Publikationsserver der Universitätsbibliothek Marburg

Titel:"Charakterisierung transkriptioneller und nicht-transkriptioneller Funktionen der Faktoren Miz1 und c-Myc in der UVB-induzierten DNA-Schadensantwort" und "Die Inhibition der Miz1-Funktion durch den Tumorsuppressor Arf führt zum Verlust der Zelladhäsion und induziert Apoptose"
Autor:Herkert, Barbara
Weitere Beteiligte: Eilers, Martin (Prof.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2011/0238
DOI: https://doi.org/10.17192/z2011.0238
URN: urn:nbn:de:hebis:04-z2011-02389
DDC:500 Naturwissenschaften
Titel (trans.):"The Role of the Transcription Factors c-Myc and Miz1 in DNA Damage Response" and "The Tumor Suppressor Arf Induces Apoptosis via a Repressive c-Myc/Miz1 Complex"
Publikationsdatum:2011-03-04
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Arf, DNA damage, Myc, Apoptosis, Miz1, Miz1, DNS-Schädigung, Myc, Arf, Apoptosis, Zelladhäsion

Zusammenfassung:
Die onkogene Wirkung von c-Myc, die zur Entstehung eines breiten Spektrums maligner Tumore führt, wurde bisher hauptsächlich auf die Aktivierung von Zielgenen in einem Komplex mit Max zurückgeführt. Allerdings weisen aktuelle Studien auch auf eine bedeutende Rolle der Interaktion von c-Myc mit dem Transkriptionsfaktor Miz1 hin, die in einer transkriptionellen Repression resultiert. Daher beschäftigt sich diese Arbeit mit der Interferenz des c-Myc/Miz1-Komplexes mit der UVB-induzierten DNA-Schadensantwort sowie der Induktion der Apoptose durch den Tumorsuppressor Arf als Antwort auf onkogene Stimuli in Form erhöhter c-Myc-Mengen. Zunächst wurde durch Einsatz von murinen, embryonalen Fibroblasten, die eine Deletion der POZ-Domäne von Miz1 aufweisen, sowie durch die shRNA-vermittelte Depletion von Miz1 die Notwendigkeit von Miz1 als Aktivator der Cdkn1a Expression analysiert. Dabei konnte festgestellt werden, dass Miz1 in dem verwendeten Zellsystem keine essentielle Funktion als Transkriptionsaktivator des Zellzyklusregulators p21Cip1 einnimmt. In einem humanen Zellsystem konnte jedoch eine nicht-transkriptionelle Funktion von Miz1 in der ATR-abhängigen Signalkaskade identifiziert werden, die auf der Stabilisierung des Vermittlerproteins TopBP1 beruht und somit zur Aktivierung dieses Signalwegs führt. Diese Wirkungsweise von Miz1 basiert auf der Rekrutierung von TopBP1 zum Chromatin, was dieses vor der Ubiquitinierung durch die E3-Ligase HectH9 und dadurch vor dem proteasomalen Abbau schützt. Antagonisiert wird die stabilisierende Interaktion von Miz1 und TopBP1 durch c-Myc, dessen Überexpression die Dissoziation von TopBP1 vom Chromatin und dessen Abbau bewirkt. Dementsprechend blockieren erhöhte Mengen von c-Myc die Aktivierung der UVB-induzierten Signalkaskade und somit wahrscheinlich die Reparatur der vorliegenden Schäden. Darüber hinaus wurde die Bedeutung der Interferenz von Miz1, c-Myc und dem Tumorsuppressor Arf zum Schutz vor onkogener Transformation beschrieben. Diese potentiell tumorprotektive Wirkungsweise beruht auf der Ausbildung eines DNA-assoziierten, transkriptionell repressorischen c-Myc/Miz1/Arf-Komplexes. Die Inhibition der Transkription beinhaltet neben der Relokalisierung von Arf in das Nukleoplasma die Verdrängung des Koaktivators NPM von Miz1. Zudem konnte die Ausbildung von Heterochromatin in den Promotorbereichen der Zielgene nachgewiesen werden. Darüber hinaus induziert die Assoziation mit c-Myc und Arf die post-translationelle Modifikation von Miz1 durch das Ubiquitin-ähnliche Molekül SUMO. Da c-Myc die Sequenz eines hochkonservierten SUMO-Interaktionsmotifs (SIM) aufweist und in vitro SUMO-Spezies bindet, könnte sowohl die SUMOylierung von Miz1 als auch die Bindung des modifizierten Miz1-Proteins durch c-Myc an der Aufrechterhaltung des repressiven Chromatinstatus involviert sein. Neben dem Zellzyklusinhibitor P15INK4B reprimiert dieser Komplex eine Vielzahl von Genen, welche sowohl die Zell-Zell- als auch die Zell-Matrixadhäsion vermitteln. Daher führt die Expression von Miz1, c-Myc und Arf zum Verlust der Zelladhäsion und löst somit Anoikis aus. Da für die Ausbildung dieses repressiven Komplexes die Interaktion von Arf und Miz1 mit dem Transkriptionsfaktor c-Myc essentiell ist, liegt die Vermutung nahe, dass die Proteinmengen von c-Myc für den Wechsel von Seneszenz zu Apoptose entscheiden sind. Daher könnte diese Funktionsweise des c-Myc/Miz1-Komplexes eine Möglichkeit zur Eliminierung von Zellen mit onkogenen Mutationen darstellen.

