Publikationsserver der Universitätsbibliothek Marburg

Titel:Bildpotentialresonanzen der Aluminium-(100)-Oberfläche
Autor:Winter, Matthias
Weitere Beteiligte: Höfer, Ulrich (Dr. rer. nat.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0511
URN: urn:nbn:de:hebis:04-z2011-05115
DOI: https://doi.org/10.17192/z2011.0511
DDC: Physik
Titel (trans.):Image Potential Resonances of the Aluminum (100) Surface
Publikationsdatum:2011-08-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
resonance trapping, Elektron, Einfaches Metall, surface state, aluminum, Oberflächenzustand, Bildpotentialresonanz, image potential resonance, Mehrphotonen-Spektroskopie, gefangene Resonanz, excitation trapping, Zweiphotonenspektroskopie, Festkörperphysik, Angeregter Zustand, Elektronengas, Bildpotenzialresonanz, Spektro

Zusammenfassung:
Im Rahmen dieser Arbeit werden die Bildpotentialresonanzen der (100)-Oberfläche von reinem Aluminium experimentell und theoretisch untersucht. Die Experimente werden mit der Methode der Zweiphotonen-Photoemissions-Spektroskopie sowohl energie- als auch zeitaufgelöst durchgeführt. Besonderes Augenmerk der theoretischen Betrachtungen liegt auf der Wechselwirkung zwischen Oberflächen- und Volumenzuständen. Dazu werden umfassende numerische Berechnungen vorgenommen. Bildpotentialresonanzen auf Al(100) sind ein System, bei dem eine vollständige Rydbergserie stark an ein Zustandskontinuum koppelt und das sich als einfaches Metall gut eignet, um theoretische Überlegungen zur Struktur des Potentials an Metalloberflächen zu überprüfen. Dies ist die erste hochauflösende Untersuchung von Bildpotentialresonanzen mit derart starkem Resonanzcharakter. Erstmals wird experimentell nachgewiesen, dass einzelne Bildpotentialresonanzen auf einer Aluminiumoberfläche existieren. Auf der (100)-Oberfläche von Aluminium wird die zweite bis fünfte Bildpotentialresonanz aufgelöst und sowohl ihre Bindungsenergien als auch ihre Lebensdauern bestimmt. Die Bindungsenergien der Bildpotentialresonanzen bilden eine Rydbergserie von Zuständen, die im Rahmen der Messgenauigkeit ohne Quantendefekt a auskommt (a=0,022±0,035). Die effektive Masse der Elektronen in der zweiten Bildpotentialresonanz wird mit Hilfe winkelabhängiger Messungen auf 1,01±0,11 Elektronenmassen bestimmt. Die Lebensdauern der Resonanzen verhalten sich ab n=2 gemäß (1,0±0,2)·n³ fs. Dichtematrix-Rechnungen zeigen, dass sich die experimentell beobachteten Lebensdauern gut dadurch erklären lassen, dass die Elektronen in das Metallvolumen zerfallen. Dabei führt der Effekt der gefangenen Resonanzen (resonance trapping) zu längeren Lebensdauern. Im Widerspruch zu den gängigen theoretischen Modellen für Bildpotentialzustände auf Metalloberflächen ist die erste Bildpotentialresonanz auf der (100)-Oberfläche von Aluminium in der Zweiphotonen-Photoemissions-Spektroskopie nicht sichtbar. Es wird gezeigt, dass die starke Kopplung der Oberflächenzustände an Volumenzustände und die damit verbundene Bildung gefangener Resonanzen dieses Phänomen erklären kann. Auch der Fano-Effekt kann in energieaufgelösten Zweiphotonen-Photoemissions-Spektren beobachtet werden. Er macht sich durch eine starke Asymmetrie zwischen den Energien ober- und unterhalb der Resonanzserie bemerkbar.

Bibliographie / References

  1. P, E. ; R, I. ; S, H.-J. ; B, M.: Observa- tion of Resonance Trapping in an Open Microwave Cavity. In: Phys- ical Review Letters 85 (2000), September, Nr. 12, S. 2478–2481. – DOI 10.1103/PhysRevLett.85.2478
  2. Literaturverzeichnis [78] GL, A. ; P, J. M. ; C, E. V. ; L, A. ; E , P. M.: Role of Surface Plasmons in the Decay of Image-Potential States on Silver Surfaces. In: Physical Review Letters 89 (2002), August, Nr. 9, S. 096401. – DOI 10.1103/PhysRevLett.89.096401
  3. F, G. ; B, G. P. ; R, P. ; G, R. W.: Image resonance in the many-body density of states at a metal surface. In: Physical Review B 68 (2003), November, Nr. 19, S. 195404. – DOI 10.1103/PhysRevB.68.195404
  4. O, J. ; P, M. ; R, I.: Dynamics of quantum systems embedded in a continuum. In: Physics Reports 374 (2003), Nr. 4-5, 271–383. – DOI 10.1016/S0370--1573(02)00366--6
  5. P, E. ; G, T. ; R, I.: Resonance trapping and saturation of decay widths. In: Physical Review E 58 (1998), August, Nr. 2, S. 1334–1345. – DOI 10.1103/PhysRevE.58.1334
  6. F, U.: Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco. In: Il Nuovo Cimento 12 (1935), S. 154–161. – DOI 10.1007/BF02958288
  7. H, U.: Time-resolved coherent spectroscopy of surface states. In: Applied Physics B: Lasers and Optics 68 (1999), 383–392. – DOI 10.1007/ s003400050636
  8. C, E. V. ; S, V. M. ; E, P. M.: Image potential states on metal surfaces: binding energies and wave functions. In: Surface Science 437 (1999), Nr. 3, 330–352. – DOI 10.1016/S0039--6028(99)00668--8
  9. E, P. M. ; P, J. M. ; C, E. V. ; R, A.: Theory of inelastic lifetimes of low-energy electrons in metals. In: Chemical Physics 251 (2000), Nr. 1-3, 1–35. – DOI 10.1016/S0301--0104(99)00313--4
  10. S, W.: On the Surface States Associated with a Periodic Potential. In: Physical Review 56 (1939), August, Nr. 4, S. 317–323. – DOI 10.1103/ PhysRev.56.317
