Publikationsserver der Universitätsbibliothek Marburg

Titel:Untersuchungen zur Lipoinitiation während der nichtribosomalen Synthese von Daptomycin und Surfactin
Autor:Wittmann, Melanie
Weitere Beteiligte: Marahiel, Mohamed A. (Prof. Dr.)
Veröffentlicht:2010
URI:https://archiv.ub.uni-marburg.de/diss/z2010/0476
DOI: https://doi.org/10.17192/z2010.0476
URN: urn:nbn:de:hebis:04-z2010-04769
DDC:540 Chemie
Titel (trans.):Investigations on the Lipoinitiation during the Nonribosomal Synthesis of Daptomycin and Surfactin
Publikationsdatum:2010-08-23
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
NRPS, Daptomycin, Acylation, Daptomycin, Lipoinitiation, Sekundärmetabolit, Acylierung, Acetylierung, Lipoinitiation, Surfactin, Thioesterase II, Surfactin, NRPS

Zusammenfassung:
Die zyklischen Lipopeptid-Antibiotika stellen eine Klasse strukturell verwandter und bioaktiver Oligopeptide dar, welche durch multimodular aufgebaute Enzymkomplexe, den nichtribosomalen Peptidsynthetasen (NRPS) assembliert werden. Essenziell für die antibiotische Aktivität ist die mit dem Peptidrückgrat verbundene Lipid-Einheit, welche einen einzigartigen Wirkmechanismus dieser Verbindungen ermöglicht. Die Modifikation dieser Fettsäure-Komponente ermöglicht somit die Optimierung der pharmakologischen Eigenschaften der Lipopeptid-Antibiotika bezüglich der Bioaktivität, Stabilität sowie der Pharmakokinetik. Das Ziel der vorliegenden Arbeit war die mechanistische Aufklärung der Lipoinitiation des aziden Lipopeptids Daptomycin (Cubicin®) und des Biotensids Surfactin. Dazu sollten mittels bioinformatischer Methoden die für die Acylierung verantwortlichen Proteine identifiziert und in vivo und in vitro charakterisiert werden. Die bioinformatische Genomanalyse des Daptomycin Produzentenstammes Streptomyces roseosporus ermöglichte die Identifizierung der im Daptomycin Biosynthesegencluster codierten Acyl-CoA-Synthetase DptE und des Acyl-Carrier-Proteins (ACP) DptF als putative Lipidierungsmaschinerie. Zur in vitro Charakterisierung wurden diese Enzyme heterolog produziert, isoliert und auf ihre Aktivität und Substratspezifität hin untersucht. Hierbei zeigte sich, dass DptE eine hohe Substrattoleranz aufweist und diverse Fettsäuren als Adenylat aktiviert und auf das kognate ACP DptF transferiert. Kinetische Spezifitätsuntersuchungen bestätigten, dass DptE eine hohe Präferenz für Fettsäuren zeigt, welche auch im natürlichen Daptomycin-Komplex (A21978C-Faktoren) vorkommen. Die Analyse der Transferreaktion mit verschiedenen ACPs zeigte, dass DptE eine hohe Affinität gegenüber DptF aufweist. Im Gegensatz zu Daptomycin konnten im Biosynthesegencluster von Surfactin (Bacillus subtilis MR168) keine Acyl-CoA-Synthetasen identifiziert werden, welche β-Hydroxy-myristinsäure aktivieren und auf das Beladungsmodul (SrfA-M1) übertragen können. Die Analyse des annotierten B. subtilis Genoms zeigte vier putative Proteine (LcfA, YhfL, YhfT, YngI) mit Sequenzhomologien zu Acyl-CoA-Synthetasen, welche nicht im Surfactin-Operon codiert vorlagen. Zur biochemischen Charakterisierung wurden diese heterolog produziert, isoliert und biochemisch untersucht. Hierbei zeigte sich, dass LcfA und YhfL die native β-Hydroxy-myristinsäure als CoA-Thioester aktivieren, wohingegen YhfT das Substrat ausschließlich als Adenylat aktiviert. Die Generierung von lcfA-, yhfT- und yngI-Deletionsmutanten in B. subtilis bestätigten die Beteiligung der identifizierten Enzyme an der Acylierung von Surfactin. So führte die gleichzeitige Deletion der drei putativen Acyl-CoA-Synthetasen zu einer Reduktion der Surfactin-Produktion um 98%. Zukünftige Komplementierungsstudien werden eine detailliertere Analyse der Lipidierungs- und Initiierungsreaktion während der Surfactin-Assemblierung ermöglichen. Die in dieser Arbeit durchgeführten Untersuchungen zur Lipidierung der klinisch relevanten zyklischen Lipopeptide Daptomycin und Surfactin resultieren in der Postulierung zweier unterschiedlicher Acylierungsstrategien während der nichtribosomalen Synthese von Oligopeptiden. Die Umsetzung der hierdurch gewonnenen Erkenntnisse sollte in Zukunft die Generierung von Daptomycin- und Surfactin-Derivaten mit optimierter Bioaktivität durch metabolic engineering ermöglichen.

