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1 Introduction

In the mid-80s, Thurston [Thu86] defined a seminorm xM on the first cohomology H1(M ;R)

of a compact connected orientable 3-manifold M by measuring the complexity of surfaces

dual to a given cohomology class. This Thurston norm is closely related to the question if

and how the 3-manifold fibers over the circle and can concisely be described by its unit ball

BxM . Thurston showed that this is not just some convex subset of H1(M ;R), but in fact a

polyhedron whose vertices are contained in the lattice H1(M ;Z). So if xM is even a norm,

which is always the case if M is hyperbolic, then BxM is an integral polytope, by which we

mean the convex hull inside H1(M ;R) of a finite set of points in H1(M ;Z).

Since the Thurston norm is defined by minimizing the complexity of dual surfaces, it has

become costumary to search for lower bounds or even completely detect it, see for example

[McM00, Tur02, Coc04, Har05, FK06, Fri07, FK08, FV15, FSW16]. Most approaches involve

generalizations of the Alexander polynomial such as higher-order or twisted versions and

share a common paradigm: One considers the Reidemeister torsion of the chain complex of

M twisted with coefficients in suitable skew-fields. Every cohomology class in H1(M ;Z)

determines a degree of this Reidemeister torsion which is shown to be a lower bound for the

Thurston norm. This degree can often be described in terms of the homology of M with

coefficients in twisted Laurent polynomial rings.

This strategy has most recently been extended with a view towards L2 -invariants and has

been implemented there in two different ways. One possibility is to replace the Reidemeister

torsion with the L2 -torsion of twisted chain complexes associated to M , bringing about

twisted L2 -torsion functions. It was first defined by Li-Zhang [LZ06a, LZ06b, LZ08] for

knots and by Dubois-Friedl-Lück [DFL16,DFL15a] in general. The connection of a suitable

notion of degree of these functions to the Thurston norm was detected by Liu [Liu17] and

Friedl-Lück [FL15].

Another way to apply L2 -invariants in the context of the Thurston norm is to keep the

aforementioned common paradigm and find new skew-field coefficients to which it applies.

This has been carried out by Friedl-Lück [FL16a] with the aid of the Atiyah Conjecture.

While the conjecture originally predicts the possible values of L2 -Betti numbers of G-

CW-complexes, its study brought about a skew-field commonly called D(G) containing the

integral group ring ZG. It can be used as a replacement of the Ore localization of the

integral group ring for non-amenable groups. This approach produces twisted L2 -Euler

characteristics which satisfy similar inequalities with the Thurston norm as the degree of

L2 -torsion functions. As the name suggests, these invariants can also be described in terms

of twisted L2 -Betti numbers.

Under basic L2 -acyclicity assumptions the classical L2 -torsion, twisted L2 -torsion func-

tions and twisted L2 -Euler characteristics enjoy a common set of basic properties, including

simple homotopy invariance as well as sum, product, induction, and restriction formulas.

This led Friedl-Lück [FL16b] to formalize the concept of an additive L2 -torsion invariant

to be an assignment that, very roughly speaking, associates to every (finite based free)

L2 -acyclic ZG-chain complex an element in some fixed abelian group such that short exact

sequences translate into sum relations. They also construct a universal L2 -torsion invariant

ρ
(2)
u which encapsulates all other L2 -torsion invariants. Motivated by the definition of
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Chapter 1. Introduction

classical torsion invariants, it takes values in a weak version of the reduced K1 -group

K̃w
1 (ZG) which is adjusted to the L2 -setting. Namely, instead of automorphisms of finitely

generated projective ZG-modules one takes as generators ZG-endomorphisms ZGn → ZGn

that become weak isomorphisms after passing to L2(G). Similarly, instead of a chain

contraction of a contractible chain complex one considers a weak chain contraction of an

L2 -acyclic chain complex C∗ in order to construct ρ
(2)
u (C∗) as an element in K̃w

1 (ZG).

If one wants to apply this to G-CW-complexes, then it is necessary to pass to the weak

Whitehead group Whw(G) of G, i.e., the quotient of K̃w
1 (ZG) by the subgroup containing

the right multiplications with elements of the form ±g for g ∈ G.

Since the universal L2 -torsion invariant encodes twisted L2 -Euler characteristics, and

these detect in many situations the Thurston norm, the universal L2 -torsion invariant also

detects the Thurston norm. This slogan can be strengthened by going back to Thurston’s

polytopes. Namely, in between the weak Whitehead group Whw(G) and norms on the

first cohomology H1(G;R), which we view as continuous maps H1(G;R) → R, one can

squeeze in a geometric gadget called the integral polytope group: If H is a finitely generated

free-abelian group, then pointwise addition, sometimes called Minkowski sum, turns the set

of polytopes in H ⊗Z R with vertices in H into a commutative monoid, denoted by P(H).

The integral polytope group P(H) is the Grothendieck group of this commutative monoid.

Identifying polytopes which are translates of each other produces a quotient called PT (H)

which fits into a sequence

Whw(G)
P−−→ PT (H1(G)f )

N−−→ Map(H1(G;R),R),

where H1(G)f denotes the free part of the first integral homology H1(G) of G. The right-

hand map N called norm homomorphism is classical, namely any integral polytope P ⊆
H⊗ZR determines a norm on Hom(H,R) by measuring the thickness of P in the direction of

a given homomorphism H → R. (Here we identify Hom(H1(G)f ,R) = H1(G;R).) In sharp

contrast to this, the left-hand map P called polytope homomorphism has only recently been

defined [FL16a, FL16b] and heavily relies on the structure of D(G). Forerunner versions

have at least implicitly been examined in the context of higher-order Alexander polynomials

by Cochran, Harvey, and Friedl [Coc04,Har05,FH07,Fri07].

It is one of the main results of Friedl-Lück’s theory [FL16b, Theorem 3.27] that if M is

a sufficiently nice (or in their words admissible) 3-manifold unequal to the solid torus and

whose fundamental group satisfies the Atiyah Conjecture, then the image of the negative of

the universal L2 -torsion invariant −ρ(2)u (M̃) under the composition N ◦ P is the Thurston

norm. Even stronger, the image of −ρ(2)u (M̃) under the map P is dual to the unit ball of

the Thurston norm BxM ⊆ H1(M ;R), see [FL16b, Theorem 3.35]. So for 3-manifolds we

have come full circle: from the polytopes of the Thurston norm to Reidemeister torsion as

lower bounds for the Thurston norm, to L2 -torsion invariants and the universal L2 -torsion,

and back to polytopes by virtue of the polytope homomorphism.

Even though all the research described so far is motivated by and mostly carried out for

3-manifolds, the theory applies in much greater generality. By Friedl-Lück’s work, we now

have a universal L2 -torsion invariant ρ
(2)
u (X;N (G)) associated to any finite free L2 -acyclic

G-CW-complex X . If G additionally satisfies the Atiyah Conjecture, then we get on top

the L2 -torsion polytope P (X;G) which is defined as the image of −ρ(2)u (X;N (G)) under

the polytope homomorphism P. This can in particular be applied to groups themselves: If

G is a group with finite L2 -acyclic classifying space and whose Whitehead group vanishes,

then

ρ(2)u (G) := ρ(2)u (EG;N (G)) ∈Whw(G)

only depends on G. If G additionally satisfies the Atiyah Conjecture, then the L2 -torsion
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polytope

P (G) := P (EG;G) ∈ P(H1(G)f )

is also available. These two objects as well as the integral polytope group itself are the main

objects of study in this dissertation.

Results

The universal L2 -torsion is a rather abstract invariant, the L2 -torsion polytope on the

other hand is quite concrete (which does not at all mean that it is easy to compute). As

the place in which this new invariant lives, the integral polytope group deserves attention,

and yet almost nothing is known about its structure. We take this lack of information as

motivation for a thorough investigation of the integral polytope group. There is a canonical

involution ∗ : P(H)→ P(H) induced by reflection about the origin which also passes to the

quotient ∗ : PT (H) → PT (H). Using the interplay between geometry and algebra, we will

establish a set of techniques for computations in these groups which will eventually allow us

to prove the following list of results.

Theorem 4.1 (Structure of the integral polytope group). Let H be a finitely generated

free-abelian group.

(1) (Symmetric elements) We have

ker
(
id− ∗ : P(H)→ P(H)

)
= im

(
id + ∗ : P(H)→ P(H)

)
.

(2) (Antisymmetric elements) We have

ker
(
id + ∗ : P(H)→ P(H)

)
= im

(
id− ∗ : P(H)→ P(H)

)
and

ker
(
id + ∗ : PT (H)→ PT (H)

)
= im

(
id− ∗ : PT (H)→ PT (H)

)
.

(3) (Basis) There are sets B1 ⊆ B2 ⊆ ... ⊆ Bn ⊆ PT (H) such that Bm \ Bm−1 contains

only polytopes of dimension m and Bm ∩ PT (G) is a basis for PmT (G) for every pure

subgroup G ⊆ H and 1 ≤ m ≤ n. In particular, Bn is a basis for PT (H).

Moreover, if A ⊆ H denotes a basis of H and B′n ⊆ P(H) is a set of representatives

for Bn ⊆ PT (H), then A ∪ B′n is a basis for P(H).

(4) (Involution as face Euler characteristic) For any polytope P ∈ P(H) we have in P(H)

∗P = −
∑

F∈F(P )

(−1)dim(F ) · F,

where F(P ) denotes the set of faces of P (including P itself).

We then turn over to an investigation of the L2 -torsion polytope of groups with an

emphasis on two quite different classes of L2 -acyclic groups. The first one is the class

of infinite amenable groups. In the context of L2 -invariants and related fields, amenable

groups stand out as a class of groups satisfying strong vanishing results. Among others, all

infinite amenable groups have vanishing L2 -Betti numbers, vanishing L2 -torsion (provided

that the group admits a finite classifying space), vanishing rank gradients and homology

gradients (provided that the group is finitely generated), and fixed price 1 (see Chapter 5
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Chapter 1. Introduction

for references). Wegner [Weg00,Weg09] showed that any group with finite classifying space

which is of so-called det ≥ 1-class and contains an infinite elementary amenable normal

subgroup has vanishing L2 -torsion.

Motivated by this latter result, we will introduce the notion of groups of P ≥ 0-class

and even stronger of polytope class by virtue of the polytope homomorphism. We then show

that torsion-free infinite amenable groups satisfying the Atiyah Conjecture possess these

properties. As a byproduct we obtain the homotopy invariance of the L2 -torsion polytope

over infinite amenable groups. In a second step we then adjust Wegner’s strategy towards

a program to prove the following vanishing result for the L2 -torsion polytope. It partially

confirms a conjecture of Friedl-Lück-Tillmann [FLT16, Conjecture 6.4].

Theorem 5.15 (The L2 -torsion polytope and elementary amenability). Let G be a group

of type F (i.e., G admits a finite classifying space) which is of P ≥ 0-class. Suppose that

G contains a non-abelian elementary amenable normal subgroup. Then G is L2 -acyclic and

we have

P (G) = 0.

In particular, the L2 -torsion polytope of an elementary amenable group of type F vanishes.

Beyond elementary amenable groups we apply our study of the integral polytope group

to obtain some evidence for the vanishing of the L2 -torsion polytope.

Proposition 5.19 (The L2 -torsion polytope and amenability). Let G 6= Z be an amenable

group of type F satisfying the Atiyah Conjecture. Then P (G) lies in the kernel of the norm

homomorphism N : PT (H1(G)f )→ Map(H1(G;R),R) and there is an integral polytope P ∈
P(H1(G)f ) such that in PT (H1(G)f ) we have

P (G) = P − ∗P.

The second class of groups whose L2 -torsion polytope is studied in this thesis lies on

the other side of the universe of groups. This is the class of ascending HNN extensions

of finitely generated free groups Fn , which are determined by monomorphisms Fn → Fn .

Here the L2 -torsion polytope has the potential to play a significant role in the study of

the outer automorphism group Out(Fn) of free groups. This group is a prominent player

in geometric group theory and notoriously hard to handle since powerful invariants of free

group automorphisms are rare.

We will first show that the L2 -torsion polytope induces a norm on the first cohomology

of ascending HNN extensions of free groups. Then we concentrate on the class of unipotent

polynomially growing, short UPG, automorphisms for which we can fully compute the

universal L2 -torsion and alongside all other L2 -torsion invariants.

Theorem 6.15 (Universal L2 -torsion of UPG automorphisms). Let πα = Fn oα Z with

n ≥ 1 and α : Fn → Fn a UPG automorphism. Then there are elements g1, ..., gn−1 ∈
παrFn such that for any admissible homomorphism µ : πα → G to a torsion-free group G,

we have µ(gi) 6= 0 and

ρ(2)u (α;µ) = −
n−1∑
i=1

[r1−µ(gi) : ZG→ ZG].

As an important corollary we show that the L2 -torsion polytope determines another

invariant on the first cohomology called the Sigma invariant or Bieri-Neumann-Strebel

(BNS) invariant Σ(G). This is defined by measuring finiteness properties of the kernel

of homomorphisms G→ R, and it is in general quite hard to compute.
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Corollary 6.20 (L2 -torsion polytope determines BNS invariant for UPG automorphisms).

Let πα = Fn oα Z with n ≥ 2 and α : Fn → Fn a UPG automorphism. Then P (πα) is

represented by a symmetric polytope. Moreover, for any ϕ ∈ H1(πα;R) = Hom(πα,R) =

Hom(H1(πα)f ,R) we have ϕ ∈ Σ(πα) if and only if there is a unique vertex of P (πα)

maximizing ϕ.

This result is inspired by a similar theorem of Friedl-Tillmann [FT15] for the case where

the group is defined in terms of a presentation with two generators, one relation, and has

first Betti number equal to 2.

Organization of the thesis

We collect previous work on which this thesis is built in Chapters 2 and 3. More precisely,

Chapter 2 arranges the invariants on the first cohomology we will be dealing with, i.e., the

Thurston norm, the Alexander norms, and the BNS-invariant. These are the more classical

invariants occurring in this thesis.

Chapter 3 then presents a concise collection of L2 -torsion invariants. Beginning with the

classical L2 -torsion, we will work our way along twisted L2 -torsion functions and twisted

L2 -Euler characteristics towards the recent construction of the universal L2 -torsion. Since

all these L2 -torsion invariants are constructed and examined in numerous original papers,

it seemed worthwhile collecting them in a survey-type chapter for the first time. We restrict

our attention to a rather dense presentation only highlighting the main results along the

way.

Chapter 4 is a self-contained study of the integral polytope group. While it is formally

independent of the previous chapters, it should be read as an attempt to get a feeling for

the L2 -torsion polytope. We introduce techniques which play off geometry against algebra.

These enable us to prove the four points occurring in the aforementioned Theorem 4.1 one

by one. The construction of a geometrically tangible basis of the integral polytope group

lies in some sense at the heart of this chapter.

Chapter 5 and Chapter 6 then present the investigations of the L2 -torsion polytope of

amenable groups on the one hand and free group HNN extensions on the other hand. Small

parts of the polytope language introduced in Chapter 4 will be used again in Chapter 5, but

other than that it is independent. Chapter 6 is completely independent of the previous two

chapters so that the final three chapters of this thesis can be read in arbitrary order.

Conventions

Throughout this thesis we will use the following conventions without further notice.

(1) Given a finitely generated abelian group H , we denote by tors(H) ⊆ H the torsion

subgroup and by Hf = H/ tors(H) the free part of H .

(2) Given a space X we use the identifications

H1(X;Z) = Hom(π1(X),Z) = Hom(H1(X),Z) = Hom(H1(X)f ,Z).

(3) If R is a ring, then we denote the set of m × n-matrices over R by Mm,n(R). An

element A ∈ Mm,n(R) will be viewed as an R-homomorphism of left R-modules

Rm → Rn by right multiplication, often also denoted by rA : Rm → Rn .

9



Chapter 1. Introduction

(4) Most invariants we encounter in this thesis are defined for CW-complexes and are

simple homotopy invariants. Since every compact topological manifold carries up to

simple homotopy equivalence a preferred CW-structure [KS69, Theorem IV], we can

apply these invariants without harm to those manifolds.

(5) If V is a finite-dimensional real vector space, then a halfspace in V is a subset of the

form {v ∈ V | ϕ(v) ≤ c} for some ϕ ∈ V ∗ and c ∈ R. A polyhedron in V is the

intersection of finitely many halfspaces. A polytope in V is a compact polyhedron, or

equivalently, the convex hull of finitely many points.

Acknowledgments

I thank my advisor Wolfgang Lück for his ongoing encouragement spanning three theses

and six years. His support guided me from my first wobbly steps in L2 -invariants to the

present dissertation. I am particularly grateful for his taking me on board as a Ph.D.

student after I had already opted out of the academic world and for his understanding when

mathematics was only of secondary importance.

I thank Stefan Friedl for his interest in my early work, for an invitation to and a tour

around Regensburg, and for the “true Bavarian experience”.

I thank Fabian Henneke and Dawid Kielak for discussions inspiring parts of this work.

I gratefully acknowledge the financial support I have received successively by the GRK

1150 “Homotopy and Cohomology” funded by the Deutsche Forschungsgemeinschaft, the

Max Planck Institute for Mathematics in Bonn, and the Deutsche Telekom Stiftung.

I am indebted to my wife Janine for your caring support in everything I do, for uncon-

ditional initiative in everything you do, and most of all for your courage to start a family in

the midst of these incalculable times that Ph.D. studies inevitably are.

10



2 Invariants on the First Cohomology

In this chapter we collect the classical invariants which not only show up later, but in fact

motivate large portions of this thesis.

2.1 The Thurston norm

The Thurston norm was introduced by Thurston [Thu86] in relation to the question if and

how a 3-manifold fibers over the circle. We briefly recall its definition.

Given a compact surface S , we put

χ−(S) =
∑

C∈π0(S)

max{0,−χ(C)}.

Let M be a compact connected orientable 3-manifold. Given a cohomology class ϕ ∈
H1(M ;Z) we define its Thurston norm to be

xM (ϕ) = min{χ−(S) | S ⊆M properly embedded surface dual to ϕ}.

We call a cohomology class ϕ ∈ H1(M ;Q) fibered if there is a fibration F →M
p−−→ S1

and a positive integer k such that H1(p) : H1(M)→ H1(S1) = Z coincides with k · ϕ.

Theorem 2.1 (Properties of the Thurston norm). Let M be a compact connected orientable

3-manifold. Then:

(1) xM is a seminorm on H1(M ;Z) which can be extended to a seminorm on H1(M ;R)

(denoted by the same symbol).

(2) If M is hyperbolic, then xM is a norm on H1(M ;R).

(3) If F → M
p−−→ S1 is a fiber bundle with compact surface F as fiber, then we get for

ϕ = H1(p) : H1(M)→ H1(S1) = Z

xM (ϕ) =

{
−χ(F ) if χ(F ) ≤ 0;

0 if χ(F ) ≥ 0.

(4) The unit norm ball BxM is a polyhedron. If xM is a norm, then BxM is a polytope.

(5) There are open codimension 1 faces (see Definition 4.6) of BxM such that ϕ ∈
H1(M ;Z) is fibered if and only if ϕ lies in the cone over these faces.

(6) If p : N →M is a k -sheeted covering and ϕ ∈ H1(M ;R), then

xN (p∗ϕ) = k · xM (ϕ).
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Chapter 2. Invariants on the First Cohomology

Proof. (1) to (5) are Thurston’s work [Thu86] while (6) is due to Gabai [Gab83, Corollary

6.13]. Here (2) follows directly from (1) since hyperbolic compact orientable 3-manifolds

are atoroidal, see [BP92, Proposition D.3.2.8].

2.2 The Alexander norm

The Alexander norm originates in the Alexander polynomial first defined by Alexander

[Ale28] as a knot invariant. It was generalized to arbitrary groups by Fox [Fox53, Fox54]

as one of the early applications of what is now a common tool called Fox calculus (see

Remark 6.5). Milnor [Mil62] was the first to describe the Alexander polynomial of 3-

manifolds and 2-complexes in terms of Reidemeister torsion, see Theorem 2.9 (1). We will

later also explain its relation to the universal L2 -torsion, see Remark 6.9.

Let G be a finitely presented group. Let X be a finite CW-complex with fixed basepoint

x and fixed isomorphism π1(X,x) ∼= G. Let µ : G → H be an epimorphism onto a free-

abelian group. Let p : X → X be the H -covering associated to µ. The Alexander module of

G with respect to µ is defined as the ZH -module AG,µ = H1(X, p−1(x)), which only depends

on G and µ. It is a finitely presented ZH -module and we pick a finite ZH -presentation

ZHr M−−→ ZHs → AG,µ → 0,

for some matrix M ∈ Mr,s(ZH). The Alexander ideal IG,µ is the ideal generated by all

(s − 1) × (s − 1)-minors of the matrix M . It does not depend on the choice of a finite

presentation for AG,µ . The Alexander polynomial

∆G,µ ∈ ZH/{±h | h ∈ H}

is defined as the greatest common divisor of all elements in IG,µ . If µ = pr: G → H1(G)f
is the projection onto the free part of the first homology, we use the shorter notation ∆G =

∆G,µ .

Now write ∆G =
∑
h∈H1(G)f

xh · h for elements xh ∈ Z almost all of which vanish.

McMullen [McM02] defines the Alexander norm

‖ · ‖A : H1(G;Z) = Hom(H1(G)f ,Z)→ Z

by

‖ϕ‖A = max{ϕ(g)− ϕ(h) | xg, xh 6= 0}.

It is easy to see that this defines indeed a seminorm on H1(G;Z). In fact, this passage from

multivariable polynomials to seminorms is the simplest case of the polytope homomorphism

of Section 3.7.2.

Recall that the deficiency of a finitely presented group G is the maximum of all values

g − r such that there exists a presentation of G with g generators and r relations.

Theorem 2.2 (Properties of the Alexander polynomial and norm). Let G be a finitely

presented group and H = H1(G)f .

(1) If def(G) ≥ 2, then ∆G = 0.

(2) Let def(G) = 1 and b1(G) ≥ 2. For a fixed isomorphism ZH ∼= Z[t1, ..., tb], we have

12



2.3. Higher-order Alexander norms

for any ϕ ∈ H1(G;Z) = Hom(H,Z)

∆G,ϕ(t) = (t− 1) ·∆G(tϕ(t1), ..., tϕ(tb))

(3) Let M be a closed orientable 3-manifold with b1(G) ≥ 2. Then for any ϕ ∈ H1(M ;Z)

we have

∆G,ϕ(t) = (t− 1)2 ·∆G(tϕ(t1), ..., tϕ(tb))

(4) If ϕ : G → Z is surjective, then ∆G,ϕ ∈ ZZ = Z[t±] has degree b1(kerϕ). In

particular, ∆G,ϕ = 0 if and only if b1(kerϕ) is infinite.

(5) If ϕ : G→ Z is surjective and kerϕ is finitely presented, then ∆G,ϕ is monic.

(6) Let M be a compact connected orientable 3-manifold with empty or toroidal boundary.

If b1(M) ≥ 2, then for any ϕ ∈ H1(M ;Z) we have

‖ϕ‖A ≤ xM (ϕ).

If b1(M) = 1 and ϕ is a generator of H1(M ;Z), then

‖ϕ‖A ≤ xM (ϕ) + 1 + b3(M).

Proof. (1) is obvious.

(2) and (3) are implicitly proved by McMullen [McM02, Theorem 5.1], see also Button

[But07, Theorem 3.1 and Theorem 3.6].

(4) is well-known, see for example [McM02, Equation (4.1)].

(5) is proved in [But07, Proposition 2.1].

(6) is proved in [McM02, Theorem 1.1].

The last inequality is a generalization of the well-known inequality

deg ∆K(t) ≤ 2 · g(K)

for a knot K , where g(K) denotes the knot genus of K , i.e., the minimal genus of a Seifert

surface for K . This is because in this case the Thurston norm of a generator ϕ of H1(MK ;Z)

satisfies xMK
(ϕ) = 2 ·g(K)−1, where MK = S3rνK . We collect a more conceptual way to

define the Alexander polynomial and more properties of the Alexander norm in Theorem 2.9

after introducing its higher-order versions.

2.3 Higher-order Alexander norms

The definition of higher-order Alexander norms originates in work of Cochran [Coc04] for

knots, Harvey [Har05] for finite CW-complexes and certain solvable quotients, and Friedl

[Fri07] in general. The construction uses algebraic concepts which require a few preliminary

remarks.

2.3.1 Twisted Laurent polynomial rings, crossed products, and Ore localiza-

tion. Let R be ring and t : R→ R a ring automorphism. We define the t-twisted Laurent

13
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polynomial ring Rt[u
±] as the usual Laurent polynomial ring R[u±], but with multiplication

determined by

(r · um) · (s · un) = rtm(s) · um+n

for r, s ∈ R and m,n ∈ Z. As for the untwisted version, the ring Rt[u
±] carries a natural

degree function deg. Twisted Laurent polynomial rings occur naturally as shown by the

next example.

Example 2.3. Let 0 → K → G
p−−→ Z → 0 be a group extension, and let R be a ring.

Pick a preimage g ∈ G of 1 ∈ Z under p. Then there is an isomorphism RG ∼= RKt[u
±]

with t : RK → RK, k 7→ g−1kg .

Twisted Laurent polynomial rings on the one hand and group rings on the other hand

have a common generalization called crossed product. Since we do not need the technical

details in what follows, we only describe this concept very roughly and refer to [Lüc02,

Section 10.3.2] for more information. Let R be a ring and G be a group, and take maps (of

sets) c : G→ Aut(R) and τ : G×G→ R× . The crossed product R ∗c,τ G has as underlying

abelian group the free R-module with basis G and as multiplication

(r · g) · (s · h) = rc(g)(s)τ(g, h) · gh

for r, s ∈ R and g, h ∈ G. The multiplication is associative under certain conditions on c

and τ . We can now generalize the example above.

Example 2.4. Let 0 → K → G
p−−→ Q → 0 be a group extension, and let R be a ring.

Pick a set-theoretic section s : Q→ G of p. We can identify RG ∼= (RK) ∗c,τ Q, where the

structure maps c and τ are defined by

c(q)

(∑
k∈K

ak · k

)
=
∑
k∈K

ak · s(q)ks(q)−1

and

τ(q, q′) = s(q)s(q′)s(qq′)−1 ∈ K.

The isomorphism (RK) ∗Q→ RG is given by∑
q∈Q

λq · q 7→
∑
q∈Q

λq · s(q).

Let R be a ring without zero-divisors and S ⊆ R a multiplicatively closed subset. Then

R satisfies the (left) Ore condition with respect to S if for any r ∈ R, s ∈ S there are

r′ ∈ R, s′ ∈ S such that s′r = r′s. In this case, one can define the (left) Ore localization

S−1R of R at S completely analogous to the concept of localization in commutative rings.

There is a ring homomorphism R → S−1R and S−1R is a flat R-module. Note that if R

satisfies the Ore condition with respect to S = R r {0}, then S−1R is a skew-field. The

notions right Ore condition and right Ore localization are defined similarly. If R is a ring

with an involution which respects S , then the left and right Ore condition are equivalent.

We refer to [Ste75, Chapter II] for more information on non-commutative localization.

Ore localizations will occur in this thesis almost exclusively in the following situation.

Lemma 2.5. Let G be a torsion-free elementary amenable group and k a skew-field. Then

any crossed product k ∗G satisfies the Ore condition with respect to S = k ∗Gr {0}.

Proof. This follows from [Lin06, Theorem 2.3], see also [KLM88, Theorem 1.2].
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2.3.2 Definition of higher-order Alexander norms.

Definition 2.6 (Large homomorphism). A homomorphism f : π → G of groups is large if

the canonical projection pr : π → H1(π)f factors over f , i.e., there exists g : G → H1(π)f
such that pr = g ◦ f .

Let X be a finite CW-complex and let µ : π1(X) → G be a large epimorphism. Let

p : X → X be the G-covering associated to µ. Assume that G is a torsion-free elementary

amenable group. Then by Lemma 2.5, ZG satisfies the Ore condition with respect to

S = ZGr {0} and we denote the corresponding Ore localization by Q(G) = S−1ZG.

Let ϕ : G → Z be an epimorphism and denote by K = ker(ϕ : G → Z). Then ZK
satisfies the Ore condition with respect to T = ZK r {0}. The twisting t : ZK → ZK
described in Example 2.3 extends to t : Q(K) → Q(K), and we have a chain of ring

embeddings

ZG ∼= ZKt[u
±] ⊆ Q(K)t[u

±] ⊆ Q(G),

It is easy to see that the last embedding localizes to an isomorphism

U−1Q(K)t[u
±] ∼= Q(G) (2.1)

for U the set of non-trivial elements in Q(K)t[u
±].

Definition 2.7 (Higher-order Alexander norms). Suppose that the homology H∗(X;Q(G))

of the chain complex Q(G)⊗ZGC∗(X) vanishes, where C∗(X) denotes the cellular ZG-chain

complex of X . Then the homology of the chain complex Q(K)t[u
±] ⊗ZG C∗(X) is finite-

dimensional over Q(K) (compare also Lemma 3.23 and Theorem 3.24). The higher-order

Alexander norm associated to µ is defined as

δ(X;µ)(ϕ) = dimQ(K)H1(Q(K)t[u
±]⊗ZG C∗(X)).

The above definition is due to Harvey for certain quotients coming from the rational

derived series of π1(X). There is an alternative and more conceptual way to define these

norms that will also foreshadow the relationship between universal L2 -torsion and twisted

L2 -Euler characteristics (see Theorem 3.52). This approach is, to the best of our knowledge,

due to Friedl [Fri07].

Denote by

τ(X;µ) ∈ K1(Q(G))/{(±g) | g ∈ G}

the Reidemeister torsion of the finite based free acyclic Q(G)-chain complex Q(G)⊗ZGC∗(X)

equipped with some cellular basis (see Section 3.1.1 below for explanations). The Dieudonné

determinant [Die43] induces an isomorphism

detQ(G) : K1(Q(G))
∼=−−→ Q(G)×ab,

where Q(G)× = Q(G) r {0} denotes the units of Q(G), and Q(G)×ab the abelianization

thereof (see [Ros94, Corollary 2.2.6] or [Sil81, Corollary 4.3]). Using the localization isomor-

phism of (2.1) we can extend the degree function degϕ on Q(K)t[u
±] to Q(G)× by

degϕ(b−1a) = degϕ(a)− degϕ(b)

for a, b ∈ Q(K)t[u
±]. This assignment descends to the quotient Q(G)×ab/{[±g] | g ∈ G}.

Then we have the following.

Theorem 2.8 (Alexander norms as torsion degrees). If in the above situation X is a

compact connected orientable 3-manifold with empty or toroidal boundary or X is a finite
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connected 2-complex with χ(X) = 0, then we have

δ(X;µ)(ϕ) = degϕ detQ(G)(τ(X;µ)).

provided that G 6= Z. If G = Z and ϕ is an isomorphism, then

δ(X;µ)(ϕ) =

{
degϕ det(τ(X;µ)) + 2 if X is a closed 3-manifold;

degϕ det(τ(X;µ)) + 1 otherwise.

Proof. This follows from [Fri07, Corollary 3.6, Lemma 4.3, and Lemma 4.4].

Theorem 2.9 (Properties of Alexander norms). Let X be a compact connected orientable

3-manifold with empty or toroidal boundary or a finite connected 2-complex with χ(X) = 0.

Let µ : π1(X)→ G be a large epimorphism onto a torsion-free elementary amenable group.

Fix some ϕ ∈ H1(X;Z). Then:

(1) (Alexander polynomial as Reidemeister torsion) Consider the case µ = pr: π1(X) →
H1(X)f and H∗(X;Q(H1(X)f ) = 0. If b1(X) ≥ 2, then

∆π1(X) = det τ(X; pr)

under the inclusion ZH1(X)f/{±h} → Q(H1(X)f )/{±h}. If b1(X) = 1 and t

denotes a generator of H1(X)f , then we have

∆π1(X) =

{
det τ(X; pr) · (t− 1)2 if X is a closed 3-manifold;

det τ(X; pr) · (t− 1) otherwise.

(2) Consider the case µ = pr: π1(X)→ H1(X)f and H∗(X;Q(H1(X)f ) = 0. Then

δ(X; pr)(ϕ) = ‖ϕ‖A.

(3) δ(X;µ) is a seminorm on H1(X;Z) = H1(G;Z).

(4) Let µ′ : π1(X) → G′ be an epimorphism onto a torsion-free elementary amenable

group such that µ factorizes as π1(X)
µ′−−→ G′

β−−→ G for some group epimorphism β .

If H∗(X;Q(G)) = 0, then H∗(X;Q(G′)) = 0, and in this case we have

δ(X;µ)(ϕ) ≤ δ(X;µ′)(ϕ).

(5) Suppose that H∗(X;Q(G)) = 0. If b1(X) ≥ 2 or µ 6= pr, then we have in the 3-

manifold case

δ(X;µ)(ϕ) ≤ xX(ϕ).

If ϕ is fibered, then the inequality is an equality.

Proof. (1) is due to Milnor [Mil62] for link exteriors, but his argument generalizes to any

case where X is not a closed 3-manifold. This latter case is handled by Turaev [Tur75].

(2) was proved by Harvey [Har05, Proposition 5.12]. It also follows from part (1) and

Theorem 2.8.

(3) was proved by Friedl-Harvey [FH07, Theorem 1.1] for 3-manifolds. The proof also

applies to 2-complexes.
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(4) and (5) were proved by Harvey in [Har06, Corollary 2.10] and [Har05, Theorem 10.1]

for the quotients of the rational derived series and by Friedl [Fri07, Theorem 1.2 and Theorem

1.3] in general (where also twistings by representations of π1(X) were allowed).

Higher-order Alexander norms will later be shown to be a special case of twisted L2 -Euler

characteristics, see Corollary 3.29.

2.4 The Bieri-Neumann-Strebel-invariant

In this section we recall the definition of the BNS-invariant due to Bieri-Neumann-Strebel

[BNS87]. A forerunner version of it was defined by Bieri-Strebel [BS81] for the case of abelian

groups. Close connections of the BNS-invariant to the previously presented Thurston and

Alexander norms have been established early on. For example, the BNS-invariant was used

by Dunfield [Dun01] to show that the Thurston and Alexander norm of a fibered 3-manifold

do not always coincide on all cohomology classes. We use the monograph of Strebel [Str12]

as our main reference.

Let G be a finitely generated group. Put S(G) = Hom(G,R)/R>0 , where the positive

reals act on Hom(G,R) by multiplication. Pick a finite generating set S of G and denote

by Cay(G,S) the Cayley graph of G with respect to S . Given ϕ ∈ Hom(G,R), denote by

Cay(G,S)ϕ the subgraph of Cay(G,S) induced by the vertex subset {g ∈ G | ϕ(g) ≥ 0}.
Then the (first) Sigma-invariant or BNS-invariant is defined as

Σ(G) = {[ϕ] ∈ S(G) | Cay(G,S)ϕ is connected}.

This definition is independent of the choice of generating set, see [Str12, Theorem A2.3].

The following examples are taken from [Str12, Section A2.1a].

Example 2.10. (1) For a finitely generated free-abelian group H we have Σ(H) = S(H).

Namely, if we take the standard generating set for Zn , then the set {h ∈ Zn | ϕ(h) ≥ 0}
is the intersection of a halfspace in Rn with the lattice Zn . This is easily seen to be

connected.

(2) Let G = A∗B be a free product of finitely generated groups A and B . We claim that

Σ(G) is empty, which applies in particular to free groups. Let S and T be generating

sets of A and B respectively. Let ϕ : G→ R be non-trivial. Without loss of generality

there is an element a ∈ A such that ϕ(a) > 0. Take a non-trivial b ∈ B with ϕ(b) ≥ 0.

Then a−1ba lies in Cay(G,S ∪ T )ϕ , but we claim that it cannot be connected to 1.

A path from 1 to a−1ba in Cay(G,S ∪ T ) corresponds to a sequence w1, w2, ..., wk
such that wi is a word in either S or T . We may assume that every wi is non-trivial

in G since the path contains a loop otherwise. But then the normal form theorem for

free products implies that w1 represents a−1 . Since ϕ(a−1) < 0, the path does not

lie inside Cay(G,S ∪ T )ϕ .

We give a collection of properties of Σ(G).

Theorem 2.11 (Properties of the BNS-invariant). Let G be a finitely generated group and

ϕ ∈ Hom(G,Z).

(1) Σ(G) is an open subset of S(G).

(2) We have [ϕ] ∈ Σ(G) ∩ −Σ(G) if and only if ker(ϕ) is finitely generated.
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(3) If ϕ is surjective, then ϕ ∈ Σ(G) if and only if there is a finitely generated subgroup

A ⊆ G, a monomorphism α : A→ A and a commutative diagram

G

ϕ

''

∼= // 〈A, t | t−1at = α(a) 〉

ψ

��
Z

such that the upper map is an isomorphism, ψ(t) = 1, and ψ(A) = 0.

(4) If G = π1(M) for a compact orientable irreducible 3-manifold M , then

Σ(G) = −Σ(G)

and Σ(G) is the projection of the fibered faces described in Theorem 2.1 (5) to S(G).

Proof. These results are due to Bieri-Neumann-Strebel, see [BNS87, Theorem A, Theorem

B1, Proposition 4.3 and Theorem E].
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3 L2-Torsion Invariants

This chapter is a concise (and necessarily incomplete) survey of L2 -torsion invariants.

Beginning with the classical notion of L2 -torsion, we will review twisted L2 -torsion, from

which twisted L2 -torsion functions can comfortably be defined. We then turn over to the

twisted L2 -Euler characteristics constructed by Friedl-Lück.

All these invariants share similar features such as (simple) homotopy invariance as well

as sum, product, induction and restriction formulas. These features were originally proved

case by case and this tedious work serves as the main motivation for the universal L2 -

torsion constructed by Friedl-Lück [FL16b]. As the name suggests, the previous L2 -torsion

invariants (and their basic properties) can be derived from the universal L2 -torsion. Finally,

we present the L2 -torsion polytope, a geometric invariant which is the central object of study

for the rest of this thesis.

3.1 Preliminaries on L2-invariants

In this preliminary section we collect some terminology, notation and basics concerning

L2 -invariants, following the standard reference [Lüc02].

3.1.1 From ZG-modules to Hilbert N (G)-modules. Let R be a ring. A based free

R-module (M, [B]) is a free R-module M equipped with an equivalence class of R-basis

[B], where two R-bases B and B′ are equivalent if there is a bijection σ : B → B′ such

that σ(b) = ±b. Let R-FBMOD be the category whose objects are finitely generated based

free R-modules and whose morphisms are R-linear maps. Let R-FBCC be the category

of chain complexes over R-FBMOD. Moreover, we call an R-chain complex finite if each

chain module is finitely generated and all but finitely many chain modules vanish.

Let G be a (discrete) group. We denote by L2(G) the (complex) Hilbert space with

Hilbert basis G. It carries a canonical left G-action induced by the multiplication in G.

The group von Neumann algebra N (G) of G is the algebra of bounded G-equivariant

operators on L2(G). Denote by N (G)-FGHIL the category of finitely generated Hilbert

N (G)-modules (see [Lüc02, Definition 1.5]) and by N (G)-FGHCC the category of chain

complexes over N (G)-FGHIL. We define a functor

Λ: ZG- FBMOD→ N (G)- FGHIL

that sends an object (M, [B]) to L2(G) ⊗CGM equipped with the Hilbert space structure

for which the map ⊕
b∈B

L2(G)→ L2(G)⊗ZGM, (xb)b∈B 7→
∑
b∈B

xb ⊗ b

becomes an isometry. A morphism f : (M, [B]) → (N, [C]) is sent to the bounded G-

equivariant operator id⊗ZGf : L2(G)⊗ZGM → L2(G)⊗ZGN . This functor can be extended
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to a functor

Λ: ZG- FBCC→ N (G)- FGHCC

by applying Λ to each chain module and differential.

Let M be a free ZG-module. Then two ZG-bases B and B′ of M are cellularly

equivalent if there is a bijection σ : B → B′ and elements ε(b) ∈ {±1}, g(b) ∈ G such that

σ(b) = ε(b) · g(b) · b. If X is a finite free G-CW-complex, then the chain modules Cn(X)

carry a canonical cellular equivalence class of basis induced from the cellular structure. We

call an equivalence class of basis of Cn(X) a cellular basis if its cellular equivalence class

agrees with this canonical cellular equivalence class of basis.

3.1.2 L2 -Betti numbers. The von Neumann dimension of a Hilbert N (G)-module

M (see [Lüc02, Definition 1.10]) is denoted by dimN (G)(M). The same notation will be

used for the (extended) von Neumann dimension of N (G)-modules (see [Lüc02, Definition

6.20]), where N (G) is just considered as a ring. This overload of notation is justified in

view of [Lüc02, Theorem 6.24].

The L2 -Betti numbers of a ZG-chain complex C∗ are defined as

b(2)n (C∗;N (G)) = dimN (G)Hn(N (G)⊗ZG C∗).

Applying this to the singular ZG-chain complex of a G-space X produces the L2 -Betti

numbers b
(2)
n (X;N (G)) of X . In practice, however, we will exclusively work with G-CW-

complexes, where we can take the cellular ZG-complex instead, see [Lüc02, Lemma 6.52].

We call a ZG-chain complex or a G-space L2 -acyclic if all its L2 -Betti numbers vanish.

We refer to [Lüc02, Chapters 1 and 6] for a detailed account of L2 -Betti numbers.

3.1.3 Fuglede-Kadison determinant. Let f : V → W be a morphism of finite-

dimensional Hilbert N (G)-modules. Then there is an associated spectral density function

F (f) : [0,∞)→ [0,∞] (see [Lüc02, Definition 2.1]), which is used in the construction of the

Fuglede-Kadison determinant detN (G)(f) as follows: The morphism f is of determinant

class if
∫∞
0+

log(λ) dF > −∞, and in this case we define

detN (G)(f) = exp

(∫ ∞
0+

log(λ) dF

)
.

Otherwise we put detN (G)(f) = 0. The basic properties of this notion of determinant are

collected in [Lüc02, Theorem 3.14]. We also point out the following useful fact.

Remark 3.1. If g ∈ G is an element of infinite order and z is a complex number, then

Λ(r1−z·g : ZG→ ZG) is a weak isomorphism and we have by [Lüc02, Theorem 3.14 (6) and

Equation (3.24)]

detN (G)(Λ(r1−z·g : ZG→ ZG)) = max{1, |z|}.

A Hilbert N (G)-chain complex C∗ with finite-dimensional chain modules is of determi-

nant class if all of its differentials are of determinant class. We call C∗ det-L2 -acyclic if it

is both of determinant class and L2 -acyclic. A free G-CW-complex of finite type, i.e., with

finitely many cells in each dimension, is of determinant class (respectively, det-L2 -acyclic) if

its cellular chain complex is of determinant class (respectively, det-L2 -acyclic) after applying

Λ.

If A ∈ Mm,n(ZG) is a matrix, then the morphism rA : L2(G)m → L2(G)n given by

right multiplication with A is conjectured to be of determinant class [Lüc02, Conjecture

3.94 (3)]. This would imply that every free G-CW-complex of finite type is of determinant
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class. The (stronger) Determinant Conjecture predicts that we even have detN (G)(rA) ≥ 1.

An affirmative answer to the Determinant Conjecture is known by the work of Elek-Szabó

[ES05, Theorem 5] if G belongs to the class of sofic groups, which contains among others all

residually amenable and in particular all residually finite groups. Previous special instances

of this statement were proved by Lück, Clair, and Schick [Lüc94a, Cla99, Sch01]. We refer

to [Lüc02, Section 3.2] for a thorough investigation of the Fuglede-Kadison determinant and

to [Lüc02, Chapter 13] for an account of the Determinant Conjecture.

3.2 Classical L2-torsion

We use [Lüc02, Chapter 3] as main reference for the classical L2 -torsion.

Definition 3.2 (L2 -torsion). Let C∗ be a finite based free ZG-chain complex of determi-

nant class. Then its L2 -torsion is defined as

ρ(2)(C∗;N (G)) = −
∑
n∈Z

(−1)n · log detN (G)(Λ(cn)) ∈ R.

If X is a finite free G-CW-complex, then its L2 -torsion is defined as

ρ(2)(X;N (G)) = ρ(2)(C∗(X), [B]);N (G)),

where C∗(X) is the cellular ZG-chain complex of X equipped with some cellular basis [B]

(in the sense of Section 3.1.1).

While the definition makes sense as soon as C∗ is of determinant class, it is in practice

often necessary to restrict the attention to L2 -acyclic chain complexes. Otherwise, even

rudimentary properties fail. The following collection of basic properties is taken from [Lüc02,

Theorem 3.93].

Theorem 3.3 (Basic properties of L2 -torsion).

(1) (Homotopy invariance) Let f : X → Y be a G-homotopy equivalence of finite free

G-CW-complexes. If X or Y is det-L2 -acyclic, then both are det-L2 -acyclic and we

have

ρ(2)(Y ;N (G))− ρ(2)(X;N (G)) = Φ(τ(f)),

where τ(f) ∈ Wh(G) denotes the Whitehead torsion and Φ: Wh(G) → R is the

homomorphism induced by taking the Fuglede-Kadison determinant.

(2) (Sum formula) Let

X0

��

// X1

��
X2

// X

be a G-pushout of finite free G-CW-complexes such that the upper horizontal map

is cellular, the left-hand map is an inclusion of G-CW-complexes and X carries the

G-CW-structure induced from the Xi . If Xi for i = 0, 1, 2 is det-L2 -acyclic, then X

is det-L2 -acyclic and we have

ρ(2)(X;N (G)) = ρ(2)(X1;N (G)) + ρ(2)(X2;N (G))− ρ(2)(X0;N (G)).
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(3) (Product formula) Let Xi be a finite free Gi -CW-complex for i = 1, 2. If X1 is

det-L2 -acyclic, then the (G1 × G2)-CW-complex X1 ×X2 is det-L2 -acyclic and we

have

ρ(2)(X1 ×X2;N (G1 ×G2)) = χ(X2/G2) · ρ(2)(X1;N (G1)).

(4) (Induction) Let i : H → G be an inclusion of groups. Let X be a finite free H -CW-

complex. Then the finite free G-CW-complex i∗X = G×HX is det-L2 -acyclic if and

only if X is det-L2 -acyclic, and in this case we have

ρ(2)(i∗X;N (G)) = ρ(2)(X;N (H)).

(5) (Restriction) Let i : H → G be an inclusion of groups with finite index. Let X be a

finite free G-CW-complex. Let i∗X be the finite free H -CW-complex obtained from

X by restriction. Then i∗X is det-L2 -acyclic if and only if X is det-L2 -acyclic, and

in this case we have

ρ(2)(i∗X;N (H)) = [G : H] · ρ(2)(X;N (G)).

(6) (Fibrations) Let F
i−−→ E

p−−→ B be a fibration such that F and B are finite CW-

complexes. Let E → E be a G-covering and F → F the G-covering obtained from it

by pullback along i. Assume that Wh(G) vanishes. Assume that F is det-L2 -acyclic.

Then E is up to G-homotopy equivalence a finite free det-L2 -acyclic G-CW-complex

and we have

ρ(2)(E;N (G)) = χ(B) · ρ(2)(F ;N (G)).

(7) (Poincaré Duality) Let M be a free proper cocompact G-manifold of even dimension

without boundary. Assume that M is orientable. If M is det-L2 -acyclic, then

ρ(2)(M ;N (G)) = 0.

The L2 -torsion has been computed in special cases and shown to relate to other, more

geometric invariants. For example, if M is a closed hyperbolic 3-manifold, then Lück-Schick

[LS99] show that

ρ(2)(M̃ ;N (π1(M))) = − 1

6π
· vol(M).

This result has generalizations for all odd dimensions by Hess-Schick [HS98]

If X is an aspherical finite CW-complex such that π1(X) is of det ≥ 1-class and

contains an infinite elementary amenable normal subgroup, then X̃ is det-L2 -acyclic and

ρ(2)(X̃;N (π1(X))) = 0 by Wegner [Weg09]. This result motivates the computation of the

L2 -torsion polytope of amenable groups of Chapter 5.

Finally, if Fn is a finitely generated free group and α : Fn → Fn is an automorphism,

then Clay [Cla17] showed for the semidirect product πα = FnoαZ that −ρ(2)(Eπα;N (πα))

is a lower bound for the growth rates of α . In particular, the L2 -torsion vanishes for

polynomially growing automorphisms. We will reprove this result in Corollary 6.21.

3.3 Twisted L2-torsion

In this section we recall L2 -torsion twisted with finite-dimensional representations. This

notion can be seen as a convenient basis for the construction of twisted L2 -torsion functions
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in Section 3.4. Chronologically, however, twisted L2 -torsion functions were defined first, but

important ingredients for a good behavior of L2 -torsion, i.e., L2 -acyclicity and determinant

class, had to be checked case by case. A systematic study of how these notions are affected

by twisting the chain complex was eventually contributed by Lück [Lüc15], which also serves

as the main reference of this section.

Let V be a finite-dimensional (complex left) G-representation and [BV ] be an equiva-

lence class of C-basis in the sense of Section 3.1.1. We define a twisting functor

ηV : CG- FBMOD→ CG- FBMOD

that sends a finitely generated based free CG-module M equipped with the equivalence

class of basis [BM ] to the CG-module M ⊗C V equipped with the equivalence class of basis

[{b ⊗ v | b ∈ BM , v ∈ BV }]. On morphisms ηV sends a CG-linear map f : M → N to

f ⊗C V : M ⊗C V → N ⊗C V . For simplicity, we suppress the equivalence class [BV ] in the

notation although the functor ηV depends on it. This functor has an obvious extension to

ηV : CG- FBCC→ CG- FBCC .

Central questions about this functor are how it manipulates L2 -Betti numbers, determi-

nant class and L2 -torsion.

Definition 3.4 (Twisted L2 -torsion). Let V be a based finite-dimensional G-representation.

Let C∗ be a finite based free CG-chain complex. Then C∗ is of V -twisted determinant

class (respectively, V -twisted L2 -acyclic, or V -twisted det-L2 -acyclic) if Λ(ηV (C∗)) is of

determinant class (respectively, L2 -acyclic or det-L2 -acyclic).

If C∗ is of V -twisted determinant class, then we define the V -twisted L2 -torsion of C∗
to be

ρ(2)(C∗;V ) = ρ(2)(Λ(ηV (C∗))).

These notions carry over to a finite free G-CW-complex X by applying them to the

cellular CG-chain complex of X endowed with some cellular basis. It follows from [Lüc02,

Theorem 3.35 (5)] and [Lüc15, Lemma 2.2 (1)] that this does not depend on the choice of

cellular basis for C∗(X).

The basic properties of twisted L2 -torsion are collected in [Lüc15, Theorem 5.7], includ-

ing homotopy invariance as well as sum, product, restriction and induction formulas in the

same spirit as Theorem 3.3. We omit these here and rather concentrate on the question

when twisted L2 -torsion applies. The definition requires the chain complex C∗ to be at

least of twisted determinant class, but just as for the classical L2 -torsion, good behavior of

this invariant only arises under the additional assumption of twisted L2 -acyclicity. It will in

practice be therefore convenient to know when these properties can be reduced to those of

the untwisted chain complex. This is answered in an important special case by the following

technical result [Lüc15, Theorem 6.7].

Theorem 3.5 (L2 -acyclicity and determinant class after twisting). Let G be a countable

residually finite group and ν : G → Zd be an epimorphism. Let V be a based finite-

dimensional Zd -representation. Denote by ν∗V its pullback to G (equipped with the same

equivalence class of basis). Let C∗ be a finite based free ZG-chain complex. Then:

(1) If Λ(C∗) is of determinant class, then so is Λ(ην∗V (C∗)).

(2) For every n ∈ Z, we have

b(2)n (Λ(ην∗V (C∗))) = dimC(V ) · b(2)n (Λ(C∗)).
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In particular, if Λ(C∗) is L2 -acyclic, then so is Λ(ην∗V (C∗)).

3.4 Twisted L2-torsion functions

Twisted L2 -torsion functions were first constructed for knots by Li-Zhang [LZ06a, LZ06b,

LZ08] and further examined by Dubois-Wegner [DW10, DW15] and Ben Aribi [BA16] (ap-

pearing there under the alternative names L2 -Alexander-Conway invariant or L2 -Alexander

invariant). Dubois-Friedl-Lück [DFL16, DFL15a, DFL15b] generalize this notion to finite

CW-complexes and investigate it for 3-manifolds (there called L2 -Alexander torsion). The

relation of the asymptotic behavior of twisted L2 -torsion functions to the Thurston norm

is especially noteworthy. This relation was further strengthened by Liu [Liu17], who also

answered the question of continuity, and Friedl-Lück [FL15], see Theorem 3.14. The afore-

mentioned work by Lück [Lüc15], which we presented in Section 3.3, clarified questions of

when twisted L2 -torsion functions are available, see Theorem 3.11.

3.4.1 Definition of twisted L2 -torsion functions. With twisted L2 -torsion in our

toolbox, it is now easy to give the definition of twisted L2 -torsion functions.

Definition 3.6 (Twisted L2 -torsion function). Let ϕ : G→ R be a group homomorphism.

Fix t ∈ R>0 . Let Ct be the based 1-dimensional R-representation C, where r ∈ R acts by

multiplication with tr , equipped with the equivalence class of the standard basis. Denote

by ϕ∗Ct the G-representation obtained from Ct by restriction along ϕ.

Let C∗ be a finite based free ZG-chain complex. Then C∗ is of ϕ-twisted determinant

class (respectively, ϕ-twisted L2 -acyclic, or ϕ-twisted det-L2 -acyclic) if it is for all t ∈ R>0

of ϕ∗Ct -twisted determinant class (respectively, ϕ∗Ct -twisted L2 -acyclic, or ϕ∗Ct -twisted

det-L2 -acyclic) in the sense of Definition 3.4.

If C∗ is of ϕ-twisted determinant class, then we define the ϕ-twisted L2 -torsion function

as

ρ(2)(C∗;ϕ) : R>0 → R, t 7→ ρ(2)(C∗;ϕ
∗Ct),

where the right-most term is defined in Definition 3.4.

If we want to apply this set of definitions to the cellular chain complex of a finite free

G-CW-complex X , then the choice of cellular basis possibly affects the twisted L2 -torsion.

In order to get rid of this ambiguity, we introduce the following notion.

Definition 3.7. Two functions f, g : R>0 → R are equivalent if there is a real number r

such that f(t)− g(t) = r · log(t). In this case we use the notation f
.
= g .

Definition 3.8 (Twisted L2 -torsion function for G-CW-complexes). Let X be a finite free

G-CW-complex and let ϕ : G → R be a group homomorphism. Then X is of ϕ-twisted

determinant class, ϕ-twisted L2 -acyclic, or ϕ-twisted det-L2 -acyclic if the cellular chain

complex C∗(X) equipped with some cellular basis has this property. If X is of ϕ-twisted

determinant class, then we define the ϕ-twisted L2 -torsion function ρ(2)(X;ϕ) of X to be

the equivalence class of the function

ρ(2)(C∗(X);ϕ) : R>0 → R.

We introduce one more notation. Let X be a finite CW-complex and take group

homomorphisms π1(X)
µ−−→ G

ϕ−−→ R. Denote by X → X the G-covering associated to
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µ. If X is of ϕ-twisted determinant class, then we write

ρ(2)(X;µ, ϕ) = ρ(2)(X;ϕ).

This definition does not depend on the choice of cellular basis [Lüc15, Theorem 7.3 (3)].

Next we illustrate that L2 -torsion functions are computable in special cases.

Example 3.9. (1) Let f : X → X be a cellular self-homotopy equivalence of a connected

finite CW-complex X . Denote its mapping torus by Tf . Let π1(Tf )
µ−−→ G

ϕ−−→ Z be

a factorization of the canonical epimorphism such that G is a residually finite group.

It is proved in [Lüc15, Theorem 7.10] that the G-covering associated to µ is ϕ-twisted

det-L2 -acyclic and there is a constant T > 0 such that

ρ(2)(Tf ;µ, ϕ)
.
=

(
t 7→

{
0 if t ≤ 1/T ;

χ(F ) · log(t) if t ≥ T.

)

(2) Let K ⊆ S3 be a knot and consider the 3-manifold XK = S3 r νK , where νK is an

open tubular neighbourhood. Let ϕ ∈ H1(XK ;Z) be a generator. Then it is proved

by Ben-Aribi [BA16] that K is trivial if and only if

ρ(2)(X̃K ;ϕ)
.
=

(
t 7→

{
0 if t ≤ 1;

log(t) if t ≥ 1.

)

(3) Let M be a Seifert fiber space unequal to S1×S2 and S1×D2 . Take homomorphisms

π1(M)
µ−−→ G

ϕ−−→ Z such that the image of a regular fiber under µ has infinite order.

Then Herrmann [Her16] calculates

ρ(2)(M ;µ, ϕ)
.
=

(
t 7→

{
0 if t ≤ 1;

−xM (ϕ) · log(t) if t ≥ 1.

)

The following set of properties is the analogue of Theorem 3.3 for twisted L2 -torsion

functions and appears in [Lüc15, Theorem 7.5].

Theorem 3.10 (Basic properties of twisted L2 -torsion functions). Let ϕ : G → R be a

group homomorphism.

(1) (Homotopy invariance) Let f : X → Y be a G-homotopy equivalence of finite free

G-CW-complexes. If X or Y is ϕ-twisted det-L2 -acyclic, then both are ϕ-twisted

det-L2 -acyclic. If, additionally, f is simple (or ZG satisfies the K -theoretic Farrell-

Jones Conjecture), then

ρ(2)(X;ϕ)
.
= ρ(2)(Y ;ϕ).

(2) (Sum formula) Let

X0

��

// X1

��
X2

// X

be a G-pushout of finite free G-CW-complexes such that the upper horizontal map

is cellular, the left-hand map is an inclusion of G-CW-complexes and X carries the

G-CW-structure induced from the Xi . If Xi for i = 0, 1, 2 is ϕ-twisted det-L2 -acyclic,
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then X is ϕ-twisted det-L2 -acyclic and we have

ρ(2)(X;ϕ)
.
= ρ(2)(X1;ϕ) + ρ(2)(X2;ϕ)− ρ(2)(X0;ϕ).

(3) (Product formula) Let Xi be a finite free Gi -CW-complex for i = 1, 2. Let ϕ : G1 ×
G2 → R be a homomorphism and denote by ϕ1 : G1 → R the obvious restriction to

G1 . If X1 is ϕ1 -twisted det-L2 -acyclic, then the G1 × G2 -CW-complex X1 ×X2 is

ϕ-twisted det-L2 -acyclic and we have

ρ(2)(X1 ×X2;ϕ)
.
= χ(X2/G2) · ρ(2)(X1;ϕ1).

(4) (Induction) Let i : H → G be an inclusion of groups. If X is a finite free (ϕ◦i)-twisted

det-L2 -acyclic H -CW-complex, then the finite free G-CW-complex i∗X = G×H X is

ϕ-twisted det-L2 -acyclic and we have

ρ(2)(i∗X;ϕ)
.
= ρ(2)(X;ϕ ◦ i).

(5) (Restriction) Let i : H → G be an inclusion of groups with finite index. Let X be a

finite free G-CW-complex and i∗X the finite free H -CW-complex obtained from X by

restriction. Then i∗X is (ϕ ◦ i)-twisted det-L2 -acyclic if and only if X is ϕ-twisted

det-L2 -acyclic. In this case we have

ρ(2)(i∗X;ϕ ◦ i) .
= [G : H] · ρ(2)(X;ϕ).

(6) (Fibrations) Let F
i−−→ E

p−−→ B be a fibration of connected finite CW-complexes. Let

E → E be a G-covering and F → F the G-covering obtained from it by pullback along

i. Assume that ZG satisfies the K -theoretic Farrell-Jones Conjecture. Assume that

F is ϕ-twisted-det-L2 -acyclic. Then E is up to G-homotopy equivalence a finite free

G-CW-complex which is ϕ-twisted det-L2 -acyclic, and we have

ρ(2)(E;ϕ)
.
= χ(B) · ρ(2)(F ;ϕ).

(7) (Poincaré Duality) Let M be a free proper cocompact smooth G-manifold without

boundary. Assume that M is orientable and the G-action is orientation-preserving.

If M is ϕ-twisted det-L2 -acyclic, then

ρ(2)(M ;ϕ)(t)
.
= (−1)dim(M)+1 · ρ(2)(M ;ϕ)(t−1).

(8) (Scaling) Given r ∈ R, a finite free G-CW-complex X is (r·ϕ)-twisted-det-L2 -acyclic

if and only if it is ϕ-twisted-det-L2 -acyclic. In this case we have

ρ(2)(X; r · ϕ)(t)
.
= ρ(2)(X;ϕ)(tr).

In many applications, especially for 3-manifolds, the following theorem renders argu-

ments for why L2 -torsion functions are well-defined and well-behaved obsolete.

Theorem 3.11. (Pinching estimate and continuity) Let X be a finite free G-CW-complex

and let ϕ : G→ R be a homomorphism. Assume that G is finitely generated and residually

finite.

(1) Then X is of ϕ-twisted determinant class. More precisely, there are for any represen-
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tative of ρ(2)(X;ϕ) constants C,D > 0 such that we get for 0 < t < 1

C · log(t)−D ≤ ρ(2)(X;ϕ)(t) ≤ −C · log(t) +D

and for t ≥ 1

−C · log(t)−D ≤ ρ(2)(X;ϕ)(t) ≤ C · log(t) +D.

(2) If X is L2 -acyclic, then X is ϕ-twisted det-L2 -acyclic. In this case, the ϕ-twisted

L2 -torsion function ρ(2)(X;ϕ) is continuous.

Proof. The first statement is proved by Lück [Lüc15, Theorem 7.3 (1)]. Essentially it follows

from the technical Theorem 3.5 (1) and the fact that residually finite groups satisfy the

Determinant Conjecture, see Section 3.1.3. If X is L2 -acyclic, then X is also ϕ-twisted

L2 -acyclic by Theorem 3.5 (2). The continuity statement follows from Liu’s work [Liu17,

Theorem 5.1].

3.4.2 The degree of twisted L2 -torsion functions. Among the many aspects

of twisted L2 -torsion functions, their asymptotic behavior stands out as a particularly

promising field of study. More precisely, we are interested in the following gadget.

Definition 3.12 (Degree of functions). Let [f ] be an equivalence class of functions in the

sense of Definition 3.7. Suppose that for some (and hence every) representative the values

lim inft→0
f(t)
log(t) and lim supt→∞

f(t)
log(t) are real numbers. Then we define the degree of [f ]

to be

deg([f ]) = lim sup
t→∞

f(t)

log(t)
− lim inf

t→0

f(t)

log(t)
.

In view of Theorem 3.11, the degree is always available for the twisted L2 -torsion

function of finite free G-CW-complexes provided that G is finitely generated and residually

finite. Note that this applies in particular to the universal covering of an admissible

3-manifold [AFW15, (C.25)]. The reader is invited to work out the degree in the situations

of Example 3.9.

Definition 3.13 (Admissible 3-manifold). Following [FL16b], we say that a 3-manifold is

admissible if it is connected, orientable, irreducible with empty or toroidal boundary and

infinite fundamental group. Note that an admissible 3-manifold is in particular aspherical,

meaning that its higher homotopy groups πi(M) for i ≥ 2 vanish, see [AFW15, (C.1)].

The question why one might consider the degree of L2 -torsion functions is answered by

the next theorem. We emphasize the striking similarity with Theorem 3.30 below about

twisted L2 -Euler characteristics.

Theorem 3.14 (Degree of L2 -torsion functions and the Thurston norm). Let M 6= S1×D2

be an admissible 3-manifold. Then:

(1) (Inequality of degree and Thurston norm) Let µ : π1(M)→ G be a homomorphism to

a finitely generated and residually finite group such that the G-covering associated to

µ is L2 -acyclic. Let ϕ : G→ R be a homomorphism. Then we have

−deg ρ(2)(M ;µ, ϕ) ≤ xM (ϕ).

(2) (Equality for quasi-fibered classes) Let µ : π1(M)→ G be a large homomorphism onto

a finitely generated residually finite group such that the G-covering associated to µ is
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L2 -acyclic. Let ϕ : G→ R be a homomorphism. If ϕ◦µ : π1(M)→ R is quasi-fibered,

i.e., a limit in H1(M ;R) of fibered classes in H1(M ;Q), then we have

−deg ρ(2)(M ;µ, ϕ) = xM (ϕ).

(3) (Equality of degree and Thurston norm) Assume that M is not a closed graph manifold.

Then the canonical projection factors into epimorphisms π1(M)
α−−→ Γ

β−−→ H1(M)f
where Γ is a virtually finitely generated free-abelian group such that:

If π1(M)
µ−−→ G

ν−−→ Γ is a factorization of α such that G is finitely generated and

residually finite, then for any homomorphism ϕ : Γ→ Q we have

−deg ρ(2)(M ;µ, ϕ ◦ ν) = xM (ϕ).

In particular, we have for the universal covering and any ϕ : π1(M)→ Q

−deg ρ(2)(M̃ ;ϕ) = xM (ϕ).

Proof. (1) was proved by Liu [Liu17, Theorem 1.4].

(2) is due to Friedl-Lück [FL15, Theorem 4.15].

(3) appears in [FL15, Theorem 5.1]. Liu simultaneously proved the equality for the

universal covering in [Liu17, Theorem 1.2].

3.5 Twisted L2-Euler characteristics

Twisted L2 -Euler characteristics are a variation of the classical L2 -Euler characteristic for

G-CW-complexes in the presence of a homomorphism G → Z. This section builds heavily

on [FL16a].

3.5.1 Definition of twisted L2 -Euler characteristics. Twisted L2 -Euler charac-

teristics are the only torsion invariant considered here for which the chain complexes in

question are not assumed to be finite. The reason for this is twofold. On the one hand,

we will now twist chain complexes with infinite-dimensional representations, so even if the

original chain complex was finite, the twisted one is not. This will, on the other hand, be

remedied by the fact that we then take the von Neumann dimension of their homology with

coefficients in the group von Neumann algebra N (G), which can be done irrespective of any

finiteness condition (in sharp contrast to the classical L2 -torsion).

Definition 3.15 (Twisted L2 -Euler characteristic). Let ϕ : G → Z be a group homomor-

phism. Let ϕ∗ZZ be the ZG-module given by restriction of the ZZ-module ZZ along ϕ.

If C∗ is a ZG-chain complex, then we view C∗ ⊗Z ϕ
∗ZZ as a ZG-chain complex via the

diagonal G-action. We put

b(2)n (C∗;N (G), ϕ) = dimN (G)Hn(N (G)⊗ZG (C∗ ⊗Z ϕ
∗ZZ)),

h(C∗;N (G), ϕ) =
∑
n≥0

b(2)n (C∗;N (G), ϕ).

The chain complex C∗ is called ϕ-L2 -finite if h(C∗;N (G), ϕ) is finite. In this case, the
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ϕ-twisted L2 -Euler characteristic is defined as

χ(2)(C∗;N (G), ϕ) =
∑
n≥0

(−1)n · b(2)n (C∗;N (G), ϕ).

These notions carry over to a G-CW-complex X by applying them to the cellular ZG-chain

complex C∗(X). We then write χ(2)(X;N (G), ϕ) for χ(2)(C∗(X);N (G), ϕ).

We introduce one more notation. Let X be a CW-complex and take group homomor-

phisms π1(X)
µ−−→ G

ϕ−−→ Z. Denote by X → X the G-covering associated to µ. We say

that X is (µ, ϕ)-L2 -finite if X is ϕ-L2 -finite, and in this case we write

χ(2)(X;µ, ϕ) = χ(2)(X;N (G), ϕ).

In complete analogy with Theorem 3.3 and Theorem 3.10 we first collect a set of basic

properties of twisted L2 -Euler characteristics, compare [FL16a, Theorem 2.5]. Even though

this is routine by now, it provides striking evidence for the idea that L2 -torsion, twisted

L2 -torsion, twisted L2 -torsion functions, and twisted L2 -Euler characteristics all come from

one common invariant. This will be the universal L2 -torsion of Section 3.6.

Theorem 3.16 (Basic properties of twisted L2 -Euler characteristics). Let ϕ : G→ Z be a

homomorphism.

(1) (Homotopy invariance) Let f : X → Y be a G-homotopy equivalence of G-CW-

complexes. If X or Y is ϕ-L2 -finite, then both are ϕ-L2 -finite and we have

χ(2)(X;N (G), ϕ) = χ(2)(Y ;N (G), ϕ).

(2) (Sum formula) Let

X0

��

// X1

��
X2

// X

be a G-pushout of G-CW-complexes such that the upper horizontal map is cellular, the

left-hand map is an inclusion of G-CW-complexes and X carries the G-CW-structure

induced from the Xi . If Xi for i = 0, 1, 2 is ϕ-L2 -finite, then X is ϕ-L2 -finite and

we have

χ(2)(X;N (G), ϕ) = χ(2)(X1;N (G), ϕ) + χ(2)(X2;N (G), ϕ)− χ(2)(X0;N (G), ϕ).

(3) (Induction) Let i : H → G be an inclusion of groups. Let X be a H -CW-complex.

Then the G-CW-complex i∗X = G ×H X is ϕ-L2 -finite if and only if X is (ϕ ◦
i)-L2 -finite, and in this case we have

χ(2)(i∗X;N (G), ϕ) = χ(2)(X;N (H), ϕ ◦ i).

(4) (Restriction) Let i : H → G be an inclusion of groups with finite index. Let X be a G-

CW-complex and i∗X the finite free H -CW-complex obtained from X by restriction.

Then i∗X is (ϕ ◦ i)-L2 -finite if and only if X is ϕ-L2 -finite and in this case we have

χ(2)(i∗X;N (H), ϕ ◦ i) = [G : H] · χ(2)(X;N (G), ϕ).

(5) (Fibrations) Let F
i−−→ E

p−−→ B be a fibration of connected CW-complexes such that
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B is a finite CW-complex. Let E → E be a G-covering and F → F the G-covering

obtained from it by pullback along i. If F is ϕ-L2 -finite, then E is ϕ-L2 -finite, and

in this case we have

χ(2)(E;N (G), ϕ) = χ(B) · χ(2)(F ;N (G), ϕ).

(6) (Scaling) Given an integer k ≥ 1, a G-CW-complex X is ϕ-L2 -finite if and only if

it is (k · ϕ)-L2 -finite, and in this case we have

χ(2)(X;N (G), k · ϕ) = k · χ(2)(X;N (G), ϕ).

(7) (Epimorphisms) Let X be a connected CW-complex and µ : π1(X) → G be a homo-

morphism. Let G′ be the image of µ, µ′ : π1(X)→ G′ be the epimorphism induced by

µ, and ϕ′ be the restriction of ϕ to G′ . Then X is (µ, ϕ)-L2 -finite if and only if it

is (µ′, ϕ′)-L2 -finite, and in this case we have

χ(2)(X;µ, ϕ) = χ(2)(X;µ′, ϕ′).

By the last two parts of the above theorem, we can in practice always assume that µ

and ϕ are surjective. In this situation we will make frequent use of the following lemma.

Lemma 3.17 (Twisted L2 -Euler characteristic as L2 -Euler characteristic). Let C∗ be a

ZG-chain complex and let ϕ : G→ Z be an epimorphism. Let i : K → G be the inclusion of

K = kerϕ. Denote by i∗C∗ the ZK -chain complex obtained from C∗ by restriction. Then

b(2)n (C∗;N (G), ϕ) = b(2)n (i∗C∗;N (K)).

In particular, C∗ is ϕ-L2 -finite if and only if i∗C is L2 -finite, and in this case we have

χ(2)(C∗;N (G), ϕ) = χ(2)(i∗C∗;N (K)).

Proof. This is based on the observation that the twisted chain complex C∗ ⊗Z ϕ
∗ZZ is

ZG-isomorphic to ZG⊗ZK i∗C∗ . See [FL16a, Lemma 2.6] for the complete argument.

3.5.2 Enter the Atiyah Conjecture. The use of twisted Laurent polynomial rings

over skew-fields in the construction of invariants for knots and 3-manifolds has reached

adulthood in the evolution of papers [COT03, Coc04, Har05, FH07, Fri07]. We have shed

some light on this principle in the definition of higher-order Alexander norms in Section 2.3.

However, in all cases treated in the above papers, the skew-fields in question arise as the Ore

localization of amenable groups. This means that the theory restricts to G-CW-complexes

with amenable G, or to covering spaces with amenable deck transformation group.

In this section, we remedy the lack of Ore localizations for non-amenable groups by

introducing the Atiyah Conjecture. Originally, this conjecture made predictions about the

possible values of L2 -Betti numbers. For us it will be relevant that groups satisfying the

Atiyah Conjecture admit an embedding of their integral group ring into a skew-field D(G),

and that this skew-field can be used in the computation of L2 -Betti numbers instead of

the group von Neumann algebra N (G). We can then invoke almost without change the

machinery presented in Section 2.3 in order to define a new set of norms on the first

cohomology of 3-manifolds and 2-complexes.

This section follows [FL16a, Chapter 3] to a great extent.

Conjecture 3.18 (Atiyah Conjecture). A torsion-free group G satisfies the Atiyah Con-
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jecture (with rational coefficients) if for any matrix A ∈Mm,n(QG) we have

dimN (G)

(
ker(rA : N (G)m → N (G)n)

)
∈ Z.

Here is a short summary of what is known about the Atiyah Conjecture.

Theorem 3.19 (Results on the Atiyah Conjecture). (1) If G is a torsion-free group sat-

isfying the Atiyah Conjecture, then each subgroup of G satisfies the Atiyah Conjecture.

(2) Let C be the smallest class of groups containing all free groups and which is closed

under directed unions as well as extensions with elementary amenable groups. If G is

a torsion-free group lying in C , then G satisfies the Atiyah Conjecture.

(3) Let M be an admissible 3-manifold which is not a closed graph manifold or which

admits a Riemannian metric of non-positive sectional curvature. Then π1(M) is

torsion-free, belongs to the class C , and hence satisfies the Atiyah Conjecture.

Proof. (1) This is [Lüc02, Theorem 6.29 (2)].

(2) This is due to Linnell [Lin93].

(3) This is explained in [FL16a, Theorem 3.2 (3)].

We cannot directly work with the Atiyah Conjecture in the form stated above. We now

work out a reformulation suitable in our context, which relies on the following objects.

Definition 3.20 (U(G), D(G) and R(G)). Let U(G) denote the algebra of operators

affiliated to N (G), see [Lüc02, Chapter 8]. Algebraically, this is the Ore localization of

N (G) with respect to the set of weak isomorphisms, see [Lüc02, Theorem 8.22 (1)].

Let D(G) be the smallest subring of U(G) which contains QG and is division closed,

meaning that every element of D(G) which is a unit in U(G) is already a unit in D(G).

Let R(G) be the smallest subring of U(G) which contains QG and is rationally closed,

meaning that any square matrix over R(G) which becomes invertible over U(G) is already

invertible over R(G).

Thus we obtain a rectangle of inclusions

QG

��

// N (G)

��
D(G) // R(G) // U(G).

Example 3.21. In the case G = Zn the above rectangle specializes to

Q[u±1 , ..., u
±
n ]

��

// L∞(Tn)

��
Q(u±1 , ..., u

±
n ) // L(Tn),

where Q[Zn] = Q[u±1 , ..., u
±
n ] denotes the Laurent polynomial ring in n variables, D(Zn) =

R(Zn) ∼= Q(u±1 , ..., u
±
n ) denotes the field of fractions thereof, N (Zn) ∼= L∞(Tn) denotes

the algebra of (equivalence classes of) essentially bounded measurable functions Tn → C ∪
{∞} on the n-torus, and U(Zn) ∼= L(Tn) denotes the algebra of (equivalence classes of)

measurable functions Tn → C. This follows from Lemma 3.23 (2) below and [Lüc02,

Example 1.4 and Example 8.11].
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Using these rings we have the following result.

Proposition 3.22. A torsion-free group G satisfies the Atiyah Conjecture if and only if

D(G) is a skew-field. In this case, we have D(G) = R(G).

Proof. See [Lüc02, Lemma 10.39].

It turns out that for the class of amenable groups we have been working with this skew

field before (see also Lemma 2.5).

Lemma 3.23 (D(G) of amenable groups). (1) Let G be a torsion-free elementary amenable

group. Then G satisfies the Atiyah Conjecture.

(2) Let G be a torsion-free amenable group satisfying the Atiyah Conjecture. Then QG
satisfies the Ore condition with respect to T = QGr {0} and there is an isomorphism

of skew-fields

T−1QG ∼= D(G).

In particular, D(G) is flat over QG.

Proof. (1) This is a special case of Theorem 3.19 (2).

(2) QG satisfies the Ore condition by [Lüc02, Example 8.16]. Recalling the notion

of division closure, it is then easy to see that the inclusion QG → D(G) localizes to an

isomorphism T−1QG
∼=−−→ D(G).

The following theorem explains how D(G) and twisted Laurent polynomial rings over

skew-fields and crossed products (see Section 2.3.1) enter the context of twisted L2 -Euler

characteristics. It will play a crucial role in the rest of this thesis.

Theorem 3.24 (Structure of D(G) and L2 -Betti numbers). Let G be a torsion-free group

satisfying the Atiyah Conjecture.

(1) Let µ : G → H be an epimorphism onto a free-abelian group and denote its kernel by

K . Then the structure maps of the crossed product ZK ∗ H ∼= ZG of Example 2.4

extend to D(K), the resulting crossed product D(K) ∗ H satisfies the Ore condition

with respect to T = (D(K) ∗H)r {0}, and there is a D(K)-isomorphism

T−1(D(K) ∗H) ∼= D(G).

If H is infinite cyclic, then D(K) ∗H is isomorphic to the ring D(K)t[u
±] of twisted

Laurent polynomials.

(2) Let C∗ be a projective ZG-chain complex. Then

dimN (G)Hn(N (G)⊗ZG C∗) = dimD(G)Hn(D(G)⊗ZG C∗)

(3) Let ϕ : G → Z be an epimorphism with kernel K . Let C∗ be a finitely generated

projective ZG-chain complex such that

dimN (G)Hn(N (G)⊗ZG C∗) = dimD(G)Hn(D(G)⊗ZG C∗) = 0.

Denote by i∗C∗ the ZK -chain complex obtained from C∗ by restriction along the

inclusion i : K → G. Then

dimN (K)Hn(N (K)⊗ZK i∗C∗) = dimD(K)Hn(D(K)⊗ZK i∗C∗)

= dimD(K)Hn(D(K)t[u
±]⊗ZG C∗),
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and this common value is finite.

Proof. This is [FL16a, Theorem 3.6]. In order to explain the appearance of twisted Laurent

polynomial rings, we repeat the proof of part (3).

The first equality stated there is an instance of part (2). The second equality

dimD(K)Hn(D(K)⊗ZK i∗C∗) = dimD(K)Hn(D(K)t[u
±]⊗ZG C∗)

follows immediately from the D(K)-chain isomorphism

D(K)⊗ZK i∗C∗ ∼= D(K)t[u
±]⊗ZG C∗.

It remains to prove that this common value is finite. The ring D(K)t[u
±] is a non-

commutative PID (i.e., without zero-divisors and every left/right ideal is a principal left/right

ideal) by [Coc04, Proposition 4.5], so an analogue of the structure theorem for modules over

PIDs [Coc04, Theorem 5.1] provides an isomorphism

Hn(D(K)t[u
±]⊗ZG C∗) ∼= D(K)t[u

±]r ⊕
s⊕
i=1

D(K)t[u
±]/(pi)

for some natural numbers r, s and p1, ..., ps ∈ D(K)t[u
±]. By part (1), D(G) is flat over

D(K)t[u
±]. Moreover, D(G) ⊗D(K)t[u±] D(K)t[u

±]/(pi) = 0. The acyclicity assumption

implies

r = dimD(G)Hn(D(G)⊗ZG C∗) = 0.

Since each D(K)t[u
±]/(pi) is a finite-dimensional D(K)-module, Hn(D(K)t[u

±]⊗ZGC∗) is

a finite-dimensional D(K)-module.

Definition 3.25 (L2 -acyclic Atiyah pair). Let X be a finite connected CW-complex. Let

π1(X)
µ−−→ G

ϕ−−→ Z be group homomorphisms. The pair (µ, ϕ) is an L2 -acyclic Atiyah pair

if the G-covering associated to µ is L2 -acyclic, and G is a torsion-free group satisfying the

Atiyah Conjecture.

This notion is convenient in the context of twisted L2 -Euler characteristics for the

following reason.

Lemma 3.26. Let X be a finite connected CW-complex. If (µ, ϕ) is an L2 -acyclic Atiyah

pair, then X is (µ, ϕ)-L2 -finite and χ(2)(X;µ, ϕ) is an integer.

Proof. This follows by combining Lemma 3.17 and Theorem 3.24 (3).

3.5.3 Relation to higher-order Alexander norms. We show that the theory of

twisted L2 -Euler characteristics covers the Alexander norms δ(X;µ) of Section 2.3.

Lemma 3.27 (Twisted L2 -Euler characteristics of 3-manifolds and 2-complexes). Let X

be an admissible 3-manifold or a finite connected 2-complex with χ(X) = 0. Let (µ, ϕ) be

an L2 -acyclic Atiyah pair such that ϕ is surjective and ϕ◦µ is neither trivial nor injective.

Let X → X be the G-covering associated to µ. Let K ⊆ G be the kernel of ϕ and denote

by i : K → G the inclusion.

Then we have for any n 6= 1

b(2)n (i∗X;N (K)) = dimD(K)Hn(D(K)t[u
±]⊗ZG C∗(X)) = 0
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and hence

χ(2)(X;µ, ϕ) = −b(2)1 (i∗X;N (K)) = −dimD(K)H1(D(K)t[u
±]⊗ZG C∗(X)).

Proof. For 3-manifolds, this is [FL16a, Theorem 5.5]. The case of 2-complexes is completely

analogous.

Remark 3.28. Instead of demanding bn(X;N (G)) = 0 for all n ≥ 0 it would suffice to

require b1(X;N (G)) = 0.

Corollary 3.29 (Alexander norms and twisted L2 -Euler characteristics). Let X be an

admissible 3-manifold or a finite connected 2-complex with χ(X) = 0. Let µ : π1(X) → G

be a large epimorphism onto a torsion-free elementary amenable group and ϕ : G→ Z be an

epimorphism.

Then (µ, ϕ) is an L2 -acyclic Atiyah pair if and only if Hn(X;Q(G)) vanishes for all

n ≥ 0, and in this case we have

δ(X;µ)(ϕ) = −χ(2)(X;µ, ϕ).

Proof. The group G satisfies the Atiyah Conjecture by Lemma 2.5. In the notation of

Section 2.3 we have isomorphisms Q(G) ∼= D(G) and Q(K) ∼= D(K) by Lemma 3.23. By

Theorem 3.24 (2) we also have

b(2)n (X;N (G)) = dimD(G)Hn(D(G)⊗ZG C∗(X)) = dimQ(G)Hn(X;Q(G)).

Hence (µ, ϕ) is an L2 -acyclic Atiyah pair if and only if Hn(X;Q(G)) vanishes for all n ≥ 0.

The equality then follows by comparing Definition 2.7 with Lemma 3.27.

3.5.4 Relation to the Thurston norm. The relation of twisted L2 -Euler charac-

teristics to the Thurston norm is examined in [FL16a]. We collect the results proved there

in one single theorem. This also highlights the striking similarity with Theorem 3.14 about

the degree of twisted L2 -torsion functions and the Thurston norm.

Theorem 3.30 (Twisted L2 -Euler characteristics and the Thurston norm). Let M 6= S1×
D2 be an admissible 3-manifold. Then:

(1) (Inequality of χ(2) and Thurston norm) Let (µ, ϕ) be an L2 -acyclic Atiyah pair. Then

M is (µ, ϕ)-L2 -finite and we have

−χ(2)(M ;µ, ϕ) ≤ xM (ϕ ◦ µ).

(2) (Equality for quasi-fibered classes) Let π1(M)
µ−−→ G

ν−−→ H1(M)f be a factorization

of the canonical projection such that G is a torsion-free group satisfying the Atiyah

Conjecture. If ϕ ∈ Hom(H1(M)f ,Z) is quasi-fibered, then (µ, ϕ ◦ ν) is an L2 -acyclic

Atiyah pair and we have

−χ(2)(M ;µ, ϕ ◦ ν) = xM (ϕ).

(3) (Equality of χ(2) and Thurston norm) Assume that M is not a closed graph manifold.

Then the canonical projection factors into epimorphisms π1(M)
α−−→ Γ

β−−→ H1(M)f
with Γ a virtually finitely generated free-abelian group such that:

If π1(M)
µ−−→ G

ν−−→ Γ is a factorization of α such that G is a torsion-free group

satisfying the Atiyah Conjecture, then for any ϕ ∈ Hom(H1(M)f ,Z) the pair (µ, ϕ ◦
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β ◦ ν) is an L2 -acyclic Atiyah pair and we have

−χ(2)(M ;µ, ϕ ◦ β ◦ ν) = xM (ϕ).

Proof. (1) is [FL16b, Theorem 4.1].

(2) is [FL16b, Theorem 6.19].

(3) is [FL16b, Theorem 0.4]. It is noteworthy that the proof uses the work of Agol,

Liu, Przytycki-Wise, and Wise on the Virtual Fibering Conjecture [Ago08, Ago13, Liu13,

PW12, PW14, Wis12a, Wis12b]. Roughly speaking, their work implies that virtually every

cohomology class of M is quasi-fibered. Then one can take advantage of part (2).

3.5.5 Relation to twisted L2 -torsion functions. In view of Theorem 3.14 and

Theorem 3.30 it seems natural to compare the degree of twisted L2 -torsion functions and

twisted L2 -Euler characteristics. The following theorem establishes this at least for certain

coverings.

Theorem 3.31 (Twisted L2 -torsion functions and twisted L2 -Euler characteristics). Let

X be an admissible 3-manifold or a finite connected 2-complex with χ(X) = 0. Let

µ : π1(X) → G be a homomorphism to a torsion-free, elementary amenable, countable,

residually finite group such that the G-covering X → X associated to µ is L2 -acyclic. Then

for any group homomorphism ϕ : G → Z the space X is (µ, ϕ)-L2 -finite, X is ϕ-twisted

det-L2 -acyclic, and we have

χ(2)(X;µ, ϕ) ≤ deg ρ(2)(X;µ, ϕ).

Proof. This is stated in [FL16a, Theorem 9.1] for admissible 3-manifolds, but not proved. In

order to justify that the statement extends to finite connected 2-complexes with vanishing

Euler characteristic, we include here a rough outline of the argument.

Given an endomorphism f : ZGn → ZGn we denote by el(f) the chain complex

...→ 0→ ZGn f−−→ ZGn → 0→ ....

where the non-trivial chain modules are concentrated in degree 0 and 1.

Using Remark 3.1 one computes that for an element of infinite order g ∈ G we have

deg ρ(2)(el(rg−1);ϕ) = |ϕ(g)| = χ(2)(el(rg−1);N (G), ϕ). (3.1)

(Compare also the proof of Corollary 6.21.) Moreover, for any non-trivial element x ∈ ZG
one has the inequality

deg ρ(2)(el(rx);ϕ) ≤ χ(2)(el(rx);N (G), ϕ) (3.2)

by [Lüc15, Theorem 6.7 (2)]. The presence of the degree function on D(kerϕ)t[u
±] allows

us to show that the Dieudonné determinant of a matrix A ∈ Mn,n(ZG) which becomes

invertible over D(G) can be represented by an element of the form x · y−1 for some x ∈ ZG
and y ∈ Z kerϕ. (This will also be explained and used in the proof of Theorem 5.7.) From

this and (3.2) we deduce

deg ρ(2)(el(rA);ϕ) ≤ χ(2)(el(rA);N (G), ϕ). (3.3)
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The chain complex of X is homotopic to one of the form

0→ ZG
∏
µ(g′i)−1−−−−−−−→ ZGn A−−→ ZGn

⊕
µ(gi)−1−−−−−−−→ ZG→ 0

if X is a closed 3-manifold, or homotopic to one of the form

0→ ZGn−1 A−−→ ZGn
⊕
µ(gi)−1−−−−−−−→ ZG→ 0

in the other cases (also compare Lemma 6.8). In the latter case one has a short exact

sequence of L2 -acyclic ZG-chain complexes

0→ el(µ(gi)− 1)→ C∗(X)→ Σ el(Ai)→ 0,

were Ai is obtained from A by deleting the i-th column. Thus we may apply the additivity

of both L2 -torsion functions and twisted L2 -Euler characteristics, (3.1) and (3.3) to deduce

χ(2)(X;µ, ϕ) = χ(2)(C∗(X);N (G), ϕ)

= χ(2)(el(rµ(gi)−1);N (G), ϕ) + χ(2)(Σ el(rµ(Ai));N (G), ϕ)

≤ deg ρ(2)(el(rµ(gi)−1);ϕ) + deg ρ(2)(Σ el(rµ(Ai));ϕ)

= deg ρ(2)(X;µ, ϕ).

The argument for the case of a closed 3-manifold is similar.

3.6 Universal L2-torsion

This section presents the main aspects of Friedl-Lück’s definition and investigation of their

universal L2 -torsion [FL16b]. We are led to the notion of universal L2 -torsion and some of

its features by considering the following three hints.

• All previous L2 -torsion invariants share identical sets of basic properties which were

proved case by case. But if these invariants (and all other L2 -torsion invariants) came

from one universal L2 -torsion invariant, then these properties are in fact encoded in

the properties of the universal L2 -torsion invariant.

• Torsion invariants such as Whitehead or Reidemeister torsion are defined for chain

complexes satisfying an appropriate contractibility condition, and they take values in

certain K1 -groups whose generators reflect that contractibility condition. Since the

L2 -torsion invariants so far obtained their best behaviour only for L2 -acyclic chain

complexes, this seems to be the right notion of contractibility in the L2 -setting. As

generators of the modified K1 -group, it is thus natural to take morphisms ZGn → ZGn

which after passing to L2(G) have kernel and cokernel of vanishing von Neumann

dimension. Since this is equivalent to being a weak isomorphism, the suitable K1 -group

will be called weak K1 -group and denoted by Kw
1 (ZG).

• We have seen in Corollary 3.29 that twisted L2 -Euler characteristics of admissible

spaces can be viewed as a generalization of higher-order Alexander norms. On the

other hand, we have seen in Section 2.3 that these norms can uniformly be described in

terms of polynomial degrees of the Reidemeister torsion of the chain complex D(G)⊗ZG
C∗(X). The same description applies to twisted L2 -Euler characteristics. The direct

passage from the universal L2 -torsion of C∗(X) to its twisted L2 -Euler characteristics
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should therefore factor over the Reidemeister torsion of D(G) ⊗ZG C∗(X). In other

words, there should be a homomorphism Kw
1 (ZG) → K1(D(G)) mapping one to the

other.

This program will now be made explicit.

3.6.1 A universal L2 -torsion invariant. A short exact sequence of based free ZG-

modules

0→ (M ′, [B′])
i−−→ (M, [B])

p−−→ (M ′′, [B′′])→ 0

is based exact if i(B′) ⊆ B and p maps B r i(B′) bijectively to B′′ (up to sign).

Definition 3.32 (L2 -torsion invariant). An (additive) L2 -torsion invariant is a pair (A, a)

consisting of an abelian group A and an assignment that associates to any finite based free

L2 -acyclic ZG-chain complex C∗ an element a(C∗) ∈ A subject to the conditions that

a(...→ 0→ ZG ±id−−→ ZG→ 0→ ...) = 0

and for any based exact sequence 0 → C∗ → D∗ → E∗ → 0 of finite based free L2 -acyclic

ZG-chain complexes we have

a(D∗) = a(C∗) + a(E∗).

An additive L2 -torsion invariant (U, u) is universal if for every additive L2 -torsion in-

variant (A, a) there is exactly one homomorphism f : U → A such that we have f(u(C∗)) =

a(C∗) for any C∗ in question.

Since we have used the term L2 -torsion invariant lavishly so far, we now explicitly argue

that all previous invariants indeed fit into this framework.

Example 3.33. (1) The L2 -torsion of Section 3.2 is given by the group R and the

assignment

C∗ 7→ ρ(2)(Λ(C∗);N (G)).

(2) The twisted L2 -torsion of Section 3.3 is given by the group Hom(RepC(H1(G)f ),R)

and the assignment

C∗ 7→
(

[V ] 7→ ρ(2)(Λ(C∗);N (G), V )
)
.

Here RepC(G) denotes the representation ring of finite-dimensional complex represen-

tations of a group G whose group structure comes from the direct sum.

(3) The twisted L2 -torsion function of Section 3.4 is given by Map(H1(G;R),Fun(R>0,R)/ ∼)

and the assignment

C∗ 7→
(
ϕ 7→

(
t 7→ ρ(2)

(
Λ(ηϕ∗Ct(C∗))

)))
.

Here Fun(R>0,R)/ ∼ denotes the set of functions R>0 → R up to the equivalence

relation given in Definition 3.7, equipped with pointwise addition.

(4) The twisted L2 -Euler characteristic of Section 3.5 is given by the group Map(H1(G;Z),Z)

and the assignment

C∗ 7→
(
ϕ 7→ χ(2)(C∗;N (G), ϕ)

)
.
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Definition 3.34 (The group K̃w,ch
1 (ZG)). Given an endomorphism f : ZGn → ZGn we

denote by el(f) the elementary chain complex associated to f

...→ 0→ ZGn f−−→ ZGn → 0→ ....

where the non-trivial chain modules are concentrated in degree 0 and 1.

Let K̃w,ch
1 (ZG) be the abelian group given in terms of generators and relations as follows.

Generators are finite based free L2 -acyclic ZG-chain complexes C∗ subject to the relations

that [el(±id)] = 0, and whenever 0→ C∗ → D∗ → E∗ → 0 is a based short exact sequence

of such complexes, then

[D∗] = [C∗] + [E∗].

The following is obvious.

Lemma 3.35 (Universal L2 -torsion invariant). The group K̃w,ch
1 (ZG) together with the

assignment C∗ 7→ [C∗] is a universal L2 -torsion invariant.

Next we work towards a more tractable model of the universal L2 -torsion invariant which

mimics Whitehead and Reidemeister torsion.

3.6.2 A better universal L2 -torsion invariant. The hints given at the beginning

of this chapter motivate the following definition.

Definition 3.36 (Weak K1 -groups). Let G be a group. Define the weak K1 -group Kw
1 (ZG)

as the abelian group whose generators [f ] are ZG-maps f : ZGn → ZGn such that Λ(f)

is a weak isomorphism and the following relations: If f, g : ZGn → ZGn are two ZG-maps

such that Λ(f) and Λ(g) are weak isomorphisms, then Λ(g ◦ f) is a weak isomorphism

[Lüc02, Lemma 3.37 (1)] and we require

[g ◦ f ] = [f ] + [g].

If f : ZGm → ZGm, g : ZGn → ZGn, h : ZGm → ZGn are ZG-maps such that Λ(f) and

Λ(g) are weak isomorphisms, then we require the relation[(
f h

0 g

)]
= [f ] + [g].

This makes sense since the matrix on the left-hand side induces a weak isomorphism by

[Lüc02, Lemma 3.37 (2)].

Define the reduced weak K1 -group K̃w
1 (ZG) as the quotient of Kw

1 (ZG) by the subgroup

{[±id : ZG→ ZG]} and the weak Whitehead group Whw(G) as the quotient of Kw
1 (ZG) by

the subgroup {[r±g : ZG→ ZG] | g ∈ G}.

By passing from functional analysis to algebra, we can rephrase the generators of Kw
1 (ZG)

in a more algebraic way as follows.

Lemma 3.37. Given a ZG-map f : ZGn → ZGn , the following statements are equivalent:

(1) f induces a weak isomorphism L2(G)n → L2(G)n ;

(2) f induces a weak isomorphism N (G)n → N (G)n in the sense of [Lüc02, Definition

6.1];

(3) f induces an isomorphism U(G)n → U(G)n ;
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(4) f induces an isomorphism R(G)n → R(G)n .

Proof. (1) ⇔ (2) follows from [Lüc02, Theorem 6.24].

(2) ⇔ (3) is [Lüc02, Theorem 8.22 (5)].

(3) ⇔ (4) follows directly from the definition of rational closure.

Now there are obvious maps

K1(ZG)→ Kw
1 (ZG)→ K1(R(G)),

K̃1(ZG)→ K̃w
1 (ZG)→ K̃1(R(G)),

Wh(G)→Whw(G)→ K1(R(G))/{[±g] | g ∈ G}.

The reduced weak K1 -group is our candidate for a new model of the universal L2 -torsion.

We now adjust the definition of Whitehead torsion to the L2 -setting in order to define the

invariant itself.

Definition 3.38 (Weak chain contraction). Given a ZG-chain complex, a weak chain

contraction (γ∗, u∗) consists of a ZG-chain map u∗ : C∗ → C∗ and a ZG-chain homotopy

γ∗ : u∗ ' 0∗ such that for all n ∈ Z Λ(un) is a weak isomorphism and γn ◦ un = un+1 ◦ γn .

The next lemma justifies that this is the right contractibility notion when working with

L2 -acyclic chain complexes. It is a partial extension of Lemma 3.37.

Lemma 3.39. Given a finite based free ZG-chain complex C∗ , the following statements are

equivalent:

(1) C∗ is L2 -acyclic;

(2) C∗ admits a weak chain contraction;

(3) The U(G)-chain complex U(G)⊗ZG C∗ is contractible;

(4) The R(G)-chain complex R(G)⊗ZG C∗ is contractible;

Proof. This is proved in [FL16b, Lemma 1.5 and Lemma 1.21] using the combinatorial

Laplace operators of C∗ .

Let (C∗, c∗) be a finite based free L2 -acyclic ZG-chain complex. Let

Cev =
⊕
n∈Z

C2n and Codd =
⊕
n∈Z

C2n+1.

Pick a weak chain contraction (γ∗, u∗) for C∗ which is garantueed to exist by the previous

lemma. Let uodd : Codd → Codd denote the obvious map induced by u∗ and by (uc +

γ)odd : Codd → Cev the map sending x ∈ C2n+1 to u2nc2n+1(x) + γ2n+1(x) ∈ C2n ⊕ C2n+2 .

If f : (M, [B]) → (N, [C]) is a homomorphism of finitely generated based free ZG-

modules such that Λ(f) is a weak isomorphism, then we have |B| = |C| by [Lüc02, Lemma

1.13]. Choosing a bijection b : C → B induces a ZG-isomorphism b : N → M . We then

define the class of f in K̃w
1 (ZG) to be

[f ] = [b ◦ f ].
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Definition 3.40 (Universal L2 -torsion). If C∗ is a finite based free L2 -acyclic ZG-chain

complex, then its universal L2 -torsion ρ
(2)
u (C∗;N (G)) ∈ K̃w

1 (ZG) is defined as

ρ(2)u (C∗;N (G)) = [(uc+ γ)odd]− [uodd]

for some weak chain contraction (γ∗, u∗).

It is proved in [FL16b] that (uc+γ)odd : Codd → Cev induces indeed a weak isomorphism

and that the above definition is independent of the choice of weak chain contraction. The

universal L2 -torsion deserves its name in the following sense.

Theorem 3.41 (Universality of (K̃w
1 (ZG), ρ

(2)
u )). The homomorphisms

ρ(2)u : K̃w,ch
1 (ZG)→ K̃w

1 (ZG), [C∗] 7→ ρ(2)u (C∗;N (G)),

el : K̃w
1 (ZG)→ K̃w,ch

1 (ZG), [f ] 7→ [el(f)]

are well-defined and inverse to each other. In particular, (K̃w
1 (ZG), ρ

(2)
u ) is a universal

L2 -torsion invariant.

Proof. This is [FL16b, Theorem 1.12].

In fact slightly more is true: There are chain versions K̃ch
1 (ZG) and K̃ch

1 (R(G)) of

the usual reduced K1 -group defined like K̃w,ch
1 (ZG) (see Definition 3.34), but replacing

L2 -acyclic with contractible as ZG-chain complex or R(G)-chain complex, respectively.

Then taking the usual (Reidemeister) torsion induces maps τ fitting into the commutative

diagram

K̃ch
1 (ZG)

τ

��

// K̃w,ch
1 (ZG)

ρ(2)u
��

// K̃ch
1 (R(G))

τ

��
K̃1(ZG) //

el

OO

K̃w
1 (ZG)

el

OO

// K̃1(R(G))

el

OO

The horizontal maps are the obvious morphisms. On the right-hand side we refer to

Lemma 3.39 for their existence. The vertical maps upwards are induced by taking the

elementary chain complex, see Definition 3.34. The proof that the two vertical maps on

the left and the two vertical maps on the right are inverse to each other is an adaption of

the proof of Theorem 3.41. The commutativity of the left-hand square is obvious since any

chain contraction γ of a contractible ZG-chain complex gives the weak chain contraction

(γ, id). The commutativity on the right-hand side is the content of the following lemma.

Lemma 3.42. Let C∗ be a finite based free L2 -acyclic ZG-chain complex. Then C∗ ⊗ZG
R(G) is a contractible R(G)-chain complex and the canonical homomorphism i : K̃w

1 (ZG)→
K̃1(R(G)) satisfies

i
(
ρ(2)u (C∗;N (G))

)
= τ(C∗ ⊗ZG R(G)). (3.4)

Proof. The chain complex C∗ ⊗ZG R(G) is contractible by Lemma 3.39.

Let R be any associative ring with 1 and E∗ a finite based free contractible R-chain

complex. If u∗ : E∗ → E∗ is a chain isomorphism and γ∗ : u∗ ' 0∗ is a chain homotopy such

that γn ◦ un = un+1 ◦ γn , then

τ(E∗) = [(uc+ γ)odd)]− [uodd] ∈ K̃1(R). (3.5)

This follows in exactly the same way as the argument leading to [FL16b, Equation (1.8)].
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Now the desired equation (3.4) follows from this by comparing (3.5) with the definition

of universal L2 -torsion.

Finally we mention the following result on the horizontal maps above.

Theorem 3.43 (Kw
1 (ZG) vs. K1(R(G))). Let C be the smallest class of groups which

contains all free groups and is closed under directed unions and extensions with elementary

amenable quotients. Then any torsion-free group G in C satisfies the Atiyah Conjecture,

R(G) = D(G) is a skew-field, and the obvious map

Kw
1 (ZG)→ K1(D(G))

is an isomorphism.

Proof. The first two statements are handled in Theorem 3.19 and Proposition 3.22. The

third is a recent result due to Linnell-Lück [LL16, Theorem 0.1].

3.6.3 Universal L2 -torsion for G-CW-complexes.

Definition 3.44. Let X be a finite free L2 -acyclic G-CW-complex. Its universal L2 -

torsion ρ
(2)
u (X;N (G)) ∈ Whw(G) is defined as the image of ρ

(2)
u (C∗(X);N (G)) under the

projection K̃w
1 (ZG) → Whw(G), where C∗(X) denotes the cellular ZG-chain complex of

X equipped with a cellular basis.

The following list of basic properties taken from [FL16b, Theorem 2.5] implies Theo-

rem 3.3, Theorem 3.10, and Theorem 3.16 by virtue of Theorem 3.41.

Theorem 3.45 (Basic properties of universal L2 -torsion).

(1) (Homotopy invariance) Let f : X → Y be a G-homotopy equivalence of finite free

G-CW-complexes. If X or Y is L2 -acyclic, then both are L2 -acyclic and we have

ρ(2)u (Y ;N (G))− ρ(2)u (X;N (G)) = ζ(τ(f)),

where τ(f) ∈ Wh(G) denotes the Whitehead torsion and ζ : Wh(G) → Whw(G) is

the obvious homomorphism.

(2) (Sum formula) Let

X0

��

// X1

��
X2

// X

be a G-pushout of finite free G-CW-complexes such that the upper horizontal map

is cellular, the left-hand map is an inclusion of G-CW-complexes and X carries the

G-CW-structure induced from the Xi . If Xi for i = 0, 1, 2 is L2 -acyclic, then X is

L2 -acyclic and we have

ρ(2)u (X;N (G)) = ρ(2)u (X1;N (G)) + ρ(2)u (X2;N (G))− ρ(2)u (X0;N (G)).

(3) (Product formula) Let G1 and G2 denote groups and i∗ : Whw(G1)→Whw(G1×G2)

the homomorphism induced from the obvious inclusion i : G1 → G1 × G2 . Let Xi be

finite free Gi -CW-complexes such that X1 is L2 -acyclic. Then X1×X2 is L2 -acyclic

and we have

ρ(2)u (X1 ×X2;N (G1 ×G2)) = χ(X2/G2) · i∗(ρ(2)u (X1;N (G1))).
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(4) (Induction) Let i : H → G be an inclusion of groups and i∗ : Whw(H) → Whw(G)

the induced homomorphism. If X is a finite free L2 -acyclic H -CW-complex, then

i∗X = G×H X is a finite free L2 -acyclic G-CW-complex and we have

ρ(2)u (i∗X;N (G)) = i∗(ρ
(2)
u (X;N (H))).

(5) (Restriction) Let i : H → G be an inclusion of groups with finite index and i∗ : Whw(G)→
Whw(H) the restriction homomorphism. Let X be a finite free G-CW-complex and

i∗X the finite free H -CW-complex obtained from X by restriction. Then i∗X is

L2 -acyclic if and only if X is L2 -acyclic and in this case we have

i∗(ρ(2)u (X;N (G))) = ρ(2)u (i∗X;N (H)).

(6) (Fibrations) Let F
i−−→ E

p−−→ B be a fibration such that F and B are finite CW-

complexes. Let E → E be a G covering and F → F the G-covering obtained from

it by pullback along i. Assume that Wh(G) vanishes. Assume that F is L2 -acyclic.

Then E is up to G-homotopy equivalence a finite free L2 -acyclic G-CW-complex and

we have

ρ(2)u (E;N (G)) = χ(B) · ρ(2)u (F ;N (G)).

(7) (Poincaré Duality) Let M be an orientable n-dimensional manifold with free and

proper G-action. Let w : G→ {±1} denote the orientation homomorphism. Denote by

∗ : Whw(G)→Whw(G) the involution induced from the involution on ZG determined

by ∗(x · g) = x · w(g) · g−1 . If M is L2 -acyclic, then

ρ(2)u (M,∂M ;N (G)) = (−1)n+1 · ρ(2)u (M ;N (G)).

Example 3.46. It is shown in [FL16b, Example 2.7] that for the n-dimensional torus Tn

and any non-trivial homomorphism µ : π1(Tn)→ G to a torsion-free group we have

ρ(2)u (Tn;N (G)) = 0

for the G-covering Tn → Tn associated to µ.

3.7 The L2-torsion polytope

Among the various L2 -torsion invariants presented in this chapter, the L2 -torsion polytope

constructed in this final section stands out as having a somewhat geometric flavour. It takes

values in the Grothendieck group of integral polytopes in certain vector spaces. Unlike L2 -

torsion, twisted L2 -torsion functions and twisted L2 -Euler characteristics, the L2 -torsion

polytope was constructed after the universal L2 -torsion, or to be more precise, in one go by

Friedl- Lück [FL16b]. A forerunner version was examined by Friedl-Tillmann [FT15].

3.7.1 Polytope groups. Let V be a finite-dimensional real vector space. By a polytope

in V we mean a non-empty subset P ⊆ V that is the convex hull of finitely many points.

The Minkowski sum of two polytopes P and Q in V is defined by pointwise addition, i.e.,

P +Q = {p+ q ∈ V | p ∈ P, q ∈ Q}.
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We denote by P(V ) the commutative monoid of all polytopes in V with the Minkowski

sum as addition. It is cancellative, see e.g. [Sch93, Lemma 3.1.8]. Define the polytope group

P(V ) to be the Grothendieck group associated to this commutative monoid. Thus elements

are given by formal differences P −Q of polytopes P,Q ∈ P(V ), and two such differences

P − Q, P ′ − Q′ are equal if and only if P + Q′ = P ′ + Q as subsets in V . There is an

injection of real vector spaces

V → P(V ), v 7→ {v} (3.6)

and we let PT (V ) be the cokernel of this map. The subscript T stands for translation since

two polytopes become identified in PT (V ) if and only if there is a translation on V mapping

one bijectively to the other. Finally, P(V ) carries a canonical involution determined by

reflection about the origin, i.e.,

∗ : P(V )→ P(V ), P 7→ ∗P = {−p | p ∈ P}. (3.7)

This involution descends to PT (V ).

Next we build an integral version of the polytope group. For this, let H be a finitely

generated free-abelian group. A polytope in H ⊗Z R is integral if it is the convex hull of

finitely many points in H , considered as a lattice in H⊗ZR. Denote by P(H) ⊆ P(H⊗ZR)

the submonoid whose elements are integral polytopes. Then the integral polytope group

P(H) is defined as the Grothendieck group of P(H). The map (3.6) restricts to an injection

H → P(H) whose cokernel will be denoted by PT (H). We let PT (H) be the image of the

composition P(H) → P(H) → PT (H), thus PT (H) contains precisely those elements of

PT (H) which can represented by a polytope. The involution (3.7) induces involutions on

P(H) and PT (H) which we continue to denote by ∗.
A homomorphism f : H → H ′ of finitely generated free-abelian groups induces homo-

morphisms

P(f) : P(H)→ P(H ′);

PT (f) : PT (H)→ PT (H ′)

by sending the class of a polytope P to the class of the polytope f(P ). If f is injective, then

both P(f) and PT (f) are easily seen to be injective as well. Thus if G ⊆ H is a subgroup,

then we will always view P(G) (respectively PT (G)) as a subgroup of P(H) (respectively

PT (H)).

Example 3.47. Integral polytopes in Z are just intervals [m,n] ⊆ R starting and ending

at integral points. Thus we have P(Z) ∼= Z2 , where an explicit isomorphism is given by

sending the class [m,n] to (m,n−m). Under this isomorphism, the involution corresponds

to ∗(k, l) = (−l − k, l). Similarly, PT (Z) ∼= Z, where an explicit isomorphism is given by

sending the element [m,n] to n−m. The involution ∗ on PT (Z) is the identity.

We investigate the structure of the various polytope groups defined above in detail in

Chapter 4. At this point, we only use it as the group where another L2 -torsion invariant

takes values in.

3.7.2 The polytope homomorphism. Let G be a torsion-free group satisfying the

Atiyah Conjecture, let H be a finitely generated free-abelian group, and let ν : G → H be

an epimorphism. In this section we follow Friedl-Lück [FL16b, Section 6.2] to construct a

group homomorphism

Pν : Kw
1 (ZG)→ P(H)
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referred to as the polytope homomorphism. Earlier versions of it had at least implicitly been

considered for torsion-free elementary amenable groups [FH07]. The construction proceeds

in multiple steps.

First of all, there is the obvious map

Kw
1 (ZG)→ K1(D(G)). (3.8)

Next we use the non-commutative determinant for skew-fields due to Dieudonné [Die43]

which induces an isomorphism (see [Ros94, Corollary 2.2.6] or [Sil81, Corollary 4.3])

detD(G) : K1(D(G))
∼=−−→ D(G)×ab = D(G)×/[D(G)×,D(G)×]. (3.9)

Let K = ker(ν). Recall from Theorem 3.24 (1) that the crossed product D(K) ∗ H
embeds into D(G) and localizing at T = (D(K)∗H)r{0} induces an isomorphism D(G)

∼=−−→
T−1(D(K) ∗H). This induces an isomorphism

D(G)×ab
∼=−−→ (T−1(D(K) ∗H))×ab, (3.10)

For an element x =
∑
h∈H xh · h ∈ D(K) ∗ H we define its support to be supp(x) =

{h ∈ H | xh 6= 0}. For a subset S ⊆ H we denote by hull(S) ∈ P(H) the convex hull of S

inside H ⊗Z R. By [FL16b, Lemma 6.4], there is a map of monoids

(D(K) ∗H)r {0} → P(H), x 7→ P (x) = hull(supp(x)).

and so we can localize and abelianize to get a map

T−1(D(K) ∗H)×ab → P(H), b−1a 7→ P (a)− P (b). (3.11)

We let

Pν : Kw
1 (ZG)→ P(H) and Pν : D(G)×ab → P(H) (3.12)

be the composition of the maps (3.8), (3.9), (3.10), and (3.11), respectively the composition

of the maps (3.10) and (3.11). They induce maps

Pν : Whw(G)→ PT (H) and Pν : D(G)×ab/{±g | g ∈ G} → PT (H). (3.13)

If G satisfies b1(G) < ∞, then this construction can be applied to the canonical

projection ν = pr: G → H1(G)f . In this case we omit the subscript ν in the above

notation.

3.7.3 The L2 -torsion polytope.

Definition 3.48 (L2 -torsion polytope). Let X be a finite free L2 -acyclic G-CW-complex

such that G is a torsion-free group satisfying the Atiyah Conjecture. Let ν : G→ H be an

epimorphism onto a finitely generated free-abelian group. Then we define the L2 -torsion

polytope of X with respect to ν as the image of the negative of its universal L2 -torsion under

the polytope homomorphism (3.13), i.e.,

P (X;G, ν) = Pν(−ρ(2)u (X;N (G))) ∈ PT (H).

If G satisfies b1(G) <∞ and ν = pr: G→ H1(G)f is the canonical projection, then we

simply write P (X;G) for P (X;G,pr).
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The list of basic properties of the L2 -torsion polytope follows directly from the list

of basic properties of the universal L2 -torsion, see Theorem 3.45. We may also turn the

universal L2 -torsion and the L2 -torsion polytope into invariants of groups. Recall that a

group is of type F if it admits a finite classifying space.

Definition 3.49 (Universal L2 -torsion and L2 -torsion polytope of groups). Let G be an

L2 -acyclic group of type F such that Wh(G) = 0. Then we define the universal L2 -torsion

of G to be

ρ(2)u (G) = ρ(2)u (EG;N (G)) ∈Whw(G).

If, additionally, G satisfies the Atiyah Conjecture, then we define the L2 -torsion polytope

of G as

P (G) = P (EG;G) ∈ PT (H1(G)f ).

Remark 3.50 (Assumptions appearing in Definition 3.49). The assumption Wh(G) =

0 appearing above ensures that the universal L2 -torsion of groups is well-defined, see

Theorem 3.45 (1). Conjecturally, however, this assumption is obsolete: Any group of type

F is torsion-free, and it is conjectured that the Whitehead group of any torsion-free group

vanishes, see [LR05, Conjecture 3]. There is also no counterexample to the Atiyah Conjecture

known. Thus the L2 -torsion polytope is potentially an invariant for all L2 -acyclic groups

of type F .

A forerunner version of the L2 -torsion polytope of groups was examined by Friedl-

Tillmann [FT15] in the special case where G is a torsion-free group determined by a

presentation with two generators, one relation, and b1(G) = 2.

3.7.4 Relation to twisted L2 -Euler characteristics. Given a finitely generated

free-abelian group H , we denote by Map(Hom(H,R),R) the group of continuous maps

Hom(H,R) → R equipped with pointwise addition. A polytope P ⊆ H ⊗Z R induces a

seminorm on Hom(H,R) by

‖ϕ‖P = max{ϕ(p)− ϕ(q) | p, q ∈ P}.

This seminorm behaves well with respect to Minkowski sums in the sense that

‖ϕ‖P+Q = ‖ϕ‖P + ‖ϕ‖Q.

Definition 3.51 (Seminorm homomorphism). The homomorphism

N : P(H)→ Map(Hom(H,R),R), P −Q 7→ ‖ · ‖P − ‖ · ‖Q

is called seminorm homomorphism. It passes to the quotient PT (H) and the induced map

N : PT (H)→ Map(Hom(H,R),R)

is denoted by the same symbol.

Twisted L2 -Euler characteristics can be obtained from the universal L2 -torsion. The

following theorem shows that twisted L2 -Euler characteristics can still be obtained from the

coarser L2 -torsion polytope. It is an extension of Theorem 2.8 (compare also Corollary 3.29).

Theorem 3.52 (L2 -torsion polytope and twisted L2 -Euler characteristics). Let C∗ be a

finite based free L2 -acyclic ZG-chain complex such that G is torsion-free and satisfies the

Atiyah Conjecture. Let ν : G→ H be an epimorphism onto a finitely generated free-abelian
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group. If ϕ : H → Z is an epimorphism, then C∗ is (ϕ ◦ ν)-L2 -finite and we have

N
(
Pν
(
ρ(2)u (C∗;N (G))

))
(ϕ) = χ(2)(C∗;N (G), ϕ ◦ ν).

In particular, the left-hand side depends on ν and ϕ only through the composition ϕ ◦ ν ,

and for a finite free G-CW-complex X we have

N(P (X;G, ν))(ϕ) = −χ(2)(X;N (G), ϕ ◦ ν).

Proof. This is essentially [FL16b, Equality (3.26)]. The argument is illuminating and spreads

also to the paper [FL16a], so it seems worthwhile roughly outlining it.

Let K = ker(ϕ ◦ ν), let i : K → G be the inclusion, and let D(K)t[u
±] ⊆ D(G) be the

twisted Laurent polynomial ring associated to ϕ ◦ ν as in Theorem 3.24 (1).

Step 1: For a matrix A ∈ Mn,n(ZG) that becomes invertible over D(G), or more

generally for a matrix A ∈ Mn,n(D(K)t[u
±]) that becomes invertible over D(G), one first

proves by virtue of the Euclidean function on D(K)t[u
±] given by the degree that the

Dieudonné determinant detD(G)(A) can be represented by an element x ∈ D(K)t[u
±], and

that then

dimD(K)

(
coker

(
rA : D(K)t[u

±]n → D(K)t[u
±]n
))

= dimD(K)

(
coker

(
rx : D(K)t[u

±]→ D(K)t[u
±]
))
.

Step 2: For an element x ∈ D(K)t[u
±], it is a classical fact (and reproved in [FL16a,

Lemma 4.3]) that

dimD(K)

(
coker

(
rx : D(K)t[u

±]→ D(K)t[u
±]
))

= deg(x).

Step 3: For an element x ∈ D(K)t[u
±] ⊆ D(G), it follows right from the definitions that

N(Pϕ◦ν(x))(idZ) = deg(x).

Step 4: A special case of [FL16a, Lemma 6.12] states that

N(Pν(x))(ϕ) = N(Pϕ◦ν(x))(idZ).

Thus the left-hand side depends on ν and ϕ only through the composition ϕ ◦ ν .

Step 5: Combining these facts with Theorem 3.24 (2) and Lemma 3.17, we calculate
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N
(
Pν
(
ρ(2)u (el(rA);N (G))

))
(ϕ)

= N
(
Pν([rA])

)
(ϕ)

= N(Pν(x))(ϕ)

= N(Pϕ◦ν(x))(idZ)

= deg(x)

= dimD(K)

(
coker

(
rx : D(K)t[u

±]→ D(K)t[u
±]
))

= dimD(K)

(
coker

(
rA : D(K)t[u

±]n → D(K)t[u
±]n
))

= dimD(K)

(
H0(D(K)t[u

±]⊗ZG el(rA))
)

= dimD(K)

(
H0(D(K)⊗ZK i∗el(rA))

)
= dimN (K)

(
H0(N (K)⊗ZK i∗el(rA))

)
= χ(2)(i∗el(rA);N (K))

= χ(2)(el(rA);N (G), ϕ ◦ ν).

Step 6: If C∗ is a finite based free L2 -acyclic ZG-chain complex, then the equality

N
(
Pν
(
ρ(2)u (C∗;N (G))

))
(ϕ) = χ(2)(C∗;N (G), ϕ ◦ ν)

now follows from Step 5 and the inverse pair of isomorphisms (see Theorem 3.41)

K̃w,ch
1 (ZG)

ρ(2)u //
K̃w

1 (ZG)
el
oo

which identifies the two models of the universal L2 -torsion invariant.

3.7.5 Relation to the Thurston norm.

Theorem 3.53 (L2 -torsion polytope and the Thurston norm I). Suppose that M 6= S1 ×
D2 is an admissible 3-manifold that is not a closed graph manifold. Then the canonical

projection factors into epimorphisms π1(M)
α−−→ Γ

β−−→ H1(M)f with Γ a virtually finitely

generated free-abelian group such that:

If π1(M)
µ−−→ G

ν−−→ Γ is a factorization of α such that G is a torsion-free group

satisfying the Atiyah Conjecture and b1(G) < ∞, then the G-covering M → M associated

to µ is L2 -acyclic and the composition

Whw(G)
P−−→ PT (H1(G)f )

PT (β◦ν)−−−−−−→ PT (H1(M)f )
N−−→ Map(H1(M ;R),R)

maps −ρ(2)u (M ;N (G)) to the Thurston norm xM .

Proof. This is [FL16a, Theorem 3.24] and follows for surjective integral classes directly from

Theorem 3.30 (3) and Theorem 3.52. The homogeneity and continuity of seminorms then

imply the general case.

Without explaining the notion of dualizing polytopes, we mention the following main

result of Friedl-Lück’s theory.

Theorem 3.54 (L2 -torsion polytope and the Thurston norm II). Let M 6= S1 × D2 be

an admissible 3-manifold such that π1(M) satisfies the Atiyah Conjecture. Let T (M) ⊆
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H1(M ;R) be the unit norm ball of the Thurston norm and let T (M)∗ ⊆ H1(M ;R)∗ =

H1(M ;R) be its dual. Then T (M)∗ is an integral polytope and we have in PT (H1(M)f )

the equality

T (M)∗ = P (M̃ ;π1(M)).

Proof. This is [FL16a, Theorem 3.35] and we include again a short summary.

One has almost by definition that the seminorm map

N : PT (H1(M)f )→ Map(H1(M ;R),R)

sends T (M)∗ to xM and that T (M)∗ = ∗T (M)∗ . The same is true for P (M̃ ;π1(M)) by

the deep Theorem 3.53 and Poincaré duality of the universal L2 -torsion (see Theorem 3.45

(7)). As we shall see in Lemma 4.16 we have in PT (H1(M)f ) the equality of subgroups

ker(N) = ker(id + ∗).

This implies that N restricted to the subgroup ker(id− ∗) is injective, and hence

T (M)∗ = P (M̃ ;π1(M)).
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4 The Integral Polytope Group

The results of this chapter are summarized in the following theorem.

Theorem 4.1 (Structure of the integral polytope group). Let H be a finitely generated

free-abelian group and let V be a real finite-dimensional vector space. Then:

(1) (Symmetric elements) We have

ker
(
id− ∗ : P(H)→ P(H)

)
= im

(
id + ∗ : P(H)→ P(H)

)
.

(2) (Antisymmetric elements) We have

ker
(
id + ∗ : P(H)→ P(H)

)
= im

(
id− ∗ : P(H)→ P(H)

)
and

ker
(
id + ∗ : PT (H)→ PT (H)

)
= im

(
id− ∗ : PT (H)→ PT (H)

)
.

(3) (Basis) There are sets B1 ⊆ B2 ⊆ ... ⊆ Bn ⊆ PT (H) such that Bm \ Bm−1 contains

only polytopes of dimension m and Bm ∩ PT (G) is a basis for PmT (G) for every pure

subgroup G ⊆ H and 1 ≤ m ≤ n. In particular, Bn is a basis for PT (H).

Moreover, if A ⊆ H denotes a basis of H and B′n ⊆ P(H) is a set of representatives

for Bn ⊆ PT (H), then A ∪ B′n is a basis for P(H).

(4) (Involution as face Euler characteristic) For any polytope P ⊆ V we have in P(V )

∗P = −
∑

F∈F(P )

(−1)dim(F ) · F,

where F(P ) denotes the set of faces of P (including P itself).

A few explanations are in order. The integral and real polytope groups P(H) and P(V )

as well as their quotients PT (H) and PT (V ) have been introduced in Section 3.7.1. Recall

that we denote by ∗ : P(H) → P(H) and ∗ : P(V ) → P(V ) the involution induced by

reflection about the origin, i.e., ∗P = {−p | p ∈ P}. Given a natural number m we denote

by PmT (H) the subgroup of PT (H) generated by the polytopes of dimension at most m. A

subgroup G ⊆ H is pure if there is a linear subspace U ⊆ H ⊗Z R such that G = H ∩ U .

Equivalently, G is not properly contained in a subgroup G′ ⊆ H of the same rank. By

considering the simple example H = Z, it is easy to see that the statement of part (3) needs

to be restricted to pure subgroups.

The significant role of the integral polytope group in the context of universal L2 -torsion

combined with an almost complete lack of information about its structure was the starting

point for proving Theorem 4.1. Part (2) directly contributes towards the proof of Propo-

sition 5.19 about the L2 -torsion polytope of amenable groups. Before going into the proof

of Theorem 4.1 we first point out precise motivations as well as conclusions of the various

parts of the theorem.
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Chapter 4. The Integral Polytope Group

Remark 4.2. The inclusions ⊇ are easily seen in both (1) and (2). The analogues of (1)

and (2) for the real polytope group P(V ) are trivially true.

Part (1) is established in [CFF17] as a negative result in an approach to define a knot

concordance invariant. We emphasize that for the translation quotient we have a proper

inclusion

im
(
id− ∗ : PT (H)→ PT (H)

)
 ker

(
id + ∗ : PT (H)→ PT (H)

)
as can easily seen for H = Z.

Part (2) is motivated by the question how different integral polytopes P and Q can look

if they induce the same seminorm on Hom(H,R), see Lemma 4.16.

Part (3) of Theorem 4.1 is motivated by the following abstract argument that P(H) is

a free-abelian group. As will be pointed out in (4.11) below, P(H) embeds into a countable

product of infinite cyclic groups. On the other hand, a theorem of Specker [Spe50] states

that any such countable subgroup is free-abelian. However, this argument does not yield

any geometric insight into the structure of the polytope group. Our basis on the other hand

is explicit and geometrically tangible. The proof of part (3) will apply almost verbatim to

produce a basis of the real vector space P(V ). The only wording that needs to be changed

in the formulation is to replace pure subgroup by linear subspace.

Part (4) of Theorem 4.1 restricts also to the integral polytope group since the faces of

an integral polytope are integral. The following corollary of part (4) can be seen as a com-

binatorial reminiscence of the fact that the Euler characteristic of a closed odd-dimensional

manifold vanishes and the Euler characteristic of a closed even-dimensional manifold which

bounds a compact manifold is even.

Corollary 4.3. Let P ⊆ V be a symmetric polytope. Then we have in P(V )

∑
F∈F(P )
F 6=P

(−1)dim(F ) · F =

{
0, if dim(P ) is odd;

−2 · P, if dim(P ) is even.

If we define the face Euler characteristic of a polytope P ⊆ V as

χF (P ) =
∑

F∈F(P )

(−1)dim(F ) · F ∈ P(V ),

then we obtain the following second consequence of Theorem 4.1 (4).

Corollary 4.4. For polytopes P,Q ⊆ V we have

χF (P +Q) = χF (P ) + χF (Q).

The last three parts of Theorem 4.1 appear as the main results in [Fun16].

Convention 4.5. Throughout this chapter, z ∈ Rn will denote the point (0, ..., 0, 1), Z ⊆ Rn
will denote the 1-dimensional polytope with vertices 0 and z , and z⊥ will denote the

orthogonal complement of z with respect to the standard inner product.

Given an element x ∈ Rn , we will consistently refer to its k -th coordinate by xk .

Given a subset S ⊆ Rn , the convex hull of S will be denoted by hull(S).
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4.1. Algebra vs. geometry I: The partition relation

4.1 Algebra vs. geometry I: The partition relation

In this section we will use the geometry of polytopes as our main (and only) tool to

conveniently manipulate Minkowski sums.

Definition 4.6 (Faces and face maps). Let ϕ ∈ Hom(V,R) and let P ⊆ V be a polytope.

Then we call

Fϕ(P ) = {p ∈ P | ϕ(p) = max{ϕ(q) | q ∈ P}}

the face of P in ϕ-direction. A subset F ⊆ P is called a face if Fϕ(P ) = F for some

ϕ ∈ Hom(V,R). The codimension of a face F ⊆ P is

codim(F ⊆ P ) = dim(P )− dim(F ).

A face is a polytope in its own right, and it is straightforward to check that Fϕ(P + Q) =

Fϕ(P ) + Fϕ(Q) for any two polytopes P and Q. These two observations imply that we

obtain a homomorphism

Fϕ : P(V )→ P(V ), P 7→ Fϕ(P ) (4.1)

that we call face map (in ϕ-direction).

It is allowed to take ϕ = 0 in the above definition, where we get Fϕ(P ) = P as the only

codimension 0 face. The boundary ∂P is the union of all faces F ⊆ P of codimension at

least 1.

Remark 4.7. If H is a finitely generated free-abelian group and P ⊆ VH = H ⊗Z R is

an integral polytope, then it suffices to consider integral covectors to describe all faces of

P . More precisely, for every face F of P there exists ϕ in the subgroup Hom(H,Z) ⊆
Hom(H,R) = HomR(VH ,R) such that F = Fϕ(P ).

Definition 4.8 (Hyperplanes and halves). A hyperplane H ⊆ V is a subset of the form

H = {x ∈ V | ϕ(x) = c} for some ϕ ∈ Hom(V,R) and c ∈ R. A hyperplane in Rn is flat if

it is a translate of z⊥ , and a polytope in Rn is flat if it lies in a flat hyperplane.

Consider a hyperplane H = {x ∈ V | ϕ(x) = c} and a subset S ⊆ V . Then the two

halves of S with respect to H are defined as

S+ = {s ∈ S | ϕ(s) ≥ c}
S− = {s ∈ S | ϕ(s) ≤ c}.

Of course, ϕ is unique only up to a scalar and so the subscripts in the notation are

arbitrary. Note that a half of a polytope is either empty, a face of P or a subpolytope of

codimension 0. The geometric process of cutting P along H into two halves yields the

following algebraic equation.

Lemma 4.9 (Cutting relation). Let P ⊆ V be a polytope and let P+ and P− denote its

halves with respect to a hyperplane H ⊆ V . Then we have

P+ + P− = P + (P ∩H).

Proof. We begin with the inclusion ⊆, so let p ∈ P+ and q ∈ P− . Then there exists a

0 ≤ t ≤ 1 such that h = t · p + (1 − t) · q lies in H . Let r = (1 − t) · p + t · q . Since P is

convex, we have h, r ∈ P and we can write p+ q = r + h ∈ P + (P ∩H).
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Chapter 4. The Integral Polytope Group

For the reverse inclusion, let p ∈ P and h ∈ P ∩H . Without loss of generality suppose

that p ∈ P+ . We have h ∈ P ∩H ⊆ P− and hence p+ h ∈ P+ + P− .

While constructing a basis for the integral and real polytope group, we will be required

to decompose a polytope also into more complicated subpolytopes. The following notion,

adapted from [Kho97, Paragraph 1], fits nicely into this context.

Definition 4.10 (Partition). A partition of a polytope P ⊆ V is a finite set P of polytopes

in V such that

(1)
⋃
Q∈P Q = P ;

(2) If Q ∈ P and F ⊆ Q is a face, then Q ∈ P ;

(3) If Q1, Q2 ∈ P and Q1 ∩Q2 6= ∅, then Q1 ∩Q2 is a face in both Q1 and Q2 .

The elements of P that have the same dimension as P are called the pieces of P . For

notational convenience that will become clear in Proposition 4.12, let

P∂ = {Q ∈ P | Q 6⊆ ∂P}.

Example 4.11. (1) Given a polytope P , let F(P ) denote the set of all faces of P

(including the codimension 0 face P ). Then F(P ) is a partition of P .

(2) Let P ⊆ V be a polytope and let H1, ...,Hm ⊆ V be a collection of hyperplanes. Let

P be the set that contains the closure of every connected component of P \
⋃m
j=1Hj ,

together with all its faces. It is easy to see that P is indeed a partition of P , which

we call the partition of P with respect to H1, ...,Hm . If P ∩
⋃m
j=1Hj ⊆ ∂P , then we

obtain the trivial partition of part (1) as a special case.

The next lemma is a direct analogue of [Kho97, Proposition 3] for the polytope group

although the proof is of entirely different nature.

Proposition 4.12 (Partition relation). Let P ⊆ V be a polytope and P be a partition of

P . Then we have in P(V ) the equation

P =
∑
Q∈P∂

(−1)codim(Q⊆P ) ·Q.

Proof. We assume without loss of generality that P is full-dimensional, otherwise consider

the smallest subspace of V containing P .

We first deal with the special case that P is the partition of P with respect to a collection

of hyperplanes H1, ...,Hm ⊆ V as in Example 4.11 (2). We proceed by induction on m,

where the base case m = 1 is taken care of by Lemma 4.9.

For the induction step from m− 1 to m, we denote the two halves of P with respect to

Hm by P± , and let PH = P∩Hm . We may assume that P± are codimension 0 subpolytopes

of P since we could otherwise discard Hm in the collection of hyperplanes without changing

the induced partition of P . Define P+ (resp. P− , PH ) to be the partition of P+ (resp.

P− , PH ) with respect to H1, ...,Hm−1 . Applying the induction hypothesis several times
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4.1. Algebra vs. geometry I: The partition relation

yields

P = P+ + P− − PH
P± =

∑
Q∈P∂±

(−1)codim(Q⊆P±) ·Q

PH =
∑
Q∈P∂H

(−1)codim(Q⊆PH) ·Q.

(4.2)

Because of the boundary condition, we have a disjoint decomposition

P∂ = P∂+ q P∂− q P∂H ,

which immediately implies the desired equation together with (4.2).

Now let P be an arbitrary partition of P . Let H be the set of those hyperplanes in

V which contain a (dim(V ) − 1)-dimensional polytope of P . Let Q be the partition of P

with respect to H . We can think of Q as obtained from P by extending the codimension

1 polytopes of P through P , see Fig. 4.1.

Figure 4.1: If the straight lines indicate P , then the straight and
dashed lines together indicate Q.

Given some S ∈ P∂ let QS be the partition of S with respect to H . By the first part

we have

P =
∑
Q∈Q∂

(−1)codim(Q⊆P ) ·Q (4.3)

S =
∑
Q∈Q∂S

(−1)codim(Q⊆S) ·Q. (4.4)

It is straightforward to check that there is a disjoint decomposition

Q∂ =
∐
S∈P∂

Q∂S . (4.5)

53



Chapter 4. The Integral Polytope Group

Combining (4.3), (4.4), and (4.5) gives

P =
∑
Q∈Q∂

(−1)codim(Q⊆P ) ·Q

=
∑
S∈P∂

∑
Q∈Q∂S

(−1)codim(Q⊆P ) ·Q

=
∑
S∈P∂

(−1)codim(S⊆P ) ·
∑
Q∈Q∂S

(−1)codim(Q⊆S) ·Q

=
∑
S∈P∂

(−1)codim(S⊆P ) · S.

Remark 4.13. If P ⊆ H ⊗Z R and all of the polytopes in P are integral, then Q as in

the final step of the proof will in general not be integral. Nevertheless, the final equation

contains only elements of the subgroup P(H) ⊆ P(H ⊗Z R).

We often want to cut an integral polytope P along a flat hyperplane H into two halves

and apply the cutting relation of Lemma 4.9. In general, however, the intersection P ∩H
and thus the two halves P+ and P− will not be integral again, so the cutting relation will

not be an equation in the integral polytope group. In order to circumvent this problem, we

can first stretch the polytope as explained in the following lemma. For this, let for h ∈ R

ch : Rn → Rn, (x1, ..., xn) 7→ (x1, ..., xn−1, h),

which we can think of as compressing the vector space to a flat hyperplane.

Lemma 4.14 (Vertical stretching). Let H = {x ∈ Rn | xn = h} be a flat hyperplane. Then

for every integral polytope P ⊆ Rn of dimension n there exists an integer k ≥ 0 such that

for Q = P + k · (Z + ∗Z) we have the equation

Q ∩H = ch(Q).

In particular, the intersection Q ∩H is an integral polytope.

Proof. We take k = max{|pn − h| | p ∈ P}.
The inclusion ⊆ is obvious since we have ch(q) = q for q ∈ Q ∩H .

For the reverse inclusion, let q ∈ ch(Q). Since ch(Q) = ch(P ), we can write q = ch(p) for

some p ∈ P . It remains to show that q ∈ Q. By the choice of k , the elements p+ k · z and

p− k · z lie in different halves of Q with respect to H . But ch(p) is a convex combination

of these two elements and lies therefore itself in Q.

We will also need the following lemma.

Lemma 4.15 (Vertical gluing). Let H = {x ∈ Rn | xn = h} be a flat hyperplane. If

P,Q ⊆ Rn are two (integral) polytopes such that

P ∩H = ch(P ) = ch(Q) = Q ∩H, (4.6)

then the set P+ ∪Q− is a (integral) polytope, where P+ denote the upper half of P and Q−
denotes the lower half of Q with respect to H .

If additionally h = 0, i.e. H = z⊥ , then we have:

(1) (P + ∗P ) ∩H = (P ∩H) + (∗P ∩H);
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(2) (P + ∗P )+ = P+ + ∗(P−);

(3) (P + ∗P )− = P− + ∗(P+).

Proof. Denote the vertex sets of P+ resp. Q− by V (P+) resp. V (Q−). We will show

P+ ∪Q− = hull(V (P+) ∪ V (Q−)),

where the inclusion ⊆ is obvious.

For the reverse inclusion, it suffices to show that P+ ∪ Q− is convex. Let p ∈ P+ and

q ∈ Q− , and take a convex combination x = t · p+ (1− t) · q . Since P+ and Q− are convex,

we may assume that x ∈ H (and deal with other convex combinations inside P+ and Q−
individually). We can also write x = t · ch(p) + (1− t) · ch(q). Assumption (4.6) then implies

that x ∈ P ∩H = Q ∩H ⊆ P+ ∪Q− . This finishes the proof of the first statement.

In the equalities (1), (2) (3), the inclusion ⊇ is true irrespective of the assumption that

P ∩H = ch(P ).

To prove ⊆ in (1), let p ∈ P, q ∈ ∗P with pn + qn = 0. Then p + q = c0(p + q) =

c0(p) + c0(q) which lies in (P ∩ H) + (∗P ∩ H) since by assumption c0(P ) = P ∩ H and

thus c0(∗P ) = ∗c0(P ) = ∗(P ∩H) = ∗P ∩H .

To prove ⊆ in (2), let p ∈ P, q ∈ ∗P with pn + qn ≥ 0. If pn, qn ≥ 0, then p ∈ P+

and q ∈ ∗(P−) and we are done. If pn ≥ 0 and qn ≤ 0, then take p′ = p + qn · z and

q′ = q−qn ·z = c0(q). We have p′ ∈ P+ since it is a convex combination of p and c0(p) ∈ P ,

and we have q′ ∈ ∗(P−) since c0(∗P ) = ∗P ∩H ⊆ ∗(P−). Thus p+q = p′+q′ ∈ P++∗(P−).

The third claim is proved similarly.

4.2 Symmetric and antisymmetric elements

We are already in a position to prove parts (1) and (2) of Theorem 4.1.

Proof of Theorem 4.1 (1). As we have noted before the inclusion ker(id−∗) ⊇ im(id + ∗) is

obvious. We prove the reverse inclusion by induction on the rank of the free-abelian group

H ∼= Zn . If n = 0, then there is nothing to prove.

If n ≥ 1, let P −Q ∈ ker(id−∗), i.e., P +∗Q = ∗P +Q. If we prove that the symmetric

polytope P + ∗Q lies in im(id + ∗), then this also holds for P −Q since they differ by the

summand Q+ ∗Q.

So let A = P + ∗Q. By the vertical stretching technique of Lemma 4.14, we can assume

that the intersection A ∩ z⊥ is integral. The cutting relation of Lemma 4.9 then gives us

an equation in P(Zn)

A+ +A− = A+ (A ∩ z⊥)

for the two halves of A with respect to z⊥ . Since A is symmetric, we have A− = ∗(A+).

Moreover A∩ z⊥ is a symmetric polytope in the polytope group P(Zn−1), so by induction

hypothesis there exists an element x ∈ P(Zn−1) such that A∩z⊥ = x+ ∗x. Hence we have

A = A+ + ∗(A+)− (x+ ∗x) ∈ im(id + ∗)

and we are done.
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Proof of Theorem 4.1 (2). We deal with P(H) first. Again the inclusion ⊇ in the claim

ker(id+∗) = im(id−∗) is obvious. For the opposite inclusion, we proceed again by induction

on the rank of H ∼= Zn . If n = 0, then there is once more nothing to prove.

Let P −Q ∈ ker(id + ∗), so

P + ∗P = Q+ ∗Q. (4.7)

After vertical stretching (see Lemma 4.14), we may assume

P ∩H = c0(P ) and Q ∩H = c0(Q), (4.8)

where here and henceforth we let H = z⊥ . Then Lemma 4.15 (1) together with (4.7) implies

(P ∩H) + (∗P ∩H) = (Q ∩H) + (∗Q ∩H).

We may therefore apply the induction hypothesis to (P ∩ H) − (Q ∩ H) and obtain an

integral polytope R contained in H such that

(P ∩H) + ∗R = (Q ∩H) +R. (4.9)

Clearly P + ∗R − (Q + R) ∈ ker(id + ∗), and it suffices to prove that this element lies in

im(id − ∗). To ease notation, put A = P + ∗R and B = Q + R . We see from (4.8), (4.9)

and the fact that R lies in H the equalities

G := c0(A) = A ∩H = (P ∩H) + ∗R = (Q ∩H) +R = B ∩H = c0(B).

We are therefore in the situation of Lemma 4.15 so that the two halves A+ and B− (with

respect to H ) can be glued together to give a polytope S := A+∪B− . Moreover, Lemma 4.15

(3) gives

A− + ∗(A+) = (A+ ∗A)− = (B + ∗B)− = B− + ∗(B+). (4.10)

If we put T = S − B , then several applications of the cutting relation (see Lemma 4.9)

yield

T − ∗T = S − ∗S −B + ∗B
= (A+ +B− −G)− (∗A+ + ∗B− − ∗G)− (B+ +B− −G) + (∗B+ + ∗B− − ∗G)

= A+ +B− + ∗B+ − ∗A+ −B+ −B−
(4.10)

= A+ +A− + ∗A+ − ∗A+ −B+ −B−
= (A+ +A− −G)− (B+ +B− −G)

= A−B,

which completes the proof for P(H).

We deduce the statement for the quotient PT (H) as follows. The map

sym: PT (H)→ P(H), P −Q 7→ P + ∗P − (Q+ ∗Q)

is well-defined and fits into the commutative diagram

P(H)
id+∗ //

��

P(H)

��
PT (H)

id+∗ //

sym
99

PT (H),

56



4.2. Symmetric and antisymmetric elements

where the vertical maps are the projections. Since sym(x) is a difference of two polytopes

which are symmetric about the origin, sym(x) is a point if and only if it is zero. This implies

ker
(
id + ∗ : PT (H)→ PT (H)

)
= ker

(
sym: PT (H)→ P(H)

)
.

Because of the commutative diagram above, any preimage of an element x ∈ ker
(
sym: PT (H)→

P(H)
)

in P(H) will lie in

ker
(
id + ∗ : P(H)→ P(H)

)
= im

(
id− ∗ : P(H)→ P(H)

)
.

Thus

ker
(
sym: PT (H)→ P(H)

)
⊆ im

(
id− ∗ : PT (H)→ PT (H)

)
and the reverse inclusion is obvious. This finishes the proof of Theorem 4.1 (2).

Theorem 4.1 (2) will be used in the proof of Proposition 5.19, where we put restrictions

on the possible form of the L2 -torsion polytope of amenable groups. We still owe here the

relevant connection to the norm maps of Section 3.7.4. Namely, it is proved in [FL16b,

Lemma 3.8] that the map

P(H)→
∏

ϕ∈Hom(H,Z)

P(Z), x 7→ (P(ϕ)(x))ϕ (4.11)

is injective. This becomes false if we pass to the quotients in the target to obtain maps

ξ : P(H)→
∏

ϕ∈Hom(H,Z)

PT (Z), x 7→ (PT (ϕ)(x))ϕ;

ξT : PT (H)→
∏

ϕ∈Hom(H,Z)

PT (Z), x 7→ (PT (ϕ)(x))ϕ,

rather we have the following.

Lemma 4.16. Let H be a finitely generated free-abelian group. Then we have

ker(ξ) = ker
(
N : P(H)→ Map(Hom(H,R),R))

)
= ker

(
id + ∗ : P(H)→ P(H)

) (4.12)

and

ker(ξT ) = ker
(
N : PT (H)→ Map(Hom(H,R),R))

)
= ker

(
id + ∗ : PT (H)→ PT (H)

) (4.13)

Proof. Recall that any ϕ ∈ Hom(H,Z) induces maps PT (ϕ) : P(H) → PT (Z) ∼= Z and

PT (ϕ) : PT (H)→ PT (Z) ∼= Z. Unraveling the definitions gives

N(P )(ϕ) = ‖ϕ‖P = PT (ϕ)(P )

for any polytope P ∈ P(H) (regardless of whether we view P as a class in P(H) or PT (H)).

This implies the first equality in (4.12) and (4.13).

It is shown in [FL16b, Section 3.7] that two integral polytopes P,Q ∈ P(H) satisfy

P +∗P = Q+∗Q if and only if N(P ) = N(Q). This is precisely the second equality in both

(4.12) and (4.13).
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4.3 Algebra vs. geometry II: Shadows

In this section, we introduce another set of techniques that will be needed in the proof of

the remaining two parts of Theorem 4.1.

4.3.1 Shadow maps.

Definition 4.17 (Height and height maps). Given a subset S ⊆ Rn , we call

h(S) = min{xn | x ∈ S} (4.14)

the height of S . Since h(S + T ) = h(S) + h(T ), we obtain an induced homomorphism

h : P(Rn)→ R, P 7→ h(P )

called height map.

Recall that for h ∈ R we have defined the map

ch : Rn → Rn, (x1, ..., xn) 7→ (x1, ..., xn−1, h).

Definition 4.18 (Shadows and shadow maps). The (lower) shadow of a subset S ⊆ Rn is

defined as

Sh(S) = hull(S ∪ ch(S)(S)).

In analogy with the previous definitions, we would like to define the (lower) shadow map as

the group homomorphism

Sh: P(Rn)→ P(Rn), P 7→ Sh(P ).

The next lemma shows that this is indeed possible.

Lemma 4.19. Let P,Q ⊆ Rn be two (integral) polytopes. Then Sh(P ) is a (integral)

polytope and we have

Sh(P +Q) = Sh(P ) + Sh(Q).

Proof. Denote the vertex set of P by V . It is easy to check that Sh(P ) is the convex hull

of the finite set V ∪ ch(P )(V ). This shows that Sh(P ) is indeed a polytope which is integral

provided that P is integral.

In order to prove additivity, we recall that for any subsets S, T ⊆ Rn we have

hull(S + T ) = hull(S) + hull(T ).

Hence it suffices to show that

hull((P +Q) ∪ ch(P+Q)(P +Q)) = hull((P ∪ ch(P )(P )) + (Q ∪ ch(Q)(Q))). (4.15)

Since h(P + Q) = h(P ) + h(Q), the inclusion ⊆ already follows from the inclusion of

the underlying sets

(P +Q) ∪ ch(P+Q)(P +Q) ⊆ (P ∪ ch(P )(P )) + (Q ∪ ch(Q)(Q)). (4.16)

For the inclusion ⊇, let p ∈ P ∪ ch(P )(P ) and q ∈ Q ∪ ch(Q)(Q), and we will show
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that p + q is contained in the left-hand side of (4.15). This is obvious if (p, q) ∈ P ×Q or

(p, q) ∈ ch(P )(P )× ch(Q)(Q).

Let us now assume that p ∈ P and q ∈ ch(Q)(Q). Write q = ch(Q)(q
′) for some q′ ∈ Q.

Then p+ q lies on the convex hull of the points p+ q′ and ch(P )(p) + q = ch(P+Q)(p+ q′).

By inclusion (4.16), these latter points lie in

hull((P ∪ ch(P )(P )) + (Q ∪ ch(Q)(Q)))

and hence so does p+ q . The case p ∈ ch(P )(P ) and q ∈ Q is completely analogous.

Remark 4.20. The choice of min instead of max in Definition 4.18 is arbitrary. Completely

analogously, we may define an upper height map

h+ : P(Rn)→ R, P 7→ max{xn | x ∈ P}

and an upper shadow map

Sh+ : P(Rn)→ P(Rn), P 7→ hull(P ∪ ch+(P )(P )).

Then the equations

h+(∗P ) = −h(P ) and Sh+(∗P ) = ∗Sh(P )

are easy to verify.

The shadow of a polytope allows us to increase the dimension in a simple controlled way.

It will be our main tool in the construction of a basis for P(Zn) out of one for P(Zn−1). It

is crucial in this process that taking shadows preserves the algebraic structure, as shown by

the previous lemma.

It is straightforward to see that both the face maps and shadow maps induce maps

P(Zn), PT (Rn), and PT (Zn).

4.3.2 The shadow partition.

Definition 4.21 (Types of codimension 1 faces). Let P ⊆ Rn be a polytope with dim(P ) =

n and let F ⊆ P be a codimension 1 face. Then there is up to positive scalar a unique

ϕ ∈ Hom(Rn,R) with Fϕ(P ) = F . The face F will be called bottom, vertical, or top face

depending on whether ϕ(z) < 0, ϕ(z) = 0, or ϕ(z) > 0.

A face F of P is a bottom (resp. vertical, top) face if and only if the face ∗F of ∗P is

a top (resp. vertical, bottom) face.

Definition 4.22 (Grounded polytopes, pillars, and almost-pillars). Let P ⊆ Rn be a

polytope with dim(P ) = n.

(1) P is grounded if it has only one bottom face and this bottom face is flat. This unique

bottom face will be referred to as the ground.

(2) P is a pillar if there is a flat polytope Q and a k > 0 such that P = Q+ k · Z .

(3) P is an almost-pillar if it has a unique bottom face and a unique top face.

We record the following properties.
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Lemma 4.23. (1) Let P ⊆ Rn be a grounded polytope with dim(P ) = n whose ground

G is contained in the hyperplane H = {x ∈ Rn | xn = h}. Then the image of the

grounding map

g : P → Rn, (x1, ..., xn) 7→ (x1, ..., xn−1, h)

is G.

(2) Every pillar is an almost-pillar.

(3) For any polytope P ⊆ Rn such that dim(Sh(P )) = n, Sh(P ) is grounded.

(4) If P ⊆ Rn is contained in a hyperplane which is not flat and dim(Sh(P )) = n, then

Sh(P ) is a grounded almost-pillar.

Proof. The last three statements are obvious.

For part (1) only the inclusion G ⊇ g(P ) is non-trivial. Let G = F1, ..., Fm ⊆ P be the

set of codimension 1 faces of P and let ϕi ∈ Hom(Rn,R) be such that Fi = Fϕi(P ). With

ci = ϕi(Fi) we get

P = {x ∈ Rn | ϕi(x) ≤ ci for all 1 ≤ i ≤ m}.

Given p ∈ P , we verify these inequalities for g(p), which implies g(p) ∈ P ∩ H = G.

Since F1 = G is flat, we have up to positive scalar ϕ1(x) = −xn and c1 = −h. The first

inequality is therefore automatically satisfied for x = g(p). For the remaining inequalities,

we prove ϕi(g(p)) ≤ ϕi(p). Since g(p) − p is a negative multiple of z , it suffices to show

ϕi(z) ≥ 0. But P is grounded, so none of these remaining faces is a bottom face and

ϕi(z) ≥ 0 follows.

We also record the following simple consequence needed later.

Lemma 4.24. Let P be a polytope such that ∗P is a grounded almost-pillar. Let F be the

unique bottom face of P . Then there exists a pillar Q and a grounded almost-pillar S such

that in P(Rn) we have

P = Q+ F − S.

Proof. We leave the easy case where P is a pillar to the reader. If P is not a pillar, then F

is not flat and so S = Sh(F ) is a grounded almost-pillar by the previous lemma. The union

Q := S ∪ P is a pillar (see also Fig. 4.2), and cutting Q along F = P ∩ S yields

Q = P + S − F

by the cutting relation (see Lemma 4.9).

The following proposition will be one of the main tools for building a basis of the integral

polytope group. This is because it tells us how grounded polytopes can be decomposed into

smaller canonical pieces. We can then invoke the partition relation (see Proposition 4.12)

to turn this decomposition into a group-theoretic relation.

Denote for a polytope P its set of faces by F(P ).

Proposition 4.25 (Shadow partition). Let P ⊆ Rn be a grounded polytope. For every top

face F ⊆ P , let

P (F ) := Sh(F ) + (h(F )− h(P )) · ∗Z. (4.17)

Then the set

P =
⋃
F⊆P
top face

F(P (F ))
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P

S

F

Figure 4.2: Taking the union of P and S = Sh(F ) produces the
pillar Q.

is a partition of P (see also Figure 4.3) that will be referred to as the shadow partition of

P . If P is integral, then the shadow partition contains only integral polytopes.

Figure 4.3: The dashed vertical lines indicate the shadow
partition of a 2-dimensional grounded polytope. Within each
P (F ) as in (4.17), the dotted horizontal line is the ground of
Sh(F ).

Proof. The second condition on a partition, namely that faces of elements in P are them-

selves in P (see Definition 4.10), is clear.

Next we prove P =
⋃
Q∈P Q. Let g : P → G be the grounding map of Lemma 4.23 (1).

For any point p ∈ P there exists a top face F and f ∈ F such that g(p) = g(f). Then f

and g(p) are contained in P (F ). Since p is a convex combination of f and g(p) and P (F )

is convex, we see p ∈ P (F ). Hence P ⊆
⋃
Q∈P Q. For the reverse inclusion, we observe

h(P (F )) = h(Sh(F ))− h(F ) + h(P ) = h(P )

from which the inclusion P (F ) ⊆ P follows since P is grounded.

We finally need to show that for any Q,Q′ ∈ P the intersection Q ∩ Q′ is empty

or a face in both of them. It suffices to do this for elements in P of dimension n. If

Q = P (F ), Q′ = P (F ′), then Q∩Q′ = ∅ if F ∩F ′ = ∅. Otherwise F ∩F ′ is a face in both

F and F ′ . Hence

Q ∩Q′ = Sh(F ∩ F ′) + (h(F ∩ F ′)− h(P )) · ∗Z

is a face in Q and Q′ .
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If P is integral, then for all top faces F of P the shadow Sh(F ) is integral, and h(F )

and h(P ) are integers. Thus P (F ) is integral.

4.4 A basis for the integral polytope group

In this section we prove Theorem 4.1 (3) in two steps. In a first subinduction step we explain

how to construct the set Bn provided that the sets Bi for 1 ≤ i ≤ n−1 are already available.

This will in the second step be used in order to construct a basis for PT (H) by induction

on the rank of H .

4.4.1 The subinduction step: Increasing the dimension of the polytopes.

In this section we construct an explicit basis for P(Zn), built from bases of the various

subgroups of Zn . Roughly speaking, we throw together all these bases and their images

under the shadow map.

Recall that a subgroup G ⊆ H is pure if there is a linear subspace U ⊆ H ⊗Z R such

that G = H ∩ U , and that we denote by PmT (G) the subgroup of PT (G) generated by the

polytopes of dimension at most m.

Proposition 4.26 (Adding the last dimension). Assume that there are sets B1 ⊆ B2 ⊆
... ⊆ Bn−1 ⊆ PT (Zn) such that

(1) Bm∩PT (G) is a basis for PmT (G) for every pure subgroup G ⊆ Zn and 1 ≤ m ≤ n−1;

(2) Bm \ Bm−1 contains only polytopes of dimension m.

Then there is a set Cn ⊆ PT (Zn) containing only polytopes of dimension n such that Bn−1∪
Cn is a basis for PT (Zn).

Proof. Let

Cn = { Sh(B) | B ∈ Bn−1, Sh(B) is n-dimensional }.

We first prove that Bn := Bn−1 ∪ Cn is a generating set for PT (Zn). Let 〈S〉 ⊆ PT (Zn)

denote the subgroup generated by a subset S .

Let P ⊆ Rn be an integral polytope. By condition (1) all 1-dimensional polytopes of

length 1 are contained in 〈B1〉. This implies that the unit n-cube lies in 〈B1〉 and hence

in 〈Bn〉. After possibly adding the unit n-cube, we may therefore assume without loss of

generality that P is n-dimensional.

Note that in PT (Zn) we have Z = ∗Z . By vertical stretching (see Lemma 4.14), there

exists k ∈ Z such that P + k · Z intersects z⊥ in an integral polytope P ′ and cutting along

this intersection produces a grounded half P+ and a half P− such that ∗P− is grounded.

By the cutting relation (see Lemma 4.9), we have in PT (Zn)

P = P+ + P− − P ′ − k · Z.

Now P ′ and Z lie in Pn−1(Zn) = 〈Bn−1〉. Hence it suffices to show that P+ and P− lie in

〈Bn〉.
First we take care of P+ . This is a grounded polytope with ground P ′ . Let P be the

shadow partition of P+ of Lemma 4.25. All polytopes in P of dimension at most n− 1 lie

in 〈Bn−1〉. The remaining elements of P are of the form

P (F ) = Sh(F ) + (h(F )− h(P )) · Z.
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where F ⊆ P+ is a top face. If we show that the polytopes P (F ) lie in 〈Bn〉, then the

partition relation (see Proposition 4.12) implies that P+ ∈ 〈Bn〉.
By assumption there are Bi ∈ Bn−1 and λi ∈ Z (1 ≤ i ≤ k) such that F =

∑k
i=1 λi ·Bi .

By Lemma 4.19 the shadow map is a group homomorphism, so we have

Sh(F ) =

k∑
i=1

λi · Sh(Bi). (4.18)

If Sh(Bi) is n-dimensional, then Sh(Bi) ∈ Cn ⊆ Bn . Otherwise Sh(Bi) ∈ 〈Bn−1〉. Thus

from (4.18) we see that Sh(F ) and also P (F ) lie in 〈Bn〉.
In order to deal with P− , it suffices to show that 〈Bn〉 is closed under the involution.

Let B ∈ Bn . Again by assumption, there is nothing to prove if B ∈ Bn−1 , so let B ∈ Cn .

Then B is a grounded almost-pillar by Lemma 4.23. Lemma 4.24 applies to produce a pillar

Q and a grounded almost-pillar S such that

∗B = Q+ ∗F − S,

where F is the top face of B . We have Q, ∗F ∈ 〈Bn−1〉. Since S is a grounded polytope,

we may proceed with it as with P+ to verify S ∈ 〈Bn〉, and so ∗B ∈ 〈Bn〉. This completes

the proof that 〈Bn〉 = PT (Zn).

Now we show that Bn is linearly independent. Let us assume that there are pairwise

distinct elements P ij ∈ Bi \ Bi−1 and λij ∈ Z for 1 ≤ i ≤ n and 1 ≤ j ≤ si such that

n∑
i=1

si∑
j=1

λij · P ij = 0. (4.19)

Since Bn−1 is linearly independent, it suffices to show that λnk = 0 for all 1 ≤ k ≤ sn .

For this we first need an auxiliary step.

Claim: If Pn−1k ∈ Bn−1 such that Sh(Pn−1k ) is n-dimensional, then λn−1k = 0.

Let H ⊆ Rn be the hyperplane containing Pn−1k and consider the pure subgroup G =

H ∩ Zn . Since Sh(Pn−1k ) is n-dimensional, i.e., Pn−1k is not flat, there is ϕ ∈ Hom(Rn,R)

and c ∈ R such that H = {x ∈ Rn | ϕ(x) = c} and ϕ(z) < 0. Applying the face map in

ϕ-direction to (4.19) yields the equation

n∑
i=1

si∑
j=1

λij · Fϕ(P ij ) = 0 (4.20)

in PT (G). We claim that Fϕ(P ij ) has dimension n − 1 if and only if i = n − 1 and P ij ∈
PT (G). The ’if’-part is clear. The ’only if’-part is obvious except for the full-dimensional

Pnj , 1 ≤ j ≤ sn . By Lemma 4.23 (3) Pnj is grounded with ground A, say. Since ϕ(z) < 0,

we have Fϕ(Pnj ) = Fϕ(A) and this is a proper face of A because A is flat. Thus Fϕ(Pnj ) is

at most (n− 2)-dimensional.

This means that (4.20) breaks up into a sum x of (n − 1)-dimensional elements in

Bn−1∩PT (G) and a sum y in Pn−2T (G). Since the basis Bn−1∩PT (G) of Pn−1T (G) extends

the basis Bn−2 ∩ PT (G) of Pn−2T (G), this can only happen if x = y = 0. Hence λn−1j = 0

for all j such that Pn−1j ∈ PT (G) which includes in particular j = k . This proves the claim,

which brings us to the original goal.

Claim: For all 1 ≤ k ≤ sn we have λnk = 0.
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Write Pnk = Sh(B) for some B ∈ Bn−1 , and let H denote the hyperplane containing B .

Take a covector ψ with H = {x ∈ Rn | ψ(x) = c} and ψ(z) > 0. Then

Fψ(Pnk ) = Fψ(B) = B,

but the previous claim ensures that λn−1k = 0 if Pn−1k = B . Thus the summands in

n∑
i=1

si∑
j=1

λij · Fψ(P ij ) = 0

are distinct elements of Bn−1 ∩PT (G) and elements lying in Pn−2T (G), where G = Zn ∩H .

By the same argument as in the previous claim we deduce λnk = 0.

4.4.2 The induction step: Increasing the rank. Now we can recall and prove the

statement of Theorem 4.1 (3).

Theorem 4.27 (Basis for the integral polytope group). There are sets B1 ⊆ B2 ⊆ ... ⊆
Bn ⊆ PT (Zn) such that:

(1) Bm ∩ PT (G) is a basis for PmT (G) for every pure subgroup G ⊆ Zn and 1 ≤ m ≤ n;

(2) Bm \ Bm−1 contains only polytopes of dimension m.

In particular, Bn is a basis for PT (Zn).

Moreover, if A ⊆ Zn denotes a basis of Zn and B′n ⊆ P(Zn) is a set of representatives

for Bn ⊆ PT (Zn), then A ∪ B′n is a basis for P(Zn).

Proof. We use induction on m. For the base case m = 1 we let B1 be the set of (translation

classes of) 1-dimensional polytopes in PT (Zn) which are not a proper multiple of another

(translation class of a) 1-dimensional polytope in PT (Zn). Clearly, B1 ∩ PT (G) is a

generating set for P1
T (G) provided that G ⊆ Zn is a pure subgroup. On the other hand,

using the additivity of the face map it is easy to make the following observation: Take any

pairwise distinct P1, ..., Pk ∈ B1 and some λ1, ..., λk ∈ Z. Given any Q ∈ B1 and µ ∈ Z,

the polytope
∑k
i=1 λi ·Pi possesses µ ·Q as a 1-dimensional face (up to translation) if and

only if there exists an index j such that Pj = Q and λj = µ. This readily implies that B1
is linearly independent.

For the induction step from m−1 to m, we suppose that the sets B1 ⊆ ... ⊆ Bm−1 have

been constructed. Let

Um = {U ⊆ Zn | U is a pure subgroup of rank m}.

For any U ∈ Um , Proposition 4.26 allows us to extend Bm−1 ∩ PT (U) to a basis BUm of

PT (U). Now we let

Bm =
⋃

U∈Um

BUm.

It is clear that BmrBm−1 contains only polytopes of dimension m. We need to verify that

Bm ∩ PT (G) is a basis for PmT (G) for every pure subgroup G ⊆ Zn . For rank(G) ≤ m− 1

this follows from the induction hypothesis since Bm∩PT (G) = Bm−1∩PT (G) and PmT (G) =

Pm−1T (G). If rank(G) = m, then G ∈ Um , and Bm ∩ PT (G) = BGm is by construction a

basis of PmT (G) = PT (G). In the last case that rank(G) > m we consider the set

UGm = {U ⊆ G | U is a pure subgroup of rank m} ⊆ Um.
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Then PmT (G) is generated by the union of all PT (U) with U ∈ UGm . On the other hand, each

such PT (U) is generated by BUm ⊆ Bm . This shows that Bm ∩PT (G) generates PmT (G). It

remains to prove that Bm is linearly independent. This is in very much the same spirit as

the corresponding proof of Proposition 4.26.

Let Pi ∈ Bm be pairwise distinct elements and λi ∈ Z (1 ≤ i ≤ k) such that

k∑
i=1

λi · Pi = 0.

Again it suffices to prove λi = 0 for all i such that Pi ∈ Bm \ Bm−1 since Bm−1 is linearly

independent by induction hypothesis. For a fixed Pj ∈ Bm \Bm−1 , let U ∈ Um be such that

Pj ∈ PT (U). Let H ⊆ Rn be a hyperplane such that

U ∩ U ′ = H ∩ U ′ (4.21)

for every U ′ ∈ Um such that there exists an index 1 ≤ i ≤ k with Pi ∈ PT (U ′)∩(Bm\Bm−1).

Pick ϕ ∈ Hom(Rn,R) with H = kerϕ. Applying the face map induces the equation

k∑
i=1

λi · Fϕ(Pi) = 0.

But because of (4.21), Fϕ(Pi) is m-dimensional if and only if Pi is m-dimensional and

Pi ∈ PT (U), or in other words Pi ∈ BUm \ Bm−1 , and the remaining summands lie in

Pm−1T (U). Since BUm extends the basis Bm−1 ∩ PT (U) of Pm−1T (U), we must have λi = 0

for all i such that Fϕ(Pi) is m-dimensional. In particular λj = 0 and the proof is complete.

The ’moreover’-part follows directly from the split exactness of the sequence

0→ H → P(H)→ PT (H)→ 0

which was first proved in [FL16b, Lemma 3.8 (2)], but follows now also from the fact that

PT (H) is free-abelian.

Remark 4.28. The above construction applies also to produce a basis for the real vector

space PT (Rn). The only wording that needs to be replaced is pure subgroup with linear

subspace.

4.5 The involution as face Euler characteristic

In this last section we will prove Theorem 4.1 (4). First we recall the main player and the

statement.

Definition 4.29 (Face Euler characteristic). Given a polytope P ⊆ Rn denote by F(P )

the set of faces of P , including P itself. We call

χF (P ) =
∑

F∈F(P )

(−1)dim(F ) · F ∈ P(Rn)

the face Euler characteristic of P .
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Theorem 4.30 (Involution as face Euler characteristic). For any polytope P ⊆ Rn we have

in P(Rn)

∗P = −χF (P ).

The relation of involutions and Euler-type relations has a long history in polytope theory

[Sal68,McM77,McM89,KP92,Kho97,Kla99], just to mention a few. In fact, Theorem 4.30 is

a corollary of [McM89, Theorem 2] by virtue of the isomorphism given in [McM89, Theorem

9]. However, we thought it worthwhile giving a proof of Theorem 4.30 by completely

elementary geometric means.

The proof of Theorem 4.1 (3) provides us with the following strategy: We show a

partition relation for face Euler characteristics (see Proposition 4.32), prove the statement

for shadows (see Lemma 4.33), and combine these two facts to obtain the claim for any

grounded polytope. The general case follows easily from this special case.

Lemma 4.31 (Cutting relation for face Euler characteristics). Let P ⊆ Rn be a polytope

and H ⊆ Rn be a hyperplane. Denote the two halves of P with respect to H by P1 and P2 .

Then

χF (P ) + χF (P ∩H) = χF (P1) + χF (P2). (4.22)

If Theorem 4.30 holds for three polytopes among P, P1, P2, P ∩H , then also for the fourth.

Proof. We distinguish four cases as to how H cuts a face F ∈ F(P ):

(1) If F ∩H = ∅, then F is a face of one of the Pi and contributes (−1)dim(F ) ·F to both

sides of (4.22).

(2) If F ∩H = F , then F is a face of P1, P2 and P ∩H , and it contributes (−1)dim(F ) ·2F
to both sides.

(3) If F ∩ H 6= F and F ∩ H is a face of F , then F is a face in exactly one Pi and

contributes (−1)dim(F ) · F to both sides. (Note that F ∩ H will itself then fall into

case (2).)

(4) Otherwise, the cutting relation (see Lemma 4.9) yields

F + (F ∩H) = F1 + F2 (4.23)

for the two halves of F with respect to H . Then F ∩ H is also a face in P1, P2

and P ∩H which is not covered by the other cases. This means that F contributes

(−1)dim(F ) · (F − (F ∩H)) to the left-hand side and (−1)dim(F ) · (F1 +F2−2 · (F ∩H))

to the right-hand side. These two values coincide by (4.23).

Every summand of the face Euler characteristics has now been counted exactly once, so that

the desired equation (4.22) follows.

The last statement follows by comparing this with the involution of the cutting relation

∗P + ∗(P ∩H) = ∗P1 + ∗P2 (see Lemma 4.9).

Proposition 4.32 (Partition relation for face Euler characteristics). Let P ⊆ Rn be a

polytope and P be a partition of P . Then we have in P(Rn) the equation

χF (P ) =
∑
Q∈P∂

(−1)codim(Q⊆P ) · χF (Q).

Proof. This follows from Lemma 4.31 in exactly the same way as Proposition 4.12 (the

partition relation) follows from Lemma 4.9 (the cutting relation).
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Next we show that Theorem 4.30 is true for the pieces in a shadow partition (see

Proposition 4.25).

Lemma 4.33 (Face Euler characteristics of shadows). Assume that Theorem 4.30 is known

for polytopes of dimension at most n− 1.

(1) If P ⊆ Rn is a polytope of dimension at most n− 1, then we have

∗Sh(P ) = −χF (Sh(P ));

(2) If P ⊆ Rn is a polytope of dimension at most n− 1, then we have

∗(P + Z) = −χF (P + Z);

(3) Let P ⊆ Rn be a polytope. Then Theorem 4.30 holds for P if and only if it holds for

P + Z (or equivalently P + ∗Z ).

Proof. (1) We may assume that Sh(P ) is of dimension n. Recall that Sh(P ) is grounded

by Lemma 4.23. Let G ⊆ Sh(P ) be its ground and g : Sh(P ) → G be the grounding map.

Every face F ⊆ P such that F 6= g(F ) induces the following faces of Sh(P ):

(i) F itself;

(ii) g(F ), which has the same dimension as F ;

(iii) The intermediate face Sh(F ) + (h(F )− h(P )) · ∗Z , which has dimension dim(F ) + 1.

Next we argue that we can discard the case that F = g(F ). Namely, then F only

produces the single face F in Sh(P ). However, if we were to count the three polytopes in

(i) – (iii) together, then

F + g(F )− (Sh(F ) + (h(F )− h(P )) · ∗Z) = F + F − F = F.

Hence we may as well take the three summands above instead of F in the following

calculations. In this way we avoid a case analysis and notational overload.

The subsets of F(Sh(P )) corresponding to faces of type (i) and (ii) are F(P ) and F(G),

respectively. By assumption we have ∗P = −χF (P ) and ∗G = −χF (G) since these are

polytopes of dimension n − 1. Now we calculate using the additivity of the shadow map

(see Lemma 4.19)

χF (Sh(P ))

=
∑

F∈F(Sh(P ))

(−1)dim(F ) · F

=
∑

F∈F(P )

(−1)dim(F ) · F +
∑

F∈F(G)

(−1)dim(F ) · F

+
∑

F∈F(P )

(−1)dim(F )+1 · (Sh(F ) + (h(F )− h(P )) · ∗Z)

= χF (P ) + χF (G)− Sh(χF (P ))−
∑

F∈F(P )

(−1)dim(F ) · (h(F )− h(P )) · ∗Z

= − ∗P − ∗G+ Sh(∗P )− h · ∗Z,

(4.24)

where we put

h =
∑

F∈F(P )

(−1)dim(F ) · (h(F )− h(P )).
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Note that since the faces of P determine a cell structure on P , we have∑
F∈F(P )

(−1)dim(F ) = χ(P ) = 1

and hence

h =
∑

F∈F(P )

(−1)dim(F ) · (h(F )− h(P ))

=− h(P ) ·
∑

F∈F(P )

(−1)dim(F ) +
∑

F∈F(P )

(−1)dim(F ) · h(F )

= − h(P ) + h(χF (P ))

= − h(P )− h(∗P ).

(4.25)

Recall from Remark 4.20 that we may define a height and shadow map in the opposite

direction

h+ : P(Rn)→ Rn and Sh+ : P(Rn)→ P(Rn)

satisfying the equations

h+(∗P ) = −h(P ) (4.26)

and

Sh+(∗P ) = ∗Sh(P ). (4.27)

Now consider the pillar Sh(∗P )∪Sh+(∗P ) = ∗G+(h+(P )−h(P )) ·∗Z . By (4.25), (4.26)

and (4.27) we have

Sh(∗P ) ∪ ∗Sh(P ) = Sh(∗P ) ∪ Sh+(∗P ) = ∗G+ (h+(P )− h(P )) · ∗Z = ∗G+ h · ∗Z.

By the cutting relation (see Lemma 4.9), cutting this pillar along ∗P gives

Sh(∗P ) + ∗Sh(P ) = ∗G+ h · ∗Z + ∗P.

We conclude by comparing this with equation (4.24)

∗Sh(P ) = ∗G+ h · ∗Z + ∗P − Sh(∗P ) = −χF (Sh(P )).

(2) This part is similar to the first one, but easier. The face analysis, which we leave to

the reader, yields in this case

χF (P + Z) = χF (P ) + χF (P + z) +
∑

F∈F(P )

(−1)dim(F )+1 · (F + Z)

= 2 · χF (P ) + χ(P ) · z − χF (P )− χ(P ) · Z
= χF (P ) + z −Z
= − ∗ P − ∗Z.

(3) Assume that dim(P ) = n. There is a partition of P + Z that has the pieces P and

F + Z for all top faces F ⊆ P , see Fig. 4.4.

By part (2), Theorem 4.30 holds for all elements of this partition except possibly for P .

Thus comparing the partition relation of polytopes (see Proposition 4.12)

∗(P + Z) = ∗P +
∑

Q∈P∂ ,Q6=P

(−1)codim(Q⊆P ) · ∗Q
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Figure 4.4: A partition of P + Z with pieces P and F + Z for
all top faces F ⊆ P .

with the partition relation for face Euler characteristics (see Proposition 4.32)

χF (P + Z) = χF (P ) +
∑

Q∈P∂ ,Q 6=P

(−1)codim(Q⊆P ) · χF (Q)

implies

∗P = −χF (P ) if and only if ∗ (P + Z) = −χF (P + Z).

For completeness we record the following trivial observation.

Lemma 4.34. For any polytope Q we have F(∗Q) = ∗F(Q) and Theorem 4.30 is true for

Q if and only if it is true for ∗Q.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.30. Let P be an arbitrary polytope. We prove the claim by induction

on the dimension of P . If dim(P ) = 0, there is nothing to prove.

Let now dim(P ) = n. By vertical stretching (Lemma 4.14) and Lemma 4.33 (3) we

may assume that P can be cut along an integral codimension 1 polytope into a grounded

half P+ and a half P− such that ∗P− is grounded. By the cutting relation for face Euler

characteristics (see Lemma 4.31), Lemma 4.34, and the induction hypothesis, it suffices to

prove the claim for grounded polytopes.

Let P be grounded and consider the shadow partition P of P (see Proposition 4.25).

Theorem 4.30 is true for all elements in P by the induction hypothesis and Lemma 4.33 (1)

and (3). The two partition relations of Proposition 4.12 and Proposition 4.32 then imply it

for P .
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5 The L2-torsion Polytope of

Amenable Groups

This chapter is dedicated to partial solutions of the following conjecture proposed by Friedl-

Lück-Tillmann [FLT16, Conjecture 6.4].

Conjecture 5.1 (Vanishing of the L2 -torsion polytope of amenable groups). Let G 6= Z be

an amenable group satisfying the Atiyah Conjecture. Suppose that G is of type F and that

Wh(G) = 0. Then we have

P (G) = 0.

Recall that the L2 -torsion polytope of groups was introduced in Definition 3.49. We first

comment on the conditions appearing above and then on indications that Conjecture 5.1

might be true.

In comparison with the original formulation, we replaced not virtually Z with not

isomorphic to Z since any torsion-free virtually Z group is in fact isomorphic to Z. Since

P (Z) is the negative of an interval of length one, infinite cyclic groups need to be ex-

cluded from the statement of the conjecture. Infinite amenable groups are L2 -acyclic (see

[Lüc02, Corollary 6.75]) which is why we can drop this assumption in the conjecture above.

Recall from Lemma 3.23 that any torsion-free elementary amenable group satisfies the Atiyah

Conjecture. Among these, all torsion-free virtually solvable groups are known to have trivial

Whitehead group since they satisfy the K -theoretic Farrell-Jones Conjecture, as proved by

Wegner [Weg15].

In the context of L2 -invariants and related fields, infinite amenable groups stand out as

a class of groups satisfying strong vanishing results. An infinite amenable G has

• vanishing L2 -Betti numbers, see [Lüc02, Corollary 6.75], or [Lüc02, Theorem 7.2 (1)

and (2)] for a strengthening of this statement;

• vanishing L2 -torsion (provided that G is of type F ), see [LT14, Theorem 1.3];

• vanishing rank gradient and vanishing K -homology gradients with respect to a normal

chain with trivial intersection (provided that G is finitely generated), see [AN12,

Theorem 3];

• vanishing rank gradient and vanishing K -homology gradients with respect to any chain

(provided that G is finitely presented), see [AJZN11, Theorem 1];

• fixed price 1 in the theory of cost of groups, see [OW80, Theorem 6] combined with

[Gab00, Théorème 3].

• vanishing simplicial volume (provided that G is the fundamental group of a closed

connected orientable manifold), see [Gro83, Section 3.1, Corollary (C)].

Special attention deserves in the setting of this thesis the following result due to Weg-

ner [Weg00, Theorem 5.4.5]: If G is a group of type F which is of det ≥ 1-class (i.e.,

detN (G)(rA) ≥ 1 for all matrices A ∈Mm,n(ZG)) and which contains a non-trivial elemen-

tary amenable normal subgroup, then G is L2 -acyclic and has vanishing L2 -torsion. In
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particular, the L2 -torsion of any infinite elementary amenable group of type F vanishes.

This result was slightly generalized in [Weg09, Theorem 1]. If true, Conjecture 5.1 would

extend this long list of vanishing results and in particular provide a polytope analogue for

Wegner’s result.

In this chapter we introduce the notion of groups of P ≥ 0-class and even stronger of

polytope class by virtue of the polytope homomorphism. This notion is a polytope analogue

of the det ≥ 1-class mentioned above. Then we show that all infinite amenable groups

satisfying the Atiyah Conjecture possess these properties. We then adapt Wegner’s proof in

order to show that a group of type F which is of P ≥ 0-class and contains a non-abelian

elementary amenable normal subgroup has vanishing L2 -torsion polytope. In particular,

the L2 -torsion polytope of any infinite elementary amenable group of type F vanishes.

Finally we provide some evidence for Conjecture 5.1 beyond elementary amenability. A

self-contained presentation of the results in this chapter can be found in [Fun17].

5.1 Groups of P ≥ 0-class

In this section we introduce a polytope analogue of the notion det ≥ 1-class concerning

the Fuglede-Kadison determinant (see Subsection 3.1.3). First we need a partial order on

polytope groups.

Definition 5.2 (Partial order on polytope groups). Let H be a finitely generated free-

abelian group. We define a partial order on P(H) by declaring

P −Q ≤ P ′ −Q′ if and only if P +Q′ ⊆ P ′ +Q.

Likewise, we define a partial order on the translation quotient PT (H) by declaring

P −Q ≤ P ′ −Q′ if and only if P +Q′ ⊆ P ′ +Q up to translation.

It is easy to see that this definition does not depend on the choice of representatives.

Recall that we denote by [rA] ∈ Kw
1 (ZG) the class of the map rA : ZGn → ZGn given

by right multiplication with a matrix A ∈Mn,n(ZG) which becomes invertible over D(G).

Definition 5.3 (P ≥ 0-class and polytope class). A group G is of P ≥ 0-class if it

is torsion-free, satisfies the Atiyah Conjecture, b1(G) < ∞, and we have for any matrix

A ∈Mn,n(ZG) which becomes invertible over D(G) that

P
(
[rA : ZGn → ZGn]

)
≥ 0

in PT (H1(G)f ). We call G of polytope class if P
(
[rA : ZGn → ZGn]

)
is even represented

by a polytope, i.e., it lies in the image of the inclusion PT (H1(G)f )→ PT (H1(G)f ) of the

monoid of integral polytopes up to translation.

Example 5.4. (1) A finitely generated free-abelian group H is of polytope class since the

Dieudonné determinant detD(H)(A) coincides with the determinant detZH(A) over

the commutative ring ZH and is therefore represented by an element in ZH . Hence

P
(
[rA : ZHn → ZHn]

)
is represented by a polytope.

(2) If G is a torsion-free group satisfying the Atiyah Conjecture and b1(G) ≤ 1, then

G is of polytope class. Namely, let D(K)[u±] ⊆ D(G) be a subring determined

by a generator of Hom(G,Z). Then it follows by virtue of the Euclidean function
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on D(K)[u±] given by the degree that detD(G)(A) is represented by an element

in D(K)[u±]. (This argument was also used in the proof of Theorem 3.52.) Thus

P
(
[rA : ZGn → ZGn]

)
is represented by an interval.

We know from Theorem 3.45 (1) that the L2 -torsion polytope is a simple homotopy

invariant of free finite L2 -acyclic G-CW-complexes. This can be strengthened if G is of

P ≥ 0-class.

Lemma 5.5. Let G be a group of P ≥ 0-class. Then the composition

Wh(G)
ζ−−→Whw(G)

P−−→ PT (H1(G)f )

is trivial. Moreover, the L2 -torsion polytope is a homotopy invariant of free finite L2 -acyclic

G-CW-complexes.

Proof. An element in the image of ζ is of the form [rA : ZGn → ZGn] for a matrix A ∈
Mn,n(ZG) which has an inverse A−1 ∈Mn,n(ZG). Since G is of P ≥ 0-class, we have

0 = P([id]) = P
(
[rA]

)
+ P

(
[rA−1 ]

)
≥ 0,

and hence P
(
[rA]

)
= 0. The ’moreover’ part immediately follows from this because of

Theorem 3.45 (1).

Remark 5.6 (Extension of P (G) to groups of P ≥ 0-class). Lemma 5.5 allows us to drop

Wh(G) = 0 from the list of conditions in the definition of the L2 -torsion polytope P (G)

of groups (see Definition 3.49), provided that G is of P ≥ 0-class. Put differently, we can

extend the definition of P (G) to groups G which are of type F and of P ≥ 0-class. We

will take this into account in the formulations for the rest of this chapter.

5.2 Polytope class and amenability

The goal of this section is to prove the following result.

Theorem 5.7 (Polytope class and amenability). Let G be a torsion-free amenable group

with b1(G) <∞ satisfying the Atiyah Conjecture. Then G is of polytope class.

Its proof requires some preparation. The first lemma is possibly well-known in polytope

theory, but we were not able to find the statement nor an implicit proof in the literature.

In any case, it might as well be helpful in other situations.

Lemma 5.8 (Detecting polytopes by their faces). Let H be a finitely generated free-abelian

group. Then x ∈ P(H) is represented by a polytope if and only if for every ϕ ∈ Hom(H,Z)

the class Fϕ(x) ∈ P(H) is represented by a polytope.

Proof. It suffices to prove this for H = Zn . Equip VH = Rn with the standard inner

product. The forward direction of the lemma is obvious.

For the backwards direction write x = P − Q for integral polytopes P and Q. By

assumption Fϕ(x) = Fϕ(P ) − Fϕ(Q) is an integral polytope for any ϕ ∈ Hom(H,Z), say

Sϕ , so Fϕ(P ) = Fϕ(Q) + Sϕ . We can write

P = {x ∈ VH | ψi(x) ≤ ci}
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for certain ψi ∈ Hom(H,Z) ⊆ HomR(VH ,R) and ci ∈ R (i = 1, ..., k) such that no inequality

is redundant. Then

S = hull

(
k⋃
i=1

Sψi

)
is an integral polytope satisfying P ⊆ Q+ S . The remainder of the proof will be occupied

with proving Q + S ⊆ P . Although this is intuitively clear, its proof requires a number

of steps. In the following, Greek letters will always denote elements in Hom(H,Z) without

explicitly saying this. Moreover, given a compact subset A ⊆ Rn and ϕ, we will use the

shorthand notations

Aϕ = Fϕ(A);

ϕ(A) = max{ϕ(a) | a ∈ A}.

First note that we have

Fϕ(Pψ) = Pϕ ∩ Pψ = Fψ(Pϕ)

provided that the intersection in the middle is non-trivial, and likewise for Q.

Step 1: If ϕ,ψ are such that Pϕ ∩ Pψ is non-empty, then Qϕ ∩ Qψ and Sϕ ∩ Sψ are

non-empty, and we have

Pϕ ∩ Pψ =
(
Qϕ ∩Qψ

)
+
(
Sϕ ∩ Sψ

)
.

We first argue that Qϕ ∩ Qψ is non-empty. Pick a vertex p ∈ Pϕ ∩ Pψ , and let α be

such that Pα = p. Then p = Pα = Qα + Sα , hence Qα = q and Sα = s are just points.

After translating Q, we may assume that s = 0 and p = q . Then for every β such that Pβ
contains p we have Qβ ⊆ Pβ and p ∈ Qβ . This applies in particular to ϕ and ψ , hence

p ∈ Qϕ ∩Qψ .

Now we compute

Fϕ(Sψ) = Fϕ(Pψ)− Fϕ(Qψ) = Fψ(Pϕ)− Fψ(Qϕ) = Fψ(Sϕ),

hence Fϕ(Sψ) ⊆ Sϕ ∩ Sψ and Sϕ ∩ Sψ is non-empty. We also have(
Sϕ ∩ Sψ

)
+ Fϕ(Qψ) =

(
Sϕ ∩ Sψ

)
+
(
Qϕ ∩Qψ

)
⊆
(
Pϕ ∩ Pψ

)
= Fϕ(Pψ).

From this it follows that Sϕ ∩ Sψ ⊆ Fϕ(Sψ). Thus we proved Fϕ(Sψ) = Sϕ ∩ Sψ . Now we

conclude

Pϕ ∩ Pψ = Fϕ(Pψ)

= Fϕ(Qψ) + Fϕ(Sψ)

=
(
Qϕ ∩Qψ

)
+
(
Sϕ ∩ Sψ

)
.

Step 2: Let v0, v1, v2 ∈ Sn−1 be such that v1 lies on a geodesic path of length at most

π from v0 to v2 in Sn−1 . Write ϕi = 〈vi, ·〉 : Rn → R. If P is any polytope such that

Pϕ1
∩ Pϕ2

is non-trivial, then we have

ϕ0(Pϕ2) = ϕ0(Pϕ1 ∩ Pϕ2).
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Pick an element x ∈ Pϕ1
∩ Pϕ2

attaining the maximum on the right. Assume that we

have

ϕ0(Pϕ2) > ϕ0(Pϕ1 ∩ Pϕ2).

Then there exists y ∈ Pϕ2
such that ϕ0(y) > ϕ0(x), ϕ1(y) < ϕ1(x), and ϕ2(y) = ϕ2(x). In

other words,

〈y − x, v0〉 > 0;

〈y − x, v1〉 < 0;

〈y − x, v2〉 = 0

which cannot happen if v1 lies on a geodesic path of length at most π from v0 to v2 .

Step 3: We have Sϕ = Sϕ .

Let ϕ,ψ be arbitrary and write (up to scalar) ϕ = 〈v, ·〉 and ψ = 〈w, ·〉 for unit vectors

v, w . There is a sequence of unit vectors v = v0, v1, ..., vm = w running along a geodesic

path of length at most π from v to w in Sn−1 such that Pϕi ∩ Pϕi+1 is non-trivial for all

0 ≤ i ≤ m − 1. For brevity write from now on Pi = Pϕi , Qi = Qϕi , and Si = Sϕi . Then

we have by Step 1

Pi ∩ Pi+1 =
(
Qi ∩Qi+1

)
+
(
Si ∩ Si+1

)
and by Step 2

ϕ(Pi+1) = ϕ(Pi ∩ Pi+1);

ϕ(Qi+1) = ϕ(Qi ∩Qi+1).

This implies

ϕ(Si+1) = ϕ(Pi+1)− ϕ(Qi+1)

= ϕ(Pi ∩ Pi+1)− ϕ(Qi ∩Qi+1)

= ϕ(Si ∩ Si+1)

≤ ϕ(Si).

Since this is true for all i = 0, ...,m− 1, we conclude ϕ(Sψ) ≤ ϕ(Sϕ) and hence Sϕ = Sϕ .

Step 4: We have Q+ S ⊆ P = {x ∈ Rn | ψi(x) ≤ ci}.
Pick arbitrary s ∈ S and q ∈ Q. With the aid of Step 3 we can calculate

ψi(q + s) = ψi(q) + ψi(s)

≤ ψi(Qψi) + ψi(Sψi)

= ψi(Pψi) = ci

and hence q + s ∈ P .

We also need the following auxiliary gadget.

Definition 5.9. Let H be a finitely generated free-abelian group and G ⊆ H a subgroup.

We consider PT (G) as a submonoid of PT (H). Then we let PT (H,G) be the submonoid of

PT (H) containing all elements that can be written as a difference P−Q for some P ∈ PT (H)

and Q ∈ PT (G).
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Example 5.10. (1) For any subgroup G ⊆ H one has

PT (H) = PT (H, 0) ⊆ PT (H,G) ⊆ PT (H,H) = PT (H).

We can interpret PT (H,G) as interpolating between the monoid of integral polytopes

and the integral polytope group.

(2) Let H be of rank 2 and let G1, G2 be two subgroups of rank 1. If Gi ∩Gj = 0, then

PT (H,G1) ∩ PT (H,G2) = PT (H).

Motivated by the last example we propose the following problem.

Question 5.11. Let H be a finitely generated free-abelian group and G1, G2 be two sub-

groups. Do we always have

PT (H,G1) ∩ PT (H,G2) = PT (H,G1 ∩G2)?

If this question has an affirmative answer, then the next lemma, for which we provide a

different argument, would immediately follow.

Lemma 5.12. Let H be a finitely generated free-abelian group. Then⋂
ϕ∈Hom(H,Z)

PT (H, kerϕ) = PT (H).

Proof. We prove the statement by induction on the rank of H . The rank 1 case is obvious.

For the higher rank case, pick an element x in the above intersection. For any homomor-

phism ϕ : H → Z we can find Pϕ ∈ PT (H) and Qϕ ∈ PT (kerϕ) such that x = Pϕ −Qϕ .

Fix some homomorphism α : H → Z. Then

Fα(x) = Fα(Pϕ)− Fα(Qϕ) ∈ PT (kerα, kerα ∩ kerϕ).

Since ϕ was arbitrary, we conclude

Fα(x) ∈
⋂

ϕ∈Hom(H,Z)

PT (kerα, kerα ∩ kerϕ) =
⋂

ψ∈Hom(kerα,Z)

PT (kerα, kerψ).

From the induction hypothesis we conclude Fα(x) ∈ PT (kerα). As this holds for every

homomorphism α : H → Z, we may apply the previous Lemma 5.8 to deduce that x ∈
PT (H).

For the rest of this chapter we will use the following notation. Given a non-trivial x ∈ ZG
we denote by P (x) ∈ PT (H1(G)f ) the image of the class of the ZG-map rx : ZG → ZG
under P : Kw

1 (ZG)→ PT (H1(G)f ). Recall from Section 3.7.2 that this is easily computable,

namely for the kernel K = ker(G→ H1(G)f ) we have an isomorphism ZG ∼= ZK ∗H1(G)f
and P (x) is the class of hull(supp(x)) in PT (H1(G)f ).

Proof of Theorem 5.7. Recall from Lemma 3.23 (2) that ZG satisfies the Ore condition with

respect to T = ZGr {0} and the inclusion induces an isomorphism T−1ZG
∼=−−→ D(G).

Let A ∈Mn,n(ZG) be a matrix which becomes invertible over D(G). If b1(G) = 0, then

there is nothing to prove. Otherwise let us fix some epimorphism ϕ : G→ Z and denote its

kernel by K . Consider the associated twisted Laurent polynomial ring D(K)t[u
±] ⊆ D(G)

as in Theorem 3.24 (1). The Euclidean function on D(K)t[u
±] given by the degree allows

us to transform A to a triangular matrix T over D(K)t[u
±] by using the operations
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• Permute rows or columns;

• Multiply a row on the right or a column on the left with an element of the form y ·um
for some non-trivial y ∈ D(K) and m ∈ Z;

• Add a right D(K)t[u
±]-multiple of one row (resp. column) to another row (resp.

column).

These operations do not change the class [A] ∈ K1(D(G)). Since D(K) = (ZKr{0})−1ZK ,

we may then multiply T with suitable elements in ZK to obtain a matrix over ZKt[u
±] =

ZG. This implies that there are elements x ∈ ZG and y ∈ ZK r {0} such that we have in

K1(D(G))

[A] = [T ] = [x · y−1].

This implies

P
(
[rA : ZGn → ZGn]

)
= P (x)− P (y) ∈ PT (H1(G)f , kerϕ)

for the epimorphism ϕ : H1(G)f → Z induced by ϕ. Since ϕ was arbitrary, we have

P
(
[rA : ZGn → ZGn]

)
∈

⋂
ϕ∈Hom(G,Z)

surjective

PT (H1(G)f , kerϕ).

By Lemma 5.12, this intersection is equal to PT (H1(G)f ).

5.3 Polytope class and the L2-torsion polytope

In this section we adapt Wegner’s strategy built in [Weg00, Weg09] in the setting of the

L2 -torsion polytope. Together with the knowledge that torsion-free amenable groups are of

polytope class, one of its applications will be the vanishing of the L2 -torsion polytope of

every elementary amenable group of type F . In order to motivate our first lemma we give

a rough idea of the argument:

Instead of localizing the group ring ZG at ZGr{0} in order to obtain D(G), we localize

at a much smaller set S ⊆ ZG in order to obtain an intermediate ring ZG ⊆ S−1ZG ⊆ D(G).

This set is small enough so that the polytopes of invertible matrices over S−1ZG still satisfy

P ≥ 0, but it is large enough so that the localized cellular chain complex S−1C∗(EG) is

already contractible. Combining these two facts makes the image of the Whitehead torsion

of S−1C∗(EG) under an adjusted polytope homomorphism K1(S−1ZG) → PT (H1(G)f )

computable. But this image coincides with the negative of the L2 -torsion polytope P (G).

Lemma 5.13. Let G be a group of type F which satisfies the Atiyah Conjecture and b1(G) <

∞. Suppose that G contains a non-trivial abelian normal subgroup A ⊆ G such that A ∩
ker(pr : G→ H1(G)f ) 6= 0. Then

S = {x ∈ ZAr {0} | P (x) = 0 in PT (H1(G)f )}.

is a multiplicatively closed subset with respect to which ZG satisfies the Ore condition and

such that S−1Z = 0 for the trivial ZG-module Z.

Proof. Since for any two elements x, y ∈ ZG we have P (x · y) = P (x) + P (y), it is clear

that S is multiplicatively closed. The proof for the left and right Ore condition follows as in

[Weg00, Proof of Theorem 5.4.5, Step 2 and 3], see also [Lüc02, Lemma 3.119]. We include
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the argument here for the sake of completeness. Note that the canonical involution on ZG
respects S , so it suffices to prove the right Ore condition.

Let r ∈ ZG, s ∈ S and fix a set of representatives {gi | i ∈ I} for the cosets Ag ∈ A\G.

Write r =
∑
i∈I aigi for certain ai ∈ ZA, where almost all ai vanish. Put I ′ = {i ∈ I | ai 6=

0}. The element si = gisg
−1
i lies in ZA since A is normal and P (si) = P (s) = 0. These

two facts imply si ∈ S .

Define s′ =
∏
i∈I′ si ∈ ZA, xi = s′/si ∈ ZA, and r′ =

∑
i∈I′ xiaigi ∈ ZG. Then we

compute

s′ · r =
∑
i∈I′

s′aigi =
∑
i∈I′

xisiaigi =
∑
i∈I′

xiaisigi

=
∑
i∈I′

xiaigisg
−1
i gi =

∑
i∈I′

xiaigis = r′ · s

Finally we prove S−1Z = 0. Pick some non-trivial a ∈ A ∩ ker(pr : G → H1(G)f ) 6= 0

(this is the only part where we need this assumption). Then P (1−a) = 0 in PT (H1(G)f ), so

1− a lies in S . Since 1− a acts by multiplication with 0 on Z, we conclude S−1Z = 0.

In the following proof we denote the Whitehead torsion of a finite based free contractible

R-chain complex by τ(C∗).

Lemma 5.14. Let G be a group of P ≥ 0-class. Let S ⊆ ZG be a multiplicatively

closed subset with respect to which ZG satisfies the Ore condition. Suppose that P (s) =

0 in PT (H1(G)f ) for all s ∈ S .

If X is a free finite L2 -acyclic G-CW-complex such that S−1Hn(X) = 0, then

P (X;G) = 0.

Proof. This is based on ideas appearing in [Weg00, Proof of Theorem 5.4.5, Step 4 and 5],

see also [Lüc02, Lemma 3.114].

First we consider the following commutative diagram

K̃w
1 (ZG)

i

((

P

))
K̃1(D(G))

detD(G)// D(G)×ab/{±1} P // PT (H1(G)f )

K̃1(S−1ZG)

j 66

P′

55

Here i and j denote the obvious maps, detD(G) is the Dieudonné determinant, P is the

map defined in (3.12), P denotes the composition of the top row (which is essentially the

polytope homomorphism), and P′ denotes the composition of the bottom row.

Let A be an invertible S−1ZG-matrix. By multiplying A with a suitable s ∈ S we

obtain a ZG-matrix B which is invertible over S−1ZG and thus also over D(G). Then we

have [A] = [B] − [s] in K̃1(S−1ZG) and P′([B]) = P([B]). We assume that P (s) = 0 and

that G is of P ≥ 0-class, so we have

P′([A]) = P′([B])− P′([s]) = P′([B])− P (s) = P([B]) ≥ 0. (5.1)

Since the same reasoning applies to A−1 , we have P′([A]) = 0 and thus P′ = 0.

Denote by C∗ = C∗(X) the cellular ZG-chain complex of X equipped with some choice
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of cellular basis. The D(G)-chain complex D(G)⊗ZGC∗ is contractible by Lemma 3.39 and

we have

i(ρ(2)u (C∗;N (G))) = τ(D(G)⊗ZG C∗).

Since localization is flat and S−1Hn(X) = 0, the S−1ZG-chain complex S−1C∗ = S−1ZG⊗ZG
C∗ is also contractible, and we have

j(τ(S−1C∗)) = τ(D(G)⊗S−1ZG S
−1C∗)

= τ(D(G)⊗S−1ZG S
−1ZG⊗ZG C∗)

= τ(D(G)⊗ZG C∗)

= i(ρ(2)u (C∗;N (G))).

Thus we see

P(ρ(2)u (C∗;N (G))) = P′(τ(S−1C∗)) = 0.

Theorem 5.15 (The L2 -torsion polytope and elementary amenability). Let G be a group

of type F which is of P ≥ 0-class. Suppose that G contains a non-abelian elementary

amenable normal subgroup. Then G is L2 -acyclic and we have

P (G) = 0.

Proof. The group G is L2 -acyclic by [Lüc02, Theorem 1.44]. Let E be the non-abelian

elementary amenable subgroup.

Case 1: E is not virtually abelian. It follows from the proof of [HL92, Corollary 2] that

E is virtually solvable. Let F ⊆ E be a maximal solvable normal subgroup of finite index

in E . Since we assume that E is not virtually abelian, F is not abelian. Hence the lowest

non-trivial subgroup A in the derived series of F is abelian and contained in [F, F ] ⊆ [G,G].

In particular, A ∩ ker(pr : G → H1(G)f ) 6= 0. Since A is characteristic in E , A is normal

in G.

Case 2: E is virtually abelian. Let A be a normal abelian subgroup of finite index. Since

E is not abelian, ker(pr : E → H1(E)f ) is non-trivial and hence infinite as G is torsion-free.

But any infinite subgroup of E must intersect A non-trivially. Thus in particular, A ∩
ker(pr : G→ H1(G)f ) 6= 0.

In both cases we may apply Lemma 5.13. This provides us with a subset S ⊆ ZG
satisfying the assumptions of Lemma 5.14 for X = EG. Hence P (G) = 0.

The following is the main result of this chapter.

Corollary 5.16 (The L2 -torsion polytope of elementary amenable groups vanishes). Let

G be an amenable group of type F satisfying the Atiyah Conjecture. If G contains a non-

abelian elementary amenable normal subgroup, then

P (G) = 0.

In particular, the L2 -torsion polytope of an elementary amenable group of type F vanishes.

Proof. By Theorem 5.7 an amenable group G of type F satisfying the Atiyah Conjecture

is of polytope class. Hence the first statement follows directly from Theorem 5.15.

For the second statement, recall from Lemma 3.23 that an elementary amenable group

G of type F satisfies the Atiyah Conjecture. Hence P (G) = 0 follows from the previous

statement provided that G is non-abelian. If G is abelian, then G must be finitely generated

free-abelian, so P (G) = 0 follows from ρ
(2)
u (G) = 0 as seen in [FL16b, Example 2.7].
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We emphasize the following remark that was also used in the proof of Theorem 5.15.

Remark 5.17. An elementary amenable group of type F (or more generally, with finite

cohomological dimension) is in fact virtually solvable by a result of Hillman-Linnell [HL92,

Corollary 1].

Remark 5.18 (Generalization to the universal L2 -torsion). The proof of Corollary 5.16

crucially relies on the existence of a partial order on polytope groups even though the original

statement does not involve them. One difficulty in proving the corresponding statement for

the universal L2 -torsion ρ
(2)
u (G) lies in the structural deficit of Whw(G) that it does not

carry a meaningful partial order.

5.4 Evidence for non-elementary amenable groups

In this short final section, we offer concluding evidence for the validity of Conjecture 5.1 for

amenable groups that are not elementary amenable. This computation is to a great extent

based on known results.

Proposition 5.19 (L2 -torsion polytope and amenability). Let G 6= Z be an amenable

group of type F satisfying the Atiyah Conjecture. Then P (G) lies in the kernel of the norm

homomorphism N : PT (H1(G)f )→ Map(H1(G;R),R) and there is an integral polytope P ∈
PT (H1(G)f ) such that

P (G) = P − ∗P.

Proof. Let pr : G → H1(G)f = H be the obvious projection. Suppose that H 6= 0 since

there is nothing to prove otherwise. Let ϕ : H → Z be an epimorphism, and put K =

ker(ϕ ◦ pr: G→ Z). Then we have by Theorem 3.52 and Lemma 3.17

N(P (G))(ϕ) = −χ(2)(EG;N (G);ϕ ◦ pr)

= −χ(2)(i∗EG;N (K))

= −χ(2)(EK;N(K)).

As a subgroup of an amenable group, K is itself amenable. Since G 6= Z, K must be

infinite. Since infinite amenable groups are L2 -acyclic by [Lüc02, Corollary 6.75], we have

χ(2)(EK;N(K)) = 0. (Note that for this argument it is irrelevant that i∗EG = EK is not

a finite K -CW-complex.) Thus we have

N(P (G))(ϕ) = 0

for all surjective homomorphisms ϕ : H → Z. This generalizes to homomorphisms ϕ : H →
Q since N(P (G)) is homogeneous, and to homomorphisms ϕ : H → R since N(P (G)) is

continuous. Hence

P (G) ∈ ker
(
N : PT (H)→ Map(Hom(H,R),R)

)
.

We have seen in Theorem 4.1 (2) and Lemma 4.16 that

ker
(
N : PT (H)→ Map(Hom(H,R),R)

)
= im

(
id− ∗ : PT (H)→ PT (H)

)
.

Hence there exists an integral polytope P ⊆ H ⊗Z R such that

P (G) = P − ∗P.
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6 The L2-torsion Polytope of Free Group

HNN Extensions

In this final chapter we shift our view from amenable groups towards the other side of

the universe of groups, namely to free groups. The theory of universal L2 -torsion and

the L2 -torsion polytope of groups can be applied to any endomorphism of a group with

finite classifying space by considering the corresponding HNN extension. There are (at

least) three reasons why it is reasonable to apply this first to endomorphisms of finitely

generated free groups. First, free groups have the simplest possible classifying space and

so computations seem within reach; second, HNN extensions of free groups can be thought

of as being close to 3-manifold groups and so promising results might be expected; third,

the outer automorphism group Out(Fn) of free groups is an important object in geometric

group theory, but notoriously hard to handle. L2 -torsion invariants have the potential to

carry a significant amount of information for these automorphisms.

We begin with several general observations about the universal L2 -torsion of free group

endomorphisms before we concentrate on a class of free group automorphisms called unipo-

tent polynomially growing. For these we present an inductive procedure to fully compute

the universal L2 -torsion, see Theorem 6.15. This will imply a strong relation between the

L2 -torsion polytope and the BNS-invariant introduced in Section 2.4, see Corollary 6.20.

These results overlap in part with [FK16]. We also obtain the equality of the twisted

L2 -Euler characteristic and the degree of L2 -torsion functions for all polynomially growing

automorphisms, see Corollary 6.21.

6.1 Free group HNN extensions

Definition 6.1. Let A be a group and α : A → A be an endomorphism. Then the HNN

extension associated to α is the group with presentation

A∗α = 〈A, t | for all a ∈ A: t−1at = α(a) 〉.

It is ascending if α is injective. The canonical epimorphism associated to the HNN extension

is the map A∗α → Z determined by mapping t to 1 and A to 0. A group homomorphism

µ : A∗α → G is admissible if the canonical epimorphism factors over µ. If A = Fn is a

finitely generated free group (of rank n), then we simply refer to Fn∗α as a free group HNN

extension.

Classifying spaces for HNN extensions are well understood, we include the following

lemma for later reference.

Lemma 6.2. Let A be a group and α : A→ A be a monomorphism. Take a model for the

classifying space BA and choose a realization Bα : BA→ BA of α. Then we have:
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(1) The mapping torus TBα of Bα is a model for the classifying space of the HNN

extension A∗α . If BA is finite, then so is TBα .

(2) The simple homotopy type of TBα does not depend on the choice of BA or Bα.

(3) Let µ : π1(TBα) = A∗α → G be an admissible group homomorphism. Then the G-

covering TBα → TBα associated to µ is L2 -acyclic.

Proof. (1) is easy to check.

(2) See [Coh73, (22.1)].

(3) is a result of Lück [Lüc94b, Theorem 2.1].

Remark 6.3. We also mention that the Whitehead group of a free group HNN extension

Fn∗α vanishes by a theorem of Waldhausen [Wal78, Theorem 19.4].

Definition 6.4. Let A be a group of type F , α : A→ A a monomorphism, and µ : A∗α =

π1(TBα) → G an admissible homomorphism. Let TBα → TBα denote the G-covering

associated to µ as in Lemma 6.2 (3). Then the universal L2 -torsion of the pair (α, µ) is

defined as

ρ(2)u (α;µ) = ρ(2)u (TBα;N (G)) ∈Whw(G).

This is well-defined in view of Theorem 3.45 (1) and Lemma 6.2 (2). If G is torsion-free,

satisfies the Atiyah Conjecture and has finite first Betti number, then we define the L2 -

torsion polytope of (α, µ) to be

P (α;µ) = P(−ρ(2)u (α;µ)) ∈ P(H1(G)f ).

If µ = id, then we simply write ρ
(2)
u (α) and P (α).

In order to deal with the universal L2 -torsion of free group HNN extensions in practice,

we quickly recall Fox calculus [Fox53,Fox54].

Remark 6.5. Let F be a free group with generating set s1, ..., sn . Then the Fox derivatives
∂
∂si

: ZF → ZF are the Z-linear maps determined by the following properties:

∂1

∂si
= 0;

∂sj
∂si

= δij ;

∂vw

∂si
=

∂v

∂si
+ v · ∂w

∂si

for any v, w ∈ F . If F → G is an epimorphism, then we denote the induced map ∂
∂si

: ZF →
ZG by the same symbol.

Definition 6.6 (Fox matrices). Given a finite group presentation G = 〈s1, ..., sn | r1, ..., rm〉,
its Fox matrix is the matrix

(
∂ri
∂sj

)
∈ Mm,n(ZG). We will sometimes denote it by F (G)

although it depends on the presentation rather than the group.

Let F be a free group with generating set s1, ..., sn and α : F → F be an endomorphism.

Then the Fox matrix of α is the matrix

F (α) =

(
∂α(si)

∂sj

)
∈Mn,n(ZF ).
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6.1. Free group HNN extensions

Lemma 6.7 (Fox matrix of a free group HNN extension). Let α : Fn → Fn be an endomor-

phism of the free group Fn . Take for the HNN extension πα = Fn∗α the finite presentation

πα = 〈 s1, ..., sn, t | sitα(si)
−1t−1 for all i 〉.

Then the Fox matrix of this presentation is given by

F (πα) =

 s1 − 1

Id−t · F (α)
...

sn − 1

 ∈ Zπn×(n+1)
α .

Proof. If we let ri = sitα(si)
−1t−1 , then this follows from the computations

∂ri
∂sj

= δij + sit

(
∂α(si)

−1

∂sj
+ α(si)

−1 · ∂t
−1

∂sj

)
= δij − sitα(si)

−1 · ∂α(si)

∂sj

= δij − t ·
∂α(si)

∂sj
∂ri
∂t

= si − sitα(sj)
−1t−1 = si − 1.

The following lemma is the obvious analogue of [FL16a, Theorem 5.1] for the universal

L2 -torsion rather than L2 -Euler characteristics and for free group HNN extensions instead

of 3-manifolds.

Lemma 6.8 (Universal L2 -torsion of free group HNN extensions). Let α : Fn → Fn be a

monomorphism of the free group Fn , and put πα = Fn∗α . Let A ∈ Mn,n+1(Zπα) be the

Fox matrix of πα as in Lemma 6.7. Let µ : πα → G be an admissible homomorphism. Pick

1 ≤ i ≤ n such that µ(si) has infinite order. Let Ai be the n × n-matrix obtained from A

by deleting the i-th column. Then we have in Whw(G)

ρ(2)u (α;µ) = [rµ(si)−1 : ZG→ ZG]− [rµ(Ai) : ZGn → ZGn].

Likewise, we have

ρ(2)u (α;µ) = [rµ(t)−1 : ZG→ ZG]− [rµ(An+1) : ZGn → ZGn].

Proof. Let X → TBα denote the G-covering associated to µ. The cellular ZG-chain

complex of C∗(X) looks like

...→ 0→ ZGn µ(A)−−−→ ZGn+1
⊕
µ(si)−1−−−−−−−→ ZG→ 0,

where A is the matrix occurring in the statement of the lemma. Since µ(si) has infinite

order, the chain complex el(rµ(si)−1) is L2 -acyclic. From the exact sequence

0→ el(rµ(si)−1)→ C∗(X)→ Σ el(rµ(Ai))→ 0

we deduce that Σ el(rAi) is also L2 -acyclic. Moreover, since ρ
(2)
u is an (additive) L2 -torsion

invariant, we have

ρ(2)u (α;µ) = ρ(2)u (X;N (G)) = [rµ(si)−1]− [rµ(Ai)].
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The proof for t instead of si is analogous, but since µ is admissible the order of µ(t) is

automatically infinite.

Remark 6.9. Lemma 6.8 implies that the Alexander polynomial of free group HNN exten-

sions can be reinterpreted in terms of the universal L2 -torsion as follows. Let πα = Fn∗α ,

let pr : πα → H1(πα)f = H denote the projection, and let X → Bπα be the H -covering

associated to pr. A ZH -presentation of the Alexander module Aπα is given by

...→ 0→ ZHn pr(A)−−−−→ ZHn+1 → Aπα → 0

By the same argument as in the proof of [McM02, Theorem 5.1] one sees that

∆πα =

{
det(pr(Ai))/(pr(si)− 1) if b1(πα) ≥ 2 and pr(si) 6= 0;

det(pr(An+1)) if b1(πα) = 1.

Upon comparing this with Lemma 6.8, we see that ∆πα essentially corresponds to ρ
(2)
u (X;N (H))

under the isomorphism

Whw(H) ∼= K1(D(H))/{±h} ∼= D(H)×/{±h}

given in Theorem 3.43 and by the (Dieudonné) determinant.

6.2 Norms on the first cohomology of free group HNN extensions

Recall from Theorem 3.53 that for 3-manifolds the image of the L2 -torsion polytope under

the norm homomorphims N is precisely the Thurston norm. In this chapter, we will show

that for free group HNN extensions the L2 -torsion polytope also induces a seminorm on its

first cohomology. Most of the work is already done by the following theorem.

Theorem 6.10. Let k be a skew-field and H a finitely generated free-abelian group. Let

k ∗ H be some crossed product and Q = T−1(k ∗ H) its quotient field. If x ∈ K1(Q) is

represented by an element A ∈Mn,n(k ∗H), then the image of x under the composition

K1(Q)
detQ−−−→ Q×ab

P−−→ P(H)
N−−→ Map(Hom(H,R),R)

(where P is defined as in Section 3.7.2) is a seminorm.

Proof. This is due to Friedl-Harvey [FH07, Theorem 2.2].

Theorem 6.11. Let α : Fn → Fn be a monomorphism of the free group Fn , and put

πα = Fn∗α . Let µ : πα → G be an admissible homomorphism to a torsion-free group

satisfying the Atiyah Conjecture and with finite first Betti number.

Then the image of −ρ(2)u (α;µ) under the composition

Whw(G)
P−−→ P(H1(G)f )

N−−→ Map(H1(G;R),R)

is a seminorm.

Definition 6.12. In the sequel this seminorm will be denoted by

δ(α, µ) : H1(G;R)→ R

84



6.3. L2 -torsion invariants of UPG automorphisms

in analogy with Section 2.3, and we abbreviate

δ(α) = δ(α, id).

Remark 6.13. Recall from Theorem 3.52 that we have

δ(α, µ)(ϕ) = −χ(2)(TBα;N (G), ϕ)

for the G-covering TBα → TBα associated to µ.

Proof of Theorem 6.11. In this proof, let ‖·‖ = N(P(−ρ(2)u (α;µ))). Since ‖·‖ is in the image

of N and hence a difference of seminorms, ‖ · ‖ is continuous and satisfies ‖r ·ϕ‖ = |r| · ‖ϕ‖.
Now fix some ϕ ∈ H1(G,R). By the same argument as in the proof of [FL16a, Theorem

5.5], we can find a generating set s1, ..., sn of Fn such that µ(s1) 6= 0 and ϕ ◦ µ(s1) = 0.

Denote the Fox matrix of πα with respect to the presentation coming from this generating

set by A (see Lemma 6.7). Let A1 be the n × n-matrix obtained from A by deleting the

first column. Then we have by Lemma 6.8

ρ(2)u (α;µ) = −[rµ(A1) : ZGn → ZGn] + [rµ(s1)−1 : ZG→ ZG].

Now put

‖ · ‖1 = N
(
P([rµ(A1)])

)
and ‖ · ‖2 = N

(
P(−[rµ(s1)−1])

)
.

Then ‖ · ‖1 is a seminorm by Theorem 6.10 and we note that ‖ϕ‖2 = ϕ ◦ µ(s1) = 0. This

already shows ‖ϕ‖ ≥ 0. Given any ψ ∈ H1(G;R) we calculate

‖ϕ+ ψ‖ = ‖ϕ+ ψ‖1 − ‖ϕ+ ψ‖2
= ‖ϕ+ ψ‖1 − (ϕ+ ψ) ◦ µ(s1)

≤ ‖ϕ‖1 + ‖ψ‖1 − ψ ◦ µ(s1)

= ‖ϕ‖+ ‖ψ‖,

which completes the proof.

6.3 L2-torsion invariants of UPG automorphisms

In this section we compute the universal L2 -torsion of a special class of free group au-

tomorphisms called unipotent polynomially growing. As a corollary we can determine all

L2 -torsion invariants of polynomially growing automorphisms.

6.3.1 Universal L2 -torsion of UPG automorphisms.

Definition 6.14 (Unipotent polynomially growing automorphisms). Let d be a word metric

on a finitely generated free group Fn . An automorphism α : Fn → Fn is polynomially

growing if for every g ∈ Fn the quantity d(1, αk(g)) grows at most polynomially in k . If,

additionally, the image of α under the projection Aut(Fn) → GL(n,Z) is unipotent, then

α is unipotent polynomially growing, short UPG.

We will prove

Theorem 6.15 (Universal L2 -torsion of UPG automorphisms). Let πα = Fn oα Z with

n ≥ 1 and α : Fn → Fn a UPG automorphism. Then there are elements g1, ..., gn−1 ∈
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πα r Fn (which can be chosen to coincide with those of Theorem 6.16 below) such that for

any admissible homomorphism µ : πα → G to a torsion-free group G, we have µ(gi) 6= 0

and

ρ(2)u (α;µ) = −
n−1∑
i=1

[rµ(1−gi) : ZG→ ZG].

The proof of Theorem 6.15 is motivated by the following computation of the BNS invari-

ant of HNN extensions along polynomially growing automorphisms due to Cashen-Levitt

[CL16, Theorem 5.2].

Theorem 6.16 (BNS invariant of polynomially growing automorphisms). Let πα = FnoαZ
with n ≥ 2 and α : Fn → Fn a polynomially growing automorphism. Then there are elements

g1, ..., gn−1 ∈ πα r Fn such that

Σ(πα) = −Σ(πα) = {[ϕ] ∈ S(πα) | ϕ(gi) 6= 0 for all 1 ≤ i ≤ n− 1}.

Both Cashen-Levitt’s theorem and our result are based on the following lemma.

Lemma 6.17. For n ≥ 2 and a UPG automorphism α ∈ Aut(Fn), there exists β ∈ Aut(Fn)

representing the same outer automorphism class as α such that either

(1) there is a non-trivial β -invariant splitting Fn = B1 ∗B2, β = β1 ∗ β2 ; or

(2) there is a splitting Fn = B1 ∗〈x〉 such that B1 is β -invariant and β(x) = xu for some

u ∈ B1 .

Proof. This is [CL16, Proposition 5.9] and its proof relies on Bestvina–Feighn–Handel’s train

track theory [BFH00].

We also mention

Lemma 6.18. Every polynomially growing automorphism α : Fn → Fn has a power that is

UPG.

Proof. This is the content of [BFH00, Corollary 5.7.6].

Proof of Theorem 6.15. We use induction on the rank n of the free base group Fn .

For the base case n = 1 we have α = ±idZ . But −id : Z → Z is not unipotent, so we

must have α = id. Hence πα = Zoid Z = Z2 , for which we have seen in Example 3.46 that

ρ
(2)
u (Z2;µ) = 0. Since n − 1 = 0, the set of elements g1, ..., gn−1 is empty and so the sum

appearing in Theorem 6.15 vanishes as well. For the base case in Theorem 6.16 one recalls

Σ(Z2) = S(Z2) from Example 2.10.

For n ≥ 2 we first invoke Lemma 6.17. As the isomorphism class of FnoαZ only depends

on the outer automorphism class of α , we can assume that α itself admits a splitting as in

Lemma 6.17. The two cases appearing there will now be dealt with separately.

Case 1: There is an α-invariant splitting Fn = B1 ∗B2, α = α1 ∗α2 . Put πi = Bioαi Z
and denote the stable letter in both products by t. Then we have

πα = Fn oα Z ∼= π1 ∗〈t〉 π2. (6.1)

For i = 1, 2 let ri denote the rank of Bi . The induction hypothesis applied to πi gives

elements

g
(i)
1 , . . . , g

(i)
ri−1 ∈ πi rBi
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such that µ(g
(i)
j ) 6= 0 for all i = 1, 2 and 1 ≤ j ≤ ri − 1, and we have

ρ(2)u (αi;µ|πi) = −
ri−1∑
j=1

[µ(1− g(i)j )].

As in the proof of Theorem 6.16 we take g1, ..., gn−1 to be the union of the g
(i)
j (i = 1, 2,

1 ≤ j ≤ ri − 1) and the generator t of the edge group of the splitting (6.1). Since µ is

admissible, we have µ(t) 6= 0. Also notice that r1 + r2 = n and if we take free generating

sets of B1 and B2 , then the Fox matrix of α with respect to their union is of the form

F (α) =

(
F (α1) 0

0 F (α2)

)
.

Now Lemma 6.8 allows us to compute in Whw(G)

ρ(2)u (α;µ) =
[
µ(t− 1)

]
−
[
µ(Id−t · F (α))

]
=
[
µ(t− 1)

]
−
[
µ(Id−t · F (α1))

]
−
[
µ(Id−t · F (α2))

]
= ρ(2)u (α1;µ|π1

) + ρ(2)u (α2;µ|π2
)−

[
µ(t− 1)

]
= −

r1−1∑
j=1

[
µ(1− g(1)j )

]
−
r2−1∑
j=1

[
µ(1− g(2)j )

]
−
[
µ(t− 1)

]
= −

n−1∑
j=1

[
µ(1− gj)

]
.

Case 2: There is a splitting Fn = B1 ∗ 〈x〉 such that B1 is α-invariant and α(x) = xu

for some u ∈ B1 . In this case, let α1 = α|B1 and π1 = B1 oα1 Z. Denote the stable letter

of π1 and πα by t. First we notice

πα = 〈Fn, t | t−1yt = α1(y) for all y ∈ Fn〉
= 〈B1, x, t | t−1bt = α1(b) for all b ∈ B1, t

−1xt = xu〉
= 〈π1, x | x−1tx = tu−1〉
= π1∗α′ ,

(6.2)

where α′ : 〈t〉 → 〈tu−1〉 maps t to tu−1 .

From the induction hypothesis applied to π1 we get elements g1, ..., gn−2 ∈ π1rB1 such

that µ(gj) 6= 0 for all 1 ≤ j ≤ n− 2, and

ρ(2)u (α1;µ|π1
) = −

n−2∑
j=1

[µ(1− gj)].

As in the proof of Theorem 6.16 we add to this set the generator gn−1 = t of the edge group

of the splitting (6.2). Since µ is admissible, we have µ(t) 6= 0.

If we take as free generating set for Fn the union of a free generating set of B1 and {x},
then the Fox matrix of α is of the form

F (α) =

(
F (α1) 0

∗ 1

)
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Now Lemma 6.8 allows us to compute in Whw(G)

ρ(2)u (α;µ) =
[
µ(t− 1)

]
−
[
µ(Id−t · F (α))

]
=
[
µ(t− 1)

]
−
[
µ(Id−t · F (α1))

]
−
[
µ(1− t)

]
= ρ(2)u (α1;µ|π1

)−
[
µ(1− t)

]
= −

n−2∑
j=1

[
µ(1− gj)

]
−
[
µ(1− t)

]
= −

n−1∑
j=1

[
µ(1− gj)

]
.

(6.3)

This finishes the proof of Theorem 6.15

Remark 6.19 (Extension to polynomially growing automorphisms). We suspect Theo-

rem 6.15 to hold as well for polynomially growing automorphisms. However, Lemma 6.18 is

not sufficient for this. In order to reduce Theorem 6.15 for polynomially growing automor-

phisms to the case of UPG automorphisms, one also needs a better understanding of the

restriction homomorphism

i∗ : Whw(Fn oα Z)→Whw(Fn oαk Z)

(induced by the obvious inclusion i : Fn oαk Z→ Fn oα Z ) since it maps ρ
(2)
u (Fn oα Z) to

ρ
(2)
u (Fn oαk Z), see Theorem 3.45 (5).

6.3.2 L2 -torsion polytope, L2 -Euler characteristics and L2 -torsion functions

for UPG automorphisms. Our first corollary is an analogue of Friedl-Tillmann’s [FT15,

Theorem 1.1]. For this recall the BNS-invariant Σ(G) of a finitely generated group G as

introduced in Section 2.4.

Corollary 6.20 (L2 -torsion polytope determines BNS invariant for UPG automorphisms).

Let πα = Fn oα Z with n ≥ 2 and α : Fn → Fn a UPG automorphism. Then:

(1) For any large epimorphism µ : πα → G onto a torsion-free group satisfying the Atiyah

Conjecture we have

P (α;µ) = P (α)

and this element is represented by a symmetric polytope. In particular, all higher-order

Alexander norms agree with δ(α).

(2) For any ϕ ∈ H1(πα;R) we have

[ϕ] ∈ Σ(πα) if and only if Fϕ(P (α)) = 0 in PT (H1(πα)f ),

i.e., if and only if ϕ maximizes P (α) in a single vertex.

Proof. The first part follows directly from Theorem 6.15, namely we compute for the ele-

ments g1, ..., gn−1 appearing there

P (α;µ) = P
(
− ρ(2)u (α;µ)

)
= P

(
n−1∑
i=1

[rµ(1−gi) : ZG→ ZG]

)
=

n−1∑
i=1

P (1− gi) = P (α).

Since the higher-order Alexander norms are determined by the L2 -torsion polytopes P (α;µ)

(see Corollary 3.29 and Theorem 3.52), the ’in particular’ part follows immediately.
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We also deduce that any one-dimensional face of P (α) contains a translate of P (1− gi)
for some 1 ≤ i ≤ n− 1. Thus we obtain the following list of equivalences.

Fϕ(P (α)) 6= 0⇔ Fϕ(P (α)) is not a vertex

⇔ Fϕ(P (α)) contains a one-dimensional face

⇔ Fϕ(P (α)) contains a translate of P (1− gi) for some i

⇔ ϕ(gi) = 0 for some i

⇔ [ϕ] /∈ Σ(πα)

where the last equivalence is precisely Cashen-Levitt’s Theorem 6.16.

Recall from Theorem 3.31 that for 3-manifolds and free group HNN extensions the

degree of L2 -torsion function is in general an upper bound for the corresponding twisted

L2 -Euler characteristic. Our second corollary strengthens this for polynomially growing

automorphisms.

Corollary 6.21 (Equality of L2 -Euler characteristic and degree of L2 -torsion function).

Let πα = Fn oα Z with n ≥ 1 and α : Fn → Fn a polynomially growing automorphism.

Then there are elements g1, ..., gn−1 ∈ πα r Fn and a positive integer k such that for any

ϕ ∈ H1(πα;R):

(1) We have

δ(α)(ϕ) = −χ(2)(T̃Bα;N (πα), ϕ) =
1

k
·
n−1∑
i=1

|ϕ(gi)|,

where T̃Bα → TBα denotes the universal cover.

(2) The ϕ-twisted L2 -torsion function is given by

ρ(2)(T̃Bα;ϕ)(t)
.
=

1

k
·

{ ∑
ϕ(gi)<0 ϕ(gi) · log(t) if t ≤ 1;∑
ϕ(gi)>0 ϕ(gi) · log(t) if t ≥ 1.

In particular,

deg(ρ(2)(T̃Bα;ϕ)) =
1

k
·
n−1∑
i=1

|ϕ(gi)|.

In particular, we have the equalities

δ(α)(ϕ) = −χ(2)(T̃Bα;N (πα), ϕ) = deg(ρ(2)(T̃Bα;ϕ))

Proof. (1) The first equality is Theorem 3.52. By Lemma 6.18 α admits a power that is

UPG, say αk . We view παk = Fn oαk Z as an index k subgroup in πα and denote the

inclusion by i. Then we have by the restriction formula of Theorem 3.16 (4)

χ(2)(T̃Bα;N (πα), ϕ) =
1

k
· χ(2)(T̃Bα;N (παk), ϕ ◦ i).
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Since αk is UPG, Theorem 6.15 provides elements g1, ..., gn−1 ∈ παk r Fn such that

δ(αk)(ϕ ◦ i) = N(P(−ρ(2)u (αk)))(ϕ ◦ i)

= N

(
n−1∑
i=1

P (1− gi)

)
(ϕ ◦ i)

=

n−1∑
i=1

|ϕ(gi)|.

Thus we may take the same gi for α instead of αk in order to deduce the desired statement.

(2) With the aid of Remark 3.1 and Theorem 6.15 we calculate the (ϕ ◦ i)-twisted

L2 -torsion function of αk to be

ρ(2)(T̃Bα;ϕ ◦ i)(t) =

n−1∑
i=1

ρ(2)(el(r1−gi);ϕ ◦ i)(t)

=

n−1∑
i=1

ρ(2)(el(r1−tϕ(gi)·gi))

=

{ ∑
ϕ(gi)<0 ϕ(gi) · log(t) if t ≤ 1;∑
ϕ(gi)>0 ϕ(gi) · log(t) if t ≥ 1.

Now apply the restriction formula of Theorem 3.10 (5) to i : παk → πα .

Remark 6.22 (Rank of the fiber). If ϕ : πα → Z is an epimorphism with finitely generated

kernel K = ker(ϕ), it is well-known that K is free itself [GMSW01, Theorem 2.6 and Remark

2.7]. If α is polynomially growing, then Cashen-Levitt [CL16, Theorem 6.1] compute the

rank of this kernel to be

rank(K) = 1 +
1

l
·
n−1∑
i=1

|ϕ(gi)|,

where l is the least positive integer such that αl is UPG and gi are the elements appearing

in Theorem 6.15 for αl . We can easily derive this rank computation from Corollary 6.21 (1)

with the aid of Lemma 3.17. Namely, if we let k : K → πα be the inclusion, then

1

l
·
n−1∑
i=1

|ϕ(gi)| = −χ(2)(T̃Bα;N (πα), ϕ)

= −χ(2)(k∗T̃Bα;N (K))

= −χ(2)(K)

= rank(K)− 1.
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Zusammenfassung

Die Dissertation “The L2 -Torsion Polytope of Groups and the Integral Polytope Group”

beschäftigt sich mit Torsions-Invarianten von freien endlichen G-CW-Komplexen, die L2 -

azyklisch sind, d.h. dessen L2 -Bettizahlen gänzlich verschwinden. Ein Großteil dieser

Invarianten wurde intensiv für 3-Mannigfaltigkeiten untersucht, vor allem in Verbindung mit

der Thurston-Norm. Dagegen liegt der Fokus dieser Arbeit auf der universellen L2 -Torsion

und dem L2 -Torsions-Polytop von Gruppen. Diese beiden Invarianten wurden kürzlich von

Friedl-Lück [FL16b] konstruiert.

Für eine Gruppe G ist das L2 -Torsions-Polytop P (G) ein Element der integralen Polytop-

Gruppe P(H1(G)f ) der freien ersten Homologie H1(G)f von G. Da die integrale Polytop-

Gruppe erst in diesem Zusammenhang größere Aufmerksamkeit erhielt, sind Ergebnisse

über die Struktur dieser Gruppe bisher nur vereinzelt vorhanden. Andererseits verspricht

eine detaillierte Untersuchung von P(H) rückwirkend auch Informationen über P (G). In

unserem ersten Hauptergebnis Theorem 4.1 führen wir eine solche Untersuchung aus. Wir

konstruieren dort unter anderem eine geometrisch fassbare Basis für P(H) und interpretieren

die Involution auf P(H), die durch Spiegelung am Ursprung induziert ist, als eine Art

Euler-Charakteristik. Diese Involution weist außerdem zwei Untergruppen von P(H) aus,

nämlich die der symmetrischen und die der asymmetrischen Elemente, die wir konkret

bestimmen.

Danach widmen wir uns einer Analyse des L2 -Torsions-Polytop von zwei sehr unter-

schiedlichen Typen von Gruppen, nämlich auf der einen Seite unendlich amenablen Grup-

pen und auf der anderen Seite HNN-Erweiterungen von endlich erzeugten freien Gruppen.

Aufbauend auf Wegners Beweis [Weg00] für das Verschwinden der klassischen L2 -Torsion

von Gruppen, die einen nicht-trivialen elementar amenablen Normalteiler enthalten, führen

wir den Begriff einer Gruppe von P ≥ 0-Klasse ein. Wir zeigen in Theorem 5.7, dass

unendlich amenable Gruppen, die die Atiyah-Vermutung erfüllen, diese Eigenschaft besitzen.

Als Nebeneffekt erhalten wir damit die Homotopie-Invarianz des L2 -Torsions-Polytops über

unendlich amenablen Gruppen. In Theorem 5.15 zeigen wir dann, dass jede Gruppe von

P ≥ 0-Klasse, die einen nicht-abelschen elementar amenablen Normalteiler enthält, ver-

schwindendes L2 -Torsions-Polytop hat. Dies bestätigt insbesondere eine Vermutung von

Friedl-Lück-Tillmann [FLT16] für den Fall einer elementar amenablen Gruppe. Als Anwen-

dung der Untersuchung der integralen Polytop-Gruppe liefern wir in Proposition 5.19 auch

einen Hinweis für diese Vermutung im Falle nicht-elementar amenabler Gruppen.

Während also amenable Gruppen aus Sicht des L2 -Torsions-Polytops gewissermaßen

unsichtbar sind, trifft dies auf HNN-Erweiterung von nicht-abelschen freien Gruppen nie

zu. Für die Klasse der UPG-Automorphismen einer freien Gruppe berechnen wir in Theo-

rem 6.15 explizit die universelle L2 -Torsion. Dies erlaubt uns in einem zweiten Schritt zu

zeigen, dass die Bieri-Neumann-Strebel-Invariante der assoziierten HNN-Erweiterung aus

dem L2 -Torsions-Polytop abgelesen werden kann, was ein Analogon eines Theorems von

Friedl-Tillmann [FT15] darstellt.
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