  11. D, A. ; S, K. ; G, J. ; H, U.: Observation of the transition from image-potential states to resonances on argon-covered Cu(111) and Ag(111) by time-resolved two-photon photoemission. In: Physical Review B 80 (2009), November, Nr. 20, S. 205425. – DOI 10.1103/ PhysRevB.80.205425
  12. C, M. W. ; C, M. H.: Image-Potential-Induced Surface Bands in Insulators. In: Physical Review Letters 23 (1969), November, Nr. 21, S. 1238–1241. – DOI 10.1103/PhysRevLett.23.1238
  13. S, R. W. ; F, J. G. ; E, G. L. ; C, T. W.: Femtosecond Studies of Image-Potential Dynamics in Metals. In: Physical Review Letters 61 (1988), November, Nr. 22, S. 2596–2599. – DOI 10.1103/ PhysRevLett.61.2596
  14. B, W. ; H, U. ; F, P. ; C, E. V. ; S, V. M. ; E, P. M.: Momentum-Resolved Lifetimes of Image-Potential States on Cu(100). In: Physical Review Letters 88 (2002), Januar, Nr. 5, S. 056805. – DOI 10.1103/PhysRevLett.88.056805
  15. N, I. A. ; S, I. Y. ; S, V. M. ; E, P. M. ; C, E. V.: Theoretical study of quasiparticle inelastic lifetimes as applied to aluminum. In: Physical Review B 78 (2008), August, Nr. 8, S. 085113. – DOI 10.1103/PhysRevB.78.085113
  16. B, J.: Ultrafast Dynamics at Semiconductor and Metal Surfaces. In: Science 246 (1989), Nr. 4934, 1130–1134. – DOI 10.1126/science.246.4934. 1130
  17. F: Setup for interferometric optical autocorrelation. Ab- bildung. http://en.wikipedia.org/wiki/File:Optical-interferometric- autocorrelation-setup.png. Version: Juni 2007. – Lizenz: Creative Com- mons Attribution ShareAlike 3.0, http://creativecommons.org/licenses/by-
  18. – DOI {10.1002/sia.3522} [145] G, P. O.: Adsorption of oxygen on clean single crystal faces of aluminium. In: Surface Science 62 (1977), Nr. 1, 183–196. – DOI 10.1016/ 0039--6028(77)90436--8
  19. J, L. ; S, M.: A new approach to the study of electronic properties of image resonances at clean and Na-covered Al(001) surfaces. In: Surface Science 376 (1997), Nr. 1-3, S. L424–L428. – DOI 10.1016/S0039-- 6028(96)01567--1
  20. G, P. O. ; S, B. J.: Angular resolved photoemission from intrinsic surface states on Al (100). In: Solid State Communications 25 (1978), Nr. 7, 489 -492. – DOI 10.1016/0038--1098(78)90164--3
  21. G, J.K. ; G, P.O. ; S, B.J.: Anisotropic work function of clean and smooth low-index faces of aluminium. In: Surface Science 57 (1976), Nr. 1, 348–362. – DOI 10.1016/0039--6028(76)90187--4
  22. M, M. ; S, K. ; S, C. H. ; G, J. ; H, U.: antum-beat Spectroscopy of Image-potential Resonances. – unveröent- licht
  23. BA, S. ; K, P. ; M, M. V. ; M, S. ; C, D. S.: antum Conned Fano Interference. In: Physical Review Letters 78 (1997), Februar, Nr. 7, S. 1363–1366. – DOI 10.1103/PhysRevLett.78.1363
  24. DL, M. ; C, X.: antum-mechanical statistical theories for chemical reactivity: overlapping resonances. In: Physical Chemistry Chemical Physics 1 (1999), 2635–2648. – DOI 10.1039/A808640K [162] DL, M. ; J, V.: Avoided overlap between two resonance energies or frequencies: formation of fast and slow decay modes. In: Journal of Physics B: Atomic, Molecular and Optical Physics 28 (1995), Nr. 15, 3225. – DOI 10.1088/0953--4075/28/15/014
  25. S, M. ; H, W. ; V, P. ; C, S.: antum Wells and Electron Interference Phenomena in Al due to Subsurface Noble Gas Bubbles. In: Physical Review Letters 76 (1996), März, Nr. 13, S. 2298–2301. – DOI 10.1103/PhysRevLett.76.2298
  26. F, T. ; W, M. ; H, U.: asi-elastic scattering of electrons in image-potential states. In: Progress in Surface Science 82 (2007), Nr. 4-6, 224–243. – DOI 10.1016/j.progsurf.2007.03.007
  27. F, S. V. ; M, O. N. ; M, T. R.: asiparticle self- consistent GW calculation of the work functions of Al(111), Al(100), and Al(110). In: Physical Review B 81 (2010), Mai, Nr. 20, S. 205436. – DOI 10.1103/PhysRevB.81.205436
  28. T, N. ; C, C. T. ; H, K. M.: Au(111): A theoretical study of the surface reconstruction and the surface electronic structure. In: Physical Review B 43 (1991), Juni, Nr. 17, S. 13899–13906. – DOI 10.1103/PhysRevB. 43.13899
  29. J, L. H. ; C, M. F.: Auger and other characteristic energies in secondary electron spectra from Al surfaces. In: Surface Science 28 (1971), Nr. 2, 409–422. – DOI 10.1016/0039--6028(71)90052--5
  30. H, A. ; M, Ts. ; F, M.: Auger and XP spectra of oxygen adsorbed on Al(100), relaxation energies and the nature of the adsorbed layer. In: Surface Science 182 (1987), Nr. 1-2, S. 56–68. – DOI 10.1016/0039-- 6028(87)90088--4
  31. J, L. ; S, M.: Barrier-resonance states in an external electric eld. In: Surface Science 266 (1992), Nr. 1-3, S. 141–144. – DOI 10.1016/0039--6028(92)91011--Y
  32. B, H.: Über Absorptionsserien von Argon, Krypton und Xenon zu Termen zwischen den beiden Ionisierungsgrenzen 2 P 0 3 /2 und 2 P 0 1 /2 . In: Zeitschrift für Physik 93 (1935), S. 177–196. – DOI 10.1007/BF01365116
  33. C, D. ; D, M. J.: Über die Satelliten der Röntgendia- grammlinien. In: Zeitschrift für Physik A: Hadrons and Nuclei 40 (1927), 765–774. – DOI 10.1007/BF01400235 [144] T, S. ; P, C. J. ; P, D. R.: Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV Literaturverzeichnis range. In: Surface and Interface Analysis 43 (2011), März, Nr. 3, S. 689–713.