Bibliographie / References

  1. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.
  2. Bujard, H., et al., A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol, 1987. 155: p. 416-33.
  3. Stevens, B.W., et al., Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme's mechanism and selectivity. Biochemistry, 2006. 45(51): p. 15495-504.
  4. Tanovic, A., et al., Crystal structure of the termination module of a nonribosomal peptide synthetase. Science, 2008. 321(5889): p. 659-63.
  5. Khare, G., et al., Dissecting the role of critical residues and substrate preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis. PLoS One, 2009. 4(12): p. e8387.
  6. King, M.D., et al., Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft- tissue infections. Ann Intern Med, 2006. 144(5): p. 309-17.
  7. Stein, D.B., et al., Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis. Chembiochem, 2006. 7(11): p. 1807-14.
  8. Nolan, E.M. and C.T. Walsh, How nature morphs peptide scaffolds into antibiotics. Chembiochem, 2009. 10(1): p. 34-53.
  9. Grunewald, J. and M.A. Marahiel, Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev, 2006. 70(1): p. 121-46.
  10. Penn, J., et al., Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol, 2006. 33(2): p. 121-8.
  11. Bennett, J. and K.J. Scott, Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brillant blue. Anal Biochem, 1971. 43(1): p. 173-82.
  12. Straus, S.K. and R.E. Hancock, Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta, 2006. 1758(9): p. 1215-23.
  13. Matsuoka, H., K. Hirooka, and Y. Fujita, Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J Biol Chem, 2007. 282(8): p. 5180-94.
  14. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.
  15. Kuwayama, H., et al., PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res, 2002. 30(2): p. E2.
  16. Caboche, S., et al., NORINE: a database of nonribosomal peptides. Nucleic Acids Res, 2008. 36(Database issue): p. D326-31.
  17. Linne, U., et al., Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis. Eur J Biochem, 2004. 271(8): p. 1536-45.
  18. Silverman, J.A., N.G. Perlmutter, and H.M. Shapiro, Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother, 2003. 47(8): p. 2538-44.
  19. Byers, D.M. and H. Gong, Acyl carrier protein: structure-function relationships in a conserved multifunctional protein family. Biochem Cell Biol, 2007. 85(6): p. 649-62.
  20. Schlumbohm, W., et al., An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem, 1991. 266(34): p. 23135-41.
  21. McKay, D.B., et al., Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. J Bacteriol, 1997. 179(6): p. 1924-30.
  22. Weber, M.H. and M.A. Marahiel, Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis. Philos Trans R Soc Lond B Biol Sci, 2002. 357(1423): p. 895-907.
  23. Debono, M., et al., Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). J Antibiot (Tokyo), 1988. 41(8): p. 1093-105.
  24. Sambrook, J., Fritsch, E.F., Maniatis, T., Molecular Cloning: A Laboratory Manual. Cold Spring Harb Lab. Press, NY, 1989.
  25. Fukuda, D.S., et al., A54145, a new lipopeptide antibiotic complex: microbial and chemical modification. J Antibiot (Tokyo), 1990. 43(6): p. 601-6.
  26. Lewin, T.M., et al., Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem, 2001. 276(27): p. 24674-9.
  27. Fox, J.E., et al., Acyl coenzyme A esters differentially activate cardiac and beta-cell adenosine triphosphate-sensitive potassium channels in a side-chain length-specific manner. Metabolism, 2003. 52(10): p. 1313-9.
  28. Graumann, P., et al., A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol, 1997. 25(4): p. 741-56.
  29. LePecq, J.B. and C. Paoletti, A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol, 1967. 27(1): p. 87-106.
  30. Bouvier, J., A.P. Pugsley, and P. Stragier, A gene for a new lipoprotein in the dapA- purC interval of the Escherichia coli chromosome. J Bacteriol, 1991. 173(17): p. 5523-31.
  31. Gocht, M. and M.A. Marahiel, Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol, 1994. 176(9): p. 2654-62. 54. Vollenbroich, D., et al., Analysis of surfactin synthetase subunits in srfA mutants of Bacillus subtilis OKB105. J Bacteriol, 1994. 176(2): p. 395-400.
  32. Bode, H.B. and R. Muller, Analysis of myxobacterial secondary metabolism goes molecular. J Ind Microbiol Biotechnol, 2006. 33(7): p. 577-88.
  33. Lambalot, R.H., et al., A new enzyme superfamily -the phosphopantetheinyl transferases. Chem Biol, 1996. 3(11): p. 923-36.
  34. Messing, J. and J. Vieira, A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene, 1982. 19(3): p. 269-76.
  35. Mayer, M.P., A new set of useful cloning and expression vectors derived from pBlueScript. Gene, 1995. 163(1): p. 41-6.
  36. Tsukagoshi, N., G. Tamura, and K. Arima, A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. I. The effects of surfactin on bacillus megaterium KM. Biochim Biophys Acta, 1970. 196(2): p. 204-10.
  37. Guerout-Fleury, A.M., et al., Antibiotic-resistance cassettes for Bacillus subtilis. Gene, 1995. 167(1-2): p. 335-6.
  38. Kameda, Y., et al., Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull (Tokyo), 1974. 22(4): p. 938-44.
  39. Baltz, R.H., et al., Applications of transposition mutagenesis in antibiotic producing streptomycetes. Antonie Van Leeuwenhoek, 1997. 71(1-2): p. 179-87.
  40. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54.
  41. Siedlecki, J., et al., Array synthesis of novel lipodepsipeptide. Bioorg Med Chem Lett, 2003. 13(23): p. 4245-9.
  42. Pavela-Vrancic, M., R. Dieckmann, and H. von Dohren, ATPase activity of non- ribosomal peptide synthetases. Biochim Biophys Acta, 2004. 1696(1): p. 83-91. 52. Stachelhaus, T., A. Huser, and M.A. Marahiel, Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem Biol, 1996. 3(11): p. 913-21.
  43. Haese, A., et al., Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase. J Mol Biol, 1994. 243(1): p. 116-22. 76.
  44. Zhang, H., Y. Wang, and B.A. Pfeifer, Bacterial hosts for natural product production. Mol Pharm, 2008. 5(2): p. 212-25.
  45. Knoll, L.J., D.R. Johnson, and J.I. Gordon, Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p. J Biol Chem, 1994. 269(23): p. 16348-56.
  46. Fiechter, A., Biosurfactants: moving towards industrial application. Trends Biotechnol, 1992. 10(6): p. 208-17.
  47. Baltz, R.H., Biosynthesis and genetic engineering of lipopeptide antibiotics related to daptomycin. Curr Top Med Chem, 2008. 8(8): p. 618-38.
  48. Wessels, P., H. von Dohren, and H. Kleinkauf, Biosynthesis of acylpeptidolactones of the daptomycin type. A comparative analysis of peptide synthetases forming A21978C and A54145. Eur J Biochem, 1996. 242(3): p. 665-73.
  49. August, P.R., et al., Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol, 1998. 5(2): p. 69-79.
  50. Mootz, H.D. and M.A. Marahiel, Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr Opin Chem Biol, 1997. 1(4): p. 543-51.
  51. Gill, S.C. and P.H. von Hippel, Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem, 1989. 182(2): p. 319-26.
  52. Ullrich, C., et al., Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry, 1991. 30(26): p. 6503-8.
  53. Tang, G.L., Y.Q. Cheng, and B. Shen, Chain initiation in the leinamycin-producing hybrid nonribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140. Discrete, monofunctional adenylation enzyme and peptidyl carrier protein that directly load D-alanine. J Biol Chem, 2007. 282(28): p. 20273-82.
  54. Wilkinson, C.J., et al., Chain initiation on the soraphen-producing modular polyketide synthase from Sorangium cellulosum. Chem Biol, 2001. 8(12): p. 1197-208.
  55. Cole, P.A., Chaperone-assisted protein expression. Structure, 1996. 4(3): p. 239-42.
  56. Ferrer, M., et al., Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol, 2003. 21(11): p. 1266-7.
  57. Sunbul, M., K. Zhang, and J. Yin, Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Methods Enzymol, 2009. 458: p. 255-75.
  58. Wilkinson, B. and J. Micklefield, Chapter 14. Biosynthesis of nonribosomal peptide precursors. Methods Enzymol, 2009. 458: p. 353-78.
  59. Quadri, L.E., et al., Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry, 1998. 37(6): p. 1585-95.
  60. Matsunaga, I., et al., Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450. Lipids, 1999. 34(8): p. 841-6.
  61. Duan, K., et al., Chemical interactions between organisms in microbial communities. Contrib Microbiol, 2009. 16: p. 1-17.
  62. Clugston, S.L., et al., Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry, 2003. 42(41): p. 12095-104.
  63. Baltz, R.H., et al., Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus. J Ind Microbiol Biotechnol, 2006. 33(2): p. 66-74.
  64. Connerton, I.F., et al., Comparison and cross-species expression of the acetyl-CoA synthetase genes of the Ascomycete fungi, Aspergillus nidulans and Neurospora crassa. Mol Microbiol, 1990. 4(3): p. 451-60.
  65. Coeffet-Le Gal, M.F., et al., Complementation of daptomycin dptA and dptD deletion mutations in trans and production of hybrid lipopeptide antibiotics. Microbiology, 2006. 152(Pt 10): p. 2993-3001.
  66. Randhawa, Z.I. and S. Smith, Complete amino acid sequence of the medium-chain S- acyl fatty acid synthetase thio ester hydrolase from rat mammary gland. Biochemistry, 1987. 26(5): p. 1365-73.
  67. Sutcliffe, J.G., Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol, 1979. 43 Pt 1: p. 77-90.
  68. Koglin, A., et al., Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science, 2006. 312(5771): p. 273-6.
  69. Rizo, J. and L.M. Gierasch, Constrained peptides: models of bioactive peptides and protein substructures. Annu Rev Biochem, 1992. 61: p. 387-418.
  70. Zamenhof, P.J. and M. Villarejo, Construction and properties of Escherichia coli strains exhibiting -complementation of -galactosidase fragments in vivo. J Bacteriol, 1972. 110(1): p. 171-8.
  71. Miller, J.H., C. Coulondre, and P.J. Farabaugh, Correlation of nonsense sites in the lacI gene with specific codons in the nucleotide sequence. Nature, 1978. 274(5673): p. 770-5.
  72. Mofid, M.R., et al., Crystallization and preliminary crystallographic studies of Sfp: a phosphopantetheinyl transferase of modular peptide synthetases. Acta Crystallogr D Biol Crystallogr, 1999. 55(Pt 5): p. 1098-100.
  73. Conti, E., N.P. Franks, and P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 1996. 4(3): p. 287-98. 43.
  74. Reuter, K., et al., Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. EMBO J, 1999. 18(23): p. 6823-31.
  75. Miao, V., et al., Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology, 2005. 151(Pt 5): p. 1507-23.
  76. Baltz, R.H., Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol, 2009. 13(2): p. 144-51.
  77. Mootz, H.D., et al., Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J Am Chem Soc, 2002. 124(37): p. 10980-1.
  78. Mootz, H.D. and M.A. Marahiel, Design and application of multimodular peptide synthetases. Curr Opin Biotechnol, 1999. 10(4): p. 341-8.
  79. Southern, E.M., Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 1975. 98(3): p. 503-17.
  80. Tally, F.P. and M.F. DeBruin, Development of daptomycin for gram-positive infections. J Antimicrob Chemother, 2000. 46(4): p. 523-6.
  81. Lautru, S., et al., Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol, 2005. 1(5): p. 265-9. 93. Fischbach, M.A. and C.T. Walsh, Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem Rev, 2006. 106(8): p. 3468-96.
  82. Ho, S.W., et al., Effect of divalent cations on the structure of the antibiotic daptomycin. Eur Biophys J, 2008. 37(4): p. 421-33.
  83. Powell, A., et al., Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. J Am Chem Soc, 2007. 129(49): p. 15182-91.
  84. Dieckmann, R., et al., Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett, 1995. 357(2): p. 212- 6.
  85. Georgiou, G. and P. Valax, Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol, 1996. 7(2): p. 190-7.
  86. Aron, Z.D., et al., FenF: servicing the Mycosubtilin synthetase assembly line in trans. Chembiochem, 2007. 8(6): p. 613-6.
  87. Schoenafinger, G., et al., Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc, 2006. 128(23): p. 7406-7.
  88. Turgay, K., M. Krause, and M.A. Marahiel, Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol, 1992. 6(18): p. 2743-4.
  89. Fritzler, J.M. and G. Zhu, Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase. Int J Parasitol, 2007. 37(3-4): p. 307-16.
  90. Vining, L.C., Functions of secondary metabolites. Annu Rev Microbiol, 1990. 44: p. 395-427.
  91. Dubnau, D., Genetic competence in Bacillus subtilis. Microbiol Rev, 1991. 55(3): p. 395-424.
  92. Schneider, A. and M.A. Marahiel, Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol, 1998. 169(5): p. 404-10.
  93. Farabaugh, P.J., et al., Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J Mol Biol, 1978. 126(4): p. 847-57.
  94. Kopp, F., et al., Harnessing the chemical activation inherent to carrier protein-bound thioesters for the characterization of lipopeptide fatty acid tailoring enzymes. J Am Chem Soc, 2008. 130(8): p. 2656-66.
  95. Doekel, S., K. Eppelmann, and M.A. Marahiel, Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B subtilis/E coli shuttle vector system. FEMS Microbiol Lett, 2002. 216(2): p. 185-91.
  96. Hitchman, T.S., et al., Hexanoate synthase, a specialized type I fatty acid synthase in aflatoxin B1 biosynthesis. Bioorg Chem, 2001. 29(5): p. 293-307.
  97. Konz, D. and M.A. Marahiel, How do peptide synthetases generate structural diversity? Chem Biol, 1999. 6(2): p. R39-48.
  98. Du, L., C. Sanchez, and B. Shen, Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng, 2001. 3(1): p. 78-95.
  99. Losey, H.C., et al., Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem Biol, 2002. 9(12): p. 1305-14.
  100. Steller, S., et al., Initiation of surfactin biosynthesis and the role of the SrfD- thioesterase protein. Biochemistry, 2004. 43(35): p. 11331-43.
  101. Grunewald, S., et al., In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichis coli. Appl Environ Microbiol, 2004. 70: p. 3282- 3291.
  102. Philipp, D.P. and P. Parsons, Isolation and purification of long chain fatty acyl coenzyme A ligase from rat liver mitochondria. J Biol Chem, 1979. 254(21): p. 10776- 84.
  103. He, J. and C. Hertweck, Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol, 2003. 10(12): p. 1225-32.
  104. Jung, D., et al., Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes. Chem Phys Lipids, 2008. 154(2): p. 120-8.
  105. Sieber, S.A., C.T. Walsh, and M.A. Marahiel, Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. J Am Chem Soc, 2003. 125(36): p. 10862-6.
  106. DiRusso, C.C. and P.N. Black, Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Mol Cell Biochem, 1999. 192(1-2): p. 41-52.
  107. La Clair, J.J., et al., Manipulation of carrier proteins in antibiotic biosynthesis. Chem Biol, 2004. 11(2): p. 195-201.
  108. Mootz, H.D., R. Finking, and M.A. Marahiel, 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. J Biol Chem, 2001. 276(40): p. 37289-98.
  109. Porath, J., et al., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258(5536): p. 598-9.
  110. Demain, A.L. and S. Sanchez, Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo), 2009. 62(1): p. 5-16.
  111. Van Lanen, S.G. and B. Shen, Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol, 2006. 9(3): p. 252-60.
  112. Desai, J.D. and I.M. Banat, Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev, 1997. 61(1): p. 47-64.
  113. Stachelhaus, T. and M.A. Marahiel, Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett, 1995. 125(1): p. 3-14.
  114. Stachelhaus, T. and M.A. Marahiel, Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem, 1995. 270(11): p. 6163-9.
  115. Konz, D., S. Doekel, and M.A. Marahiel, Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol, 1999. 181(1): p. 133-40.
  116. Nakano, M.M. and P. Zuber, Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol, 1990. 10(3): p. 223-40.
  117. Haese, A., et al., Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol, 1993. 7(6): p. 905-14.
  118. Sieber, S.A. and M.A. Marahiel, Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev, 2005. 105(2): p. 715-38. 77.
  119. De Crecy-Lagard, V., P. Marliere, and W. Saurin, Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalysing peptide elongation and epimerisation. C R Acad Sci III, 1995. 318(9): p. 927-36.
  120. Harder, M.E., et al., Mutants of Escherichia coli with temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. J Biol Chem, 1974. 249(23): p. 7468- 75.
  121. Finking, R., M.R. Mofid, and M.A. Marahiel, Mutational analysis of peptidyl carrier protein and acyl carrier protein synthase unveils residues involved in protein-protein recognition. Biochemistry, 2004. 43(28): p. 8946-56.
  122. Baltz, R.H., V. Miao, and S.K. Wrigley, Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep, 2005. 22(6): p. 717-41.
  123. Scott, W.R., et al., NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles. Biochim Biophys Acta, 2007. 1768(12): p. 3116-26.
  124. Zuber, P., Non-ribosomal peptide synthesis. Curr Opin Cell Biol, 1991. 3(6): p. 1046- 50.
  125. Stack, D., C. Neville, and S. Doyle, Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology, 2007. 153(Pt 5): p. 1297-306.
  126. Felnagle, E.A., et al., Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm, 2008. 5(2): p. 191-211. 5. Fischbach, M.A. and C.T. Walsh, Biochemistry. Directing biosynthesis. Science, 2006. 314(5799): p. 603-5.
  127. Kleinkauf, H. and W. Gevers, Nonribosomal polypeptide synthesis: the biosynthesis of a cyclic peptide antibiotic, gramicidin S. Cold Spring Harb Symp Quant Biol, 1969. 34: p. 805-13.
  128. Trieu-Cuot, P. and P. Courvalin, Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3'5"-aminoglycoside phosphotransferase type III. Gene, 1983. 23(3): p. 331-41.
  129. Weissman, K.J., Polyketide synthases: mechanisms and models. Ernst Schering Res Found Workshop, 2005(51): p. 43-78.
  130. Singh, P. and S.S. Cameotra, Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol, 2004. 22(3): p. 142-6.
  131. Vitali, F., K. Zerbe, and J.A. Robinson, Production of vancomycin aglycone conjugated to a peptide carrier domain derived from a biosynthetic non-ribosomal peptide synthetase. Chem Commun (Camb), 2003(21): p. 2718-9.
  132. Studier, F.W., Protein production by auto-induction in high density shaking cultures. Protein Expr Purif, 2005. 41(1): p. 207-34.
  133. Marahiel, M.A., Protein templates for the biosynthesis of peptide antibiotics. Chem Biol, 1997. 4(8): p. 561-7.
  134. Kameda, K. and W.D. Nunn, Purification and characterization of acyl coenzyme A synthetase from Escherichia coli. J Biol Chem, 1981. 256(11): p. 5702-7.
  135. Sakuno, E., et al., Purification and gene cloning of a dehydrogenase from Lactobacillus brevis that catalyzes a reaction involved in aflatoxin biosynthesis. Biosci Biotechnol Biochem, 2008. 72(3): p. 724-34.
  136. Wagner, B., et al., Rational design of bacitracin A derivatives by incorporating natural product derived heterocycles. J Am Chem Soc, 2006. 128(32): p. 10513-20.
  137. Caviglia, J.M., et al., Rat long chain acyl-CoA synthetase 5, but not 1, 2, 3, or 4, complements Escherichia coli fadD. J Biol Chem, 2004. 279(12): p. 11163-9.
  138. Fujita, Y., H. Matsuoka, and K. Hirooka, Regulation of fatty acid metabolism in bacteria. Mol Microbiol, 2007. 66(4): p. 829-39.
  139. Anagnostopoulos, C. and J. Spizizen, Requirements for Transformation in Bacillus Subtilis. J Bacteriol, 1961. 81(5): p. 741-6.
  140. Cosmina, P., et al., Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol, 1993. 8(5): p. 821-31. 85. Schneider, A., T. Stachelhaus, and M.A. Marahiel, Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol Gen Genet, 1998. 257(3): p. 308-18.
  141. Tosato, V., et al., Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology, 1997. 143 ( Pt 11): p. 3443-50.
  142. Yin, J., et al., Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat Protoc, 2006. 1(1): p. 280-5.
  143. Frangioni, J.V. and B.G. Neel, Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem, 1993. 210(1): p. 179-87.
  144. Bonmatin, J.M., et al., Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics. Biopolymers, 1994. 34(7): p. 975-86.
  145. Samel, S.A., et al., Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure, 2007. 15(7): p. 781-92.
  146. Menkhaus, M., et al., Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem, 1993. 268(11): p. 7678-84.
  147. Conti, E., et al., Structural basis for the activation of phenylalanine in the non- ribosomal biosynthesis of gramicidin S. EMBO J, 1997. 16(14): p. 4174-83.
  148. Helmetag, V., et al., Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J, 2009. 276(13): p. 3669-82.
  149. Koglin, A., et al., Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature, 2008. 454(7206): p. 907-11.
  150. Hisanaga, Y., et al., Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J Biol Chem, 2004. 279(30): p. 31717-26.
  151. Becker-Andre, M., P. Schulze-Lefert, and K. Hahlbrock, Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate: CoA ligase genes in potato. J Biol Chem, 1991. 266(13): p. 8551-9.
  152. Hojati, Z., et al., Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol, 2002. 9(11): p. 1175-87.
  153. Kluge, B., et al., Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett, 1988. 231(1): p. 107-10.
  154. Arima, K., A. Kakinuma, and G. Tamura, Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun, 1968. 31(3): p. 488-94.
  155. Hill, J., et al., Synthesis and biological activity of N-Acylated ornithine analogues of daptomycin. Bioorg Med Chem Lett, 2003. 13(23): p. 4187-91.
  156. Meier, J.L., et al., Synthesis and evaluation of bioorthogonal pantetheine analogues for in vivo protein modification. J Am Chem Soc, 2006. 128(37): p. 12174-84.
  157. Linne, U., et al., Systematic and quantitative analysis of protein-protein recognition between nonribosomal peptide synthetases investigated in the tyrocidine biosynthetic template. Biochemistry, 2003. 42(17): p. 5114-24.
  158. Tang, Y., A.T. Koppisch, and C. Khosla, The acyltransferase homologue from the initiation module of the R1128 polyketide synthase is an acyl-ACP thioesterase that edits acetyl primer units. Biochemistry, 2004. 43(29): p. 9546-55.
  159. Meier, J.L. and M.D. Burkart, The chemical biology of modular biosynthetic enzymes. Chem Soc Rev, 2009. 38(7): p. 2012-45.
  160. Huber, F.M., R.L. Pieper, and T. A.J., The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C J Biotechnol, 1988. 7(4): p. 283-292.
  161. Pelaez, F., The historical delivery of antibiotics from microbial natural products--can history repeat? Biochem Pharmacol, 2006. 71(7): p. 981-90.
  162. Hoyer, K.M., C. Mahlert, and M.A. Marahiel, The iterative gramicidin s thioesterase catalyzes peptide ligation and cyclization. Chem Biol, 2007. 14(1): p. 13-22. 92.
  163. Kessler, N., et al., The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem, 2004. 279(9): p. 7413-9.
  164. Miao, V., et al., The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol, 2006. 33(2): p. 129-40.
  165. Requero, M.A., F.M. Goni, and A. Alonso, The membrane-perturbing properties of palmitoyl-coenzyme A and palmitoylcarnitine. A comparative study. Biochemistry, 1995. 34(33): p. 10400-5.
  166. Vater, J., et al., The modular organization of multifunctional peptide synthetases. J Protein Chem, 1997. 16(5): p. 557-64.
  167. Saraste, M., P.R. Sibbald, and A. Wittinghofer, The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci, 1990. 15(11): p. 430-4.
  168. Laland, S.G. and T.L. Zimmer, The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem, 1973. 9: p. 31- 57.
  169. Chiocchini, C., The surfactin biosynthetic complex of Bacillus subtilis: COM domain-mediated biocombinatorial synthesis, and single step purification of native multi-modular NRPSs and multi-enzyme complexes. Dissertation, Philipps-Universität Marburg, 2006.
  170. Mootz, H.D. and M.A. Marahiel, The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol, 1997. 179(21): p. 6843-50. 65. Rausch, C., et al., Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol, 2007. 7: p. 78. 66. de Crecy-Lagard, V., et al., Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene. Antimicrob Agents Chemother, 1997. 41(9): p. 1904-9.
  171. Mercer, A.C. and M.D. Burkart, The ubiquitous carrier protein--a window to metabolite biosynthesis. Nat Prod Rep, 2007. 24(4): p. 750-73.
  172. Baker, D.D., et al., The value of natural products to future pharmaceutical discovery. Nat Prod Rep, 2007. 24(6): p. 1225-44.
  173. Lee, S.G. and F. Lipmann, Tyrocidine synthetase system. Methods Enzymol, 1975. 43: p. 585-602.
  174. Kraas, F., Untersuchungen zur Aufklärung von Lipoinitiationsmechanismen in der nichtribosomalen Peptidsynthese. Dissertation, Philipps-Universität Marburg, 2009.
  175. Stein, D.B., U. Linne, and M.A. Marahiel, Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. FEBS J, 2005. 272(17): p. 4506-20. 70. Marahiel, M.A., T. Stachelhaus, and H.D. Mootz, Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. Chem Rev, 1997. 97(7): p. 2651-2674. 71.
  176. Black, P.N. and C.C. DiRusso, Vectorial acylation: linking fatty acid transport and activation to metabolic trafficking. Novartis Found Symp, 2007. 286: p. 127-38; discussion 138-41, 162-3, 196-203.
  177. Mootz, H.D., D. Schwarzer, and M.A. Marahiel, Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem, 2002. 3(6): p. 490-504.
  178. Davies, J., Where have All the Antibiotics Gone? Can J Infect Dis Med Microbiol, 2006. 17(5): p. 287-90.
  179. Wiedemann, B., Wirksamkeit von Daptomycin bei grampositiven Bakterien. Chemother J, 2008. 17: p. 2-9.
  180. Marahiel, M.A., Working outside the protein-synthesis rules: insights into non- ribosomal peptide synthesis. J Pept Sci, 2009. 15(12): p. 799-807. 18. Marahiel, M.A. and L.O. Essen, Chapter 13. Nonribosomal peptide synthetases mechanistic and structural aspects of essential domains. Methods Enzymol, 2009. 458: p. 337-51.
  181. Birnboim, H.C. and J. Doly, A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res, 1979. 7(6): p. 1513-23.
  182. Kunst, F., et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997. 390(6657): p. 249-56.
  183. Hansen, D.B., et al., The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J Am Chem Soc, 2007. 129(20): p. 6366-7.
  184. Trivedi, O.A., et al., Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature, 2004. 428(6981): p. 441-5.
  185. Gokhale, R.S., R. Sankaranarayanan, and D. Mohanty, Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol, 2007. 17(6): p. 736-43.
  186. Arora, P., et al., Promiscuous fatty acyl CoA ligases produce acyl-CoA and acyl-SNAC precursors for polyketide biosynthesis. J Am Chem Soc, 2005. 127(26): p. 9388-9.
  187. Gokhale, R.S., et al., Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat Prod Rep, 2007. 24(2): p. 267-77.
  188. Belshaw, P.J., C.T. Walsh, and T. Stachelhaus, Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science, 1999. 284(5413): p. 486-9.
  189. Corre, C. and G.L. Challis, New natural product biosynthetic chemistry discovered by genome mining. Nat Prod Rep, 2009. 26(8): p. 977-86.
  190. Zerikly, M. and G.L. Challis, Strategies for the discovery of new natural products by genome mining. Chembiochem, 2009. 10(4): p. 625-33.
  191. Lautru, S. and G.L. Challis, Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology, 2004. 150(Pt 6): p. 1629-36.