Bibliographie / References

  1. Miao, L., Song, Z., Jin, L., Zhu, Y.M., Wen, L.P., and Wu, M. (2010). ARF antagonizes the ability of Miz-1 to inhibit p53-mediated transactivation. Oncogene 29, 711-722.
  2. Todaro, G.J., and Green, H. (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17, 299-313.
  3. Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T.K., Hampton, G.M., and Wahl, G.M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9, 1031-1044.
  4. Wood, M.A., McMahon, S.B., and Cole, M.D. (2000). An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5, 321-330.
  5. p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem 279, 50157-50166.
  6. Xirodimas, D.P., Chisholm, J., Desterro, J.M., Lane, D.P., and Hay, R.T. (2002). P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett 528, 207-211.
  7. Xirodimas, D.P., and Lane, D.P. (2008). Targeting a nucleolar SUMO protease for degradation: A mechanism by which ARF induces SUMO conjugation. Cell Cycle 7.
  8. Walworth, N.C., and Bernards, R. (1996). rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353-356.
  9. Kubbutat, M.H., Jones, S.N., and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2. Nature 387, 299-303.
  10. Simpson, C.D., Anyiwe, K., and Schimmer, A.D. (2008). Anoikis resistance and tumor metastasis. Cancer Lett 272, 177-185.
  11. Staller, P., Peukert, K., Kiermaier, A., Seoane, J., Lukas, J., Karsunky, H., Moroy, T., Bartek, J., Massague, J., Hanel, F., et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3, 392-399.
  12. Patel, J.H., and McMahon, S.B. (2006). Targeting of Miz-1 is essential for Myc-mediated apoptosis. J Biol Chem 281, 3283-3289.
  13. Schuhmacher, M., Kohlhuber, F., Holzel, M., Kaiser, C., Burtscher, H., Jarsch, M., Bornkamm, G.W., Laux, G., Polack, A., Weidle, U.H., et al. (2001). The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res 29, 397-406.
  14. Sharpless, N.E., and DePinho, R.A. (1999). The INK4A/ARF locus and its two gene products.
  15. Knoepfler, P.S., Cheng, P.F., and Eisenman, R.N. (2002). N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 16, 2699-2712.
  16. Hann, S.R., Sloan-Brown, K., and Spotts, G.D. (1992). Translational activation of the non- AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev 6, 1229-1240.
  17. Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., 3rd, Hurov, K.E., Luo, J., Bakalarski, C.E., Zhao, Z., Solimini, N., Lerenthal, Y., et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160- 1166.
  18. Humbey, O., Pimkina, J., Zilfou, J.T., Jarnik, M., Dominguez-Brauer, C., Burgess, D.J., Eischen, C.M., and Murphy, M.E. (2008). The ARF tumor suppressor can promote the progression of some tumors. Cancer Res 68, 9608-9613.
  19. Steiger, D., Furrer, M., Schwinkendorf, D., and Gallant, P. (2008). Max-independent functions of Myc in Drosophila melanogaster. Nat Genet 40, 1084-1091.
  20. Stead, M.A., Trinh, C.H., Garnett, J.A., Carr, S.B., Baron, A.J., Edwards, T.A., and Wright, S.C. (2007). A beta-sheet interaction interface directs the tetramerisation of the Miz-1 POZ domain. J Mol Biol 373, 820-826.
  21. Martin-Subero, J.I., Odero, M.D., Hernandez, R., Cigudosa, J.C., Agirre, X., Saez, B., Sanz- Garcia, E., Ardanaz, M.T., Novo, F.J., Gascoyne, R.D., et al. (2005). Amplification of IGH/MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas. Genes Chromosomes Cancer 43, 414-423.
  22. Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., Meister, G., and Hermeking, H. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6, 1586-1593.
  23. Moldovan, G.L., Pfander, B., and Jentsch, S. (2007). PCNA, the maestro of the replication fork. Cell 129, 665-679.
  24. Nacerddine, K., Lehembre, F., Bhaumik, M., Artus, J., Cohen-Tannoudji, M., Babinet, C., Pandolfi, P.P., and Dejean, A. (2005). The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9, 769-779.
  25. Knezevich, S., Ludkovski, O., Salski, C., Lestou, V., Chhanabhai, M., Lam, W., Klasa, R., Connors, J.M., Dyer, M.J., Gascoyne, R.D., et al. (2005). Concurrent translocation of BCL2 and MYC with a single immunoglobulin locus in high-grade B-cell lymphomas. Leukemia 19, 659- 663.
  26. Mariano, A.R., Colombo, E., Luzi, L., Martinelli, P., Volorio, S., Bernard, L., Meani, N., Bergomas, R., Alcalay, M., and Pelicci, P.G. (2006). Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal. Oncogene 25, 4376-4380.
  27. Wanzel, M., Russ, A.C., Kleine-Kohlbrecher, D., Colombo, E., Pelicci, P.G., and Eilers, M. (2008). A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth. Nat Cell Biol.
  28. Extra copies of c-myc are more pronounced in nodular melanomas than in superficial spreading melanomas as revealed by fluorescence in situ hybridisation. Cytometry B Clin Cytom 60, 37- 46.
  29. Oskarsson, T., Essers, M.A., Dubois, N., Offner, S., Dubey, C., Roger, C., Metzger, D., Chambon, P., Hummler, E., Beard, P., et al. (2006). Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev 20, 2024-2029.
  30. Huibregtse, J.M., Scheffner, M., Beaudenon, S., and Howley, P.M. (1995). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92, 2563-2567.
  31. Wei, C.L., Wu, Q., Vega, V.B., Chiu, K.P., Ng, P., Zhang, T., Shahab, A., Yong, H.C., Fu, Y., Weng, Z., et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207-219.
  32. Rogers, S., Wells, R., and Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364-368.
  33. Mu, J.J., Wang, Y., Luo, H., Leng, M., Zhang, J., Yang, T., Besusso, D., Jung, S.Y., and Qin, J. (2007). A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator for DNA damage checkpoints. J Biol Chem 282, 17330-17334.
  34. Kuo, M.L., den Besten, W., Thomas, M.C., and Sherr, C.J. (2008). Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 7, 3378-3387.
  35. Zhang, Y., Xiong, Y., and Yarbrough, W.G. (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92, 725-734.
  36. St Onge, R.P., Besley, B.D., Pelley, J.L., and Davey, S. (2003). A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 278, 26620-26628.
  37. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin- related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107.
  38. Luo, Q., Li, J., Cenkci, B., and Kretzner, L. (2004). Autorepression of c-myc requires both initiator and E2F-binding site elements and cooperation with the p107 gene product. Oncogene 23, 1088-1097.
  39. Bax is a transcriptional target and mediator of c-myc-induced apoptosis. Cancer Res 60, 6318-6325.
  40. Manke, I.A., Lowery, D.M., Nguyen, A., and Yaffe, M.B. (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636-639.
  41. Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1- phase progression. Genes Dev 13, 1501-1512.
  42. Pajic, A., Spitkovsky, D., Christoph, B., Kempkes, B., Schuhmacher, M., Staege, M.S., Brielmeier, M., Ellwart, J., Kohlhuber, F., Bornkamm, G.W., et al. (2000). Cell cycle activation by c-myc in a burkitt lymphoma model cell line. Int J Cancer 87, 787-793.