  34. H, M. A. ; W, J. M.: Boundary Value Problems. In: H, G.
  35. T, S. ; P, C. J. ; P, D. R.: Calculations of electron inelastic mean free paths. In: Surface and Interface Analysis 37 (2005), Nr. 1, S. 1–14. – DOI 10.1002/sia.1997
  36. MR, E.G. ; K, M.L.: Calculations on the eect of the surface potential barrier in LEED. In: Surface Science 108 (1981), Nr. 3, S. 435–445. – DOI 10.1016/0039--6028(81)90559--8
  37. P, R. A. ; L, L. ; MF, F. R. ; K, S. P. ; S, D. A.: Characteristic energy loss structure of solids from x-ray photoemission spectra. In: Journal of Electron Spectroscopy and Related Phenomena 3 (1974), Nr. 5, 381–398. – DOI 10.1016/0368--2048(74)80022--8
  38. G, J. ; R, M. ; M, T. ; K, S. W. ; H, U.: Coherently controlled electrical currents at surfaces. In: B, U. (Hrsg.) ; P, H. (Hrsg.) ; W, M. (Hrsg.): Dynamics at Solid State Surfaces and Interfaces Bd. 1. Weinheim : Wiley-VCH, 2010, S. 579
  39. M, T. ; T, P. ; K, S. W.: Coherent Semiconductor Optics. Heidelberg : Springer-Verlag, 2007
  40. MG, G. E. ; S, G. K. ; C, T. A.: Core electron bind- ing energies in some Group IIIA, VB, and VIB compounds. In: Inorganic Chemistry 12 (1973), Nr. 10, 2450–2453. – DOI 10.1021/ic50128a045
  41. E, P. M. ; B, R. ; C, E. V. ; F, Th. ; G, A. ; H, U.: Decay of electronic excitations at metal surfaces. In: Surface Science Reports 52 (2004), Nr. 7-8, 219–317. – DOI 10.1016/j.surfrep.2004. 02.002
  42. P, E. ; G, T. ; R, I.: Decay rates of resonance states at high level density. In: Physical Review E 54 (1996), Oktober, Nr. 4, S. 3339–3351. – DOI 10.1103/PhysRevE.54.3339
  43. S, S. J. ; B, P. ; S, K.: Deep multilayer relaxations on the Al(001) surface: Ab initio all-electron calculations. In: Physical Review B 76 (2007), August, Nr. 7, S. 075428. – DOI 10.1103/PhysRevB.76.075428
  44. R, M.: Diraction eects and image induced surface resonances for simple metal surfaces. In: Surface Science 247 (1991), Nr. 2-3, S. 143–152. – DOI 10.1016/0039--6028(91)90120--H
  45. F, A. ; F, P. ; H, F. ; F, A. ; M, D. ; S P, D. ; E, P. M. ; W, W.: Direct observation of electron dynamics in the attosecond domain. In: Nature 436 (2005), 21. Juli, Nr. 7049, S. 373–376. – DOI 10.1038/nature03833
  46. G, J. ; H, U.: Dynamics of electronic states at metal/insulator interfaces. In: B, U. (Hrsg.) ; P, H. (Hrsg.) ; W, M. (Hrsg.): Dynamics at Solid State Surfaces and Interfaces Bd. 1. Weinheim : Wiley-VCH, 2010, S. 99
  47. G, J. ; B, W. ; H, U.: Dynamics of Electronic Transfer Processes at Metal/Insulator Interfaces. In: Chemical Reviews 106 (2006), Nr. 10, 4261–4280. – DOI 10.1021/cr050171s
  48. /, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA [152] B, J. ; E, P. M. ; F, F.: Eective masses and lifetimes of image states at metal surfaces. In: Surface Science 178 (1986), Nr. 1-3, 268–274. – DOI 10.1016/0039--6028(86)90302--X
  49. G, K. ; H, F. ; H, F. J. ; R, H. J. ; S, W. ; S, N. V.: Eective mass of image-potential states. In: Physical Review B 35 (1987), Januar, Nr. 3, S. 975–978. – DOI 10.1103/PhysRevB.35.975
  50. K, H.: Eective Work Functions for Ionic and Electronic Emissions from Mono-and Polycrystalline Surfaces. In: Prog. Surf. Sci. 83 (2008), S.
  51. P, C. J. ; S, J. B.: Eect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium. In: Physical Review 118 (1960), Mai, Nr. 3, S. 640–643. – DOI 10.1103/PhysRev.118.640
  52. F, U.: Eects of Conguration Interaction on Intensities and Phase Shifts. In: Physical Review 124 (1961), Dezember, Nr. 6, S. 1866–1878. – DOI 10.1103/PhysRev.124.1866
  53. L, C. D. ; M, M. ; Z, X.-Y.: Electron Dynamics at Polyacene/Au(111) Interfaces. In: The Journal of Physical Chemistry B 111 (2007), Nr. 24, 6913–6920. – DOI 10.1021/jp0662505
  54. E, P. M. ; P, J. B.: Electron-hole pair contributions to the eective mass of electrons at surfaces. In: Surface Science 166 (1986), Nr. 1, 69–74. – DOI 10.1016/0039--6028(86)90531--5
  55. S, K.: Electronically Induced Diusion of Oxygen on Pt(111), Philipps- Universität Marburg, Dissertation, 2006. – URN urn:nbn:de:hebis:04-- z2006--01013
  56. C, E. V. ; B, A. G. ; G, J. P. ; SP, D. ; S, V. M. ; Z, V. P. ; E, P. M.: Electronic Excitations in Metals and at Metal Surfaces. In: Chemical Reviews 106 (2006), Nr. 10, 4160-4206. – DOI 10.1021/cr050166o
  57. Z, X.-Y.: Electronic structure and electron dynamics at molecule-metal interfaces: implications for molecule-based electronics. In: Surface Science Reports 56 (2004), November, Nr. 1-2, 1–83. – DOI 10.1016/j.surfrep.2004. 09.002
  58. F, J. C. ; K, E. ; W, L. M. ; F, D. J.: Electronic structure of aluminum and aluminum-noble-metal alloys studied by soft- x-ray and x-ray photoelectron spectroscopies. In: Physical Review B 16 (1977), Juli, Nr. 2, S. 750–761. – DOI 10.1103/PhysRevB.16.750
  59. W, K. ; M, A. ; P, J.: Electronic Structure of Aluminum Surfaces. Results from Empirical Tight-Binding Scattering Theory. In: physica status solidi (b) 179 (1993), Nr. 2, S. 399–410. – DOI 10.1002/pssb. 2221790215
  60. C, E. V. ; S, V. M.: Electronic structure of the Al(001) surface with adsorbed Na halfmonolayer. In: Surface Science 215 (1989), Mai, Nr. 3, 385–393. – DOI 10.1016/0039--6028(89)90268--9
  61. S, C. H. ; S, S. ; M, M. ; S, A. ; R, F. ; U, E. ; H, U.: Electron Lifetime in a Shockley-Type Metal- Organic Interface State. In: Physical Review Letters 101 (2008), September, Nr. 14, S. 146801. – DOI 10.1103/PhysRevLett.101.146801
  62. G, A. ; D, V. ; B, G.: Empty electronic states at the (100), (110), and (111) surfaces of nickel, copper, and silver. In: Physical Review B 32 (1985), August, Nr. 4, S. 1971–1980. – DOI 10.1103/PhysRevB.32.1971
  63. K, H.: Erratum zu [147]. In: Progress in Surface Science 83 (2008), Nr. 3, 215–215. – DOI 10.1016/j.progsurf.2008.04.001
  64. J, H. J.: Exchange Potential in the Surface Region of a Free- Electron Metal. In: Physical Review 92 (1953), Dezember, Nr. 5, S. 1140– 1144. – DOI 10.1103/PhysRev.92.1140
  65. L, H. J. ; G, F. ; P, E. W.: Experimental band structure of aluminum. In: Physical Review B 27 (1983), Januar, Nr. 2, S. 727–747. – DOI 10.1103/PhysRevB.27.727
  66. SW, B.: External photoelectric eect in Al single crys- tals. In: Soviet Physics – Solid State 10 (1968), Nr. 3, S. 544
  67. E, A. G. ; H, M. ; F, A. ; H, W.: First- principles evaluation of the surface barrier for a Kohn-Sham electron at a metal surface. In: Physical Review Letters 68 (1992), März, Nr. 9, S. 1359–1362. – DOI 10.1103/PhysRevLett.68.1359
  68. W, C. D. ; R, W. M. ; D, L. E. ; M, J. F. ; M, G. E. (Hrsg.): Handbook of X-ray Photoelectron Spectroscopy. 1. Eden Prairie, Minnesota, USA : Perkin-Elmer Corporation, Physical Electronics Division, 1979 [97] A, P.: Sur L'eet Photoélectrique Composé. In: Journal de Physique et Le Radium 6 (1925), S. 205–208
  69. (Hrsg.) ; W, J. M. (Hrsg.): Modern Numerical Methods for Ordinary Dierential Equations. Oxford : Clarendon Press, 1976, S. 208 .
  70. Z, E.: VLEED. Version: 1995 (Landolt-Börnstein – Group III Condensed Matter). In: C, G. (Hrsg.): Physics of Solid Surfaces Bd. 24, C. Berlin : Springer-Verlag, 1995 (Landolt-Börnstein – Group III Condensed Matter). – DOI 10.1007/10086066_18. – ISBN 3–540–56071–8, Kapitel 6.1.1.4.2, S. 43–44
  71. G, K. ; H, F. ; H, F. J. ; R, H. J. ; S, W.: Hydro- genic image-potential states: A critical examination. In: Physical Review B 33 (1986), April, Nr. 8, S. 5241–5244. – DOI 10.1103/PhysRevB.33.5241
  72. , Dennis T. ; R, W.D.: Identication of Auger spectra from aluminum. In: Surface Science 27 (1971), Nr. 3, S. 645–648. – DOI 10.1016/0039--6028(71)90195--6
  73. R, Marian: Image induced surface resonance of clean (001) and (111) surface of aluminium. In: Surface Science 231 (1990), Nr. 1-2, S. 43–51. – DOI 10.1016/0039--6028(90)90689--6. – Proceedings of the Thirteenth International Seminar on Surface Physics Piechowice, Poland, 22-27 May 1989
  74. W, M. ; H, S. L. ; J, P. D.: Image Planes and Surface States. In: Physical Review Letters 55 (1985), November, Nr. 19, S. 2055–2058. – DOI 10.1103/PhysRevLett.55.2055
  75. B, V. ; , B. ; O, R. M. Jr.: Image-potential-induced res- onance on Al(111) observed by two-photon photoemission spectroscopy.
  76. E, PM ; P, JM ; C, E ; S, VM: Image-potential- induced states at metal surfaces. In: Journal of Electron Spectroscopy and Related Phenomena 126 (2002), Oktober, Nr. 1-3, S. 163–175
  77. M, M. ; B, W. ; H, U. ; C, E. V. ; E, P. M.: Image-potential state lifetimes in Ar/Cu(100). In: Surface Science 564 (2004), Nr. 1-3, 87–92. – DOI 10.1016/j.susc.2004.06.163
  78. C, E. V. ; S, V. M. ; E, P. M.: Image potential states on lithium, copper and silver surfaces. In: Surface Science 391 (1997), Nr. 1-3, L1217–L1223. – DOI 10.1016/S0039--6028(97)00653--5
  79. G, N. ; R, B. ; F, K. H. ; W, A. R.: Image States: Binding Energies, Eective Masses, and Surface Corrugation. In: Physical Review Letters 54 (1985), Februar, Nr. 6, S. 591–594. – DOI 10.1103/PhysRevLett.54.591. – Hinweis: Korrugationseekt um Faktor 4 zu groß beschrieben [156]
  80. G, N.: Inhomogeneous and homogeneous broadening of excitonic spectra due to disorder, Philipps-Universität Marburg, Dissertation, 2009. – URN urn:nbn:de:hebis:04--z2009--05905
  81. M, R. ; G, J. ; A, C. ; J, C. ; D, J.: Initial interaction of oxygen with aluminium single crystal faces: A LEED, AES and work function study. In: Surface Science 95 (1980), Nr. 1, 309–320. – DOI 10.1016/0039--6028(80)90144--2
  82. C, J.-P. ; L, A. M.: Interacting resonances in atomic spec- troscopy. In: Reports on Progress in Physics 51 (1988), November, Nr. 11, 1439. – DOI 10.1088/0034--4885/51/11/002
  83. K, Charles: Introduction to solid state physics. 7. 111 River Street, Hoboken, NJ 07030, USA : John Wiley & Sons, Inc., 1996. – ISBN 0–471– 11181–3
  84. B, W. ; R, F. ; F, P. ; H, U.: Inuence of Ar, Kr, and Xe layers on the energies and lifetimes of image-potential states on Cu(100). In: Applied Physics A: Materials Science and Processing 78 (2004), Januar, 131–140. – DOI 10.1007/s00339--003--2310--6
  85. V, J. F. ; I, W. ; B, R. A. ; V, P. ; H, P.: Inverse photoemission spectroscopy of Al(100). In: Physical Review B 71 (2005), April, Nr. 15, S. 155416. – DOI 10.1103/PhysRevB.71.155416
  86. H, M. ; F, A. ; E, A. G.: LDA calculation of the surface states on the (001), (110), and (111) surfaces of aluminum. In: Surface Science 285 (1993), April, Nr. 1-2, 129–141. – DOI 10.1016/0039-- 6028(93)90921--6
  87. A, R. ; L, K.: Lecture notes in physics. Bd. 286: antum dynamical semigroups and applications. Berlin : Springer-Verlag, 1987. – ISBN 3–540– 18276–4
  88. J, F.: LEED crystallography. In: Journal of Physics C: Solid State Physics 11 (1978), Nr. 21, 4271. – DOI 10.1088/0022--3719/11/21/007
  89. B, S. M. ; H, F. ; S, Harold P. Jr.: LEED Studies of Oxygen Adsorption on the (100) Face of Aluminum. In: Journal of Applied Physics 39 (1968), Nr. 8, 4026–4028. – DOI 10.1063/1.1656896
  90. B, A. G. ; G, J. P. ; C, E. V. ; S, V. M. ; E, P. M.: Lifetime of excited electronic states at surfaces: Comparison between the alkali/Cu(111) systems. In: Physical Review B 65 (2002), Juni, Nr. 23, S. 235434. – DOI 10.1103/PhysRevB.65.235434
  91. E, P. M. ; F, F. ; S, F.: Lifetime of Image Surface States. In: Physical Review Letters 55 (1985), November, Nr. 21, S. 2348–2350. – DOI 10.1103/PhysRevLett.55.2348
  92. C, E. V. ; S, I. ; S, V. M. ; P, J. M. ; E , P. M.: Lifetimes of Image-Potential States on Copper Surfaces. In: Physical Review Letters 80 (1998), Juni, Nr. 22, S. 4947–4950. – DOI 10.1103/PhysRevLett.80.4947
  93. B, A. G. ; C, E. V. ; E, P. M.: Lifetimes of the image-state resonances at metal surfaces. In: Physical Review B 73 (2006), Februar, Nr. 7, S. 073402. – DOI 10.1103/PhysRevB.73.073402
  94. G, N. ; T, P. ; K, I. ; M, T. ; V, I.: Localization of excitons in weakly disordered semiconductor structures: A model study. In: Annalen der Physik 18 (2009), Nr. 12, S. 905–909. – DOI 10.1002/andp. 200910382
  95. L, L. ; MF, F. R. ; K, S. P. ; J, J. G. ; S, D. A.: Many-body eects in x-ray photoemission from magnesium. In: Physical Review B 11 (1975), Januar, Nr. 2, S. 600–612. – DOI 10.1103/PhysRevB.11. 600
  96. C, P. H. ; G, J. J.: Model for the Surface Potential Barrier and the Periodic Deviations in the Schottky Eect. In: Physical Review 111 (1958), Juli, Nr. 2, S. 394–402. – DOI 10.1103/PhysRev.111.394
  97. S, K. ; D, A. ; B, W. ; G, J. ; H, U. ; C, E. V. ; E, P. M.: Momentum-Resolved Electron Dynamics in Image- Potential States on clean and rare-gas covered Ag(111), Cu(111) and Cu(100). – unveröentlicht
  98. G, A. ; D, M. ; A, W. ; D, V.: Momentum- resolved inverse photoemission study of nickel surfaces. In: Physical Review B 32 (1985), Juli, Nr. 2, S. 837–850. – DOI 10.1103/PhysRevB.32.837
  99. H, M. ; F, A. ; H, W. ; E, A. G.: Nonlo- cal density-functional calculations of the surface electronic structure of metals: Application to aluminum and palladium. In: Physical Review B 57 (1998), Juni, Nr. 23, S. 14974–14982. – DOI 10.1103/PhysRevB.57.14974
  100. H, A. C.: ODEPACK, A Systematized Collection of ODE Solvers. In: A, W. F. (Hrsg.) ; V, R. (Hrsg.): Scientic Computing Bd. 1. Amsterdam : Elsevier Science Ltd, Juli 1983. – ISBN 978–04– 4486607–3, S. 55–64
  101. M, R. ; J, C. ; C, J. ; D, J.: On the initial interaction of oxygen with the (111) and (100) aluminium surfaces. In: Surface Science 84 (1979), Nr. 2, L509–L514. – DOI 10.1016/0039--6028(79) 90156--0
  102. K, Tillmann ; S, Peter ; H, Ulrich: Open-system density-matrix approach to image-potential dynamics of electrons at Cu(100): Energy-and time-resolved two-photon photoemission spectra. In: Physical Review B 64 (2001), Juni, Nr. 3, S. 035420. – DOI 10.1103/ PhysRevB.64.035420
  103. G, S.: Optical absorption of the Fano model: General case of many resonances and many continua. In: Physical Review B 66 (2002), August, Nr. 7, S. 075310. – DOI 10.1103/PhysRevB.66.075310
  104. R, M. B.: Optical second-harmonic investigations of the kinetics of elementary surface reactions on Si(001) and Si(111), Technische Universität München, Dissertation, Februar 1999
  105. P, C. J. ; S, J. B.: Origin of the Characteristic Electron Energy Losses in Aluminum. In: Physical Review 115 (1959), August, Nr. 4, S. 869–875. – DOI 10.1103/PhysRev.115.869
  106. H, M. ; T, S. Y. ; S, N.: Perturbation calculations of the c(2 × 2) sodium overlayer structure on Al(001). In: Surface Science 54 (1976), Nr. 2, 259–268. – DOI 10.1016/0039--6028(76)90224--7
  107. S, N. V.: Phase analysis of image states and surface states associated with nearly-free-electron band gaps. In: Physical Review B 32 (1985), September, Nr. 6, S. 3549–3555. – DOI 10.1103/PhysRevB.32.3549
  108. J, C. ; M, M. ; R, I.: Phase transitions in open quantum systems. In: Physical Review E 60 (1999), Juli, Nr. 1, S. 114–131. – DOI 10.1103/PhysRevE.60.114
  109. R, M. ; B, W. ; G, J. ; H, U.: Photoelectron spec- troscopy of Ar/Cu(100) interface states. In: Applied Physics A: Materials Science and Processing 88 (2007), 527–534. – DOI 10.1007/s00339--007-- 4068--8
  110. K, E. E. ; S, W. ; J, P. ; V, M. ; K , O. V. ; A, V. N. ; S, A. P. ; B, I.: Photoemission from Al(100) and (111): Experiment and ab initio theory. In: Physical Review B 78 (2008), Oktober, Nr. 16, S. 165406. – DOI 10.1103/PhysRevB.78.165406
  111. H, G. V. ; F, S. A.: Photoemission from surface states and surface resonances on the (100), (110), and (111) crystal faces of aluminum. In: Physical Review B 18 (1978), August, Nr. 4, S. 1562–1571. – DOI 10.1103/PhysRevB.18.1562. – Erratum [177]
  112. F, S. A. ; H, G. V. ; H, S. B. M. ; E, J. G.: Photoemission with polarized light from free-electron and transition metals. In: Surface Science 53 (1975), Nr. 1, 156–167. – DOI 10.1016/0039-- 6028(75)90123--5
  113. F, T. ; S, W.: Photonic Probes of Surfaces. In: H, P. (Hrsg.): Electromagnetic Waves: Recent Developments in Research Bd. 2. Amsterdam : North-Holland, 1995, S. 347–411
  114. Z, A.: Physics at Surfaces. Cambridge : Cambridge University Press, 1988. – ISBN 0–521–34752–1. – S. 80
  115. C, A. S.: Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire. In: Acta Crystallographica 15 (1962), Juni, Nr. 6, 578–582. – DOI 10.1107/S0365110X62001474
  116. J, F.: Preparation and properties of clean surfaces of aluminum. In: Journal of Physics And Chemistry of Solids 28 (1967), Nr. 11, 2155–2160. – DOI 10.1016/0022--3697(67)90239--9
  117. Z, Jonas E.: Präparation und Charakterisierung einer Al(100)- Oberäche, Philipps-Universität Marburg, Bachelorarbeit, April 2011
  118. C, P. H. ; D, J. C.: Reection and transmission of electrons through surface potential barriers. In: Surface Science 1 (1964), Nr. 2, S. 194–212. – DOI 10.1016/0039--6028(64)90027--5
  119. B, J. A. ; B, A. F.: Reevaluation of X-Ray Atomic Energy Levels.
  120. R, I.: Resonance Trapping and Dynamical Phase Transitions. In: International Journal of Theoretical Physics 50 (2011), 1066–1070. – DOI 10.1007/s10773--010--0532--x
  121. L, S. Å. ; W, L.: Resonant bound states for simple metal surfaces. In: Physical Review B 40 (1989), Dezember, Nr. 17, S. 11546–11548. – DOI 10.1103/PhysRevB.40.11546
  122. B, R. W. ; D, Malvern ; G, I.: rksuite_90: Fortran 90 Software for Ordinary Dierential Equation Initial-Value Problems. In: ACM Transactions on Mathematical Software 23 (1997), September, Nr. 3, S. 402–415
  123. S, Bruce W.: Scattering Theory of Absorption-Line Proles and Refractivity. In: Reviews of Modern Physics 39 (1967), April, Nr. 2, S. 439– 462. – DOI 10.1103/RevModPhys.39.439
  124. H, U.: Self-Trapping of Electrons at Surfaces. In: Science 279 (1998), Nr. 5348, 190–191. – DOI 10.1126/science.279.5348.190
  125. F, F. ; B, C. M. ; O, S.: Simple metal surfaces and image potential states. In: Vacuum 41 (1990), Nr. 1-3, S. 535–537. – DOI 10.1016/0042--207X(90)90408--Q. – Surface Science Section, Selected Proceedings of the 7th International Conference on Solid Surfaces [71] H, S. L. ; J, P. D. ; W, M. ; G, R. F.: Unoccupied surface states on Cu(001): A comparison of experiment and theory. In: Physical Review B 33 (1986), Januar, Nr. 2, S. 760–764. – DOI 10.1103/ PhysRevB.33.760
  126. G, S.: Springer Series in Solid-State Sciences. Bd. 141: Excitons in Low-Dimensional Semiconductors. Berlin : Springer-Verlag, 2004. – ISBN 978
  127. M, P. A.: Statistical Theory of Intermediate Resonances. In: Physical Review Letters 18 (1967), Februar, Nr. 7, S. 249–252. – DOI 10. 1103/PhysRevLett.18.249
  128. B, G. D. ; H, A. C.: Sti ODE solvers: A review of current and coming attractions. In: Journal of Computational Physics 70 (1987), Nr. 1, S. 1–62. – DOI 10.1016/0021--9991(87)90001--5
  129. J, P. J. ; J, R. O. ; W, M.: Surface barrier for electrons in metals. In: Physical Review B 37 (1988), APR 15, Nr. 11, S. 6113–6120. – DOI 10.1103/PhysRevB.37.6113
  130. Y, S. ; B, R. A. ; K, G. P. ; P, S. ; F, T. ; P, M.: Surface barrier resonances on a simple metal. In: Physical Review Letters 70 (1993), Februar, Nr. 6, S. 849–852. – DOI 10. 1103/PhysRevLett.70.849. – Erratum [22]
  131. MR, E. G.: Surface-state resonances in low-energy electron diraction. In: Surface Science 25 (1971), Nr. 3, S. 491–512. – DOI 10.1016/0039-- 6028(71)90139--7
  132. K, T.: Plasmaschwingungen in Al, Mg, Li, Na und K angeregt durch schnelle Elektronen. In: Zeitschrift für Physik A: Hadrons and Nuclei 265 (1973), 225-238. – DOI 10.1007/BF01397716 [140] K, T. ; R, H.: The dispersion of surface plasmons of Al and Mg. In: Physics Letters A 44 (1973), Nr. 3, 157–158. – DOI 10.1016/0375-- 9601(73)90862--1
  133. E, P. M. ; P, J. B.: The existence and detection of Rydberg states at surfaces. In: Journal of Physics C: Solid State Physics 11 (1978), Mai, Nr. 10, 2065. – DOI 10.1088/0022--3719/11/10/017
  134. F, Richard P. ; L, Robert B. ; S, Matthew: The Feyn- man Lectures on Physics. Bd. II. Reading, Massachusetts : Addison-Wesley Publishing Company Inc., 1964
  135. B, L. P. ; S, R. ; W, E.: Theory of Brilloum zones and symmetry properties of wave functions in crystals. In: Physical Review 50 (1936), Juli, Nr. 1, S. 58–67
  136. B, J. E. ; P, R. C.: Theory of Formation of Very Thin Oxide Films on Metals. In: The Journal of Chemical Physics 44 (1966), Nr. 3, 1081–1086. – DOI 10.1063/1.1726791 [116] H, R. K.: The Oxidation of Aluminium in Dry and Humid Oxygen Atmospheres. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 236 (1956), Juli, Nr. 1204, S. 68–88. – DOI 10.1098/rspa.1956.0113
  137. E, P.M. ; P, J.B.: Theory of image states at metal surfaces. In: Progress in Surface Science 32 (1989), Nr. 2, 111–159. – DOI 10.1016/ 0079--6816(89)90015--4
  138. P, J.B. ; G, S.J.: Theory of surface states: General criteria for their existence. In: Surface Science 49 (1975), Nr. 1, 87–105. – DOI 10.1016/0039--6028(75)90330--1
  139. B, J.: Theory of the Work Function. II. The Surface Double Layer. In: Physical Review 49 (1936), Mai, Nr. 9, S. 653–663. – DOI 10.1103/PhysRev.49.653
  140. J, L.: The resonance image states at the (111) surface of fcc metals. In: Surface Science 247 (1991), Nr. 2-3, 158–167. – DOI 10.1016/ 0039--6028(91)90122--9
  141. C, G. E. ; E, L. J. ; P, R. L.: NBS Monograph. Bd. 131: Thermal conductivity of solids at room temperature and below : A review and compilation of the literature. U.S. Department of Commerce. National Bureau of Standards, 1973
  142. O, E. ; J, J. F. ; V, R. A.: The specic heat of alumel and chromel alloys near their magnetic transitions. In: Journal of Alloys and Compounds 243 (1996), Nr. 1-2, S. 82–84. – DOI 10.1016/S0925-- 8388(96)02366--3
  143. H, U. ; S, I. L. ; R, Ch. ; T, U. ; W, W. ; F, Th.: Time-Resolved Coherent Photoelectron Spectroscopy of antized Electronic States on Metal Surfaces. In: Science 277 (1997), Nr. 5331, 1480–1482. – DOI 10.1126/science.277.5331.1480
  144. G, J. ; R, M. ; M, T. ; K, S. W. ; H, U.: Time- Resolved Investigation of Coherently Controlled Electric Currents at a Metal Surface. In: Science 318 (2007), Nr. 5854, 1287–1291. – DOI 10.1126/science.1146764
  145. R, M. ; B, W. ; G, J. ; H, U.: Time-Resolved Two-Photon Photoemission of Buried Interface States in Ar /C u (100).
  146. S, K.: Ultraschnelle Ladungsträgerdynamik in Bildpotentialresonan- zen und an Halbleiter-Isolator-Grenzächen, Philipps-Universität Marburg, Dissertation, 2007
  147. H, D. ; F, K.-H. ; K, E. E. ; F, H.-J.: Unoccupied electron band structure of Na overlayers on Al(111). In: Physical Review B 36 (1987), Juli, Nr. 2, S. 1276–1279. – DOI 10.1103/PhysRevB.36.1276
  148. A, N.: Untersuchung der Elektronendynamik in Bildpotential- zuständen an der neonbedeckten Cu(100)-Oberäche mit zeitaufgelöster Zweiphotonen-Photoemission, Philipps-Universität Marburg, Diplomarbeit, 2008
  149. L, C. D. ; , D. ; Z, X.-Y.: Using image resonances to probe molecular conduction at the n-heptane/Au(111) interface. In: The Journal of Chemical Physics 122 (2005), März, Nr. 12, 124714. – DOI 10.1063/1.1873632
  150. H, E. E. Jr. ; K, C. T. Jr.: Work function changes due to the chemisorption of water and oxygen on aluminum. In: Surface Science 5 (1966), Nr. 4, 447–465. – DOI 10.1016/0039--6028(66)90041--0
  151. E, R. M. ; M, C. H. B.: Work function measurements on (100), (110) and (111) surfaces of aluminium. In: Journal of Physics F: Metal Physics 3 (1973), Nr. 9, 1738. – DOI 10.1088/0305--4608/3/9/016
  152. H, J. ; S, F. K.: Work Function of Metals. Version: 1979. In: H, G. (Hrsg.): Springer Tracts in Modern Physics Bd. 85. Berlin : Springer-Verlag, 1979. – DOI 10.1007/BFb0048919. – ISBN 3–540–09266–8, S. 1–150
  153. B, A.: X-ray photoelectron spectra of aluminium and oxidised aluminium. In: Chemical Physics Letters 19 (1973), Nr. 1, 109–113. – DOI 10.1016/0009--2614(73)87074--5
  154. B, J. A.: X-Ray Wavelengths. In: Reviews of Modern Physics 39 (1967), Januar, Nr. 1, S. 78. – DOI 10.1103/RevModPhys.39.78
  155. Philipps-Universität Marburg. Doktorarbeit Stipendien 2003–2007 Studienstiftung des deutschen Volkes 2008–2011 Graduiertenkolleg Electron-Electron Interactions in Solids [1] B, Ulrika ; A, Fredrik (Hrsg.): Pressemitteilung: Der Nobelpreis für Chemie 2007. Version: 10. Oktober 2007. http://nobelprize.org/nobel_ prizes/chemistry/laureates/2007/press-ty.html, Abruf: 29. April 2011
  156. A, Fredrik ; H, Erik (Hrsg.): Pressmeddelande: Nobelpriset i fysik 2010. Version: 5. Oktober 2010. http://nobelprize.org/nobel_prizes/physics/ laureates/2010/press-sv.html, Abruf: 29. April 2011
  157. H, Ph. ; S, Ch. ; A, S. ; H, S. V. ; G, J. E. ; Z, G. ; L, S. ; B, A.: Unexpected surface sensitivity at high energies in angle-resolved photoemission. In: Physical Review B 66 (2002), Dezember, Nr. 24, S. 245422. – DOI 10.1103/PhysRevB. 66.245422
  158. J, P. J. ; R, M. N.: On the choice of surface barrier models for LEED intensity calculations. In: Surface Science 41 (1974), Nr. 1, S. 113–124. – DOI 10.1016/0039--6028(74)90299--4
  159. E, P. M. ; P, J. B.: Plasmon eects on image states at metal surfaces. In: Journal of Physics C: Solid State Physics 19 (1986), Nr. 27, 5437. http://stacks.iop.org/0022-3719/19/i=27/a=018
  160. S, M. ; P, E. B.: Observation of a plasmon-gain in the ne structure of the aluminium Auger spectrum. In: Journal of Physics F: Metal Physics 1 (1971), Nr. 4, L21. http://stacks.iop.org/0305-4608/1/i=4/a=101 [138] B, A. ; D, C. B. ; F, P. J. ; P, J. O.: Measurement of Surface-Plasmon Dispersion in Aluminum by Inelastic Low-Energy Electron Diraction. In: Physical Review Letters 27 (1971), Oktober, Nr. 15, S. 998. – DOI 10.1103/PhysRevLett.27.998
  161. R, M. ; F, T. ; W, M.: Scattering of electrons in image- potential states by steps. In: Applied Physics A: Materials Science and Processing 88 (2007), 497–503. – DOI 10.1007/s00339--007--4044--3
  162. B, R. W. ; G, I.: RKSUITE_90. Softwaremodul. Version: 1.2, Dezember 1995. http://www.netlib.org/toms/771. – elloene Freeware
  163. M, R. G. ; ML, W. ; C, C. A. ; M, D. M. ; S, W. J.: Preparation of atomically clean surfaces of selected elements: A review. In: Applications of Surface Science 10 (1982), Nr. 2, 143–207. – DOI 10.1016/0378--5963(82)90142--8


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten