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Chapter 1

Introduction

Let Γ be a discrete countable group and let X be a compact abelian group.
An algebraic Γ-action on X is a homomorphism

α : Γ→ Aut(X)

of Γ into the group Aut(X) of continuous automorphisms of X.

In this thesis, two important notions in the theory of algebraic Γ-action
play a central role:

The notion of expansiveness is a dynamical property of the action α. The
action α is called expansive if there exists an open neighbourhood U of the
identity such that ⋂

γ∈Γ

αγ(U) = 0.

The second important notion is the notion of entropy which should be thought
of a measure of the chaos of the action α. The topological entropy h(α) ∈
[0,∞] of the action α on X can be defined under the assumption that the
group Γ be finitely generated, discrete and amenable.

In [Den06],[DS07], the entropy of expansive actions has been studied for
the following algebraic Γ-actions:

Let f ∈ Mr(ZΓ) be an r × r-matrix with entries in the group ring ZΓ.
The quotient (ZΓ)r/(ZΓ)rf is a discrete abelian group with left Γ-action by
multiplication. The Pontrjagin dual

Xf := ̂(ZΓ)r/(ZΓ)rf := Homcont((ZΓ)r/(ZΓ)rf,T)

is a compact abelian group with a left Γ-action by continuous group auto-
morphisms. Here, T denotes the 1-dimensional torus T := {z ∈ C : |z| = 1}.
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For example, if r = 1 and f =
∑
aγγ ∈ ZΓ, then Xf can be identified

with the set of all sequences (xγ′) ∈ (R/Z)Γ which satisfy the equation∑
γ′∈Γ

xγ′aγ−1γ′ = 0 in R/Z for all γ ∈ Γ .

The left Γ-action on Xf is given by γ(xγ′) = (xγ−1γ′).
Recall that a countable group Γ is residually finite if there exists a se-

quence Γn of normal subgroups with finite index whose intersection is trivial.
We will write Γn → e for such a sequence.

The main result in [DS07] is:

Theorem 1.1 ([DS07], Theorem 1.1). Let Γ be a countable discrete amenable
and residually finite group and f an element of ZΓ. Then the action of Γ
on Xf is expansive if and only if f is a unit in L1(Γ,R). In this case the
entropy h(Xf ) of Xf is given by

h(Xf ) = log detNΓf.

Let us explain Theorem 1.1. Firstly, the dynamical property of the usual
Γ-action on Xf to be expansive is translated into the algebraic property of
the element f to be invertible in the convolution algebra L1(Γ,R) of infinite
formal sums

∑
γ∈Γ xγγ with real numbers xγ such that

∑
γ∈Γ |xγ| < ∞.

Secondly, it expresses the entropy h(Xf ) as the logarithm of the Fuglede-
Kadison determinant detNΓf of f . The Fuglede-Kadison determinant is a
homomorphism

detNΓ : (NΓ)∗ → R>0

from the units of the von Neumann algebra NΓ ⊃ L1(Γ,R) ⊃ ZΓ into the
positive real numbers.

The proof of this theorem involves on the one hand a description of the
entropy of Xf as a renormalized logarithmic growth rate of the number of
Γn-fixed points, i.e. one has

(1.1) h(Xf ) = hper(Xf ) := lim
n→∞

1

(Γ : Γn)
log |FixΓn(Xf )|

independently of the choice of a sequence Γn → e. On the other hand, one
has to show that detNΓf is the limit of certain finite dimensional determi-
nants and that the values of these finite dimensional determinants are given
by |FixΓn(Xf )|(Γ:Γn).

Formula (1.1) motivates the following definition of what we call periodic
p-adic entropy:
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Let Γ be a countable discrete residually finite group acting on a set X.
Let logp : Q∗p → Zp be the branch of the p-adic logarithm normalized by
logp(p) = 0. Then by definition we say that the p-adic entropy of the Γ-
action on X with respect to the sequence Γn → e exists if the limit

(1.2) hp,Γn := lim
n→∞

1

(Γ : Γn)
logp |FixΓn(X)|

exists, where FixΓn(X) denotes the set of points in X which are fixed by Γn.
Changing slightly the terminology used in [Den09], we say that the periodic
p-adic entropy hp,per(X) of the Γ-action exists, if the limit in (1.2) exists
independently of the sequence Γn → e and always has the same value.

The main result in [Den09] is the following

Theorem 1.2 ([Den09], Theorem 2). Assume that the residually finite group
Γ is elementary amenable and torsion-free. Let f be an element of ZΓ which
is a unit in c0(Γ). Then the periodic p-adic entropy hp,per(Xf ) of the Γ-action
on Xf exists and we have

hp,per(Xf ) = logp detΓf.

Let us point out the analogies to Theorem 1.1. In the p-adic case,
the convolution algebra L1(Γ,R) is replaced by the p-adic Banach algebra
c0(Γ) := {x =

∑
γ xγγ : xγ ∈ Qp, |xγ|p → 0 as γ → ∞ in Γ}, i.e. c0(Γ) con-

sists of all formal series over Γ whose coefficients in Qp converge to 0. The
algebraic property f ∈ c0(Γ)∗ guarantees that the periodic p-adic entropy
hp,per(Xf ) exists. Its value is given by the value of f under the so-called
p-adic Fuglede-Kadison determinant

logp detΓ : c0(Γ)∗ → Qp

which serves as a p-adic replacement of the homomorphism

log detNΓ : L1(Γ,R)∗ ⊂ (NΓ)∗ → R.

Theorem 1.2 provides an answer to a question which is motivated from the
theory of expansive Zd-actions:

Let f ∈ Z[t±1
1 , . . . , t±1

d ] =: Rd. If we look at the topological entropy h(Xf )
of the Γ-action on Xf then it is known that h(Xf ) is given by the logarithmic
Mahler measure m(f) of f

h(Xf ) = m(f) :=

∫
Td

log |f(z)|dµ(z).
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Here µ is the normalised Haar measure on the d-torus Td. The Zd-action on
Xf is expansive if and only if f does not vanish in any point of Td which is
exactly the case if f is a unit in L1(Zd,R).

In analogy to this situation one has the notion of the p-adic Mahler
measure mp(f). The p-adic Mahler measure of the Laurent polynomial
f is only defined if f does not vanish in any point of the p-adic d-torus
T dp = {z ∈ Cd

p : |zi|p = 1}. Then mp(f) ∈ Qp is defined by the convergent
Shnirelman integral

mp(f) =

∫
T dp

log f(z)
dz

z
:= lim

N→∞,
(N,p)=1

1

Nd

∑
ζ∈µdN

log f(ζ).

It was asked in [BD99] if mp(f) has an interpretation as a p-adically valued
entropy. The answer is the following variant of Theorem 1.2 for the case
Γ = Zd:

Theorem 1.3 ([Den09], Theorem 1). Assume that f ∈ Rd does not vanish in
any point of the p-adic d-torus. Then the periodic p-adic entropy hp,per(Xf )
of the Zd-action on Xf exists and we have

hp,per(Xf ) = mp(f).

Three main open problems concerning dynamical systems and the notion
of periodic p-adic entropy were formulated in [Den09]:

(1) Is there a notion of p-adic expansiveness for Γ-actions on compact
spaces X which for dynamical systems Xf with f ∈Mr(ZΓ) is equiva-
lent to the condition f ∈ GLr(c0(Γ))?

(2) Is it then possible to define a notion of p-adic entropy for all p-adically
expansive dynamical systems which coincides with the periodic p-adic
entropy of dynamical systems Xf , f ∈Mr(ZΓ) ∩GLr(c0(Γ))?

(3) Is there a dynamical criterion for the existence of the limit defining
periodic p-adic entropy?

In this thesis, we give an answer to questions (1) and (2) for algebraic
Zd-actions. We also point out some problems that occur when one tries to
solve problem (3).

We choose an algebraic approach to problems (1) and (2). Via Pontrjagin
duality, algebraic Zd-actions correspond to modules over the ring Rd and
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dynamical properties of the Zd-action are reflected in algebraic properties of
the dual module.

There are several reasons that suggest this approach. As stated in Theo-
rem 1.2, given f ∈ Rd, we already have an algebraic criterion for the existence
of the periodic p-adic entropy of Xf . As important, in order to define the
p-adic Fuglede-Kadison determinant

logp detΓ : c0(Γ)∗ → Qp,

Deninger constructs a homomorphism

(1.3) logpdetΓ : K1(c0(Γ,Zp))→ Qp

defined for a certain class of groups Γ including the groups Zd, d ≥ 1. Here,
c0(Γ,Zp) = {x ∈ c0(Γ) : maxγ∈Γ |xγ|p ≤ 1} and K1(c0(Γ,Zp)) is the first
algebraic K-group of c0(Γ,Zp). We will use the homomorphism (1.3) to
define a notion of p-adic entropy.

Let us give an overview of the main results. Let α be an algebraic Zd-
action on the compact abelian group X. We denote by MX the corresponding
Pontrjagin dual Rd-module. Let Sp be the multiplicative set Sp = Rd ∩
c0(Zd)∗. We define the algebraic Zd-action α to be p-adically expansive if its
dual module MX belongs to the categoryMSp(Rd) of finitely generated Rd-
modules which are Sp-torsion. Using the localisation sequence of algebraic
K-theory

K1(Rd)→ K1(Rd[S
−1
p ])→ K0(MSp(Rd))→ K0(Rd)→ K0(Rd[S

−1
p ])→ 0,

we attach to every p-adically expansive Zd-action on X an element

clp(X) ∈ K1(Rd[S
−1
p ])/R∗d.

We prove:

Theorem 1.4. There is a homomorphism

logpdetZd : K1(Rd[S
−1
p ])/R∗d → Qp

which is given by the bottom row of the following commutative diagram:

K1(c0(Zd,Zp))/R
∗
d

��

// Qp

K1(Rd[S
−1
p ])/R∗d // K1(c0(Zd))/R∗d

det // c0(Zd)∗/R∗d
logpdetZd // Qp.
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This enables us to define the p-adic entropy hp(X) of a p-adically expan-
sive Zd-action on X as logpdetZd(clp(X)). We then show:

Theorem 1.5. Let f ∈Mr(Rd)∩GLr(c0(Zd)). Then the usual Zd-action on
Xf is p-adically expansive and we have

hp(Xf ) = logpdetZd(f).

In particular, the periodic p-adic entropy of Xf coincides with the p-adic
entropy of Xf :

hp(Xf ) = hp,per(Xf ).

In Section 5 we apply this K-theoretic approach to the theory of expansive
algebraic Zd-action.

Let S∞ be the multiplicative set S∞ = Rd ∩ L1(Zd,R)∗ and let MS∞(Rd)
be the category of finitely generated Rd-modules which are S∞-torsion. We
show the following characterization of expansiveness:

Theorem 1.6 (Algebraic criterion of expansiveness). Let α be an algebraic
Zd-action on a compact abelian group X. Then α is expansive if and only if
MX ∈MS∞(Rd).

For an expansive Zd-action on X we then define an element

cl∞(X) ∈ K1(Rd[S
−1
∞ ])/R∗d = SK1(Rd[S

−1
∞ ])⊕ (Rd[S

−1
∞ ])/R∗d.

Using the Fuglede-Kadison determinant we define a homomorphism

log detNZd : K1(Rd[S
−1
∞ ])/R∗d → R.

Then we show:

Theorem 1.7. Let α be an expansive algebraic Zd-action on a compact
abelian group X. Then the topological entropy of the action α on X is given
by

h(X) = log detNZd(cl∞(X)).

The K-theoretic approach to expansive Zd-actions leads naturally to the
study of the group SK1(Rd[S

−1
∞ ]). We show that the Fuglede-Kadison deter-

minant vanishes on SK1(Rd[S
−1
∞ ]). But in Section 5.2, we show the following

result using topological K-theory:

Theorem 1.8. Let d ≥ 5. Then SK1(Rd[S
−1
∞ ]) 6= 0.
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Using this result one can show that there exist expansive Zd-actions on
X such that the SK1-component of cl∞(X) is non-trivial.

Let us give an overview of the individual chapters of the thesis.

Chapter 2 consists of a short review of the papers [DS07] and [Den09].
Here, we introduce the algebraic dynamical systems of type Xf and give
a short treatment of entropy. We define the group von-Neumann algebra
NΓ and introduce the Fuglede-Kadison determinant. We state the main re-
sults expressing the entropy h(Xf ) of Xf in the expansive case as the value
log detNΓf . The last part of Chapter 2 is concerned with the periodic p-adic
entropy and the p-adic Fuglede-Kadison determinant.

In Chapter 3 we discuss algebraic Zd-actions. In this case, there is a
great interplay between dynamics and commutative algebra which gives us a
deeper understanding of these actions. Via Pontrjagin duality, algebraic Zd-
actions and modules over the ring Rd correspond to each other and dynamical
properties of a dynamical system X can translated into algebraic properties
of its dual module MX . This provides a number of examples of algebraic
Zd-action with specified properties. We discuss the structure of expansive Z-
actions on compact connected abelian groups and also algebraic Zd-actions
which come from rings RS of S-integers of algebraic number fields. The last
part of Chapter 3 is concerned with the entropy of algebraic Zd-actions and
its connection with the Mahler measure.

Chapter 4 and Chapter 5 contain the main results of this thesis. First,
we provide some background material on algebraic K-theory. We introduce
the notion p-adic expansiveness (Section 4.2) and define p-adic entropy for
p-adically expansive Zd-actions (Section 4.3). In Section 4.4 we apply the
theory developed in 4.2 and 4.3 to p-adically expansive Z-actions on compact
connected abelian groups and to the Zd-actions coming from rings RS of S-
integers of algebraic number fields as introduced in Section 3.3.

Section 5.1 contains the proofs of Theorem 1.6 and Theorem 1.7. In Sec-
tion 5.2, we prove Theorem 1.8 using topological K-theory.

In Chapter 6 we determine the periodic p-adic entropy of the action
of the discrete Heisenberg group Γ on Xf for a certain class of elements
f ∈ ZΓ ∩ c0(Γ)∗.

In Chapter 7 we discuss some open questions and problems. In particular,
we provide a short discussion of our solution of Questions (1) and (2) as well
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as some comments on Question (3). We give an example to illustrate that
there are Zd-actions where the periodic p-adic entropy does not exist but
which can be treated with our method. Moreover, we give an example of an
algebraic Z-action where the periodic p-adic entropy exists for trivial reasons
but which is not p-adically expansive in our sense.

Finally, we discuss some properties of the p-adic Banach algebra c0(Γ).
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Ich möchte mich bei meiner Schwester Lynn, Dieter und Thomas und
bei meinen Großeltern Paul und Edith Goertz und Günter Bräuer für ihre
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Chapter 2

Algebraic Γ-actions, entropy
and periodic p-adic entropy

In Section 2.1 we introduce the notions of algebraic Γ-actions, expansiveness
and entropy. To elements f ∈ Mr(ZΓ) in the ring of r × r-matrices with
coefficients in the integral group ring ZΓ we attach a compact abelian group
denoted by Xf which carries a natural algebraic Γ-action. The algebraic Γ-
actions of type Xf and their dynamical properties are the central subject of
Chapter 2.

In Section 2.2 we introduce the Fuglede-Kadison determinant and explain
its connection to the topological entropy of expansive Γ-actions on Xf .

In Section 2.3 we define periodic p-adic entropy and review the construc-
tion of the p-adic Fuglede-Kadison determinant. It is shown in [Den09] that
for a certain class of algebraic Γ-actions of type Xf the periodic p-adic en-
tropy exists. We state the main results how periodic p-adic entropy is related
to the p-adic Fuglede-Kadison determinant.

2.1 Algebraic Γ-actions and expansiveness

Definition 2.1. Let Γ be a countable discrete group and let X be a compact
abelian group. An algebraic Γ-action on X is a homomorphism α : γ 7→ αγ

from Γ into the group Aut(X) of continuous automorphisms of X.

Definition 2.2. An algebraic Γ-action on a compact abelian group X is
expansive if there an expansive neighborhood U of the identity in X, i.e. if
there exists an open neighborhood U of the identity with⋂

γ∈Γ

αγ(U) = 0.
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Remark 2.3. In general, a Γ-action by homeomorphisms on a compact
metrizable space X is called expansive if there exists a metric d defining
the topology and an ε > 0 such that for all x 6= y ∈ X we have d(γx, γy) ≥ ε
for some γ ∈ Γ. For algebraic Γ-actions, this is equivalent to the existence
of an expansive neighborhood U of the identity.

Let Γ be a countable discrete group and let ZΓ be the integral group ring
of Γ consisting of all finite formal sums f =

∑
γ∈Γ aγγ with coefficients in Z.

There are the following operations on ZΓ:
For an element f ∈ ZΓ we denote by Lf (resp. Rf ) the left (resp. right)

multiplication with f . Furthermore, the ring ZΓ is equipped with an anti-
involution

(2.1) ∗ : ZΓ→ ZΓ,
∑
γ∈Γ

aγγ 7→
∑
γ∈Γ

aγ−1γ.

Anti-involution means that we have (f ∗)∗ = f and (fg)∗ = g∗f ∗.
If we replace more generally the ring ZΓ by the ring Mr(ZΓ), r ≥ 1, of

r × r-matrices with entries in ZΓ, matrix multiplication from the right with
f ∈Mr(ZΓ) defines on operation, also denoted by Rf ,

(2.2) Rf : (ZΓ)r → (ZΓ)r, g 7→ gf.

Using the anti-involution defined on ZΓ we define an anti-involution ∗ on
Mr(ZΓ) by

(2.3) ∗ : Mr(ZΓ)→Mr(ZΓ), f = (fij)1≤i,j≤r 7→ f ∗ = (f ∗ji)1≤i,j≤r.

Identifying Mr(ZΓ) with the ring Mr(Z)[Γ] of finite formal sums over Γ with
coefficients in Mr(Z) and (ZΓ)r with Zr[Γ], the operations Rf and ∗ take the
following form: For f =

∑
γ∈Γ aγγ ∈Mr(Z)[Γ] it is

(2.4) Rf : Zr[Γ]→ Zr[Γ],
∑
γ∈Γ

bγγ 7→
∑
γ∈Γ

(∑
γ′∈Γ

bγ′aγ′−1γ

)
γ,

and

(2.5) ∗ : Mr(Z)[Γ]→Mr(Z)[Γ], f 7→ f ∗ =
∑
γ∈Γ

a∗γ−1γ,

where a∗γ = atγ is the transpose of the matrix aγ ∈Mr(Z).

Let us now introduce an important class of algebraic Γ-actions. Let
Γ be a countable discrete group and consider the compact abelian group

14



Map(Γ, (R/Z)r) consisting of all maps from Γ to (R/Z)r with point-wise addi-
tion. We write elements x ∈ Map(Γ, (R/Z)r) as x = (xγ), where xγ ∈ (R/Z)r

denotes the value of x at γ ∈ Γ. There are natural left and right Γ-shift ac-
tions λ and ρ on Map(Γ, (R/Z)r) given by

(2.6) (λγx)γ′ = xγ−1γ′ and (ργx)γ′ = xγ′γ, γ ∈ Γ,

respectively. If we identify Map(Γ, (R/Z)r) with the group (R/Z)r[[Γ]] of in-
finite formal sums with coefficients in (R/Z)r the actions λ and ρ correspond
to left multiplication with γ ∈ Γ respectively right multplication with γ−1:

(2.7) λγ
(∑
γ′∈Γ

xγ′γ
′
)

=
∑
γ′∈Γ

xγ′γγ
′ , ργ

(∑
γ′∈Γ

xγ′γ
′
)

=
∑
γ′∈Γ

xγ′γ
′γ−1.

The compact abelian group Map(Γ, (R/Z)r) with the left action λ is our first
basic example of an algebraic Γ-action.

In order to describe more general algebraic Γ-actions, we make use of
duality theory of locally compact abelian groups: We view (ZΓ)r as discrete
abelian group. Then the Pontrjagin dual group

(̂ZΓ)r := Homcont((ZΓ)r,R/Z)

is a compact abelian group. Thus, evaluation gives a natural pairing, the
so-called Pontrjagin pairing,

〈 , 〉 : (ZΓ)r × (̂ZΓ)r → R/Z, (a, χ) 7→ 〈a, χ〉 := χ(a).

The general Pontrjagin Duality Theorem says that for an abelian locally
compact group G the homomorphism

G→ ̂̂
G, a 7→ 〈a, ·〉,

is an isomorphism of topological groups. In particular, we deduce that for
an exact sequence

0→ G′
σ→ G

τ→ G′′ → 0

of locally compact abelian groups the sequence

0→ Ĝ′′
τ̂→ Ĝ

σ̂→ Ĝ′ → 0

is exact, i.e.

(2.8) ̂ker(G→ G′′) ' coker (Ĝ′′ → Ĝ) and ̂coker (G′ → G) ' ker(Ĝ→ Ĝ′).
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See [RV99], Chapter 3, for more details.

Under the identifications (ZΓ)r = Zr[Γ] and (̂ZΓ)r = (R/Z)r[[Γ]], it is for∑
γ∈Γ aγγ ∈ Zr[Γ] and

∑
γ∈Γ xγγ ∈ (R/Z)r[[Γ]]

(2.9)

〈∑
γ∈Γ

aγγ,
∑
γ∈Γ

xγγ

〉
=

∑
γ,1≤i≤r

aγ,ixγ,i ∈ R/Z.

We also have a right multiplication with elements f =
∑

γ∈Γ aγγ ∈Mr(Z)[Γ]
on (R/Z)r[[Γ]]:

(2.10) Rf : (R/Z)r[[Γ]]→ (R/Z)r[[Γ]],
∑
γ∈Γ

xγγ 7→
∑
γ∈Γ

(∑
γ′∈Γ

xγ′aγ′−1γ

)
γ.

We define

(2.11) ρf = Rf∗ : (R/Z)r[[Γ]]→ (R/Z)r[[Γ]].

Then ρf is just the linear extension of the Γ-action ρ on (R/Z)r[[Γ]] to el-
ements f ∈ Mr(Z)[Γ]. The following formula holds for all a ∈ Zr[Γ], f ∈
Mr(Z)[Γ] and x ∈ (R/Z)r[[Γ]].

(2.12) 〈af, x〉 = 〈a, xf ∗〉.

To prove equation (2.12), it suffices to check it on elements of the form
a = eiγ, f = ejkγ

′ and x = γ′′, where γ, γ′, γ′′ ∈ Γ, ei ∈ Zr the i-th canonical
basisvector and ejk ∈Mr(Z) the matrix with zero entries everywhere except
an 1 in the jk-th entry.

According to equation (2.12) the Pontrjagin dual of right multiplication
with f on Zr[Γ] is right multiplication with f ∗ on (R/Z)r[[Γ]]. Hence by
equation (2.8) we have

̂Zr[Γ]/(Zr[Γ])f = ker
(
ρf : (R/Z)r[[Γ]]→ (R/Z)r[[Γ]]

)
.

Furthermore, since left multiplication and right multiplication with elements
of Γ on (R/Z)r[[Γ]] commute, the natural left Γ-action λ passes to Xf .

Definition 2.4. Let Γ be a countable discrete group and let f be an element
in Mr(ZΓ). We define the dynamical system Xf to be the compact abelian
group

Xf := ̂Zr[Γ]/(Zr[Γ])f = ker
(
ρf : (R/Z)r[[Γ]]→ (R/Z)r[[Γ]]

)
with the Γ-action αf := λ|Xf .
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Example 2.5. According to equation (2.10) Xf ⊂ Map(Γ, (R/Z)r) consists
of all sequences (xγ)γ∈Γ with∑

γ′∈Γ

xγ′a
∗
γ−1γ′ = 0 for all γ ∈ Γ.

For example, if Γ = Z and f = 2t2 − t+ 2 ∈ Z[Z] = Z[t, t−1], then it is

Xf =
{
x = (xn) ∈ (R/Z)Z : 2xn − xn+1 + 2xn+2 = 0 in R/Z for all n ∈ Z

}
.

In the following, we give a description of the group of fixed points of
Xf , f ∈Mr(ZΓ), under a normal subgroup N of Γ.

Definition 2.6. Let Γ be a countable group, X a compact group and let α
be a Γ-action by automorphisms of X. For a subgroup Γ′ ⊂ Γ the subgroup
of Γ′-invariant points in X is defined by

FixΓ′(X) := {x ∈ X : αγx = x for all γ ∈ Γ′}.

Note that FixΓ′(X) is Γ-invariant if Γ′ is a normal subgroup of Γ.
Let Xf be the dynamical system attached to some f ∈Mr(ZΓ) as defined

above. In this case, the group of fixed points under a normal subgroup N of
Γ has the following description:

Let¯: Γ→ Γ̄ := Γ/N be the quotient map. We have the induced quotient
map Mr(Z)[Γ] → Mr(Z)[Γ̄] and we denote by f̄ the image of f under this
map. Consider the natural isomorphism

(R/Z)r[[Γ̄]]
∼→ FixN((R/Z)r[[Γ]]),

∑
δ∈Γ̄

xδδ 7→
∑
γ∈Γ

xγ̄γ.

Under this isomorphism, the action ρf̄ on (R/Z)r[[Γ̄]] corresponds to the
restriction of ρf to FixN((R/Z)r[[Γ]]). Hence we have

FixN(Xf ) = ker(ρf̄ : (R/Z)r[[Γ̄]]→ (R/Z)r[[Γ̄]]) = Xf̄ .

If we assume Γ̄ to be finite, it follows that

FixN(Xf ) = ρ−1
f̄

(ZΓ̄)r/(ZΓ̄)r,

where ρf̄ on the right-hand side of the equation denotes the endomorphism
of right multiplication by f̄ ∗ on (RΓ̄)r. If we assume furthermore that ρf̄ is
an isomorphism of (QΓ̄)r, then the order of FixN(Xf ) is given by the index
of the sublattice ρf̄ ((ZΓ̄)r) of (ZΓ̄)r. By the elementary divisors theorem,
this index is ± det ρf̄ . We conclude:
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Proposition 2.7. Let N be a cofinite normal subgroup of Γ. Put Γ̄ := Γ/N .
For f ∈Mr(Z)[Γ] we denote by f̄ the image of f in Mr(Z)[Γ̄] under the nat-
ural quotient map. Assume that the endomorphism ρf̄ of right multiplication
with f̄ ∗ on (QΓ̄)r is an isomorphism of (QΓ̄)r. Then FixN(Xf ) is finite and
its order is given by

|FixN(Xf )| = ± det ρf̄ .

We want to finish Section 2.1 with a brief introduction of the notion of
topological entropy. For more information, see for example the short survey
on entropy in [Den06].

Definition 2.8. A finitely generated discrete group Γ is called amenable, if
it has a right Følner sequence (Fn)n∈N, i.e. Γ has a sequence F1, F2, . . . of
finite subsets of Γ such that for every finite subset K of Γ, it is

lim
n→∞

|FnK∆Fn|
|Fn|

= 0,

where FnK∆Fn := (FnK∪Fn)\(FnK∩Fn) denotes the symmetric difference
of FnK and Fn.

Example 2.9. The groups Zd, d ≥ 1, are amenable. For integers bi ∈ Z and
ri > 0, 1 ≤ i ≤ d, define the rectangle

Q((bi, ri)1≤i≤d) :=
d∏
i=1

[bi, bi + ri − 1]Z ⊂ Zd,

where [bi, bi + ri − 1]Z := [bi, bi + ri − 1] ∩ Z is the interval [bi, bi + ri − 1]

intersected with Z. Then any sequence Q((b
(n)
i , r

(n)
i )1≤i≤d)n∈N of rectangles

with
lim
n→∞

min
1≤i≤d

{r(n)
i } → ∞

is a right Følner sequence. Since the idea of the proof is the same for every
d ≥ 1, we only prove the case d = 1 in order to keep the notation simple.

Let K be a finite subset of Z. Let d1 be the smallest integer and d2 the
largest integer such that K ⊂ [d1, d2]Z. Let Q = Q((b, r)) = [b, b + r − 1]Z
any rectangle in Z such that

(i) r − 1 ≥ max{|d1|, |d2|} and

(ii) r − 1 ≥ d2 − d1.
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There are the cases (a) d1 ≥ 0, (b) d1 < 0 and d2 > 0, (c) d2 ≤ 0. We treat
the case d1 ≥ 0, the other cases go similarly. Condition (ii) implies that
QK = [b+ d1, b+ d2 + r− 1]Z for any non-empty subset K of [d1, d2]Z. Then
using (i) we get

QK ∪Q = [b, . . . , b+ d1, . . . , b+ r − 1, . . . , b+ d2 + r − 1]Z and

QK ∩Q = [b+ d1, . . . , b+ r − 1]Z.

Thus,

|QK∆K| = |QK ∪K| − |QK ∩K| = d2 + r − (r − d1) = d1 + d2

independently of Q. Now, for any sequence (Qn = Q((bn, rn)))n∈N with rn →
∞ the conditions (i) and (ii) will be satisfied for any finite K ⊂ Z if n is
large enough. Hence

lim
n→∞

|QnK∆Qn|
|Qn|

= 0,

i.e.(Qn)n∈N is a right Følner sequence.

Assume that the finitely generated discrete amenable group Γ operates
from the left by homeomorphisms on a compact metric space (X, d). Let
(Fn)n∈N be a right Følner sequence. The topological entropy of the Γ-action
on X is defined as follows:

For an open cover U of X let N(U) be the cardinality of a minimal
subcover of U . For a finite subset F of Γ let

UF =
∨
γ∈F

γU

be the common refinement of the finitely many covers γU . Using [LW00],
Theorem 6.1, one sees that the limit

h(U) = lim
n→∞

1

|Fn|
logN(UFn)

exists and is independent of the Følner sequence (Fn)n∈N.

Definition 2.10. Let Γ be a finitely generated discrete amenable group which
operates from the left by homeomorphisms on a compact metric space (X, d).
The topological entropy of the Γ-action on X is defined to be the quantity

hcover := sup
U
h(U).
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Before we state the next result, let us recall the definition of a residually
finite group.

Definition 2.11. The group Γ is called residually finite, if there exists a
sequence (Γn)n∈N of normal subgroups of Γ of finite index whose intersection
contains only the neutral element e. In this case, we write Γn → e for such
a sequence.

The following theorem is a central result. It tells us that for a countable
residually finite amenable group Γ, the entropy of the algebraic Γ-action on
Xf , f ∈Mr(ZΓ), can be expressed as a certain logarithmic growth rate of the
number of fixed points under the assumption that the action is expansive.

Theorem 2.12. Let Γ be a countable residually finite amenable group and
let Γn → e be a sequence of cofinite normal subgroups of Γ converging to
e. Let f ∈ Mr(ZΓ) and assume that the algebraic Γ-action αf is expansive.
Then

h(αf ) = lim
n→∞

1

|Γ/Γn|
log |FixΓn(Xf )|.

Proof. [DS07], Theorem 5.7 and [Mül08], Theorem 3.4.7.

2.2 Entropy and the Fuglede-Kadison deter-

minant

Let Γ be a discrete group and let L2(Γ,C) be the Hilbert space of square
summable complex valued functions x : Γ → C. The group Γ acts isometri-
cally from the left by the operation

Γ× L2(Γ,C)→ L2(Γ,C) , (γ, x) 7→ γx,

where the value of γx at γ′ ∈ Γ is given by (γx)′γ := xγ−1γ′ .
Elements in L2(Γ,C) can be represented as formal sums

∑
γ∈Γ xγγ with

complex numbers xγ such that
∑

γ∈Γ |xγ|2 < ∞. If we write elements of

L2(Γ,C) as formal sums
∑

γ∈Γ xγγ, the left Γ-action is given by left multi-
plication by γ.

For a Banach space H let B(H) be the algebra of bounded linear operators
of H into itself.

Definition 2.13. The group von Neumann algebra NΓ of Γ is the algebra
of Γ-equivariant bounded linear operators of L2(Γ,C) into itself,

NΓ := B(L2(Γ,C))Γ.
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Definition 2.14. The von Neumann trace on NΓ is the linear form

trNΓ : NΓ→ C, trNΓ(g) = (g(e), e),

where e ∈ Γ ⊂ L2(Γ,C) is the unit in Γ. Here, (g(e), e) denotes the inner
product of the elements g(e) and e.

For a matrix A = (aij)1≤i,j≤r ∈Mr(NΓ) the von Neumann trace is defined
as

trNΓ(A) :=
r∑
i=1

trNΓ(ai,i).

The group Γ acts isometrically from the right on L2(Γ,C) by (xγ)γ′ =
xγ′γ−1 . This corresponds to right multiplication with γ if we view elements
of L2(Γ,C) as formal sums. For γ ∈ Γ define the operator Rγ ∈ B(L2(Γ,C))
by Rγ(x) := xγ. This operator is Γ-equivariant and so defines an element in
NΓ. Then CΓ is embedded in NΓ by the injective C-algebra homomorphism

(2.13) r : CΓ→ NΓ,
∑
γ∈Γ

aγγ 7→
∑
γ∈Γ

aγRγ−1 .

The adjoint f ∗ of f =
∑

γ aγγ ∈ CΓ ⊂ NΓ is given by f ∗ =
∑

γ āγγ
−1. More

generally, we define

(2.14) rn,n : Mn(CΓ)→Mn(NΓ), (fij)1≤i,j≤n 7→ (r(fij))1≤i,j≤n,

and

(2.15) ∗ : Mn(CΓ)→Mn(CΓ), (fij)1≤i,j≤n 7→ ((fji)
∗)1≤i,j≤n.

Then because of R∗γ = Rγ−1 it is

rn,n(f ∗) = rn,n(f)∗.

The L1-convolution algebra L1(Γ,C) of Γ is the completion of CΓ in the
|| ||1-norm. We write elements in L1(Γ,C) as infinite formal sums

∑
γ∈Γ xγγ

with complex numbers xγ which satisfy
∑

γ∈Γ |xγ| <∞. Right multiplication

with elements in L1(Γ,C) on L2(Γ,C) is continuous because of the estimate
||ϕ ·f ||2 ≤ ||f ||1||ϕ||2 for all ϕ ∈ L2(Γ,C) and f ∈ L1(Γ,C). Thus, we obtain
a natural injection

(2.16) r : L1(Γ,C)→ NΓ with ||r(f)|| ≤ ||f ||1
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which extends the map (2.13) above. Similarly, we get an injection

(2.17) rn,n : Mn(L1(Γ,C))→Mn(NΓ)

which extends the homomorphism (2.14). In particular, units inMn(L1(Γ,C))
give units in Mn(NΓ).

Definition 2.15. The Fuglede-Kadison determinant of an element u ∈ GLr(NΓ)
is defined to be the real number

detNΓ(u) := exp
(1

2
trNΓ(log uu∗)

)
.

Here, the operator uu∗ is positive and log uu∗ is defined via functional calculus
in B(L2(Γ,C)r)

An important fact about the Fuglede-Kadison determinant is the follow-
ing proposition which is proven in [Lüc02], Theorem 3.14.

Theorem 2.16. The Fuglede-Kadison determinant is a homomorphism

detNΓ : GLr(NΓ)→ R>0.

Example 2.17. Let Γ = Zd. There is the following model for the von
Neumann algebra N (Zd). Let L2(Td,C) be the Hilbert space of equivalence
classes of L2-integrable complex-valued functions on the d-torus Td, where
two such functions are called equivalent if they differ on a subset of measure
zero. Let L∞(Td,C) be the ring of equivalence classes of essentially bounded
measurable functions f : Td → C, where essentially bounded means that
there exists a constant C > 0 such that the set {z ∈ Td : |f(z)| ≥ C} has
measure zero. The group Zd acts isometrically on L2(Td,C) by

Zd × L2(Td,C), ((k1, . . . , kd), f) 7→ zk1
1 · . . . · z

kd
d f.

Fourier transform yields an isometric Zd-equivariant isomorphism

L2(Zd,C)
∼→ L2(Td,C).

Hence N (Zd) = B(L2(Td,C))Zd .
Now sending a function f ∈ L∞(Td,C) to the Zd-equivariant operator

Mf : L2(Td,C)→ L2(Td,C), g 7→ g · f,

gives an isomorphism
L∞(Td,C)

∼→ N (Zd).
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The Fuglede-Kadison determinant of an invertible element f ∈ L∞(Td,C) is
given by

detNZd(f) =

∫
Td

log |f |dµ,

where dµ is the normalized Haar measure one Td.

Example 2.18. Assume Γ is finite. Then it is CΓ = L2(Γ,C) = NΓ. For
f ∈ GLr(CΓ) it is

detNΓ(f) = |detCRf |
1
|Γ| .

Here, detCRf is the determinant of the C-linear endomorphism of (CΓ)r given
by right multiplication with f . Since the absolute value of the determinant
of right muliplication with f is equal to the absolute value of the determinant
of the endomorphism ρf of right multiplication with f ∗, we also have

detNΓ(f) = |detC ρf |
1
|Γ| .

In the remainder of Section 2.2 we want to explain the connection of
the Fuglede-Kadison determinant to the entropy of the usual Γ-action on
Xf , f ∈Mr(ZΓ), in the expansive case.

There is the following criterion for expansiveness of the usual Γ-action on
Xf :

Theorem 2.19. Let Γ be a countable group, f ∈Mr(ZΓ), and let αf be the
Γ-action on Xf as in Definition 2.4. The following conditions are equivalent.

(1) The action αf is expansive.

(2) f ∈ GLr(L
1(Γ,R)).

Proof. See [DS07], Theorem 3.2, for the case r = 1 and [Mül08], Theorem
3.2.1, for the general case.

Remark 2.20. Let Γ be residually finite and let Γn → e be a sequence of
cofinite normal subgroups of Γ. Assume that f ∈ Mr(ZΓ) ∩ GLr(L

1(Γ,R))
so that the Γ-action αf is expansive. Then by Theorem 2.12, it is

(2.18) h(αf ) = lim
n→∞

1

|Γ/Γn|
log |FixΓn(Xf )|.

Furthermore, for every n ∈ N, the image f (n) of f in Mr(ZΓ(n)) lies in
GLr(L

1(Γ(n),R)) = GLr(RΓ(n)), where Γ(n) = Γ/Γn. This implies that the
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endomorphism ρf (n) of right multiplication with f (n)∗ on (QΓ(n))r is an iso-
morphism as an injective endomorphism of a finite dimensional Q-vector
space. By Proposition 2.7, it is

|FixΓn(Xf )| = ± det ρf (n) .

The last step to the main result is the following important approximation
result of the Fuglede-Kadison determinant. It will give the connection of the
Fuglede-Kadison determinant and the limit (2.18).

Theorem 2.21. Let Γ be a countable residually finite discrete group and
Γn → e a sequence of cofinite normal subgroups of Γ converging to e ∈ Γ.
For f ∈ GLr(L

1(Γ,C)) it is

detNΓ(f) = lim
n→∞

detNΓ(n)f (n).

Proof. [Mül08], Theorem 3.5.2.

Now, we can prove the main result of Section 2.2:

Theorem 2.22. Let Γ be a countable discrete amenable and residually finite
group and let f ∈Mr(ZΓ). Then the Γ-action on Xf is expansive if and only
if f ∈ GLr(L

1(Γ,R)). In this case

h(αf ) = log detNΓ(f).

Proof. By Theorem 2.19, the Γ-action on Xf is expansive if and only if
f ∈ GLr(L

1(Γ,R)). Then combining Theorem 2.21, Theorem 2.12, Example
2.18 and Proposition 2.7, we get

h(αf ) = lim
n→∞

1

|Γ/Γn|
log |FixΓn(Xf )| = lim

n→∞
log detNΓ(n)f (n)

= log detNΓ(f).

2.3 Periodic p-adic entropy and the p-adic Fuglede-

Kadison determinant

Let logp : Q∗p → Zp be the branch of the p-adic logarithm normalized by
logp(p) = 0.

The field Cp is defined as the completion of an algebraic closure of Qp.
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Definition 2.23. Let Γ be a countable discrete residually finite group acting
on a set X. Let Γn → e be a sequence of cofinite normal subgroups converging
to e. The p-adic entropy of the Γ-action on X with respect to the sequence
Γn is defined to be

hp,Γn := lim
n→∞

1

(Γ : Γn)
logp |FixΓn(X)|

if the limit exists.
If the limit exists independently of the choice of the sequence Γn → e and

the value is always the same we say the periodic entropy hp,per of the Γ-action
on X exists.

Let us give a short survey on the article [Den09]. The main results say
that for a certain class of residually finite groups Γ the periodic p-adic entropy
of the natural Γ-action on Xf , f ∈Mr(ZΓ), exists under some assumption on
the element f . Furthermore, the periodic p-adic entropy of Xf is expressed
as the value of f under the so-called p-adic Fuglede-Kadison determinant.

Definition 2.24. Let Γ be a countable discrete group. The Qp-algebra c0(Γ)
is defined as

c0(Γ) :=

{
x =

∑
γ∈Γ

xγγ ∈ Qp[[Γ]] : |xγ| → 0 as γ →∞ in Γ

}
.

Here, |xγ| → 0 as γ → ∞ in Γ means that for every ε > 0 all but a finite
number of the xγ have absolute value less than ε.

The algebra c0(Γ) with the supremum norm∣∣∣∣∣∣∑
γ∈Γ

xγγ
∣∣∣∣∣∣ = sup

γ∈Γ
|xγ|p = max

γ∈Γ
|xγ|p

is a Qp-Banach algebra in the following sense.

Definition 2.25. A p-adic Banach algebra over Qp is a unital Qp-algebra
B which is complete with respect to a norm || || : B → R≥0 satisfying the
following conditions:

(i) ||x|| = 0 if and only if x = 0,

(ii) ||x+ y|| ≤ max(||x||, ||y||),

(iii) ||λx|| = |λ|p||x|| for all λ ∈ Qp,
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(iv) ||xy|| ≤ ||x|| ||y|| and ||1|| = 1.

Example 2.26. The algebra Mr(c0(Γ)) of r×r-matrices with entries in c0(Γ)
is a p-adic Banach-algebra with norm ||(aij)|| = maxij ||aij||.

Let B be a p-adic Banach algebra whose norm || || takes values in pZ∪{0}.
Let A = B0 := {b ∈ B : ||b|| ≤ 1} and let U1 = 1 + pA be the subgroup of
1-units in A∗. U1 is indeed a subgroup of A∗ because for 1 + pa ∈ U1 the
element

∑∞
ν=0(−pa)ν is the inverse of 1+pa in U1. For example, if B = c0(Γ)

it is

c0(Γ)0 = c0(Γ,Zp) :=

{
x =

∑
γ∈Γ

xγγ ∈ c0(Γ) : xγ ∈ Zp for all γ ∈ Γ

}
.

The logarithmic series converges on U1 and defines a continuous map

log : U1 → A, log u = −
∞∑
ν=1

(1− u)ν

ν
.

Let trB : B → Qp be a trace functional, i.e. trB is a continuous linear
map such that trB(ab − ba) = 0 for all a, b ∈ B. Then for b ∈ B and
c ∈ B∗ it is trB(cbc−1) = trB(b) and by [Den09], Theorem 13, the composition
trB log : U1 → Zp is a homomorphism.

We apply this in the situation where B = Mr(c0(Γ)), A = Mr(c0(Γ,Zp))
and U1 = 1 + pMr(c0(Γ,Zp)). The trace functional that we want to consider
is the compositum of the usual trace

tr : Mr(c0(Γ))→ c0(Γ)

and the trace functional

trΓ : c0(Γ)→ Qp,
∑
γ∈Γ

aγγ 7→ ae.

We denote the compositum trΓ ◦ tr also by trΓ.

Theorem 2.27. The map

logpdetΓ := trΓ log : 1 + pMr(c0(Γ,Zp))→ Qp

is a homomorphism.

If we assume Γ to be residually finite then the next step is to relate
logpdetΓ(f) for f ∈ 1 + pMr(c0(Γ,Zp)) with the periodic p-adic entropy of
Xf .
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Proposition 2.28. Let Γ be a residually finite countable discrete group and
let Γn → e be a sequence of cofinite normal subgroups of Γ converging to e.
For f ∈ 1 + pMr(c0(Γ,Zp)) consider its image f (n) in 1 + pMr(ZpΓ

(n)) where
Γ(n) is the finite group Γ(n) = Γ/Γn. Then we have

logpdetΓf = lim
n→∞

logpdetΓ(n)f (n) in Zp.

Proof. See [Den09], Proposition 17.

Proposition 2.29. Let Γ be finite. Then we have

logpdetΓf =
1

|Γ|
logp detQp(ρf )

for f ∈ 1 + pMr(ZpΓ), where ρf denotes the Qp-endomorphism of right mul-
tiplication with f ∗ on (QpΓ)r.

Proof. See [Den09], Proposition 15.

As a corollary to the previous propositions we get:

Corollary 2.30. Let Γ be a residually finite countable discrete group and
f an element of Mr(ZΓ) which is a 1-unit in Mr(c0(Γ)). Then the periodic
p-adic entropy hp(Xf ) of the Γ-action on Xf exists and we have

hp,per(Xf ) = logpdetΓf in Zp.

Proof. By Proposition 2.7 and Proposition 2.29, it is

1

(Γ : Γn)
logp |FixΓn(Xf )| =

1

(Γ : Γn)
logp detQp(ρf (n))

= logpdetΓ(n)f (n).

Then the claim follows from Proposition 2.28.

Next one would like to extend the map logpdetΓ to c0(Γ,Zp)
∗, or more

generally, to GLr(c0(Γ,Zp)). The first attempt to do so by using the exact
sequence

0→ 1 + pc0(Γ,Zp)→ c0(Γ,Zp)
∗ → Fp[Γ]∗ → 0

seems not to work since one does not know if (Fp[Γ]∗/〈Γ〉)ab is torsion. But
for some groups Γ, it is known that the Whitehead group WhFp(Γ) :=
K1(Fp[Γ])/〈Γ〉 over Fp of Γ is torsion, where 〈Γ〉 is the image of Γ under
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the canonical map Fp[Γ]∗ → K1(Fp[Γ]). Recall that for a unital, not neces-
sarily commutative ring R, it is

K1(R) := lim−→
r

GLr(R)/ lim−→
r

Er(R),

where GLr(R) is embedded in GLr+1(R) via the homomorphism mapping
a to

(
a 0
0 1

)
and Er(R) is the subgroup of GLr(R) generated by elementary

matrices. We refer to Section 4.1 for a more detailed review of K-theory.

Theorem 2.31. Let Γ be a countable discrete residually finite group such
that WhFp(Γ) is torsion. Then there is a unique homomorphism

logpdetΓ : K1(c0(Γ,Zp))→ Qp

with the following properties:

(i) For every r ≥ 1 the composition

1 + pMr(c0(Γ,Zp)) ↪→ GLr(c0(Γ,Zp))→ K1(c0(Γ,Zp))
logpdetΓ→ Qp

coincides with the map logpdetΓ defined before.

(ii) On the image of Γ in K1(c0(Γ,Zp)) the map logpdetΓ vanishes.

Proof. See [Den09], Theorem 19.

Definition 2.32. We call the homomorphism

(2.19) logpdetΓ : K1(c0(Γ,Zp))→ Qp

of Theorem 2.31 as well as the homomorphisms

logpdetΓ : GLr(c0(Γ,Zp))→ Qp, r ≥ 1,

derived from (2.19) by composing the map GLr(c0(Γ,Zp)) → K1(c0(Γ,Zp))
with the homomorphism (2.19) the p-adic Fuglede-Kadison determinant.

For f ∈ GLr(c0(Γ,Zp)) the value logpdetΓf is then given a follows: There
are integers N ≥ 1, s ≥ r, such that fN = i(γ) · ε · g in Ms(c0(Γ,Zp)), where
i(γ) is the s × s-matrix

(
γ 0
0 1s−1

)
, ε ∈ Es(c0(Γ,Zp)) is an elementary matrix

and g ∈ 1 + pMs(c0(Γ,Zp)). Then we have

logpdetΓf =
1

N
logpdetΓg,
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where the homomorphism logpdetΓ on the right-hand side is the one of The-
orem 2.27.

For groups Γ as in Theorem 2.31 whose group ring Fp[Γ] has no zero
divisors it is possible to extend the definition of logpdetΓ from c0(Γ,Zp)

∗ to
c0(Γ)∗. Namely, by [Den09], Proposition 4, we know that

c0(Γ)∗ = pZc0(Γ,Zp)
∗ and pZ ∩ c0(Γ,Zp)

∗ = 1.

Hence, there is a unique homomorphism

logpdetΓ : c0(Γ)∗ → Qp

which agrees with logpdetΓ defined on c0(Γ,Zp)
∗ = GL1(c0(Γ,Zp)) in Defini-

tion 2.32 and satisfies logpdetΓ(p) = 0.
We have the following approximation result for the p-adic Fuglede-Kadison

determinant.

Proposition 2.33. Let Γ be a residually finite countable discrete group and
let Γn → e be a family of cofinite normal subgroups converging to e. For f
in Mr(c0(Γ)) let f (n) be its image in Mr(QpΓ

(n)). Then the formula

logpdetΓf = lim
n→∞

1

(Γ : Γn)
logp detQp(ρf (n))

holds whenever logpdetΓf is defined. These are the cases

(i) where f is in 1 + pMr(c0(Γ,Zp))

(ii) where WhFp(Γ) is torsion and f is in GLr(c0(Γ,Zp))

(iii) where WhFp(Γ) is torsion, FpΓ has no zero divisors and f is in c0(Γ)∗.

Proof. [Den09], Proposition 23.

As an application to dynamical systems and periodic p-adic entropy we
get:

Theorem 2.34. Let Γ be a residually finite countable discrete group such
that WhFp(Γ) is torsion. Let f be an element of Mr(ZΓ) ∩ GLr(c0(Γ,Zp)).
Then the periodic p-adic entropy hp,per(Xf ) of the usual action of Γ on Xf

exists and we have
hp,per(Xf ) = logpdetΓf in Qp.

Proof. See [Den09], Theorem 22.
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Let us give a short discussion of the previous results in the special case
Γ = Zd. We denote by Rd = Z[t±1

1 , . . . , t±1
d ] the integral group ring of Zd.

Recall that the p-adic Mahler measure mp(f) of a Laurent polynomial which
does not vanish in any point of the p-adic d-torus T dp := {z ∈ Cd

p : |zi|p =
1, 1 ≤ i ≤ d} is defined by the Shnirelman integral

mp(f) :=

∫
T dp

logp f(z)
dz

z
:= lim

N→∞,
(N,p)=1

1

Nd

∑
ζ∈µdN

log f(ζ),

where µN denotes the set of N -th roots of unity in Cp. See Section 6.1 for
more facts on the Shnirelman integral and the p-adic Mahler measure.

Theorem 2.35. Let f ∈ Rd ∩ c0(Zd)∗. Then the periodic p-adic entropy
hp,per(αf ) of the Z-action αf on Xf is given by

hp,per(αf ) = mp(f).

Proof. Using Theorem 2.33, (iii), we see that hp,per(αf ) exists. Choosing the
sequence Γn = (nZ) → 0 with n prime to p gives the result (see [Den09],
Theorem 9).

In the case of an element f ∈ Mr(Rd) ∩ GLr(c0(Zd)), r > 1, Deninger
proves the following result without using the p-adic Fuglede-Kadison deter-
minant, see [Den09], Theorem 9:

Theorem 2.36. Let f ∈ Mr(Rd) ∩ GLr(c0(Zd)). Then the p-adic entropy
with respect to the sequence Γn = (nZ)d → 0 with n prime to p of the Zd-
action on Xf exists, and we have

hp,Γn = mp(det f).

In Chapter 4, we will show that the periodic p-adic entropy of Xf exists
under the assumptions of the previous theorem using the p-adic Fuglede-
Kadison determinant.

We want to finish this section with an example taken from [Den09]. There-
fore, we need the following two propositions.

Proposition 2.37. Let f(t) = ant
n + . . . + a0 be a polynomial in Cp with

an · a0 6= 0 whose zeroes ζ satisfy |ζ|p 6= 1. Then

mp(f) = logp a0 −
∑

0<|ζ|p<1

logp ζ = logp an +
∑
|ζ|p>1

logp ζ .
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Proof. See [BD99], Proposition 1.5.

Proposition 2.38. For f ∈ Qp[t
±1
1 , . . . , t±1

d ] the following properties are
equivalent:

(i) We have f(z) 6= 0 for every z in the p-adic d-torus T dp .

(ii) f is a unit in c0(Zd).

Proof. See [Den09], Proposition 6.

Example 2.39. Consider the polynomial f = 2t2 − t + 2. The zeroes of f
in Q2 are given by α± = 1

4
(1 ±

√
−15) with |α+|2 = 2 and |α−|2 = 1/2. By

Proposition 2.38 f is a unit in c0(Z) and by Theorem 2.35 and Proposition
2.37 the periodic 2-adic entropy of Xf is given by

h2,per(Xf ) = log2 α+ .
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Chapter 3

Algebraic Zd-actions

In this section we review some results on algebraic Zd-actions, i.e. actions of
Zd by continuous automorphisms on compact abelian groups.

The key to study algebraic Zd-actions is the connection with commuta-
tive algebra. Namely, via Pontrjagin duality algebraic Zd-actions correspond
to modules over the ring Rd := Z[t±1

1 , . . . , t±1
d ]. Dynamical properties of al-

gebraic Zd-actions can be translated into algebraic properties of the dual
module.

In the first part we give some examples and results on how the dynamics of
the Zd-action on X interplays with algebraic properties of the dual module
MX . In particular, the geometro-algebraic criterion for expansiveness in
terms of the associated prime ideals of MX is important.

In Section 3.2 we discuss the structure of expansive algebraic Z-actions
on compact connected abelian groups.

In Section 3.3 we describe Zd-actions which correspond via Pontrjagin
duality to rings RS of S-integers of algebraic number fields.

In the last part of this chapter we provide some results on the entropy of
algebraic Zd-actions with the connection to the Mahler measure.

3.1 Algebraic Zd-actions and the dual module

Let α be an algebraic Zd-action on a compact abelian group X. Pontrjagin
duality gives a dual left action α̂ : Zd → Aut(X̂) on the discrete additive

group X̂. This makes X̂ to a Rd-module, and conversely, every Rd-module
M gives an algebraic Zd-action on the compact abelian group M̂ . We will
also use the term dynamical system X for a compact abelian group X with
an algebraic Zd-action α. We write MX for the Rd-module corresponding to
a dynamical system X.
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Examples 3.1. Let d ≥ 1.

(1) The algebraic Zd-action corresponding to the Rd-module Rd is the com-

pact abelian group XRd = R̂d = (R/Z)Zd = (R/Z)[[Zd]] with Zd-action

α on (R/Z)Zd given by n · (xm) = (xm−n).

(2) The α-invariant closed subgroups of XRd correspond to ideals in Rd:
Given an ideal I ⊂ Rd the dual of Rd/I is the closed α-invariant sub-
group

XRd/I = {x ∈ XRd : 〈x, f〉 = 1 for every f ∈ I},
where 〈 , 〉 denotes the Pontrjagin pairing. Conversely, given a closed
α-invariant subgroup Y ⊂ XRd , the annihilator Y ⊥ of Y in Rd,

Y ⊥ = {f ∈ Rd : 〈y, f〉 = 1 for every y ∈ Y },

is an ideal in Rd.

Since an algebraic Zd-action (X,α) is completely determined by its dual
module MX , one can in principle express all dynamical properties of α by
properties of MX . For dynamical systems X corresponding to noetherian
Rd-modules many of the dynamical properties of the action α on X have
been translated into algebraic properties of the module MX . Note that by
(2) in the examples above, the Rd-module MX is noetherian if and only if
the action α on X satisfies the descending chain condition, i.e. every strictly
decreasing sequence

X ) X1 ) X2 . . .

of closed, α-invariant subgroups of X is finite.
One fact used to translate dynamical properties of (X,α) into algebraic

properties ofMX is that a noetherian Rd-moduleM admits a prime filtration,
i.e. a sequence M = Mr ⊃Mr−1 ⊃ . . . ⊃M0 = {0} such that for i = 1, . . . , r,
the quotient Mi/Mi−1 is isomorphic to Rd/pi for some prime ideal pi in Rd.
Even better, certain dynamical properties of (X,α) can be expressed only in
terms of the associated primes of MX .

Let us recall the definition of an associated prime ideal of a moduleM over
a commutative ring R. A prime ideal p ⊂ R is said to be associated with M
if p is the annihilator of some element m ∈M . This amounts to saying that
M contains a submodule isomorphic to R/p. The set of associated primes of
M is usually denoted by AssR(M) or just Ass(M). For later reference, we
state the following result.

Proposition 3.2. Let M be a noetherian Rd-module. Then the following
holds:
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(i) The set Ass(M) is finite and non-empty.

(ii) There exists a prime filtration M = Ms ⊃ . . . ⊃ M0 = {0} of M such
that for every i = 1, . . . , s, Mi/Mi−1

∼= Rd/qi, for some prime ideal
qi ⊂ Rd, and qi ⊃ p for some p ∈ Ass(M).

Proof. For (i) see [Bou98], Chapter IV, §1.1, Corollary 1 and §1.4, Theorem
2. For (ii) see [Sch95], Corollary 6.2.

For an ideal I ⊂ Rd and an algebraically closed field K with char K = 0
we denote by

VK(I) =
{
c = (c1, . . . , cd) ∈ (K∗)d : f(c) = 0 for every f ∈ I

}
the set of zeroes of I over K. For us, the fields K = C and K = Qp will be
important. We denote by Td the real d-torus, i.e. the set

Td = {z ∈ Cd : |zi| = 1, 1 ≤ i ≤ d}.

Let us return to algebraic Zd-actions on a compact abelian group X. The
following theorem is part of [Sch95], Theorem 6.5.

Theorem 3.3 (Geometric criterion for expansiveness). Let α be an algebraic
Zd-action on X. Assume the corresponding Rd-module MX is noetherian.
Then the Zd-action α is expansive if and only if

VC(p) ∩ Td = ∅ for every p ∈ Ass(MX).

In the last theorem we had to assume that MX is noetherian. If, on the
other hand, we start with an expansive algebraic Zd-action, we have:

Proposition 3.4. Let α be an expansive algebraic Zd-action on X. Then
the dual module MX is a noetherian Rd-torsion module.

Proof. See [Sch95], Corollary 6.13.

Let α be an algebraic Zd-action on X. For a subgroup Λ of Zd recall that

FixΛ(α) = {x ∈ X : αγx = x for all γ ∈ Λ}.

We will also use the notation FixΛ(X) if no confusion on the action α on X
can occur.
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Theorem 3.5. Let α be an algebraic Zd-action on X. Assume the corre-
sponding Rd-module MX is noetherian. Let Λ ⊂ Zd be a subgroup of finite
index. Let I(Λ) be the ideal in Rd generated by

(tn1
1 . . . tndd − 1, (n1, . . . , nd) ∈ Λ).

The following conditions are equivalent.

(i) The set FixΛ(α) is finite.

(ii) For every p ∈ Ass(MX)

VC(p) ∩ VC(I(Λ)) = ∅.

Proof. See [Sch95], Theorem 6.5.

Remark 3.6. Note that by Theorems 3.3-3.5, if α is an expansive Zd-action
on X and Λ a subgroup of Zd of finite index, then FixΛ(α) is finite because
VC(I(Λ)) ⊂ Td.

Proposition 3.7. Let α be an algebraic Zd-action on X and let MX be
the corresponding Rd-module. Then X is connected if and only if for every
p ∈ Ass(MX) we have VC(p) = ∅.
Proof. See [Sch95], Proposition 6.9.

We finish this section with a comparison of the criterion for expansiveness
of the Γ-action αf on Xf , f ∈ ZΓ, as stated in Theorem 2.19 applied to the
case Γ = Zd with the criterion of Theorem 3.3. For this, we need Wiener’s
famous result:

Theorem 3.8. Let f be a continuous nowhere vanishing function on Td

which has Fourier coefficients in L1(Zd,C), then 1/f has Fourier coefficients
in L1(Zd,C) as well.

Proof. See for example [Kat04], VIII, Theorem 2.9, for a proof in the case
d = 1. The generalisation to the case d > 1 is straightforward.

Remark 3.9. Let f ∈ Rd. Then by Theorem 2.19, applied to the case

Γ = Zd, the usual Zd-action on Xf = R̂d/(f) is expansive if and only if
f ∈ L1(Zd,R)∗. By Theorem 3.8 the element f ∈ L1(Zd,R)∗ if and only if f
considered as a function f : Td → C has no zeroes on Td. Here we use that
if f ∈ L1(Zd,R) and f ∈ L1(Zd,C)∗ then f is already a unit in L1(Zd,R).

Now, the associated primes of the dual module Rd/(f) of Xf are the
prime ideals generated by the irreducible factors of f and, of course, f has
no zeroes on Td if and only if none of its prime factors has a zero on Td. So
for Γ = Zd and dynamical systems Xf , f ∈ Rd, Theorem 2.19 and Theorem
3.3 are equivalent.

36



3.2 Expansive Z-actions on compact connected

abelian groups

Let us recall the situation of an expansive Z-action on a compact, connected,
abelian group X.

Theorem 3.10. Let α be a Z-action on a compact, connected, abelian group
X. The following conditions are equivalent.

(i) α is expansive.

(ii) There exist primitive polynomials f1, . . . , fr in R1 such that fj divides
fj+1 for j = 1, . . . , r − 1 and fr has no roots of modulus 1 and a
surjective morphism φ of dynamical systems

φ : Y := Yf1 × . . .× Yfr → X

with finite kernel.

Proof. By Proposition 3.4, the module MX is a noetherian Z[t, t−1]-torsion
module. By assumption, X is connected and so using Proposition 3.7, we
deduce that MX is torsion-free as an abelian group. This implies that MX

injects into MX⊗Z Q. By the general theory of finitely generated torsion
modules over principal ideal domains, we have an isomorphism

MX⊗Z Q ' Q[t, t−1]/(f1)× . . .×Q[t, t−1]/(fr)

with elements fj ∈ Q[t, t−1], 1 ≤ j ≤ r, such that fj divides fj+1 for j =
1, . . . , r − 1.

We may assume that the fj are in Z[t, t−1] and that they are primitive.
Moreover, because MX is a finitely generated Z[t, t−1]-module, we may as-
sume that the image of MX under the composition

MX ↪→MX⊗Z Q ∼→ Q[t, t−1]/(f1)× . . .×Q[t, t−1]/(fr)

lies in Z[t, t−1]/(f1)× . . .×Z[t, t−1]/(fr). Then there is an exact sequence of
Z[t, t−1]-torsion modules

0→MX φ̂→ Z[t, t−1]/(f1)× . . .× Z[t, t−1]/(fr)→ coker φ̂→ 0 ,

such that the second arrow in the diagram is an isomorphism after tensoring
with Q. This implies that coker φ̂ is a torsion group. Since Z[t, t−1]/(f1) ×
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. . . × Z[t, t−1]/(fr) is a finitely generated Z[t, t−1]-module we find a natural
number n ∈ N such that

n · (Z[t, t−1]/(f1)× . . .× Z[t, t−1]/(fr)) ⊂ φ̂(MX)

which implies that coker φ̂ is annihilated by the natural number n. Then
coker φ̂ is a finitely generated Z[t, t−1]/(n, f1 · . . . · fr)-module and so is finite.

Dualizing the short exact sequence, we get the surjective morphism φ :
Y → X with finite kernel. Now, the action α on X is expansive if and only
if the canonical Z-action on Y is expansive, and this is exactly the case if
none of the fj has a root of modulus 1.

Now we come to a second description of expansive automorphisms on
connected compact abelian groups.

Definition 3.11. Given a matrix A ∈ GLn(Q) we define a closed shift-
invariant subgroup X of (Tn)Z by

X =
{
x = (xk) ∈ (Tn)Z : mxk+1 = Bxk for all k ∈ Z

}
,

where m is the smallest positive integer such that the matrix B := mA has
entries in Z. We define XA = X0 to be the connected component of the
identity.

Let us determine the dual module of XA. We denote by At the transpose
of the matrix A. We define the R1-module MA by

MA := Zn[At, (A−1)t] := subgroup of Qn generated by
⋃
k∈Z

(Ak)tZn,

where the variable t ∈ R1 acts by multiplication with At on MA. Note that

by Proposition 3.7 the dual M̂A is connected because MA is torsion-free as
an abelian group.

Let η be the R1-module homomorphism

η :
⊕

Z

Zn →MA, w = (wk)k∈Z 7→
∑
k∈Z

(At)kwk.

Let W ⊂
⊕

Z Zn be the subgroup generated by all w = (wk) ∈
⊕

Z Zn such
that there exists an integer l ∈ Z with Btwl+1 = −mwl and wk = 0 for
k 6∈ {l, l + 1}. Again, m denotes the smallest positive integer such that the
matrix B := mA has entries in Z.

Then W ⊂ ker η. Furthermore, the quotient ker η/W is a torsion group.
A computation shows that XA ⊂ W⊥ where here we have to use that XA is
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connected. Furthermore, it is M̂A ⊂ X. Dualizing these inclusions, we get a
sequence ⊕

Z

Zn/W →MX0 →MA '
⊕

Z

Zn/ ker η

of surjetive R1-module homomorphisms. If the homomorphism MX0 →MA

was not an isomorphism, we would deduce that MX0
has torsion elements

because ker η/W is a torsion group. This cannot be true because X0 is
connected. It follows

M̂A ' XA.

Next, we want to determine under what conditions the shift action on
XA is expansive. First notice that by definition, the R1-module MA is
finitely generated. Hence, to check expansiveness we need to determine
the associated primes of MA. Let χA be the characteristic polynomial of
A and let k the smallest integer such that kχA ∈ R1. It is clear that
Ass(MX) = {(f1), . . . , (fr)}, where kχA = f1 · . . . · fr is a prime decom-
position in R1. It follows that the shift action on XA is expansive if and only
if the characteristic polynomial χA has no zeroes in T.

The next theorem states that any expansive automorphism of a compact
connected group is in fact always conjugate to the shift action on XA for
some matrix A ∈ GLn(Q), n ≥ 1, without eigenvalues in T.

Theorem 3.12. An automorphism α of a compact, connected group X is
expansive if and only if it is algebraically conjugate to the shift action on XA

for some matrix A ∈ GLn(Q), n ≥ 1, without eigenvalues in T.

Proof. See [Sch95], Theorem 9.7.

3.3 S-integer dynamical systems

Let c = (c1, . . . , cd) ∈ (Q∗)d. We denote by mc the vanishing ideal mc =
{f ∈ Rd : f(c) = 0} of c. We want to study the algebraic Zd-action which
corresponds to the Rd-module Rd/mc via Pontrjagin duality. It turns out
that the module Rd-module Rd/mc is closely related to a ring RP (c) of S-
integers determined by the point c. Here, P (c) is a certain subset of the set
of finite places of the number field Q(c). The ring RP (c) carries a natural Rd-
module structure. In order to describe the algebraic Zd-action corresponding
to the Rd-module RP (c) we need to provide some background material on
adele rings.

Let K be an algebraic number field, i.e. a finite extension of Q. An
absolute value on K is a real valued function | | on K such that
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(i) |x| ≥ 0 and |x| = 0 if and only if x = 0,

(ii) |xy| = |x||y| and

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

The absolute value | | is called non-archimedean if |x + y| ≤ max{|x|, |y|}
for all x, y ∈ K and archimedean otherwise. Two absolute values | |, | |′
are said to be equivalent if they define the same topology on K which is
exactly the case if there exists a positive real number s such that | |′ = | |s,
i.e. |x|′ = |x|s ∀x ∈ K.

A place v of K is an equivalence class of non-trivial absolute values. Given
a place v we denote by | |v an absolute value in the equivalence class of v and
we denote by Kv the completion of K with respect to v. For example, every
absolute value of Q is either equivalent to the usual archimedean absolute
value | |∞ or to an absolute value | |p, where p is a prime number, defined by

|0|p = 0 and |x|p = ps−r if x =
prm

psn
,m, n ∈ Z \ {0},

where m and n are both not divisible by p. Thus, the places of Q are indexed
by the set P∪{∞}, where P ⊂ N is the set of prime numbers. The completion
Q∞ is the field R and for a prime number p the completion of Q is the field
Qp of p-adic numbers.

For a place v of K the restriction of v to Q is either equivalent to | |∞ or
to | |p for some prime p. We write v|p, p ∈ P ∪ {∞}, if the restriction of v
to Q is equivalent to | |p. If v|∞, v is said to be infinite and in this case Kv

is either R or C. If v|p, p ∈ P , v is said to be finite and in this case Kv is
a finite extension of Qp. We write PK , PK

f , P
K
∞ for the sets of places, finite

places, and infinite places of K, respectively. Note that for each place p on
Q there are only finitely many places v on K which lie above p, i.e. whose
restriction to Q is p. In particular, PK

∞ is a finite set.
For every v ∈ PK the set Rv := {x ∈ Kv : |x|v ≤ 1} is a compact subset

of Kv. If v ∈ PK
f then Rv is a subring of Kv which is open. We consider the

ring

AK :=

{
x ∈

∏
v∈PK

Kv| xv ∈ Rv for almost all v ∈ PK

}
with pointwise addition and multiplication. For every finite set S ⊂ PK

containing all infinite places the product topology makes

AK,S :=
∏
v∈S

Kv ×
∏

v∈PK\S

Rv
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into a locally compact topological group. There exists a unique structure on
AK as a topological group such that the groups AK,S are open topological
subgroups of AK . With this topology AK is a locally compact topological
ring.

Definition 3.13. The adele ring of K is defined to be the ring AK with the
locally compact topology described above.

More generally, we define:

Definition 3.14. Let K be a number field and let S be an arbitrary subset of
the set PK

f of finite places of K. We define the locally compact ring AK(S)
as

AK(S) :=

{
x ∈

∏
v∈S∪PK∞

Kv

∣∣ xv ∈ Rv for almost all v ∈ S ∪ PK
∞

}
with pointwise addition and multiplication and with the topology defined as
follows. Let S ′ be a finite subset of S. Let

AK,S′(S) :=
∏

v∈S∪PK∞

Kv ×
∏

v∈S\S′
Rv.

We define a topology on AK(S) by taking as a fundamental system of neigh-
borhoods of 0 in AK(S) the set of neighborhoods of 0 in AK,S′(S).

Remark 3.15. (i) The ring KA(S) is just the restricted direct product of
the locally compact groups (Kv)v∈S∪PK∞ with respect to the compact
open subgroups (Rv)v∈S in the sense of Tate [Tat67], Section 3.

(ii) Obviously, for S = PK
f we get the full adele ring of K, i.e.

AK = AK(PK
f ).

We want to study the character group ÂK(S) = Homcont(AK(S),T) of
AK(S).

Proposition 3.16. Let K be a number field and let S ⊂ PK
f . Let K̂v =

Homcont(Kv,T) be the character group of Kv. The homomorphism{
(χv)v∈S∪PK∞ ∈

∏
v∈S∪PK∞

K̂v

∣∣ χv |Rv = 0 for almost all v ∈ S ∪ PK
∞

}
→ ÂK(S)

is an isomorphism of abstract groups. Its inverse is given by mapping χ ∈
ÂK(S) to the family (χ|Kv)v∈S∪PK∞ where χ|Kv ∈ K̂v is the restriction of χ to
Kv.
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Proof. See [Tat67], Lemma 3.2.1 and Lemma 3.2.2.

We define the so-called standard character ψ = (ψp)p∈PQ on AQ by

ψ∞(x) = e−2πix for the archimedean prime p =∞ and

ψp = [Qp → Qp/Zp → Q/Z e2πi→ T] for non-archimedean p.

Then for all non-archimedean places p, the character ψp is trivial on Zp and
so by Proposition 3.16, the family (ψp)p∈PQ defines a character on AQ. Let
K be a number field. Note that we have the trace homomorphism

tr : AK → AQ, (xv)v∈PK 7→
(∑

v|p

trv(xv)

)
p∈PQ

,

where trv : Kv → Qp is the usual trace from the finite extension Kv of Qp

to Qp. The standard character ψK on AK is defined by ψK(x) = ψ(tr(x)).
Then it is

ψK =
∏
v∈PK

ψK,v with ψK,v = ψp ◦ trv ∈ Homcont(Kv,T), v|p.

For S ⊂ PK
f , we define ψK,S ∈ ÂK(S) by

ψK,S =
∏

v∈PK∞∪S

ψK,v.

Definition 3.17. Let K be a number field and let S be a subset of the set
PK

f of finite places of K. The ring RS of S-integers is defined as

RS = {x ∈ K : |x|v ≤ 1 for every v 6∈ S ∪ PK
∞}.

For example, if S = PK
f then AK(S) = AK and RS = K. The ring RS

injects into AK(S) via the diagonal embedding

∆ : RS → AK(S), x 7→ (x, x, x, . . .).

Let ω1, . . . , ωn an integral basis of K over Q. Because K ⊗Q R is isomorphic
to
∏

v∈PK∞
Kv every x ∈

∏
v∈PK∞

Kv can be uniquely written as a sum x =∑n
i=1 aiωi with real numbers ai. Here, we write again ωi for the image of ωi

in
∏

v∈PK∞
Kv.
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Lemma 3.18. Let

∞
D =

∏
v∈PK∞

{
x =

n∑
i=1

aiωi : 0 ≤ ai < 1 for 1 ≤ i ≤ n
}

and

DS =
∞
D ×

∏
v∈S

Rv.

Then DS is a fundamental domain of AK(S)/RS, i.e. every element in AK(S)/RS

has exactly one representative in DS. In particular,

AK(S) = RS +DS.

Proof. To prove uniqueness, assume it is x = y+ d = y′+ d′ with x ∈ AK(S)
and y, y′ ∈ RS, d, d

′ ∈ DS. Then from the equation y − y′ = d′ − d we see
that the element y − y′ ∈ RS is in fact integral. As the projection of d′ − d
to
∏

v∈PK∞
Kv lies in

∏
v∈PK∞

{
x =

∑n
i=1 aiωi : −1 < ai < 1 for 1 ≤ i ≤ n

}
it

follows y − y′ = 0. Then also d = d′ which proves uniqueness.

To prove that any element x ∈ AK(S) can be written as a sum x = y+ d
with y ∈ RS, d ∈ DS, we use the Chinese remainder theorem to find an
element y ∈ RS such that for all finite places v ∈ S it is x − y ∈ Rv. Then
subtracting x − y by an integral element y′ of K, which is by definition
contained in RS, we may achieve that the infinite components of x− (y+ y′)

lie in
∞
D without changing the property that x−(y+y′) ∈ Rv for all v ∈ S.

Theorem 3.19. Let S ⊂ PK
f and let AK(S) be the locally compact topological

ring as defined in 3.14. Let ψK,S be the standard character in AK(S). Then:

(i) RS is a discrete, cocompact subgroup of AK(S).

(ii) The map

AK(S)→ ÂK(S), a 7→ ψK,S,a,

where ψK,S,a is the character x 7→ ψK,S(ax), is an isomorphism of
topological groups.

(iii) The composition RS → AK(S) → ÂK(S) identifies RS with the group

R⊥S of characters in ÂK(S) which vanish on RS. Thus, it is

R̂S ' AK(S)/RS.
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Proof. That RS is discrete follows from Lemma 3.18 because DS has an
interior. AK(S)/RS is compact because D is relatively compact. (ii) follows
from [Tat67], Theorem 2.2.1, Lemma 2.2.3 and Theorem 3.2.1.

For (iii), one shows as in [Tat67], Corollary 4.1.1, that RS is contained
in R⊥S . As the Pontrjagin dual of the compact group AK(S)/RS the group

R⊥S is discrete. As a discrete subgroup of the compact group ÂK(S)/RS the
quotient R⊥S /RS is finite. R⊥S /RS carries a RS-module structure. But R⊥S /RS

is torsion-free as RS-module. Thus, the index [R⊥S : RS] cannot be greater
than 1 because this would contradict the fact that R⊥S /RS is finite because
RS is not finite.

Let us return to the algebraic Zd-actions that we are interested in. Let c =
(c1, . . . , cd) ∈ (Q∗)d and let mc be the vanishing ideal mc = {f ∈ Rd : f(c) =

0} ⊂ Rd. We denote by XRd/mc the dynamical system XRd/mc = R̂d/mc.

Definition 3.20. Given a point c = (c1, . . . , cd) ∈ (Q∗)d , we define an
algebraic Zd-action (Yc, αc) as follows. Let K = Q(c) and put

F (c) := {v ∈ PK
f : |ci|v 6= 1 for some i ∈ {1, . . . , d}}

and
P (c) := PK

∞ ∪ F (c) .

The abelian group RP (c) = {x ∈ K : |x|v ≤ 1 for every v 6∈ P (c)} is an
Rd-module under the action

α̂c : Rd ×RP (c) → RP (c), (f, a) 7→ f(c)a.

Dualizing, we get a Zd-action on Yc := R̂P (c) which we denote by αc.

Theorem 3.21. There exists a surjective homomorphism

φ : Yc → XRd/mc

with finite kernel which is compatible with the Zd-actions on Yc and on
XRd/mc.

Proof. The natural evaluation homomorphism Rd → RP (c), f 7→ f(c), in-

duces an injective homomorphism φ̂ : Rd/mc → RP (c). Dualizing this ho-
momorphism, we get a surjective homomorphism φ : Yc → XRd/mc . For the

proof that φ has finite kernel, i.e. that the quotient RP (c)/φ̂(Rd/mc) is finite,
see [Sch95], Theorem 7.1.
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The algebraic criterion for expansiveness in Theorem 3.3 gives the follow-
ing result for the algebraic Zd-action on XRd/mc .

Proposition 3.22. The action α on XRd/mc is expansive if and only if the
action αc on Yc is expansive. This is exactly the case if the orbit of c under
the diagonal action of the Galois group Gal(Q/Q) on (Q∗)d does not intersect
Td.

Proof. See [Sch95], Proposition 7.2.
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3.4 The entropy of algebraic Zd-actions and

the Mahler measure

In this section we want to give the reader a short overview on entropy of
algebraic Zd-actions. For the definition of entropy we refer to Section 2.2.

The topological entropy of an algebraic Zd-action α on a compact group
X is denoted by h(α). If no confusion on the action α can occur, we will also
use the notation h(X) for the topological entropy.

Theorem 3.23 (Yuzvinskii’s addition formula). Let αX be a Zd-action by au-
tomorphisms on a compact group X and let Y ⊂ X be a normal, α-invariant
subgroup. Let αY the restriction of αX to Y and let αX/Y be the induced
action on X/Y . Then

h(αX) = h(αY ) + h(αX/Y ).

Proof. See [Sch95], Theorem 14.1.

Remark 3.24. We interpret this result in the following way. If we only con-
sider Zd-actions on compact abelian groups X and if we go from dynamical
systems to their dual Rd-module, then the result says that entropy, viewed
as a numerical invariant of Rd-modules, is additive in short exact sequences.

Definition 3.25. The logarithmic Mahler measure of an element f ∈ Rd is
defined as

m(f) :=

∫
Td

log |f(z)|dµ(z),

where µ is the normalized Haar measure on the d-torus Td.

Proposition 3.26. For every non-zero f ∈ Rd it is 0 ≤ m(f) <∞.

Proof. [Sch95], Corollary 16.6.

Now, we return to the entropy of algebraic Zd-actions. For f ∈ Rd, let
αf the usual Zd-action on Xf . The following holds:

Theorem 3.27. For every f ∈ Rd, the entropy of the action αf on Xf is
given by h(αf ) = m(f).

Proof. [Sch95], Theorem 18.1.

Theorem 3.28. Let d ≥ 1 and let p ⊂ Rd be a prime ideal. Then

h(XRd/p) =

{
m(f) if p = (f) is principal

0 if p is not principal.
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Proof. We show that for a non-principal prime ideal p ∈ Rd we have h(αRd/p) =
0. The rest follows from Theorem 3.27.

Choose a prime element f ∈ p and an element g ∈ p which is not contained
in the principal ideal (f). Then the following sequence is exact.

0→ Rd/f
·g→ Rd/f → Rd/(f, g)→ 0.

Dualizing we get an exact sequence

0→ XRd/(f,g) → Xf → Xf → 0.

By Yuzvinskii’s addition formula it is h(αf ) = h(αf ) + h(αRd/(f,g)). By
Proposition 3.26 it is h(αf ) < ∞ so we deduce h(αRd/(f,g)) = 0. But
XRd/p is a closed αRd/(f,g)-invariant subgroup of XRd/(f,g) and so h(αRd/p) ≤
h(αRd/(f,g)) = 0.

Example 3.29. Let d > 1, c ∈ (Q∗)d, and let mc be the vanishing ideal of c
as in Section 3.2. The ideal mc is prime and non-principal. By the previous
Theorem 3.28 it follows h(αRd/mc) = 0.

Let A ∈ GLn(Q) and let XA be the compact connected abelian group with
the Z-action as defined in Section 3.2. In the next theorem we determine the
entropy of this Z-action.

Theorem 3.30. Let A ∈ GLn(Q) and let XA be the compact connected
abelian group with the shift action σ as defined in Section 3.2. Let χA ∈ Q[t]
be the characteristic polynomial of A and let a ∈ N be the lowest common
multiple of the denominators of the coefficients of χA. Then

h(σ) = m(aχA).

Proof. We know that MA = X̂A is a noetherian R1-module. As in the proof
of 3.10 there exist primitive polynomials f1, . . . , fr ∈ R1 with fi|fi+1, i =
1, . . . , r − 1, and a surjective morphism Xf1 × . . . × Xfr → XA with finite
kernel. Then

h(σ) = h(αf1 × . . .× αfr) =
r∑
i=1

m(fi) = m
( r∏
i=1

fi
)
.

But up to a unit in R1, aχA equals the product
∏r

i=1 fi and so m(aχA) =
m
(∏r

i=1 fi
)
.
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Chapter 4

p-adically expansive algebraic
Zd-actions

In this chapter we introduce the notion of p-adically expansive algebraic Zd-
actions and define p-adic entropy for these actions.

With our definition, the usual Zd-action on the compact group Xf , f ∈
Mn(Rd), is p-adically expansive if and only if f ∈ GLn(c0(Zd)), where Rd

denotes the ring Rd = Z[t±1
1 , . . . , t±1

d ] and c0(Zd) = Qp〈t±1
1 , . . . , t±1

d 〉 where

Qp〈t±1
1 , . . . , t±1

d 〉 :=

{∑
ν∈Zd

xνt
ν1
1 . . . tνdd : xν ∈ Qp, |xν |p → 0 for

d∑
i=1

|νi| → ∞

}
.

As far as p-adic entropy is concerned, we do not know how to generalize
periodic p-adic entropy for a greater class of algebraic Zd-actions. Instead,
we will use the p-adic Fuglede-Kadison determinant to define p-adic entropy
for the class of p-adically expansive Zd-actions. It will turn out that the
connection between p-adically expansive Zd-actions and p-adic entropy can
best be described in the framework of the lower algebraic K-groups and the
localisation sequence of K-theory which gives a connection of the K-groups.

In Section 4.1 we provide some material on algebraic K-theory which will
be used in the following sections.

In Section 4.2 we define p-adic expansiveness. We prove a criterion for
p-adic expansiveness which is a p-adic analogue of the criterion for expan-
siveness presented in Section 3.1.

In Section 4.3 we attach to a p-adically expansive Zd-action on a compact
abelian group X an element

clp(X) ∈ K1(Rd[S
−1
p ])/R∗d,
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where Rd[S
−1
p ] is the localisation of the ring Rd with respect to the multi-

plicative system Sp = Rd ∩ c0(Zd)∗. We define a homomorphism

logpdetZd : K1(Rd[S
−1
p ])/R∗d → Qp.

We then define the p-adic entropy hp(X) of a p-adically expansive Zd-action
on X by logpdetZd(clp(X)). We show that

hp(Xf ) = hp,per(Xf )

for p-adically expansive Zd-actions of the form Xf , f ∈Mn(Rd).
In Section 4.4 we give some applications.

4.1 Some basics in algebraic K-theory

Definition 4.1. An exact category is an additive category C embeddable as a
full subcategory of an abelian category A such that C is equipped with a class
E of short exact sequences 0→M ′ →M →M ′′ → 0 (I) satisfying

(1) E is a class of sequences (I) in C that are exact in A.

(2) C is closed under extensions in A, i.e. if (I) is an exact sequence in A
and M ′,M ′′ ∈ C, then M ∈ C.

Before we can introduce the exact categories that we will interested in we
need the following definition.

Definition 4.2. Let R be a not necessarily commutative unital ring. A
projective left module over R is a R-module P with the property that whenever
one has a diagram of R-modules with exact bottom row

P

ϕ

��
M

ψ // N // 0

it can be completed to a commutative diagram

P
θ

~~||
||

||
||

ϕ

��
M

ψ // N // 0.

We will consider the following exact categories:
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Examples 4.3. Let R be a not necessarily commutative unital ring.

(i) The category P(R) of finitely generated projective left R-modules is a
full subcategory of the abelian category Mod(R) of left R-modules. Let
E the class of all short sequences in P(R) which are exact in Mod(R).
Then condition (1) of Definition 4.1 is satisfied. An exact sequence

0→ P ′ →M → P → 0

with P a projective module will split, i.e. M ' P ′⊕P . If we assume P ′

also to be projective, then M is projective too, so P(R) also satisfies
condition (2) of 4.1. Thus, P(R) is an exact category.

(ii) Let S be a central multiplicative system in R, i.e. S is a subset of R
which is closed under multiplication and for s ∈ S it is sr = rs for all
r ∈ R. Then, the category MS(R) of finitely generated S-torsion left
R-modules with the class E of all short sequences inMS(R) which are
exact in Mod(R) is an exact category.

Definition 4.4. For an exact category C such that isomorphism classes (C)
of C-objects form a set, define K0(C) to be the free abelian group on the
isomorphism classes of C-objects modulo the subgroup which is generated by
all (C)− (C ′)− (C ′′) for each short exact sequence 0→ C ′ → C → C ′′ → 0
in C.

Definition 4.5. Let R be a not necessarily commutative unital ring. Let
P(R) be the exact category of finitely generated projective left modules. Define

K0(R) := K0(P(R)).

We think of K0(R) together with the assignment which sends a finitely
generated projective R-module P to its class [P ] in K0(R) as the universal
dimension for finitely generated projective R-modules. Namely, suppose we
are given an abelian group A and an assignment d which associates to every
finitely generated projective R-module an element d(P ) ∈ A and which is
additive in short exact sequences, i.e. it is d(P ′) + d(P ′′) = d(P ) for any
exact sequence 0 → P ′ → P → P ′′ → 0 of finitely generated projective
R-modules. Then there exists a unique homomorphism φ : K0(R)→ A with
φ([P ]) = d(P ).

If S is a central multiplicative in R, then we will also consider the K0-
group of the exact category MS(R) of finitely generated S-torsion left R-
modules. Then the analogous statement concerning the universal dimension
for finitely generated S-torsion left R-modules holds for K0(MS(R)).
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Next, we want to introduce the abelian group K1(R) attached to a ring
R. Let GL(R) = ∪∞n=1GLn(R) be the infinite general linear group, where the
inclusion GLn(R) ↪→ GLn+1(R) is given by a 7→ ( a 0

0 1 ). Let En(R) ⊂ GLn(R)
be the subgroup of elementary matrices, i.e. the group generated by matrices
with 1’s on the diagonal and at most one further non-zero entry. Let E(R)
be their union.

Proposition 4.6 (Whitehead Lemma). The subgroup E(R) ⊂ GL(R) is
precisely equal to the commutator subgroup of GL(R).

Proof. See [Mil71], Lemma 3.1.

Definition 4.7. For an unital ring R we define

K1(R) := GL(R)/E(R) = GL(R)ab.

Let us assume that R is commutative. Then there are homomorphisms

rk : K0(R)→ H0(R)

and
det : K1(R)→ R∗

which we will introduce now.
Let Spec(R) be as usual the prime spectrum of R with the Zariski topol-

ogy. If P is a finitely generated projective R-module then for every prime
ideal p ∈ Spec(R) the localisation Pp is a finitely generated free module over
the local ring Rp and thus has a well-defined rank rkp(Pp). If we endow Z
with the discrete topology, then for every P ∈ P(R) the rank function

rk(P ) : Spec(R)→ Z, p 7→ rk(P )(p) := rkp(Pp)

is continuous, see [Bas68], Chapter III, Theorem 7.1. Let

H0(R) :=
{
f : Spec(R)→ Z : f continuous

}
.

Then we have a natural homomorphism

rk : K0(R)→ H0(R), [P ] 7→ rk(P ).

Example 4.8. Let R = Z. Because Z is an integral domain the topological
space Spec(Z) connected. Thus, a continuous function f : Spec(Z) → Z
with target the discrete space Z will be constant. It follows H0(Z) = Z. By
the structure theorem of finitely generated modules over a principal ideal
domain, two projective modules over Z are isomorphic if and only if they
have the same rank. It follows that rk : K0(Z)→ Z is an isomorphism.
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To define the homomorphism

det : K1(R)→ R∗

just note that the usual determinant homomorphism GLn(R)→ R∗ is com-
patible with the inclusions GLn(R) ↪→ GLn+1(R). As R is commutative, the
resulting homomorphism GL(R)→ R∗ factors through GL(R)ab which gives
us the homomorphism det : K1(R)→ R∗.

Definition 4.9. Let R be a commutative ring. The group SK1(R) ⊂ K1(R)
is defined as

SK1(R) := ker(det : K1(R)→ R∗).

Note that det : K1(R)→ R∗ is a surjective homomorphism which is split
by the inclusion R∗ = GL1(R)→ K1(R). Thus,

K1(R) = SK1(R)⊕R∗.

Example 4.10. It can be shown that for an Euclidean ring R the group
SK1(R) vanishes, see, for example, [Ros94], Theorem 2.3.2. Hence, it is
K1(Z) = Z∗ = {±1}.

Next, we state the so-called Fundamental Theorem of algebraic K-theory
and the Localisation sequence of K-theory. These deep results of algebraic
K-theory will be fundamental in our approach to p-adic expansiveness and
its connection to p-adic entropy. We will state the results only for the lower
algebraic K-groups K0 and K1 in the special case where the ring R is a
commutative regular ring because when we talk about algebraic Zd-actions
this is the case which is interesting for us.

Recall that a commutative ring R is called regular if it is noetherian and
if every finitely generated R-module M has a finite resolution with finitely
generated projective R-modules, i.e. for every M ∈ M(R) there exists an
exact sequence

0→ Pn → . . .→ P0 →M → 0

with Pi ∈ P(R), i = 0, . . . , n.

Theorem 4.11 (Fundamental Theorem of K0 and K1 of regular rings). Let
R be a commutative regular ring. Then the following holds:

(1) The inclusions R ↪→ R[t] ↪→ R[t, t−1] induce isomorphisms

K0(R) ' K0(R[t]) ' K0(R[t, t−1]).
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(2) It is
K1(R[t, t−1]) ' K1(R)⊕K0(R).

Proof. See [Bas68], Chapter XII, Theorem 3.1 and Theorem 7.4.

An easy consequence of the Fundamental Theorem is the following propo-
sition.

Proposition 4.12. The homomorphism det : K1(Rd) → R∗d is an isomor-
phism.

Proof. Using (1) and (2) of Theorem 4.11 iteratively, it follows

K1(Rd) ' K1(Z)⊕K0(Z)⊕ . . .⊕K0(Z)︸ ︷︷ ︸
d times

.

By Example 4.8 and Example 4.10 it is

K1(Z)⊕K0(Z)⊕ . . .⊕K0(Z)︸ ︷︷ ︸
d times

' {±1} ⊕ Zd,

which is isomorphic to R∗d. Then the surjective homomorphism
det : K1(Rd)→ R∗d has to be an isomorphism.

Theorem 4.13 (Localisation Sequence). Let R be a commutative regular
ring and let S be a multiplicative system in R. Then there exist natural
homomorphisms δ, ε such that the following sequence is exact:

K1(R)→ K1(RS)
δ→ K0(MS(R))

ε→ K0(R)→ K0(RS)→ 0,

where RS is the localisation of R with respect to S.

Proof. For a proof see [Bas68], Chapter IX, Theorem 6.3 and Corollary 6.4.
For us it is important to know how the homomorphisms δ and ε are

defined. Because R is regular, any M ∈MS(R) has a finite P(R)-resolution,
i.e. there exists an exact sequence 0 → Pn → . . . → P0 → M → 0 where
Pi ∈ P(R). Define ε([M ]) =

∑
(−1)i[Pi] ∈ K0(R). The map δ is defined as

follows: if α ∈ GLn(RS), let s ∈ S be a common denominator for all entries
of α such that β = sα has entries in R. Then Rn/βRn and Rn/sRn have
natural P(R)-resolutions

0→ Rn β→ Rn → Rn/βRn → 0 and

0→ Rn s→ Rn → Rn/sRn → 0.
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Furthermore, Rn/sRn and Rn/βRn are both S-torsion. For Rn/sRn this is
clear. To see that Rn/βRn is S-torsion, let t ∈ S be such that α−1t = γ
has entries in R. Then γRn ⊂ Rn implies that tRn ⊂ αRn and hence that
stRn ⊂ sαRn = βRn. Then st ∈ S annihilates Rn/βRn. We now define
δ([α]) = [Rn/βRn]− [Rn/sRn].

Let S be a multiplicative subset of the ring Rd. We end this section with
two lemmata describing when a finitely generated Rd-module M is S-torsion.

Lemma 4.14. Let I be an ideal in Rd and let S be a multiplicative subset of
Rd. Then Rd/I ∈MS(Rd) if and only if I ∩ S 6= ∅.

Proof. The Rd-module Rd/I is S-torsion if and only if the unit 1̄ ∈ Rd/I is
annihilated by some s ∈ S. This is exactly the case if I ∩ S 6= ∅.

Lemma 4.15. Let M be a finitely generated Rd-module and let S be a multi-
plicative subset of Rd. Then M ∈MS(Rd) if and only if S ∩ p 6= ∅ for every
associated prime ideal p ∈ Ass(M).

Proof. If M is S-torsion then any submodule M ′ ⊂ M is S-torsion. By
definition, an associated prime ideal p is the annihilator of some non-zero
element m ∈ M , i.e. it is p = {f ∈ Rd; fm = 0 for some m ∈ M \ {0}}.
Then the submodule 〈m〉 ⊂ M generated by m is isomorphic to Rd/p. By
the previous lemma this module is S-torsion if and only if p ∩ S 6= ∅.

For the other implication assume S ∩ p 6= ∅ for every p ∈ Ass(M). There
is a filtration M = Ms ⊃ . . . ⊃ M0 = 0 such that Mr/Mr−1 ' Rd/qr,
r = 1, . . . , s, where qr is a prime ideal lying above some associated prime
ideal of M . By the previous lemma the quotients Mr/Mr−1 are S-torsion.
Whenever one has an exact sequence of Rd-modules

0→ N ′ → N → N ′′ → 0

such that N ′ and N ′′ are S-torsion then also N is S-torsion. So from the
prime filtration of M it follows inductively that M is S-torsion.

4.2 p-adically expansive Zd-actions

Let Rd = Z[t±1
1 , . . . , t±1

d ] and let Sp ⊂ Rd be the multiplicative system Sp =
Rd ∩ c0(Zd)∗.

Definition 4.16. An algebraic Zd-action on the compact abelian group X
is called p-adically expansive if the Rd-module MX is finitely generated and
Sp-torsion, i.e. MX ∈MSp(Rd).
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Lemma 4.17. Let A ∈ Mn(Rd) and let M = (Rd)
n/(A(Rd)

n). Then M ∈
MSp(Rd) if and only if A ∈ GLn(c0(Zd)).

Proof. Assume M ∈ MSp(Rd). Then for any x ∈ (Rd)
n there exists an

element s ∈ S such that sx lies in the image of A. It follows that the
localised homomorphism ASp : (Rn

d )Sp → (Rn
d )Sp is surjective.

Consider the exact sequence

0→ kerASp → (Rn
d )Sp

ASp→ (Rn
d )Sp → 0.

Because the quotient field Frac(Rd) of Rd is flat over Rd[S
−1
p ] this sequence

stays exact after tensoring with ⊗Rd[S−1
p ]Frac(Rd). It follows

kerASp ⊗Rd[S−1
p ] Frac(Rd) = 0.

But as kerASp is a torsion-free Rd[S
−1
p ]-module it follows kerASp = 0. So

ASp is an isomorphism and thus detA ∈ Sp which shows A ∈ GLn(c0(Zd)).
If we assume on the other hand that M ∈ GLn(c0(Zd)) then detA ∈ Sp.

Let Ã ∈ Mn(Rd) be the adjoint matrix of A. The matrix Ã has entries
ãij = (−1)i+j det(Aji) where Aji is the (n − 1) × (n − 1)-matrix obtained
from A by deleting the j-th row and i-th column. It is a known fact from
linear algebra that AÃ = ÃA = detA · Id, where Id is the identity matrix.
For any m ∈M it follows detA ·m = Ã(Am) = 0, i.e. M is Sp-torsion.

Recall that for an element f ∈ Mn(Rd) the dynamical system Xf is the
Pontrjagin dual of the module (Rd)

n/(Rd)
nf .

Corollary 4.18. Let f ∈ Mn(Rd). The Zd-action on Xf is p-adically ex-
pansive if and only if f ∈ GLn(c0(Zd)).

Proof. To be precise, it is MXf = (Rd)
n/(Rd)

nf = (Rd)
n/f t(Rd)

n, where f t

is the transpose of f . It is f ∈ GLn(c0(Zd)) if and only if f t ∈ GLn(c0(Zd)).
Now apply Lemma 4.17 to f t.

The next proposition gives a characterization of p-adically expansive Zd-
actions which is analogous to the characterization of expansive Zd-actions.
Recall that for an ideal I ⊂ Rd the set of zeroes of I over Qp is defined as

VQp(I) =
{
z ∈ (Q∗p)d : f(z) = 0 for all f ∈ I

}
.

The p-adic d-torus T dp is the set

T dp =
{
z ∈ Cd

p : |zi| = 1, 1 ≤ i ≤ d
}
.
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Proposition 4.19. Let α be an algebraic Zd-action on X. Assume the cor-
responding Rd-module MX is noetherian. Then the following properties are
equivalent.

(i) α is p-adically expansive.

(ii) For every prime ideal p ∈ Ass(MX) it is VQp(p) ∩ T dp = ∅.

Proof. First notice that for any ideal I ⊂ Rd, the maximal ideals of the alge-
bra Qp〈t±1

1 , . . . , t±1
d 〉 containing I correspond to the orbits of the Gal(Qp/Qp)-

operation on VQp(I) ∩ T dp .

If α is p-adically expansive, i.e. MX ∈ MSp(Rd), then by Lemma 4.15
every p ∈ Ass(MX) contains an element which is a unit in Qp〈t±1

1 , . . . , t±1
d 〉.

This means that there is no maximal ideal in Qp〈t±1
1 , . . . , t±1

d 〉 which contains
p. It follows VQp(p) ∩ T dp = ∅.

Assume now that (ii) holds. This implies that for every p ∈ Ass(MX)
there is no maximal ideal in Qp〈t±1

1 , . . . , t±1
d 〉 which contains p, i.e. every

p ∈ Ass(MX) generates the unit ideal in Qp〈t±1
1 , . . . , t±1

d 〉. We show that this
implies p ∩ Sp 6= ∅. Then by Lemma 4.15 it follows that MX ∈MSp(Rd).

Let f1, . . . , fr ∈ Rd be generators of the ideal p. Because p generates the
unit ideal in Qp〈t±1

1 , . . . , t±1
d 〉 we find elements g′i ∈ Qp〈t±1

1 , . . . , t±1
d 〉 such that∑r

i=1 g
′
ifi = 1. Then by multiplying with a suitable power of p, say pn, we get

an equality
∑r

i=1 gifi = pn with gi ∈ Zp〈t±1
1 , . . . , t±1

d 〉. Because Rd is dense
in Zp〈t±1

1 , . . . , t±1
d 〉 we find hi ∈ Rd such that hi − gi ∈ pn+1Zp〈t±1

1 , . . . , t±1
d 〉.

Then the element

r∑
i=1

hifi ∈ pn(1 + pZp〈t±1
1 , . . . , t±1

d 〉)

lies in p and is a unit in Qp〈t±1
1 , . . . , t±1

d 〉 because it is a product of the unit
pn with a 1-unit, i.e. an element in 1 + pZp〈t±1

1 , . . . , t±1
d 〉.

Corollary 4.20. A dynamical system of type XRd/I with I generated by
f1, . . . , fr in Rd is p-adically expansive if and only if the f1, . . . , fr generate
the unit ideal in c0(Zd), i.e.

VQp(I) ∩ T dp = ∅.

Proof. It is VQp(I) =
⋃

p∈Ass(Rd/I)
VQp(p). It follows that VQp(I) ∩ T dp = ∅ if

and only if VQp(p) ∩ T dp = ∅ for every p ∈ Ass(MX).

Proposition 4.21. Let (X,α) be p-adically expansive. Then for every sub-
group Λ ⊂ Zd of finite index the set FixΛ(α) is finite.
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Proof. By Theorem 3.3, we have to show that for every p ∈ Ass(MX) we have
VC(p) ∩ VC(I(Λ)) = ∅, where I(Λ) is the ideal generated by all expressions
T n1

1 . . . T ndd − 1, (n1, . . . , nd) ∈ Λ.
As the ideals p and I(Λ) are defined over the rationals it follows by the

Nullstellensatz that this is exactly the case if VQ(p)∩VQ(I(Λ)) = ∅ for every
p ∈ Ass(MX) .

We fix an embedding Q ⊂ Qp. Note that under any such embedding it is

VQ(I(Λ)) ⊂ T dp because for any z = (z1, . . . , zd) ∈ VQ(I(Λ)) the zi ∈ Q∗ are
of finite order.

So if we assume that there exists an ideal p ∈ Ass(MX) such that VQ(p)∩
VQ(I(Λ)) 6= ∅ then VQp(p) ∩ T dp 6= ∅ which contradicts the assumption that

(X,α) is p-adically expansive.

Let us give a second characterization of p-adically expansive Zd-actions.
We say an abelian group X has bounded p-torsion if there exists a natural
number n ∈ N such that

X(p) :=
∞⋃
i=1

ker(pi : X → X) = ker(pn : X → X).

Proposition 4.22. Let α be an algebraic Zd-action on X. Then α is p-
adically expansive if and only if MX is noetherian and X has bounded p-
torsion.

Proof. First we prove that for any ideal I ⊂ Rd the Pontrjagin dual R̂d/I has
bounded p-torsion if and only if I generates the unit ideal in Qp〈t±1

1 , . . . , t±1
d 〉.

Using this fact we then show that X has bounded p-torsion if and only
if for every prime ideal p ∈ Ass(MX) it is VQp(p) ∩ T dp = ∅ which gives the

result by Proposition 4.19.
So let us assume that the ideal I ⊂ Rd generates the unit ideal in

Qp〈t±1
1 , . . . , t±1

d 〉. Let f1, . . . , fr ∈ Rd be generators of I and assume we
have 1 =

∑r
i=1 frg

′
r with elements g′r ∈ Qp〈t±1

1 , . . . , t±1
d 〉. Multiplying this

relation by a suitable power of p, say pn, we get pn =
∑r

i=1 figi with elements
gi ∈ Zp〈t±1

1 , . . . , t±1
d 〉, i.e.

(4.1) pn =
r∑
i=1

figi ∈ I · Zp〈t±1
1 , . . . , t±1

d 〉.

For any natural number r ≥ 1, there is a natural isomorphism

Z[t±1
1 , . . . , t±1

d ]/(pr) ∼= Zp〈t±1
1 , . . . , t±1

d 〉/(p
r).
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It follows that

Z[t±1
1 , . . . , t±1

d ]/(pr, I) ∼= Zp〈t±1
1 , . . . , t±1

d 〉/(p
r, I).

Now for any r ≥ n consider the commutative diagram

Z[t±1
1 , . . . , t±1

d ]/(pr, I)

��

∼ // Zp〈t±1
1 , . . . , t±1

d 〉/(pr, I)

Z[t±1
1 , . . . , t±1

d ]/(pn, I)
∼ // Zp〈t±1

1 , . . . , t±1
d 〉/(pn, I) ,

where the left vertical arrow is the canonical projection, the right vertical
arrow is the identity by equation (4.1) and the horizontal arrows are isomor-
phism. We conclude that the projection

Z[t±1
1 , . . . , t±1

d ]/(pr, I)→ Z[t±1
1 , . . . , t±1

d ]/(pn, I)

is also an isomorphism for r ≥ n, i.e. the ideals (pr, I) ⊂ Rd are equal for all
r ≥ n. Because

(4.2) ker(pr : R̂d/I → R̂d/I) ∼= ̂Rd/(pr, I),

we see that R̂d/I has bounded p-torsion. In fact, we see that the bound

on the p-torsion of R̂d/I is given by the smallest number n ≥ 0 such that
pn ∈ I · Zp〈t±1

1 , . . . , t±1
d 〉.

If on the other hand R̂d/I has bounded p-torsion, then by equation (4.2)
there exist a natural number n ∈ N such that (pr, I) = (pn, I) for all r ≥ n.
Then we can write

pn = pn+1g0 +
r∑
i=1

figi with elements fi ∈ I and gi ∈ Rd.

It follows that pn(1 − pg0) ∈ I. But as a product of a unit in Qp with the
1-unit 1 − pg0 the element pn(1 − pg0) is a unit in Qp〈t±1

1 , . . . , t±1
d 〉. This

proves that I generates the unit ideal in Qp〈t±1
1 , . . . , t±1

d 〉.
Now let us show that X has bounded p-torsion if VQp(p) ∩ T dp = ∅ for

all p ∈ Ass(MX). By Proposition 3.2 we find a filtration M = Ms ⊃ . . . ⊃
M0 = {0} such that for every i = 1, . . . , s, Mi/Mi−1

∼= R/qi for some prime

ideal qi ⊂ R, and qi ⊃ p for some p ∈ Ass(MX). As R̂/qi ↪→ R̂/p and as R̂/p

has bounded p-torsion, the M̂i/Mi−1 have bounded p-torsion. If we have an
exact sequence

0→ N ′ → N → N ′′ → 0
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of abelian groups such that N ′ and N ′′ have bounded p-torsion, so does N .
That way we can deduce inductively that X = M̂ has bounded p-torsion.

For the converse implication let us assume that X has bounded p-torsion

and that MX is noetherian. As ker(pn : X → X) = ̂MX/pnMX saying that
X has bounded p-torsion exactly means that the p-filtration

MX ⊃ pMX ⊃ p2MX ⊃ . . .

is stable, i.e. pnMX = pn+1MX for all n bigger than some fixed n0 ∈ N. We
want to show that this implies that for every associated prime p ∈ Ass(MX)
we have VQ̄p(p) ∩ T dp = ∅.

Let N be a submodule of MX such that N ' Rd/p. If we can show that
pnN = pn+1N for all n large enough we are done: Because it is

pnN/pn+1N ' (pn, p)/p

(pn+1, p)/p
' (pn, p)/(pn+1, p),

the equation pnN = pn+1N would imply that the ideals (pn, p) and (pn+1, p)
in Rd are equal. As before, this implies that p contains an element which is
a unit in Qp〈t±1

1 , . . . , t±1
d 〉. Then VQp(p) ∩ T dp = ∅.

Thus, we have to show that the p-filtration on N is stable. By the Artin-
Rees Lemma, see for example [AM69], Proposition 10.9, there exists a natural
number s ∈ N such that for all r ∈ N we have N ∩pr+sMX = pr(N ∩psMX).
If we assume n ≥ max{s, n0} then

pnN ⊃ pn(N ∩ pnMX) = N ∩ p2nMX = N ∩ pnMX ⊃ pnN,

i.e. pnN = pn(N ∩ pnMX) = N ∩ pnMX . It follows

pn+1N = N ∩ pn+1MX = N ∩ pnMX = pnN.

We want to finish this section with a little observation made for dynami-
cal systems Xf , where f ∈ Rd is already a unit in c0(Zd,Zp). As the proof of
Proposition 4.22 shows, the group Xf has no p-torsion in this case. Further-
more, we know that for every subgroup N of Zd of finite index, FixN(Xf ) is
finite by Proposition 4.21. The next proposition tells us that the collection
of FixN(Xf ) for all cofinite N in Zd already gives us some information on
Xf concerning p-adic expansiveness. Before we can prove the proposition we
need the following result.
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Lemma 4.23. Let N be a subgroup of finite index of Zd, i.e. it is N =
r1Z × . . . × rdZ for some natural numbers r1, . . . , rd. For any field K the
kernel of the canonical surjective homomorphism

πN : K[t±1
1 , . . . , t±1

d ]→ K[Zd/N ]

is the ideal (tr11 − 1, . . . , trdd − 1). Thus, we have an isomorphism

K[t±1
1 , . . . , t±1

d ]/(tr11 − 1, . . . , trdd − 1) ' K[Zd/N ]

Proof. Obviously, it is (tr11 − 1, . . . , trdd − 1) ⊂ kerπN .
To prove ker πN ⊂ (tr11 − 1, . . . , trdd − 1), first note that given integers

si, 1 ≤ i ≤ d, the element

(4.3)
d∏
i=1

trisii − 1 =
d∑
i=1

(
(trisii − 1)

∏
k>i

trkskk

)
∈ (tr11 − 1, . . . , trdd − 1)

is contained in the ideal (tr11 − 1, . . . , trdd − 1) because the elements trisii − 1
are contained in (tr11 − 1, . . . , trdd − 1).

Let
{

[j1, . . . , jd] : 0 ≤ ji < ri, 1 ≤ i ≤ d
}

be a full set of representatives
of the elements in Zd/N . Given a multiindex ν = (ν1, . . . , νd) ∈ Zd, we write
it in the form ν = (j1 + r1s1, . . . , jd + rdsd). It is

(4.4) aνt
ν1
1 . . . tνdd =

( d∏
i=1

trisii − 1

)
aνt

j1
1 . . . t

jd
d + aνt

j1
1 . . . t

jd
d .

By (4.3) and (4.4) it is for any f =
∑

ν∈Zd aνt
ν1
1 . . . tνdd ∈ K[t±1

1 , . . . , t±1
d ]

f =
∑

0≤ji<ri,
1≤i≤d

( ∑
ν∈[j1,...,jd]

aν

)
tj11 . . . t

jd
d mod (tr11 − 1, . . . , trdd − 1).

Now, it is f ∈ kerπN if and only if
∑

ν∈[j1,...,jd] aν = 0 for all ν ∈ Zd. This

implies ker πN = (tr11 − 1, . . . , trdd − 1).

Proposition 4.24. Let f ∈ Rd, and let αf be the usual Zd-action on Xf .
The following conditions are equivalent.

(i) f is invertible in c0(Zd,Zp).

(ii) The reduction f̄ of f is invertible in Fp[t±1
1 , . . . , t±1

d ].

(iii) The image f̄N of f in Fp[Zd/N ] is invertible for every subgroup N of
finite index.
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(iv) For every cofinite subgroup N of Zd the group FixN(Xf ) is finite and
its order is not divisible by p.

Proof. The equivalence (i) ⇔ (ii) is the special case Γ = Zd of Lemma 7.17,
where the analogue statement is proven for any residually finite group Γ.

The implication (ii) ⇒ (iii) is clear. For the converse direction, we
show that (iii) implies that f̄ is not contained in any maximal ideal of
Fp[t±1

1 , . . . , t±1
d ], where Fp is an algebraic closure of Fp.

Let us assume that f̄ is contained in a maximal ideal of Fp[t±1
1 , . . . , t±1

d ],
say f̄ ∈ (t1−α1, . . . , td−αd) with α1, . . . , αd ∈ (Fp)∗. The αi are of finite order
in Fp, i.e. there are positive integers r1, . . . , rd such that αrii = 1, 1 ≤ i ≤ d.
Then we consider the cofinite subgroup N = r1Z×. . .×rdZ of Zd. By Lemma
4.23, it is

Fp[t±1
1 , . . . , t±1

d ]/(tr11 − 1, . . . , trdd − 1) ' Fp[Zd/N ].

The assumption (iii) implies that the ideal (f̄ , tr11 −1, . . . , trdd −1) ⊂ Fp[t±1
1 , . . . , t±1

d ]
is the unit ideal. Furthermore, it is (tr11 −1, . . . , trdd −1) ⊂ (t1−α1, . . . , td−αd).
But then

Fp[t±1
1 , . . . , t±1

d ] = (f̄ , tr11 − 1, . . . , trdd − 1) ⊂ (f̄ , t1 − α1, . . . , td − αd)
= (t1 − α1, . . . , td − αd),

which is a contradiction.
If (i) holds, we have proven that Xf has no p-torsion which is then of

course also true for the subgroups FixN(Xf ). By Proposition 4.21, FixN(Xf )
is finite and thus (iv) follows. On the other hand, let N ⊂ Zd be a subgroup
of finite index. Then

(4.5)
̂

ker(XfN

·p→ XfN ) ' Z[Zd/N ]/(fN , p) ' Fp[Zd/N ]/(f̄N).

So FixN(Xf ) has no p-torsion if and only if Fp[Zd/N ]/(f̄N) = 0, i.e. if f̄N is
a unit in Fp[Zd/N ]. Thus, (iv) implies (iii) and we are done.

Remark 4.25. Let f1, . . . , fr ∈ Z[t±1
1 , . . . , t±1

d ] and let I be the ideal I =
(f1, . . . , fr). Then XRd/I(p) = 0 is equivalent to the geometric property that
the fibre over p of Spec Z[t±1

1 , . . . , t±1
d ]/(f1, . . . , fr) is empty.

4.3 The p-adic entropy of p-adically expan-

sive algebraic Zd-actions

In this section we define a notion of p-adic entropy for all p-adically expansive
Zd-actions.
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To do so we use the localisation sequence of Theorem 4.13 to attach to
every p-adically expansive Zd-action (X,α) an element

clp(X) ∈ K1(Rd[S
−1
p ])/R∗d.

Then we use the homomorphism

logpdetZd : K1(c0(Zd,Zp))→ Qp

discussed in Section 2.3 to define a homomorphism

K1(Rd[S
−1
p ])/R∗d → Qp

also denoted by logpdetZd . The p-adic entropy of a p-adically expansive Zd-
action will then be defined as logpdetZd(clp(X)).

Theorem 4.26. Consider the multiplicative system Sp = Rd∩c0(Zd)∗ in Rd.
There is an isomorphism

clp : K0(MSp(Rd))→ K1(Rd[S
−1
p ])/R∗d

such that
clp([(Rd)

n/f(Rd)
n]) = [f ] mod R∗d

for all f ∈Mn(Rd) ∩GLn(c0(Zd)).

Proof. The ring Rd is regular. Thus, by Theorem 4.13 there is an exact
sequence

K1(Rd)→ K1(Rd[S
−1
p ])

δ→ K0(MSp(Rd))
ε→ K0(Rd)→ K0(Rd[S

−1
p ])→ 0.

By Proposition 4.12, it is K1(Rd) ' R∗d and by Theorem 4.11, (1), we know
that K0(Rd) ' K0(Z) ' Z.

Furthermore, K0(Rd[S
−1
p ]) contains a copy of Z, because the homomor-

phism rk : K0(Rd[S
−1
p ]) → H0(Rd[S

−1
p ]) = Z is split by the natural homo-

morphism

Z→ K0(Rd[S
−1
p ]), n 7→ [(Rd[S

−1
p ])n+m]− [(Rd[S

−1
p ])m],

where m is a positive integer such that n+m > 0.
It follows that the surjective homomorphism K0(Rd) → K0(Rd[S

−1
p ]) is

also injective.
Then exactness of the sequence implies that the homomorphism δ is sur-

jective and thus induces an isomorphism

δ̄ : K1(Rd[S
−1
p ])/R∗d → K0(MSp(Rd)).
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We define clp := δ̄−1. Then it is clear that

clp([(Rd)
n/f(Rd)

n]) = [f ] mod R∗d

for f ∈ Mn(Rd) ∩ GLn(c0(Zd)) because by definition of the homomorphism
δ it is δ([f ]) = [(Rd)

n/f(Rd)
n].

The next step towards our definition of a notion of p-adic entropy is the
construction of a homomorphism

K1(Rd[S
−1
p ])/R∗d → Qp

which is derived from the homomorphism

logpdetZd : K1(c0(Zd,Zp))→ Qp

constructed in Section 2.3. To do so, we need the following result.

Lemma 4.27. Let [f ] ∈ K1(c0(Zd,Zp)) and let f be a representative of [f ]
in some GLr(c0(Zd,Zp)). Let Γn → 0 be a family of cofinite subgroups of Zd

converging to 0. Denote by f (n) the image of f in Mr(QpΓ
(n)) and let ρf (n)

the Qp-endomorphism of right multiplication with f ∗ on (QpΓ
(n))r. Assume

that

(4.6) detQp(ρf (n)) = ±1 for all n ∈ N.

Then
logpdetZd [f ] = 0.

In particular, the homomorphism

logpdetZd : K1(c0(Zd,Zp))→ Qp

vanishes on SK1(c0(Zd,Zp)).

Proof. By Proposition 2.33, it is

logpdetΓ[f ] = lim
n→∞

1

(Γ : Γn)
logp detQp(ρf (n)).

Thus, the assumptions made in the lemma imply that logpdetΓ[f ] = 1.
Assume now that [f ] ∈ SK1(c0(Zd,Zp)). For every n ∈ N we have a

homomorphism

SK1(c0(Zd,Zp))→ SK1(c0(Γ(n),Zp)) = SK1(ZpΓ
(n)).
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The endomorphism ρf (n) on (QpΓ
(n))r is QpΓ

(n)-linear. By [Bou70], Chapitre
3, §9, Proposition 6, we have

(4.7) detQp(ρf (n)) = NQpΓ(n)/Qp(detQpΓ(n)ρf (n)) ,

where NQpΓ(n)/Qp denotes the norm from the finite dimensional Qp-algebra

QpΓ
(n) to Qp.

To finish the proof, we show that [f ] ∈ SK1(c0(Zd,Zp)) implies that
detQpΓ(n)ρf (n) = 1 for all n ∈ N. Then by equation (4.7), we have detQp(ρf (n)) =
1 for all n ∈ N. Hence, by the first part of the lemma the homomorphism
logpdetZd vanishes on SK1(c0(Zd,Zp)).

By definition, the endomorphism ρf is the right multiplication with f ∗

on (c0(Zd))r. If f = (fi,j)1≤i,j≤r then f ∗ = (inv(fj,i)1≤i,j≤r), where inv is the
ring homomorphism

inv : c0(Zd)→ c0(Zd),
∑
ν∈Zd

aνz
ν1
1 . . . zνdd 7→

∑
ν∈Zd

aνz
−ν1
1 . . . z−νdd .

Hence, it is

detc0(Zd)ρf = inv(detc0(Zd)(f)) = 1,

and analogously detQpΓ(n)ρf (n) = 1 for all n ∈ N which finishes the proof.

Now, consider the homomorphism

logpdetZd : K1(c0(Zd,Zp))→ Qp

defined in Section 2.3. By Lemma 4.27, the value logpdetZd [f ] does only
depend on det[f ] ∈ c0(Zd,Zp)

∗. So to extend the homomorphism logpdetZd

to K1(c0(Zd)) we just apply the determinant to get an element in c0(Zd)∗

and then use that there is a unique homomorphism

logpdetZd : c0(Zd)∗ → Qp

which agrees with logpdetZd previously defined on c0(Zd,Zp)
∗ and satisfies

logpdetZd(p) = 0.

Using the homomorphism K1(Rd[S
−1
p ]) → K1(c0(Zd)) induced by the

canonical inclusion Rd[S
−1
p ] ↪→ c0(Zd) we have a well-defined homomor-

phism K1(Rd[S
−1
p ]) → Qp. The latter homomorphism factorises through

K1(Rd[S
−1
p ])/R∗d because elements in R∗d satisfy the condition (4.6) of Lemma

4.27. We summarize:
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Theorem 4.28. There is a homomorphism

logpdetZd : K1(Rd[S
−1
p ])/R∗d → Qp

which is given by the bottom row of the following commutative diagram:

K1(c0(Zd,Zp))/R
∗
d

��

// Qp

K1(Rd[S
−1
p ])/R∗d // K1(c0(Zd))/R∗d

det // c0(Zd)∗/R∗d
logpdetZd // Qp.

Definition 4.29. Let α be a p-adically expansive Zd-action on X. Then we
define

clp(X) := clp([M
X ]) ∈ K1(Rd[S

−1
p ])/R∗d.

Definition 4.30. Let α be a p-adically expansive Zd-action on X. Then we
define the p-adic entropy hp(X) of X by

hp(X) := logpdetZd(clp(X)) ∈ Qp.

Lemma 4.31. Let Xf = ̂(Rd)n/(Rd)nf the Zd-action attached to some f ∈
Mn(Rd) ∩GLn(c0(Zd)). Then

clp(Xf ) = f t.

Proof. This follows from

MXf = (Rd)
n/(Rd)

nf = (Rd)
n/f t(Rd)

n

and Theorem 4.26.

Theorem 4.32. Let f ∈ Mn(Rd) ∩ GLn(c0(Zd)). Then the usual Zd-action
on Xf is p-adically expansive and we have

hp(Xf ) := logpdetZd(f).

In particular, the periodic p-adic entropy of Xf coincides with the p-adic
entropy of Xf as defined in 4.30:

hp(Xf ) = hp,per(Xf ).
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Proof. If f ∈ Mn(Rd) ∩ GLn(c0(Zd)), then by Corollary 4.18 the Zd-action
on Xf is p-adically expansive.

By Lemma 4.31, it is hp(Xf ) = logpdetZd(clp(Xf )) = logpdetZd(f
t). But

the value logpdetZd(f
t) only depends on det(f t) = det(f). Thus, we have

hp(X) = logpdetZd(f).
In order to show hp(Xf ) = hp,per(Xf ), let Γn → 0 be a sequence of cofinite

subgroups of Zd converging to 0. Using Theorem 2.33 we see that

hp,Γn(Xf ) = lim
n→∞

1

(Γ : Γn)
logp |FixΓn(Xf )| = lim

n→∞

1

(Γ : Γn)
logp detQp(ρf (n))

= lim
n→∞

1

(Γ : Γn)
logpNQpΓ(n)/Qp(detQpΓ(n)ρf (n)))

= lim
n→∞

1

(Γ : Γn)
logp detQp(ρdetQpΓ(n) (f (n)))

= lim
n→∞

logpdetΓ(n)(detQpΓ(n)f (n)) = logpdetZd(detc0(Zd)(f))

= logpdetZd(f).

Hence, the limit limn→∞
1

(Γ:Γn)
logp |FixΓn(Xf )| exists for every Γn → 0 and

its value is given by logpdetZd(f), i.e. hp(Xf ) = hp,per(Xf ).

Corollary 4.33. Let f ∈ Mr(Rd) ∩ GLr(c0(Zd)). Then the periodic p-adic
entropy of the Zd-action on Xf exists and is given by

hp,per(Xf ) = mp(det f) := lim
N→∞,

(N,p)=1

1

Nd

∑
ζ∈µdN

log f(ζ).

Proof. By Theorem 4.32 we know that hp,per(Xf ) exists. Choosing Γn =
(nZ)d → 0 with n prime to p as in Theorem 2.36, we get hp,per(Xf ) =
mp(det f).

4.4 Applications: p-adic expansiveness for au-

tomorphisms of compact connected abelian

groups and dynamical systems defined by

a point

This section contains a short discussion of p-adic expansiveness for Z-actions
on compact connected abelian groups and for Zd-actions attached to a point
c ∈ (Q∗)d, i.e. the Zd-action on the Pontrjagin dual of Rd/mc where mc is the
vanishing ideal of the point c.
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Recall that in Section 3.2 we gave a short account on expansive Z-actions
on compact connected abelian groups and in Section 3.3 we gave a criterion
for expansiveness for Zd-actions attached to a point c ∈ (Q∗)d. We want to
point out that the results stated here are direct p-adic analogues of results
stated in Section 3.2 and 3.3.

Proposition 4.34. Let α be a p-adically expansive Z-action on a com-
pact connected abelian group X. Then there exist primitive polynomials
f1, . . . , fr ∈ R1, such that fj|fj+1 for j = 1, . . . , r−1 with fj ∈ c0(Z,Zp)

∗, j =
1, . . . , r, and a surjective morphism η of dynamical systems

η : Y := Yf1 × . . .× Yfr → X

with finite kernel.

Proof. As in the proof of Theorem 3.10 we find primitive polynomials f1, . . . , fr
with fj|fj+1 for j = 1, . . . , r− 1, such that we have an exact sequence of R1-
modules

0→MX → R1/(f1)× . . .×R1/(fr)→ N → 0,

where N is a finite.
The associated primes of

∏r
j=1 R1/(fj) are the same as the associated

primes of MX and are generated by the prime factors of the fj. Because α is
p-adically expansive the associated primes of MX do not vanish in any point
of Tp. It follows fj ∈ c0(Z,Zp)

∗.

Lemma 4.35. Let M be a finite Sp-torsion R1-module. Then

[M ] = 0 ∈ K0(MSp(R1)).

Proof. Because M is a finite R1-module, M has a composition series

0 = M0 ⊂ . . . ⊂Mn = M

such that the quotients Mi/Mi−1 are simple for every 1 ≤ i ≤ n. Thus, we
may assume that M is a simple module, i.e. M ' Z[t, t−1]/m, where m is a
maximal ideal. The ideal m is generated by some prime number l ∈ N and an
element f ∈ Z[t, t−1] whose image f̄ ∈ Fl[t, t−1] generates a maximal ideal.
Then we have an exact sequence in MSp(R1)

0→ f̄ · Fl[t, t−1]→ Fl[t, t−1]→M → 0

where the Z[t, t−1]-modules f̄ ·Fl[t, t−1] and Fl[t, t−1] are isomorphic. It follows
[M ] = 0 ∈ K0(MSp(R1)).
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Corollary 4.36. Let α be a p-adically expansive automorphism of a finite
abelian group X. Then hp(X) = 0.

Proof. MX is a finite Sp-torsionR1-module. Thus, it is [MX ] = 0 ∈ K0(MSp(R1))
and clp(X) = 1 ∈ K1(R1[S−1

p ])/(R1)∗. Then,

hp(X) = logpdetZ(clp(X)) = 0.

Proposition 4.37. Let α be a p-adically expansive Z-action on a compact
connected abelian group X and let

η : Y := Yf1 × . . .× Yfr → X

be as in Proposition 4.34. Then clp(Y ) = clp(X) and the p-adic entropy of
X is given by

hp(X) = hp(Y ) =
r∑
j=1

logpdetZ(fj) = logpdetZ

( r∏
j=1

fj

)
.

Proof. By Proposition 4.34 there is an exact sequence

0→MX →MY → N → 0

where N is finite and MX and MY are Sp-torsion, so N is also Sp-torsion.
Then

[MY ] = [MX ] + [N ] = [MX ] ∈ K0(MSp(R1))

by Lemma 4.35. In particular, we have clp(X) = clp(Y ) = [f1 · . . . · fr] and
the formula for the p-adic entropy follows from that.

In Section 3.2 we gave a description of expansive Z-action on compact
connected abelian groups in terms of dynamical systems XA associated to a
matrix A ∈ GLn(Q). Recall that the dual module of XA is

MA := Zn[At, (A−1)t] := subgroup of Qn generated by
⋃
k∈Z

(Ak)tZn,

where the variable t acts by multiplication with the transpose At of A on
MA.

The next proposition is a p-adic analogue of Proposition 3.12.

Proposition 4.38. An automorphism α of a compact connected abelian
group X is p-adically expansive if and only if it is algebraically conjugate
to the shift action σ on XA for some matrix A ∈ GLn(Q), n ≥ 1, without
eigenvalues in Tp.
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Proof. The associated prime ideals of MA are generated by the prime factors
of aχA, where χA is the characteristic polynomial of A and a is the least
common multiple of the denominators of the coefficients of χA. By the dis-
cussion in Section 4.2, the shift action σ on XA is p-adically expansive if and
only if the matrix A has no eigenvalues in Tp.

If on the other hand the action α is p-adically expansive, then the module
MX is noetherian. Using the arguments of the proof of [Sch95], Theorem
9.7, X is conjugate to the shift action on XA for some A ∈ GLn(Q). As we
assume the action to be p-adically expansive, the matrix A has no eigenvalues
in Tp.

Remark 4.39. This implies in particular that torus actions, i.e. actions of
the form αA with A ∈ GLn(Z) cannot be p-adically expansive because the
eigenvalues in Qp of a matrix A ∈ GLn(Z) have absolute value 1.

Proposition 4.40. Let A ∈ GLn(Q) and let XA with the shift action σ as
defined in 3.1. Let χA ∈ Q[t] be the characteristic polynomial of A and let
a ∈ N be the least common multiple of the denominators of the coefficients
of χA. Assume that χA has no zeroes on Tp. Then

hp(X
A) = mp(aχA),

where mp(aχA) is the p-adic Mahler measure of aχA.

Proof. The proof of 3.30 shows that clp(X
A) = aχA mod (R1)∗. By Theo-

rem 4.32 and Theorem 2.35 it is logpdetZ(aχA) = mp(aχA).

Next, we want to discuss p-adic expansiveness for Zd-actions attached to
a point c = (c1, . . . , cd) ∈ (Q∗)d. Let mc be the vanishing ideal of c and let

(X = R̂d/mc, α). Again, we denote by (Yc, αc) the dynamical system whose
dual module is the ring of S-integers RP (c) where the set P (c) is the union
of the archimedean places in K = Q(c) and the set of finite places

F (c) :=
{
v ∈ PK

f : |ci|v 6= 1 for some i ∈ {1, . . . , d}
}

For more details see Section 3.3.

Proposition 4.41. Let d ≥ 1, c = (c1, . . . , cd) ∈ (Q∗)d, and let (X,α) and
(Yc, αc) be as defined before. Then α is p-adically expansive if and only if αc
is p-adically expansive. This is the case if and only if the orbit of c under the
diagonal action of the Galois group Gal(Q/Q) on (Q∗)d does not intersect
T dp .
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Proof. The modules MX and MYc are both associated with the prime ideal
mc defined by c. Thus, α is p-adically expansive if and only if αc is p-adically
expansive.

This is exactly the case if the ideal in Qp〈t±1
1 , . . . , t±1

d 〉 generated by mc is
the unit ideal which means that mc has no zero in T dp . But the zeroes of mc

in T dp correspond to the orbit of the element c under the action of the group

Gal(Q/Q) intersected with T dp .

Example 4.42. Let us continue the discussion of Example 2.39. There we
considered the 2-adically expansive dynamical system Xf attached to the
polynomial f = 2t2 − t + 2. The zeroes of f in Q2 are given by α± =
1
4
(1 ±

√
−15) with |α+|2 = 2 and |α−|2 = 1/2. The periodic p-adic entropy

of Xf is given by h2,per(Xf ) = log2 α+ ∈ Z2.
We want to understand this example from the adelic point of view. Let

c be the point c = 1
4
(1 +

√
−15) ∈ Q. The corresponding algebraic number

field is
K = Q[(1/4)(1 +

√
−15)] = Q[

√
−15].

In order to determine Yc or its dual module RP (c) we first determine the set
P (c).

Note that for any place p ∈ PQ, the inequivalent extensions of p to K
correspond to the irreducible factors of g = t2 − 1

2
t+ 1 in Qp.

For p =∞, the polynomial g is irreducible over R as c 6∈ R. Thus, there
is only one archimedean place on K extending p =∞ which we also denote
by ∞. It is K∞ = C.

For p = 2, there are two inequivalent extensions v+ and v− corresponding
to g = (t− α+)(t− α−) ∈ Q2[t]. It is Kv+ = Q2 = Kv− .

For p 6= 2, the polynomial g lies in Zp[t]. Even more, the coefficients of
g lie in Z∗p = {z ∈ Zp : |z|p = 1}. This implies that if v is an extension of
p 6= 2 to K then |c|v = 1. In particular, any v ∈ PK

f extending some p 6= 2
will not be contained in the set F (c) = {v ∈ PK

f : |c|v 6= 1}. So we find
F (c) = {v+, v−} and P (c) = {∞, v+, v−}.

By Theorem 3.19, it is

R̂P (c) = Yc = C×Q2 ×Q2/∆(RP (c)).

We can lift the action αc on Yc to an action of the covering space C×Q2×Q2.
The lifted action on the latter space is just given by multiplication with c on
each component.
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Chapter 5

Entropy of expansive Zd-actions
and K-theory

In this chapter we want to apply the K-theoretical approach which we used
to define p-adic expansiveness and p-adic entropy to the usual notions of
expansiveness and entropy for Zd-actions.