  43. Okada, S., and Ouchi, T. (2003). Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization. J Biol Chem 278, 2015-2020.
  44. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.
  45. Shiomi, Y., Shinozaki, A., Nakada, D., Sugimoto, K., Usukura, J., Obuse, C., and Tsurimoto, T. (2002). Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-
  46. Kumagai, A., and Dunphy, W.G. (2000). Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6, 839- 849.
  47. Park, K., Kwak, K., Kim, J., Lim, S., and Han, S. (2005). c-myc amplification is associated with HER2 amplification and closely linked with cell proliferation in tissue microarray of nonselected breast cancers. Hum Pathol 36, 634-639.
  48. Kuttler, F., and Mai, S. (2006). c-Myc, Genomic Instability and Disease. Genome Dyn 1, 171- 190.
  49. Prochownik, E.V. (2008). c-Myc: linking transformation and genomic instability. Curr Mol Med 8, 446-458.
  50. Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., McCuine, S., Burge, C.B., Sharp, P.A., and Young, R.A. (2010). c-Myc regulates transcriptional pause release. Cell 141, 432-445.
  51. Sanchez, Y., Wong, C., Thoma, R.S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S.J. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497-1501.
  52. Schuhmacher, M., Staege, M.S., Pajic, A., Polack, A., Weidle, U.H., Bornkamm, G.W., Eick, D., and Kohlhuber, F. (1999). Control of cell growth by c-Myc in the absence of cell division. Curr Biol 9, 1255-1258.
  53. Honda, Y., Tojo, M., Matsuzaki, K., Anan, T., Matsumoto, M., Ando, M., Saya, H., and Nakao, M. (2002). Cooperation of HECT-domain ubiquitin ligase hHYD and DNA topoisomerase II- binding protein for DNA damage response. J Biol Chem 277, 3599-3605.
  54. Wu, K.J., Polack, A., and Dalla-Favera, R. (1999). Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science 283, 676-679.
  55. Ikegaki, N., Gotoh, T., Kung, B., Riceberg, J.S., Kim, D.Y., Zhao, H., Rappaport, E.F., Hicks, S.L., Seeger, R.C., and Tang, X.X. (2007). De novo identification of MIZ-1 (ZBTB17) encoding a MYC-interacting zinc-finger protein as a new favorable neuroblastoma gene. Clin Cancer Res 13, 6001-6009.
  56. Parrilla-Castellar, E.R., Arlander, S.J., and Karnitz, L. (2004). Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3, 1009-1014.
  57. Sherr, C.J. (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6, 663-673.
  58. Yogev, O., Saadon, K., Anzi, S., Inoue, K., and Shaulian, E. (2008). DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway. Cancer Res 68, 1398-1406.
  59. Roos, W.P., and Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med 12, 440-450.
  60. Shieh, S.Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334.
  61. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998). DNA double- stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273, 5858- 5868.
  62. Kinsella, T.M., and Nolan, G.P. (1996). Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 7, 1405-1413.
  63. Voulgari, A., and Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796, 75-90.
  64. Frequent chromosome 8q gains in human small cell lung carcinoma detected by arbitrarily primed-PCR genomic fingerprinting. Cancer Genet Cytogenet 120, 11-17.
  65. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A 95, 8292-8297.
  66. Kumagai, A., and Dunphy, W.G. (2006). How cells activate ATR. Cell Cycle 5, 1265-1268.
  67. Jeon, Y., Lee, K.Y., Ko, M.J., Lee, Y.S., Kang, S., and Hwang, D.S. (2007). Human TopBP1 participates in cyclin E/CDK2 activation and preinitiation complex assembly during G1/S transition. J Biol Chem 282, 14882-14890.
  68. He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512.
  69. Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262, 1889-1892.
  70. Reginato, M.J., Mills, K.R., Paulus, J.K., Lynch, D.K., Sgroi, D.C., Debnath, J., Muthuswamy, S.K., and Brugge, J.S. (2003). Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 5, 733-740.
