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Abstract

Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane
organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent
member, Rab6, is thought to be involved in the development of Alzheimer’s Disease, the most prevalent mental disorder
worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is
cleaved to b-amyloid in brains of patients suffering from Alzheimer’s Disease. Additionally, all three members of the Mint
adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1
isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-
terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is
nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and
sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence
of aa 495–505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP.
Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data
suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an
important player in regulation of APP trafficking and processing.
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Introduction

Cellular transport mechanisms are regulated by numerous

proteins involved in signal transduction. Among these are the

members of the Rab protein family, the largest group of small

GTPases within the Ras superfamily [1].They are known to be

involved in a variety of steps during transport processes, such as

membrane docking and fusion, budding events and vesicular

movement along cytoskeletal tracks [2]. One of the most widely

studied Rab GTPases is Rab6, of which four isoforms have been

described: Rab6A, the alternative splice variant Rab6A’, the

tissue-specific form Rab6B and Rab6C, a retrogene derived from

Rab6A’ [3–6]. As a very multifunctional protein, Rab6A is known

to regulate the retrograde vesicular trafficking from the Golgi

apparatus to the endoplasmatic reticulum (ER) via Bicaudal-D [7–

10]. Rab6B is thought to fulfill this task in neuronal cells [11].

Additional functions of Rab6 include the transport of early

endosomes and recycling endosomes towards the trans-Golgi

network and the trafficking of exocytotic vesicles towards the

plasma membrane [10,12,13]. Several studies have also suggested

the involvement of Rab6 in various diseases such as Lowe’s

Syndrome or HIV [14,15]. There is now evidence that the small

GTPase plays a role in the pathology of Alzheimer’s Disease (AD)

[16–20].

AD is the most common neurodegenerative disorder worldwide

[21]. One of the characteristic hallmarks in the pathology of AD is

the presence of extracellular aggregates, consisting of amyloid-beta

(Ab) in the brains of patients [22]. These plaques derive from the

proteolytical cleavage of the amyloid precursor protein (APP), a

type I transmembrane protein [23]. The amyloidogenic processing

is performed sequentially by b- and c-secretases [24–26]. In the

non-amyloidogenic pathway Ab fragments are not produced

because APP is initially cleaved inside the Ab peptide sequence by

a-secretases, followed by c-secretase processing [27–29]. The way

in which APP is cleaved depends on its transport route:

Amyloidogenic processing is thought to take place in endosomes

and lysosomes, whereas the non-amyloidogenic cleavage is

performed mostly at the plasma membrane [30,31].

There are many different proteins that influence the transport

processes of the amyloid precursor protein, among them the Mint
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adaptor proteins, which bind to the C-terminal YENPTY motif of

APP [32]. The family of Mint adaptor proteins comprises three

previously described members: The neuronal Mint1 and Mint2

and the ubiquitously expressed Mint3 [33–35]. The three Mint

proteins have a highly conserved C-terminus, which consists of one

phosphotyrosine-binding (PTB) and two PDZ domains. Mint1

displays an additional Munc-interacting domain and a CASK-

interacting domain [36,37]. Mint proteins seem to be essential for

survival, since Mint1/2 knockout mice die at birth or show a lower

average weight and motor defects [38].

In this manuscript we report the discovery of a new Mint1

isoform, Mint1 826, which lacks an eleven amino acids sequence

in the PTB domain. We show that Mint1 826 is a transcribed gene

by detection of a specific mRNA sequence as well as the

identification of the Mint1 826 protein from tissue samples by

mass spectrometry. In contrast to the previously described Mint1,

we show that it is able to interact with the active form (GTP-

bound) of Rab6 via its PTB domain. Mint1 826 exhibits a different

intracellular distribution in comparison to the previously described

Mint1, as it clearly accumulates in the Golgi area. Our

observations that the deleted sequence does not influence the

ability of Mint1 826 to interact with APP and that Rab6 and APP

co-localize in moving vesicular structures, supports the hypothesis

that Mint1 826 might be an important adaptor for Rab6-driven

APP transport.

Materials and Methods

Ethics
Human brain and testis samples were obtained from the

Human Gene Bank (which is now part of BrainNet Europe) and S.

Kliesch, Muenster, Germany respectively. For the acquisition of

both samples no approval of an ethics committee was needed since

it took place before 1999. Nevertheless, the patients gave written

informed consent that their tissue could be used for experimental

purposes post mortem as required by law. This consent was

general and not restricted to specific studies, thus there was no

need to contact an ethical review board for this current study.

All animals were housed, cared for, and experiments conducted

in accordance with approved protocols from the University of

Kaiserslautern/"Stadt Kaiserslautern-Referat Umweltschutz",

project number: 15/73/10-Bu approval date: 11.01.2010.

Plasmids. Most of the plasmids used have been described

before [18,39]. To construct the pACT2 Mint1 826 plasmid, the

corresponding sequence was isolated from the yeast two-hybrid

clone pP6 Mint1 (bp1314–2307 D1483–1515) by PvuII cleavage

and inserted into a PvuII cleaved pACT2 Mint1 vector. pGEX

Mint1 826 was created by inserting the SacI fragment from

pACT2 Mint1 826 into a SacI digested pGEX Mint1 vector (the

respective 39 SacI site derived from the Mint1 39 UTR region that

is present in both vectors). APP695-RFP contains a C-terminally

fused mRFP (monomeric red fluorescent protein) tag and was

cloned via PCR based mutagenesis in vector pcDNA3.1, as

described earlier [19]. All of the other plasmids mentioned were

cloned using standard molecular biological techniques.

Antibodies. The monoclonal antibody against GFP (JL8) was

purchased from Clontech, Heidelberg, Germany and diluted

1:4000. For Western blotting, the monoclonal antibody against

Mint1 (A-12) was purchased from Santa Cruz Biotechnology, Inc.,

Heidelberg, Germany and diluted 1:500. For the detection of APP

in Western blot analyses an anti-APP C-term antibody distributed

by Calbiochem, Merck Millipore, Darmstadt, Germany was

applied 1:5000, for detection of APP in immunofluorescence

analyses it was diluted 1:1000. Mint 1 was stained using an

antibody (clone 23) purchased from Becton Dickinson, Heidel-

berg, Germany (1:25). Anti-mouse IgG HRP was purchased from

Cell Signaling Technology H, Danvers, MA, USA and applied

1:1000. For localization studies, intracellular Rab6A was stained

using a monoclonal antibody (5B10, dilution: 1:50) [40], which

was directly conjugated with OY594 by Luminartis GmbH,

Muenster, Germany. The polyclonal antibody against Rab6B

(Institute Curie, Paris, France) was affinity purified and applied at

1:50 dilution. GM130 was stained with an antibody distributed by

Becton Dickinson, Heidelberg, Germany (clone 35, 1:200). As

secondary antibodies, anti-mouse IgG Alexa FluorH488 (Invitro-

gen, Karlsruhe, Germany, 1:1000), anti-mouse IgG Alexa

FluorH647 (Invitrogen, Karlsruhe, Germany, 1:500) and anti-

rabbit IgG Alexa FluorH594 (Invitrogen, Karlsruhe, Germany,

1:1000) were used.

Cell culture. All cell lines used for our studies were cultivated

in DMEM (Biochrom AG, Berlin, Germany) supplemented with

10% fetal calf serum (Pan-Biotech GmbH, Aidenbach, Germany)

and 2 mM glutamine.

CHO K1 (ATCCH number: CCL-61) [18] and HeLa T-RexTM

(Invitrogen, Karlsruhe, Germany) cells have been handled as

described previously [39].

MEF dko APP695 AA12 cells were a kind gift of U. Müller,

Heidelberg, Germany. In this cell line APP695 and APLP2 were

knocked out and APP695 retransfected [41].

The preparation of primary neurons (isolated from mice

purchased from Janvier, Saint Berthevin Cedex, France) has been

described previously [42].

For localization studies of Mint1 and Mint1 826, 3T3 Swiss cells

(ATCCH number: CCL-92) were transfected with pEGFP Mint1

or pEGFP Mint1 826 respectively using the TurboFectTM

transfection reagent as described in the manufacturer’s manual

(Thermo Fisher Scientific, St. Leon-Rot, Germany). Cells were

fixed 24 h after transfection.

Flow cytometry based FRET analyses. Flow cytometry

based FRET analyses have been performed as described

previously [39].

Yeast two-hybrid analyses. The reporter strain Y190

(Clontech, Heidelberg, Germany) was co-transformed and colo-

nies were analyzed as described previously [8,43].

For the initial Rab6B Q72L screen, the coding sequence of

Rab6B Q72L was cloned into pLex9 as a C-terminal fusion to

LexA. The construct was used as bait to screen at saturation a

highly complex, random-primed human placenta cDNA library

constructed into the plasmid pP6. pLex9 and pP6 derive from the

original pBTM116 [44] and pGADGH [45] plasmids, respective-

ly. More than 130 million clones (13-fold the complexity of the

library) were screened, using a mating with the Y187 (MATa) and

L40DGal4 (MATa) yeast strains as previously described [46].

Positive colonies were selected on a medium lacking tryptophan,

leucine and histidine supplemented with 5 mM 3-aminotriazole.

The prey fragments of the positive clones were amplified by PCR

and sequenced at their 59 and 39 junctions. The resulting

sequences were used to identify the corresponding interacting

proteins in the GenBank database (NCBI) using a fully automated

procedure.

Preparation of mouse brain lysate. Frozen mouse brains

were pestled in liquid nitrogen. The cells were lyzed in

immunoprecipitation (IP) buffer (25 mM Tris pH 8.0, 50 mM

NaCl, 0.5% Triton X-100, Complete EDTA free (Roche

Diagnostics GmbH, Mannheim, Germany)) with a Potter S

homogenizer (10 strokes at 1000 rpm) [47]. Finally, the lysate was

incubated on ice for 30 min and cleared by centrifugation at

150006g for 1 h at 4uC.
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GST pulldown experiments. The expression and prepara-

tion of GST fusion proteins has been carried out as described

before except that an incubation temperature of 37uC was used

instead of 30uC [48]. For the in vitro GST binding assay 10 mg of

the GST Rab6A Q72L fusion protein were bound to 10 ml of

glutathione-SepharoseTM 4B beads (GE Healthcare, Freiburg,

Germany) for 1 h at 4uC in PBS with 1% Triton X-100 and

Complete EDTA free adjusted to 300 ml. Beads were then washed

with PBS/Triton X-100 for three times and incubated overnight

at 4uC with 1 mg of mouse brain lysate, which had been cleared

with GST-coupled glutathione SepharoseTM 4B beads for 3 h at

4uC. After the overnight incubation, beads were washed three

times with IP buffer and bound proteins were eluted from the

beads with sample buffer. Samples were analyzed by SDS-PAGE

(7%) and Western blotting [49].

Other GST pulldown experiments using GST Mint1/Mint1

826 PTB and lysate from stably transfected HeLa T-RExTM cell

lines, GST Rab6 and purified Mint1 826 as well as GST Mint1/

Mint1 826 PTB and MEF lysate were performed accordingly except

that pulldown buffer (10 mM Tris pH 7.4, 150 mM NaCl, 1 mM

MgCl2, 1 mM CaCl2, 0.2% Triton X-100, Complete EDTA free)

was used instead of IP buffer. Changes in lysate concentrations and

incubation times are stated in the figure legends.

Thrombin cleavage was performed according to the manufac-

turer’s manual (GE Healthcare, Freiburg, Germany).

Immunocytochemistry. To prepare the cells for fluores-

cence analyses, culture dishes were washed three times with PBS

and fixed on ice for 15 min using 4% paraformaldehyde in

250 mM Hepes (pH 7.4). All following steps were performed at

room temperature. Cells were incubated in 8% pre-chilled

paraformaldehyde in 250 mM Hepes (pH 7.4) for 30 min and

washed three times in PBS. After that the coverslips were

quenched for 10 min with 50 mM NH4Cl and after another

washing procedure permeabilized in 0.2% Triton X-100 in PBS

for 5 min. Cells were then washed in a PBS solution containing

0.2% gelatine. Blocking was performed for 30 min in a PBS/0.2%

gelatine solution containing 10% goat serum (University Giessen,

Germany). The primary antibody was diluted in the PBS/0.2%

gelatine solution with 2% goat serum. After a 30 min incubation

in the antibody solution the coverslips were washed three times

with PBS/0.2% gelatine and incubated with the secondary

antibody for 15 min. Finally, the coverslips were washed with

PBS/0.2% gelatine, PBS and distilled water three times each and

mounted with 8 ml of Mowiol 4–88/DABCO (Hoechst, Frankfurt

a.M., Germany).

Quantitative co-localization studies between endogenous

Rab6A and EGFP Mint1 or EGFP Mint1 826 respectively were

performed using the cell‘F software from Olympus, Hamburg,

Germany. First of all, two different regions of interest (ROI) were

defined: One containing the complete cell, the other one

containing the Rab6A staining at the Golgi apparatus. Nonspecific

background staining was substracted by applying the ‘‘Background

Substraction’’ tool using another ROI outside the photographed

cells. Finally, the median gray scales of the complete cell and the

Golgi apparatus were measured by using the option ‘‘Measure’’,

‘‘ROI’’, ‘‘Average Gray Value’’. For comparison of the amount of

Mint1 located in the Golgi area, the ratio of the average gray value

at the Golgi area to the average gray value of the complete cell was

determined.

For co-localization studies between Mint1 826, APP and GM130,

HeLa cells were plated on glass coverslips (Marienfeld, Lauda

Koenigshofen, Germany) at a density of 35.000 cells/well in a 24 well

plate one day before transfection. 2–3 hours before transfection, the

media was changed to 500 ml fresh HeLa culture media (DMEM

+10% FBS (HyClone, Thermo Fisher Scientific, St. Leon-Rot,

Germany)+Penicillin/Streptomycin (Sigma-Aldrich Chemie

GmbH, Taufkirchen, Germany) +1% 200 mM L-Glutamin) per

well.1 mgDNA(forco-transfections:260,5 mgDNA)wasmixedwith

87 ml of a 10 mM Tris/HCl pH 7,5 solution and 12,4 ml of a 2 M

CaCl2 solution. The mixture was added to 100 ml 26HBS (280 mM

NaCl, 1,5 mM Na2HPO4, 50 mM HEPES (at a final pH of 7,12–

7,13)) under aeration conditions. Afterwards, the solution was added

dropwise toonewell.After3hours incubationat37uCand5%CO2,a

glycerol shock (15% glycerol in 16HBS) was performed for 2 minutes

at room temperature. Subsequent two washing steps with plain

DMEM media followed. Then normal HeLa culture media was

added. Cells were fixed 18–20 hours after transfection in 4%

paraformaldehyde/4% sucrose in phosphate buffer solution for 10

minutesat37uC.Thecellswerepermeabilized for10minutesat room

temperature in 0,1% NP40 in PBS and blocked for 1 hour in 5% goat

serum in PBS. The primary antibody GM130 (cis-Golgi marker, BD-

Bioscience) was added 1:200 overnight in 1% goat serum in PBS at

4uC. The following day, the secondary antibody Alexa-Flour 647

(Molecular Probes, Invitrogen, Karlsruhe, Germany) was added

1:500 in PBS and 1% goat serum for one hour at room temperature

and cells were embedded in Mowiol. GFP Mint1 826 was visualized

via reflector 488and APP-RFP via reflector 568. Z-stack imaging was

performed with the fluorescence microscope Axio observer Z.1 from

Zeiss with the software Axiovision 4.8.1 and analysis followed via

ImageJ. Co-localization studies between Mint1 826, APP and

GM130 have been performed in primary mouse neurons, addition-

ally.Therefore, thecellshavebeenisolated instageE14.Transfection

of the neurons (seven days in vitro (DIV7)) has been described

previously [50].

Live cell imaging. For live cell imaging, CV1 cells (ATTCH
number: CCL-70) were seeded onto IBIDI 8 well chambers and

transfected with Lipofectamine 2000TM according to the manu-

facturer’s manual. 18 hours after transfection cells were analyzed

with a Zeiss LSM5 live inverted microscope at 37uC. All images

were taken in the LSM mode as 8 bit images using a two-track

recording setup. Green and red channels were recorded sequen-

tially for each time point. Laser power, pinhole and detector gain

were adjusted as needed.

Detection of Mint1/Mint1 826 mRNA. mRNA was isolat-

ed from total RNA (derived from human brain or testis tissue)

using the PolyATtractH mRNA Isolation System II from Promega,

Mannheim, Germany according to the manufacturer’s manual.

This mRNA was used as template for RT PCR (applied kit: First

Strand cDNA Synthesis Kit for RT-PCR, Roche Diagnostics

GmbH, Mannheim, Germany). The resulting cDNA was tested

for the Mint1 826 sequence as described below. The area

containing the deletion was amplified using the primers: 59-

ATCCATGGATTCATTCCCAACCTACGTTG-39and 59-

CTGCTCGAGAGATCTTCGGGGTTAATCC-39. Mint1 826

was detected by applying a specific primer, which recognizes

Mint1 826 but not the conventional Mint1 by binding at the 39

end of exon 5 and the 59 end of exon 7. Primer sequences: 59-

AGCAGGATCAAGGCTCCTG-39 and 59-CTGCTCGAGA-

GATCTTCGGGGTTAATCC-39. Samples were analyzed using

agarose gel electrophoresis (3% NuSieve GTG, Takara, Clontech,

Heidelberg, Germany) and verified by sequencing.

The conventional Mint1 was detected by using the primers 59-

ATCCATGGATTCATTCCCAACCTACGTTG-39and 59-

CTGCTCGAGAGATCTTCGGGGTTAATCC-39. Again, sam-

ples were analyzed using gel electrophoresis and verified by

sequencing.

cDNA libraries were purchased from BD Biosciences, Clontech,

Heidelberg, Germany.

Rab6 Interacts with a New Mint1 Isoform
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Sample isolation for mass spectrometry. Mint1/Mint1

826 were immunoprecipitated from 2.5 mg mouse brain lysate

using 2 mg of the A-12 antibody as well as 10 ml Protein G

Sepharose beads (GE Healthcare, Freiburg, Germany) and

separated by SDS-PAGE (7%). Several samples were excised

from the gel and extracted in PBS/0.1% SDS +28 mg/ml

aprotinin (AppliChem, Darmstadt, Germany) at 37uC overnight.

Dissolved protein was desalted using RotiHSpin centrifugation

tubes (30 kDa cut off, Carl-Roth GmbH, Karlsruhe, Germany)

and concentrated by vacuum centrifugation. Subsequently,

samples were separated by SDS-PAGE.

In-gel digest. Coomassie-stained protein bands were excised

and cut into smaller pieces. Subsequently, 500 ml of pure

acetonitrile (ACN, Merck, Darmstadt, Germany) was added and

the mixture was shaken until the gel became white and shrank.

The supernatant was removed and the gel pieces were dried in

vacuo. The dried gel pieces were allowed to soak thermolysin

(Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) solution

(0.25 mg/ml) at ambient temperature for 30 min. The excess of

protease solution was removed and the gel pieces were covered

with 25 mM ammonium hydrogen carbonate and incubated over

night at 65uC. Proteolytic peptides were subsequently extracted

with 250 ml of 25 mM ammonium hydrogen carbonate (Fluka,

Buchs, Switzerland), 50% ACN/2.5% formic acid (FA, Merck,

Darmstadt, Germany), 80% ACN/2.5% FA, and pure ACN. The

combined extracts were dried in vacuo.

ZipTip C18-desalting. For desalting of in-gel digested

proteins ZipTip pipette tips (Millipore, Billerica, USA) were

equilibrated three times with 10 ml of 50% ACN and five times

with 10 ml of 0.1% Trifluoroacetic acid (TFA, Carl-Roth GmbH,

Karlsruhe, Germany). The proteolytic peptides were dissolved in

10 ml of 0.5% TFA and loaded onto the tips. After washing three

times with 10 ml of 0.1% TFA the peptides were eluted five times

with 10 ml of 50% ACN/0.1% TFA, five times with 10 ml of 50%

ACN/0.1% TFA, and three times with 10 ml of pure ACN. The

combined eluates were dried in vacuo and redissolved in 10 ml of

40% methanol/0.5% FA (Merck, Darmstadt, Germany) for mass

spectrometric analysis.

Mass spectrometry (MS). The proteolytic peptides derived

from in-solution digests were analyzed by nano electrospray

ionization (nanoESI). Performing MS/MS experiments on peptide

ions allowed for deducing their amino acid sequences from

fragment ion spectra. NanoESI MS experiments were carried out

by use of a SYNAPT G2-S mass spectrometer (Waters,

Manchester, UK) equipped with a Z-spray source in the positive

ion sensitivity mode. Typical source parameters were: source

temperature: 80uC, capillary voltage: 0.8 kV, sampling cone

voltage: 20 V, and source offset voltage: 50 V. For low energy

collision induced dissociation (CID) experiments, the peptide

precursor ions were selected in the quadrupole analyser, subjected

to ion mobility separation (IMS; wave velocity 850 m/s, wave

height 40 V, nitrogen gas flow rate 90 ml/min, and helium gas

flow rate 180 ml/min), and fragmented in the transfer cell using a

collision gas (Ar) flow rate of 2.0 ml/min and collision energies up

to 100 eV (Elab).

Results

A Novel Mint1 Isoform, Mint1 826, Interacts with Rab6
To search for new interacting partners of Rab6B, a yeast two-

hybrid (YTH) screen was performed using Rab6B Q72L as the

bait protein and a human placenta cDNA library as prey. A clone

was isolated that contained a fragment, which was identified as

Mint1 (pP6 Mint1, aa 438–769) by partially sequencing from both

ends. Besides the tissue-specific Rab6B, also the ubiquitously

expressed Rab6A and Rab6A’ displayed a significant interaction

signal with pP6 Mint1 (Table 1). On the other hand, pP6 Mint1

did not interact with a variety of other Rab GTPases including

RhoA, H-Ras and Ypt6, the yeast homologue of Rab6 (Table 1).

Next, we investigated the cellular expression pattern of Mint1

and compared it with Rab6. Since Mint1 has been described as

neuron specific, we chose primary mouse neurons as model and

co-stained endogenous Mint1 with the neuronal Rab6 isoform

Rab6B (Figure 1). A clear partial co-localization of Mint1 (which

we later found out was not the previously described form of Mint1)

and Rab6B was observed in the Golgi area.

Subsequently, we tested, whether the full length Mint1 protein

was able to interact with Rab6 in the YTH system. The cDNA for

the respective expression construct, encoding the entire Mint1

sequence (NM_001163.3), was obtained from J.P. Borg (Marseille

University, France). To our surprise, the full length Mint1 did not

interact with either Rab6A or Rab6B (Table 2). Since the Rab6

positive Mint1 clone that was isolated from the YTH screen was

only partially sequenced, we sequenced the whole construct to

explain the discrepancy. Interestingly, the YTH clone differed

from the so far known Mint1 sequence by the absence of exon 6

(bp, 1483–1515, representing aa 495–505), suggesting that the

deletion of this exon enables the interaction of Mint1 with Rab6.

In further experiments, we constructed a full length Mint1 with the

corresponding deletion and called the new Mint1 variant Mint1

826 (in comparison to the 837-aa-long conventional Mint1). In

yeast co-transformation experiments, Mint1 826 showed a strong

interaction with the constitutively active form of Rab6A (Table 3).

In addition, we were able to show that the neuron specific Rab6

Table 1. Rab specificity of the interaction with Mint1.

prey plasmid bait plasmid his3 b -gal

pP6 Mint1 (aa 438–769) pAS Rab6A Q72L +++ +++

pAS Rab6A‘ Q72L +++ +++

pAS Rab6B Q72L +++ +++

pAS Rab1A wt 2 2

pAS Rab1B wt 2 2

pAS Rab1B Q67L 2 2

pAS Rab2 wt 2 2

pAS Rab2 Q65L 2 2

pAS Rab3A wtDC 2 2

pAS Rab11A wt 2 2

pAS Rab33B wt 2 2

pAS Rab33B Q92L 2 2

pAS Rab33B T47N 2 2

pAS RhoA wt 2 2

pAS H-Ras wt DC 2 2

pAS Ypt6p wt 2 2

pAS Ypt6p Q69L 2 2

pAS Ypt1 wt 2 2

After co-transformation, Y190 strains were cultivated in synthetic media lacking
leucine, tryptophan and histidine, supplemented with 30 mM 3 AT (his3). b-
galactosidase reporter gene activity was determined on replica filters using X-
gal as substrate (b -gal).
– no growth on selection media or staining in b-galactosidase filter
assay,+++very strong growth on selection media or staining in b-galactosidase
filter assay, DC: without prenylation site.
doi:10.1371/journal.pone.0064149.t001
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isoform Rab6B is also able to interact with Mint1 826, which is

especially remarkable, considering that Mint1 is also neuron

specific. A positive b-galactosidase signal was not detected with

Mint1 826 and the inactive Rab6 mutants (Table 3), proving that

the interaction of Mint1 826 is nucleotide-dependent. These

results support the hypothesis that the deletion of the 11 amino

acid sequence in Mint1 826 is responsible for the adaptor protein’s

ability to bind Rab6.

In the next step, we mapped the binding region of Mint1

interacting with the small GTPase by using truncated mutants.

Previous studies have shown that the PTB domain of Mint3 is able

to interact with Rab6A [18] and Rab6B (data not shown). To test,

whether this applies to the new Mint1 variant, we generated a

clone that contained the PTB domain only (Mint1 826 PTB, aa

438–625 D 495–505). In YTH experiments, Mint1 826 PTB was

able to interact with Rab6A/B Q72L and Rab6A/B wildtype, but

not with the inactive mutants, indicating that the PTB domain is

the region of interaction for both Rab6 isoforms (Table 4). As

expected, the PTB domain of the conventional Mint1 (Mint1 PTB)

showed no interaction with Rab6 (Table 4). We could confirm the

above results by GST pulldown experiments (Figure 2A and 2B).

Thus the deletion of the 11 aa sequence in Mint1 826 enables the

protein to interact with Rab6 and that the area of the interaction is

the PTB domain.

Although YTH in vivo experiments and in vitro studies like GST

pulldown analyses are potential tools for detecting protein-protein

interactions, a confirmation of the interplay in living mammalian

cells is advantageous. One attractive method to prove that proteins

interact in living cells is to use flow cytometry based FRET

analysis. As additional protein components or adaptor proteins

would lead to a higher distance between the CFP and the YFP

fluorophor and therefore inhibit the energy transfer, a FRET

signal also indicates a direct interaction between the tested

proteins. As shown in Figure 3, a FRET signal could be detected in

cells that were co-transfected with pECFP Rab6A/B Q72L and

pEYFP Mint1 826 PTB, but not in cells expressing ECFP Rab6A/

B Q72L and EYFP Mint1 PTB (Figure 3). This demonstrates that

Rab6 and Mint1 826 specifically interact in vivo.

The results presented so far indicate that the newly discovered

Mint1 variant, lacking exon 6, is able to interact with Rab6A and

Rab6B via its PTB domain, whereas the previously described

Mint1 protein appears not to be an interacting partner.

Biochemical experiments as well as studies in living human cells

showed that the interaction is direct, nucleotide-dependent and

Rab6-specific.

Mint1 826 is Expressed Endogenously on mRNA and
Protein Level

Due to the lack of an antibody able to discriminate between

Mint1 826 and Mint1, finding evidence for Mint1 826 via

standard Western blot analyses was not possible. We therefore set

out to show that Mint1 826 is a transcribed gene by detection of

the specific mRNA sequence. During a search of the EST

database we identified an EST clone (BE937843.1) that corre-

Figure 1. Co-localization studies with Rab6 and Mint1. Co-staining of Mint1 and Rab6B in primary mouse neurons. Cells were treated with
anti-Mint1 and anti-mouse Alexa488 as well as anti-Rab6B and anti-rabbit Alexa594 antibodies. Scale bar: 20 mm.
doi:10.1371/journal.pone.0064149.g001

Table 2. Full length Mint1 does not interact with Rab6.

prey plasmid bait plasmid his3 b-gal

pACT Mint1 pAS Rab6A Q72L 2 2

pAS Rab6A T27N 2 2

pAS Rab6B Q72L 2 2

pAS Rab6B T27N 2 2

pAS 2–1 2 2

After co-transformation, Y190 strains were cultivated in synthetic media lacking
leucine, tryptophan and histidine, supplemented with 30 mM 3 AT (his3). b-
galactosidase reporter gene activity was determined on replica filters using X-
gal as substrate (b-gal). Mint1 (NM_001163.3) was tested against the
constitutively active or inactive variant of either Rab6A or Rab6B.
– no growth on selection media or staining in b-galactosidase filter assay.
doi:10.1371/journal.pone.0064149.t002

Table 3. Mint1 826 interacts with GTP-bound Rab6.

prey plasmid bait plasmid his3 b-gal

pACT Mint1 826 pAS Rab6A Q72L ++ +++

pAS Rab6A T27N 2 2

pAS Rab6B Q72L +++ +++

pAS Rab6B T27N 2 2

pAS 2–1 2 2

After co-transformation, Y190 strains were cultivated in synthetic media lacking
leucine, tryptophan and histidine, supplemented with 30 mM 3 AT (his3). b-
galactosidase reporter gene activity was determined on replica filters using X-
gal as substrate (b-gal). Mint1 826, which lacks aa 495–505 in comparison to the
conventional Mint1, was tested against the constitutively active or inactive
variant of either Rab6A or Rab6B.
– no growth on selection media or staining in b-galactosidase filter
assay,++strong growth on selection media or staining in in b-galactosidase filter
assay,+++very strong growth on selection media or staining in b-galactosidase
filter assay.
doi:10.1371/journal.pone.0064149.t003
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sponded to the Mint1 826 sequence. We then searched for

evidence of Mint1 826 expression in different types of tissue and

cell lines. We designed a Mint1 826 specific primer (see Materials

and Methods), which did not recognize the conventional Mint1

and used it to amplify a 401 bp fragment of Mint1 826 (Figure 4A).

We first analyzed cDNA libraries representing different tissue

types (Figure 4). Interestingly, Mint1 826 displayed a tissue-specific

transcription pattern. Apart from some minor signals resulting

from non-specific primer binding, a clear Mint1 826 signal was

detected in probes of human testis and brain but not in lung, liver

or spleen. To extend these results, we isolated total RNA from

human brain and testis tissue as well as from murine brain,

extracted mRNA from the samples and performed RT-PCRs. The

cDNA was tested using the Mint1 826 specific primer. A distinct

signal was detected in murine and human brain as well as in

human testis samples. Together these data indicate that the

endogenous human and murine Mint1 826 is predominantly

transcribed in brain and testis (Figure 4). Additionally, we tested

the mentioned libraries and tissue samples for the existence of the

conventional Mint1. Surprisingly, it was found in all samples that

also contained Mint1 826, although it has been described as being

transcribed and expressed neuron-specific [33] (Figure 4B). The

fact that the conventional Mint1 was found in all samples that also

contained Mint1 826, strengthens the fact that Mint1 826 is not a

product of accidental exon-skipping processes, neither in tissues

nor in cell cultures.

While the presence of an mRNA transcript is strong evidence

for the existence of a specific protein, it is not an ultimate proof.

We thus performed GST pulldown experiments with GST Rab6A

Q72L to isolate endogenous Mint1 826 from mouse brain. An

immunoreactive band was detected in the GST Rab6A Q72L

sample, but not in lysates incubated with GST Rab6A T27N or

GST alone (Figure 5). The blotting membrane was incubated with

a Mint1 specific antibody, which recognizes the N-terminus of the

protein and is therefore able to recognize both Mint1 variants.

Since we showed that only Mint1 826 but not Mint1 can bind to

Rab6 using a variety of methods, this pulldown experiment

strongly indicates that not only the transcript, but also the Mint1

826 protein is present in mouse brain tissue and that this

endogenous Mint1 826 can interact with Rab6.

To confirm these findings we additionally analyzed Mint1 826

from mouse brain by mass spectrometry (Figure 6). Immunopre-

cipitated Mint1 protein (representing Mint1 as well as Mint1 826)

was separated by SDS PAGE and the corresponding band was

excised and subjected to in-gel digest by thermolysin as described

in the Materials and Methods section. The resulting peptides were

analyzed by nanoESI MS. Direct fragmentation of the doubly

charged candidate precursor ions at m/z 945.96 in the trap cell of

the hybrid mass spectrometer did not lead to clear-cut fragment

Figure 2. Verification of the interaction between Mint1 826 and Rab6 isoforms using GST pulldown experiments. 10 ml of Glutathione
SepharoseTM 4B beads were coated with GST or the denoted GST fusion protein and then incubated with the designated prey protein. Samples were
analyzed by Western blotting using an anti-GFP (a) or anti-Mint1 (b) antibody. QL: constitutively active variant (Q72L), TN: inactive variant (T27N). A)
5 mg of the GST Mint 1 fusion proteins were incubated with lysates of stably transfected HeLa T-RExTM cells overexpressing Rab6 GFP or CFP fusion
proteins (206input) for 1.5 h at 4uC. B) 1 mg of the GST Rab6 fusion protein was incubated with 300 ng of Mint 826 for 1 h at 4uC. Mint1 826 was
isolated from thrombin cleaved bacterially expressed GST Mint1 826. input: 50 ng Mint1 826.
doi:10.1371/journal.pone.0064149.g002
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ion spectra, possibly because of co-extracted compounds of similar

m/z values. Therefore, the selected precursor ions were first

separated by means of ion mobility and subsequently fragmented

in the transfer cell of the instrument. Due to the extremely low

abundance of Mint1 826, the CID spectrum still contained a

relatively high fragment ion background. However, the clearly

detectable almost complete series of b type ions, amended by a

number of complementary y type ions (depicted in Figure 6A and

B) unambiguously prove the presence of the peptide IK

APEGESQPMT EVDLF, which lacks the 11 aa sequence found

in the conventional Mint1 (Figure 6C).

Functional Analyses of the Interaction between Mint1
826 and Rab6

We next tested, whether Mint1 826 can interact with APP and

whether it co-localizes with Rab6 and APP on the subcellular level.

The interaction of Mint1 with APP via the PTB domain is well

documented [32]. To show that Mint1 826 is also capable to bind

APP despite the lack of the 11 aa sequence, we performed

appropriate GST pulldown experiments. GST fusion proteins of

truncated mutants of Mint1 826 (Mint1 826 PTB) as well as Mint1

(Mint1 PTB) were able to bind APP695 from MEF dKO APP695

cell lines (Figure 7). These results were confirmed using GST

Mint1 826 PTB/GST Mint1 PTB and lysate from CHO cells,

which were transfected with pEGFP APP695 and lysed 48 h after

transfection (data not shown). Additionally, we examined, whether

GST Rab6 could bind APP directly, but it turned out that neither

GST Rab6A nor GST Rab6B was able to associate with the

amyloid precursor protein (data not shown).

Further we performed immunocytochemical studies on neuro-

nal cells and non-neuronal cell lines to test for co-localization of

Mint1 826 with Rab6 and APP. Analyses of transiently transfected

3T3 Swiss cells with either pEGFP Mint1 or pEGFP Mint1 826

respectively revealed that Mint1 826 is predominantly localized to

the Golgi area, whereas Mint1 is distributed evenly in the

cytoplasm with no specific accumulation in any cellular compart-

ment (Figure 8A). The quantitative determination of the Mint1 or

Mint1 826 level in the Golgi area in comparison to the total

amount of the protein inside the cell emphasizes these results

(Figure 8B). A similar subcellular distribution of endogenous

Mint1/Mint1 826 was observed in primary neurons (Figure 9A).

Interestingly, co-staining of EGFP Mint1 826 and Rab6A revealed

that both proteins accumulate and co-localize to a high degree in

the Golgi area (Figure 8A). Consistently, immunocytochemical

analysis of primary mouse neurons transfected with pCDNA3.1

APP696 RFP and pEGFP Mint1 826 revealed that Mint1 826 and

APP co-localize with GM130 in HeLa cells as well as in primary

mouse neurons at those sites where GFP Mint1 826 accumulates,

Table 4. Mapping of the Mint1 826 interacting domain.

prey plasmid bait plasmid his3 b-gal

pACT Mint1 826 PTB (aa 438–625
D495–505)

pAS Rab6A wt ++ ++

pAS Rab6A Q72L ++ +++

pAS Rab6A T27N 2 2

pAS Rab6B wt ++ ++

pAS Rab6B Q72L ++ +++

pAS Rab6B T27N 2 2

pAS 2–1 2 2

pACT Mint1 PTB (aa 438–625) pAS Rab6A wt 2 2

pAS Rab6A Q72L 2 2

pAS Rab6A T27N 2 2

pAS Rab6B wt 2 2

pAS Rab6B Q72L 2 2

pAS Rab6B T27N 2 2

pAS 2–1 2 2

After co-transformation, Y190 strains were cultivated in synthetic media lacking
leucine, tryptophan and histidine, supplemented with 30 mM 3 AT (his3). b-
galactosidase reporter gene activity was determined on replica filters using X-
gal as substrate (b-gal). Mint1 (NM_001163.3) PTB was tested against the
wildtype or the constitutively active or inactive variant of either Rab6A or
Rab6B. Mint1 826 PTB, which lacks aa 495–505 in comparison to the
conventional Mint1 was as well tested against the wildtype or the constitutively
active or inactive variant of either Rab6A or Rab6B.
– no growth on selection media or staining in b-galactosidase filter
assay,++strong growth on selection media or staining in in b-galactosidase filter
assay,+++very strong growth on selection media or staining in b-galactosidase
filter assay.
doi:10.1371/journal.pone.0064149.t004

Figure 3. Flow cytometry based FRET analyses. HeLa T-REx cells were co-transfected with the indicated plasmids. Cells transfected with ECFP
Rab6 and EYFP-C1 empty vector served as negative, EYFP–ECFP fusion protein as positive control. The graph displays EYFP fluorescence (550 nm)
from 405 nm excitation of ECFP- and EYFP-double positive cells after correction of spectral bleeding of ECFP into the FRET (550 nm) channel and
direct excitation of EYFP by the 405 nm laser line.
doi:10.1371/journal.pone.0064149.g003
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namely in the Golgi area and in vesicular structures at the

periphery of the cells (Figure 9A and B). GM130 like Rab6 is

known to localize specifically to the Golgi area [51].This supports

our assumption that Mint1 826 is involved in APP sorting in the

Golgi and possibly also in the trans-Golgi network and in the

secretory pathway. The latter postulation is further supported by

live cell imaging studies, showing that Rab6B Q72L and APP

clearly co-localize in moving vesicles in the cell periphery (Figure 9

C, Movie S1). Unfortunately, live cell imaging of Mint1 826 could

not be carried out due to the toxicity of the overexpressed protein

(data not shown).

In conclusion, the demonstration that endogenous Mint1 826

interacts with both APP and Rab6 proteins, as well as the co-

localization of APP and Rab6B in moving vesicular structures,

support a functional interaction between these proteins. Hereby

Mint1 826 might serve as an adaptor protein for the Rab6

regulated transport of APP inside the cell.

Discussion

In this study, we identified a novel Mint1 variant lacking exon 6,

called Mint1 826. We showed that this is a transcribed gene by

detection of a specific mRNA sequence and demonstrated the

presence of the endogenous protein in tissue samples. This protein

is, in contrast to the previously described Mint1 [33], capable of

interacting specifically in a nucleotide-dependent manner with the

small GTPase Rab6 via its PTB domain. Previous studies in our

group demonstrated that the ubiquitously expressed Mint3 is

similarly able to bind to GTP-bound Rab6A [18]. Interestingly, in

Mint3 the same amino acids are missing in its PTB domain as in

Mint1 826, implying that Mint proteins are able to bind to Rab6,

when displaying this eleven amino acids deletion.

Our results show that Mint1 and Mint1 826 do not display the

same subcellular localization. Mint1 is distributed evenly in the

cell, whilst Mint1 826 is highly concentrated in the Golgi area,

where it clearly co-localizes with Rab6 (Figure 8). Additional

analyses of HeLa cells and primary mouse neurons revealed that

Mint1 826 clearly co-localizes with APP 695 and the Golgi marker

GM130 (Figure 9A and B). These results suggest an interplay of

Mint1 826 and Rab6 in APP sorting. Rab6 also appears to be

involved in vesicular APP transport (Figure 9 C), in agreement

with previous studies. In 1996 McConlogue and colleagues

showed that overexpression of APP and an inactive Rab6A

mutant leads to an increased production of soluble APPa by

promoting the transport of APP to the plasma membrane [16].

Furthermore, it has been shown that Rab6 promotes the

retrograde trafficking of APP from the Golgi apparatus to the

ER [17]. On the other hand, more recent studies showing that

Rab6 is involved in the transport of exocytotic vesicles towards the

Figure 4. Detection of Mint1 826 mRNA. Various types of cDNA libraries derived from lung, liver, spleen, testis and brain were analyzed for the
existence of Mint1 826. For this purpose a Mint1 826 specific primer that does not amplify the conventional Mint1 (tested using a linearized pACT
Mint1 vector as a template, negative control) was applied in PCR analyses containing the libraries as templates. Positive results were confirmed
utilizing mRNA isolated from the respective tissues. Additionally, the respective samples were also tested for the existence of the conventional Mint1
mRNA. A) Mint1 826-specific PCR analyses using RNA from human brain and human testis tissues. B) Summary of the Mint1/Mint1 826-specific PCR
analyses.
doi:10.1371/journal.pone.0064149.g004

Figure 5. Detection of the Mint1 826 protein. For detection of the
Mint1 826 protein GST pulldown assays were performed. 10 ml of
Glutathione SepharoseTM 4B beads were coated with 10 mg of GST or
the denoted GST fusion protein and then incubated with 1 mg of
mouse brain lysate for 3 h at 4uC. Since Mint1 826 seems to exhibit a
relatively low expression level, three samples were pooled for Western
blot analyses. input: 15 mg mouse brain lysate.
doi:10.1371/journal.pone.0064149.g005
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Figure 6. Detection of Mint 826 by mass spectrometry. A) NanoESI fragment ion spectrum obtained from a CID experiment on the ion
mobility-separated doubly charged peptide precursor ions at m/z 945.96 derived from an in-gel proteolytic digest by thermolysin of immuno-
precipitated Mint1 826 protein. B) Corresponding fragmentation scheme. C) Schematic illustration of both Mint1 isoforms. Highlighted in red: 11 aa
sequence deleted in Mint1 826.
doi:10.1371/journal.pone.0064149.g006
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plasma membrane via kinesin-1 and the fusion of the vesicles with

their target membrane shed new light on the putative role of Rab6

in APP transport [13,52]. APP is likely to be one cargo of Rab6

that is transported to the plasma membrane, where it is processed

in the non-amyloidogenic pathway [25]. Our live cell imaging data

support this hypothesis. Rab6B and APP positive vesicles were

indeed primarily found in the cell periphery moving towards the

plasma membrane (Figure 9 C, Movie S1).

Mint1 826 might be an important adaptor that links Rab6 to its

APP cargo. Our studies in primary neurons (Figure 1) support this

hypothesis. GST pulldown analyses have shown that Rab6 is not

able to bind APP directly (data not shown), suggesting that Mint1

826, which is not only able to bind Rab6, but also APP, could

indeed be an adaptor protein for this transport process and

therefore might be an important player in the development of

Alzheimer’s Disease.

A variety of studies have pointed to the potential neuroprotec-

tive effect of Rab6 and Mint proteins by regulating the cellular

level of Ab [53]. The overexpression of Mint3 results in a decrease

in the production of Ab. When the adaptor protein is knocked

down, APP transport to the endosomes is increased, which favors

processing of APP via the amyloidogenic pathway [53]. It has also

been shown that Mint2 controls mechanisms that lead to an

accumulation of immature APP in the early secretory pathway

therefore suppressing the generation of amyloid beta [54].

Furthermore, studies in mice support the hypothesis that Mint

proteins play an important role in the development of AD: AD

transgenic mouse models with a Mint1 insufficiency showed an

increase in Ab production [55].

How the different transport processes involving Mint1 826

compare to those regulated by conventional Mint1 has yet to be

established. Several groups have already studied the regulation of

the Mint adaptor proteins and the impact on APP processing. It

has been shown that Mint1 activity is controlled by autoinhibitory

mechanisms [56]. In the autoinhibited state the C-terminus of

Mint1 binds to the PTB domain and so undergoes a conforma-

tional change, which leads to the loss of its APP binding affinity. It

is assumed that a phosphorylation of the Tyr633 residue by

members of the Src family of non receptor tyrosine-kinases might

be the reason for the structural alteration [56]. Indeed, previous

studies have shown that Mint proteins are phosphorylated by Src

kinases, which influences the intracellular distribution of APP [31].

Future studies will have to clarify, whether these mechanisms

apply to the Mint1 826 isoform.

Further investigation on the relation between Rab6, Mint1 826

and APP appears challenging. Although Mint1 knock-out mice are

available [38], they most likely show a lack of both the

conventional Mint1 and Mint1 826. Also Rab6 knock-out/

knock-down experiments do not seem to be appropriate for

additional studies, since the different isoforms perform highly

overlapping tasks and therefore might be redundant. Nevertheless,

additional experiments, comparing the expression levels of Mint1

826 in tissue samples from AD patients, would be informative. Our

immunofluorescence analyses showed a partial co-localization

Figure 7. Verification of the interaction between Mint1 826 and
APP. 10 ml of Glutathione SepharoseTM 4B beads were coated with
5 mg of GST or the denoted GST Mint1 fusion proteins and then
incubated with MEF dko APP695 AA12 cell lysates (20 x input) for 1.5 h
at 4uC. Samples were analyzed by Western blotting using an anti-APP C-
terminus antibody.
doi:10.1371/journal.pone.0064149.g007

Figure 8. Intracellular distribution of Mint1 826 and Mint1. 3T3 Swiss cells were transiently transfected with either pEGFP Mint1 826 or pEGFP
Mint1. 24 h after transfection cells were fixed and co-stained with a Rab6A specific antibody (5B10), which was conjugated with OY594 directly. A)
Co-localization studies of endogenous Rab6A with EGFP Mint1 826 or EGFP Mint1, respectively. B) Quantitative analyses of the cellular distribution of
Mint1/Mint1 826. Cells from two independent experiments were evaluated with the Cell‘F software (Olympus) by calculating the ratio between the
average gray value of Mint1 at the Golgi apparatus and the average gray value of Mint1 in the total cell. Statistical significance was tested via
student’s t-test, n = 80.
doi:10.1371/journal.pone.0064149.g008
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between Rab6 and Mint1 (Figure 1). Interestingly, such a co-

localization was detected in a restricted number of cells only. The

stained protein represents both forms of the adaptor, Mint1 as well

as Mint1 826. The fact that rather small areas in a few numbers of

cells offer co-localizations with Rab6 indicates that only a low

percentage of the cellular Mint1 represents Mint1 826. Whether

this ratio is imbalanced in brains of patients suffering from AD has

yet to be examined.

The discovery of the new Mint1 826 isoform along with recent

results from other research groups including our own group

provide new insights into the transport mechanisms involving

Rab6, the Mint adaptor proteins and the processing of APP. Yet,

further research needs to be performed to establish a more detailed

understanding of the complex cellular machineries that are

involved in the pathology of AD.

Supporting Information

Movie S1 Live cell imaging of Rab6B and APP. CV1 cells were

co-transfected with pDsRed monomer Rab6B Q72L and pEGFP

APP 695 and imaged 18 h after transfection.

(AVI)

Figure 9. Fluorescence analyses of Rab6, Mint1 826 and APP. A) Co-staining of Mint1 826, APP and GM130 in HeLa cells. Cells were co-
transfected with pEGFP Mint1 826 and pCDNA3.1 APP 695 RFP and subsequently incubated with anti-GM130 and anti-mouse Alexa488 antibodies.
Scale bar: 20 mm. B) Co-staining of Mint1 826, APP and GM130 in primary mouse neurons. Cells were co-transfected with pEGFP Mint1 826 and
pCDNA3.1 APP 695 RFP and subsequently incubated with anti-GM130 and anti-mouse Alexa488 antibodies. Scale bar: 20 mm. C) Live cell imaging of
Rab6B and APP. CV1 cells were co-transfected with pDsRed monomer Rab6B Q72L and pEGFP APP 695 and imaged 18 h after transfection.
doi:10.1371/journal.pone.0064149.g009
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