We show that an algebraic Zd-action on the compact abelian group X
is expansive if and only if MX is a finitely generated S∞-torsion Rd-module
where S∞ = Rd ∩ L1(Zd,R)∗. Then we attach to every expansive Zd-action
on X an invariant

cl∞(X) ∈ K1(Rd[S
−1
∞ ])/R∗d = SK1(Rd[S

−1
∞ ])⊕Rd[S

−1
∞ ]∗/R∗d.

We show that the Fuglede-Kadison determinant defines a homomorphism

log detNZd : K1(Rd[S
−1
∞ ])/R∗d → R

such that the topological entropy h(X) of an expansive algebraic Zd-action
on X is given by log detNZd(cl∞(X)).

In Section 5.2 we prove that for d ≥ 5, the group SK1(Rd[S
−1
∞ ]) is not

trivial. This gives a new non-trivial additive invariant of expansive Zd-actions
for d ≥ 5.

5.1 A K-theoretic approach to entropy of ex-

pansive Zd-actions

Let S∞ ⊂ Rd be the multiplicative system S∞ = Rd∩L1(Zd,R)∗. We denote
by MS∞(Rd) the category of finitely generated S∞-torsion Rd-modules.
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Lemma 5.1. Let (X,α) be an algebraic Zd-action such that MX ∈MS∞(Rd).
Then α is expansive.

Proof. First note that MX is a noetherian module as it is finitely generated
over the noetherian ring Rd. Then by Theorem 3.3 we have to show that
VC(p) ∩ Td = ∅ for all p ∈ Ass(MX).

MX ∈ MS∞(Rd) implies that every annihilator ideal of MX contains an
element f which is a unit in L1(Zd,R). In particular, this is true for all
associated primes of MX . By Theorem 3.8, f is a unit in L1(Zd,R) if and
only if f does not vanish in any point of Td. It follows VC(p)∩Td = ∅ for all
p ∈ Ass(MX).

Theorem 5.2 (Algebraic criterion of expansiveness). Let α be an algebraic
Zd-action on a compact abelian group X. Then α is expansive if and only if
MX ∈MS∞(Rd).

Proof. If MX ∈MS∞(Rd) then by Lemma 5.1 the action α is expansive.
For the reverse implication we show that for an expansive action α on X

every p ∈ Ass(MX) contains an element in S∞. Then using Lemma 4.15 this
implies MX ∈MS∞(Rd).

Let p ∈ Ass(MX) be generated by f1, . . . , fr ∈ Rd. By Theorem 3.3, the
fi have no common zero on the d-torus Td. Define the element g ∈ p by

g =
r∑
i=1

fifi(t
−1) with fi(t

−1) = fi(t
−1
1 , . . . , f−1

d ).

Because for an element z ∈ T the inverse z−1 is given by the complex conju-
gate z̄, it is for z = (z1, . . . , zd) ∈ Td

g(z) =
r∑
i=1

fi(z)fi(z̄) =
r∑
i=1

fi(z)fi(z) =
r∑
i=1

|fi(z)|2 6= 0.

It follows that g ∈ S∞.

Now that we have characterized expansive Zd-actions as those actions
such that the dual module MX is in MS∞(Rd), we want to apply the K-
theoretic formalism presented in Section 4.1 to expansive Zd-actions.

Theorem 5.3. Consider the multiplicative system S∞ = Rd ∩ L1(Zd,R)∗ in
Rd. There is an isomorphism

cl∞ : K0(MS∞(Rd))→ K1(Rd[S
−1
∞ ])/R∗d

such that
cl∞([(Rd)

n/f(Rd)
n]) = [f ] mod R∗d

for all f ∈Mn(Rd) ∩GLn(L1(Zd,R)).
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Proof. Using the localisation sequence of Theorem 4.13

K1(Rd)→ K1(Rd[S
−1
∞ ])

δ→ K0(MS∞(Rd))
ε→ K0(Rd)→ K0(Rd[S

−1
∞ ])→ 0

we show with the same arguments as in the proof of Theorem 4.26 that δ
induces an isomorphism

δ̄ : K1(Rd[S
−1
∞ ])/R∗d → K0(MS∞(Rd)).

Define cl∞ as the inverse δ̄−1 of δ̄. Then cl∞ has the claimed property.

Definition 5.4. Let (X,α) be an expansive algebraic Zd-action, i.e. MX ∈
MS∞(Rd). Then we define

cl∞(X) := cl∞([MX ]) ∈ K1(Rd[S
−1
∞ ])/R∗d.

Next, we want to show that the entropy h(X) of an expansive Zd-action
can be obtained by applying the Fuglede-Kadison determinant to cl∞(X).

Lemma 5.5. Let f ∈ GLr(L
1(Zd,R)). Assume that for all cofinite subgroups

N of Zd it is
detC(ρf̄ ) = ±1,

where f̄ is the image of f in Mr(L
1(Zd/N,R)). Then

log detNZdf = 0.

Proof. This follows from Theorem 2.21 and Example 2.18.

Corollary 5.6. The Fuglede-Kadison determinant defines a homomorphism

log detNZd : K1(Rd[S
−1
∞ ])/R∗d → R.

Proof. Using Lemma 5.5, we show that the Fuglede-Kadison determinant
gives a well-defined homomorphism on K1(L1(Zd,R))/R∗d. The canonical ho-
momorphism K1(Rd[S

−1
∞ ])/R∗d → K1(L1(Zd,R))/R∗d will then give the stated

map.
For every r ≥ 1 and any cofinite subgroup N of Zd, the diagram

GLr(L
1(Zd,R))

det
��

// GLr(L
1(Z/N,R))

det
��

L1(Zd,R)∗ // L1(Zd/N,R)∗

commutes, where the horizontal arrows are the canonical reduction homo-
morphisms.
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From Theorem 2.21, it follows that log detNZd is well-defined on the infi-
nite general linear group GL(L1(Zd,R)). The Fuglede-Kadison determinant
passes to K1(L1(Zd,R)) because elementary matrices have determinant 1
and the diagram above implies that for elementary matrices the condition of
Lemma 5.5 is satisfied.

If f ∈ R∗d, then for every cofinite subgroup N of Zd, the automorphism ρf̄
is just a permutation of the canonical basis of L1(Zd/N,R) and so det ρf̄ =
±1. Using again Lemma 5.5, the claim follows.

Corollary 5.7. The Fuglede-Kadison determinant vanishes on the subgroup
SK1(Rd[S

−1
∞ ]) ⊂ K1(Rd[S

−1
∞ ])/R∗d. Thus, the homomorphism

log detNZd : K1(Rd[S
−1
∞ ])/R∗d → R

factorizes as

K1(Rd[S
−1
∞ ])/R∗d

det→ Rd[S
−1
∞ ]∗/R∗d

log detNZd→ R .

Proof. Let f ∈ SLn(Rd[S
−1
∞ ]) be a representative of [f ] ∈ SK1(Rd[S

−1
∞ ]).

Then as in the proof of Lemma 4.27 one shows that detC(ρf̄ ) = ±1 for every
cofinite subgroup N of Zd.

Theorem 5.8. Let α be an expansive algebraic Zd-action on a compact
abelian group X. Then the topological entropy of the action α on X is given
by

h(X) = log detNZd(cl∞(X)).

Proof. Let f ′ ∈ GLn(Rd[S
−1
∞ ]) be a representative of cl∞(X) and let s ∈ S∞

such that the element f = sf ′ is in Mn(Rd). Then by the definition of the
map δ in Theorem 4.13 it is

[MX ] = [(Rd)
n/f(Rd)

n]− [(Rd)
n/s(Rd)

n] ∈ K0(MS∞(Rd))

and by Yuzvinskii’s addition formula we know that h(X) only depends on
the class [MX ] ∈ K0(MS∞(Rd)), i.e. it is h(X) = h(Xf t) − h(Xs), where
Xs denotes the Pontrjagin dual of (Rd)

n/s(Rd)
n. By [Sch95], Chapter V,

Example 18.7, (1), and by Example 2.17 we know that

h(Xf ) = m(det f) :=

∫
Td

log | det f(z)|dµ(z) = log detNZd(det(f)).

On the other hand, we know by Corollary 5.7 that for f ∈ GLn(Rd[S
−1
∞ ]) it is

log detNZd(f) = log detNZd(det f). Thus, writing Idn for the identity matrix
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in GLn(Rd[S
−1
∞ ]) we get

log detNZd(cl∞(X)) = log detNZd(det(cl∞(X)))

= log detNZd(det(f))− log detNZd(det(s · Idn))

= log detNZd(det(f t))− log detNZd(det(s · Idn))

= h(Xf t)− h(Xs) = h(X).

5.2 The group SK1(Rd[S
−1
∞ ])

Given an expansive algebraic Zd-action (X,α) we defined an element

cl∞(X) ∈ K1(Rd[S
−1
∞ ])/R∗d = SK1(Rd[S

−1
∞ ])⊕ (Rd[S

−1
∞ ])∗/R∗d.

So it is natural to study the group SK1(Rd[S
−1
∞ ]) in order to understand

expansive Zd-actions.

For so-called special normed commutative R-algebras B, computations
of SK1(B) have been made in [Day76] using topological methods. Even
thoughRd[S

−1
∞ ] is not an R-algebra, it lies densely in the commutative Banach

algebra C(Td, ι) of continuous functions f : Td → C which satisfy f = f ◦ ι,
where ι : Td → Td is the involution given by complex conjugation and f is
the composition of f with complex conjugation on C.

We show that SK1(Rd[S
−1
∞ ]) surjects onto SK1(C(Td, ι)). Using topolog-

ical K-theory we show that, for d large enough, SK1(C(Td, ι)) is non-trivial
which proves that SK1(Rd[S

−1
∞ ]) 6= 0.

We proceed as follows. First we shortly define topological K-theory of
real Banach algebras and state some of the fundamental results of topological
K-theory. For example, even though we are only interested in SK1(C(Td, ι))
we need the Periodicity Theorem and the higher topological K-groups for
our computations.

Next, we recall some results on SK1 of a special normed commutative R-
algebra B. The main points here are that SK1(B) equals the group of path
components π0(SL(B)) of SL(B) and that SK1(B) is isomorphic to SK1(B′)
if B and B′ are special normed R-algebras and B lies densely in B′.

Then we show that, for d large enough, SK1(C(Td, ι)) 6= 0.

Let us start with the definition of topological K-theory of real Banach
algebras.

77



Definition 5.9. Let A be a unital Banach algebra and let X be a compact
Hausdorff space. An A-bundle over X is a locally trivial Banach space bundle
whose fibers are finitely generated projective A-modules.

Definition 5.10. For a unital real Banach algebra A and a compact Haus-
dorff space X, let P(X;A) denote the category whose objects are A-bundles,
and whose morphisms are A-linear bundle maps (between corresponding lo-
cally trivial Banach space bundles). The Grothendieck group of P(X;A) will
be denoted by K(X;A).

Note that the additive structure of K(X;A) is induced by taking the
direct sum E ⊕ F of two A-bundles E,F over X.

In order to define K-groups for locally compact Hausdorff spaces we first
introduce relative K-groups for compact pairs (X, Y ), i.e. Y ⊂ X and X, Y
are compact Hausdorff spaces.

Definition 5.11. Let (X, Y ) be a pair of compact Hausdorff spaces, Ei, Fi
A-bundles over X and αi : Ei|Y → Fi|Y , i = 1, 2, A-bundle isomorphisms.
The two triples (E1, F1, α1) and (E2, F2, α2) are isomorphic, provided that
there are A-bundle isomorphisms f : E1 → E2 and g : F1 → F2 with

α2 ◦ f |Y = g|Y ◦ α1.

Two triples are called stably isomorphic if they become isomorphic after
adding elementary triples (a triple (E,F, α) is called elementary if E = F
and if α is homotopic to idE in the set of A-bundle isomorphisms). The sum
of two triples (E,F, α) and (E ′, F ′, α′) is defined by (E⊕E ′, F ⊕F ′, α⊕α′).
Equivalence classes of stably isomorphic triples form a group which will be
denoted by K(X, Y ;A).

Definition 5.12. If X is a locally compact Hausdorff space and X+ = X ∪
{∞} its one-point compactification, then we define

K(X;A) = K(X+, {∞};A).

For a closed subset Y ⊂ X and n ≥ 0, the higher (relative) K-groups are
defined by

K−n(X, Y ;A) = K((X \ Y )× Rn;A).

We may now define the topological K-groups of a real Banach algebra A.

Definition 5.13. For a unital real Banach algebra we define the n-th topo-
logical K-group of A for n ≥ 0 by

Ktop
n (A) = K−n({pt};A),
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which gives
Ktop
n (A) = K(Rn;A) ' K(Bn, Sn−1;A),

where Bn = {x ∈ Rn : ||x|| ≤ 1} and Sn−1 = {x ∈ Rn : ||x|| = 1}. If A does
not have a unit we define

Ktop
n (A) = ker(Kn(Ã)→ Kn(R)),

where Ã = A×R with multiplication (a, x)(a′, x′) = (aa′+xa′+x′a, xx′) and
the obvious addition is the unitization of A.

Definition 5.14. Let A be an unital commutative Banach algebra. Let 〈[A]〉
be the subgroup of Ktop

0 (A) generated by the class [A] of the trivial A-bundle.
Note that 〈[A]〉 is isomorphic to Z. The reduced Ktop

0 -group of A is defined
as the quotient

K̃top
0 (A) = Ktop

0 (A)/〈[A]〉.

Theorem 5.15. For any unital real Banach algebra A we have

Ktop
n (A) ' πn−1(GL(A)), n > 0,

where πn−1(GL(A)) is the (n− 1)-th homotopy group of GL(A).

Proof. See [Sch93], Theorem 1.4.6.

Theorem 5.16 (Periodicity Theorem). For a real Banach algebra A there
are isomorphisms

Ktop
n (A) ' Ktop

n+8(A), n ≥ 0.

Proof. See [Kar78], III, 5.17.

We say a sequence of Banach algebras and maps

0→ A′ → A→ A′′ → 0

is exact if the underlying sequence of abelian groups is exact, i.e. A′ is a
two-sided ideal in A and A′′ may be identified with A/A′.

Theorem 5.17. Any short exact sequence of real Banach algebras

0→ A′ → A→ A′′ → 0

gives rise to a long exact sequence in K-theory

. . .→ Ktop
n (A′)→ Ktop

n (A)→ Ktop
n (A′′)→ Ktop

n−1(A′)→ . . . .
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Proof. See [Sch93], Theorem 1.4.14.

In the following, it will turn out that topological K-theory provides a very
useful tool to understand SK1(Rd[S

−1
∞ ]). The reasons for this are basically

that Rd[S
−1
∞ ] lies densely in the real Banach algebra C(Td, ι) and that for

a Banach algebra A the group SK1(A) has a topological description as the
group of path components π0(SL(A)) of SL(A).

Definition 5.18. Let A be a unitary commutative R-algebra equipped with a
norm || ||. We say A is special if ||a|| < 1 implies that 1− a ∈ A∗ for every
a ∈ A. In this case, we will call A a special normed algebra for short.

Example 5.19. Every commutative real Banach algebra A with unit is spe-
cial. If A is a normed R-algebra and Â its completion, then the localisation of
A with respect to all elements a ∈ A which become invertible in Â is special.

Lemma 5.20. Let A be a special normed algebra. Then the group En(A)
generated by the elementary matrices is an open, path connected subgroup of
the special linear group SLn(A).

Proof. The proof is given in [Mil71], Lemma 7.1, for A a Banach algebra.
The same proof works in the case of a special normed R-algebra.

Because En(A) is path-connected, the group En(A) is closed in SLn(A).
Hence, En(A) is the component of the identity in SLn(A), and the quotient
SLn(A)/En(A) can be identified with the group π0(SLn(A)) of path compo-
nents.

It is

SK1(A) = SL(A)/E(A) = lim−→ SLn(A)/En(A) = lim−→ π0SLn(A).

Thus, if we give SL(A) the direct limit topology, then the group π0(SL(A)) of
path components can be identified with lim−→ π0SLn(A). This proves the next
result.

Corollary 5.21. The group SK1(A) is isomorphic to the group π0(SL(A))
of path components of SL(A).

Theorem 5.22. Let B be a special normed algebra and let A ⊂ B be a dense
subring with the property A ∩B∗ = A∗. Then

(i) SK1(A)→ SK1(B) is surjective.

If A is also a special normed R-algebra, then the condition A ∩ B∗ = A∗ is
automatically satisfied and
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(ii) SK1(A)→ SK1(B) is an isomorphism.

Proof. Assume that A is special. We show that this implies A ∩ B∗ = A∗.
If a ∈ A is invertible in B we pick an element c ∈ A which is close to the
inverse of a. Then ||1 − ac|| < 1 and because A is special it follows that ac
and therefore a are invertible in A.

The proof of (ii) is given in [Day76], Theorem 2.7. To show surjectivity,
the idea is the following: Let b ∈ SLn(B). As B is special, GLn(B) is open
in Mn(B). So we may pick an ε-ball Uε(b) around b which is contained in
GLn(B). Because A is dense in B, Uε(b) contains an element a ∈ Mn(A).
Let γ be the straight path in Uε(b) ⊂ GLn(B) connecting b and a, i.e. γ(t) =
ta+(1−t)b, t ∈ [0, 1]. Let δ(t) be the diagonal matrix with δ(t)11 = det γ(t)−1

and δ(t)ii = 1 for i 6= 1. Then δγ is a path in SLn(B) connecting b and δ(1)a.
Now, as A is special, the element det a ∈ A ∩ B∗ is invertible in A. This
implies that δ(1)a ∈ SLn(A). As SK1(B) = π0(SL(B)) it is [b] = [δ(1)a] ∈
SK1(B). This proves surjectivity of the homomorphism SK1(A)→ SK1(B).

This proof uses only the fact that A ∩B∗ = A∗ and the assumption that
B is special for surjectivity. So the same proof shows that in (i) the map
SK1(A)→ SK1(B) is surjective.

Corollary 5.23. The inclusion Rd[S
−1
∞ ] ↪→ C(Td, ι) induces a surjective

homomorphism

SK1(Rd[S
−1
∞ ])→ SK1(C(Td, ι)).

Proof. We want to apply Theorem 5.22, (i), to the case A = Rd[S
−1
∞ ] and

B = C(Td, ι).
It is Rd[S

−1
∞ ]∩C(Td, ι)∗ = Rd[S

−1
∞ ]∗. To show that Rd[S

−1
∞ ] lies densely in

C(Td, ι), first note that by the Theorem of Stone-Weierstraß C[z±1
1 , . . . , z±1

d ]
is dense in the algebra C(Td,C) of continuous functions from Td to C. If
p ∈ C[z±1

1 , . . . , z±1
d ] is an approximation of f ∈ C(Td, ι), then 1

2
(p + p) is

an approximation of f which lies in R[z±1
1 , . . . , z±1

d ]. But any element in
R[z±1

1 , . . . , z±1
d ] can be approximated by elements in Rd[S

−1
∞ ], so Rd[S

−1
∞ ] lies

densely in C(Td, ι).

We proved that there is a surjective homomorphism SK1(Rd[S
−1
∞ ]) →

SK1(C(Td, ι)). The next part will be concerned with the computation of the
group SK1(C(Td, ι)).

Lemma 5.24. Let A be a commutative Banach algebra. The continuous map
det : GL(A)→ A∗ has a continuous section

s : A∗ → GL(A), a 7→ (a) ∈ GL1(A) ⊂ GL(A).
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The map u : SL(A) × A∗ → GL(A), (M,a) 7→ Ms(a) is an isomorphism of
topological spaces which induces an isomorphism of groups

π0(GL(A)) = π0(SL(A))⊕ π0(A∗).

Proof. The inverse of the continuous map u is given by

v : GL(A)→ SL(A)× A∗, N 7→ (N(detN)−1, detN).

The continuous maps u and v induce maps

π0(u) : π0(SL(A))× π0(A∗)→ π0(GL(A))

and

π0(v) : π0(GL(A))→ π0(SL(A))× π0(A∗)

which are inverse to each other.
Because the groups π0(GL(A)), π0(SL(A)) and π0(A∗) are abelian, it

follows that π0(u) and π0(v) are group homomorphism. Thus, we get a direct
sum decomposition of the group π0(GL(A)) = π0(SL(A))⊕ π0(A∗).

Recall that the algebraic K-group K1(R) for a commutative ring R splits
as

0→ SK1(R)→ K1(R)
det→ R∗ → 0.

As a corollary to Lemma 5.24 we get an analogous result for the group
Ktop

1 (A) for a commutative Banach algebra A:

Corollary 5.25. Let A be a commutative Banach algebra. Define SKtop
1 (A) :=

π0(SL(A)) = SK1(A). Then we have a split exact sequence

0→ π0(A∗)→ Ktop
1 (A)→ SKtop

1 (A)→ 0.

Proof. By Theorem 5.15 the group Ktop
1 (A) is isomorphic to π0(GL(A)).

Then Lemma 5.24 gives the result.

Lemma 5.26. Let B be a special dense subalgebra of C(Tn−1, ι). Then the
natural map B[z, z−1]∗ → π0(C(Tn, ι)∗) is surjective.

Proof. It is proven in [Day76], Lemma 4.2, that if B′ is a special dense
subalgebra in the algebra C(Tn−1,C) of continuous complex-valued functions
of the n−1-torus Tn−1 then B′[z, z−1]∗ → π0(C(Tn)∗) is surjective. We show
that the same proof works in the equivariant situation of our lemma.
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Let r : C∗ → T be the retraction z 7→ z/|z|. Because the homotopy
between the identity Id : C∗ → C∗ and C∗ r→ T ↪→ C∗ given by

C∗ × [0, 1]→ C∗, (z, t) 7→ z · 1 + t|z|
|z|+ t

,

respects complex conjugation, we may identify π0(C(Tn, ι)∗) with the group
[Tn−1 × T,T]equ of equivariant homotopy classes of maps Tn−1 × T→ T. By
an equivariant homotopy H we mean a homotopy H : Tn× [0, 1]→ T which
satisfies H(z, t) = H(ι(z), t) for all t ∈ I = [0, 1].

Thus, in order to prove the claim of the lemma it suffices to show that
the map

(5.1) B[z, z−1]∗ → [Tn−1 × T,T]equ, b 7→ r ◦ b,

is surjective. First we note that if two equivariant maps f, g : Tn → T are
close enough then there is an equivariant homotopy between them given by

Tn × I → T, (z, t) 7→ (1− t)f(z) + tg(z)

|(1− t)f(z) + tg(z)|
.

So let f : Tn → T with f ◦ ι = f be given. Then as proven in [Day76], there
exists a homotopy between f and the function g : Tn−1 × T→ T, g(x, z) =
f(x, 1)zn for some n ∈ Z. Note that g satisfies g◦ι = g. A homotopy between
(fg−1) and 1 is explicitly given by

F : Tn−1 × T× I → T, (x, z, t) 7→ eitφx(z),

where φx : T → R is the unique continuous map such that (fg−1)(x, z) =
eiφx(z) for all z ∈ T and φx(1) = 0. The uniqueness of φx implies

(5.2) φx̄(z̄) = −φx(z) for all x ∈ Tn−1 and for all z ∈ T.

Namely, if we define φ̃x(z) = −φx̄(z̄), then φ̃x(1) = 0 and

eiφ̃x(z) = (fg−1)(x̄, z̄) = (fg−1)(x, z).

Hence, by uniqueness, φx̄(z̄) = −φx(z). Equation (5.2) implies that F is
equivariant, so that there is an equivariant homotopy between f and g.

Now let j : Tn−1 → Tn−1 × T be defined by j(x) = (x, 1). Because B is
special dense in C(Tn−1, ι) there is an element h ∈ B∗ such that r ◦h is close
to f ◦ j, i.e. [r ◦ h] = [f ◦ j] in [Tn−1,T]equ. Thus,

[r ◦ (hzn)] = [(r ◦ h)zn] = [(f ◦ j)zn] = [g] = [f ] in [Tn−1 × T,T]equ,

which proves that the element hzn ∈ B[z, z−1] is mapped to [f ] under the
map (5.1).
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Theorem 5.27. Let X be a compact Hausdorff space with an involution τ .
We denote by C(X, τ) the Banach R-algebra of continuous functions f : X →
C such that f ◦ τ = f . Then

Ktop
n (C(X × T, τ × ι)) = Ktop

n (C(X, τ))⊕Ktop
n−1(C(X, τ)).

Proof. Let A′ be the real Banach algebra

A′ =
{
f : R→ C(X, τ) : f cont., lim

|t|→∞
||f(t)|| = 0, ft(x) = f−t(τx)

}
.

Then the result comes from the exact K-theory sequence attached to the
split exact sequence

0→ A′ → C(X × T, τ × ι) f 7→f(x,1)→ C(X, τ)→ 0

and the fact that Ktop
n (A′) is isomorphic to Ktop

n−1(C(X, τ)), see [Sch93], The-
orem 1.5.4, for more details.

We define B0 = R and for n ≥ 1 let Bn := Bn−1[z, z−1][S−1
∞,R], where

S∞,R = R[z±1
1 , . . . , z±1

n ]∩C(Tn, ι)∗ (to be precise, S∞,R depends of course on
n but for simplicity we omit the n in the notation). Bn is a special R-algebra
dense in C(Tn, ι). There are natural homomorphisms

σ : K1(Bn−1[z, z−1])→ Ktop
1 (C(Tn, ι)),

σ′′ : SK1(Bn−1[z, z−1])→ SKtop
1 (C(Tn, ι)),

σ′ : Bn−1[z, z−1]∗ → π0(C(Tn, ι)∗)

which all are induced by the inclusion Bn−1[z, z−1] ↪→ C(Tn, ι).
In order to compute SK1(C(Tn, ι)) we compare the commutative diagrams

(5.3)

0 // Bn−1[z, z−1]∗

σ′

��

// K1(Bn−1[z, z−1])

σ

��

// SK1(Bn−1[z, z−1])

σ′′

��

// 0

0 // π0(C(Tn, ι)∗) // Ktop
1 (C(Tn, ι)) // SKtop

1 (C(Tn, ι)) // 0

and
(5.4)

0 // K1(Bn−1)

θ′

��

// K1(Bn−1[z, z−1])

θ
��

// K0(Bn−1)

θ′′

��

// 0

0 // Ktop
1 (C(Tn−1, ι)) // Ktop

1 (C(Tn, ι)) // Ktop
0 (C(Tn−1, ι)) // 0 ,
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where the homomorphisms θ, θ′ and θ′′ in the second diagram are again in-
duced by the inclusions Bn−1[z, z−1] ⊂ C(Tn, ι) and Bn−1 ⊂ C(Tn−1, ι).

Only the commutativity of diagram (5.4) needs a justification. By Theo-
rem 5.27 we know that Ktop

1 (C(Tn, ι)) = Ktop
1 (C(Tn−1, ι))⊕Ktop

0 (C(Tn−1, ι)),
but to prove the commutativity of (5.4) we follow Swan’s proof of the iso-
morphism

Ktop
1 (C(X × T,C)) = Ktop

1 (C(X,C))⊕Ktop
0 (C(X,C)),

where X is a compact Hausdorff space, in [Swa68].
Let F be a contravariant functor from topological spaces to groups. We

say a, b ∈ F (X) are homotopic if there exists some g ∈ F (X × I), I = [0, 1],
such that F (i0)(g) = a and F (i1)(g) = b, where i0, i1 : X → X × I are the
inclusions i0(x) = (x, 0), i1(x) = (x, 1). Then one can define a new functor
be identifying homotopic elements in F (X).

We want to show that the canonical homomorphism of algebraicK-groups

K1(C(Tn−1, ι)[z, z−1])→ K1(C(Tn, ι)),

which is induced by the inclusion C(Tn−1, ι)[z, z−1] → C(Tn, ι), induces an
isomorphism after identifying homotopic elements on both sides, i.e one has
an isomorphism
(5.5)
K1(C(Tn−1, ι)[z, z−1])/(hom.)→ K1(C(Tn, ι))/(hom.) = Ktop

1 (C(Tn, ι)).

Then the decomposition of K1(C(Tn−1, ι)[z, z−1]) into

K1(C(Tn−1, ι)[z, z−1]) = K1(C(Tn−1, ι))⊕K0(C(Tn−1, ι))⊕W,

where W is the subgroup of K1(C(Tn−1, ι)[z, z−1]) generated by elements
I + (z− 1)N, I + (z−1− 1)N , I the identity matrix and N a nilpotent matrix
with entries in C(Tn−1, ι) yields the isomorphism

K1(C(Tn−1, ι)[z, z−1])/(hom.) = Ktop
1 (C(Tn−1, ι))⊕Ktop

0 (C(Tn−1, ι))

= Ktop
1 (C(Tn, ι))

because the elements in W are homotopic to I and

K0(C(Tn−1, ι))/(hom.) = K0(C(Tn−1, ι)) = Ktop
0 (C(Tn−1, ι)).

(5.5) is proven in [Swa68], Lemmata 17.4-17.8, in the case C(Tn,C). But the
same arguments work in the case C(Tn, ι) which gives equation (5.5).
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Because the summands K1(Bn−1) and Ktop
1 (C(Tn−1, ι)) are embedded

in K1(Bn−1[z, z−1]) and Ktop
1 (C(Tn, ι)) by the homomorphisms induced by

the inclusions Bn−1 ⊂ Bn−1[z, z−1] and C(Tn−1, ι) ⊂ C(Tn, ι), respectively,
and because we have shown that the splitting of Ktop

1 (C(Tn, ι)) comes from
the splitting of the algebraic K-group K1(C(Tn−1, ι)[z, z−1]) we see that the
arrows in diagram (5.4) commute.

We summarize what we know about the diagrams (5.3) and (5.4) in the
following proposition.

Proposition 5.28. The following holds:

(i) The commutative diagrams (5.3) and (5.4) have exact rows.

(ii) θ′ and σ′ are surjective.

(iii) σ′′ is injective.

Proof. (i) follows from the previous discussion.
By Lemma 5.26 σ′ is surjective. It is K1(Bn−1) = B∗n−1 ⊕ SK1(Bn−1)

and Ktop
1 (C(Tn−1, ι)) = π0(C(Tn−1, ι)∗) ⊕ SKtop

1 (C(Tn−1, ι)). Because Bn−1

is special dense in C(Tn−1, ι) the map B∗n−1 → π0(C(Tn−1, ι)∗) induced by
θ′ is surjective. By Theorem 5.22, (ii), also the induced map SK1(Bn−1) →
SKtop

1 (C(Tn−1, ι)) is surjective. This shows that θ′ is surjective.
For (iii) use [Day76], Proposition 4.1.

Corollary 5.29. There is an exact sequence

0→ SK1(Bn−1[z, z−1])→ SKtop
1 (C(Tn, ι))→ K̃top

0 (C(Tn−1, ι))→ 0.

Proof. We proved that σ′′ : SK1(Bn−1[z, z−1])→ SKtop
1 (C(Tn, ι)) is injective.

The exact sequences (5.3) and (5.4) induce exact sequences

cokerσ′ → cokerσ → cokerσ′′ → 0

and
coker θ′ → coker θ → coker θ′′ → 0.

Because θ′ and σ′ are surjective, we have coker θ ' coker θ′′ and cokerσ '
cokerσ′′. Using furthermore that θ = σ, we may identify the cokernel of σ′′ :
SK1(Bn−1[z, z−1]) → SKtop

1 (C(Tn, ι)) with the cokernel of θ′′ : K0(Bn−1) →
Ktop

0 (C(Tn−1, ι)).
The ring Bn−1 is a localisation of R[z±1

1 , . . . , z±1
n−1]. By Theorem 4.11 we

know that K0(R[z±1
1 , . . . , z±1

n−1]) = Z and with the Localisation Sequence 4.13
we deduce that also K0(Bn−1) = Z. Thus, we may identify the cokernel of θ′′

with the reduced K-group K̃top
0 (C(Tn−1, ι)). This gives the exact sequence

of the lemma.
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Lemma 5.30. It is SK1(Bn−1) ' SK1(Bn−1[z, z−1]).

Proof. By Theorem 4.11 it is

(5.6) K1(Bn−1[z, z−1]) = K0(Bn−1)⊕K1(Bn−1) = Z⊕K1(Bn−1).

On the other hand, it is

(5.7) K1(Bn−1[z, z−1]) = SK1(Bn−1[z, z−1])⊕B∗n−1 ⊕ Z.

Comparing equations (5.6) and (5.7) we deduce that SK1(Bn−1) has to be
isomorphic to SK1(Bn−1[z, z−1]).

Applying Theorem 5.27 to C({pt}, id) = R yields:

Proposition 5.31. There is an isomorphism

Ktop
n (C(T, ι)) ' Ktop

n (R)⊕Ktop
n−1(R).

Proposition 5.32. The structure of Ktop
n (R) is given by

Ktop
n (R) =


Z, n ≡ 0, 4 mod 8
F2, n ≡ 1, 2 mod 8
0, n ≡ 3, 5, 6, 7 mod 8 .

Thus, by Proposition 5.31 we get

Ktop
n (C(T, ι)) =


Z, n ≡ 0, 4, 5 mod 8

Z⊕ F2, n ≡ 1 mod 8
F2 ⊕ F2, n ≡ 2 mod 8

F2, n ≡ 3 mod
0, n ≡ 6, 7 mod 8 .

Proof. See [Kar78], III, Theorem 5.19.

The next result follows from Theorem 5.27 by applying it to the Banach
algebra C(Tn−1, ι).

Proposition 5.33. There is an isomorphism

Ktop
n (C(Tn, ι)) ' Ktop

n (C(Tn−1, ι))⊕Ktop
n−1(C(Tn−1, ι)).

Proposition 5.34. Let n ≥ 1 be a natural number. Then

SKtop
1 (C(Tn, ι)) = 0 for n ≤ 4.

For n ≥ 5 it is
SKtop

1 (C(Tn, ι)) 6= 0.
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Proof. Because R[z, z−1] is dense in C(T, ι) we have

SK1(C(T, ι)) = SK1(R[z, z−1]) = 0.

For n ≥ 2 we use the exact sequence of Corollary 5.29

0→ SK1(Bn−1[z, z−1])→ SKtop
1 (C(Tn, ι))→ K̃top

0 (C(Tn−1, ι))→ 0,

the isomorphisms

(5.8) SK1(Bn−1[z, z−1]) ' SK1(Bn−1) ' SKtop
1 (C(Tn−1, ι))

and Propositions 5.31, 5.32, 5.33 to compute SKtop
1 (C(Tn, ι)) inductively. We

have

SK1(C(T2, ι)) ' K̃top
0 (C(T, ι)) = 0

SK1(C(T3, ι)) ' K̃top
0 (C(T2, ι)) ' K̃top

0 (C(T, ι))⊕Ktop
7 (C(T, ι)) = 0

SK1(C(T4, ι)) ' K̃top
0 (C(T2, ι))⊕Ktop

6 (C(T, ι))⊕Ktop
7 (C(T, ι)) = 0

SK1(C(T5, ι)) ' K̃top
0 (C(T4, ι)) ' K̃top

0 (C(T3, ι))⊕Ktop
7 (C(T3, ι))

' Ktop
7 (C(T2, ι))⊕Ktop

6 (C(T2, ι)) ' Ktop
5 (C(T, ι)) ' Z .

With the exact sequence of Corollary 5.29 this implies SKtop
1 (C(Tn, ι)) 6= 0

for n ≥ 5.

These calculations now imply the main goal of the section. Namely, com-
bining Corollary 5.23 and Proposition 5.34, we get the following result:

Theorem 5.35. Let d ≥ 5. Then SK1(Rd[S
−1
∞ ]) 6= 0.

We finish this section with a short application of Theorem 5.35 to the
theory of expansive Zd-actions.

Application 5.36. Using Theorem 5.35, we can show that there exist expan-
sive Zd-actions on a compact abelian group X such that the SK1- component
of cl∞(X) ∈ SK1(Rd[S

−1
∞ ])⊕ (Rd[S

−1
∞ ])∗/R∗d is non-trivial.

Namely, let d ≥ 5 and let f ∈ GLn(Rd[S
−1
∞ ]) be a representative of a

non-zero element [f ] ∈ SK1(Rd[S
−1
∞ ]). Let s ∈ S∞ such that sf ∈ Mn(Rd).

Put Xsf = ̂(Rd)n/(Rd)nsf . Then

cl∞(Xsf ) = [f t]⊕ [sn] ∈ SK1(Rd[S
−1
∞ ])⊕ (Rd[S

−1
∞ ])∗/R∗d.
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Open Problem 5.37. Let α be an expansive Zd-action on X. Let

cl∞(X) = [fX ]⊕ det(cl∞(X)) ∈ SK1(Rd[S
−1
∞ ])⊕ (Rd[S

−1
∞ ])∗/R∗d.

The element det(cl∞(X)) has a dynamical interpretation insofar that we
know that the topological entropy of α is given by h(α) = log detNZd(det(cl∞(X))).
It would be interesting to know if there is a dynamical interpretation of the
element [fX ] ∈ SK1(Rd[S

−1
∞ ]) or of some ”mathematical object” which is

derived from [fX ].
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Chapter 6

Periodic p-adic entropy in the
case of the discrete Heisenberg
group

Let Γ ⊂ SL(3,Z) be the discrete Heisenberg group, generated by the matrices

x =
(

1 0 0
0 1 1
0 0 1

)
, y =

(
1 1 0
0 1 0
0 0 1

)
, z =

(
1 0 1
0 1 0
0 0 1

)
with the commutation relations

xz = zx, yz = zy, ylxk = xkylzkl, k, l ∈ Z.

In this chapter we want to compute the periodic p-adic entropy hp,per(Xf )
of Xf for certain 1-units f ∈ 1 + pZΓ. By Corollary 2.30, we know that
hp,per(Xf ) exists in this case. The computation consists of two parts.

First, for a suitable sequence Γn → e of cofinite normal subgroups of Γ
we need to compute the orders of the fixed point sets FixΓn(Xf ). This has
been done by K. Schmidt in order to compute the usual entropy of Xf in the
expansive case. Then we have to determine the limit

hp,per(Xf ) = lim
n→∞

1

(Γ : Γn)
· logp |FixΓn(Xf )|.

For the usual entropy of Xf Schmidt gets a formula involving the Mahler
measure of some polynomials attached to f . In the case of the p-adic entropy
we will get a formula involving the p-adic Mahler measure.

In Section 6.1 we introduce the Shnirelman integral and the p-adic Mahler
measure attached to certain Laurent polynomials over Cp. We prove a
Fubini-like result for the Shnirelman integral (Lemma 6.4) and a result
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that states more or less that for a uniform covergent family of functions in
Cp〈z±1

1 , . . . , z±1
n 〉 taking the limit function and Shnirelman integration com-

mute (Lemma 6.3). We will use these results in the calculation of the periodic
p-adic entropy in Section 6.2.

In Section 6.2 we first recall Schmidt’s calculation of the number of fixed
points in Xf under the action of certain subgroups Γn of Γ. Then we calculate
hp,per(Xf ).

6.1 The Shnirelman integral and the p-adic

Mahler measure

Let T np = {z ∈ Cn
p : |zi| = 1, 1 ≤ i ≤ n} be the p-adic n-torus. The

Shnirelman integral of a Cp-valued function on T np is defined by∫
Tnp

f(z)
dz

z
:= lim

N→∞,
(N,p)=1

1

Nn

∑
ζ∈µnN

f(ζ)

if the limit exists, where µN denotes the group of N -th roots of unity in Tp.

Notation: For a multiindex ν ∈ Zn we set min |ν| = min{|ν1|, . . . , |νn|}.
For an element f =

∑
ν∈Zn aνz

ν1
1 . . . zνnn ∈ Cp〈z±1

1 , . . . , z±1
n 〉 we will just write

f =
∑

ν∈Zn aνz
ν when there is no need to be more precise. The algebra

Cp〈z±1
1 , . . . , z±1

n 〉 is defined as

Cp〈z±1
1 , . . . , z±1

n 〉 :=

{∑
ν∈Zn

xνz
ν1
1 . . . zνnn : xν ∈ Cp, |xν |p → 0 for

n∑
i=1

|νi| → ∞
}
.

Lemma 6.1. Let f = zν1
1 . . . zνnn ∈ Cp[z

±1
1 , . . . , z±1

n ] be a non-constant mono-
mial. Assume N > min |ν|. Then∑

ζ∈µnN

f(ζ) = 0.

Proof. We may assume |ν1| = min |ν|. Since∑
ζ∈µnN

f(ζ) =
∑
ζ1∈µN

ζν1
1 ·

∑
ζ2,...,ζn∈µN

ζν2
2 . . . ζνnn

the general case will follow from the case n = 1. Then we may assume that
f = zν where ν is a positive integer because changing the sign of ν does not
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change the sum
∑

ζ∈µN f(ζ). Let d = (ν,N) be the greatest common divisor
of ν and N and let s = N/d. From the exact sequence

0→ µd → µN
ζ 7→ζν→ µs → 0

we see that ∑
ζ∈µN

ζν = d ·
∑
η∈µs

η = 0,

because the sum of all s-th roots of unity is zero which follows from comparing
coefficients of zs − 1 =

∏
η∈µs(z − η).

Lemma 6.2. Let f(z) =
∑

ν∈Zn aνz
ν ∈ Cp〈z±1

1 , . . . , z±1
n 〉 be a convergent

Laurent series on T np . Then ∫
Tnp

f(z)
dz

z
= a0.

Proof. For any N ∈ N we may write f as a sum f = fmin<N + fmin≥N where

fmin<N =
∑
ν∈Zn,

min |ν|<N

aνz
ν1
1 . . . zνnn and fmin≥N =

∑
ν∈Zn,

min |ν|≥N

aνz
ν1
1 . . . zνnn .

Then by the previous lemma we have under the assumption (N, p) = 1∣∣∣∣ 1

Nn

∑
ζ∈µnN

f(ζ)− a0

∣∣∣∣ =

∣∣∣∣ 1

Nn

∑
ζ∈µnN

fmin<N(ζ)− a0 +
1

Nn

∑
ζ∈µnN

fmin≥N(ζ)

∣∣∣∣ ≤∣∣∣∣ ∑
ζ∈µnN

∑
{ν: min |ν|≥N}

aνζ
ν1
1 . . . ζνnn

∣∣∣∣ ≤ max
{ν: min |ν|≥N}

|aν |.

Since max{ν: min |ν|≥N} |aν | → 0 as N →∞ the assertion follows.

Lemma 6.3. Let (fi)i∈N, fi =
∑

ν∈Zn a
(i)
ν zν ∈ Cp〈z±1

1 , . . . , z±1
n 〉, be a family

of convergent Laurent series on T np . Assume that for every ε > 0 there exists

a natural number r ∈ N such that |a(i)
ν | < ε for all ν with min |ν| ≥ r and for

all i ∈ N. Then

lim
i,N→∞,
(N,p)=1

(
1

Nn

∑
ζ∈µnN

fi(ζ)−
∫
Tnp

fi(z)
dz

z

)
= 0.
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Proof. Under our assumptions the proof is the same as the proof of Lemma
6.2, i.e. we have for any i ∈ N and any N ∈ N with (N, p) = 1∣∣∣∣ 1

Nn

∑
ζ∈µnN

fi(ζ)−
∫
Tnp

fi(z)
dz

z

∣∣∣∣ ≤ max
{ν: min |ν|≥N}

|a(i)
ν |.

Since max{ν: min |ν|≥N} |a(i)
ν | → 0 as i, N →∞ the assertion follows.

Lemma 6.4 (Fubini for the Shnirelman integral). Let f be a convergent
Laurent series on T np . Then∫

Tnp

f(z)
dz

z
=

∫
Tp

. . .

(∫
Tp

f(z1, . . . , zn)
dz1

z1

)
. . .

dzn
zn

.

Proof. For z2, . . . , zn ∈ Tp the function

fz2,...,zn : z1 7→ f(z1, z2, . . . , z2) =
∑
ν1∈Z

( ∑
ν2,...,νn∈Z

aν1,ν2,...,νnz
ν2
2 . . . zνnn

)
zν1

1

is a convergent Laurent series on Tp in the variable z1. By Lemma 6.2, we
have ∫

Tp

fz2,...,zn(z1)
dz1

z1

=
∑

ν2,...,νn∈Z

a0,ν2,...,νnz
ν2
2 . . . zνnn .

Iteration gives the result.

Proposition 6.5. Let

f = azν1
1 . . . zνnn (1 + g(z)) ∈ Cp[z

±1
1 , . . . , z±1

n ],

where a ∈ C∗p, ν ∈ Zn and g ∈ mp[z
±1
1 , . . . , z±1

n ] be a Laurent polynomial

which is a unit in Cp〈z±1
1 , . . . , z±1

n 〉. Here, mp = {x ∈ Cp : |x|p < 1}. Then
the Shnirelman integral

mp(f) :=

∫
Tnp

logp f
dz

z

exists and is given by

mp(f) = logp a+ b0

where b0 is the 0-th coefficient in the Laurent expansion of logp(1 + g(z)) on
T np .
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Proof. The function logp f : T np → Cp is well-defined. Because it is logp(xy) =
logp(x) + logp(y) for all x, y ∈ C∗p, logp(1) = 0 and because Cp has no zero-
divisors, we deduce that logp vanishes on the set of all roots of unity. Using
this and Lemma 6.2 we conclude

mp(f) = mp(a(1 + g(z))) = logp a+

∫
Tnp

logp(1 + g(z))
dz

z
= logp a+ b0.

Definition 6.6. Let f be as in Proposition 6.5. The value mp(f) is called
the p-adic Mahler measure of the Laurent polynomial f .

6.2 Calculation of the periodic p-adic entropy

in some cases

Let us return to the discrete Heisenberg group Γ. We denote by x, y, z ∈ Γ
the generators of the discrete Heisenberg group as stated in the introduction
of Chapter 6. First we note the following simple fact.

Lemma 6.7. Every element γ in Γ has a unique expression of the form
γ = xm1ym2zm3, m1,m2,m3 ∈ Z, i.e. there is a bijection of sets

[ ] : Z3 → Γ, (m1,m2,m3) 7→ [m1,m2,m3] := xm1ym2zm3 .

Proof. Using the commutation relations we can write every γ ∈ Γ in the form
γ = xm1ym2zm3 . For the uniqueness it is enough to note that xm1ym2zm3 = Id
if and only if m1 = m2 = m3 = 0. This can be seen from the operation of
xm1ym2zm3 on the standard basis e1, e2, e3 of Z3. For example e3 is mapped
to e3 + m1e2 + m3e1 under xm1ym2zm3 . So m1 = m3 = 0 if xm1ym2zm3 = Id
and then m2 = 0 follows immediately.

Now, let f =
∑

γ∈Γ aγγ ∈ ZΓ ∩ c0(Γ)∗. Recall that f ∗ is defined as
f ∗ =

∑
γ∈Γ aγ−1γ. We may write f ∗ in the form

(6.1) f ∗ =
∑
m1∈Z

xm1φm1(y, z).

Here, the φm1 ∈ Z[Y ±1, Z±1],m1 ∈ Z, are integral Laurent polynomials in the
variables Y, Z and φm1(y, z) is the element in ZΓ obtained by substituting
y and z for Y and Z, respectively. Note that by Lemma 6.7, the φm1 in
equation (6.1) are uniquely determined.
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We consider the dynamical system

Xf = ker(ρf : (R/Z)[[Γ]]→ (R/Z)[[Γ]]),

where ρf is the right multiplication with f ∗ on the group (R/Z)[[Γ]] of infinite
formal series with coefficients in R/Z. The algebraic Γ-action λ on Xf is given
by left multiplication with elements γ ∈ Γ, see Section 2.1 for more details.

For every q, r, s ≥ 1 we define a normal subgroup Γq,r,s ⊂ Γ by

(6.2) Γq,r,s =
{(

1 sqb qc
0 1 rqa
0 0 1

)
: a, b, c ∈ Z

}
.

Let us recall Schmidt’s calculation of∣∣FixΓq,r,s(Xf )
∣∣ = ± det(ρf : Cp[[Γ]]Γq,r,s → Cp[[Γ]]Γq,r,s),

where

Cp[[Γ]]Γq,r,s = {w ∈ Cp[[Γ]] : λγw = w for every γ ∈ Γq,r,s}.

This is done by decomposing L = Cp[[Γ]]Γq,r,s into irreducible subspaces of
ρ := ρf and calculating the determinant of ρ on each of these subspaces.

For every ζ, η, θ ∈ Tp = {c ∈ Cp : |c| = 1}, we introduce the element
w(ζ,η,θ) ∈ Map(Γ, Tp) given by

w
(ζ,η,θ)
[n1,n2,n3] = ζn1ηn2θn3 , (n1, n2, n3) ∈ Z3.

The left and right shift actions λ and ρ of Γ act on w(ζ,η,θ) by

λ[m1,m2,m3]w(ζ,η,θ) = ζ−m1η−m2θm1m2−m3w(ζθ−m2 ,η,θ),(6.3)

ρ[m1,m2,m3]w(ζ,η,θ) = ζm1ηm2θm3w(ζ,ηθm1 ,θ)(6.4)

for every (m1,m2,m3) ∈ Z3.
For every q ≥ 1, every q-th root of unity θ and every ζ, η ∈ Tp we write

L(ζ,η,θ) = 〈ργw(ζ,η,θ) : γ ∈ Γ〉 = 〈w(ζ,ηθk,θ) : k ∈ Z〉

for the cyclic subspace of ρ generated by w(ζ,η,θ). We have dimCp(L(ζ,η,θ)) =
o(θ), where o(θ) is the order of θ, and

(6.5) L(ζ,η,θ) = L(ζ,ηθk,θ)

for every k ∈ Z.
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If θ = 1, then
det(ρf |L(ζ,η,1)

) = f ∗(ζ, η, 1).

Again, the expression f ∗(ζ, η, 1) ∈ Cp means that in the equation (6.1), we
substitute ζ, η and 1 for x, y and z, respectively.

If q ≥ 2 and θ is a primitive q-th root of unity, then every v ∈ L(ζ,η,θ) is of

the form v =
∑q−1

j=0 cjv
(j) with cj ∈ Cp and v(j) = w(ζ,ηθj ,θ) for j = 0, . . . , q−1.

Furthermore,

ρfv
(i) =

q−1∑
j=0

ai,jv
(j)

with

ai,j =
∑

k,m2,m3∈Z

f ∗(j+kq−i,m2,m3)ζ
j+kq−i(ηθi)m2θm3 =

∑
k∈Z

ζj+kq−iφj+kq−i(ηθ
i, θ)

for i, j = 0, . . . , q − 1. Hence

det(ρf |L(ζ,η,θ)
) = det(A

(q)
(ζ,η,θ)),

where

A
(q)
(ζ,η,θ) =

(
a0,0 ... a0,q−1

...
...

aq−1,0 ... aq−1,q−1

)
.

Note that

det(A
(q)
(ζ,η,θ)) = det(A

(q)

(ζθk,η,θ)
)(6.6)

det(A
(q)
(ζ,η,θ)) = det(A

(q)

(ζ,ηθk′ ,θ)
)(6.7)

for every k, k′ ∈ Z and every primitive q-th root of unity θ. Equation (6.6) can
be deduced from the Leibniz expansion of the determinant, while equation
(6.7) follows because the matrix A

(q)

(ζ,ηθk′ ,θ)
describes the endomorphism ρf

with respect to the basis ṽ(j) = w(ζ,ηθk
′+j ,θ), 0 ≤ j ≤ q − 1.

Lemma 6.8. Let q, r, s be rational primes with q 6= s and q 6= r. Con-
sider the space L = Cp[[Γ]]Γq,r,s introduced earlier. Then L has the following
decomposition into ρ-invariant subspaces:

(6.8) L =
⊕

ζ∈µqr,η∈µqs

L(ζ,η,1) ⊕
⊕

{θ 6=1:θq=1}

⊕
ζ∈µqr

⊕
η∈µs

L(ζ,η,θ).

It follows that

FixΓq,r,s(Xf ) = ±
∏

ζ∈µqr,η∈µqs

f ∗(ζ, η, 1) ·
∏

{θ 6=1: θq=1}

∏
ζ∈µr

∏
η∈µs

det(A(ζ,η,θ))
q.
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Proof. By equation (6.3) the function w(ζ,η,θ) is an element of L for every
ζ, η, θ with ζqr = ηqs = θq = 1. Furthermore, it is dim(L) = |Γq,r,s| = q3rs.
Thus, in order to show that the set

{w(ζ,η,θ) : ζ, η, θ ∈ Cp, ζ
qr = ηqs = θq = 1}

spans L, we only have to show that this set of functions is linearly indepen-
dent.

This can be proven similarly to the way one proves linear independence
of a set of distinct characters on a group: Assuming a non-trivial linear
combination of 0 with a minimal number of functions w(ζ,η,θ), ζ ∈ µqr, η ∈
µqs, θ ∈ µq, one uses the operators ρ[0,1,0] and ρ[0,0,1] to show that the functions
involved do actually depend on the same parameters for η and θ; otherwise
we would get a contradiction to minimality. But the linear independence of
a family of distinct functions w(ζ,η,θ) with η, θ fixed and ζ running follows
because these are characters on the subgroup of Γ generated by the element
x ∈ Γ.

Using (6.5) and the fact that µq×µs ' µqs we see that formula (6.8) gives
the desired decomposition of L into ρ-invariant subspaces.

The formula on the fixed points follows by taking the determinant on
each of the ρ-invariant subspaces. Here, we use that by formula (6.6) it is
for η and θ 6= 1 fixed∏

ζ∈µrq

det(A(ζ,η,θ)) =
∏
ζ∈µr

det(A(ζ,η,θ))
q.

In the following we introduce some notation which will be useful when
we consider the matrices A

(q)
(ζ,η,θ) for varying choices of q or when we want to

emphasize that for some of the parameters ζ, η, θ fixed we consider A
(q)
(ζ,η,θ)

or functions derived from A
(q)
(ζ,η,θ) as a function of the remaining non-fixed

parameters.

Definition 6.9. Let f ∗ =
∑

m1∈Z x
m1φm1(y, z) ∈ ZΓ. For q ∈ N we define

the matrix A
(q)
(X,Y,Z) ∈Mq(Z[X±1, Y ±1, Z±1]) by

a
(q)
i,j =

∑
k∈Z

Xj+kq−iφj+kq−i(Y Z
i, Z)

for i, j = 0, . . . , q − 1. We define

g(q)(X, Y, Z) = detA
(q)
(X,Y,Z) ∈ Z[X±1, Y ±1, Z±1].
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For ζ, η, θ ∈ Tp we define

g
(q)
θ (X, Y ) = detA

(q)
(X,Y,θ) ∈ Z[θ±1][X±1, Y ±1],

g
(q)
(η,θ)(X) = detA

(q)
(X,η,θ) ∈ Z[θ±1, η±1][X±1],

g
(q)
(ζ,η,θ) = detA

(q)
(ζ,η,θ) ∈ Z[ζ±1, θ±1, η±1].

In the following, we assume f ∈ ZΓ to be a 1-unit of the form

f =
k∑
i=0

xihi(y, z).

The next step in the computation of the periodic p-adic entropy of Xf is the
following result.

Lemma 6.10. Let f =
∑k

i=0 x
ihi(y, z) ∈ 1 + pZΓ so that f ∗ = φ0(y, z) +

. . .+x−kφ−k(y, z). We denote by f ∗(X, Y, Z) the Laurent polynomial in three
variables attached to f ∗. Then the following holds:

(1) It is f ∗(X, Y, 1) ∈ 1 + pZ[X±1, Y ±1]. In particular, the p-adic Mahler
measure mp(f

∗(X, Y, 1)) exists and is given by

mp(f
∗(X, Y, 1)) = mp(φ0(Y, 1)).

(2) We have

g
(q)
(ζ,η,θ) =

q−1∏
i=0

φ0(ηθi, θ) +
∑
l<0

ζ lRl(η, θ) ∈ 1 + pZ[ζ−1, η±1, θ±1],

where the Rl are Laurent polynomials. In particular, for η, θ ∈ Tp fixed,
the p-adic Mahler measure of the function

g
(q)
(η,θ)(X) : Tp → Cp, ζ 7→ g

(q)
(η,θ)(ζ)

exists and is given by

mp(g
(q)
(η,θ)(X)) = logp

( q−1∏
i=0

φ0(ηθi, θ)

)
.
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(3) Let θ ∈ µq be fixed. Then the function

η 7→ mp(g
(q)
(η,θ)(X))

is integrable over the p-adic torus Tp, and we have∫
Tp

mp(g
(q)
(η,θ)(X))

dη

η
= q ·mp(φ0(Y, θ)).

(4) The results (2) and (3) can be summarized in the way that for θ ∈ µq
fixed it is

mp(g
(q)
θ (X, Y )) = q ·mp(φ0(Y, θ)).

Proof. (1): It is f ∗ = φ0(y, z)+ . . .+x−kφ−k(y, z). As φ0(y, z) ∈ 1+pZΓ and
φi(y, z) ∈ pZΓ, i = −1, . . . ,−k, we have f ∗(X, Y, 1) ∈ 1 + pZ[X±1, Y ±1]. By
Proposition 6.5 we know that mp(f

∗(X, Y, 1)) exists. Then by Lemma 6.4 we
can calculate mp(f

∗(X, Y, 1)) by first integrating logp f
∗(X, Y, 1) with respect

to the variable X and integrating with respect to Y afterwards. Again by
Proposition 6.5 we know that the result of the first integration is the 0-th
coefficient of the Laurent expansion of log(f ∗(X, Y, 1)) with respect to the
variable X. But as f ∗(X, Y, 1) is a polynomial in X−1, the 0-th coefficient of
logp f

∗(X, Y, 1) is just logp(φ0(Y, 1)). Integrating this expression with respect
to the variable Y , we get the result stated in (1).

(2): The entries in the matrix A(ζ,η,θ) are given by

ai,j =
∑
k∈Z

ζj+kq−iφj+kq−i(ηθ
i, θ)

for i, j = 0, . . . , q−1. As f ∗ = φ0(y, z)+ . . .+x−kφ−k(y, z), the φj+kq−i in the
definition of the ai,j are non-zero only for j + kq − i ≤ 0. Thus, we see that
the ai,j are polynomials in ζ−1 with coefficients in Z[η±1, θ±1]. Furthermore,
the ai,j have a constant ζ term if and only if i = j, which is then given by

φ0(ηθi, θ). Then from the Leibniz expansion of det(A
(q)
(ζ,η,θ)) we get the result

about det(A
(q)
(ζ,η,θ)) stated in (2). As the function g

(q)
(η,θ)(X) is a polynomial in

X−1 with constant X-term equal to
∏q−1

i=0 φ0(ηθi, θ), it is

mp(g
(q)
(η,θ)(X)) = logp

( q−1∏
i=0

φ0(ηθi, θ)

)
.

(3): By (2) we have∫
Tp

mp(g
(q)
(η,θ)(X))

dη

η
=

q−1∑
i=0

∫
Tp

log φ0(ηθi, θ)
dη

η
.
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To calculate the right-hand side of the above equation, we have to expand
the functions

logp φ0(ηθi, θ) =
∑
j∈Z

Φj(θ
i, θ)ηj

into Laurent series in the variable η and then take its 0-th coefficient. But
it is

Φ0(θi, θ) = Φ0(1, θ), i = 1, . . . , q − 1,

because Φ0 gives the constant part in the Laurent expansion of logp φ0(ηθi, θ)
as a function of η, and θi and η are in the same argument of the function
log φ0(ηθi, θ). So we get

q−1∑
i=0

∫
Tp

logp φ0(ηθi, θ)
dη

η
= q

∫
Tp

logp φ0(η, θ)
dη

η
= q ·mp(φ(Y, θ)).

(4) follows from (2) and (3) using Lemma 6.4.

Lemma 6.11. Let f ∗ =
∑k

i=0 x
−iφ−i(y, z) ∈ 1 + pZΓ. For q ≥ 1, let

g(q)(X, Y, Z) = detA
(q)
(X,Y,Z) =

r∑
j=0

h
(q)
j (Y, Z)X−j ∈ Z[X−1, Y ±1, Z±1] .

and
fq := log g(q) =

∑
ν∈Z3

a(q)
ν Xν1Y ν2Zν3 ∈ Qp〈X−1, Y ±1, Z±1〉 .

Then the following holds:

(i) For all q ≥ 1:

h
(q)
0 − 1 ≡ 0 mod p and

h
(q)
j ≡ 0 mod pt for (t− 1)k + 1 ≤ j ≤ tk, t ≥ 1.

(ii) The family (fq)q∈N fulfills the condition of Lemma 6.3, i.e. for every

ε > 0 there exists a natural number r ∈ N such that |a(q)
ν | < ε for all ν

with min |ν| ≥ r and for all q ∈ N.

Proof. That p divides h
(q)
0 −1 follows because g(q) is a 1-unit. For the second

part of (i) note that the entries a
(q)
i,j all have X-degree less or equal to −k.

Furthermore, the summands in the Leibniz expansion of g(q) that contribute
to the X-degree of g(q) are divisible by p. Part (i) follows from this.

For (ii) we just have to plug g(q) into the logarithmic series. Part (i)

then implies that for |ν1| large enough |a(q)
ν | will be smaller than any ε > 0

independently of q.
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Theorem 6.12. Let f = h0(y, z) + xh1(y, z) + . . . + xkhk(y, z) ∈ 1 + pZΓ.
Write f ∗ = φ0(y, z) + . . .+ x−kφ−k(y, z).Then the periodic p-adic entropy of
Xf is given by

hp(Xf ) = mp(φ0).

Proof. We choose increasing sequences of prime numbers (qn), (rn), (sn), n ∈
N, with rn = sn 6= qn for all n ∈ N. We write Γn for the normal, cofinite
subgroup Γqn,rn,sn of Γ as defined in (6.2). Then Γn → e and according to
the definition the periodic p-adic entropy of Xf is given by

hp,per(Xf ) = lim
n→∞

1

(Γ : Γn)
logp |FixΓn(Xf )|.

We will omit the index n in the following. By Lemma 6.8 it is

hp,per(Xf ) = lim
q,r→∞

q 6=r prime

1

q3r2

( ∑
ζ,η∈µqr

logp f
∗(ζ, η, 1)+q

∑
θ∈µq\{1}

∑
ζ,η∈µr

logp g
(q)
(ζ,η,θ)

)
.

In Lemma 6.10 we proved that mp(f
∗(X, Y, 1)) = mp(φ0(Y, 1)). It follows

lim
q,r→∞

q 6=r prime

(
1

q3r2

∑
ζ,η∈µqr

logp f
∗(ζ, η, 1)− 1

q
mp(φ0(Y, 1))

)
=(6.9)

lim
q,r→∞

q 6=r prime

1

q

(
1

(qr)2

∑
ζ,η∈µqr

logp f
∗(ζ, η, 1)−mp(φ0(Y, 1))

)
= 0.

Now for θ ∈ µq consider the family of functions g
(q)
θ (X, Y ). We claim

(6.10) lim
q,r→∞

q 6=r prime

(
1

r2

∑
ζ,η∈µr

logp(g
(q)
θ (ζ, η))−mp(g

(q)
θ (X, Y ))

)
= 0.

Equation (6.10) follows using Lemma 6.11, (ii), and Lemma 6.3.
Now, equations (6.9) and (6.10) together with Lemma 6.10, (4), imply

lim
q,r→∞

q 6=r prime

1

q3r2

( ∑
ζ,η∈µqr

logp f
∗(ζ, η, 1) + q

∑
θ∈µq\{1}

∑
ζ,η∈µr

logp g
(q)
(ζ,η,θ)

)
=

lim
q,r→∞

q 6=r prime

1

q

(
mp(φ0(Y, 1)) +

∑
θ∈µq\{1}

mp(φ0(Y, θ))

)
=

lim
q→∞

1

q

∑
θ∈µq

mp(φ0(Y, θ)) = mp(φ0).
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Chapter 7

Remarks on p-adic
expansiveness, p-adic entropy
and the p-adic Banach algebra
c0(Γ)

In this last chapter we address some open problems. Recall that one of the
initial questions was, if there exists a dynamical criterion for the existence of
the periodic p-adic entropy.

Section 7.1 deals with this question insofar that we give an example of an
p-adically expansive algebraic Z-action whose periodic p-adic entropy does
not exist. On the other hand, we also provide an example of an algebraic
Z-action whose periodic p-adic entropy exists but which is not p-adically
expansive.

We used the p-adic Fuglede-Kadison determinant to define a notion of
p-adic entropy for p-adically expansive Zd-actions (see Chapter 4). Even
though a general dynamical interpretation of the p-adic entropy remains
open, our definitions were justified by the facts that for f ∈ Mn(Rd) ∩
GLn(c0(Zd)), the Zd-action on Xf is p-adically expansive and the periodic
p-adic entropy hp,per(Xf ) of Xf coincides with the p-adic entropy hp(Xf ) of
Xf .

Section 7.2 is concerned with the question whether there are several ways
to define a notion of p-adic entropy which for systems Xf , f ∈ Mn(Rd) ∩
GLn(c0(Zd)), coincides with the periodic p-adic entropy of Xf . We observe
that for expansive Zd-actions, the assignment which associates an expansive
Zd-action its entropy is uniquely determined by additivity, monotonicity and
the values of the entropies of the Xf ’s. In the p-adic case, the answer remains
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open but it leads to another interesting open problem.
In Section 7.3 we think of a possible generalisation of the notion of p-adic

expansiveness for algebraic actions of countable abelian groups Γ. On the
one hand, the case Γ = Zd suggests to call an algebraic Γ-action on X p-
adically expansive if and only if the dual module MX is a finitely generated
Sp-torsion module, where Sp = ZΓ ∩ c0(Γ)∗ . On the other hand, there is an
algebraic criterion of expansiveness for algebraic actions of countable abelian
groups Γ which has a direct translation into the p-adic setting. Section 7.3
contains a comparison of these two criteria.

In Section 7.4 we discuss some algebraic properties of the p-adic Banach
algebra c0(Γ) for Γ a residually finite group.

7.1 Two examples concerning periodic p-adic

entropy

Example 7.1. Let p 6= 2 be a prime number and consider the R1-module

F22 := F2[t, t−1]/(t2 + t+ 1) = F2[t]/(t2 + t+ 1).

This is the finite field with 4 elements consisting of the elements 0, 1, t, t+ 1
which are mapped to 0, t, t+ 1, 1 under the action of t ∈ R1, respectively.
Because F22 is finite the Pontrjagin dual F̂22 of F22 is naturally isomorphic
to F22 .

Let Sp denote the multiplicative system Sp = R1 ∩ c0(Z)∗. The Z-action

on F̂22 is p-adically expansive in the sense of Definition 4.16, i.e. F22 is an
object of the categoryMSp(R1) of finitely generated Sp-torsion R1-modules.

By Lemma 4.35, it is [F22 ] = 0 ∈ K0(MS(R1)) so that hp(F̂22) = 0.
We show that the periodic p-adic entropy of the Z-action on F22 does not

exist.
It is Fix3Z(F̂22) = F̂22 . Let r1 be a natural number not divisible by p and

for n ≥ 1 choose rn+1 ∈ N with rn+1 > rn so that the difference rn+1 − rn is

not divisible by p. Then ( 1
3rn

logp |Fix3rnZ(F̂22)|)n∈N is not a Cauchy-sequence.
Thus, for Γn = (3rnZ)→ 0 the limit

hp,Γn(F̂22) = lim
n→∞

1

3rn
logp |Fix3rnZ(F̂22)|

does not exist.

The next example illustrates that for some algebraic Z-actions the peri-
odic p-adic entropy exists for trivial reasons.
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Example 7.2. Let α be the Z-action on X := Q̂ dual to multiplication by
3/2 on Q. For any natural number n it is

̂FixnZ(X) = Q/((3/2)n − 1)Q = {0}.

So for any sequence of subgroups Γn → 0 it is

hp,Γn(α) = 0.

Note that the topological entropy of α is h(α) = log 3, see [LW88].
Here, the Rd-module Q is not noetherian which implies that the action α

on X cannot be p-adically expansive.

7.2 A comment on uniqueness of p-adic en-

tropy

Let MS∞(Rd) be the category of finitely generated S∞-torsion Rd-modules,
S∞ = Rd ∩ L1(Zd,R)∗. By Theorem 5.2, an algebraic Zd-action α on the
compact abelian group X is expansive if and only if MX ∈MS∞(Rd).

We have the following uniqueness result concerning the entropy of expan-
sive Zd-actions:

Proposition 7.3. We identify the category of expansive Zd-actions with the
category MS∞(Rd) via Pontrjagin duality. Let v be an assignment which
associates to every M ∈ MS∞(Rd) a non-negative real number and satisfies
the following conditions:

(i) v is additive in short exact sequences.

(ii) v is monotone, i.e. if there exists a surjective homomorphism
M →M ′ → 0 it is v(M ′) ≤ v(M).

(iii) It is v(M) = logpdetZd(f) for M = (Rd)
n/(f · (Rd)

n),
f ∈Mn(Rd) ∩GLn(L1(Zd,R)).

Then v equals the entropy h.

Proof. Let M ∈ MS∞(Rd) and let {0} = M0 ⊂ . . . ⊂ Ms = M be a prime
filtration of M . It follows by additivity of v

v(M) =
s∑
i=1

v(Rd/pi), pi ∈ Spec(Rd).
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As in the proof of Theorem 3.28 one shows that for non-principal prime ideals
p it is v(Rd/p) = 0 = h(Rd/p). For a principal prime ideal p = (f) we have
by assumption v(Rd/(f)) = h(Rd/(f)). We conclude that v(M) = h(M) for
all M ∈MS∞(Rd).

It is natural to ask if there is a similar result for p-adic entropy. We
formulate the problem in an algebraic way:

Open Problem 7.4. Given a category C of Zd-modules which contains the
class of all modules (Rd)

n/f(Rd)
n, f ∈ Mn(Rd) ∩ GLn(c0(Zd)). Assume C is

equipped with an assignment vp which associates to every M ∈ C a number
vp(M) ∈ Qp and which satisfies the following properties:

(i) vp is additive, i.e. for every short exact sequence

0→M ′ →M →M ′′ → 0

of objects in C, we have vp(M) = vp(M
′) + vp(M

′′).

(ii) vp((Rd)
n/f(Rd)

n) = logpdetZdf for f ∈Mn(Rd) ∩GLn(c0(Zd)).

Is the assignment vp uniquely defined?

If we take C = MSp(Rd) the category of finitely generated Rd-modules
which are Sp-torsion, Sp = Rd ∩ c0(Zd)∗, this question is related to the fol-
lowing problem:

Open Problem 7.5. Let d ≥ 1. Let p be a non-principal prime ideal in Rd

such that the algebraic Zd-action on X = R̂d/p is p-adically expansive. Is
hp(X) = 0?

7.3 Miles’ criterion of expansive algebraic ac-

tions of countable abelian groups

In [Mil06] there is the following characterization of expansive algebraic ac-
tions of countable abelian groups:

Theorem 7.6. Let α be an action of a countable abelian group Γ by auto-
morphisms of a compact abelian group X. Then (X,α) is expansive if and
only if MX is a finitely generated ZΓ-module and as a runs through the an-
nihilators of a set of generators for MX , there is no ring homomorphism
φ : ZΓ/a→ C for which the image of Γ in C is a subgroup of the unit circle.
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In this section Γ will always be a countable abelian group. Let Sp be the
multiplicative system in ZΓ defined by Sp = ZΓ ∩ c0(Γ)∗. Let MSp(ZΓ) be
the category of finitely generated ZΓ-modules which are Sp-torsion.

Proposition 7.7. Let (X,α) be an algebraic Γ-action such that the dual ZΓ-
module MX is in MSp(ZΓ). Then for every annihilator ideal a there is no
ring homomorphism φ : ZΓ/a → Cp for which the image of Γ in Cp is a
subgroup of Tp.

Proof. The assumption that MX is a finitely generated Sp-torsion module
implies that for every annihilator ideal a we have a ∩ S 6= ∅.

Assume there exists a ring homomorphism φ : ZΓ/a → Cp such that
the image Γ is contained in Tp. Then we may define a ring homomorphism
Φ : c0(Γ)/a·c0(Γ)→ Cp which extends φ as follows: Let φ′ be the composition
ZΓ→ ZΓ/a→ Cp. Then we define

Φ′ : c0(Γ)→ Cp,
∑
γ∈Γ

aγγ 7→
∑
γ∈Γ

aγφ
′(γ).

This makes sense because Cp is complete and as |aγ| → 0 as γ → ∞ in Γ
and because |φ′(γ)| = 1 for all γ ∈ Γ, the sum

∑
γ∈Γ aγφ

′(γ) will converge
in Cp. Now because φ′(a) = 0 the ring homomorphism Φ′ factors through a
ring homomorphism Φ : c0(Γ)/a · c0(Γ) → Cp. This is impossible because a

contains an element which is a unit in c0(Γ) so the quotient c0(Γ)/a · c0(Γ)
is zero.

Open Problem 7.8. When does the converse implication of Proposition 7.7
hold, i.e. if we assume MX 6∈ MSp(ZΓ), does there exist a ring homomor-
phism φ : ZΓ/a→ Cp such that the image of Γ lies in Tp?

Let us assume MX 6∈ MSp(ZΓ), i.e. there exists an annihilator ideal a

such that a ∩ Sp = ∅. Then a does not generate the unit ideal in c0(Γ) so
that there exists a maximal ideal m ∈ c0(Γ) which contains a · c0(Γ). Let us
assume that m has finite codimension. Note that m is automatically closed
in c0(Γ) because the group of units c0(Γ)∗ is open in c0(Γ), see Lemma 7.11.
Let Φ be the continuous homomorphism

Φ : c0(Γ)→ Cp

given by composing the natural projection c0(Γ) → c0(Γ)/m with an Qp-
linear embedding of c0(Γ)/m into Cp. If we define

φ : ZΓ/a→ c0(Γ)/m→ Cp

as the composition of the natural homomorphism ZΓ/a→ c0(Γ)/m with the
embedding c0(Γ)/m→ Cp the next lemma implies that φ(Γ) ⊂ Tp.
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Lemma 7.9. Let Φ : c0(Γ)→ Cp be a continuous ring homomorphism which
is Qp-linear. Then Φ(Γ) ⊂ Tp.

Proof. Continuity and Qp-linearity of Φ imply

Φ

(∑
γ∈Γ

xγγ

)
=
∑
γ∈Γ

xγΦ(γ) ∈ Cp

for every x =
∑

γ∈Γ xγγ ∈ c0(Γ). In particular, the homomorphism Φ is
determined by the values (Φ(γ))γ∈Γ. If γ is of finite order in Γ, the image
Φ(γ) is a root of unity and so is in Tp.

Let now γ ∈ Γ be of infinite order. If Φ(γ) was not contained in Tp, we may
assume |Φ(γ)|p > 1. Let (xγn)n∈N be a family of numbers in Qp converging
to zero such that |xγnΦ(γ)n|p > 1. Then the element

∑
n∈N xγnγ

n is in c0(Γ)
but

∑
n∈N xγnΦ(γn) does not exist which contradicts the assumption that Φ

is continuous. We conclude that Φ(Γ) ⊂ Tp.

This short discussion leads to the problem for what groups Γ maximal
ideals in c0(Γ) have finite codimension. For example, for Γ = Zd all maximal
ideals in c0(Zd) have finite codimension, see [BGR84], 6.1.2, Corollary 3.

7.4 Properties of the p-adic Banach algebra

c0(Γ)

Let Γ be a countable discrete residually finite group. In this section we dis-
cuss some algebraic properties of the Qp-Banach algebra c0(Γ).

Let B be a p-adic Banach algebra over Qp as defined in Chapter 2, Defi-
nition 2.24. We assume that || || takes values in pZ ∪ {0}. We define

B0 = {x ∈ B : ||x|| ≤ 1} and Bˇ = {x ∈ B : ||x|| < 1}.

B0 is a subring of B which contains Bˇ as an ideal. Furthermore, Bˇ is open
in B.

Example 7.10. Let B = c0(Γ). Then A := B0 = c0(Γ,Zp) and Bˇ = pA.
The quotient A/pA is isomorphic to FpΓ.

Lemma 7.11. Let B be a p-adic Banach algebra. Then the group of units
B∗ is open in B.

Proof. The set 1 + Bˇ an open neighborhood of 1 ∈ B∗. Then for any unit
u ∈ B∗, the set u+ uBˇ is an open neighborhood of u.
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Proposition 7.12. Let B be a p-adic Banach algebra over Qp whose norm
takes values in pZ ∪ {0} and set A = B0. If the residue algebra has no zero
divisors, then we have

B∗ = pZA∗ and pZ ∩ A∗ = 1.

Proof. [Den09], Proposition 4.

For a discrete countable residually finite group Γ we denote by COF (Γ)
the set of cofinite normal subgroups of Γ.

Proposition 7.13. Let Γ be a discrete countable residually finite group.
Then the canonical homomorphism

c0(Γ)→
∏

N∈COF (Γ)

c0(Γ/N)

is injective.

Proof. We show that for every f ∈ c0(Γ), there is a normal subgroup N of
finite index such that ||f || = ||fN ||, where fN is the image of f in c0(Γ/N).

Let xγ1 , . . . , xγr be the finitely many elements in Γ, such that ||f || =
|xγi |p, i = 1, . . . , r. As Γ is residually finite, we find a normal subgroup N of
finite index such that

{γiγ−1
j , i, j ∈ {1, . . . , r}, j > i} ∩N = ∅.

This means that for i 6= j, it is γi 6≡ γj mod N . It follows ||f || = ||fN ||, as
the p-adic absolute value satisfies the strong triangle inequality.

Corollary 7.14. Let Γ be a discrete countable residually finite group.. For a
normal subgroup N of Γ let πN : c0(Γ)→ c0(Γ/N) be the canonical reduction
homomorphism. Then ⋂

N∈COF (Γ)

ker(πN) = 0.

Proof. It is ⋂
N∈COF (Γ)

ker(πN) = ker

(
c0(Γ)→

∏
N∈COF (Γ)

c0(Γ/N)

)
= 0.
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Corollary 7.15. For any r ≥ 1, the canonical homomorphism

Mr(c0(Γ))→
∏

N∈COF (Γ)

Mr(c0(Γ/N))

is injective.

Proof. This follows from the case r = 1.

Proposition 7.16. Let Γ be a discrete countable residually finite group.
Then the algebra c0(Γ) is von Neumann finite, i.e. if g · f = 1 then f · g = 1.

Proof. Let us first assume that Γ is finite. Let f, g ∈ c0(Γ) = QpΓ. If g·f = 1,
then the endomorphisms ρf and ρg of finite dimensional Qp-vector spaces are
invertible in EndQp(QpΓ). If (ρf )

−1 is the inverse endomorphism of ρf , then

ρg = ρg ◦ Id = ρg ◦ (ρf ◦ (ρf )
−1) = (ρf )

−1.

This implies f · g = 1.
Let us assume now that Γ is residually finite. We consider the image of

fg under the inclusion

c0(Γ) ↪→
∏

N∈COF (Γ)

c0(Γ/N).

If we assume g · f = 1, then by the first part of the proof fg is mapped to 1.
By injectivity this implies fg = 1.

Lemma 7.17. For f ∈ ZΓ the following properties are equivalent:

(i) f is a unit in c0(Γ,Zp)
∗.

(ii) The reduction f̄ is invertible in FpΓ.

Proof. (i)⇒(ii) is clear.
For the converse implication consider the exact sequence

1 −→ 1 + pc0(Γ,Zp) −→ c0(Γ,Zp)
∗ −→ (FpΓ)∗ −→ 1.

If f̄ is a unit, there exists an element g ∈ c0(Γ,Zp) such that fg ∈ 1 +
pc0(Γ,Zp) ⊂ c0(Γ,Zp)

∗. Let h ∈ c0(Γ,Zp) be the inverse of fg, i.e. it is
fgh = 1. By the previous lemma, it follows ghf = 1.
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