  71. Sugiyama, A., Kume, A., Nemoto, K., Lee, S.Y., Asami, Y., Nemoto, F., Nishimura, S., and Kuchino, Y. (1989). Isolation and characterization of s-myc, a member of the rat myc gene family. Proc Natl Acad Sci U S A 86, 9144-9148.
  72. Shih, C., and Weinberg, R.A. (1982). Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161-169.
  73. Hingorani, K., Szebeni, A., and Olson, M.O. (2000). Mapping the functional domains of nucleolar protein B23. J Biol Chem 275, 24451-24457.
  74. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299.
  75. Izumi, H., Molander, C., Penn, L.Z., Ishisaki, A., Kohno, K., and Funa, K. (2001). Mechanism for the transcriptional repression by c-Myc on PDGF beta-receptor. J Cell Sci 114, 1533-1544.
  76. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3, 400-408.
  77. Kruse, J.P., and Gu, W. (2009). Modes of p53 regulation. Cell 137, 609-622.
  78. Maulik, G., Kijima, T., Ma, P.C., Ghosh, S.K., Lin, J., Shapiro, G.I., Schaefer, E., Tibaldi, E., Johnson, B.E., and Salgia, R. (2002). Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 8, 620-627.
  79. Zhong, Q., Gao, W., Du, F., and Wang, X. (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121, 1085-1095.
  80. Tanaka, N., and Fukuzawa, M. (2008). MYCN downregulates integrin alpha1 to promote invasion of human neuroblastoma cells. Int J Oncol 33, 815-821.
  81. Seoane, J., Le, H.V., and Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-734.
  82. Sugimoto, M., Kuo, M.L., Roussel, M.F., and Sherr, C.J. (2003). Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 11, 415-424.
  83. Yun, J.P., Chew, E.C., Liew, C.T., Chan, J.Y., Jin, M.L., Ding, M.X., Fai, Y.H., Li, H.K., Liang, X.M., and Wu, Q.L. (2003). Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix. J Cell Biochem 90, 1140-1148.
  84. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.
  85. Rizos, H., Woodruff, S., and Kefford, R.F. (2005). p14ARF interacts with the SUMO- conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle 4, 597-603.
  86. Qi, Y., Gregory, M.A., Li, Z., Brousal, J.P., West, K., and Hann, S.R. (2004). p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431, 712-717.
  87. Palmero, I., Pantoja, C., and Serrano, M. (1998). p19ARF links the tumour suppressor p53 to Ras. Nature 395, 125-126.
  88. Sherr, C.J., Bertwistle, D., W, D.E.N.B., Kuo, M.L., Sugimoto, M., Tago, K., Williams, R.T., Zindy, F., and Roussel, M.F. (2005). p53-Dependent and -independent functions of the Arf tumor suppressor. Cold Spring Harb Symp Quant Biol 70, 129-137.
  89. Schuler, M., Bossy-Wetzel, E., Goldstein, J.C., Fitzgerald, P., and Green, D.R. (2000). p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 275, 7337-7342.
  90. Kim, J.B., and Sharp, P.A. (2001). Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J Biol Chem 276, 12317-12323.
  91. Korsmeyer, S.J., Wei, M.C., Saito, M., Weiler, S., Oh, K.J., and Schlesinger, P.H. (2000). Pro- apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7, 1166-1173.
  92. Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382.
  93. Smits, V.A., Reaper, P.M., and Jackson, S.P. (2006). Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 16, 150-159.
  94. Rational siRNA design for RNA interference. Nat Biotechnol 22, 326-330.
  95. Regulation and function of SUMO modification. J Biol Chem 279, 53899-53902.
  96. Shechter, D., Costanzo, V., and Gautier, J. (2004). Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 3, 901-908.
  97. Hicke, L., and Dunn, R. (2003). Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19, 141-172.
  98. Yang, W., Shen, J., Wu, M., Arsura, M., FitzGerald, M., Suldan, Z., Kim, D.W., Hofmann, C.S., Pianetti, S., Romieu-Mourez, R., et al. (2001). Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688-1702.
  99. Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res 69, 2838-2844.
  100. Sequence-specific transcriptional corepressor function for BRCA1 through a novel zinc finger protein, ZBRK1. Mol Cell 6, 757-768.
  101. Song, J., Zhang, Z., Hu, W., and Chen, Y. (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280, 40122-40129.
  102. Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006). Specification of SUMO1-and SUMO2-interacting motifs. J Biol Chem 281, 16117-16127.