  192. Stachelhaus, T., et al., Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem, 1998. 273(35): p. 22773-81. 58.
  193. Wilkinson, B. and J. Micklefield, Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol, 2007. 3(7): p. 379-86.
  194. Keating, T.A., et al., The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol, 2002. 9(7): p. 522-6.
  195. McHenney, M.A., et al., Molecular cloning and physical mapping of the daptomycin gene cluster from Streptomyces roseosporus. J Bacteriol, 1998. 180(1): p. 143-51.
  196. Schauwecker, F., et al., Molecular cloning of the actinomycin synthetase gene cluster from Streptomyces chrysomallus and functional heterologous expression of the gene encoding actinomycin synthetase II. J Bacteriol, 1998. 180(9): p. 2468-74.
  197. Bar-Tana, J., et al., Palmitoyl-coenzyme A synthetase. Mechanism of reaction. Biochem J, 1973. 131(2): p. 199-209.
  198. Hoch, J.A. and J.L. Mathews, Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics, 1973. 73(2): p. 215-28.
  199. Beckering, C.L., et al., Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol, 2002. 184(22): p. 6395-402.
  200. Schwarzer, D., et al., Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14083-8.
  201. Shockey, J.M., M.S. Fulda, and J. Browse, Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases. Plant Physiol, 2003. 132(2): p. 1065-76.
  202. Jones, R.N. and A.L. Barry, Antimicrobial activity and spectrum of LY146032, a lipopeptide antibiotic, including susceptibility testing recommendations. Antimicrob Agents Chemother, 1987. 31(4): p. 625-9.
  203. Guzman, L.M., et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol, 1995. 177(14): p. 4121- 30.
  204. Muller, C., et al., Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother, 2007. 51(3): p. 1028-37.
  205. Rodionov, D.A., A.A. Mironov, and M.S. Gelfand, Conservation of the biotin regulon and the BirA regulatory signal in Eubacteria and Archaea. Genome Res, 2002. 12(10): p. 1507-16.
  206. Black, P.N. and C.C. DiRusso, Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev, 2003. 67(3): p. 454-72, table of contents.
  207. Klein, C., et al., Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol, 1992. 58(1): p. 132-42.
  208. Borchert, S., T. Stachelhaus, and M.A. Marahiel, Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis. J Bacteriol, 1994. 176(8): p. 2458-62.
  209. Nakano, M.M., et al., srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol, 1991. 173(5): p. 1770-8.
  210. Flemming, P., The Medical Aspects of the Mediaeval Monastery in England. Proc R Soc Med, 1929. 22(6): p. 771-782.
  211. Nakano, M.M., M.A. Marahiel, and P. Zuber, Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol, 1988. 170(12): p. 5662-8.
  212. Horinouchi, S. and B. Weisblum, Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol, 1982. 150(2): p. 804-14.
  213. Li, H., et al., Mechanistic studies of the long chain acyl-CoA synthetase Faa1p from Saccharomyces cerevisiae. Biochim Biophys Acta, 2007. 1771(9): p. 1246-53.
  214. Duitman, E.H., et al., The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc Natl Acad Sci U S A, 1999. 96(23): p. 13294-9.
  215. Yim, G., H.H. Wang, and J. Davies, Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci, 2007. 362(1483): p. 1195-200.
  216. Cooper, D.G., et al., Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Appl Environ Microbiol, 1981. 42(3): p. 408-412.
  217. Mindich, L., Control of fatty acid synthesis in bacteria. J Bacteriol, 1972. 110(1): p. 96-102.
  218. Frueh, D.P., et al., Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature, 2008. 454(7206): p. 903-6.
  219. Arora, P., et al., Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol, 2009. 5(3): p. 166-73.
  220. Gulick, A.M., Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol, 2009. 4(10): p. 811-27.
  221. Nguyen, K.T., et al., Genetically Engineered Lipopeptide Antibiotics Related to A54145 and Daptomycin with Improved Properties. Antimicrob Agents Chemother, 2010. 80. Stachelhaus, T., A. Schneider, and M.A. Marahiel, Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol, 1996. 52(2): p. 177-86.
  222. Fuma, S., et al., Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilus. Nucleic Acids Res, 1993. 21(1): p. 93-7.
  223. Short, J.M., et al., Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res, 1988. 16(15): p. 7583-600.
  224. Sutcliffe, J.G., pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Res, 1978. 5(8): p. 2721-8.
  225. Vogelstein, B. and D. Gillespie, Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A, 1979. 76(2): p. 615-9.
  226. Katz, E. and A.L. Demain, The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev, 1977. 41(2): p. 449-74.
  227. Sun, X., et al., A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Proc Natl Acad Sci U S A, 1993. 90(2): p. 577-81.
  228. Smith, D.J., A.J. Earl, and G. Turner, The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J, 1990. 9(9): p. 2743-50.
  229. Stachelhaus, T., H.D. Mootz, and M.A. Marahiel, The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol, 1999. 6(8): p. 493-505.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten