. Greene. High-temperature superconductivity in iron-based materials. Nature Physics, 6:645, 2010.
  51. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono. Iron-based layered superconductor LaO 1−x F x FeAs (x = 0.05-0.12) with T c = 26 K. Journal of the American Chemical Society, 130:3296, 2008.
  52. I. I. Mazin. Iron superconductivity weathers another storm. Physics, 4:2, 2011.
  53. Don-Bosco-Grundschule, Künzell 1993 -2002 Gymnasium Freiherr-vom-Stein-Schule, Fulda Zivildienst Juli 2002 - April 2003
  54. P. Fazekas. Lecture Notes on Electron Correlation and Magnetism. World Scientific, Singapore, 1999.
  55. Literaturverzeichnis using the Gutzwiller approximation. Physical Review B, 84:245112, 2011.
  56. X. Y. Deng, L. Wang, X. Dai, and Z. Fang. Local density approximation combined with Gutzwiller method for correlated electron systems: Formalism and applications. Physical Review B, 79:075114, 2009.
  57. F. Cricchio, O. Grånäs, and L. Nordström. Low spin moment due to hidden multipole order from spin-orbital ordering in LaFeAsO. Physical Review B, 81:140403(R), 2010.
  58. R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto. Magnetic and metallic state at intermediate Hubbard U coupling in multiorbital models for undoped iron pnictides. Physical Review B, 79:104510, 2009.
  59. H.-H. Wen and S. Li. Materials and Novel Superconductivity in Iron Pnictide Superconductors. Annual Review of Condensed Matter Physics, 2:121, 2011.
  60. J. H. Van Vleck. Models of Exchange Coupling in Ferromagnetic Media. Reviews of Modern Physics, 21:220, 1953.
  61. S. Sugano, Y. Tanabe, and H. Kamimura. Multiplets of Transition-Metal Ions in Crystals. Academic Press, New York, 1970.
  62. P.-O. Löwdin. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys., 18:365, 1950.
  63. P. Horsch and P. Fulde. On the theory of electronic correlations in solids. Zeitschrift für Physik B: Condensed Matter, 36:23, 1979.
  64. T. Yildirim. Origin of the 150-K Anomaly in LaFeAsO: Competing Antiferro- Literaturverzeichnis magnetic Interactions, Frustration, and a Structural Phase Transition. Physical Review Letters, 101:057010, 2008.
  65. J. G. Bednorz and K. A. Müller. Possible high-T c superconductivity in the Baâˆ'Laâˆ'Cuâˆ'O system. Zeitschrift für Physik B: Condensed Matter, 64:189, 1986.
  66. I. I. Mazin, M. D. Johannes, L. Boeri, K. Koepernik, and D. J. Singh. Pro- blems with reconciling density functional theory calculations with experiment in ferropnictides. Physical Review B, 78:085104, 2008.
  67. C. Cao, P. J. Hirschfeld, and H.-P. Cheng. Proximity of antiferromagnetism and superconductivity in LaFeAsO 1−x F x : Effective Hamiltonian from ab initio studies. Physical Review B, 77:220506(R), 2008.
  68. N. Ashcroft and D. Mermin. Solid State Physics. Holt, Rinehart and Winston, Philadelphia, 1976.
  69. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser, and W. Weber. Spin-Orbit Literaturverzeichnis Coupling in Ferromagnetic Nickel. Physical Review Letters., 101:236404, 2008.
  70. J. Zhao, D. T. Adroja, D.-X. Yao, R. Bewley, S. Li, X. F. Wang, G. Wu, X. H. Chen, J. Hu, and P. Dai. Spin waves and magnetic exchange interactions in CaFe 2 As 2 . Nature Physics, 5:555, 2009.
  71. Studium im Fach Diplom-Physik an der Philipps-Univer- sität Marburg März 2004 - Februar 2009
  72. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 58:908, 1987.
  73. I. I. Mazin. Superconductivity gets an iron boost. Nature, 464:183, 2010.
  74. H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden, J. E. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner. The electronic phase diagram of the LaO 1−x F x FeAs superconductor. Nature materials, 8:305, 2009.
  75. J. Bünemann and W. Weber. The generalized Gutzwiller method for n ≥ 2 correlated orbitals: Itinerant ferromagnetism in d eg -bands. Physica B: Condensed Matter, 230-232:412, 1997.
  76. J. Bünemann. The Gutzwiller Variational Theory and Related Methods for Correlated Electron Systems. Habilitationsschrift, Marburg, 2009.
  77. E. von Oelsen, G. Seibold, and J. Bünemann. Time-Dependent Gutzwiller Theory for Multiband Hubbard Models. Physical Review Letters, 107:076402, 2011.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten