
Münster J. of Math. 12 (2019), 31–48 Münster Journal of Mathematics

DOI 10.17879/85169765495
urn:nbn:de:hbz:6-85169766445

c© Münster J. of Math. 2019

Symplectic dynamics of contact isotropic torus
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Abstract. We determine the homotopy type of isotropic torus complements in closed con-
tact manifolds in terms of Reeb dynamics of special contact forms. For that, we utilize
holomorphic curve techniques known from symplectic field theory as Gromov–Hofer com-
pactness and localized transversality on noncompact contact manifolds.

1. Introduction

By the isotropic neighborhood theorem, a neighborhood of a closed isotropic
submanifoldQ in a given contact manifold is determined by the diffeomorphism
type of Q and by the isomorphism class of the conformally symplectic normal
bundle CSN(Q) of Q, cf. [9, Theorem 2.5.8]. For instance, if CSN(Q) is trivial,
a trivialization of CSN(Q) determines a local model given by a neighborhood
of Q in the contactisation of T ∗Q×Cn−d, d = dimQ ≤ n, cf. [19, Section 3.1].
On the other hand, the restriction of any defining contact form to the tan-
gent bundle of a compact hypersurface determines the germ of the contact
structure, see [5, Proposition 6.4]. In particular, this applies to the boundary
of a disc-like neighborhood of Q. Combined with local contact inversion (see
Proposition A.5), it turns out that there is no canonical distinction between
inside and outside for this hypersurface if CSN(Q) is trivial.

In this work we consider the case where Q is a torus T d and where the
complement M of a tubular neighborhood of Q is compact. Assuming n > d,
we investigate to which extent a choice of a contact form on M that is of model
type near the boundary determines the topology of M . As demonstrated
by Eliashberg and Hofer [6] for dimM = 3, and Geiges and Zehmisch [15]
for dimM ≥ 5, M is diffeomorphic to a (2n + 1)-dimensional ball whenever
M does not have any short contractible periodic Reeb orbits and ∂M is a
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sphere. This situation corresponds to Q = ∗. In fact, Eliashberg and Hofer [6]
proved a global Darboux theorem in the absence of short periodic Reeb orbits
if dimM = 3. In contrast, Geiges, Röttgen and Zehmisch [10] constructed an
aperiodic Reeb flow with trapped orbits on R

2n+1, n ≥ 2, that is standard
outside a compact set. In order to find a relation between the topology of the
isotropic knot complement M and the existence of short periodic Reeb orbits
on M , we will utilize holomorphic curves as it is typical in symplectic dynamics
as propagated by Bramham and Hofer [4].

1.1. Main result. Let us assume that Q is the d-dimensional torus

T d := R
d/2πZd.

We consider a compact, connected (2n+1)-dimensional strict contact manifold
(M,α) with boundary

∂M = S(T ∗Q ⊕ R
2n+1−2d)

equal to the unit sphere bundle of the stabilized cotangent bundle T ∗Q ⊕
R

2n+1−2d of T ∗Q. In particular, the boundary of M is diffeomorphic to

∂M = T d × S2n−d.

The aim of this work is to give a criterion for M to be diffeomorphic to the
unit disc bundle

D(T ∗Q⊕ R
2n+1−2d) = T d ×D2n+1−d

in terms of the infimum inf0(α) of all positive periods of contractible closed
Reeb orbits of the Reeb vector field of α and the following embeddability

condition: Write
Z := R× T ∗T d ×D2 × C

n−1−d

for the model neighborhood of an isotropic torus T d with trivial conformally
symplectic normal bundle inside a contact manifold equipped with the contact
form

αZ := db+

d∑

j=1

pjdqj +
1

2
(x0dy0 − y0dx0)−

n−1−d∑

j=1

yjdxj ,

where b ∈ R, pj , qj are coordinates on the cotangent bundle T ∗T d, x0, y0 are
coordinates on the closed unit disc D2, and xj+iyj are coordinates on Cn−1−d.
We will use the following short form of the contact form throughout the text:

αZ = db+ pdq+
1

2
(x0dy0 − y0dx0)− ydx.

We say that ∂M admits a contact embedding into (Z, αZ) if there exists
a strict contact embedding ϕ of a collar neighborhood U of ∂M ⊂ M into the
interior of Z, in the sense that ϕ∗αZ = α, such that

• each flow line of the Reeb vector field ∂b intersects ϕ(∂M) ⊂ Z in at
most two points,

• the image ϕ(U) is contained in the bounded component of Z \ϕ(∂M),

• ϕ(∂M) is smoothly isotopic to S(T ∗T d ⊕ R
2n+1−2d) inside Z.
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Theorem 1.2. Let (M,α) be a strict contact manifold as described above such

that ∂M has a contact embedding into (Z, αZ) with n > d. If inf0(α) ≥ π,
then M and T d×D2n+1−d are homotopy equivalent if n = 2 and diffeomorphic

otherwise.

Observe the standing assumption n ≥ d. The extra condition we require
in the theorem is n 6= d, meaning that Q is subcritically isotropic. This
assumption allows us the use of holomorphic discs as a C-factor that can be
split off in the model situation.

The case n = 1 is covered by the work of Eliashberg and Hofer [6]; the critical
case n = 1 and d = 1, without any shortness assumption on inf0(α), is proved
by Kegel, Schneider and Zehmisch [18] using a different method. Therefore,
we assume n ≥ 2 (and n > d) throughout the article. The case d = 0 is due
to the work of Geiges and Zehmisch [15], in which even diffeomorphism can be
concluded.

Performing contact connected sum of Z with any contact manifold one ob-
tains a periodic Reeb orbit of period strictly less than (but arbitrarily close
to) π contained in the belt sphere, cf. [15, Remark 1.3 (1)]. Hence, the bound
π in Theorem 1.2 is optimal. Moreover, the contrapositive of Theorem 1.2 can
be used to prove existence of periodic Reeb orbits on noncompact manifolds.
Consider a compact contact manifold (M, ξ) whose boundary has precisely two
connected components each admitting a contact embedding into (Z, αZ) indi-
vidually. Using the Reeb flow on the model (Z, αZ), the images can be assumed
to be not nested so that a gluing of (M, ξ) to (Z, αZ) along the boundary is
possible. The gluing result cannot be homotopy equivalent to T d ×D2n+1−d

so that any contact form on (M, ξ), standard near the boundary, possesses a
contractible periodic Reeb orbit, cf. [15, Remark 1.3 (4)].

For existence results of periodic Reeb orbits on noncompact contact mani-
folds with asymptotic and periodic boundary conditions, we refer to the work
of Suhr and Zehmisch [22] and Bae, Wiegand and Zehmisch [1] (cf. [23]),
respectively.

1.3. Filling by holomorphic discs. The basic idea of the proof of Theo-
rem 1.2 is the same as described in [15, Section 1.2], invoking filling by holo-

morphic discs techniques as worked out in [2, 11, 13, 14, 15, 24]. Using the
contact embedding ϕ of ∂M into (Z, αZ), we form a new strict contact mani-

fold (M̂, α̂) by replacing the bounded component of R×T ∗T d×Cn−d \ϕ(∂M)
by M . The contact form α̂ equals α on M and

db+ pdq+
1

2
(x0dy0 − y0dx0)− ydx

on the unbounded component of R×T ∗T d×Cn−d \ϕ(∂M). Observe that the
latter contact form coincides with αZ on Z. We define Ẑ similarly by gluing
M into Z.
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Further, we will consider holomorphic maps

u = (a, f) : D → W

defined on the closed unit disc D ⊂ C and taking values in the symplectization
W of (M̂, α̂) subject to varying Lagrangian boundary conditions. The moduli
space W of all such holomorphic discs carries an evaluation map

ev : W × D → Ẑ, ((a, f), z) 7→ f(z).

A priori, ev takes values in M̂ , but we will show that ev indeed takes values
in the smaller set Ẑ ⊂ M̂ . It will turn out that either the evaluation map ev is
proper and surjective of degree one, in which case we can draw conclusions with
the s-cobordism theorem as in the work of Barth, Geiges and Zehmisch [3],
or the moduli space W is not locally compact in the sense that there will be
breaking off of finite energy planes. By a result of Hofer [16, 17], this in turn
results in the existence of short contractible periodic Reeb orbits of α, as the
Reeb flow of αZ is linear, given by ∂b.

Observe that a contact embedding of ∂M into (Z, αZ) yields an embedding
of ∂M into R×T ∗T d×D2

r×Cn−1−d for some slightly smaller radius r ∈ (0, 1).
The proof of Theorem 1.2 that we are going to present in this work will show
that being short for a contractible periodic Reeb orbit should mean to have
period less than or equal to πr2. Therefore, the above mentioned second
alternative will be excluded by requiring inf0(α) > πr2 as an Arzelà–Ascoli
argument shows. For ease of notation, we will assume r = 1 so that we assume
the stronger condition inf0(α) > π during the proof.

1.4. Relevance of the torus. Large parts of the argument work under con-
siderably weaker assumptions – mainly the topological part, which is similar
to [3]. In order to set up the holomorphic disc analysis, we use a foliation
by Lagrangian submanifolds of T ∗Q as a parameterized boundary condition.
Moreover, we use a choice of strictly plurisubharmonic potential for the Li-
ouville form on T ∗Q that, together with the maximum principle, ensures C0-
bounds in the compactness argument, see Section 3.3.2. This together with
the Niederkrüger map, which we use to construct holomorphic discs, works
particularly well in global (periodic) coordinates on T ∗Q. It is not clear how
to change the set-up to enlarge the class of examples.