  103. Rodway, H., Llanos, S., Rowe, J., and Peters, G. (2004). Stability of nucleolar versus non- nucleolar forms of human p14(ARF). Oncogene 23, 6186-6192.
  104. Llanos, S., Clark, P.A., Rowe, J., and Peters, G. (2001). Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 3, 445-452.
  105. Hay, R.T. (2005). SUMO: a history of modification. Mol Cell 18, 1-12.
  106. Stielow, B., Sapetschnig, A., Wink, C., Kruger, I., and Suske, G. (2008). SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep 9, 899- 906.
  107. Melchior, F. (2000). SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol 16, 591-626.
  108. Magnet, K.J., Orr, M.S., Cleveland, J.L., Rodriguez-Galindo, C., Yang, H., Yang, C., Di, Y.M., Jain, P.T., and Gewirtz, D.A. (2001). Suppression of c-myc expression and c-Myc function in response to sustained DNA damage in MCF-7 breast tumor cells. Biochem Pharmacol 62, 593- 602.
  109. Zhou, B.B., and Bartek, J. (2004). Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 4, 216-225.
  110. Yu, X., Chini, C.C., He, M., Mer, G., and Chen, J. (2003). The BRCT domain is a phospho- protein binding domain. Science 302, 639-642.
  111. Munoz, M.A., Saunders, D.N., Henderson, M.J., Clancy, J.L., Russell, A.J., Lehrbach, G., Musgrove, E.A., Watts, C.K., and Sutherland, R.L. (2007). The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage checkpoints. Cell Cycle 6, 3070-3077.
  112. Smale, S.T., and Baltimore, D. (1989). The "initiator" as a transcription control element. Cell 57, 103-113.
  113. Kastan, M.B., and Lim, D.S. (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1, 179-186.
  114. Vita, M., and Henriksson, M. (2006). The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16, 318-330.
  115. McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D., and Cole, M.D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363-374.
  116. Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., and Elledge, S.J. (1993). The p21 Cdk- interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.
  117. To, C.T., and Tsao, M.S. (1998). The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers (Review). Oncol Rep 5, 1013-1024.
  118. Sheiness, D.K., Hughes, S.H., Varmus, H.E., Stubblefield, E., and Bishop, J.M. (1980). The vertebrate homolog of the putative transforming gene of avian myelocytomatosis virus: characteristics of the DNA locus and its RNA transcript. Virology 105, 415-424.
  119. Kumagai, A., Lee, J., Yoo, H.Y., and Dunphy, W.G. (2006). TopBP1 activates the ATR-ATRIP complex. Cell 124, 943-955.
  120. Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.
  121. Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z., and Oren, M. (2007). Transcriptional activation of miR-34a contributes to p53- mediated apoptosis. Mol Cell 26, 731-743.
  122. Kamijo, T., Zindy, F., Roussel, M.F., Quelle, D.E., Downing, J.R., Ashmun, R.A., Grosveld, G., and Sherr, C.J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649-659.
  123. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12, 1151-1164.
  124. Xia, M., and Land, H. (2007). Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 14, 215-223.
  125. Orian-Rousseau, V., Chen, L., Sleeman, J.P., Herrlich, P., and Ponta, H. (2002). CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16, 3074-3086.
  126. Herbst, A., Salghetti, S.E., Kim, S.Y., and Tansey, W.P. (2004). Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23, 3863-3871.
  127. Serrano, M., Hannon, G.J., and Beach, D. (1993). A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704-707.
  128. Kurland, J.F., and Tansey, W.P. (2008). Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res 68, 3624-3629.
  129. Lowe, S.W., and Sherr, C.J. (2003). Tumor suppression by Ink4a-Arf: progress and puzzles.
  130. Pelengaris, S., Khan, M., and Evan, G.I. (2002). Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109, 321-334.
  131. Patel, J.H., and McMahon, S.B. (2007). BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. J Biol Chem 282, 5-13.
  132. Yang, S.H., and Sharrocks, A.D. (2004). SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13, 611-617.
  133. Wanzel, M., Kleine-Kohlbrecher, D., Herold, S., Hock, A., Berns, K., Park, J., Hemmings, B., and Eilers, M. (2005). Akt and 14-3-3eta regulate Miz1 to control cell-cycle arrest after DNA damage. Nat Cell Biol 7, 30-41.
