
New Theranostic Radionuclides for Metastatic Bone 

Disease  

Biodistribution and Dosimetric Analysis 

Dissertation 

zur Erlangung des Doktorgrades (PhD)  

der Medizinischen Fakultät 

der Rheinischen Friedrich-Wilhelms-Universität 

Bonn 

Ambreen Khawar 

aus Rawalpindi, Pakistan 

2019  



Angefertigt mit der Genehmigung 

der Medizinischen Fakultät der Universität Bonn 

1. Gutachter: Prof. Dr. Dr. Ralph A. Bundschuh

2. Gutachter: Prof. Dr. Frank Roesch

Tag der Mündlichen Prüfung: 08.10.2019 

Aus der Klinik und Poliklinik für Nuklearmedizin 

Direktor: Prof. Dr. med. Markus Essler  



    
 
 

 

 

 

 

 

 

 

 

 

Dedicated to my husband and children  

  



    
 
 

 

 

 

 

 

 

 

 

 



  5  
 

Index 

1 Introduction 7 

1.1 Overview of available theranostic radionuclides 7 

1.1.1 Single radionuclide with dual emissions 8 

1.1.2 Sister imaging/therapeutic isotopes 8 

1.1.3 Pair of different imaging and therapeutic radionuclides 9 

1.2 Role of dosimetry in theranostics 9 

1.2.1 Dosimetry of diagnostic radionuclides 10 

1.2.2 Dosimetry and precision/ personalized radionuclide therapy 10 

1.3 Medical Internal Radiation Dose (MIRD) system 11 

1.3.1 Nuclear medicine in management of bone metastasis 14 

1.3.2 Radiopharmaceuticals for imaging of bone metastasis 15 

1.3.3 Radionuclide therapy for bone metastasis 17 

1.4 Zoledronate based new theranostic bisphosphonates 18 

1.5 [44Sc]Sc-PSMA-617: New theranostic radiopharmaceutical for metastatic castration 

resistant prostate carcinoma patients 22 

2 Materials and Methods 25 

2.1 Patient Selection 25 

2.2 Preparation of radiopharmaceuticals 28 

2.2.1 [68Ga]Ga-DOTAZOL 28 

2.2.2 [177Lu]Lu-DOTAZOL 28 

2.2.3 [44Sc]Sc-PSMA-617 28 

2.3 Data collection 29 

2.3.1 PET/CT Acquisition protocol for [68Ga]Ga-DOTAZOL and [44Sc]Sc-PSMA-617 29 

2.3.2 Planar whole body scintigraphy protocol with [177Lu]Lu-DOTAZOL 29 

2.3.3 Blood and Urine sampling 30 

2.4 Data analysis 30 

2.4.1 Dosimetric analysis with [68Ga]Ga-DOTAZOL and [44Sc]Sc-PSMA-617 32 

2.4.2 Post therapeutic absorbed dose calculation for [177Lu]Lu-DOTAZOL and [177Lu]Lu-

PSMA-617 by mathematical extrapolation of pharmaco-kinetic analysis of 

[68Ga]Ga-DOTAZOL  and [44Sc]Sc-PSMA-617 33 

2.4.3 Dosimetric analysis with [177Lu]Lu-DOTAZOL 34 



6 

3 Results 37 

3.1 [68Ga]Ga-DOTAZOL 37 

3.1.1 Biodistribution and kinetic analysis 37 

3.1.2 Dosimetric analysis for normal organs 40 

3.2 [177Lu]Lu-DOTAZOL 42 

3.2.1 Qualitative analysis 42 

3.2.2 Dosimetric analysis: 43 

3.3 Post-therapeutic organ absorbed doses for [177Lu]Lu-DOTAZOL derived from 

mathematical extrapolation of [68Ga]Ga-DOTAZOL Pharmacokinetics 45 

3.4 [44Sc]Sc-PSMA-617: 47 

3.4.1 Qualitative [44Sc]Sc-PSMA-617 Distribution and Kinetics 47 

3.4.2 Dosimetry for Normal Organs 48 

3.5 Post-therapeutic organ absorbed doses for [177Lu]Lu-PSMA-617 derived from 

mathematical extrapolation of [44Sc]Sc-PSMA-617 Pharmacokinetics 50 

4 Discussion 54 

4.1 Biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL 55 

4.2 Biodistribution and dosimetric analysis of [177Lu]Lu-DOTAZOL 58 

4.3 Predictive dosimetry with [68Ga]Ga-DOTAZOL for [177Lu]Lu-DOTAZOL 61 

4.4 Biodistribution and dosimetric analysis of [44Sc]Sc-PSMA-617 61 

4.5 Predictive dosimetry with [44Sc]Sc-PSMA-617 for [177Lu]Lu-PSMA-617 65 

5 68 

6 

7 

8 

 

Abstract 

List of illustrations 

List of Tables 

References 

70 

71 

72 

 



  7  
 

1 Introduction 

The term theragnostics (theranostics) was first used to describe use of information 

from imaging techniques for optimal treatment planning for an individual patient in 

oncology in 2005 (Bentzen, 2005). The term ‘theranostic’ in nuclear medicine is the 

combination of therapy and diagnostics while utilizing one drug formulation. The use of 

same drug formulation or molecular targeting vector labeled with diagnostic radionuclide 

(gamma or positron emitter) and therapeutic radionuclide (beta, alpha or auger electron 

emitter) allows molecular target specific delivery of radionuclide therapy in that patient. 

The tremendous increase in feasible production of diagnostic and therapeutic 

radionuclides for clinical use has made theranostic applications of nuclear medicine 

techniques better and presents possibility of cost effective personalized treatment 

(Bozkurt and Özcan., 2018). To achieve theranostic goal diagnostic radionuclide is 

believed to have the following properties (Dash et al., 2013; Taïeb et al., 2016) 

 It may help in evidence based optimal patient selection for radionuclide therapy 

owing to possibility of better and reliable pre-therapeutic assessment of disease 

(molecular target) burden and tumor heterogeneity by generation of low noise/ 

high resolution images. 

 It has an appropriate half-life that may not result in high radiation absorbed dose 

in patients for repeated diagnostic imaging and on the other hand is capable of 

following pharmacokinetics of complementary therapeutic radionuclide. 

 It is able to quantify and predict pre therapy radiation doses for therapeutic 

radionuclide. 

 It is able to monitor disease and objectively assesses therapeutic efficacy or 

therapy outcome. 

1.1 Overview of available theranostic radionuclides 

The role of theranostic application of radionuclides dates back to 1940’s when for 

the first time 131I was used for diagnosis as well as therapy of various thyroid disorders 

including differentiated thyroid carcinoma. It is now also considered first use of targeted 

molecular therapy directed against Na-I symporters (Verburg et al., 2014; Yordanova et 
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al., 2017a). The radionuclides that are in use with theranostic intent can be broadly 

classified into three categories. 

1.1.1 Single radionuclide with dual emissions 

Radionuclides with emission of gamma or bremsstrahlung in addition to β- particles 

have been utilized as single combination for diagnosis and therapy. Bremsstrahlung 

images with pure β- emitters like strontium-89 (89Sr) (Breen et al., 1992) or Yttrium-90 

(90Y) (Wright et al., 2015) have been employed in the past however, poor quality images 

was major drawback in its theranostic implication. 

With γ and β- emissions for diagnosis and treatment of benign and malignant 

thyroid disorders [131I]NaI is the most specific example of combined diagnosis and 

therapy in single radionuclide. Pre-therapeutic diagnosis, dosimetry and post-therapeutic 

follow up with [131I]NaI paved the way to personalized therapy in patients with thyroid 

carcinoma (Verburg et al., 2014). The dual emission iodine-131 labeled compounds in 

small (diagnostic) and large (therapeutic) doses e.g., [131I]I-MIBG for neuroendocrine 

tumors, [131I]I-tositumomab for relapsed or refractory low grade follicular or B cell non 

Hodgkin lymphoma patients and [131I]I-PSMA-1095 in metastatic castration resistant 

prostate carcinoma patients (mCRPC) are some of the other examples of theranostic 

use (Yordanova et al., 2017a). 

[188Re]Re-HEDP, [153Sm]Sm-EDTMP and [117mSn]Sn-DTPA with dual emissions 

are used for bone pain palliation in patients with metastatic bone disease (Serafini, 

2001). Likewise lutetium-177 (177Lu) with γ and β- emissions conjugated with peptides 

and macromolecule has also found wide diagnostic and therapeutic utilization in 

neuroendocrine tumors, lymphoma, metastatic bone pain palliation and mCRPC patients 

(Dash et al., 2015; Ahmadzadehfar, 2016). 

1.1.2 Sister imaging/therapeutic isotopes 

This includes combination of γ and β- emitting isotopes as well as positron (β+) and 

β- emitting isotopes of same radionuclide for theranostics. The use of gamma emitting 

isotope for planar or SPECT imaging as surrogate for therapeutic isotope can be seen 

with 123I/ 131I utilization in differentiated thyroid carcinoma (Buscombe, 2007;  Urhan et 
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al., 2007) 123I/ 131I MIBG for neuroendocrine tumors (Intenzo et al., 2007) and 123I/ 131I 

labeled MIP-1095 targeted diagnosis and therapy in mCRPC patients (Yordanova et al., 

2017a). 

Among positron/beta isotope pairs 124I/131I for differentiated thyroid carcinoma (Erdi 

et al., 1999; Nagarajah et al., 2017), 124I/131I-MIP-1095 for mCRPC (Zechmann et al., 

2014) have been utilized. Recently new theranostic pairs 86Y/90Y (Rösch et al., 2017), 

44Sc/47Sc and 64Cu/67Cu (Rösch et al, 2017) have been proposed for labeling 

biomolecules or peptides against molecular targets for diagnosis and therapy 

respectively. Theoretically β+/ β- isotope pairs are considered better than γ /β- isotope 

pairs owing to capability of better resolution and quantitation of PET for theranostic use 

but are still under investigation. 

1.1.3 Pair of different imaging and therapeutic radionuclides 

Since early 1990s, indium-111 (111In) labeled compounds as SPECT tracer are in 

use as imaging agents with complimentary β- emitting therapeutic compounds labeled 

with Yttrium-90 (90Y) and 177Lu e.g., 111In- labeled monoclonal antibodies as surrogate to 

90Y-MAb or 177Lu-MAb for pre-therapeutic patient selection as well as therapy planning 

(Bander et al., 2005). 

Owing to better imaging with PET tracers, positron emitter gallium-68 (68Ga) 

labeled vectors for diagnosis and 90Y/177Lu labeled vectors for therapy have gained wide 

acceptance as theranostic pairs. 68Ga/177Lu labeled somatostatin analogues, prostate 

specific membrane antigen, and bone seeking macromolecules as theranostic pairs in 

neuroendocrine, prostate carcinoma and metastatic bone disease patients respectively 

are in use (Yordanova et al., 2017a). Among longer lived cyclotron/ generator produced 

positron emitters 64Cu, 44Sc, 89Zr have also been proposed for labeling vectors and 

prospective dosimetry (Rösch and Baum, 2011).  

1.2 Role of dosimetry in theranostics 

According to The new European Council Directive 2013/59 article 56 (Chiesa et al., 

2017). 
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“For all medical exposure of patients for radiotherapeutic purposes, exposures of 

target volumes shall be individually planned and their delivery appropriately 

verified, taking into account that doses to non-target volumes and tissues shall be 

as low as reasonably achievable and consistent with the intended 

radiotherapeutic purpose of the exposure”. 

1.2.1 Dosimetry of diagnostic radionuclides 

As theranostics requires repeated use of diagnostic radionuclides for selection of 

right patient for right radionuclide therapy at right time and monitoring of therapy 

outcome, dosimetric analysis of these radionuclides is essential. Moreover, possible role 

in predicting pre-therapeutic dosimetric analysis for therapeutic radionuclide can provide 

information for probable incidence of clinically measureable complications of normal 

organs.  

With rapid advancements in radiopharmacy a lot of new diagnostic radio-

pharmaceuticals against molecular targets are being developed. Their translation into 

clinical practice requires comparison of biodistribution and radiation safety i.e., critical 

organ and effective dose resulting from diagnostic dose. Though animal biodistribution 

and dosimetric analysis is performed as part of pre-clinical studies and extrapolated for 

human subjects but these studies under or overestimate the radiation absorbed doses 

for humans and hence necessitate the human studies. Recent use of 124I for determining 

post therapeutic doses for 131I has opened a new venue for use of longer lived 

radionuclide labeled compounds to determine post therapeutic organ and tumor lesion 

radiation absorbed doses (Zechmann et al., 2014). 44Sc and 86Y are other nuclides that 

are proposed suitable for pre-therapeutic PET based therapeutic dose determination. 

1.2.2 Dosimetry and precision/ personalized radionuclide therapy 

The success of radionuclide therapy relies on adequate delivery of activity that is 

able to impart lethal damage to tumor tissue with tolerable level of side-effects to normal 

tissues (Ljungberg and Sjögreen Gleisner., 2016). Fixed doses versus personalized 

radionuclide therapies are under discussion since long. The role of dosimetric analysis in 

individual patient based radionuclide therapy that is prediction of administered 

radionuclide activity tailored to an individual patient which could result in adequate tumor 
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control while minimizing potential side-effects to normal tissues is imperative (Flux et al., 

2018; Strigari et al., 2014). Review of pre and intra therapeutic dosimetry for targeted 

radionuclide therapy with 131I, 177Lu and 90Y labeled compounds has clearly advocated 

the great potential of individual patient based information (Eberlein et al., 2017). It is 

further advocated that in order to explore complete potential of radionuclide therapy, 

biological effectiveness i.e., DNA damage and repair mechanisms and effect of number 

and frequency of therapy cycles on normal and tumor tissues need to be inferred along 

with  absorbed doses to normal organs and lesions obtained from dosimetric analysis 

(Eberlein et al., 2017). The progression of radiation dosimetric analysis for calculation of 

radiation absorbed doses from level of organs to tissue regions of millimeters to 

hundreds of micrometers is considered a great potential for advanced patient-specific 

dose estimates. Non-uniformities in absorbed doses with in tumor as well as surrounding 

critical structures can be displayed as dose volume histograms (DVH). In external beam 

radiotherapy (EBRT) less than 10% of non-uniformity in absorbed dose across target 

volume is considered successful. Moreover, use of tumor control probability (TCP) and 

normal tissue control probability (NTCP) in conjunction with DVH facilitates optimization 

of treatment planning. It is proposed that similar concept of treatment planning with use 

of TCP, NCTP and DVH can also be utilized for optimal treatment planning with internal  

radionuclide therapy. Thus, patient-specific dosimetry and treatment planning of 

radiolabeled substances are necessary for establishing safety of treatment and 

estimation of absorbed dose-response relationships.  

1.3 Medical Internal Radiation Dose (MIRD) system 

MIRD committee of the Society of Nuclear Medicine provides the internal dosimetry 

schema and basic methodology for calculation of absorbed doses from internally 

administered radiopharmaceutical both for diagnosis and therapeutic purposes (Bolch et 

al., 2009). MIRD schema was originally published in 1968, revised in 1976 and 

republished as MIRD primer in 1988 and 1991. MIRD schema is based on the idea that 

every radionuclide containing organ is the source of radiation exposure of other organs 

and of itself. The fraction of the radiation energy absorbed in the target organ depends 

on the physical quality of radiation (α, β, γ) and on the geometric relationships between 

source and target (distance, shape, position). MIRD schema provides framework for 
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absorbed dose assessment for whole organs, tissue sub regions, voxelized tissue 

structures as well as individual cellular compartments (Bolch et al., 2009).  

For calculation of absorbed dose to whole organs homogenous activity distribution 

is assumed in the source as well as target organs. The calculation of absorbed dose is 

governed by following equation (Bolch et al., 2009):  

   
  ∑  ̃   

                   ∑  ̃      
         ------------- Equation 1 

Where     
  is the mean energy imparted to target region (    per unit tissue 

mass delivered by cumulative activity in source region    ,   ̃      is the time-integrated 

cumulative activity or total number of nuclear transformations of radiopharmaceutical in 

source region     , and            is radionuclide specific mean absorbed dose rate 

delivered to target region      after administration per unit cumulative activity present in 

source region     .   ̃      is the fraction of administered activity in source region.      is 

the administered activity.  

S is radionuclide as well as age/ sex specific computational anatomical model 

based parameter. It is determined by equation 2 as follows (Bolch et al., 2009): 

          
∑               

   

 -------------------Equation 2 

Where      is the mean or individual energy of ith nuclear  transition,      is the 

number of ith nuclear transition per nuclear transformation,             is the absorbed 

fraction i.e., the fraction of radiation energy    emitted within the source region    that is 

absorbed  in the target region    and     
  is mass of target region. 

Calculation of S value considers either pre constructed whole body computational 

phantoms representing the reference individuals of given age, sex, total body weight and 

height or a model based on segmented images of subject anatomy from CT or MRI 

images. The S values for all types of nuclei of many nuclides for combinations of source 

and target organs for a 70 kg standard human as well as models of infants, women, 

men, pregnant women and adolescents with relationships between organ and organ 

systems, including the masses have been tabulated. These extensive tables of S values 
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of various geometric models are now available from the Society of Nuclear Medicine in 

(OLINDA/EXM) commercially available software (Stabin, 2008). 

Voxel based dosimetry is possible with application of MIRD schema to voxels 

defined in PET or SPECT images. With use of voxel based S values, three dimensional 

distribution of absorbed dose is generated using calculated mean absorbed dose per 

voxel for all voxels in segmented region of the organ of interest that can be tumor or a 

region with in tumor.  As a result of non-uniformities in absorbed dose profile, mean 

absorbed dose is not adequate to interpret clinical results. Thus voxel dosimetry is used 

to generate dose-volume histograms and isodose contours. Similar to radiation 

treatment planning comparison of dose-volume histograms in tumor and surrounding 

normal tissue  can help in estimation of probability of success for internal radionuclide 

therapy and can help in tailoring the therapeutic dose to achieve desired effect at the 

target (Bolch et al., 1999, 2009). 

Dosimetric analysis thus requires (Eberlein et al., 2017; Flux et al., 2018; 

Lassmann and Eberlein, 2018): 

Quantitative measurement of pharmacokinetics: The use of MIRD schema requires 

accurate determination of activity changes within source organs with respect to time and 

in turn cumulative activity calculation. Quantitative serial imaging with gamma or positron 

emission tomography camera at optimal time points  according to MIRD pamphlet no 16 

(Siegel and Thomas, 1999), blood and urine sample collection is usually performed. 

Photon attenuation, scatter, camera limitations, voxel-based calculation of the 

distribution of energy depositions as well as image analysis, including image registration, 

image segmentation, volume of interest delineation and classification of normal tissue 

structures and tumors in the images are some of the issues that are taken into account. 

However, SPECT/CT or PET/CT has improved the quantitative accuracy owing to CT 

based volume delineation for organ and lesion dosimetry.  

Integration of time activity curve and absorbed dose calculation: After generation of time 

activity curves in source organs and tumor lesion, integration of time activity curves is 

done by optimal curve fitting. Kletting et al. has provided a proposal of obtaining optimal 

fit procedures (Eberlein et al., 2017). Cumulative activity and absorbed dose in target 
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organ can easily be determined using OLINDA/ EXM software. The software requires 

selection of suitable phantom which results in nuclide specific parameters and tabulated 

S values already entered in the buffer and is stored for further calculations. Further with 

input of pre-determined kinetic parameters as number of decays or cumulative activity in 

the organ of interest or organ system or after a possible curve fitting for integration on 

time activity data with OLINDA/ EXM software, absorbed doses to target organs can be 

calculated (Stabin, 2008). 

Patient Specific Dose Calculation: Prediction of patient specific activities tailored to 

absorbed dose limits for organs at risk e.g., kidneys in case of [177Lu]-based PRRT or 

bone marrow  in case of bone pain palliating radionuclide therapies. It is also desirable 

to predict whether tumor absorbed doses are capable of delivering significant 

therapeutic effect. Further taking into account the biological effectiveness of absorbed 

dose, dose fractionation and low dose with effective therapeutic effect is determined 

(Ljungberg and Sjögreen Gleisner, 2016) 

1.3.1 Nuclear medicine in management of bone metastasis 

Bone metastasis is a serious complication of many solid tumors. It affects more than 

75% of patients with breast and prostate cancer, and 15‑40% of patients with other 

types of tumors ( Fischer and Kampen, 2012; Macedo et al., 2017). Pain, pathological 

fractures, hypercalcemia, myelosuppression, spinal cord compression and nerve root 

lesions are the skeletal related events (SRE’s) that result in increased morbidity, 

mortality and reduced quality of life in these patients. Incidence of SREs is reported to 

be every 3-6 months that increase in frequency with disease progression (Wade et al., 

2015). The diagnosis of bone metastasis at an early stage followed by therapy improves 

survival and quality of life. 

The role of nuclear medicine is well established for diagnosis, staging and 

assessment of treatment response of skeletal metastases with use of conventional 

skeletal scintigraphy, SPECT, PET, and hybrid  SPECT/CT, PET/CT imaging (Qu et al., 

2012; Yang et al., 2011). Among these PET/CT imaging has been found the most 

sensitive and specific. Radionuclide therapy with β- and α emitting bone seeking 

radiopharmaceuticals for bone pain palliation is an important aspect in management of 
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bone pain palliation in patients with metastatic skeletal disease (Pandit-Taskar et al., 

2004). The use of imaging radionuclide and cytotoxic radionuclide therapy targeted at 

prostate specific membrane antigen (PSMA) in mCRPC patients, a new chapter in 

theranostics has emerged. It has made image guided salvage treatment of advanced 

mCRPC by targeting extracellular domain of PSMA with radiopeptides that are 

internalized upon binding and offers optimal antitumor activity, while limiting toxicity 

(Kesavan et al., 2018) . With success of PSMA based theranostics in mCRPC, efforts 

are being made to explore new theranostic radiopharmaceuticals for bone metastasis.  

1.3.2 Radiopharmaceuticals for imaging of bone metastasis 

The radiopharmaceuticals in use for diagnosis of bone metastasis can broadly be 

classified into osteotropic and oncotropics. The osteotropic radiopharmaceuticals 

includes bone seeking radiopharmaceuticals which owing to their high affinity to calcium 

hydroxyl apatite bind at sites of active bone formation or increased osteoblastic activity. 

Thus, their binding to both benign and malignant increased bone turn over sites results 

in high sensitivity and low specificity. The use of hybrid imaging like SPECT/CT or 

PET/CT is encouraged that increases the specificity. Below table 1 summarizes the 

osteotropic radiopharmaceuticals in use (Cuccurullo et al., 2013; O’Sullivan et al., 2015). 

 

 

 

 

 

 

 

 

 



  16  
 

Tracer Radio 

pharmaceuticals 

Advantages Disadvantages 

S
P

E
C

T
 Tc-99m MDP Low cost production, easy 

availability, favorable 
dosimetry 

Non-specific as 
accumulates at both 
benign and malignant 
site.  

Tc-99m HEDP 

Tc-99m HMDP 

P
E

T
 

F-18 NaF High first pass extraction, high 
sensitivity for metastatic 
lesion  

Less specificity for 
pure lytic lesions as 
well as in  absence of 
hybrid imaging, Costly 
cyclotron production 
and less availability 

[68Ga]Ga-EDTMP, 
DOTMP, BPAMD, 
NO2AP-BP 

Easy onsite, less expensive 
generator production, have 
theranostic advantage of 
pairing with  [177Lu]Lu-
bisphosphonates or [225Ac]Ac-
bisphosphonates for therapy 

 

Table 1: Osteotropic radiopharmaceuticals (Cuccurullo et al., 2013; O’Sullivan et al., 
2015). 

In contrast oncotropic radiopharmaceuticals are the one that show uptake in 

malignant cells. The uptake is governed by specific or non-specific mechanism. The 

specific uptake is related to targeted receptor imaging found specifically in certain 

tumors. Table 2 below shows the various oncotropic radiopharmaceuticals. 
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Tracers Radiopharmaceuticals Metastasis of tumor detected (mechanism) 

S
p

e
c

if
ic

 

[131I]/ [121I]I-MIBG Pheochromocytomas, paragangliomas and 
Apudomas (Nor adrenaline analogue) 

[68Ga]Ga-DOTATOC/ 

DOTATATE, [111In]In-
octreotide  

Neuroendocrine tumors(Somatostatin analogues) 

[131I]NaI Differentiated thyroid carcinoma (Na-I symporters) 

[68Ga]Ga-PSMA Prostate carcinoma (outer domain PSMA receptor) 

N
o

n
 s

p
e
c

if
ic

 

[99mTc]Tc-MIBI/ 
tetrofosmin 

Localizes due to increased perfusion and later 
internalization with in mitochondria thus uptake 
related to increased metabolic activity of tumor cells 

[201Tl]Tl-chloride Uptake mediated through Na-K ATPase pump thus 
indicates metabolism and viability of tumor cells 

[18F]F-choline/[11C]C-
choline  

Prostate carcinoma (By up-regulated activity of 
choline kinase their uptake and later 
phosphorylation  occurs) 

[18F]FDG Uptake by a transport mechanism mediated by 
GLUT 1 (glucose transporter protein) followed by 
phosphorylation and no degradation, hence uptake 
in bone metastasis is via non-specific increased 
glucose utilization  

Table 2: Oncotropic radiopharmaceuticals(Cuccurullo et al., 2013; O’Sullivan et al., 
2015) 

1.3.3 Radionuclide therapy for bone metastasis 

Bone metastasis is a multifocal disease that results in severe bone pain at 

multiple sites. Systemic targeted radionuclide therapy provides benefit of cost effective 

bone pain palliation with minimal side effects. The palliating effect of these agents is 

mediated by their accumulation at reactive bone sites around bone metastasis resulting 

in high target-to non- target tissue ratio and a very low concentration in the surrounding 

normal bone and bone marrow. Their mode of interaction is by acting as calcium 

analogue or attaching to phosphate at osteoblastic sites. The main side effects of 

radionuclide therapy are myelosuppression and pain flare (Macedo et al., 2017). It is 

believed that radionuclide therapy causes sterilization of cells which produce 

inflammatory mediators that activate nociceptors resulting in pain palliation and 
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improved quality of life. Moreover, it is seen that repeated radionuclide therapy may 

result in tumoricidal effect as well. The therapeutic effect is dependent on type and 

energy of emissions (β- or α) from the radionuclide. The efficacy increases with con-

comitant use with hormonal therapy, chemotherapy or bisphosphonates (Fischer and 

Kampen, 2012; Pandit-Taskar et al., 2004). Table 3 gives overview of the various radio-

nuclides used for therapy. 

Radionuclides 
Half-
life 

(days) 

Maximum/ mean energy 
and maximum tissue 

range 

Gamma 
emission 

% Success 
rate 

β
- 
e

m
it

te
r 

 [32P]NaP 14.3  1.71/0.695 MeV, 8 mm No 77-84 

[186Re]Re-
HEDP 

3.7 1.07/.349 MeV, 1.1 mm Yes 50-100 

[188Re]Re-
HEDP 

0.7 2.12/- MeV, 3 mm No 60-75 

[89Sr]Sr-
Chloride 

50.5  1.46/0.58 MeV, 2.4 mm Yes 60-84 

[153Sm]Sm-
EDTMP 

1.9  0.81/0.23 MeV, 0.6 mm Yes 62-74 

[177Lu]Lu-
EDTMP 

6.7 0.497 Yes 86 

α
- 

e
m

it
te

r [223Ra]RaCl2 11.4 28 MeV, <100 µm No Improved 
Overall 
survival 

C
o

n
v

e
rs

io
n

 

e
le

c
tr

o
n

s
 [117mSn]Sn-

DTPA 
13.6 0.2-0.3 Yes 75 

Table 3: Therapeutic radionuclides for bone pain ( Fischer and Kampen, 2012; Pandit-
Taskar et al., 2004) 

1.4 Zoledronate based new theranostic bisphosphonates 

Since many years, bisphosphonates are in use for pain palliation and prevention of 

complications from skeletal metastases. Its anti-resorptive effect is a proven in vivo and 
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in vitro fact (Luckman et al., 1998). High rate of adsorption by bisphosphonates 

encouraged its labeling with theranostic radionuclides (Fellner et al., 2012). Alpha-

hydroxy bisphosphonates like pamidronate and, in particular, alpha-hydroxy 

bisphosphonates containing a potent nitrogen-containing moiety like zoledronate 

represent next generations of bisphosphonates (Ebetino et al., 2011; Montalvetti et al., 

2001; Russell, 2007). In addition to binding with hydroxyapatite structure of the bone, 

their interaction with the HMG CoA reductase pathway results in inhibition of farnesyl 

diphosphate synthase (FPPS) culminating in apoptosis of osteoclasts, hence exhibiting 

a biochemical target  (Fellner et al., 2012). Among them, zoledronic acid has shown 

highest FPPS inhibition and best affinity to hydroxyl apatite making it a bisphosphonate 

of choice for labeling with diagnostic and therapeutic radionuclide (Russell, 2007). The 

bifunctional chelate DOTA has facilitated labeling of these bisphosphonates with Me-

(III); 68Ga and 177Lu  for diagnosis and treatment of skeletal metastatic disease 

respectively, thus achieving a chemical goal of new theranostic development (Meckel et 

al., 2017).  

Lutetium-177 with a half-life of 6.73 days, a low range of its β- particles with 

maximum energy (Eβmax = 497 keV), gamma emissions at energies of 112 keV (6.4%) 

and 208 keV (11%), and the possibility of cost effective large scale production with high 

specific activity and radionuclide purity has  gained high acceptance as a therapeutic 

radionuclide (Dash et al., 2015). Owing to deposition of its β- energy in the lesions and 

their close environment, it is best suited for small to medium sized tumor lesions when 

labeled with a suitable carrier (Balter et al., 2015). Moreover, 177Lu labeled 

bisphosphonates  allow for a good theranostic combination with their gallium-68 labeled 

imaging counter parts using positron emission tomography (PET) (Alavi et al., 2015). 

Pre-clinical in vitro and in vivo studies with [68Ga]Ga-DOTAZOL has shown high 

hydroxyapatite binding, good target to background ratio with fast renal clearance and 

overall skeletal uptake comparable to other 68Ga labeled DOTA α-H and α-OH 

bisphosphonates as well as [18F]Na-F (Meckel et al., 2017; Pfannkuchen et al., 2017). 

Moreover, in vivo biodistribution in a single patient of prostatic carcinoma reported 

intense uptake in skeletal metastatic lesions with lower activity in background and other 

normal organs in comparison with complimentary [68Ga]Ga-PSMA image (Pfannkuchen 
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et al., 2017). Data from animal studies comparing the biodistribution and dosimetric 

analysis extrapolated for humans between [177Lu]Lu-EDTMP and [177Lu]Lu-DOTAZOL 

indicate a higher skeletal absorbed dose for [177Lu]Lu-DOTAZOL as well and present it to 

be a better agent for radionuclide therapy of bone metastases (Yousefnia et al., 2015).  

Acyclic bisphosphonates like EDTMP labeled with 68Ga and 177Lu labeled EDTMP 

i.e., [68Ga]Ga-EDTMP (Fellner et al., 2011) and [177Lu]Lu-EDTMP (Agarwal et al., 2015) 

(Yuan et al., 2013)  have been assessed as theranostic bisphosphonates. Phase I and II 

studies with [177Lu]Lu-EDTMP for pain palliation in patients with bone metastases 

secondary to breast and prostate carcinoma have delivered encouraging results 

(Agarwal et al., 2015; Alavi et al., 2015; Mazzarri et al., 2015; Shinto et al., 2014; Thapa 

et al., 2015;Yuan et al., 2013). Radiation dosimetry analysis has also shown its safety 

with low dose delivery to the kidneys in patients with breast carcinoma and mCRPC in 

comparison to other bone pain palliating agents in use (Bal et al., 2015; Balter et al., 

2015; Sharma et al., 2017). However, the lower kinetic stability of [177Lu]Lu-EDTMP 

requires a high ligand concentration which is a drawback. Also, [68Ga]Ga-EDTMP 

showed lower skeletal accumulation compared to its [177Lu]Lu-EDTMP analogue and 

could not be paired as a theranostic agent (Meckel et al., 2017).  

Bisphosphonates conjugated to macrocyclic chelators  such as BPAMD have also 

been labeled with 68Ga and 177Lu resulting in [68Ga]Ga-BPAMD (Fellner et al., 2010) 

(Passah et al., 2017) and [177Lu]Lu-BPAMD (Baum and Kulkarni, 2012; Fellner et al., 

2010; Pfannkuchen et al., 2017; Rösch and Baum, 2011). These DOTA-conjugated 

theranostic bisphosphonates have shown excellent results and represent good 

theranostic pairs (Pfannkuchen et al., 2017). 

Despite the great potential of labeled BPAMD as a theranostic pair, further 

radiopharmaceutical research demonstrated, that the NOTA-version [68Ga]Ga-NO2APBP 

(68Ga-1,4,7-triazacyclonone-1,4-diacetic acid) of that bisphosphonate not only allowed 

for more effective labeling with 68Ga, but also demonstrated superior targeting quality ( 

Holub et al., 2015; Passah et al., 2017). It is superior with high thermodynamic stability 

and kinetic inertness as compared to DOTA labeled 68Ga bisphosphonates, labeling of 

which is less efficient and more vulnerable to experimental conditions. It was 

characterized with high skeletal uptake and less kidney uptake (Holub et al., 2015). 
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However, in pre-clinical animal biodistribution studies its therapeutic counterpart 

[177Lu]Lu-NO2APBP was found inferior to [177Lu]Lu-BPAMD with less affinity to skeleton 

(Bergmann et al., 2016). Thus [68Ga]Ga-NO2APBP and [177Lu]Lu-BPAMD were proposed 

as  theranostic combination of the simple bisphosphonate. The preclinical studies with 

[68Ga]Ga-NODAGAZOL have shown comparable results to[68Ga]Ga-NO2APBP and was 

found superior to [68Ga]Ga-DOTAZOL. Recently  [68Ga]Ga-NODAGAZOL and [177Lu]Lu-

DOTAZOL have also been reported as the most effective new bisphosphonate based 

theranostic radiopharmaceuticals (Bergmann et al., 2016; Holub et al., 2015; Meckel et 

al., 2017; Nikzad et al., 2013). However, this theranostics combination requires analysis 

of [68Ga]Ga-NODAGAZOL in humans. 

Literature based comparison of [68Ga]Ga-DOTAZOL(Meckel et al., 2017) with 

[68Ga]Ga-NO2APBP (Holub et al., 2015) revealed slightly less hydroxyapatite binding 

(92.7 ±1.3 % versus 93.8 ± 4.4%) and low bone uptake at 60 min p.i. (Standard uptake 

value (SUV) of 5.27 ± 0.62 versus 6.19 ± 1.27). The in vivo biodistribution of [68Ga]Ga-

DOTAZOL in male Wistar rats showed faster kidney clearance with peak uptake in less 

than 5 min followed by clearance in comparison to [68Ga]Ga-NO2APBP that showed 

continuous uptake till 50 min followed by clearance through urinary bladder. However, 

SUV for kidneys at 60 min p.i was found to be higher for [68Ga]Ga-DOTAZOL (0.53 ± 

0.04) as compared to [68Ga]Ga-NO2APBP (0.26 ± 0.09). Evaluation of [68Ga]Ga-

NO2APBP in female breast carcinoma patients already proved its excellent ability to 

detect lesions along with favorable radiation dosimetry with very low kidney absorbed 

dose (Passah et al., 2017). However, [68Ga]Ga-DOTAZOL has not been evaluated 

clinically so far. Moreover, preclinical animal studies with alpha emitter [225Ac]Ac-

DOTAZOL has shown biokinetics similar to [68Ga]Ga-DOTAZOL and [177Lu]Lu-DOTAZOL 

and proposed its translational use with  strategies to reduce nephrotoxicity, thus 

increasing the importance of  theranostic use of [68Ga]Ga-DOTAZOL (Pfannkuchen et al., 

2018). 

Hence, [68Ga]Ga-DOTAZOL with benefit of low cost, onsite generator production of 

gallium-68 having biodistribution and skeletal uptake comparable with  [177Lu]Lu-

DOTAZOL (Meckel et al., 2017) and [225Ac]Ac-DOTAZOL(Pfannkuchen et al., 2018) 

suggests it to be better than [18F]Na-F as potential theranostic tracer allowing for patient-
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individual dosimetry. In this study we evaluated biodistribution and dosimetric analysis of 

[68Ga]Ga-DOTAZOL and [177Lu]Lu-DOTAZOL to determine their feasible use for 

theranostics in skeletal metastatic disease. 

1.5 [44Sc]Sc-PSMA-617: New theranostic radiopharmaceutical for 

metastatic castration resistant prostate carcinoma patients 

Prostate carcinoma is the second common cancer among males. The prognosis of 

prostate carcinoma is good at early stage but becomes refractory to treatment in 

advanced stages. Survival decreases to 31% with advanced metastatic disease in soft 

as well as skeletal tissue (Ahmadzadehfar et al., 2016; Rahbar et al., 2016a). High 

abundance of prostate specific membrane antigen (PSMA) is found in all prostate 

carcinoma cells that up regulates in metastatic castration resistant prostate carcinoma 

(mCRPC) (Ahmadzadehfar, 2016; Lütje et al., 2015). Since past two decades various 

studies have been conducted to evaluate several small ligands directed against external 

domain of PSMA. High affinity small ligand PSMA-617 with high tumor to background 

ratio (Benešová et al., 2015) labeled with gallium-68 (68Ga) for PET imaging and 

lutetium-177 (177Lu) for therapy of mCRPC are in use as theranostic pair for mCRPC. 

Though [68Ga]Ga-PSMA-617 has played important role in diagnosis, staging and 

treatment follow up of mCRPC with [177Lu]Lu-PSMA-617, its short half-life of 1.13 h is a 

major limitation to determine pre [177Lu]Lu-PSMA-617 therapeutic dosimetric analysis 

which has a half-life of 6.7 days. Moreover, in a recent pre-clinical comparison of 

[68Ga]Ga-PSMA-617 with [177Lu]Lu-PSMA-617, it has surfaced that in vivo binding and 

distribution also differs between the two (Umbricht et al., 2017). 

With emerging concept of theranostic radionuclides in personalized medicine, 

cyclotron/generator produced long-lived PET radionuclides are proposed as better 

diagnostic radionuclide for theranostic use specially for pre therapeutic dosimetry (Baum 

and Kulkarni, 2012). Evidence of prolonged imaging till 23.5 h and better sensitivity to 

detect lesions by [44Sc]Sc-DOTATOC with half-life of 3.9 h encouraged labeling of 

PSMA-617 with scandium-44 (Pruszyński et al., 2012; Singh et al., 2017). Recent 

comparison of in vivo kinetics and in vitro characteristics of cyclotron produced [44Sc]Sc-

PSMA-617 with [68Ga]Ga-PSMA-617, [177Lu]Lu-PSMA-617 and [68Ga]Ga-PSMA-11 
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revealed similar kinetics of [44Sc]Sc-PSMA-617 to [177Lu]Lu-PSMA-617 in contrast to 

gallium-68 labeled agents (Umbricht et al., 2017). Long half-life (3.9 h) of scandium-44 

gives added advantages of its possible transport to distant places from site of production 

(Pruszyński et al., 2012), feasible delayed imaging with [44Sc]Sc-PSMA-617and sentinel 

node imaging prior to surgery for primary prostate carcinoma. But the most pertinent is 

that it presents as better candidate for pre [177Lu]Lu-PSMA-617 therapy dosimetric 

assessment in mCRPC patients (Umbricht et al., 2017). However presence of high 

energy gamma rays (>909 KeV) is considered a drawback (Eppard et al., 2017). Hence, 

a detailed dosimetric analysis is required for establishing its safe use for purpose of 

diagnosis and prospective dosimetric analysis. 

Therapeutic success in terms of objective response with  decline in PSA levels to 

[177Lu]Lu-PSMA-617 therapy in 70% of mCRPC patients has been described 

(Ahmadzadehfar et al., 2015; Gaertner et al., 2017). In another review >50% reduction 

of serum PSA level in 30%-70% of mCRPC patients along with 10%-32% non- 

responders to [177Lu]Lu-PSMA-617 therapy have been reported (Emmett et al., 2017). 

To date no substantial reasoning for lack of response in this fraction of mCRPC patients 

is provided. However, it is proposed that high dose delivery to tumor lesions while 

maintaining safety and avoiding toxicity could be a potential solution in enhancing 

response in resistant population, thus emphasizing role of personalized dosimetry in 

these patients (Emmett et al., 2017). At present, for treatment with [177Lu]Lu-PSMA-617 

initial administered doses are based on previous experience with PRRT, and escalated 

according to ongoing individual experience of respective clinicians at various centers. 

Expression of PSMA in small intestine, proximal renal tubules and salivary glands 

in addition to prostate carcinoma cells was found responsible for toxicity and side effects 

(Ahmadzadehfar et al., 2016; Fendler et al., 2017; Yordanova et al., 2017b). Several 

[177Lu]Lu-PSMA-617 PRRT studies have revealed its safety and effectiveness. Incidence 

of grade 3 or 4 renal, hematological and salivary gland toxicity has been found to be low. 

Occasional cases of reversible or transient xerostomia or grade 2 hematological toxicity 

have been reported (Baum et al., 2016; Yordanova et al., 2017b). 

Dosimetric analysis with low pre therapeutic and high post therapeutic dose of 

[177Lu]Lu-PSMA-617 using planar / planar + SPECT imaging also reported kidneys, 
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salivary and lacrimal  glands to be the organs at risk respectively (Delker et al., 2016; 

Fendler et al., 2017; Kabasakal et al., 2015; Kratochwil et al., 2016; Kulkarni et al., 2016; 

Okamoto et al., 2017). Use of [68Ga]Ga-PSMA-617 as a surrogate radiation dosimetric 

evaluation agent also revealed similar kinetics but lower doses as compared to 

[177Lu]Lu-PSMA-617 (Afshar-Oromieh et al., 2015) .  

Use of both planar and planar + SPECT low dose [177Lu]Lu-PSMA-617 and 

[68Ga]Ga-PSMA-617 PET imaging have drawbacks and inherent limitations for 

predicting pre-therapeutic or intra-therapeutic radiation dosimetry. Pre-therapeutic 

dosimetric analysis using low dose [177Lu]Lu-PSMA-617 planar/ planar +SPECT imaging 

requires in many countries hospital stay due to radiation protection issues, multiple time 

point imaging, blood sampling and urine sample collection, which is cumbersome to 

patients as well as the hospital staff exposing them with high radiation doses. Secondly 

it gives high organ absorbed doses and has inability to determine lacrimal gland doses. 

Last but not the least low dose radiation may not interpret the biokinetics of high doses 

of [177Lu]Lu-PSMA-617 administered for therapy in patients owing to the presence of 

more unlabeled compound in therapeutic dose ( Delker et al., 2016; Kabasakal et al., 

2015; Pfestroff et al., 2015;). As mentioned earlier, [68Ga]Ga-PSMA-617 is incapable to 

follow kinetics of PSMA beyond  4 h and also computes lower absorbed doses. Hence, 

longer lived PET nuclide 44Sc labeled PSMA is seen as an alternative for pretherapeutic 

dosimetry and better dose planning in mCRPC patients. This study evaluated 

biodistribution, dosimetric analysis of [44Sc]Sc-PSMA-617 in mCRPC patients as 

surrogate marker for pre [177Lu]Lu-PSMA-617 therapy dosimetric analysis.  

 

 



  25  
 

2 Materials and Methods 

This PhD research work presents evaluation of theranostic potential of zoledronate 

based bisphosphonate [68Ga]Ga-DOTAZOL and [177Lu]Lu-DOTAZOL in metastatic disease 

patients. In addition [44Sc]Sc-PSMA-617 in metastatic castration resistant prostate 

carcinoma (mCRPC) patients was evaluated. For this biodistribution and dosimetric 

analysis of [68Ga]Ga-DOTAZOL, [177Lu]Lu-DOTAZOL and [44Sc]Sc-PSMA-617  was 

assessed. Moreover, prospective post therapeutic normal organ absorbed doses for 

[177Lu]Lu-DOTAZOL and [177Lu]Lu-PSMA-617 were determined  by using pharmacokinetic 

data of [68Ga]Ga-DOTAZOL and [44Sc]Sc-PSMA-617 respectively. 

The research work was conducted at Department of Nuclear Medicine, University 

Medical Center, Bonn from April 2016 to March 2019. The studies detailed under were 

carried out in accordance to ethical standards of institutional review board and therefore 

been performed in accordance with the ethical standards laid down in the 1964  

Declaration of Helsinki from the World Medical Association and all subsequent revisions 

(1983) and its appropriate legal requirements. All patients gave their informed consent to 

all involved imaging and therapeutic procedures. 

2.1 Patient Selection 

A total of 14 patients (Pts) were enrolled, 05 Pts for [68Ga]Ga-DOTAZOL, 04 Pts for 

[177Lu]Lu-DOTAZOL and 05 patients for [44Sc]Sc-PSMA-617 biodistribution and dosimetric 

analysis. 

  For [68Ga]Ga-DOTAZOL, five patients (M: F; 4: 1) with skeletal metastatic disease 

secondary to breast carcinoma in female patients and bronchial and metastatic 

castration resistant prostate carcinoma (mCRPC) in male patients were injected 

intravenously (i.v.) with mean ± SD dose of 172.6 ± 20.07 MBq (4.66 mCi) of [68Ga]Ga-

DOTAZOL.  Table 4 summarizes the patient characteristics below 
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  PT1 PT2 PT3 PT4 PT5 mean SD 

Age 83 83 66 64 64 72 10.07 
Weight 76 76 85 82 82 80 4.02 

Sex M M F M M   
Hematoc
rit 0.4 0.41 0.34 0.39 0.37 0.38 0.03 

Dose 152 150 181 190 190 172.6 20.07 

Tumor mCRPC mCRPC Breast 
Bronchial 
carcinoma 

Bronchial 
carcinoma 

  
Previous 
therapie
s 
received 

AH*/  
CT#/ 

[¹⁷⁷Lu]Lu
-PSMA-

617 

AH*/  CT#/ 
[¹⁷⁷Lu]Lu-
PSMA-

617 

CT# + 
local 

Iradiation 

CT#/ 
denusomab, 
 nivolumab 

CT#/ 
denusomab, 
 nivolumab 

  
Table 4: Patient characteristics in which biodistribution and dosimetric analysis with 

[68Ga]Ga-DOTAZOL was studied 

The biodistribution and dosimetric analysis of [177Lu]Lu-DOTAZOL was studied in 

four male patients with metastatic skeletal disease secondary to metastatic castration 

resistant prostate carcinoma (mCRPC) or bronchial carcinoma. After confirming 

sufficient uptake in the bone metastases with [68Ga]Ga-DOTAZOL - PET/CT, these 

patients were hospitalized for treatment with [177Lu]Lu-DOTAZOL in the context of an 

individual treatment attempt as no other treatment options were left for these patients. 

All patients had normal kidney function confirmed by renal function tests as well as renal 

scintigraphy. Table 5 shows patient details along with the injected activities of [177Lu]Lu-

DOTAZOL and previous therapies received. 
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  PT1 PT2 PT3 PT4 mean  SD 

Age 83 66 64 64 69.25 9.21 

Weight 76 76 82 82 79 3.46 

Hematocrit 0.4 0.4 0.4 0.37 0.39 0.01 
Injected 
activity 6000 6000 5873 6000 5968.25 63.5 

Tumor mCRPC mCRPC 
Bronchial 
carcinoma 

Bronchial 
carcinoma 

  
Previous 
therapies 
received 

AH*/  CT#/ 
[¹⁷⁷77Lu]Lu-
PSMA-617 

AH*/CT#+ 
local 

Iradiation 

CT#/ 
denusomab, 
 nivolumab 

CT# / 
denusomab, 
 nivolumab     

Table 5: Subject details of patients receiving radionuclide therapy with [177Lu]Lu-
DOTAZOL*Antihormonal, #Chemotherapy 

 

Five men with progressive mCRPC enrolled for [177Lu]Lu-PSMA-617 therapy and 

mean age of 69±2.2 years were enrolled for [44Sc]Sc-PSMA-617 imaging. The details of 

injected activity as well as patient characteristics are given in table 6. 

  PT1 PT2 PT3 PT4 PT5 mean SD 

Age 70 72 67 70 67 69 2.2 

Weight 78 80 70 80 104 82.4 12.76 

Hematocrit 0.33 0.30 0.39 0.30 0.29 0.32 0.04 

Dose 50.00 62.23 39.61 50.00 48.95 50.16 8.04 
Injected 
Activity 
(MBq) 0.64 0.78 0.57 0.63 0.47 0.62 0.11 
 
PSA (ng/ml) 453.00 26.00 7.20 139.00 3000.00   
[177Lu]Lu-
PSMA 
cycles 3 1 2 ---- 1 

          
Other  
therapies 
received 

RT$/ 
CT#/ 
AH* AH* 

RT$/ AH*and 
bisphosphonat

e therapy RT$ 
RT$/CT#/

AH*  
 

Table 6: Subject details, injected radioactivity of [44Sc]Sc-PSMA-617 and therapies 
received (~Hematocrit, *Antihormonal, #Chemotherapy, $Radiotherapy) 
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2.2 Preparation of radiopharmaceuticals 

2.2.1 [68Ga]Ga-DOTAZOL 

Gallium-68 was obtained from a 1.85 GBq (50mCi) ⁶⁸Ge/⁶⁸Ga-generator (iThemba 

Labs; South-Africa). Radiolabeling of DOTAZOL obtained from ITG (Isotope Technologies 

Garching GmbH, Garching, Germany) was performed on a cassette module (Gaia, 

Elysia-Raytest GmbH, Germany). Development of silica TLC-plates was conducted in 

acetylacetone/acetone (1:1) for iTLC-plates. A radiochemical yield of ≥ 98% and 

radiochemical purity of ≥ 97% was obtained. 

2.2.2 [177Lu]Lu-DOTAZOL 

DOTAZOL was radiolabeled in 0.8 ml ascorbic buffer (210 mg Na-L-ascorbat + 42 

mg gentisic acid in 1 ml 0.05 N HCl) with non-carrier-added lutetium-177, both obtained 

from ITG Isotope Technologies Garching GmbH. The manual synthesis was carried out 

on a thermoshaker at a temperature of 95°C for 30 min. An aliquot of the product was 

taken and the quality control was carried out with silica-gel coated aluminium TLC-plates 

(silica 60 F 254.5x4.5 cm, Merck, Darmstadt, Germany). Analysis was performed with a 

single trace radioTLC-scanner (PET-miniGITA, Elysia-Raytest, Straubenhardt, 

Germany) and evaluation software (GinaStar TLC, Elysia-Raytest, Straubenhardt, 

Germany). Development of TLC-plate was conducted in 0.1 M citrate buffer (pH 4), 

where [177Lu]Lu-DOTAZOL was found at Rf: 0-0.1, disaggregated DOTA at Rf: 0.5, and 

unlabeled lutetium-177 at Rf:1. The second TLC-plate was developed in a mixture of 

acetylacetone, acetone and HCl (1:1:0.1), where [177Lu]Lu-DOTAZOL was found at Rf: 0-

0.1 and unlabeled lutetium-177 at Rf:1. A radiochemical yield of ≥95% and a 

radiochemical purity ≥98% was obtained. 

2.2.3 [44Sc]Sc-PSMA-617 

3 ml of scandium-44 obtained after post processing according to literature of eluted 

44Sc from prototype 185 MBq (5 mCi) 44Ti/44Sc generator (Mainz) was used to label 

GMP-grade PSMA-617 obtained from ABX (Radeberg, Germany). Quality control for 

radiochemical yield & purity was checked using TLC with 0.1M sodium citrate; ITLC 

with1:1 v/v 1 M ammonium acetate/methanol and HPLC with Nucleodur 100-3 C18 ec 
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125/4; Macherey-Nagel GmbH & Co. KG, Germany.  A radiochemical yield of 98% and 

radiochemical purity of 99% was obtained (Eppard et al., 2017) 

2.3 Data collection 

To study biodistribution of radiopharmaceuticals, blood and urine samples were 

obtained along with image acquisitions after intravenous injection of 

radiopharmaceuticals. The protocol followed for image acquisition is summarized as 

follows  

 PET/CT acquisition studies for PET radiopharmaceuticals 

 Planar whole body gamma camera scintigraphy for gamma emitting radio-

pharmaceutical 

2.3.1 PET/CT Acquisition protocol for [68Ga]Ga-DOTAZOL and [44Sc]Sc-

PSMA-617 

Siemens Biograph 2 PET/CT scanner with a 58.5 cm axial field of view and a 

16.2 cm longitudinal field of view was used for acquiring PET/CT images. The scanner 

has a spatial resolution of about 6 mm in axial and transversal direction (at a radius of 

10 mm). All patients underwent a low dose CT scan (120kV, 40mAs) of abdomen for 

attenuation correction and patient positioning with kidneys in field of view. Initial dynamic 

imaging of abdomen for 30 minutes in list mode was performed starting simultaneously 

with i.v injection of [68Ga]Ga-DOTAZOL or  [44Sc]Sc-PSMA-617. Later static skull to mid-

thigh PET/CT images were acquired at 45 min and 2.5 h post injection (p.i.) for 

[68Ga]Ga-DOTAZOL  and at 45 min, 2 and 19.5 h p.i.. for [44Sc]Sc-PSMA-617, each 

preceded by low dose CT examination for patient positioning and attenuation correction. 

Images were reconstructed using an iterative reconstruction algorithm (OSEM with 8 

iterations, 16 subsets), application of Gaussian filter of 4mm and were corrected for 

scatter. The dynamic images were reconstructed into 6 images of 300s.  

2.3.2 Planar whole body scintigraphy protocol with [177Lu]Lu-DOTAZOL 

Serial whole body planar scintigraphy (anterior and posterior views) was 

performed with dual head Symbia SPECT/CT system (Symbia T, Siemens Healthineers, 

Erlangen, Germany) at 20 min, 3, 24 and 167 h post injection (p.i). Acquisition was done 
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in supine position at a speed of 10 cm/min using LEHR collimators with 20% energy 

window centered at a photopeak of 208 keV. Images were processed using an iterative 

ordered subset maximization algorithm provided by the manufacturer into a matrix of 

256*1024. The first data set obtained at 20 min (prior to voiding of the bladder) was 

considered as reference with 100% of administered activity. A standard source of known 

activity was placed between the legs in all images at the time of acquisition. For 

conversion of counts/min to activity, the gamma camera was pre-calibrated using a 

known activity of [177Lu]Lu-DOTAZOL and imaging it at the same speed and distance of 

10 cm/min. 

2.3.3 Blood and Urine sampling 

Blood and urine samples were drawn at varying time points (table 7). Urine 

samples were collected in pre weighed containers. A 1480 WIZARDTM 3n Gamma 

counter was used to measure activity of 1ml blood and urine of [68Ga]Ga-DOTAZOL and 

[44Sc]Sc-PSMA-617 and 0.2ml blood of [177Lu]Lu-DOTAZOL samples along with known 

standards of respective radiopharmaceutical. The calibration factor determined from the 

standard activity measurement was used to determine the activity (MBq) of respective 

radiopharmaceutical in blood and urine samples. 

Sample 
type  

[68Ga]Ga-DOTAZOL [44Sc]Sc-PSMA-617 [177Lu]Lu-DOTAZOL 

Blood  5, 10, 15, 20, 25, 30, 
45 min and 2.5 h p.i. 

5, 10, 15, 20, 25, 30, 
45 min, 2 and 19.5 h 
p.i. 

20 min, 3, 8, 24 and 
167 h p.i 
 

Urine  45 min and 2.5 h p.i. 45 min and  2 h p.i. -------------------------- 

Table 7 : Time points of blood and urine sample collection 

2.4 Data analysis 

The PET/CT dynamic and static acquisition data and whole body planar (anterior 

and posterior) scintigraphy images were analyzed qualitatively to assess the 

physiological and pathological uptake of [68Ga]Ga-DOTAZOL, [44Sc]Sc-PSMA-617 and 

[177Lu]Lu-DOTAZOL respectively. The organs with increased tracer uptake were identified 

as source organs for further dosimetric analysis which were  
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 Kidneys, liver, spleen, urinary bladder, lumbar (L1-L3) vertebrae, salivary glands 

and whole body for [68Ga]Ga-DOTAZOL as shown in illustration 1e. 

 Kidneys, liver, spleen, urinary bladder, salivary glands and whole body for 

[44Sc]Sc-PSMA-617  as shown in illustration 2. 

 Kidneys, urinary bladder and skeleton for [177Lu]Lu-DOTAZOL as shown in 

illustration 1a-d. 

 

ill. 1: Planar scintigraphy (anterior and posterior views) after therapeutic application of 
[177Lu]Lu-DOTAZOLat (a) 20 min, (b) 3 h, (c) 24 h, (d) 168 h and (e) PET/CT after 
application of [68Ga]Ga-DOTAZOL in a patient with bone metastases secondary to 

bronchial carcinoma. 

 

ill. 2: Distribution of [44Sc]Sc-PSMA-617 at (A) 45min, (B) 2 h and (C) 19.5 h 
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Pharmacokinetics of respective radiopharmaceutical were assessed qualitatively 

and quantitatively by plotting % injected dose in source organs with respect to time. 

[68Ga]Ga-DOTAZOL PET/CT images were compared visually to [68Ga]Ga-PSMA-617, 

[18F]-FDG PET/CT and [99mTc]Tc-MDP planar whole body images.  Skeletal uptake 

kinetics were assessed by comparison of lesion to normal bone SUV ratio for 

representative metastatic lesions on [68Ga]Ga-DOTAZOL with [68Ga]Ga-PSMA-617 and 

[18F]-FDG PET/CT. 

2.4.1 Dosimetric analysis with [68Ga]Ga-DOTAZOL and [44Sc]Sc-PSMA-617 

The dosimetric analysis was carried out in following steps 

 Total source organ activity was calculated in MBq by multiplying the CT based 

source organ volume (ml) with mean counts/ml (KBq/ml) determined by drawing 

volume of interest (VOI) encompassing entire source organ on CT image using 

MEDISO interview fusion software (MEDISO Medical Imaging Systems, Buda-

pest, Hungary) and dividing it with 1000. For [68Ga]Ga-DOTAZOL, skeletal activity 

was calculated by multiplying the mean counts/ml in lumbar vertebrae with 5000 

(total weight of skeleton in an adult) (ICRP, 1995). 

 Percent of injected activity in all source organs was determined. For % of injected 

activity in whole body, as legs and some part of upper arms was not imaged, 

hence instead of using total injected dose in its calculation we used estimated 

injected dose in image only. We assumed initial homogenous tracer distribution 

and scaled the injected activity proportional to % weight of body in image by using 

equation 3. Percent body weight in image was calculated by using equation 4. 

%                        
                                                 

                                  
-------Equation 3 

                     
                                                 

              
  --Equation 4 

 OLINDA/EXM version 2.0 (Hermes Medical Solutions, Stockholm, Sweden) was 

used for generation of time activity curves and determination of residence time 

(MBq-h/MBq). For this fitting of mono exponential curve on whole body and 

salivary glands kinetics and bi exponential curves for kinetics of rest of source 

organs was done. Residence time for remainder of the body for [68Ga]Ga-
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DOTAZOL was calculated by fitting A × [1- exp-ʎt] function to cumulative urinary 

excretion and using method explained by M. G. Stabin (Stabin, 2008). The same 

for [44Sc]Sc-PSMA-617 was calculated by subtracting residence time of all source 

organs except  urinary bladder from whole body residence time. 

 Indirect blood based method with patient hematocrit based red marrow to blood 

ratio (RMBLR) for calculating bone marrow self-dose (Hindorf et al., 2005; 

Sgouros et al., 2000; Shen et al., 1999; Siegel, 2005) 

 To calculate residence time for urinary bladder contents, trapezoidal method was 

used taking into account urinary bladder activity in images along with activity in 

urinary samples. 

 Organ absorbed doses and effective doses/ MBq were calculated with 

OLINDA/EXM version 2.0 (Hermes Medical Solutions, Stockholm, Sweden) after 

adjusting weight of organs for patient by multiplying the reference adult male/ 

female whole body weight with factor obtained by dividing patient weight with 

reference adult (male/female) weight respectively. The mean of residence times, 

organ absorbed doses (mSv/MBq) and effective doses (mSv/MBq) were 

calculated. The total effective dose in mSv received with usual injected dose of 

150 MBq of [68Ga]Ga-DOTAZOL  and  50 MBq of [44Sc]Sc-PSMA-617 was 

calculated by multiplying their mean effective dose (mSv/MBq) with injected 

activities respectively.  

 

2.4.2 Post therapeutic absorbed dose calculation for [177Lu]Lu-DOTAZOL 

and [177Lu]Lu-PSMA-617 by mathematical extrapolation of 

pharmaco-kinetic analysis of [68Ga]Ga-DOTAZOL  and [44Sc]Sc-

PSMA-617 

Total activity of [68Ga]Ga-DOTAZOL and [44Sc]Sc-PSMA-617 in source organs was 

extrapolated to a theoretical [177Lu]Lu-DOTAZOL and [177Lu]Lu -PSMA-617 activity at all 

imaging time points by applying  equation 3-3. 

                           
          

    
           

        -------------------Equation 5 

Where T = physical half-life of 68Ga or 44Sc. In this equation, the physical decay com-

ponent of 68Ga or 44Sc was removed by reverse decay correction to the time of injection 
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leaving only the biological decay component of DOTAZOL or PSMA-617 respectively. By 

applying forward decay correction with the physical half-life of 177Lu (161.52 h) 

theoretical [177Lu]Lu-DOTAZOL and [177Lu]Lu-PSMA-617 kinetics were extrapolated  for 

all imaging time points. In case of whole body activity calculation for [177Lu]Lu-PSMA-

617 above method was applied until the 2 h time point. Then physical decay correction 

for 177Lu was carried forward from 2 h time point. Reason for this was to remove an error 

of increment in activity at the last 19.5 h time point for the whole body activity 

calculation.  Likewise, activity (MBq)/ml data of blood and urine samples were treated in 

the same way as described for source organs as well.   

Organ absorbed doses for [177Lu]Lu-DOTAZOL and [177Lu]Lu-PSMA-617 were 

calculated by using total source organ activity computed by extrapolation following the 

same steps as described for dosimetric analysis of [68Ga]Ga-DOTAZOL and [44Sc]Sc-

PSMA-617. Considering normal tissue complications probability (NTCP) toxicity limits 

derived from external beam radiotherapy (EBRT) for organs at risk, maximum 

permissible activity (Gy) and the  maximum number of therapy cycles of [177Lu]Lu-

DOTAZOL and [177Lu]Lu-PSMA-617 (6 GBq per cycle) that can be administered in each 

patient were determined.  

2.4.3 Dosimetric analysis with [177Lu]Lu-DOTAZOL 

To measure the percent activity in source organs, cumulated activity in source organs 

(kidneys, urinary bladder) was determined. Percent injected activity in skeleton was 

determined by subtraction of percent injected activity in blood, urinary bladder and 

kidneys from percent injected activity in whole body activity. 

 For cumulated activity in source organ, whole body ROI’s were drawn. A 

rectangular ROI was drawn near the head region above the shoulder for background 

measurement and an elliptical ROI was used for measurement of the standard source 

placed between the legs. ROI on adductor muscle was drawn for soft tissue reference. 

Same sized ROI’s were replicated on serial images (kidneys ROI’s up to the 24 h data 

set and all remaining ROI’s in all subsequent image data sets). Background corrected 

counts in right and left kidney, soft tissue, urinary bladder and whole body were 

determined on anterior and posterior images. The geometric mean counts/min in all 
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source organs at all data time points was determined. Using EANM dosimetry committee 

(Hindorf et al., 2005) whole body activity at subsequent time points (T) was determined 

by multiplying the injected activity with the normalized geometric mean whole body 

counts at the respective time points as given in equation 6,  

         
√                                  

√                                  
---------------Equation 6 

where t = 20 min, T= subsequent time points and A0 = initial injected activity. Likewise, 

activity in the urinary bladder was also determined by multiplying the injected activity 

with the normalized geometric mean counts in urinary bladder. 

For calculation of activity in the right and left kidneys at all data points, a conjugate view 

method with a simple geometrically based subtraction technique described in MIRD 

pamphlet no 16 (Siegel and Thomas, 1999) by equation 7 was used,  

    √
    

     

  

 
----------------Equation 7 

where IA = anterior count rate , IP = posterior count rate, fj represents source organ self-

attenuation correction which was calculated from the source region linear attenuation 

coefficient μj and source thickness tj using equation 8. Factor μet represents the 

transmission factor across the patient thickness t in the area of the ROI with a linear 

attenuation coefficient μe calculated using equation 9. From [68Ga]Ga-DOTAZOL- PET/CT 

of respective patient, CT based measurements of source organ thickness as well as 

whole body thickness and thickness anterior and posterior to source organs at same 

level were used. C is the calibration factor determined for gamma camera with a known 

standard source and was same in all the studies (Siegel and Thomas, 1999). For 

measurements of μj and μi (linear attenuation coefficients for whole thickness), we 

applied a CT based Hounsfield units method described by Kabasakal et al for [177Lu]Lu-

PSMA-617 dosimetric analysis (Kabasakal et al., 2015) 
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A simple geometric based background subtraction technique using equation 10 was 

used, 

   ,*  (
    

  
) (  

  

 
)+ *  (

    

  
) (  

  

 
)+-

 

 
-------------------------Equation 10 

where IADJ is the count rate through the patient from a soft tissue area of same size as 

that of the organ ROI. IA, IP, tj and t are the same a s previously defined (Siegel and 

Thomas, 1999). 

OLINDA/EXM version 2.0 (Hermes Medical Solutions, Stockholm, Sweden) 

software was used for performing bi exponential kinetic analysis on percent injected 

activity in the whole body, kidneys and skeletal system at all data time points and 

calculation of residence times (MBq-h/MBq). Residence time for the skeletal system was 

assumed to be distributed equally between trabecular and cortical bone. Residence time 

for urinary bladder contents was determined by applying Cloutier’s dynamic urinary 

bladder model with 4h voiding interval, total urinary fraction and effective half-life. For 

this urinary fraction at all time points was calculated by applying function A* (1-e- ƛT
). 

Effective half-life was determined by fitting a logarithmic function to urinary excretion 

curve. Bone marrow self-dose was determined by using indirect blood-based method 

mentioned earlier. By subtracting residence times for kidneys, bone marrow and skeletal 

system from whole body residence time, the remainder of body residence time was 

calculated. 

Residence time for kidneys, cortical and trabecular bone, urinary bladder 

contents, red marrow self-dose and remainder of body were used as an input in 

OLINDA/EXM version 2.0 (Hermes Medical Solutions, Stockholm, Sweden) software for 

calculation of organ absorbed doses and effective doses after adjusting the weight of 

patient organs as described earlier. 
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3 Results 

The results of visual analysis, biokinetics and dosimetric analysis of three   

radiopharmaceuticals have been found encouraging for their use for diagnosis and 

therapy. The results are summarized below. 

3.1 [68Ga]Ga-DOTAZOL 

3.1.1 Biodistribution and kinetic analysis 

Visual analysis of PET/CT images revealed intense tracer uptake in kidneys, skeleton 

and urinary bladder (illustration 1e). Faint uptake in liver, spleen and salivary glands was 

also seen.  Plotting of % of injected activity in source organs with respect to time 

(illustration 3), highest tracer localization was seen in skeletal system followed by liver, 

kidneys, spleen and salivary glands. In the skeletal target organ, there is an initial rapid 

uptake till 30 min followed by further gradual rise.  Maximum tracer accumulation in 

skeletal system was found to be 18% of injected activity (IA) in one of the bronchial 

carcinoma patients with high burden of skeletal metastases. 

 

ill. 3: Change in % activity of [68Ga]Ga-DOTAZOL in whole skeleton (without decay 
correction) and rest of source organs(without decay correction) and $(estimated initial 

activity) of patient no 2. 
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Fast tracer kinetics through kidneys with early peak uptake in renal parenchyma 

as early as 2.5 min followed by clearance with minimal activity in collecting system at 45 

min p.i. and minimal to no residual activity at 2.5 h p.i. was appreciated both with visual 

analysis (illustration 3) as well as quantitative analysis (illustration 4). Almost 11 % of the 

injected activity remained in whole body at 2.5 h showing 89 % renal excretion. 

 

ill. 4: [68Ga]Ga-DOTAZOL kinetics through kidneys in dynamic (150 s, 450 s, 750 s, 1050 
s, 1350 s, 1650 s) and static images (45 min and 2.5 h). Patient no 3 

Good bone to soft tissue and metastatic lesion to normal bone uptake was visualized at 

45 min p.i.. which increased at 2.5 p.i Further comparison of mean SUV based skeletal 

to soft tissue ratio was found to be 7.36 and 12.96 at 45 min p.i. (illustration 5b) that 

increased to 15.03 and 28.82 at 2.5 h p.i. (illustration 5c) for two representative lesions 

in comparison to 4.81 and 3.30 on previous [68Ga]Ga-PSMA-617 (illustration 5a) in 

patient with mCRPC. Lesion to normal bone ratio for these lesions was found to be 7.53 

and 12.95 at 45 min and 6.79 and 13.01 at 2.5 h p.i.. on PET/CT images of [68Ga]Ga-

DOTAZOL in comparison to 7.5 and 5.14 respectively on [68Ga]Ga-PSMA-617 image. The 

number of lesions were also found higher on [68Ga]Ga-DOTAZOL  as compared to 

[68Ga]Ga-PSMA-617 in mCRPC patient.  
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ill. 5: Uptake in two metastatic lesions on (a) [68Ga]Ga-PSMA-617, (b) [68Ga]Ga-
DOTAZOL at 45 min p.i.. and (c) [68Ga]Ga-DOTAZOL at 2.5 h p.i.. showing higher and 

progressive uptake  with [68Ga]Ga-DOTAZOL as a result of  enhanced lesion to normal 
bone uptake. Patient no 1 

Uptake in lesions and the apparent number of lesions were also found higher on 

visual comparison of [68Ga]Ga-DOTAZOL  with [18F]FDG  in bronchial carcinoma patients 

(illustration 6) and [99mTc]Tc-MDP bone scan in the female patient (illustration 7). SUV 

max in lesion was also found higher on [68Ga]Ga-DOTAZOL (15.24 g/ml) as compared to 

[18F]FDG PET/CT images (5.95 g/ml) in bronchial carcinoma patients. 

 

 

 

 

 

 

 

ill. 6: Comparison of PET/CT images of (a) [68Ga]Ga-DOTAZOL with (b) [18F]FDG in 
patient of skeletal metastases secondary to bronchial carcinoma. Patient no 4 

a b c 

        

a b 
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ill 7: Comparison of [99mTc]Tc-MDP with [68Ga]Ga-DOTAZOL in patient of skeletal 
metastases secondary to breast carcinoma. Patient no 3 

 

3.1.2 Dosimetric analysis for normal organs 

Residence times (MBq-h/MBq) for source organs (table 8) were found highest for 

remainder of body followed by urinary bladder, cortical and trabecular bone, liver, red 

marrow, kidneys, spleen and salivary glands.  

Organs PT 1 PT 2 PT 3 PT 4 PT 5 mean  ± SD 

S. glands 0.004 0.002 0.001 0.001 0.001 0.002 0.001 

Kidney 0.024 0.024 0.020 0.018 0.016 0.021 0.003 

Spleen  0.005 0.004 0.008 0.004 0.006 0.005 0.001 

Liver 0.057 0.034 0.052 0.028 0.032 0.040 0.012 

Red marrow 0.034 0.038 0.053 0.039 0.058 0.042 0.009 

Trabecular bone 0.148 0.117 0.116 0.225 0.150 0.127 0.041 

Cortical bone 0.148 0.117 0.116 0.225 0.150 0.127 0.041 

Urinary bladder 0.172 0.191 0.160 0.534 0.496 0.174 0.177 
Remainder of 
body 0.392 0.468 0.213 0.251 0.377 0.358 0.095 

Table 8: Residence time (MBq-h/MBq) in source organs with [68Ga]Ga-DOTAZOL 
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Organ absorbed doses as well as effective dose according to ICRP103 (table 9) 

clearly describe that the urinary bladder was the critical organ as it received the highest 

absorbed dose of 0.368 mSv/MBq (range: 0.203-0.609 mSv/MBq) as kidneys were 

found to be the only route of its excretion. Osteogenic cells received dose of 0.040 mSv/ 

MBq followed by kidneys (0.031 mSv/MBq), red marrow (0.027 mSv/MBq), spleen 

(0.018 mSv/MBq), liver (0.013 mSv/ MBq) and salivary glands (0.011 mSv/MBq). 

Effective dose was calculated to be 2.61mSv from 150 MBq injected dose. 
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  PT 1 PT 2 PT 3 PT4 PT5 Mean SD  

Organs 
       Adrenals 0.009 0.007 0.010 0.006 0.007 0.008 0.002 

Brain 0.004 0.002 0.003 0.003 0.004 0.003 0.001 

Breast 
  

0.003 
  

0.003 
 Esophagus 0.005 0.002 0.004 0.003 0.004 0.004 0.001 

Eyes 0.004 0.002 0.003 0.003 0.004 0.003 0.001 
Gall bladder 
wall 0.007 0.004 0.005 0.004 0.005 0.005 0.001 

Left colon 0.005 0.003 0.005 0.004 0.005 0.004 0.001 

Small intestine 0.006 0.003 0.005 0.006 0.007 0.005 0.001 

Stomach wall 0.005 0.002 0.004 0.003 0.004 0.004 0.001 

Right colon 0.005 0.003 0.004 0.004 0.005 0.004 0.001 

Rectum 0.008 0.006 0.011 0.013 0.014 0.011 0.003 

Heart Wall 0.005 0.002 0.003 0.003 0.004 0.004 0.001 

Kidneys 0.037 0.037 0.035 0.025 0.024 0.031 0.007 

Liver 0.018 0.011 0.020 0.008 0.010 0.013 0.005 

Lungs 0.005 0.002 0.004 0.003 0.004 0.003 0.001 

Ovaries 
  

0.007 
  

0.007 
 Pancreas 0.005 0.003 0.005 0.003 0.005 0.004 0.001 

Prostate 0.010 0.008 
 

0.017 0.018 0.009 0.001 

Salivary glands 0.022 0.011 0.007 0.005 0.007 0.010 0.007 

Red marrow 0.027 0.022 0.030 0.029 0.028 0.027 0.003 
Osteogenic 
cells 0.042 0.034 0.035 0.049 0.041 0.040 0.006 

Spleen 0.017 0.013 0.029 0.013 0.018 0.018 0.007 

Testes 0.005 0.003 
 

0.006 0.007 0.004 0.001 

Thymus 0.004 0.002 0.003 0.003 0.004 0.003 0.001 

Thyroid 0.004 0.002 0.003 0.003 0.004 0.003 0.001 
Urinary bladder 
wall 0.203 0.222 0.235 0.609 0.572 0.368 0.204 

Uterus 
  

0.011 
  

0.011 
 Total Body 0.008 0.006 0.008 0.007 0.007 0.007 0.001 

Effective dose 
from 150 MBq 2.61 mSv 

Table 9: Organ absorbed doses (mSv/MBq) and effective dose (mSv) from [68Ga]Ga-
DOTAZOL 

3.2 [177Lu]Lu-DOTAZOL 

3.2.1 Qualitative analysis 

Analysis of biodistribution of [177Lu]Lu-DOTAZOL in serial images of two patients of 

bronchial carcinoma and two patients of prostate carcinoma with skeletal metastases  

revealed that at 20 min p.i. most of the activity was in soft tissue with  highest uptake in 
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urinary bladder  followed by kidneys with minimal accumulation in the skeleton. The 

kidneys showed a rapid decrease in activity at 3 h with minimum to no uptake after 24 h 

p.i. along with increasing intense uptake in the skeletal system from 3 h onwards. Blood 

and soft tissue clearance and lesion to normal bone contrast increased in later images 

up to 168 h.  In this small patient study, we observed fast uptake and clearance kinetics 

of kidneys in patients with bronchial carcinoma (illustration 1a-d) as compared to 

mCRPC patient (illustration 8), which resulted in better skeletal to soft tissue contrast as 

early as 3 h p.i. in the bronchial carcinoma patient as compared to 24 h p.i. in mCRPC 

patient.  

 

ill. 8: Planar scintigraphy (anterior and posterior views) after therapeutic application of 
[177Lu]Lu-DOTAZOL at (a) 20 min, (b) 3 h, (c) 24 h, (d) 168 h in a patient with bone 
metastases secondary to prostate cancer (patient no 1) 

 

3.2.2 Dosimetric analysis: 

Mean residence times (MBq-h/MBq) (Table 10) was found to be highest in 

trabecular and cortical bone (31.9 h) followed by remainder of the body (11.7 h), kidneys 

(1.84 h), urinary bladder (1.52 h) and bone marrow (0.03 h). In patient no 1, residence 

times for the skeletal system and the kidney were lower as compared to the other 

patients.  
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  [¹⁷⁷Lu]Lu-DOTAᶻᴼᴸ 

Organs PT1 PT2 PT3 PT4 mean ± SD 

Kidneys 0.96 2.01 2.43 1.96 1.84 0.63 
Trabecular 
bone 27.45 34.95 33.45 31.85 31.93 3.24 

Cortical bone 27.45 34.95 33.45 31.85 31.93 3.24 

Red marrow 0.01 0.03 0.04 0.03 0.03 0.01 
Urinary 
bladder 
contents 1.59 1.48 1.51 1.50 1.52 0.05 
Remainder of 
body 0.23 44.06 0.93 1.40 11.65 21.61 

Whole body 56.10 116.00 70.30 67.10 77.38 26.46 

Table 10: Residence times (MBq-h/MBq) of [177 Lu]Lu-DOTAZOL 

Mean organ absorbed doses (Table 11) were found highest (3.33 ± 0.35 

mSv/MBq) for osteogenic cells, followed by kidneys (0.49 ± 0.16 mSv/MBq), red marrow 

(0.461 ± 0.064 mSv/MBq) and urinary bladder wall (0.322 ± 0.022 mSv/MBq). Kidney 

and osteogenic cell absorbed doses were lowest in patient no 1. The mean total body 

dose was 0.092 ± 0.033 mSv/MBq. 
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  PT1 PT2 PT3 PT4 mean ±SD 

Organs 
      Adrenals 0.010 0.069 0.016 0.015 0.027 0.028 

Brain 0.007 0.061 0.009 0.009 0.021 0.027 

Esophagus 0.004 0.060 0.006 0.006 0.019 0.027 

Eyes 0.007 0.061 0.009 0.009 0.021 0.027 

Gall bladder wall 0.003 0.060 0.005 0.005 0.018 0.028 

Left colon 0.005 0.062 0.007 0.007 0.020 0.028 

Small intestine 0.004 0.061 0.006 0.006 0.019 0.028 

Stomach wall 0.003 0.058 0.004 0.004 0.017 0.027 

Right colon 0.003 0.060 0.005 0.005 0.018 0.028 

Rectum 0.006 0.062 0.007 0.007 0.021 0.028 

Heart wall 0.003 0.059 0.005 0.005 0.018 0.027 

Kidneys 0.263 0.555 0.632 0.511 0.490 0.160 

Liver 0.003 0.059 0.005 0.005 0.018 0.027 

Lungs 0.004 0.059 0.005 0.006 0.019 0.027 

Pancreas 0.004 0.061 0.006 0.006 0.019 0.028 

Prostate 0.005 0.060 0.006 0.006 0.019 0.027 

Salivary glands 0.004 0.060 0.006 0.006 0.019 0.027 

Red marrow 0.402 0.551 0.456 0.434 0.461 0.064 

Osteogenic cells 2.940 3.770 3.330 3.170 3.300 0.350 

Spleen 0.004 0.060 0.006 0.006 0.019 0.027 

Testes 0.003 0.057 0.004 0.004 0.017 0.027 

Thymus 0.003 0.058 0.004 0.005 0.017 0.027 

Thyroid 0.004 0.060 0.006 0.006 0.019 0.027 
Urinary bladder 
wall 0.333 0.364 0.316 0.316 0.332 0.023 

Total body 0.069 0.142 0.081 0.077 0.092 0.034 

Table 11: Organ absorbed doses (mSv/MBq) of [177Lu]Lu-DOTAZOL 

 

3.3 Post-therapeutic organ absorbed doses for [177Lu]Lu-DOTAZOL 

derived from mathematical extrapolation of [68Ga]Ga-DOTAZOL 

Pharmacokinetics 

Residence times (table 12) from integration of source organ activities obtained from 

mathematical extrapolation of [68Ga]Ga-DOTAZOL data for [177Lu]Lu-DOTAZOL  are given 

below. Residence times for all source organs were found to be low as compared to 

same calculated from therapeutic doses of [177Lu]Lu-DOTAZOL mentioned above. 
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Organs PT1 PT2 PT3 PT4 PT 5 mean ± SD 

Kidneys 0.06 0.04 0.05 0.04 0.04 0.05 0.01 
Trabecular 
bone 0.29 1.77 0.26 22.40 19.00 8.74 11.00 
Cortical 
bone 0.29 1.77 0.26 22.40 19.00 8.75 11.00 

Red marrow 0.33 0.28 0.16 3.17 0.25 0.84 1.30 
Urinary 
bladder 
contents 0.48 1.48 1.06 4.44 15.10 4.51 6.11 
Remainder  
of Body 69.63 56.00 56.00 22.50 54.00 51.63 17.44 

Table 12:  Residence times for [177Lu]Lu-DOTAZOL computed from [68Ga]Ga-DOTAZOL 

The organ absorbed doses for post [177Lu]Lu-DOTAZOL therapy from extrapolation 

of pharmacokinetic analysis of [68Ga]Ga-DOTAZOL  (table 13) showed that osteogenic 

cells with 1.037 mSv/MBq received highest absorbed dose followed by urinary bladder 

(1.021 mSv/MBq) and bone marrow (0.238 mSv/MBq). Kidneys absorbed dose was 

found to be 0.020 mSv/MBq). As compared to the organ absorbed doses determined 

with therapeutic doses of [177Lu]Lu-DOTAZOL, it was clearly seen that pre-therapeutic 

dosimetric analysis with [68Ga]Ga-DOTAZOL computed lower organ absorbed doses. 

Moreover, similar to post [177Lu]Lu-DOTAZOL therapy dosimetric analysis, osteogenic 

cells received highest absorbed dose however the computed values was  three times 

less. Moreover red marrow and kidney doses were found two times and 24 times lower 

with [68Ga]Ga-DOTAZOL extrapolation.  
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  PT1 PT2 PT3 PT4 PT5 mean ±SD 

Organs 
       Adrenals 0.090 0.072 0.089 0.035 0.073 0.072 0.022 

Brain 0.088 0.071 0.086 0.034 0.073 0.070 0.022 

   
0.085 

    Esophagus 0.089 0.072 0.086 0.033 0.072 0.070 0.023 

Eyes 0.088 0.071 0.086 0.034 0.073 0.070 0.022 
Gall bladder 
wall 0.090 0.073 0.090 0.032 0.072 0.071 0.024 

Left colon 0.092 0.074 0.090 0.034 0.075 0.073 0.023 

Small intestine 0.092 0.074 0.089 0.034 0.077 0.073 0.023 

Stomach wall 0.090 0.073 0.089 0.031 0.072 0.071 0.024 

Right colon 0.092 0.074 0.090 0.033 0.074 0.072 0.024 

Rectum 0.092 0.075 0.092 0.038 0.088 0.077 0.023 

Heart Wall 0.091 0.073 0.089 0.032 0.072 0.071 0.024 

Kidneys 0.024 0.016 0.024 0.017 0.020 0.020 0.004 

Liver 0.021 0.021 0.078 0.015 0.014 0.030 0.027 

Lungs 0.089 0.072 0.088 0.032 0.072 0.071 0.023 

Pancreas 0.092 0.074 0.091 0.033 0.074 0.073 0.024 

Prostate 0.092 0.075 0.090 0.037 0.092 0.077 0.023 

Salivary glands 0.186 0.141 0.082 0.043 0.086 0.108 0.056 

Red marrow 0.171 0.093 0.080 0.493 0.353 0.238 0.179 
Osteogenic 
cells 0.128 0.241 0.074 2.580 2.160 1.037 1.228 

Spleen 0.024 0.017 0.028 0.015 0.023 0.021 0.005 

Testes 0.089 0.072 
 

0.032 0.075 0.067 0.024 

Thymus 0.090 0.072 0.088 0.031 0.071 0.071 0.023 

Thyroid 0.090 0.072 0.086 0.033 0.072 0.071 0.023 
Urinary bladder 
wall 0.189 0.374 0.376 0.955 3.210 1.021 1.257 

   
0.092 

    Total Body 0.094 0.079 0.091 0.096 0.137 0.099 0.022 

Table 13: Post therapeutic organ absorbed doses for [177Lu]Lu-DOTAZOL computed from 
[68Ga]Ga-DOTAZOL 

3.4 [44Sc]Sc-PSMA-617:  

3.4.1 Qualitative [44Sc]Sc-PSMA-617 Distribution and Kinetics 

Initial 30 min dynamic abdominal and three serial whole body PET/CT images 

(illustration 2) of patients administered with  [44Sc]Sc-PSMA-617 showed its physio-

logical uptake in kidneys, liver, spleen, salivary glands, small intestine and urinary 

bladder which were selected as source organs for further dosimetric analysis. Very faint 
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uptake was also noticed in lacrimal glands with faint to absent uptake in nasal or oral 

mucosa.  Pathological uptake was also observed in metastatic bone and soft tissue. 

Rapid blood clearance and excretion from kidneys created better tumor to soft tissue 

contrast. 

Plotting % injected activity in source organs with time (illustration 9) revealed 

peak uptake in all source organs achieved before 1 h. Highest % injected activity was 

seen in liver followed by kidneys, spleen, salivary glands and small intestine. Rapid fall 

in activity in liver and other source organs was observed. The decrement in kidneys, 

small intestine and salivary glands was gradual with exception of increase in activity at 2 

h in salivary glands and small intestine in only one patient.  

 

:  

ill. 9: Time dependent changes of % injected activity in source organs 

3.4.2 Dosimetry for Normal Organs 

Residence times (MBq-h/MBq) of [44Sc]Sc-PSMA-617 in source organs was 

highest in liver followed by kidneys, urinary bladder, bone marrow and rest of organs 

(table14) 
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PT No PT1 PT2 PT3 PT4 PT5 mean ±SD 

Organs 
 

            

Salivary glands 0.02 0.01 0.01 0.03 0.07 0.03 0.027 

Kidneys 0.22 0.36 0.12 0.34 0.15 0.24 0.109 

Liver 0.25 0.78 0.07 0.29 0.37 0.35 0.263 

Spleen 0.08 0.09 0.02 0.05 0.09 0.07 0.031 

Small intestine 0.02 0.04 0.02 0.07 0.08 0.05 0.029 

Bone marrow 0.06 0.10 0.05 0.09 0.17 0.09 0.047 
Urinary bladder 
contents 0.08 0.14 0.12 0.53 0.05 0.18 0.195 
Remainder of 
body 2.93 1.11 1.45 1.86 1.76 1.82 0.684 

Table 14: Residence times (MBq-h/MBq) of [44Sc]Sc-PSMA-617 in source organs 

 Mean organ absorbed dose (mSv/ MBq) from diagnostic dose of [44Sc]Sc-PSMA-

617 (table 15) was found highest in the kidneys 0.319 mSv/ MBq (range: 0.180 to 0.488 

mSv/ MBq) making it the critical organ followed by urinary bladder wall, spleen, salivary 

glands, liver and small intestine. Highest dose to kidneys were associated with the fact 

that they are the main route of excretion for PSMA-617. Bone marrow dose was found to 

be low and presented as organs with low toxicity risk while considering therapeutic 

application. 
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  PT 1 PT 2 PT 3 PT4 PT5 Mean ±SD 

Organs 

       Adrenals 0.079 0.112 0.042 0.092 0.056 0.076 0.028 

Brain 0.027 0.011 0.015 0.018 0.015 0.017 0.006 

Esophagus 0.035 0.027 0.019 0.027 0.022 0.026 0.006 

Eyes 0.027 0.011 0.015 0.018 0.015 0.017 0.006 

Gall bladder wall 0.051 0.073 0.024 0.047 0.040 0.047 0.018 

Left colon 0.042 0.030 0.023 0.037 0.027 0.032 0.008 

Small intestine 0.051 0.047 0.032 0.079 0.067 0.055 0.018 

Stomach wall 0.040 0.031 0.021 0.031 0.025 0.030 0.007 

Right colon 0.041 0.033 0.025 0.036 0.026 0.032 0.007 

Rectum 0.038 0.023 0.026 0.048 0.022 0.031 0.011 

Heart Wall 0.037 0.029 0.020 0.028 0.023 0.027 0.007 

Kidneys 0.293 0.488 0.180 0.456 0.178 0.319 0.148 

Liver 0.085 0.229 0.030 0.097 0.095 0.107 0.074 

Lungs 0.033 0.024 0.018 0.025 0.020 0.024 0.006 

Pancreas 0.043 0.037 0.023 0.037 0.029 0.034 0.008 

Prostate 0.040 0.026 0.028 0.057 0.021 0.034 0.014 

Salivary glands 0.097 0.035 0.052 0.116 0.253 0.111 0.086 

Red Marrow 0.036 0.033 0.025 0.037 0.034 0.033 0.005 

Osteogenic cells 0.030 0.023 0.019 0.028 0.026 0.025 0.004 

Spleen 0.235 0.248 0.064 0.163 0.216 0.185 0.075 

Testes 0.030 0.014 0.018 0.027 0.015 0.021 0.007 

Thymus 0.032 0.018 0.018 0.022 0.018 0.022 0.006 

Thyroid 0.031 0.015 0.017 0.021 0.017 0.020 0.006 

Urinary Bladder wall 0.121 0.172 0.155 0.605 0.068 0.224 0.216 

Total Body 0.034 0.023 0.019 0.284 0.020 0.076 0. 116 

Mean effective Dose 0.0389 mSv/MBq 

Effective dose from 50 
MBq 

1.94 mSv 

Effective dose from 62 
MBq 

2.41 mSv 

Table 15: Organ absorbed doses (mSv/MBq) of [44Sc]Sc-PSMA-617 

3.5 Post-therapeutic organ absorbed doses for [177Lu]Lu-PSMA-617 

derived from mathematical extrapolation of [44Sc]Sc-PSMA-617 

Pharmacokinetics 

Extrapolated mean residence times (MBq-h/MBq) of [177Lu]Lu-PSMA-617 (table 

16) were highest in liver (4.46 h) followed by the kidneys (1.51 h), small intestine (0.63 

h), bone marrow (0.52 h), urinary bladder (0.33 h), salivary glands (0.21 h)  and spleen 
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(0.18 h). Residence times in remainder of body showed high variation among patients 

and was found highest in patient 1. 

Patient No PT1 PT2 PT3 PT4 PT5 mean ±SD 

Organs 
       Salivary glands 0.10 0.59 0.24 0.19 0.08 0.24 0.21 

Kidneys 1.07 1.25 1.17 1.96 2.09 1.51 0.48 

Liver 3.48 2.85 3.31 6.18 6.46 4.46 1.72 

Spleen 0.28 0.19 0.09 0.15 0.20 0.18 0.07 

Small Intestine 0.83 0.45 0.71 1.05 0.09 0.63 0.37 

Bone marrow 0.08 0.66 0.06 0.12 1.67 0.52 0.69 
Urinary bladder 
contents 0.23 0.25 0.18 0.90 0.08 0.33 0.32 
Remainder of 
body 64.12 43.72 22.40 44.86 57.80 46.58 16.04 

Table 16: Extrapolated residence times (MBq-h/MBq) of [177Lu]Lu-PSMA-617 

Individual and mean organ absorbed doses of [177Lu]Lu-pSMA-617 extrapolated 

from [44Sc]Sc-PSMA-617 (table 17) revealed kidneys as critical organs with highest 

mean organ absorbed dose (0.44 mSv/MBq), followed by the salivary glands (0.23 

mSv/MBq), liver (0.22 mSv/MBq), small intestine (0.14 mSv/MBq), spleen and urinary 

bladder wall with 0.12 mSv/MBq each. Mean bone marrow absorbed dose was found to 

be 0.05 mSv/MBq and mean whole body dose was 0.08 mSv/MBq.  
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Patient  No PT 1 PT 2 PT 3 PT4 PT5 Mean ±SD  

Organs 
       Adrenals 0.04 0.06 0.04 0.07 0.06 0.05 0.01 

Brain 0.08 0.05 0.03 0.05 0.05 0.05 0.02 

Esophagus 0.10 0.05 0.03 0.05 0.05 0.06 0.02 

Eyes 0.08 0.05 0.03 0.05 0.05 0.05 0.02 

Gall bladder wall 0.13 0.06 0.04 0.06 0.06 0.07 0.03 

Left colon 0.13 0.05 0.03 0.06 0.06 0.07 0.04 

Small intestine 0.20 0.11 0.12 0.19 0.07 0.14 0.06 

Stomach wall 0.12 0.05 0.03 0.06 0.05 0.06 0.03 

Right colon 0.10 0.05 0.03 0.06 0.06 0.06 0.03 

Rectum 0.08 0.05 0.03 0.06 0.05 0.06 0.02 

Heart Wall 0.09 0.05 0.03 0.06 0.06 0.06 0.02 

Kidneys 0.54 0.33 0.34 0.52 0.47 0.44 0.10 

Liver 0.24 0.14 0.17 0.29 0.26 0.22 0.06 

Lungs 0.09 0.05 0.03 0.05 0.05 0.06 0.02 

Pancreas 0.13 0.05 0.03 0.06 0.06 0.07 0.04 

Prostate 0.08 0.05 0.03 0.06 0.05 0.06 0.02 

Salivary glands 0.11 0.55 0.25 0.18 0.07 0.23 0.19 

Red Marrow 0.07 0.06 0.03 0.04 0.04 0.05 0.02 

Osteogenic cells 0.06 0.04 0.02 0.03 0.03 0.04 0.02 

Spleen 0.26 0.11 0.06 0.09 0.10 0.12 0.08 

Testes 0.08 0.05 0.03 0.05 0.05 0.05 0.02 

Thymus 0.08 0.05 0.03 0.05 0.05 0.05 0.02 

Thyroid 0.08 0.05 0.03 0.05 0.05 0.05 0.02 
Urinary Bladder 
wall 0.13 0.10 0.07 0.24 0.07 0.12 0.07 

Total Body 0.17 0.06 0.04 0.06 0.06 0.08 0.05 

Table 17: Extrapolated organ absorbed doses of [177Lu]Lu-PSMA-617 

In order to calculate maximum permissible activity of [177Lu]Lu-PSMA-617 (table 

18) that can be administered in each patient with respect to dose limits derived from 

external beam radiotherapy(EBRT) i.e. kidneys (23 Gy), bone marrow(2 Gy), whole 

body(2 Gy), salivary glands(25 Gy), liver(30 Gy), small intestine(40 Gy) and urinary 

bladder(60 Gy), normal tissue dose limit of these organs was divided by corresponding 

organ absorbed doses in each patient. 
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Patient  No PT 1 PT 2 PT 3 PT4 PT5 Mean 

Organs 
      Small intestine 198.02 366.97 336.13 216.22 611.62 285.00 

Kidneys 42.36 68.86 67.65 44.06 49.15 52.11 

Liver 126.58 220.59 176.47 103.09 117.19 137.61 

Salivary glands 235.85 45.45 102.04 136.61 379.64 108.71 

Red Marrow 29.07 32.52 74.07 46.95 56.66 42.52 
Urinary Bladder 
wall 472.44 576.92 874.64 250.00 865.80 492.69 

Total Body 11.76 34.60 54.20 31.55 33.22 25.75 

Table 18: Predicted maximum feasible activity (GBq) in individual patients considering 
toxicity limits for organs with EBRT 

In patient 1 and 2, maximum permissible activity was determined by the red 

marrow absorbed dose and in patient 3, 4 and 5 the kidney absorbed dose was the 

limiting factor. In case of patient 1, renal dose was also high, resulting in a high 

cumulative dose to the whole body further limiting the maximum permissible activity. 

Toxicity limits for the salivary glands, small intestine and urinary bladder were found to 

exert no influence in this context.  
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4 Discussion 

With rapid advancements in development of new radiopharmaceuticals, nuclear 

medicine has evolved from imaging of biological targets to targeted drug delivery against 

these specific targets. The combined use of radiopharmaceuticals designed for same 

molecular target for diagnosis and treatment with aim of patient-specific treatment has 

introduced concept of theranostics and personalized medicine in nuclear medicine. 

Radiation dosimetric analysis is an important aspect of theranostics that assesses safety 

and efficacy of radionuclide therapy as well as the safety of diagnostic 

radiopharmaceutical used as counter-part. At present, the most successful groups of 

isotopes for theranostics are 123I/124/I/ 131I, 68Ga/177Lu and 111In/86Y/90Y (Eberlein et al., 

2017).   

Several studies advocate that theranostic concept can be utilized for prediction of 

absorbed doses for therapeutic radionuclide. 124/I/ 131I pair has been successfully applied 

with this intent in differentiated thyroid carcinoma and prostate carcinoma ( Erdi et al., 

1999; Zechmann et al., 2014). Many new compounds other than octreotides e.g., PSMA, 

bisphosphonates, bombesin analogues have been labeled with 68Ga for PET/ CT 

imaging and 177Lu for therapy. Besides having different chemistry, the supposedly 

similar pharmacology has established use of 68Ga labeled compounds for diagnosis and 

follow-up of disease. However, the theranostic use of short lived 68Ga labeled 

compounds for prediction of absorbed doses for 177Lu labeled compounds need to be 

assessed. The comparison of hypothetical uptake kinetics of 68Ga with 177Lu showed 

that it only covers the very early phase of pharmacology of analogue compound (Rösch 

et al., 2017) thus questioning its potential to assess accurate biokinetics and related 

areas under the time-activity curves for normal organs and tumor lesions. As physical 

half-life of diagnostic radionuclide seems to be an important consideration in predictive 

theranostic capability interest is geared for PET radionuclides with long half-life such as 

44Sc having half-life of 3.9 h to determine uptake kinetics for structurally similar 177Lu 

labeled therapeutic compounds. 

MIRD schema proposed by Medical Internal Radiation Dose (MIRD) committee of 

the Society of Nuclear Medicine provides the guidelines for appropriate data selection 
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for kinetic analysis of radionuclides used for diagnostic as well as therapeutic purposes. 

The MIRD formula to be applied at organ and voxel level for normal organs and tumor 

lesions respectively has been extensively explained in MIRD pamphlet no 21 and 17 

respectively. The advancement in radiation dosimetric analysis of radionuclides 

suggests use of normal tissue complications probability (NCTP) and tumor control 

probability (TCP) in correlation with dose volume histograms for normal organs and 

tumor lesions for optimal treatment dose determination.  

In this research work we have evaluated biodistribution and safety of [68Ga]Ga-

DOTAZOL and [177Lu]Lu-DOTAZOL as new theranostic bisphosphonates for metastatic 

skeletal disease along with  predictive theranostic potential of [68Ga]Ga-DOTAZOL for  

[177Lu]Lu-DOTAZOL. Also in view of better potential of 44Sc with long half-life for 

theranostics, biodistribution, dosimetric analysis and of [44Sc]Sc-PSMA-617 as new 

diagnostic radionuclide for mCRPC patients along with determination of post therapeutic 

absorbed doses for [177Lu]Lu-PSMA-617 from  its pharmacokinetic analysis has been 

assessed. The three radiopharmaceuticals are discussed one by one 

4.1 Biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL 

Bisphosphonates are analogues of naturally occurring pyrophosphates that are 

resistant to chemical or enzymatic hydrolysis. Their antiresorptive effect is mediated by 

high affinity for bone mineral and inhibitory effects on osteoclasts. Since long, 

radiolabeled bisphosphonates have been in use for imaging and bone pain palliation of 

metastatic skeletal disease. Use of macro cyclic chelators DOTA and NOTA for labeling 

bisphosphonates with trivalent metals like 68Ga for diagnosis and 177Lu for therapy 

resulted in development of labeled BPAPD, DOTAZOL and NO2APBP respectively. 

Among these NO2APBP is considered the most potent 68Ga labeled bisphosphonate. 

However, its therapeutic counter- part labeled with 177Lu was found inferior to [177Lu]Lu-

BPAPD. At present, [68Ga]Ga-NO2APBP and  [177Lu]Lu-BPAMD are considered as 

theranostic pair for bone pain palliation. Preclinical animal and in vitro studies have 

proposed [68Ga]Ga-DOTAZOL in combination with  [177Lu]Lu-DOTAZOL and [225Ac]Ac-

DOTAZOL as new theranostic bisphosphonate for metastatic skeletal disease patients. 
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Hence, necessitates evaluation of biodistribution and dosimetric analysis of [68Ga]Ga-

DOTAZOL. 

The biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL was studied for 

first time in humans. The patients of bronchial carcinoma, mCRPC and breast carcinoma 

with metastatic skeletal disease were injected with [68Ga]Ga-DOTAZOL.. Like other bis-

phosphonates and bone seeking agents, kidneys were found to be the route of 

excretion. Fast tracer kinetics through kidneys (illustration 3 and 4) was seen resulting in 

whole body activity to decease to almost 11 % till 2.5 h p.i.. Skeletal system showed 

initial rapid accumulation followed by gradual rise. Initial uptake in liver, spleen and 

salivary glands was also seen followed by sharp decline. 

 Soft tissue and blood activity decreased with time and resulted in enhanced bone 

uptake and increased metastatic lesion to bone ratio (illustration 5) which is consistent 

with results of other 68Ga-bisphosphonate agents and [18F]NaF (Meckel et al, 2017; 

Pfannkuchen et al, 2017). PET/CT images of [68Ga]Ga-DOTAZOL could be compared to 

previous [68Ga]Ga-PSMA-617 and [18F]FDG PET/CT images in the male patients and a 

[99mTc]Tc-MDP bone scan enrolled in this study. Here, the uptake of [68Ga]Ga-DOTAZOL 

was 2.56 times higher than [18F]FDG  in bronchial carcinoma patient . Apparent number 

of lesions were also found more with [68Ga]Ga-DOTAZOL as compared to [68Ga]Ga-

PSMA-617 (illustration 5), [18F]FDG in bronchial carcinoma (illustration. 6) and [99mTc]Tc-

MDP in breast carcinoma patient (illustration 7].  

Compared with [68Ga]Ga-PSMA-617, the qualitative analysis of [68Ga]Ga-DOTAZOL 

showed better uptake in skeleton with higher skeleton to soft tissue and metastatic 

lesion to normal bone ratio (illustration 5). This finding is consistent with in vivo 

biodistribution analysis of [68Ga]Ga-DOTAZOL in one patient of prostate cancer 

(Pfannkuchen et al., 2017).  

As [18F]NaF is the bone seeking radiopharmaceutical with highest sensitivity and 

specificity for metastatic skeletal disease, the dosimetric analysis of [68Ga]Ga-DOTAZOL 

was compared with [18F]NaF. Residence times (table 8) for remainder of body of 

[68Ga]Ga-DOTAZOL (0.358 h) was found comparable to that of [18F]NaF 0.33 reported in 

ICRP 106 report (ICRP, 2008). Urinary bladder residence time (0.174 h) of [68Ga]Ga-

DOTAZOL was found to be less than that of [18F]NaF (0.19 and 0.29 h), however the 

residence time for kidneys was found to be higher (0.022 h) as compared to [18F]NaF 
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(0.01 h). This could be explained by the fact that [68Ga]Ga-DOTAZOL has shown 89 % of 

renal excretion over a period of 2.5 h as compared to 15% and 50% in case of [18F]NaF 

(ICRP, 2008; Kurdziel et al., 2012;) The residence time of [68Ga]Ga-DOTAZOL in 

trabecular and cortical bone was found to be 0.127 with 50 % weightage given to both. 

The residence time in bone components as well as bone marrow were lower as 

compared to [18F]NaF. It might be a result of lower half-life of 68Ga as compared to 18F 

as well as the difference of osteogenic tumor load in patients evaluated by Kurdziel et al 

and the current study. Residence times for liver and spleen were found higher than 

[18F]NaF. The uptake of free/ unbound 68Ga can be responsible for prolonged residence 

times in these organs.  

[68Ga]Ga-DOTAZOL like other bone seeking agents was found to be characterized 

with delivering highest radiation absorbed dose to urinary bladder, followed by 

osteogenic cells, red marrow and kidneys (table 9). This finding is comparable with 

dosimetric analysis of [18F]NaF (ICRP, 2008; Kurdziel et al., 2012). Kidney being its 

physiological route of excretion results in highest dose to urinary bladder. The doses 

delivered to urinary bladder and kidneys were 2.4 times higher and radiation absorbed 

doses to osteogenic tissue and red marrow were lower as compared to [18F]NaF (ICRP, 

2008; Kurdziel et al., 2012). Mean effective dose and total effective dose were found to 

be 0.017 mSv/MBq and 2.61 mSv with [68Ga]Ga-DOTAZOL comparable to 0.017 

mSv/MBq and 1.88 – 3.15mSv with [18F]NaF respectively (ICRP, 2008; Kurdziel et al., 

2012). 

 As described earlier [68Ga]Ga-NO2APBP is considered the most potent 68Ga 

labeled bisphosphonates so dosimetric analysis of [68Ga]Ga-DOTAZOL was compared 

with [68Ga]Ga-NO2APBP (Passah et al., 2017). The comparison revealed high absorbed 

doses delivered to kidneys and urinary bladder, almost comparable absorbed doses to 

bone marrow and osteogenic cells, high total body absorbed dose and high effective 

dose equivalent which illustrates the superiority of [68Ga]Ga-NO2APBP. The difference of 

kidney and urinary bladder absorbed doses could be due to difference of collection of 

data points till 4 h for [68Ga]Ga-NOTAPBP in comparison to 2.5 h in current study. Further 

lack of detailed biodistribution analysis is also a limitation for comparing the results of 

the two studies. It was observed that the dosimetric results of [68Ga]Ga-NO2APBP from 
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breast carcinoma patients (M:F; 1:4) were not comparable to results for the one female 

breast carcinoma patient (Pt 3) of the current study.  

The resultant high urinary bladder and kidney absorbed doses from [68Ga]Ga-

DOTAZOL is consistent with other bone seeking agents. These doses can very easily be 

reduced by proper hydration and rapid diuresis. As compared to various 68Ga labeled 

octreotide (Walker et al., 2013) and PSMA agents (Afshar-Oromieh et al., 2015; 

Herrmann et al., 2015), [68Ga]Ga-DOTAZOL delivered lower kidney and higher urinary 

bladder absorbed doses along with lower mean effective dose.  

Besides having 2.4 times high radiation exposure to kidneys and urinary bladder as 

compared to [18F]NaF, possibility of treatments of bone metastases with [177Lu]Lu-

DOTAZOL and [225Ac]Ac-DOTAZOL gives [68Ga]Ga-DOTAZOL a clear advantage over other 

bone seeking diagnostic agents such as [18F]Na-F and [99mTc]Tc-MDP.  These initial 

results are encouraging and support the use of [68Ga]Ga-DOTAZOL as imaging 

theranostic agent. However, prospective patient studies are required to explore its 

further potential for the treatment of bone metastases in different tumor entities. 

4.2 Biodistribution and dosimetric analysis of [177Lu]Lu-DOTAZOL 

Zoledronate presents as an ideal candidate for labeling with the therapeutic 

radionuclide lutetium-177 for radionuclide therapy of bone metastases, as it shows high 

osteoclast and hydroxyl apatite binding (Meckel et al., 2017) and no in vivo 

biotransformation (Nikzad et al., 2013). Preclinical small animal studies using [177Lu]Lu-

DOTAZOL and [68Ga]Ga-DOTAZOL showed comparable results, suggesting the two 

tracers as new theranostic pair for bone-targeted radionuclide therapy (Meckel et al., 

2017). Moreover, [177Lu]Lu-DOTAZOL has also been proposed the therapeutic arm with 

[68Ga]Ga-NODAGAZOL (suggested better than [68Ga]Ga-DOTAZOL in preclinical studies). 

Hence, biodistribution and dosimetric analysis of [177Lu]Lu-DOTAZOL was explored in 

patients with skeletal metastases. 

Extrapolation of dosimetric analysis of [177Lu]Lu-DOTAZOL and [177Lu]Lu-EDTMP 

from rats to humans revealed high kidney and trabecular bone absorbed doses as well 

as high trabecular bone to other organs absorbed dose ratios for [177Lu]Lu-

DOTAZOL(Yousefnia et al., 2015). The higher thermodynamic and kinetic stability, 

leading to high bone uptake with low soft tissue accumulation, suggests [177Lu]Lu-
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DOTAZOL to be a better therapeutic bisphosphonate compared to [177Lu]Lu-EDTMP 

(Bergmann et al., 2016). 

As phase I and II studies with [177Lu]Lu-EDTMP for bone pain palliation under IAEA 

CRP project have shown encouraging results, therefore we have compared the 

biodistribution and dosimetric analysis of  results of [177Lu]Lu-DOTAZOL with [177Lu]Lu-

EDTMP.  

Biodistribution of [177Lu]Lu-DOTAZOL in humans (illustrations 1a-d & 8) was 

consistent with preclinical biodistribution studies in male Wistar rats (Meckel et al., 2017; 

Yousefnia et al., 2015). Highest accumulation in the skeleton with fast kidney uptake and 

clearance was seen. As the kidneys are the sole route of its excretion, the urinary 

bladder showed high uptake as well. Blood and soft tissue showed rapid clearance 

which resulted in good skeleton to soft tissue contrast. A rapid and biphasic blood 

clearance curve was found comparable to [177Lu]Lu-EDTMP (Bal et al., 2015) . No 

uptake was seen in any other organ. Prominent uptake in the skeletal system in 

bronchial carcinoma patients was visualized at 3 h p.i. image in contrast to 24 h p.i. in 

mCRPC patients. The finding of best bone-to-soft tissue contrast at 24 h p.i. in mCRPC 

patients is consistent with similar observations with [177Lu]Lu-EDTMP distribution in 

mCRPC patients (Bal et al., 2015; Balter et al., 2015; Sharma et al., 2017). To establish 

whether the early uptake in bronchial carcinoma patients is a patient dependent or tumor 

dependent finding and can be of any significance in relation to tumor lesion doses needs 

further large scale and tumor lesion dosimetry studies. 

The source organs identified for dosimetric analysis included the kidneys, bone 

marrow, urinary bladder, skeletal system and the whole body. A biphasic kinetic 

behavior of [177Lu]Lu-DOTAZOL was observed in all source organs and the whole body. 

Hence, biexponential curve fitting was used for residence time calculations. Residence 

time of  [177Lu]Lu-DOTAZOL (table 10) was highest in the skeleton similar to [177Lu]Lu-

EDTMP (Bal et al., 2015). Residence time for all source organs except the kidneys were 

lower in comparison to [177Lu]Lu-EDTMP (Bal et al., 2015). The low number of patients 

and the different methodology used for determination of residence time in our current 

study might be causes for this difference. However, the ratio of skeletal-to-whole body 

residence time was higher for [177Lu]Lu-DOTAZOL compared to [177Lu]Lu-EDTMP (Bal et 

al., 2015). 
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We found lower mean organ absorbed doses (table 11) for osteogenic cells (3.33 ± 

0.35 mSv/MBq) compared to 5.41 and 5.26 mSv/MBq reported for [177Lu]Lu-EDTMP 

(illustration 4) (Bal et al., 2015; Sharma et al., 2017) as well as 4.04 mSv/MBq for 

[153Sm]Sm-EDTMP(Sharma et al, 2017). The difference might be due to humerus (Bal et 

al., 2015) or femoral activity (Sharma et al., 2017) extrapolation for skeletal activity and 

residence time calculations for [177Lu]Lu-EDTMP as compared to calculation of skeletal 

activity by deduction of percent kidney, blood and bladder activity from percent whole 

body activity in current study.  

In our study we found a higher mean organ absorbed dose (table 11) for the 

kidneys (0.49 mSv/MBq) as compared to [177Lu]Lu-EDTMP (0.04 and 0.06 mSv/MBq) 

(Bal et al., 2015; Sharma et al., 2017). In contrast to the use of the conjugate view 

method for kidney residence time calculation in our current study, Bal et al.(Bal et al., 

2015) neglected kidney self-dose in absorbed dose determination and Sharma et 

al(Sharma et al., 2017) used a different methodology for calculation of percent injected 

doses in kidneys which resulted in lower kidney dose for [177Lu]Lu-EDTMP. Hence, the 

kidney absorbed doses reported for [177Lu]Lu-EDTMP cannot be compared with the 

results of [177Lu]Lu-DOTAZOL in our current study. The mean organ absorbed dose to the 

urinary bladder wall (0.332 mSv/MBq) was found to be lower in our study as compared 

to [177Lu]Lu-EDTMP (1.53 mSv/MBq) (Bal et al., 2015; Sharma et al., 2017). This 

difference could be due to use of Clouttier´s method with cumulative urinary calculation 

from whole body retention and 4 h voiding intervals in our current study as compared to 

collection of urine samples for residence time calculation in the [177Lu]Lu-EDTMP 

studies.  

[177Lu]Lu-DOTAZOL resulted in a lower bone marrow absorbed dose compared to 

[177Lu]Lu-EDTMP (Bal et al., 2015; Sharma et al., 2017) which in theory allows 

administration of higher therapeutic activities of [177Lu]Lu-DOTAZOL. Based on a 

maximum permissible radiation absorbed dose to the bone marrow of 2Gy, the 

maximum tolerated dose for [177Lu]Lu-DOTAZOL is estimated to be 3630-4980 MBq as 

compared to 2000–3250 MBq for [177Lu]Lu-EDTMP (Bal et al, 2015). As a result, 

radiation absorbed dose of 11 to 16 Gy will be delivered to osteogenic cells by [177Lu]Lu-

DOTAZOL which is comparable to 10.1 to 17.6 Gy for [177Lu]Lu-EDTMP. Using these 
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thresholds, the kidney absorbed dose remains well below the maximum permissible 

dose limit of 23 Gy.  

As absorbed dose to kidneys is one of the important factors in radionuclide 

therapy using Lutetium-177 labeled radiopharmaceuticals, we found that [177Lu]Lu-

DOTAZOL delivers a lower (by a factor of 1.2 to 1.88) kidney dose in comparison to 

[177Lu]Lu-PSMA-617 and [177Lu]Lu-HBED-CC(Kabasakal et al., 2015; Scarpa et al., 

2017). [177Lu]Lu-DOTAZOL has been found to be a promising new therapeutic 

radiopharmaceutical for radionuclide therapy of bone metastases due to excellent 

skeletal uptake, a lower bone marrow dose than [177Lu]Lu-EDTMP and a very low kidney 

dose. Further studies are warranted to evaluate the efficacy and safety of radionuclide 

therapy with [177Lu]Lu-DOTAZOL in the clinical setting. 

4.3 Predictive dosimetry with [68Ga]Ga-DOTAZOL for [177Lu]Lu-DOTAZOL 

The residence times (table 12) and mean organ absorbed doses (table 13) for 

[177Lu]Lu-DOTAZOL determined from extrapolation of pharmacokinetics of [68Ga]Ga-

DOTAZOL were found to be low as compared to same (table 10 and table 11) determined 

from post therapeutic dosimetric analysis of [177Lu]Lu-DOTAZOL. As bone marrow 

absorbed dose appeared to be important for maximum tolerated dose of [177Lu]Lu-

DOTAZOL, it appeared that lower extrapolated bone marrow absorbed dose will result in 

computation of higher therapeutic doses. Moreover, it was seen that individual absorbed 

doses for normal organs in patient no 4 and 5 with bronchial carcinoma were correlating 

better to the post therapeutic absorbed doses as compared to patients of prostate and 

breast carcinoma patient 1,2 and 3 respectively but still presented with lower doses. It 

could be due to individual difference of kinetics in these patients. Thus it is concluded 

that [68Ga]Ga-DOTAZOL should not be used for prospective dosimetric analysis of 

[177Lu]Lu-DOTAZOL. This finding is consistent with the fact that short half-life of 68Ga 

cannot monitor the kinetics of 177Lu (Rösch et al., 2017). 

4.4 Biodistribution and dosimetric analysis of [44Sc]Sc-PSMA-617 

PSMA-617 is a modified version of PSMA-11 that binds to the external domain of 

PSMA. Comparative biodistribution studies with PSMA-11 has revealed supremacy of 
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PSMA-617 due to high target binding and subsequent efficient internalization with in 

prostate carcinoma cells (Afshar-Oromieh et al., 2015). It has been labeled with gallium-

68, lutetium-177, indium-111 and yttrium-90. Although, pre and post [177Lu]Lu-PSMA-

617 therapy, theranostic use of [68Ga]Ga-PSMA-617 for patient selection and disease 

monitoring  is widely used (Afshar-Oromieh et al., 2015; Baum and Kulkarni, 2012), the 

dosimetric analysis results in lower organ absorbed doses as compared to [177Lu]Lu-

PSMA-617. Moreover, it is believed that short half-life (1.13 h) of [68Ga]Ga-PSMA-617 is 

not suitable  to follow the pharmacokinetics of  [177Lu]Lu-PSMA having half-life of 6.9 h 

and cannot be used for prediction of post therapeutic dosimetric analysis of [177Lu]Lu-

PSMA and personalized dose determination.  

Recently PSMA-617 has been labeled with long lived PET agents like scandium-44 

using DOTA as a linking chelator. Preclinical (in vitro, in vivo) and clinical studies with 

scandium-44 labeled peptides and PSMA ligand for neuroendocrine tumors (Singh et al., 

2017) and prostate carcinoma (Umbricht et al., 2017) respectively have proposed 

scandium-44 a better surrogate marker for lutetium-177 based therapies and probable 

better candidate for pre-therapeutic dosimetric analysis. In this study we evaluated its 

feasibility as new imaging theranostic radionuclide in mCRPC patients. 

In this study we found the physiological uptake of [44Sc]Sc-PSMA-617 in liver, 

kidneys, salivary glands, spleen, small intestine, urinary bladder (illustration 2 and 9) 

consistent with low level uptake in normal organs of PSMA described in literature 

(Afshar-Oromieh et al., 2013, 2015). Pathological uptake was seen in both skeletal and 

soft metastatic tissue. Kidneys were the major route of excretion with rapid peak uptake 

seen at 45 min and fast clearance showing minimal activity at 18 h concurrent with early 

uptake and fast clearance characteristic of PSMA-617. Probable toxicity of salivary 

glands proposed by A Afshar- Oromieh  et al  due to late trapping of [68Ga]Ga-PSMA-

617 in salivary glands was not observed  in this study (Afshar-Oromieh et al., 2015). 

Increase in activity in 2 h image was observed in only one of the patients which later 

decreased to minimal activity at 19.5 h while rest of the patients showed peak uptake at 

45 min followed by gradual decrease. The low probability of salivary gland toxicity 

depicted by kinetics of [44Sc]Sc-PSMA-617 is consistent with dosimetry results of 

[68Ga]Ga-PSMA-617(Afshar-Oromieh et al., 2015). Occurrence of transient xerostomia 
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or mild reversible xerostomia with [177Lu]Lu-PSMA-617  as well as other lutetium-177 

labeled PSMA therapies also supports that salivary glands toxicity should be of less 

concern in these patients (Ahmadzadehfar et al, 2016; Baum et al, 2016; Rahbar et al, 

2016a, 2016b). Lacrimal glands showed faint uptake with no enhanced accumulation in 

later images, therefore we considered its activity with in remainder of body activity. Faint 

to negligible uptake in nasal mucosa was seen with [44Sc]Sc-PSMA-617. The rapid initial 

uptake in liver and spleen followed by fast clearance as result of blood pool effect and its 

clearance from these organs is consistent with literature (Afshar-Oromieh et al., 2015)  

Quantitative analysis revealed high total activity (illustration 9) and prolonged 

residence time in liver (table 14) followed by kidneys, spleen and other organs 

consistent with results of [68Ga]Ga-PSMA-617 (Afshar-Oromieh et al., 2015). Residence 

time of source organs with [44Sc]Sc-PSMA-617 were found to be higher than [68Ga]Ga-

PSMA-617. Long half-life of 3.9 h and ability to follow bio kinetics up to 19.5 h or more 

with [44Sc]Sc-PSMA-617 account for the higher residence times as compared to 

[68Ga]Ga-PSMA-617.   

The organ absorbed doses (table 15) were highest in kidneys followed by urinary 

bladder wall, spleen, salivary glands, liver and small intestine. Kidneys with mean dose 

of 0.319 mSv/MBq (range: 0.178-0.488 mSv/MBq) were the organs at risk as is with the 

rest of small ligands based PSMA agents (Afshar-Oromieh et al., 2015). Urinary bladder 

wall with mean dose of 0.224 mSv/MBq was the second highest organ to receive dose 

owing to the kidneys being its physiological route of excretion. Salivary glands received 

a dose of 0.111 mSv/MBq which was higher than [68Ga]Ga-PSMA-I&T but was not 

reported with [68Ga]Ga-PSMA-617 besides showing a rise in mean SUV at later time 

points (Afshar-Oromieh et al., 2015). Bone marrow dose was found to be low consistent 

with previous dosimetric studies with gallium-68 labeled agents. Mean organ absorbed 

dose for bone marrow was found to be 0.033 mSv/MBq and ranged from 0.025 to 0.037. 

Low marrow dose suggests low risk of marrow toxicity with PSMA based therapies. 

However, the marrow toxicity can vary with burden of bone and marrow metastases in 

the patient as was found to be highest in patient no 1 with high tumor burden. Further, 

our results are concurrent with that of [68Ga]Ga-PSMA-617 ,[68Ga]Ga-PSMA-11 and 

[68Ga]Ga-PSMA-HBED-CC with reference to high to low dose received by organs. 
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However, absorbed doses were found to be higher for [44Sc]Sc-PSMA-617 than 

[68Ga]Ga-PSMA-617, [68Ga]Ga-PSMA-11, [68Ga]Ga-PSMA-I&T but less than [124I]I-

PSMA (Pfob et al., 2016). 

Comparison of organ absorbed doses of [44Sc]Sc-PSMA-617 with pre and post 

therapeutic dosimetric results of [177Lu]Lu-PSMA-617(Delker et al, 2016; Kabasakal et 

al., 2015; Okamoto et al., 2017) and comparison of doses with other gallium labeled 

PSMA agents also show that it is able to predict doses better than [68Ga]Ga-PSMA-

617(Afshar-Oromieh et al., 2013, 2015). However interpatient dosimetric comparison 

studies of [44Sc]Sc-PSMA-617 with [177Lu]Lu-PSMA-617 are warranted.  

The mean effective dose of 0.0398 was found to be higher than [68Ga]Ga-PSMA-

617, [68Ga]Ga-PSMA-11, [68Ga]Ga-PSMA-I&T but less than [124I]I-PSMA (Pfob et al., 

2016). The total effective dose with usual dose administered (50MBq) of [44SSc]Sc-

PSMA-617 was found to be 1.95mSv which was low as compared to rest of gallium-68 

labeled PSMA agents as well [124I]I-PSMA.  

Hence [44SSc]Sc-PSMA-617 having possibility of delayed imaging, higher organ 

absorbed doses and effective dose less than other PSMA labeled imaging agents and a 

similar biodistribution to already known 68Ga-PSMA ligands could be a better and safe 

agent for prediction of therapeutic dosimetry for [177Lu]Lu-PSMA-617. The biodistribution 

and dosimetric analysis in this study has proved that early uptake kinetics reaching peak 

followed by clearance of PSMA-617 from source organs up to 19.5 h can easily be 

interpreted. A comparison of [44SSc]Sc-PSMA-617 kinetics of our study with kinetics of 

[177Lu]Lu-PSMA-617 shown by Delker et al (Delker et al., 2016)  as well as in vivo 

kinetics of [177Lu]Lu-PSMA-617 in pre-clinical small animal studies followed for 24 h 

(Benešová et al., 2015) has shown comparable biodistribution with peak uptake as early 

as 1 h followed by gradual clearance till 24 h. Moreover, the protocol can be completed 

within 24 hours and most important of all can be incorporated in daily clinical routine. It is 

important to mention that individual pre-therapeutic dosimetric analysis with [44Sc]Sc-

PSMA-617 is not necessary for all patients, but for patients not responding to standard 

doses or having a high cumulative dose or having reduced renal function in the lab. 
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4.5 Predictive dosimetry with [44Sc]Sc-PSMA-617 for [177Lu]Lu-PSMA-

617 

The mean ± SD of extrapolated residence time (table 16) for [177Lu]Lu-PSMA-617 

for the remainder of the body in our study was 46.58 ±16.04 h (range: 22.4 -64.12 h), 

which is in line with  the results of the study of L. Kabasakal et al, (mean ± SD 37.9 ± 

14.6 h ; range: 24.6 – 62.0 h). We also observed that patient 1, who had renal 

insufficiency as well as extensive bone metastasis, exhibited the longest residence time, 

which is consistent with the observations of L. Kabasakal et al (Kabasakal et al, 2015). 

The extrapolated mean organ absorbed doses for [177  Lu]Lu-PSMA-617in our study 

were comparable with other pre-therapeutic and post-therapeutic dosimetry results 

obtained with [177Lu]Lu-PSMA-617 (Delker et al., 2016; Fendler et al., 2017; Kabasakal 

et al., 2015;  Kratochwil et al., 2016; Kulkarni et al., 2016; Okamoto et al., 2017). 

However, we observed a lower mean absorbed dose in the kidneys, compared to 

previous studies. This might be explained by the analysis of 3D PET/CT activity 

distribution in the kidneys, as compared to 2D planar gamma camera-based distribution 

measurement, which has inherent potential of over-estimation of kidney dose owing to 

activity contribution from overlapping organs. On the other hand, we observed a higher 

mean organ absorbed doses in whole body as compared to previous studies. This 

difference is mainly caused by the high residence time in the remainder of body in 

patient 1. The mean organ absorbed doses in the remaining organs were comparable to 

the values observed by previous studies.  

Pre-therapeutic dosimetry aims at improving and tailoring dose delivery to tumor 

lesions while maintaining safety and avoiding toxicity to normal organs. With previous 

knowledge from the literature, we mainly considered the kidneys, bone marrow and 

salivary gland toxicity as organs at risk for the potential development of side effects.  

Using extrapolated organ absorbed doses, the maximum permissible activity 

(GBq) with [177Lu]Lu-PSMA-617 to reach EBRT based organ absorbed dose limits (table 

18) was calculated. This revealed varying results among patients. In patient 1 bone 

marrow toxicity limits were reached earlier than the kidney toxicity limits, however the 

whole body toxicity limit was reached at even lower activity, which might require strict 
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monitoring and possibly dose reduction in this patient when performing [177Lu]Lu-PSMA-

617 therapy. This finding is consistent with the compromised renal function and high 

skeletal tumor burden in this patient, which together result in a high dose to the total 

body.  

In patient 2 bone marrow toxicity limits constrained the maximum permissible 

activity and the maximum number of cycles that can be administered, which is 

consistent with the observation already discussed in the literature  that high skeletal 

tumor burden and can result in high bone marrow absorbed doses, which might lead to  

grade 1-2 hematological toxicity  from [177Lu]Lu-PSMA-617, especially when bone 

marrow function is already compromised owing to prior extensive treatment with 

chemotherapy/radiotherapy (Emmett et al., 2017). In the remaining three patients kidney 

toxicity thresholds appeared to be the dose limiting factor. The number of 6 GBq cycles 

keeping in view the above-mentioned dose limiting toxicities, it was found that except for 

patient 1, administration of up to 5 cycles of 6 GBq seems to be feasible. 

Though the kidneys were an organ at risk with high organ absorbed doses, we 

found that in order to reach EBRT-derived dose limit of 23 Gy, a mean cumulative 

activity of 52 GBq can be administered. It is apparently higher than values found in 

literature for [177Lu]Lu-PSMA-617, which were  calculated  to be 30 GBq by Kabasakal et 

al (Kabasakal et al., 2015). a difference that can be explained owing to 2D versus 3D 

dosimetry inherent limitations.  Moreover, A. Delker et al used 3D SPECT of abdomen 

for dosimetric analysis of [177Lu]Lu-PSMA-617 and reported a mean absorbed dose of 

0.6 GY/GBq for kidneys which may allow up to 38 GBq to be administered safely (Delker 

et al., 2016). Use of mono-exponential non-linear least squares fit to time activity curve 

and a linear interpolation from time of injection in contrast to bi-exponential curve fitting 

and availability of dynamic data from time of injection in our current study might be the 

cause of this disparity between A Delker et al and our current study. Moreover, it is also 

believed that toxicity limit for kidneys with [177 Lu]Lu-PSMA-617 therapy should be 

increased (Emmett et al., 2017).  

Considering 25 Gy as dose limit for reversible toxicity to salivary glands it was 

seen that  even in patient 2 with highest salivary glands absorbed dose  it was not a 

limiting factor for permissible activity calculation in  that patient (Emmett et al., 2017).The 
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finding is supported with evidence of 4-25% occurrence of transient reversible 

xerostomia and dry mouth with [177Lu]Lu-PSMA-617 therapy in various studies.  

Our current study shows that the conversion from pre-therapeutic 

pharmacokinetic data obtained by [44Sc]Sc-PSMA-617 PET/CT to potential normal organ 

absorbed doses for [177Lu]Lu-PSMA-617 therapy is feasible. It might prove to be helpful 

in the pre-therapeutic assessment of organs at risk, which seem to be are variable 

among patients, and eventually aid in tailoring personalized PSMA-targeted radionuclide 

therapy regimens. However, further large scale studies are warranted to validate 

extrapolated organ doses from pre-therapeutic [44Sc]Sc-PSMA-617 PET/CT with post-

therapeutic [177Lu]Lu-PSMA-617 dosimetry data and to correlate dosimetry results with 

clinical toxicity and side effects.  
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5 Abstract 

Introduction: The availability of imaging and therapeutic radionuclides directed against 

same molecular targets has actualized theranostics and possibility of personalized 

treatment in nuclear medicine. For personalized medicine with maximum effect of 

therapy at target with therapeutic radionuclide, diagnostic radionuclide is required to 

select appropriate patient that can benefit from therapy and tailor the therapeutic doses 

with possible prospective dosimetric analysis for therapeutic radionuclides. Hence 

necessitates biodistribution and dosimetric analysis of diagnostic as well as therapeutic 

radionuclide. In this study, the biodistribution and dosimetric analysis of [68Ga]Ga-

DOTAZOL and [177Lu]Lu-DOTAZOL (specific bone seeking radiopharmaceuticals) in 

patients with skeletal metastatic disease and [44Sc]Sc-PSMA-617 (nonspecific bone 

seeking radiopharmaceutical) in mCRPC patients  has been assessed to establish their 

feasible theranostic use. Further, possibility of calculation of normal organ absorbed 

doses for [177Lu]Lu-DOTAZOL and [177Lu]Lu-PSMA-617 with  [68Ga]Ga-DOTAZOL and 

[44Sc]Sc-PSMA-617 respectively has been explored. Materials and Methods: A total of 

fourteen patients were enrolled for biodistribution and dosimetric analysis; five for 

[68Ga]Ga-DOTAZOL (mean age: 72 y), four for [177Lu]Lu-DOTAZOL (mean age: 69.3 y)and 

05 patients for [44Sc]Sc-PSMA-617 (mean age: 69 y). PET/CT scintigraphy (dynamic + 

static skull to mid-thigh) along with blood and urine samples for [68Ga]Ga-DOTAZOL and 

[44Sc]Sc-PSMA-617 and gamma camera planar whole body scintigraphy with blood 

samples collection  for [177Lu]Lu-DOTAZOL at multiple time points was used to determine 

the kinetics of respective radiopharmaceuticals. For quantitative analysis of PET/CT 

studies for [68Ga]Ga-DOTAZOL and [44Sc]Sc-PSMA-617  interview fusion software 

(MEDISO Medical Imaging Systems, Budapest, Hungary) was used. Percent of injected 

activities in source organs, blood and urine samples was used to perform kinetic 

analysis, residence time (MBq-h/MBq) and organ absorbed dose determination using 

OLINDA/EXM version 2.0 software (Hermes Medical Solutions, Stockholm, Sweden). To 

determine residence times and organ absorbed doses with OLINDA/EXM version 2.0 

software (Hermes Medical Solutions, Stockholm, Sweden) for [177Lu]Lu-DOTAZOL, 

percent of injected activity in source organs was determined using EANM dosimetry 

guidelines and methodology explained in MIRD pamphlet no 16. For prospective 
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dosimetric analysis the pharmacokinetic analysis of [68Ga]Ga-DOTAZOL and [44Sc]Sc-

PSMA-617  was mathematically extrapolated  for [177Lu]Lu-DOTAZOL and [177Lu]Lu-

PSMA-617 respectively. Results: Biodistribution and dosimetric analysis of [68Ga]Ga-

DOTAZOL revealed urinary bladder  as critical organ with highest absorbed dose (0.338 

mSv/ MBq) and skeleton as target organ. Besides high urinary bladder and kidney 

absorbed doses, mean effective dose was found similar to [18F]NaF. Its biodistribution 

was also found comparable with [18F]NaF, [99mTc]Tc-MDP and [68Ga]Ga-PSMA-617. 

Biodistribution and dosimetric analysis of [177Lu]Lu-DOTAZOL showed early, high uptake 

in kidneys with fast clearance and gradual rise of activity in skeleton. Mean organ 

absorbed doses were highest in osteogenic cells (3.33 MSv/ MBq) followed by kidneys 

and red marrow. Maximum permissible activity was limited due to bone marrow toxicity. 

Prospective dosimetry with [68Ga]Ga-DOTAZOL resulted in lower organ absorbed doses  

and lower therapeutic doses for [177Lu]Lu-DOTAZOL. Biodistribution of [44Sc]Sc-PSMA-

617 was found similar to [68Ga]Ga-PSMA but with higher organ absorbed doses and 

lower effective dose. Kidneys with highest radiation absorbed dose of 0.319 mSv/ MBq 

were the critical organs, followed by urinary bladder wall and rest of organs. Prospective 

dosimetric analysis of [177Lu]Lu-PSMA-617 from extrapolated pharmacokinetics of 

[44Sc]Sc-PSMA-617 revealed highest absorbed dose in the kidneys (0.44 mSv/MBq) 

followed by the salivary glands (0.23 mSv/MBq). The maximum permissible activity was 

highly variable among patients; limited by whole body absorbed dose (one patient), 

marrow absorbed dose (one patient) and kidney absorbed dose (three patients). 

Conclusions: [68Ga]Ga-DOTAZOL and [177Lu]Lu-DOTAZOL can be employed for 

theranostics in patients with skeletal metastatic disease. [68Ga]Ga-DOTAZOL needs to be 

used with diuretics to reduce absorbed doses to urinary bladder and kidneys. Moreover 

[68Ga]Ga-DOTAZOL is not appropriate for prospective dosimetric analysis of [177Lu]Lu-

DOTAZOL. The longer lived [44Sc]Sc-PSMA-617 has been found an important theranostic 

radionuclide for diagnosis, follow up and probable pre-therapeutic personalized 

dosimetric analysis  for [177Lu]Lu-PSMA-617 in mCRPC  patients.  
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