2. Standard holomorphic discs

The model contact manifold (Z, αZ) is the contactisation of the Liouville
manifold

(V, λV ) :=
(
T ∗T d ×D2 × C

n−1−d, pdq+
1

2
(x0dy0 − y0dx0)− ydx

)
,

which contains the holomorphic discs {w} × D2 × {s + it}. The aim of this
section is to describe a lift of these holomorphic discs to the symplectization
of (Z, αZ). These holomorphic discs will appear as the standard discs of the
moduli space W and serve as a description of the end of W . In order to lift,
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we proceed in two steps. The first will be a lift to C× T ∗T d ×D2 × Cn−1−d;
the second is a transformation along a biholomorphic map Φ from R × R ×
T ∗T d×D2×Cn−1−d to C×T ∗T d×D2×Cn−1−d, the Niederkrüger map from
[21, Proposition 5].

2.1. The contactization. Following the explanations from [15, Section 2], we
denote the Liouville manifold form the beginning of Section 2 by (V, λV ) so
that its contactization (R× V, db+ λV ) is equal to the strict contact manifold
(Z, αZ). The corresponding contact structure ξZ is given by the set of tangent
vectors v − λV (v)∂b for all v ∈ TV .

2.2. Liouville manifold and Kähler potential. The Liouville manifold
(V, λV ) admits a complex structure

JV := (−i)⊕ i⊕ i,

where −i is meant to be the negative of the complex structure on T d obtained
by the quotient of Rd by 2πZd and T ∗Rd ≡ R2n ≡ Cd such that −i is an almost
complex structure on T ∗T d compatible with dp ∧ dq, cf. [21, Appendix B].
A strictly plurisubharmonic potential ψ in the sense of [12, Section 3.1], so
that JV is compatible with the symplectic form dλV and λV = −dψ ◦ JV , is
given by

ψ(w, z0, z) :=
1

2

d∑

j=1

p2j +
1

4
|z0|

2 +
1

2

n−1−d∑

j=1

y2j ,

where the point w ∈ T ∗T d is written in coordinates as (q1, p1, . . . , qd, pd) and
z = z1, . . . , zn−1−d, where zj = xj + iyj , j = 0, 1, . . . , n− 1− d, denote coordi-
nates on D2 × Cn−1−d.

2.3. The symplectization. For any positive, strictly increasing smooth func-
tion τ ≡ τ(a) on R the symplectization of (Z, αZ) is defined to be the sym-
plectic manifold

(R× Z, d(ταZ)).

A compatible and translation invariant almost complex structure that preserves
the contact hyperplanes ξZ on all slices {a} × Z is determined by ∂a 7→ ∂b
and the requirement that for all v ∈ TV , the tangent vectors v − λV (v)∂b get
mapped to JV v−λV (JV v)∂b. With that choice of an almost complex structure
on R× R× V the Niederkrüger map

Φ(a, b; p) =
(
a− ψ(p) + ib, p

)

is a biholomorphism onto C× V , equipped with the almost complex structure
i⊕ JV .
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2.4. The Niederkrüger transform. The resulting holomorphic discs maps

D → R× R× T ∗T d ×D2 × C
n−1−d,

to which we refer as being standard, can be parameterized by

ut,w
s,b (z) =

(1
4
(|z|2 − 1), b;w, z, s+ it

)

for parameters b ∈ R, w ∈ T ∗T d, and s, t ∈ Rn−1−d, cf. [15, Section 2.2].
Natural Lagrangian boundary conditions for the restrictions of the standard
holomorphic disc maps to ∂D are given by Lagrangian cylinders

Lt
p := {0} × R× T d × {p} × ∂D2 × R

n−1−d × {t},

parameterized by t ∈ Rn−1−d and p ∈ Rd, which foliate {0} × ∂Z. In order
to verify Lt

p to be Lagrangian, observe that the restriction of d(ταZ ) to the
tangent bundle of {0} × Z equals τ(0)dαZ , which is a positive multiple of

dp ∧ dq+ dx0 ∧ dy0 + dx ∧ dy,

and that Lt
p is of dimension n+ 1.

3. A boundary value problem

Let (W,ω) be the symplectization

(W,ω) := (R× M̂, d(τα̂))

of the glued strict contact manifold (M̂, α̂) introduced in Section 1.3, where τ
is a positive, strictly increasing smooth function on R such that τ(a) = ea for
all a ≥ 0.

3.1. An almost complex structure. Let J be a compatible almost complex
structure on (W,ω) that is invariant under translations in R-direction, sends
the coordinate vector field ∂a to the Reeb vector field of the contact from α̂, and
restricts to a compatible complex bundle structure on (ξ̂, dα̂), where ξ̂ denotes
the contact structure defined by α̂. Observe that the required conditions for J
are satisfied simultaneously for all admissible τ .

We would like to specify a choice of an almost complex structure J in order
to deal with the non-compactness of M̂ . For positive real numbers b0, r, R, we
define the box by

B := [−b0, b0]×DRT
∗T d ×D2

r ×D2n−2−2d
R ,

whereD2ℓ
ρ ⊂ Cℓ denotes the closed 2ℓ-disc of radius ρ andDρT

∗T d is the closed
ρ-disc subbundle of T ∗T d. We choose r < 1 so that the box is contained in Z
and require that the interior of the box contains ϕ(∂M), i.e.,

ϕ(∂M) ⊂ Int(B) ⊂ Z.

Similarly to the use of the symbols M̂ and Ẑ, we write B̂ for the result of
gluing M into B. Observe the chain of strict inclusions

M ⊂ B̂ ⊂ Ẑ ⊂ M̂.
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On the complement of R× Int(B̂), we require the almost complex structure
J to be the one defined in Section 2, with the obvious modification of the
construction by taking the contactization of R× T ∗T d × C× Cn−1−d instead
of Z. On R× Int(B̂), the choice of J will be subject to genericity considerations
specified in Section 3.5.3.

3.2. The moduli space. Let W be the moduli space of all holomorphic
discs

u = (a, f) : D → (W,J),

for which there exists a level (p, t) ∈ Rd × Rn−1−d selecting the Lagrangian
boundary cylinder Lt

p in {0}× ∂Z such that the following boundary condition
is satisfied:

u(∂D) ⊂ Lt
p.

In particular, the map Ψ ◦ f , which is defined in a neighborhood of ∂D, is
constant along ∂D, setting Ψ(b, · ) = ψ for all b ∈ R. Additionally, we require
that for all u ∈ W , there exist sufficiently large parameters b ∈ R, w = (q,p) ∈
T ∗T d, and s ∈ R

n−1−d such that the standard disc ut,w
s,b – (p, t) being the level

of u – can be regarded as holomorphic disc in (W,J) and is homologous to u
in W relative Lt

p, i.e.,

[u] = [ut,w
s,b ] in H2(W,Lt

p).

Because of n ≥ 2, all standard holomorphic discs of the same level are homo-
topic relative boundary so that the homological condition is well posed. The
reparametrization group – the group of biholomorphic diffeomorphisms of D –
is divided out by the requirement

f(ik) ∈ R× T d × {p} × {ik} × R
n−1−d × {t} for k = 0, 1, 2,

i.e., u is required to map the marked points 1, i,−1 to the characteristic leaves
Lt
p ∩ {z0 = 1}, Lt

p ∩ {z0 = i}, and Lt
p ∩ {z0 = −1}, respectively.

3.3. Convergence. We will study C∞-compactness properties of holomorphic
discs in W . In the following we list elementary properties that all u = (a, f) ∈
W share.

3.3.1. Uniform energy bounds. The L2-norm of the gradient is uniformly
bounded in the sense that the symplectic energy

∫
D
u∗ω, which is equal

to the action
∫
∂D

f∗α̂ of the boundary circle, is equal to π. This follows as in
[15, Lemma 3.2] because u is homologous to a certain standard disc.

3.3.2. C0-bounds and maximum principle. As it is the case for any holomorphic
curve u = (a, f) in symplectizations, the function a is subharmonic, cf. [15,
Lemma 3.6 (i)]. In the situation at hand, we conclude with the arguments from
[15, Lemma 3.6 (i)] that a < 0 on Int(D) for all u = (a, f) ∈ W .
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In order to describe the behavior of u = (a, f) ∈ W in the direction of M̂ ,
we denote by G the f -preimage of M̂ \ Int(B̂). Namely, on G we can introduce
coordinate functions

f = (b,w, h0,h) on R× T ∗T d × C× C
n−1−d,

according to the indicated splitting. By the properties of the Niederkrüger
map, the coordinate function b is harmonic and the w, h0,h are holomorphic.

If G = D, then u will be one of the standard discs ut,w
s,b sitting in the

complement of R × Int(B̂). The argument for that is the same as for [15,
Lemma 3.7] with the following additional observation: The holomorphic map
w : D → T ∗T d lifts to a holomorphic map to the universal cover resulting
into an anti-holomorphic disc map into Cd, with boundary circle ∂D mapped
into a totally real affine plane Rd × {p}. Hence, as in [15, Lemma 3.7] or
by Schwarz reflection, w must be constant. An alternative argument is based
on the fact that the symplectic energy of w, which is equal to the Dirichlet
energy, vanishes, so that, again, w must be constant. Denoting the level of u
by (p, t), we use a retraction of T ∗T d to T d×{p} to homotope the disc w into
the Lagrangian submanifold T d × {p} relative boundary. As the homotoped
disc has vanishing symplectic energy, the symplectic energy of w vanishes by
Stoke’s theorem too.

In the situation that G is a proper subset of D, we will make the following
observations: By construction, G contains a neighborhood of ∂D so that the
strong maximum principle and the boundary lemma of E. Hopf apply to h0.
Indeed, as in [15, Lemma 3.6 (ii)], we conclude that f(Int(D)) is contained in
Int(Ẑ). Moreover, by the comments on [15, p. 669 and p. 671], we see that h0

restricts to an immersion on ∂D so that u(∂D) is positively transverse to each
of the characteristic leaves Lt

p ∩ {z0 = eiθ}, θ ∈ [0, 2π), denoting the level of u
by (p, t). By the homological condition posed by the boundary value problem
for u = (a, f) ∈ W , we infer that h0 restrict in fact to an embedding on ∂D.

Continuing the discussions on the case G 6= D, we observe that, by the
arguments in [15, Lemma 3.8], the coordinate function b of u, as u cannot
be a standard disc, takes values in [−b0, b0]. For that, recall that Ψ ◦ f is
constant along ∂D. Similarly, there exists a real number R0 > R such that the
intersection of the non-standard disc f(D) with

R× (T ∗T d \DR0
T ∗T d)× C× (Cn−1−d \D2n−2−2d

R0
)

is empty. The projection h to the Cn−1−d-factor can be treated similar to [15,
Lemma 3.9]. For the cotangent factor, notice that a composition of local lifts of
w with complex conjugation on the universal cover results in local holomorphic
maps with respect to the standard complex structure on Cd. Therefore, the
maximum principle implies then that w takes values in the codisc bundle of
radius |p|. In view of the uniform energy bounds stated in Section 3.3.1, the
monotonicity lemma gives an upper bound on the level |p| of u analogously to
the arguments on [15, p. 674] (by possibly using several geodesic balls of the
same radius less than or equal to π to cut area out of the holomorphic disc w).
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In conclusion, we obtain uniform C0-bounds on the M̂ -part of all non-
standard holomorphic discs in W .

3.3.3. Compactness. The space of non-standard holomorphic discs in W is
C∞-compact under the assumption that all contractible periodic Reeb orbits
of α̂ have action greater than π. This follows with the arguments in [15,
Section 4] and [7, 8], and an identification of T ∗T d with T d × Rd so that the
variation of the boundary condition T d × {p} in the cotangent factor of Lt

p

can be described with help of translations in Rd. What remains to show is the
following indecomposability statement.

Lemma 3.4. The homology class [u] of all u ∈ W in H2(W,Lt
p), where (p, t)

denotes the level of u, is J-indecomposable.

Proof. If not, we could find non-constant holomorphic discs u1, . . . , uN with
boundary on Lt

p such that [u] can be decomposed into the sum

[u] = m1[u
1] + · · ·+mN [uN ]

for natural numbers N and m1, . . . ,mN , where at least one of them is greater
than 1. By exactness of the symplectic form ω, none of the holomorphic maps
u1, . . . , uN can be defined on a sphere. Denote the restrictions to the boundary
by γ and γ1, . . . , γN , and observe that

[γ] = m1[γ
1] + · · ·+mN [γN ]

in H1(L
t
p). As Lt

p is contained in the complement of Int(B̂) the boundary
loops admit a splitting with respect to

{0} × R× T d × {p} × ∂D2 × R
n−1−d × {t}.

The symplectic energy of holomorphic discs in (W,ω) is equal to the action
of the boundary loops so that by positive transversality with respect to the
characteristic leaves mentioned in Section 3.3.2, we obtain

π =

N∑

j=1

mj [γ
j

Td ] +

N∑

j=1

mjnjπ

for natural numbers n1, . . . , nN . The first summand equals the total action of
the projections of uj|∂D to T d × {p} and so is in turn equal to the action of
the corresponding projection γTd of γ. Because [u] can be represented by a
standard disc ut,w

s,b , w = (q,p), whose boundary map equals

eiθ 7→ (0, b;w, eiθ, s+ it),

the action of γTd vanishes. In total, we reach the inequality π ≥ Nπ. Therefore,
N = 1, proving J-indecomposability. �
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3.5. Transversality. Each standard holomorphic disc in W admits a neigh-
borhood that can be parameterized by

(b;w, s+ it) ∈ R× T ∗T d × C
n−1−d.

We will show that a similar parametrization near each of the non-standard
holomorphic discs in W exists so that W will be a smooth manifold of dimen-
sion 2n− 1.

3.5.1. Maslov index. The Maslov index of all u ∈ W is equal to 2. By the
considerations in [15, Lemma 3.1], it is enough to compute the Maslov index
for all standard discs u ∈ W , which lift up to standard holomorphic discs in

R× R× T ∗
R

d ×D2 × C
n−1−d ≡ R× R×D2 × C

n−1

in the sense of [15].

3.5.2. Simplicity. Using Lemma 3.4 and [20, Theorem A], we see that all holo-
morphic discs u ∈ W are simple, cf. [15, Lemma 3.4]. Based on that, one shows
as in [15, Lemma 3.5] that for all u = (a, f) ∈ W , the set of all f -injective
points is open and dense in D. One only has to observe that the projection
h0 of f to the D2-factor is an embedding along ∂D so that u|∂D is positively
transverse to the characteristic leaves – as done in Section 3.3.2.

3.5.3. Linearized Cauchy–Riemann operator. Based on Section 3.5.2, one
chooses a regular almost complex structure J as in [15, Section 5.2] so that
the linearized Cauchy–Riemann operator Du is onto for all u ∈ W . Taking
variations of the level parameters (p, t) ∈ Rd × Rn−1−d for the Lagrangian
boundary conditions Lt

p induced by translations similar to [15, Section 4.1],
one computes, using Section 3.5.1, the Fredholm index of Du to be 2n + 2
as in [15, Section 5.1]. Subtracting 3 for the marked points fixed by three
characteristic leaves yields 2n− 1, which turns out to be the dimension of W .
In fact, W is a smooth manifold that admits a natural orientation obtained
by the orientation of Du described in [15, Section 5.3] – observe that Lt

p ad-
mits a canonical parallelization and and the above mentioned variations of the
Lagrangian boundary conditions Lt

p.

4. The homotopy type

In Section 3 we showed that the moduli space W is a smooth, naturally
oriented manifold of dimension 2n− 1 such that the evaluation map

ev : W × D → Ẑ, ((a, f), z) 7→ f(z)

is proper and of degree one. In this section we will use the evaluation map in
order to draw conclusions on the homotopy type of the contact manifold M .
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4.1. Homology type and fundamental group. With the argumentation
used in [3, Sections 2.3 and 2.5] and [15, Section 6], we obtain that the evalu-
ation map

ev : W × D → Ẑ

is surjective in homology and π1-surjective. The restriction to z0 = 1 is given
by

ev : W × {1} →
⋃

(p,t)∈Rd×Rn−1−d

Lt
p ∩ {z0 = 1},

the target being equal to

R× T ∗T d × {1} × C
n−1−d.

Both evaluation maps complete to a commutative square

W × D
ev

> Ẑ

W × {1}

⊂

∧

ev
> R× T ∗T d × {1} × C

n−1−d

⊂

∧

via the homotopy equivalence

W × {1} ⊂ W × D

and the inclusion

R× T ∗T d × {1} × C
n−1−d ⊂ Ẑ.

Therefore, the induced map

T d ⊂ Ẑ ≃ M

is surjective in homology and π1-surjective too.
Similar to [3, Section 2.4], one shows, by simply replacing 2n by 2n+1, that

HkM = 0 for all higher degrees k ≥ d+ 1 and that the inclusion of

∂M → M

induces an isomorphism for the homology groups Hk of low degree

k = 0, 1, . . . , 2n− 1− d.

Therefore,

H∗M = H∗(T
d ×D2n+1−d).

Because the fundamental group of ∂M is abelian, we infer with [3, Section 2.5]
that the inclusion ∂M ⊂ M is π1-isomorphic. In particular,

π1M = π1(T
d ×D2n+1−d).
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4.2. A cobordism. Recall that Ẑ is obtained by removing the bounded com-
ponent of the complement of ϕ(∂M) ⊂ Int(Z) in Z and gluing with M along
the boundaries via ϕ. By assumption, ϕ(∂M) is isotopic to the sphere bundle
S(T ∗T d⊕R

2n+1−2d) inside Z viewed as a subset of R×T ∗T d×D2 ×C
n−1−d.

Choosing a suitable bundle metric for T ∗T d ⊕ R
2n+1−2d, we assume that

ϕ(∂M) is contained in the interior of the corresponding disc bundle D(T ∗T d⊕
R

2n+1−2d). After gluingM to the unbounded component in the total space, we
obtain a manifold denoted by M1, which deformation retracts onto M and is
homotopy equivalent to Ẑ. Furthermore, we denote by M0 a possibly rescaled
copy of D(T ∗T d ⊕ R

2n+1−2d) to which a nowhere vanishing section is added
– before gluing – so that M0 is contained in M1 \ M – after gluing. In the
following we will study homotopical properties of the cobordism

X := M1 \ IntM0.

Denote by D0 ⊂ ∂M0 and D1 ⊂ ∂M1 in M1 the isotopic copies of the
disc bundle of R× T ∗T d ×{1}×Cn−1−d, which strongly deformation retracts
to T d. The isotopy between D0 and D1 can be chosen to be the restriction
of the above used shift and rescaling isotopy between ∂M0 and ∂M1, and
extends to an isotopy between M0 and M1. Therefore, we obtain the following
homotopy commutative diagram:

> X

M0
time-1 map

of isotopy
> M1

gen.
pos.<

∂M0

gen.
pos.

>

∂M1

∧

⇐
=====

D0

≃

∧

time-1 map

of isotopy
>

<

D1

∧

>

time-1 map

of former isotopy

∧

where all indicated maps are obtained by inclusion with the exception of the
diffeomorphisms D0 → D1 and ∂M0 → ∂M1. The arrow M0 → M1 can
be alternatively understood to mean the time-1 map of the described isotopy
besides the meaning of the inclusion.

As in [3, Lemma 5.1 and 5.2], one shows that the inclusions

∂M0, ∂M1 → X

are π1- and H∗-isomorphic. Indeed, in low degrees k = 0, 1, . . . , 2n−1−d, this
follows with the results stated in Section 4.1 and general position arguments,
which are available whenever k+d < 2n+1, using n > d and n ≥ 2; the arrows
labeled by gen. pos. are homotopy (resp. homology) isomorphisms in those
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degrees in view of the induced long exact sequences. In higher degrees k ≥ d+1,
in which the homology groups of M0 and M1 vanish by Section 4.1, this follows
with the induced long exact sequence of the pair (M1,M0), with excision and
Poincaré duality applied to the compact cobordism X in combination with the
universal coefficient theorem.

Remark 4.3. The above arguments show that the inclusion of M0 into M1

induces an isomorphism in homology. This is a priori not clear even if the
involved homology groups are isomorphic.

4.4. Being an h-cobordism. In order to prove that the inclusions ∂M0,
∂M1 → X are in fact homotopy equivalences, one shows that the topological
pairs (X, ∂M0) and (X, ∂M1) are homotopically trivial. As these are homo-
topically trivial, an application of the relative Hurewicz theorem shows that
the quotients of the relative homotopy groups by the action of the fundamental
group of ∂M , which is isomorphic to Zd, are trivial.

To conclude with the vanishing of the relative homotopy groups, we will
employ universal coverings as done in the argumentation in [3, Section 6]. The
following proposition is based on the triviality of π1(X, ∂M0) and π1(X, ∂M1)
obtained in Section 4.2.

Proposition 4.5. X is an h-cobordism.

In order to prove Proposition 4.5, we consider the universal covering π : M̃ →
M , provided with the contact form α̃ := π∗α, which satisfies inf0(α̃) > π. Ob-
serve that the covering π is infinite as π1M = Zd, see Section 4.1. The induced
covering on the boundary π|∂M̃ : ∂M̃ → ∂M is given by the universal covering
Rd × S2n−d → T d × S2n−d caused by the π1-isomorphicity of the inclusion
∂M ⊂ M , see again Section 4.1. Furthermore, the universal covering space
of Ẑ is made up by the analog of the gluing construction of Ẑ involving this
time M̃ and

Z̃ = R× T ∗
R

d ×D2 × C
n−1−d = D2 × R

2n−1,

with the gluing map being a lift of ϕ ◦ π. The universal covering map of Ẑ
restricts to π on M̃ .

Similar to Section 3 and [3, Section 6], one defines a moduli space W ′ of
holomorphic discs in the covering space of Ẑ with respect to the lift of the
almost complex structure J . This results into a covering W ′ → W of moduli
spaces. As in [3, Lemma 6.1], one shows that the evaluation map

ev : W ′ × D →
˜̂
Z

is proper of degree 1 because the projections of all holomorphic discs in W ′ to
the R-factor of the symplectization are contained in a uniform compact interval.
Alternatively, one can compensate the non-compactness caused by M̃ with the
results in [1] applied to the trivial virtually contact structure given by the
universal covering of Ẑ. Here, by a virtually contact structure we mean a
Riemannian covering together with a contact form primitive of the pull back of

Münster Journal of Mathematics Vol. 12 (2019), 31–48



44 Kilian Barth, Jay Schneider, and Kai Zehmisch

an odd-symplectic form on the base that is uniformly bounded from below and
above. The virtually contact structure is trivial if the contact form is obtained
from a primitive of the odd-symplectic from on the base by pull back.

As in Section 4.1, one considers a diagram

W ′ × D
ev

>
˜̂
Z

W ′ × {1}

⊂

∧

ev
> R× T ∗

R
d × {1} × C

n−1−d

⊂

∧

and concludes that M̃ is contractible, cf. [3, Proposition 6.2] and its preceding
remarks in [3].

Proof of Proposition 4.5. With the above shown contractibility of M̃ , the claim
follows with the purely topological argumentation used in [3, Theorem 9.1].
Alternatively, one can follow the reasoning in [3, Section 8] or [2, Section 2.5]
invoking simplicity of the topological space ∂M and the cobordism diagram
from Section 4.2, similar to [3, Lemma 6.3]. �

Proof of Theorem 1.2. With Proposition 4.5, the claim follows with standard
arguments based on Whitehead’s theorem, Wh(Zd) = 0, and the s-cobordism
theorem as done in [2, 3]. �

Appendix A. Local contact inversion

As in knot theory, we call the complement of the interior of a tubular neigh-
borhood of a submanifoldQ the exterior ofQ. We show that a collar extension
of the exterior of a subcritically isotropic torus in a contact manifold admits
a positive contact inversion along the boundary of the exterior. This allows
surgerial constructions for contact manifolds near subcritically isotropic tori
similar to the considerations in Section 1.3.

A.1. Hypersurfaces transverse to a Liouville flow. Let (V, λ) be a Liou-
ville manifold with symplectic form ω = dλ and Liouville vector field Y defined
by iY ω = λ. Let M0 and M1 be hypersurfaces in V that are transverse to Y
such that αi := λ|TMi

, i = 0, 1, is a contact form. We assume that each flow
line of Y intersects each of M0 and M1 in a single point so that the resulting
correspondence forms a bijection M0 → M1.

Under the stated assumptions, we find a domain D in R×M0 that contains
{0}×M0 such that for all p ∈ M0, the intersection of D with each line R×{p}
is the maximal interval on which the flow line t 7→ ϕt(p) of Y is defined. This
defines an embedding Φ: D → V of Liouville manifolds (i.e., Φ∗λ = etα0), via
Φ(t, p) = ϕt(p) for all (t, p) ∈ D, such that M1 ⊂ Φ(D) is the Φ-image of the
graph of a smooth function f : M0 → R and α1 corresponds to the contact
form efα0 on Φ−1(M1). Setting ψ(0, p) = (f(p), p) for all p ∈ M0, we obtain a
strict contactomorphism Φ ◦ ψ : (M0, e

fα0) → (M1, α1).
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A.2. A model involution. We consider the Liouville manifold
(
T ∗T d × C

n+1−d,pdq+
1

2
(xdy − ydx)

)

with symplectic form

dp ∧ dq+ dx ∧ dy

and Liouville vector field

Y0 = p∂p +
1

2
(x∂x + y∂y),

which is transverse to

M =
{
|p|2 + |x|2 + |y|2 = 1

}
,

defining a contact form α0 on M . The involution

ι(q,p;x,y) =
(
q,p;−x1, x2, . . . , xn+1−d,−y1, y2, . . . , yn+1−d

)

preserves the Liouville form and the M -defining distance function inducing a
strict contactomorphism of (M,α0). Observe that ι interchanges

M ∩
{
±x1 ≥ 0

}
∼= T d ×D2n+1−d

as well as the isotropic tori

T± =
{
(q,0;±1, 0, . . . , 0) | q ∈ T d

}
.

We remark that the (by a Hamiltonian vector field) shifted Liouville vector
field

Y1 = Y0 +
1

4
∂x1

defines the standard (rotationally invariant) contact form

α1 = dt+ pdq+
1

2
(xdy − ydx)

on

M1 = T ∗T d ×
{
x1 =

2

3

}
× Ry1

× C
n−d ≡ Rt × T ∗T d × C

n−d,

where y1 is renamed in t and where now x and y stand for the corresponding
tuples with x1 and y1 deleted. With [9, Example 2.1.3], α1 can be brought to
αZ by a strict contactomorphism.

A.3. Interpolating Liouville vector fields. We continue the discussion
from Section A.2. Let χ ≡ χ(q,p;x,y) be the cut off function χ̃(|p|2 + |x|2 +
|y|2) induced by a smooth function χ̃ : [0,∞) → [0, 1/4] that is equal to 0 on
[0, 1], strictly increasing on (1, 3/2), and equal to 1/4 on [3/2,∞). With re-
spect to the Hamiltonian function H = −χy1, we define the Liouville vector
field Y = Y0 +XH , where

XH = 2χ̃′y1
(
−p∂q + y∂x − x∂y

)
+ χ∂x1
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denotes the Hamiltonian vector field of H . The Liouville vector field Y equals
Y0 on {|p|2 + |x|2 + |y|2 ≤ 1} and Y1 on {|p|2 + |x|2 + |y|2 ≥ 3/2}; each flow
line of Y connects M with {|p|2 + |x|2 + |y|2 = 3/2} as

d(|p|2 + |x|2 + |y|2)(Y ) = |p|2 +
1

2
(|x|2 + |y|2) + χx1,

defining a bijection between the two hypersurfaces. Denote by M0 the set of
intersection points of M with those flow lines of Y that intersect {|p|2+ |x|2+
|y|2 = 3/2} along {x1 > −1/2}. Observe that M0 is an open neighborhood of
M ∩ {x1 = 0} in M as

dx1(Y ) =
1

2
x1 + 2χ̃′y21 + χ

is positive on {1 < |p|2 + |x|2 + |y|2} along {x1 = 0}. With the considera-
tions from Section A.2, we obtain a strict contactomorphism ϕ : (M0, e

fα0) →
(M1, α1) defined in a neighborhood of the invariant set M ∩ {x1 = 0} of the
involution ι.

A.4. Local inversion. Continuing the discussion from Section A.3, we ob-
serve that ϕ◦ ι◦ϕ−1 defines a strict contactomorphism of α1 on ϕ(M0∩ι(M0))
that leaves ϕ(M0 ∩ {x1 = 0}) invariant changing (co-)orientations. We call
such a positive (not necessarily strict) contactomorphism a contact inver-

sion along ϕ(M0 ∩ {x1 = 0}).
Observe that ϕ(M0 ∩ {x1 = 0}), as the boundary of ϕ(M0 ∩ {x1 ≥ 0}), can

be brought into any neighborhood of the zero section ϕ(M0 ∩ T+) of T
∗T d ⊕

R
2n+1−2d using the contact vector field

X = t∂t + p∂p +
1

2
(x∂x + y∂y)

on (R× T ∗T d ×Cn−d, α1). Conjugating the contact inversion ϕ ◦ ι ◦ϕ−1 with
the flow of X , we obtain, combined with the isotropic neighborhood theorem,
the following proposition.

Proposition A.5. Any isotropic submanifold of a given contact manifold,

whose conformally symplectic normal bundle possesses a non-vanishing section,

admits a tubular neighborhood U together with a contact inversion along the

boundary ∂U .

Indeed, this is because the submanifold, being a subcritically isotropic torus
with trivial conformally symplectic normal bundle, is not (really) used in the
above construction.
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