  134. Phan, R.T., Saito, M., Basso, K., Niu, H., and Dalla-Favera, R. (2005). BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 6, 1054-1060.
  135. Tago, K., Chiocca, S., and Sherr, C.J. (2005). Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci U S A 102, 7689-7694.
  136. Schulz, T.C., Hopwood, B., Rathjen, P.D., and Wells, J.R. (1995). An unusual arrangement of 13 zinc fingers in the vertebrate gene Z13. Biochem J 311 ( Pt 1), 219-224.
  137. Peukert, K., Staller, P., Schneider, A., Carmichael, G., Hanel, F., and Eilers, M. (1997). An alternative pathway for gene regulation by Myc. EMBO J 16, 5672-5686.
  138. Orban, T.I., and Olah, E. (2003). Emerging roles of BRCA1 alternative splicing. Mol Pathol 56, 191-197.
  139. Watt, F.M. (2002). Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 21, 3919-3926.
  140. Kuo, H.Y., Chang, C.C., Jeng, J.C., Hu, H.M., Lin, D.Y., Maul, G.G., Kwok, R.P., and Shih, H.M. (2005). SUMO modification negatively modulates the transcriptional activity of CREB- binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A 102, 16973-16978.
  141. Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21, 5206-5215.
  142. Herbst, A., Hemann, M.T., Tworkowski, K.A., Salghetti, S.E., Lowe, S.W., and Tansey, W.P. (2005). A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep 6, 177-183.
  143. Kim, J.E., McAvoy, S.A., Smith, D.I., and Chen, J. (2005). Human TopBP1 ensures genome integrity during normal S phase. Mol Cell Biol 25, 10907-10915.
  144. Vervoorts, J., Luscher-Firzlaff, J.M., Rottmann, S., Lilischkis, R., Walsemann, G., Dohmann, K., Austen, M., and Luscher, B. (2003). Stimulation of c-MYC transcriptional activity and acetylation by recruitment of the cofactor CBP. EMBO Rep 4, 484-490.
  145. Sheen, J.H., and Dickson, R.B. (2002). Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation. Mol Cell Biol 22, 1819-1833.
  146. Kotaja, N., Karvonen, U., Janne, O.A., and Palvimo, J.J. (2002). PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22, 5222-5234.
  147. Savkur, R.S., and Olson, M.O. (1998). Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res 26, 4508-4515.
  148. Kim, S., Li, Q., Dang, C.V., and Lee, L.A. (2000). Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci U S A 97, 11198-11202.
  149. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J 26, 2719-2731.
  150. Quelle, D.E., Cheng, M., Ashmun, R.A., and Sherr, C.J. (1997). Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci U S A 94, 669-673.
  151. Szebeni, A., and Olson, M.O. (1999). Nucleolar protein B23 has molecular chaperone activities. Protein Sci 8, 905-912.
  152. Van Hatten, R.A., Tutter, A.V., Holway, A.H., Khederian, A.M., Walter, J.C., and Michael, W.M. (2002). The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol 159, 541-547.
  153. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev 22, 297-302.
  154. Spotts, G.D., Patel, S.V., Xiao, Q., and Hann, S.R. (1997). Identification of downstream- initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol Cell Biol 17, 1459-1468.
  155. Sheen, J.H., Woo, J.K., and Dickson, R.B. (2003). c-Myc alters the DNA damage-induced G2/M arrest in human mammary epithelial cells. Br J Cancer 89, 1479-1485.
  156. Heaney, M.L., Pierce, J., and Parsons, J.T. (1986). Site-directed mutagenesis of the gag-myc gene of avian myelocytomatosis virus 29: biological activity and intracellular localization of structurally altered proteins. J Virol 60, 167-176.
  157. Maggi, L.B., Jr., Kuchenruether, M., Dadey, D.Y., Schwope, R.M., Grisendi, S., Townsend, R.R., Pandolfi, P.P., and Weber, J.D. (2008). Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 28, 7050-7065.
  158. Zhao, X., Heng, J.I., Guardavaccaro, D., Jiang, R., Pagano, M., Guillemot, F., Iavarone, A., and Lasorella, A. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 10, 643-653.
  159. Saito, M., Novak, U., Piovan, E., Basso, K., Sumazin, P., Schneider, C., Crespo, M., Shen, Q., Bhagat, G., Califano, A., et al. (2009). BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 106, 11294-11299.
  160. Murphy, D.J., Junttila, M.R., Pouyet, L., Karnezis, A., Shchors, K., Bui, D.A., Brown-Swigart, L., Johnson, L., and Evan, G.I. (2008). Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14, 447-457.
  161. Zhao, X., D, D.A., Lim, W.K., Brahmachary, M., Carro, M.S., Ludwig, T., Cardo, C.C., Guillemot, F., Aldape, K., Califano, A., et al. (2009). The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev Cell 17, 210-221.
  162. Hu, H., Du, L., Nagabayashi, G., Seeger, R.C., and Gatti, R.A. (2010). ATM is down-regulated by N-Myc-regulated microRNA-421. Proc Natl Acad Sci U S A 107, 1506-1511.
  163. Herkert, B., Dwertmann, A., Herold, S., Abed, M., Naud, J.F., Finkernagel, F., Harms, G.S., Orian, A., Wanzel, M., and Eilers, M. (2010). The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis. J Cell Biol 188, 905-918.
  164. Liu, Q., Guntuku, S., Cui, X.S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F., Bradley, A., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14, 1448-1459.
  165. Zindy, F., Eischen, C.M., Randle, D.H., Kamijo, T., Cleveland, J.L., Sherr, C.J., and Roussel, M.F. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12, 2424-2433.
  166. Tibbetts, R.S., Cortez, D., Brumbaugh, K.M., Scully, R., Livingston, D., Elledge, S.J., and Abraham, R.T. (2000). Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 14, 2989-3002.
  167. Unsal-Kacmaz, K., and Sancar, A. (2004). Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol Cell Biol 24, 1292- 1300.
  168. Ziegelbauer, J., Wei, J., and Tjian, R. (2004). Myc-interacting protein 1 target gene profile: a link to microtubules, extracellular signal-regulated kinase, and cell growth. Proc Natl Acad Sci U S A 101, 458-463.
  169. Sheiness, D., and Bishop, J.M. (1979). DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus.
  170. Stone, J., de Lange, T., Ramsay, G., Jakobovits, E., Bishop, J.M., Varmus, H., and Lee, W. (1987). Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 7, 1697-1709.
  171. Yada, M., Hatakeyama, S., Kamura, T., Nishiyama, M., Tsunematsu, R., Imaki, H., Ishida, N., Okumura, F., Nakayama, K., and Nakayama, K.I. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23, 2116-2125.
  172. Welcker, M., Orian, A., Jin, J., Grim, J.E., Harper, J.W., Eisenman, R.N., and Clurman, B.E. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation- dependent c-Myc protein degradation. Proc Natl Acad Sci U S A 101, 9085-9090.
  173. Kuo, M.L., den Besten, W., Bertwistle, D., Roussel, M.F., and Sherr, C.J. (2004). N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 18, 1862-1874.
  174. Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101, 14373-14378.
  175. Wilson, A., Murphy, M.J., Oskarsson, T., Kaloulis, K., Bettess, M.D., Oser, G.M., Pasche, A.C., Knabenhans, C., Macdonald, H.R., and Trumpp, A. (2004). c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18, 2747-2763.
  176. Korgaonkar, C., Hagen, J., Tompkins, V., Frazier, A.A., Allamargot, C., Quelle, F.W., and Quelle, D.E. (2005). Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25, 1258-1271.
  177. Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. Proc Natl Acad Sci U S A 98, 11289-11294.
  178. Quelle, D.E., Zindy, F., Ashmun, R.A., and Sherr, C.J. (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993-1000.
  179. Vousden, K.H. (2000). p53: death star. Cell 103, 691-694.
  180. Herold, S., Wanzel, M., Beuger, V., Frohme, C., Beul, D., Hillukkala, T., Syvaoja, J., Saluz, H.P., Haenel, F., and Eilers, M. (2002). Negative regulation of the mammalian UV response by Myc through association with Miz-1. Mol Cell 10, 509-521.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten