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Abstract  

Disasters, particularly recurring small-scale natural disasters of floods and droughts have been affecting 

West African (WA) communities, impacting particularly weak households. These losses have been 

significantly high over the last decade due to increasing climate variability and inherently depressed 

socio-economic systems. However, to date, few studies have attempted to understand the risk and 

vulnerability profiles in West Africa to these multiple hazards across several scales, from rural 

communities and watersheds to districts and to regions. A considerable number of studies predict the 

impacts of droughts and floods hazards, but many do so at a very coarse scale and are unable to predict 

localized impacts. Despite many efforts put in vulnerability assessments, there has been limited success 

in simultaneously traversing scale and hierarchy and the need for upscaling risk indices is important to 

understand the effects of cross scale interactions. To address these gaps, this thesis (i) explored methods 

to involve at-risk populations in local communities in a bottom-up participatory process as opposed to 

the classical top-down, single scale approaches and (ii) assessed the risks from multi-hazard perspectives 

in a coupled Socio-Ecological System (SES). The thesis also (iii) explored appropriate methodologies that 

can reflect the spatial variability of flood hazard intensity at community level. Building on these 

investigations, the thesis finally (iv) introduced a novel risk index upscaling procedure to upscale risk and 

vulnerability indices across multiple scales. 

 The thesis used several methods ranging from rural participatory methods, statistical, Geographic 

Information System (GIS), remote sensing and introduced the innovative concept of Community Impact 

Score (CIS). The results show that more than half of the designated local level indicators and over two 

thirds of the macro scale indicators are rarely used in present risk assessments in the region. 

Additionally, although an indicator may be common to three countries, their differential rankings will 

result in differences in explaining the risks faced by people in different societies.  

Empirical validation of a flood hazard map using the statistical confusion matrix and the principles of 

participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 

81%. These high mapping accuracies notwithstanding, the flood index categories may change under 

conditions of very high rainfall intensities beyond the anomalies used to construct the model. To this 

end, studies that aim at understanding projected flood intensities under varying rainfall conditions 

beyond the anomalies used in this study are recommended. This is important to determine the trajectory 

of flood safe havens or hotspots across an entire study area. The study also develops two important 

indices, The West Sudanian Community Vulnerability Index (WESCVI) and The West Sudanian 

Community Risk Index (WESCRI). The underlying factors constituting the two indices are the elements 

of risk and vulnerability profiles of communities in West Africa. The WESCVI and WESCRI should help 

planners and policy makers to analyse and finally reduce vulnerability and risk. To evaluate the results 

of the risk indices, this thesis introduces a novel technique to validate the results of complex aggregation 

methods. Based on up to date knowledge, the CIS concept is the first in the available literature of risk 

assessment. The thesis also provides a theoretical concept to upscale risk and vulnerability indices from 

watershed to higher spatial scales. Further studies are however recommended to apply these theoretical 
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concepts. A conclusion of the thesis is that while it has neither been optimal to completely neglect 

classical approaches nor to take as an absolute fact opinion from local experts, more emphasis should 

be paid to the later in risk assessment that is supposed to serve the very people on whose behalf the 

assessment is done. Attempts should therefore be made in finding mechanisms where the two 

approaches could interact fruitfully and complement each other.  
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Zusammenfassung 

Naturgefahren, wie beispielsweise Überflutungen und Dürren, bedrohen die Existenz von Gemeinden 

und insbesondere schwächeren Haushalten in West Afrika. Durch die zunehmende Klimavariabilität und 

den geschwächten Zustand der sozial-ökologischen Systeme haben die Verluste während der letzten 

Dekade ein besonders hohes Ausmaß erreicht. Bisher haben nur wenige Studien versucht, die 

unterschiedliche Zusammensetzung des Risikos im Hinblick auf mehrere Naturgefahren in Westafrika zu 

verstehen und über verschiedene Skalen hinweg, von ländlichen Gemeinden hin zu 

Wassereinzugsgebieten, Distrikten und Regionen zu analysieren. Eine signifikante Anzahl von Studien 

prognostiziert die zu erwarteten Schäden durch Naturgefahren wie Überflutungen und Dürren. Dies 

geschieht jedoch oftmals auf einem sehr groben Maßstab, wohingegen wenig über die lokalen 

Auswirkungen bekannt ist. Trotz mannigfaltiger Anstrengungen in Bezug auf Vulnerabilitätsassessments 

gab es bisher wenig Erfolg bei der Berücksichtigung verschiedener Skalen und Hierarchien. Die 

Hochskalierung von Risikoindizes ist jedoch nötig, um die Effekte über verschiedene Skalen hinweg zu 

verstehen.  

Diese Forschungslücken werden in dieser Arbeit aufgegriffen und mit methodischen Verfahren über 

einen „Bottom-up“-Ansatz adressiert, der zunächst die gefährdete Bevölkerung involviert, um die 

Risiken gegenüber von mehrfachen Gefährdungen in einem sozio-ökologischen System (SES) zu 

untersuchen. Außerdem verwendet die Studie Methoden, die es ermöglichen, die räumliche Variabilität 

der Überflutungsintensität auf Gemeindeebene zu reflektieren. Aufbauend auf diesen 

Forschungsergebnissen stellt diese Arbeit eine neue Vorgehensweise vor, die es erlaubt 

Verwundbarkeits- und Risikoindizes über verschiedene Skalen hinweg hochzuskalieren. Der 

Methodenmix umfasst partizipative und statistische Ansätze sowie Methoden basierend auf 

Geographische Informationssystemen (GIS) und Fernerkundung. Des Weiteren schlägt die Arbeit ein 

innovatives Konzept zur Quantifizierung der Gefährdungsauswirkungen auf Gemeindeebene vor, den 

sogenannten „Community Impact Score“ (CIS).  

Die Ergebnisse zeigen, dass etwas mehr als die Hälfte der in dieser Arbeit abgeleiteten Indikatoren auf 

Gemeindeebene und über zwei Drittel der Indikatoren auf Makroebene selten in den gegenwärtigen 

Risikoassessments der Region verwendet werden. Zudem wurde den Indikatoren, selbst wenn sie für 

alle drei Länder abgeleitet wurden, oftmals eine unterschiedliche Wichtigkeit zugesprochen. Die 

empirische Validierung der Hochwassergefährdungskarten mittels einer statistischen Konfusionsmatrix 

basierend auf einem partizipativen GIS zeigt, dass die durch Hochwasser gefährdeten Gebiete mit einer 

Genauigkeit von 77-81% kartiert werden konnten. Trotz dieser hohen Genauigkeit ist es jedoch möglich, 

dass sich die Hochwassergefährdungskategorien bei Anomalitäten, die über die modellierten 

Bedingungen hinausreichen, verändern.  Dementsprechend werden weiterführende Studien, die eben 

diese Bedingungen untersuchen empfohlen. Dies ist zur Bestimmung von sicheren Zufluchtsorten oder 

Hotspots von großer Bedeutung.  

In dieser Studie wurden außerdem zwei verschiedene Indizes entwickelt, der sogenannte „West 

Sudanian Community Vulnerability Index“ (WESCVI) und der „West Sudanian Community Risk Index“ 
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(WESCRI). Die den Indizes zugrunde liegenden Faktoren bilden außerdem die Bestandteile der Risiko- 

und Vulnerabilitätsprofile für die Gemeinden Westafrikas. Sowohl der WESCVI als auch der WESCRI 

sollen Planern und politischen Entscheidungsträgern dabei helfen, die Vulnerabilität und das Risiko zu 

analysieren und zu reduzieren. Um die Ergebnisse der Risikoindizes zu evaluieren stellt diese Arbeit ein 

innovatives Konzept zur Validierung solch komplexer Aggregationsmethoden vor. Nach aktuellem 

Kenntnisstand ist das CIS Konzept das erste seiner Art in der erhältlichen Literatur zu Risikoassessments. 

Des Weiteren wurde ein theoretisches Konzept zur Hochskalierung von Risiko- und Vulnerabilitätsindizes 

von Wassereinzugsgebieten hin zu höheren Ebenen erarbeitet.Dieses theoretische Konzept bietet eine 

Basis für weiterführende Untersuchungen im Hinblick auf die Anwendung und Umsetzung.  

Insgesamt unterstreicht diese Studie, dass weder die klassischen Ansätze allein noch das Gleichsetzen 

von lokalem Expertenwissen mit der absoluten Wahrheit als optimal erachtet werden können. Die 

Studie zeigt, dass man dem lokalen Expertenwissen in Risikoassessments mehr Gewicht beimessen 

sollte. Dementsprechend sollten Ansätze gefunden werden, bei denen sich beide Herangehensweisen 

erfolgreich ergänzen.  
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Résumé 

Les catastrophes naturelles, particulièrement celles récurrentes aux échelles locales, liées aux 

inondations et aux sécheresses, ont affecté les communautés Ouest-Africaines, avec des répercussions 

sur les ménages particulièrement fragiles. Ces pertes ont été sensiblement élevées au cours de la 

dernière décennie en raison de la variabilité croissante du climat et des systèmes socio-économiques 

intrinsèquement en déclin. Cependant, à ce jour, peu d'études ont tenté de comprendre les profils des 

risques en Afrique de l'Ouest face à des risques nombreuses et multi-échelles, allant des communautés 

rurales et des bassins versants aux districts et aux régions. Un nombre considérable d'études prédisent 

l'impact des risques et aléas courants inhérents aux sécheresses et inondations, mais beaucoup le font 

à d’échelles très grossières, rendant impossible la prévision des impacts y relatifs de façon localisée dans 

l’espace. En dépit de nombreux efforts en matière d'évaluation de la vulnérabilité, peu de succès a été 

noté en parcourant simultanément l'échelle et la hiérarchie; et la nécessité d’effectuer un upscaling des 

indices liés aux risques est importante pour comprendre les effets croisés émanant des interactions 

d’échelles. Pour remédier à ces lacunes, cette thèse explore des méthodes prenant en compte les 

populations à risque à partir de plusieurs niveaux échelles et via un processus participatif ascendant, par 

opposition aux approches classiques du haut vers le bas et à échelle unique; et afin d'évaluer les risques 

à partir de perspectives Socio-Ecologiques Multi-Système (Socio-Ecological System - SES). La thèse 

explore aussi des méthodologies appropriées à même de refléter la variabilité spatiale de l'intensité du 

risque d'inondation au niveau communautaire. En s'appuyant sur ces investigations, la thèse introduit 

finalement une nouvelle procédure de upscaling, en vue mettre à niveau les indices risque et de 

vulnérabilité à travers de multiples échelles. La thèse utilise plusieurs méthodes allant des méthodes 

participatives ruraux, des statistiques, du Système d'Information Géographique (SIG), de la 

télédétection, et introduit également le concept novateur du concept de score d'impact de risque 

communautaire sur les dangers (Community Hazard Impact Score - CIS). Les résultats montrent que plus 

de la moitié des indicateurs locaux désignés et plus de deux tiers des indicateurs macroéconomiques 

sont rarement utilisés dans les évaluations actuelles des risques dans la région. De plus, quoiqu’un 

indicateur puisse être commun à trois pays, leur classement différentiel entraînera des différences dans 

l'explication des risques auxquels est confrontée la population dans les différentes sociétés. 

La validation empirique d'une carte des risques d'inondation à l'aide de la matrice de confusion 

statistique et des principes du SIG participatif montre que les zones à risque d'inondation pourraient 

être cartographiées avec une précision allant de 77% à 81%. Malgré ces précisions cartographiques 

élevées, les catégories d'indice d'inondation peuvent changer dans des conditions d'intensité 

pluviométrique très élevée au-delà des anomalies utilisées pour construire le modèle. À cette fin, des 

études visant à comprendre les intensités d'inondation projetées dans des conditions pluviométriques 

variables au-delà des anomalies utilisées dans cette étude sont recommandées. Ceci est important pour 

déterminer la trajectoire des havres de sécurité des inondations ou des hotspots sur toute une zone 

d'étude. L'étude développe également deux indices importants: l'Indice de Vulnérabilité de la 

Communauté Ouest- soudanienne (West Sudanian Community Vulnerability Index - WESCVI) et l'Indice 

de Risque communautaire de l'Ouest-Soudanien (West Sudanian Community Risk Index - WESCRI). Les 
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facteurs sous-jacents constitutifs de ces deux indices sont les éléments des profils de risque et de 

vulnérabilité des communautés en Afrique de l'Ouest. Le WESCVI et WESCRI devraient aider les 

planificateurs et les décideurs politiques à analyser et de réduire la vulnérabilité et les risques. Pour 

évaluer les résultats des indices de risque, cette thèse introduit une nouvelle technique pour valider les 

résultats des méthodes d'agrégation complexes. À notre connaissance, le concept de CIS est le premier 

de la littérature disponible sur l'évaluation des risques. La thèse fournit également un concept théorique 

permettant d’effectuer un upscaling des indices de risque et de vulnérabilité du niveau du bassin versant 

à des échelles spatiales plus élevées. D'autres études sont cependant recommandées pour favoriser 

l’application des concepts théoriques. La conclusion de la thèse est qu’il n’est pas optimal de négliger 

complètement les approches classiques, ni de prendre comme fait absolu les opinions des experts 

locaux, néanmoins il conviendrait de mettre davantage l'accent sur les actions des seconds dans 

l'évaluation des risques; ces derniers étant censées servir les populations pour lesquelles ces évaluations 

sont effectuées. Des tentatives doivent donc être effectuées en vue de trouver des mécanismes où les 

deux approches peuvent interagir fructueusement et se compléter mutuellement. Nous espérons que 

la présente thèse fournira une bonne base pour les efforts dans ce sens. 
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1. General Introduction 

Disasters, many of which are exacerbated by climate change are increasing in frequency and intensity…...evidence indicates that 
exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risks and 
a steady rise in disaster related losses, with a significant economic, social, health, cultural and environmental impact in the short, 
medium and long term, especially at the local and community levels. Recurring small-scale disasters and slow-onset disasters 
particularly affect communities, households and small and medium-sized enterprises, constituting a high percentage of all losses. All 
countries – especially developing countries, where the mortality and economic losses from disasters are disproportionately higher – 
are faced with increasing levels of possible hidden costs and challenges in order to meet financial and other obligations.……UNISDR 
(2015). The Sendai Framework for Disaster Risk Reduction, p. 9) 

 

1.1. Background and research problem 

Presently, Africa is a continent under pressure from climate stresses and is highly vulnerable to the 

impacts of climate change (IPCC, 2014; UNFCCC, 2007).  West Africa (WA) has been described as a 

hotspot of climate change (IPCC, 2014). The frequency of occurrence of extreme events is expected to 

increase and the interaction of climate change with non-climate stressors will aggravate vulnerability of 

agricultural systems in semi-arid Africa particularly, the West Sudanian Savanna region of Burkina Faso, 

Ghana and Benin (IPCC, 2014). The vulnerabilities are projected to worsen given a host of biophysical 

and human related stressors in the region including erosive rainfall, recurring drought, soil qualities and 

fertility, low input farming systems, decreased fallow period, deforestation, frequent bush fires, and 

overgrazing (USAID, 2011) as well as social conflicts, political upheavals and cultural stresses (Fields, 

2005). 

 Though there are several uncertainties in climate change predictions models for West Africa (WA), the 

dominance of rain-fed agriculture in the region where 60% of the population is engaged in agriculture 

(FAO, 2012) makes its population vulnerable to climate change, particularly warmer temperatures and 

lowered rainfall. In this region, a temperature of 3-6°C above the late 20th century baseline is “very 

likely” to be realized within the 21st century and the fact that this projection is expected to occur one or 

two decades earlier than other regions (IPCC, 2014) contributes to making the region more vulnerable 

to climate change.  There is also medium confidence that projected increase in extreme rainfall will 

“contribute to increases in rain-generated local flooding” (Kundzewicz et al., 2014:p.24). For WA, Sylla 

et al. (2015) projected a decrease in the absolute number, but an increase in the intensity of very wet 

events – leading to increased drought and flood risks towards the late 21st century. 

Despite the major impact of floods on the livelihoods of the people living in this region, no attempt has 

been made to delineate the boundaries of flood hazard intensity at the community level and to identify 

areas most at risk of flooding. Mapping flood hazard zones is an important first step in the proper 

management of future flooding events. The use of flood hazard maps for managing disasters in West 

Africa is virtually non-existent. Disaster managers have for many years relied on traditional methods 

such as watermarks on buildings, local knowledge and media reports to identify possible affected areas 

during flood events (Nyarko, 2002). Lack of proper records on historical flood events, coupled with 

logistical and financial challenges have often resulted in a poor preparedness and response to flooding 
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events. Consequently, fatalities have often been high (Braman et al., 2013; Levinson & Lawrimore, 

2008). 

The IPCC (2012) reported a medium confidence of the occurrence of a significant temperature increase 

of warmest days and coldest nights. Dry spell duration is reported to have increased between 1961 and 

2000 with recent years characterized by a greater inter-annual variability than the past 40 years. Overall, 

there is evidence that the agriculture sector including fisheries, cocoa, cereals, and root crops, and water 

resources as well as human health and women’s livelihoods will be negatively impacted by climate 

change; the poor being most vulnerable (Dasgupta et al., 2009; World Bank, 2009a).   Fields (2005) 

argues that the influence of multiple stressors such as natural disasters, infectious diseases, economic 

turbulence from globalization, resource privatization, and civil conflicts, combined with the lack of 

resources for adaptation, will present serious challenges for African communities struggling to adapt to 

climate change. Yet, comprehensive and quantitative understanding of the vulnerability and risk faced 

by WA communities to these multiple hazards, not even the common occurring hazards of floods and 

droughts are still lacking.  

A considerable number of models predict the impacts of climate change on Socio-Ecological Systems 

(SES), but many do so at a very coarse scale and are also unable to predict localized impacts, which may 

typically differ from coarser scale assessments (Birkmann, 2007). 

 Research on risks and the accompanying vulnerabilities of the SES to climate change has largely 

addressed the expected impacts of climatic change on global, national, regional or sectoral scales but 

are largely unavailable at community level where risk outcomes are first materialized (Bollin & Hidajat, 

2006). This is partly because of a non-universal applicability of existing indicator based vulnerability and 

risk assessment methods to areas such as the West African sub-region, implying that different and well-

adapted methods need to be developed. Such methods should tackle complex settings of hazards 

occurrence as well as the dynamic socio-economic and environmental exposure; such methods needed 

to be spatially explicit and reflect the dynamic nature of the SES under study and be multi-scaled, 

allowing local based approaches and upscaling; They also need to  be context specific, be  able to capture 

all relevant processes shaping vulnerability and risk at various scales and, more importantly, still be 

applicable to local communities affected usually by multiple hazards (Adger et al., 2004; Africa Adapt, 

2011). However, the available literature suggests that these important considerations have been 

missing in many risk assessments particularly, for the West African sub-region. 

The assessment of risks from different hazards has normally been studied through independent analysis 

and dependencies between hazards sources are largely neglected (Marzocchi et al., 2009). The status 

quo has been a single hazard analysis and major questions remain. These questions include how to 

quantify risk across multiple hazards such as combined drought and floods; across multiple scales (local 

to regional to sub-regional); include indicators that also reflect external drivers of climate change and 

at the same time being useful for policy makers?  

To date, few studies have attempted to understand the risk profiles of West African communities in the 

context of climate change through a set of indicators. The only study that comes close is a study 

conducted in Ghana in 2011 by the United States Agency for International Development (USAID, 2011). 
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Even in this study, the indicators were derived purely from literature and lack the important element of 

the participatory process from the vulnerable themselves. Other studies available in the area have either 

qualitatively assessed vulnerabilities (e.g. Trench et al., 2007; Tschakert, 2007) or only looked at specific 

aspects such as vulnerability to food insecurity (Bacci et al., 2005; Barbier et al., 2009), or focused on 

single hazards such as floods (e.g. Adelekan, 2011; Armah et al., 2011). Despite the large amount of 

knowledge available in local areas (Reed et al., 2008) most, if not all risk assessments in the WA region 

have been approached from classical methods1  without tapping into the wealth of resources available 

at the local level. Moreover, little is known about the vulnerability profiles of rural WA communities 

particularly regarding risk to multiple hazards.  Yet, it is acknowledged that risk and vulnerability  

identification and measurement before and after the occurrence of hazards are essential tasks for 

effective and long term  Disaster Rik Reduction (DRR), (Birkmann, 2007b). There is an increasing need 

for a shift from global and regional assessments to sub-national and community level assessments 

because these are the scales where major decisions against risk are made and expected to be 

implemented. 

Validation is an essential aspect of assessing the accuracy of the results of complex models. However, 

only statistical validation methods have been used in almost all risk assessment literature reviewed even 

though indicator development and subsequent modelling often involves several subjective decisions by 

the authors (Damm, 2010). Some have argued that conventional validation of vulnerability is impossible 

because vulnerability cannot be measured in the traditional sense and have concluded that validation 

still remains an open challenge in risk assessment (Damm, 2010). In this study, therefore, the concept 

of Community Impact Score (CIS) is introduced as an innovative validation technique for assessing the 

accuracy of complex risk assessment modelling.  

Again, despite much efforts in vulnerability assessments, there has been limited success in 

‘’simultaneously traversing scale and hierarchy from a lower scale to large scale and vice versa’’ 

(Cushman et al., 2010).  Moving upward (upscaling) in socio-ecological hierarchy and landscapes is an 

exigent task as the sampling cost in very large spatial areas such as a whole administrative region is 

prohibitive, and methods of combining these fine grain data to produce broad scale predictions are 

exciting (King, 1991; Rastetter et al., 1992; Schneider, 1994). In risk and vulnerability assessments, scale 

is important for two main reasons. SES and processes operate at a wide variety of scales and that across 

scales, they can change in their nature and sensitivity to various driving forces and so it cannot be 

assumed that results obtained at given scale will invariably be the same at another. The second reason 

is that cross-scale interactions exert a critical influence on outcomes at a given scale and that these 

interactions can be missed by focusing on a single scale (Kremen et al., 2000; McConnell, 2002). The 

underlying reasons, effects and specific interactions resulting from decisions from various stakeholders 

acting at different scales are poorly understood. For these reasons, Disaster Risk Reduction (DRR) 

practices need to be multi-hazard, multi-sectoral and inclusive in nature to make it efficient and 

effective (UNISDR, 2015). A good way to achieve this is to pursue inclusive risk assessment approaches 

that recognize the effects different stakeholder actions have on the mean risk of other at-risk 

                                                        
1 Classical methods here mean traditional, top-down approaches where indicators are selected purely by researchers 
without involvement of stakeholders or at-risk populations. 
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populations. Yet, Effective disaster management demands a well-coordinated operation of complex, 

interacting human and technological systems (Dawson, 2011). 

The combination of multiple hazards of drought and floods in increased magnitude and frequency 

impacting vulnerable communities and ecosystems in West Africa demands significant attention in 

research so as to pre-empt the worst. The impacts of climate risks are likely to magnify the uneven social 

and spatial distribution of risk in West Africa, and possibly amplify poverty in the region. It is therefore 

essential to understand the coping and adaptation strategies that could be potentially available to rural 

communities and to provide a means to reinforce them. The links between disaster risk and poverty —

in a changing climate—means that reducing disaster risk can help reduce rural and urban poverty, 

promotes sustainable development and growth and improve adaptation to climate change (World Bank, 

2009a).  This can only be achieved by operationalizing risk assessments and analysis and providing policy 

makers with critical information on the dangers that populations face with respect to climate induced 

multiple hazards and providing scientific arguments to formulate proper alternative risk management 

and adaptation strategies. 

1.2. Flood and drought disasters in West Africa 

Major catastrophic natural disasters have been recorded in the region particularly, within the Sudanian 

Savanna zone which is being studied in this research. Above normal rainfall amounts at the peak of the 

rainy season in the Sudanian and Sahelian regions (i.e. July to September) frequently lead to severe 

floods, and cause many of the major rivers (e.g. Niger, Volta river systems, Senegal) to overflow their 

banks. In 2007, for example, a series of anomalous abundant rainfall events caused severe floods in 

West Africa (WA) and other parts of Sub-Saharan Africa (SSA) which affected more than 1.5 million 

people and resulted in the destruction of farm lands, loss of personal effects, destruction of 

infrastructure, outbreak of epidemic diseases and the loss of human lives (Armah et al., 2010; BBC, 2007; 

Braman et al., 2013; Levinson & Lawrimore, 2008; Paeth et al., 2011). Similar floods in 2009 affected an 

estimated 940,000 people across twelve countries in West Africa, killing about 193 people and 

destroying properties worth US$152 million (UNOCHA, 2009). In 2012, flooding along the river Niger, 

which is the principal river in West Africa, resulted in the death of 81 and 137 people in Niger and 

Nigeria, respectively, while displacing more than 600,000 people (IRIN News, 2012). 

Drought has had a devastating impact on this ecologically fragile region and was the major driver for 

the founding of the United Nations Convention on Combating Desertification and Drought (Zeng, 2003). 

From the 19th century, the frequency and duration of drought in the region has increased dramatically. 

Droughts in the 1910, 1940, 1960s, 1970s and the 1980s have led to famines in the region (Zeng, 2003). 

 Under the realms of the German Federal Ministry of Education and Research (BMBF) funded WASCAL2 

project, three West African Countries of Ghana, Burkina Faso and Benin have been selected as the study 

areas for this study. Within these countries, three watersheds representative of the Sudanian Savanna 

ecological system will be used for in-depth local assessments. This section traces the history and impacts 

of floods and drought disasters in these countries in recent past, 1970 to 2012. 

                                                        
2 West African Science Service Centre for Climate Change and Adapted Land use (www.wascal.org)  

http://www.wascal.org/
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1.2.1. Flood and drought disasters in Ghana 

Ghana ranks high amongst African countries most exposed to risks from multiple natural hazards 

occasioned by climate variability. Ghana is exposed to floods and droughts, particularly in the Northern 

Savannah belt (World Bank, 2009b). In 2007, floods followed immediately after a long period of drought 

and damaged the initial cereal harvest. This, per the World Bank (2009) is an indicative of the high 

variability in climate and hydrological flows in Northern Ghana. During this flood disaster, at least 20 

people died and an estimated 400,000 people were affected, over 90,000 people were displaced and 

nearly 20,000 homes were damaged (BBC, 2007). The long-term and economic impacts on the regional 

economy are still not known but the World Bank (2009a) estimated the damage to be around US$130 

million. Between 1991 and 2015 the country experienced seven major floods; the largest number of 

people affected being in 1991 and 2015. The floods in June 2015 led to a cascading hazard when flooding 

waters were combined with fuel station explosion, leaving some 200 people in the capital dead and 

thousands affected (NADMO, 2009, 2015). From 2007 to 2011, there has been a consecutive flood event 

(Figure 1-1) Heavy rains in southern Ghana in 2010 affected the south of the country. In the Eastern, 

Central and Volta regions large swathes of land were inundated and communities were isolated from 

the rest of the country. The flood in 2010 affected particularly the northern half of Ghana. Again in 2011, 

floods occurred in the Eastern Region of Ghana killing at least five people and displacing some 100,000 

more (Africanspotlight, 2011; Ghanaweb, 2010). 

According to Gall (2007), Ghana has experienced several droughts in recent history, in 1977, 1983, 1992 

and 1998. It is estimated that 35% of the land area in Ghana (roughly 83,489 km2) is prone to 

desertification, with the Sudanian Savanna zone facing the greatest hazards. Drought and their 

attendant’s desertification is said to be advancing inland at an estimated 20,000 hectares per year 

(USAID, 2011), with its concomitant destruction of farmlands and livelihoods. The major drought event 

in recent times was in 1983 where over 12.5million people were affected, most of them located in the 

Sudanian Savanna zone. As much as 76.9% of all people affected by any disaster in Ghana are due to 

drought3. 

1.2.2. Flood and drought disasters in Burkina Faso 

In 2009 heavy rains in Burkina Faso forced officials to open the main gate of a hydroelectric dam in the 

Volta River basin, near the Ghana border, causing additional flooding in both countries. This is the sixth-

time officials in Burkina Faso had open the reservoir’s gate since its construction in 1994 (Esty et al., 

2005). During this flood, Burkina’s main hospital was closed.  Whereas annual rainfall in Burkina Faso 

has been averaging 1,200mm, as much as 300mm occurred within one hour on September 1, 2009 and 

the Burkinabe Government estimated that it will cost US$152 million to face the consequences of the 

flooding.  Again in 2010, torrential rains caused massive flooding that affected more than 133,000 

people in many parts of the country. At least 13 provinces were flooded, with more than 16,000 

households directly affected by the floods, and 14 people were reported dead. Villages were devastated 

with damage to shelters, livestock, properties, fields, roads and wells (Beck et al., 2012). 

                                                        
3 http://www.preventionweb.net/english/countries/statistics/?cid=67. Retrieved March, 5, 2013- 

http://www.preventionweb.net/english/countries/statistics/?cid=67
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The United Nations Office for Disaster Risk Reduction (UNISDR, 2014) reports in its database that, major 

drought events have occurred in Burkina Faso. Drought affected over 2.6million people in 1990, over 

1.2million in 1980, 200,000 in 1988 and over 75,000 in 1995. The most severe drought event in recent 

times is the one in 2011 which caused the United Nations to organize an emergency meeting in Rome 

in a bid to avoid famine in the country. UNSIDR reports that the probability of drought occurring in 

Burkina Faso for a typical year is 0.19 and accounts for 84.8% of all people affected by any disaster in 

the country. 

 

Figure 1-1: Statistics of major hydrological hazards in West Africa: 1980-2010. 
Data source: www.preventionweb.net of UNISDR. 

1.2.3. Floods and drought disasters in Benin 

Benin has also not been spared of the hydrological hazards that have plagued the West African sub-

region. The worst flood since 1963 occurred in September 2010 when heavy downpour and influx from 

the Niger River flooded 55 out of the 77 municipalities in the country. In this flood alone, over 680,000 

people were affected, 800 cases of cholera were reported, 55,000 homes were destroyed and at least 

56 people were killed (Forum, 2005). 

Similar catastrophic events have been reported in 2008, 2011 and 2012. The 2011 floods in particular, 

resulted in heavy damages to poultry and livestock and thousands of hectares of farmland.  Also in 2008, 

the flooding in Ouinhi and Za-Kpota areas torn down mud and straw homes and infrastructure, and 

polluted major rivers. The flooding in the Oueme river valley wiped out more than 25,000 hectares of 

cropland, killed about 30,000 animals, flooded 18,000 homes and affected almost 7,000 people. 

The worst drought event to hit Benin in recent times is the one in 1983 where over 2.1million people 

were affected and faced severe famine. Droughts alone accounts for 40.2% of people affected by any 

type of disaster in the country. 

1.3. Multi-hazard risk assessment, approaches and trends 

Over the years, various attempts have been made to measure vulnerability to climate change at 

different scales from local to national assessments. Examples include (Birkmann, 2006b; Cardona, 2005; 

Damm, 2010; Dilley et al., 2005; Mohan & Sinha, 2011; Renaud & Perez, 2010; UNDP, 2004b; USAID, 
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2011) and more recently by Beck et al. (2012); Garschagen et al. ( 2014); Welle et al. (2013). These 

studies have attempted to measure vulnerability, risk and resilience and using a variety of concepts, 

approaches and indicators. 

 Indicators have been widely used to measure vulnerability and to understand the risk patterns of 

societies from both natural and anthropogenic hazards. The Millennium Development Goals are a 

classical example of the use of indicators to monitor progress of set targets. The Hyogo Framework for 

Action 2005-2015 emphasized the need to “develop systems of indicators of disaster risk and 

vulnerability at national and sub-national scales that will enable decision-makers to assess the impact 

of disasters” (UNISDR, 2005, p.10). The Millennium Ecosystem Assessment (MEA) makes broad use of 

several indicators both, biophysical and socio-economic to analyse data in order to develop policy 

relevant actions for decision making (MEA, 2003).   However, because of the complexity, multi-

dimensional aspects (Birkmann, 2006a; Downing, 2004; Mohan & Sinha, 2011); copious (Thywissen, 

2006) and sometimes confusing definitions of vulnerability and risk, it has become difficult and even 

impossible to define a methodology or reduce the concept of vulnerability to a single equation or model 

that has a universal application.  

Despite these gaps in current knowledge on risk and vulnerability assessments, significant progress has 

been made regarding the development of conceptual vulnerability frameworks allowing the 

operationalization of this complex concept to some local conditions and the development of composite 

vulnerability indices. Examples of widely used frameworks include the SUST framework developed and 

piloted by Turner et al. (2003a) and later adapted to a sub national level in Germany by Damm (2010) 

and Fekete et al.(2009); as well as the BBC framework by Birkmann (2006b) and more recently the MOVE 

framework (Birkmann et al., 2013). Yet, no attempt has been made to operationalize these frameworks 

to the local West African conditions and spatially explicit multi-risk maps across multiple scales based 

on any of these frameworks still do not exist in the region. However, these models presented in Figure 

1-2 and Figure 1-3 have been criticized for being complex and difficult to operationalize and only few 

studies have managed to implement them (Damm, 2010).  Another drawback of the SUST model in 

particular, is the missing link relating to the concept of risk itself. Other models that developed after this 

SUST model such as the BBC and MOVE models (Birkmann, 2006b) emphasized the strong linkages 

between risk and vulnerability in disaster research. The SUST framework does not establish any  
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Figure 1-3: The SUST model (Turner et al., 2003a). 

Figure 1-2: The MOVE framework (Birkmann, 2013). 
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relationship with risk whatsoever and does not outline how risk is conceptualize (Damm, 2010). 

Moreover, the concept of resilience has developed very rapidly since the model was introduced in 2003 

rendering the original connotation of resilience by Turner et al. (2003) redundant. To Turner et al. 

(2003), resilience was viewed as an independent concept and was not seen as an integral part of 

vulnerability. 

The MOVE framework (Figure 1-2) on the other hand refers to all four natural hazard responses of 

vulnerability, resilience, coping and adaptation and has an excellent linkage of risk and risk governance. 

The capacities to adapt, cope or recover by the element at risk are described in the MOVE framework 

as constituting its resilience. 

To address these constraints Kloos et al. (2015) conducted an extensive review of existing risk 

assessment frameworks and proposed a hybrid framework customized for West African specific context. 

This hybrid framework is based on the key element, a social-ecological system (SES), reflecting the 

connections and feedbacks between the environmental and social sub-systems taking place at various 

spatial scales (local, sub-national and national). Kloos et al. (2015) proposed that risk is to be evaluated 

against hydro-climatic hazards and stressors, which may materialize as sudden shocks such as floods 

and/or heavy rainfall events, slow onset events such as droughts, late onset of the rainy season but also 

more gradual changes such as changes in variability or averages of rainfall. At the same time, an SES is 

affected by socio-economic drivers and stressors (see chapter 4, Figure 4-2) which may lead to 

environmental changes that can turn into stressors or hazards in themselves. Ecosystem services are 

essential components of SES and provide numerous monetary and non-monetary benefits to people 

living in the system. To account for the multi-hazard nature of hazards, Kloos et al. (2015) introduced to 

the framework, ‘H1’ and ‘H2’, and the combination of both hazards selected for the West Sudanian 

Savanna case, ‘H1+H2’.  The first operationalization of this framework will be attempted in this study 

across multiple scales in three West African countries.  

1.4. Research objectives 

To address the gaps identified in the review above, the present study aims at exploring methods to 

involve at risk populations at multiple scales in a bottom-up participatory process as opposed to the 

classical top-down, single scale approaches; assess risk from multi-hazard perspectives in a coupled SES 

rather than single-hazard-decoupled risk assessments and finally assess risk using indicators relevant for 

rural communities across West Africa. The study will also explore appropriate methodologies that are 

able to provide the spatial variability of flood hazard intensity at community level under limited data 

conditions. The study also will aim at introducing a novel risk index upscaling procedure to upscale risk 

and vulnerability indices across multiple scales. The broad objective therefore is to develop multi-hazard 

risk maps across multiple scales in West Africa by operationalizing a hybrid risk and vulnerability 

assessment framework and to develop theoretical concepts to upscale the derived vulnerability and risk 

indices. 

In view of the study objectives enumerated above, the study will strive to answer the following research 

questions. 
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i. How do we involve at risk populations in a bottom-up participatory process to develop 

indicators relevant for multiple hazard risk assessment across multiple scales? 

ii. How do we develop an appropriate methodology that are able to provide the spatial variability 

of flood hazard intensity at community level and yet yields accurate results with limited data 

availability? 

iii. How do we operationalize, adapt and integrate existing vulnerability and risk models to 

systematically analyse vulnerability and risk profiles for rural communities in West Africa? 

iv. How do we upscale vulnerability and risk indices from a watershed scale to higher scales taking 

cognizance of cross scale interactions, actions and reactions of policy makers and feedback 

loops? 

1.5. Research methods 

The hybrid risk assessment framework proposed by Kloos et al. (2015) provided key inputs for a 

conceptual framework required for various components of the thesis. The four research questions 

outlined above constitute the four separate but related components of the thesis.  

To answer the first research question, a multi-scale participatory process was used to extend the 

classical approach of indicator development for risk assessment in West Africa.  The approach followed 

a step-wise procedure to develop an Indicator Reference Sheet (IRS) based on the conceptual risk 

assessment framework proposed by Kloos et al. (2015). This IRS was combined with knowledge of local 

experts iteratively selected through snowball approach.  The local experts including at risk populations 

were constituted into technical working groups in a series of expert workshops, to elicit important 

processes shaping risks at multiple spatial scales. One expert workshop was held in each of the three 

study watersheds in Ghana, Burkina Faso and Benin. In addition, experts from the national capitals were 

engaged in a series of expert interviews and technical group discussions to illicit indicators relevant for 

national scale risk assessment. The results from these highly participatory, bottom-up processes were 

analysed and the final indicators presented. Details about this procedure and the comprehensive 

indicators have been presented in Chapter 2 of the thesis.  

 

To answer the second research question, remote sensing and Geographic Information System (GIS) 

techniques were combined with hydrological and statistical models to delineate the spatial limits of 

flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves 

estimating peak runoff concentrations at different elevations and then applying statistical methods to 

develop a Flood Hazard Index (FHI). A unique approach is also proposed to use a bottom-up participatory 

method based on the principles of Participatory Geographic Information System (PGIS) (Carver, 2003; 

Craig, et al., 2002; Dunn, 2007) and coupled with robust empirical confusion matrix methods to evaluate 

the results of the modelling procedure.  

 

To answer the third research question, this study quantifies and models risk and vulnerability of rural 

communities across West Africa to drought and floods. Risk is assessed using an indicator-based 

approach based on the results of research question one.  A stepwise methodology is followed that 

combines on the one hand participatory approaches and on the other statistical, remote sensing and 
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GIS techniques to develop community level vulnerability index in three watersheds (Dano, Burkina Faso; 

Dassari, Benin; Vea, Ghana). The index is developed from ten working steps including:  

(i) Operationalization of the context specific risk assessment framework proposed by Kloos et 

al. (2015).  

(ii) The use of the results of the novel participatory indicator development approach as 

obtained from research question one.  

(iii) Exploratory data analysis to understand the indicator data values 

(iv) Construction of bivariate correlation matrices following the approach of Damm (2010).  

(v) Normalization of indicators to scale the values to a range between 0 and 1 to allow for 

comparability of indicators of varying measuring units as applied in Welle et al. (2013).  

(vi) Weighting of normalized indicators by converting expert judgment ranking to weights using 

rank to weight conversion model proposed by Al-Essa (2011). 

(vii) Application of a three-tiered linear aggregation process as applied in Birkmann et al. (2011) 

and Welle et al. (2013) to develop the sub-indices of exposure, susceptibility and the three 

capacity sub-components to derive the composite vulnerability index.  

(viii) Multi-hazard characterization and mapping using a flood hazard index developed in research 

question two and vegetation health index from FAO Global Information and Early Warning 

System on Food and Agriculture (FAO GIEWS, 2015) to denote drought severity. A drought 

severity index was developed in the process. 

(ix) Integration of the developed vulnerability index and the multi-hazard index based on the 

framework to derive the final West Sudanian Community Risk Index (WESCRI). This index is 

then used to construct the multi-risk indices of the rural communities in GIS environment; 

(x) The final work step is the introduction of a novel technique termed the ‘Community Impact 

Score’ (CIS) as vulnerability and risk validation procedure.   

To answer the fourth and last research question, a decision tree is introduced to simulate the decisions 

and actions of the various actors involved in DRR and their interaction with the ecological sub-system. 

This is a novel risk index upscaling procedure that could allow for the application of tools such as an 

Agent-based model designed to assess the risk of socio-ecological system towards the impact of multiple 

hazards of floods and droughts across multiple scales in the western Sudanian savanna zone of Ghana, 

Burkina Faso and Benin. In this thesis, the theoretical concepts required to upscale risk indicators are 

presented.  

1.5.1. Study area 

This study forms part of the West African Science Service Centre for Climate Change and Adapted Land 

Use (WASCAL) project.  Within this project, three countries in the region, Ghana, Burkina Faso and Benin 

were selected for detailed climate change related studies. In addition to differences in geopolitical 

contexts, the countries were selected due to the following reasons: 

(i) more than two-thirds of the land area of these countries fall in the West Sudanian Savanna 

Ecological Zone, an area with a high agricultural production potential, but also noted for high 

climate variability and uncertainty;  
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(ii) The areas have good records of existing long-term historical socio-economic data are 

available; and  

(iii) The areas have experienced more than one natural disaster over the last 10 to 15 years and 

major catastrophic natural disasters have been recorded in the region particularly, within 

the Sudanian Savanna zone which is being studied in this research.  

Within these three countries, the WASCAL project has selected three watersheds for in-depth research. 

These watersheds are  

i. The Vea-watershed in the Upper East region of Ghana  

ii. The Dano watershed in the province of Sud-Ouest of Burkina Faso and 

iii. The Dassari-watershed in the commune of Materi in North West Benin. 

 The study area shown in                  Figure 1-4  belongs to the Sudanian Savanna ecological zone and 

have a similar climate and are under varying forms of agricultural systems. 

 

                 Figure 1-4: The study area in three West African countries. 

 

Climatic factors show high variability and there is a high frequency of droughts and floods (Challinor et 

al. 2007). Three watersheds located in each country and their surrounding administrative districts were 

selected for local level assessment with households as the unit of analysis. In addition, consultations at 

the national capitals of all three countries were carried out for macro/national scale assessment, taking 

the perspective of experts working at the national scale. Finally, collection of additional information and 

expert interviews for both indicator development and triangulation purposes were carried out in Accra 
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and Kumasi (Ghana), Ouagadougou (Burkina Faso) and, Porto Novo and Cotonou (Benin), all over a 

period of eight months (May to December 2013). 

1.5.2. The three watersheds and community clustering 

To be able to undertake community level assessment, the three watersheds or local scale study areas 

were further disaggregated down to the community level. In this study, the delineation into community 

clusters was based on Digital Elevation (DEM), river channel systems, populations in the communities 

as well as the operational plans which are used by local disaster managers to segregate and demarcate 

the areas for effective disaster management. Using this approach, the Vea study area (Figure 1-5) was 

delineated into 13 community clusters4. The largest of this cluster is the Kula River drain (Figure 1-5), 

named after the Kula river which is well known for causing many of the floods in the area. Other 

prominent community clusters are the Vea main drain and Kolgo/Anateem valley. These clusters are 

located at the downstream of the Vea and Kolgo Rivers and are also significantly exposed to floods.  

 

Figure 1-5: The Vea study area of Ghana. 

The Vea area cuts across two districts in Ghana (second administrative units)—Bolgatanga and Bongo—

and covers an area of 1037.8 km2. The city of Bolgatanga, the capital of Upper East region is found in 

this area. This study site is the most urbanized of the three local study areas and has well developed 

road network, schools, market access, hospitals, irrigation dams and electricity. Consequently, it has a 

                                                        
4 This is also referred to as sub-catchments in chapter 3.  
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relatively higher population density of about 104 persons per km2. Hydrologically, it falls within the 

White Volta sub-basin, which extends from northern Ghana to mid Burkina Faso. 

The area ranks high amongst areas most exposed to risks from multiple natural hazards occasioned by 

climate variability. Similar to other parts of West Africa, studies have shown that this area experiences 

high variability in climate and hydrological flows (Challinor et al., 2007; World Bank, 2009a). According 

to Oduro-Afriyie & Adukpo (2006), the area has frequently experienced floods in the past.  

Similarly, the Dano study area of Burkina Faso has further been delimited into thirteen community 

clusters in relation to population, contours and river network. The Yo, Bolembar, Gnikpiere and Loffing-

Yabogane clusters are prominent among them with extensive river system, smallholder agriculture and 

many scattered settlements and hamlets.  The Dano study area shown in Figure 1-6 is essentially the 

third sub- administrative level in the province of Ioba of Burkina Faso and has an area of 633.8 km2. 

Population density in this study area is about 59 persons per km2. Hydrologically, it falls within the Black 

Volta sub-basin system, which forms the western part of the Volta basin. 

 

Figure 1-6: The Dano study area of Burkina Faso. 

 

The Dassari area in Benin was also delineated into twelve (12) community clusters to reflect population, 

river network and local administrative management as described above. The Setcheniga, Porga and 

Nagassega clusters are most prominent as they are run through by a major river network that 

significantly exposes the area to flooding.  
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The Dassari study area shown in Figure 1-7 covers an area of 657.1 km2. It falls in the third sub-national 

administrative level in Benin (known as the Arrondissement of Dassari) and has a population density of 

about 56 persons per km2. In terms of hydrology, the study area falls within the Oti sub-basin of the 

Volta basin. The north-eastern corner of the study area forms part of the Pendjari national park in West 

Africa. 

 

Figure 1-7: The Dassari study area of Benin. 

 

1.6. Outline of the study 

The rest of the thesis is structured into five main chapters that address the formulated research 

questions in section 1.4. Chapter two outlines a novelty in indicator development using a bottom-up 

participatory process to develop indicators relevant for multiple hazard risk assessment and across 

multiple scales. This chapter describes how at-risk populations were selected and involved in developing 

a comprehensive indicator set for West African risk assessment. It details the combination of classical 

indicator development approaches and participatory processes to select indicators and analyses how 

expert judgement was used to rank indicators in each vulnerability sub-component. All the indicators 

used in the subsequent chapters were drawn from the results of chapter 2. The chapter also makes use 

of a conceptual framework of vulnerability assessment developed by Kloos et al. (2015) and provided 

the basis for the next chapters of the thesis. 

Chapter 3 of the thesis presents an approach involving the use of a simple hydrological model suitable 

for data scarce environments and integrated with statistical procedures in a GIS environment to map 

the spatial limits of flood hazard zones at a high spatial resolution. A unique approach is presented to 
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use a bottom-up participatory method based on the principles of Participatory Geographic Information 

System (PGIS) (Carver, 2003; Craig et al., 2002; Dunn, 2007) and coupled with robust empirical methods 

to evaluate the results of the modelling procedure. The main motivation was to develop community 

level flood hazard maps at a fine spatial resolution that could allow for accurate delineation of flood hot 

spots and flood safe havens at the sub-district/community levels in Ghana, Burkina Faso and Benin. 

Chapter 4 deals with how the results from Chapters two and three are applied to develop community 

risk indices from multiple hazards. The chapter addresses the gaps in classical methods of risk 

assessment and lack of comprehensive risk assessment for the West Africa region to conduct multiple 

hazard risk assessment through a bottom-up participatory process as opposed to the classical top-down, 

large scale approaches. It follows the perspective of a coupled Socio-Ecological System (SES) rather than 

single-hazard-decoupled risk assessments. Several methodologies were employed including the use of 

remote sensing and GIS methods to retrieve data for a number of biophysical indicators. The chapter 

also developed multi-hazard maps using inputs from Chapter two and Vegetation Health Index (VHI) 

datasets developed by (FAO GIEWS, 2015). An innovative concept termed, the Community Impact Score 

(CIS) was introduced to evaluate the results of a complex aggregation process. The chapter provides 

results that could support decision-makers with information to recognize and map risk hotspots in order 

to support priority setting for risk-reduction strategies. 

Chapter 5 deals with an upscaling risk index from a watershed to higher spatial scale.  It explores how 

multi-scale and cross scale interactions can contribute to decision making at various levels and how that 

affect the overall risk faced by people in nearby areas. This chapter lays the foundation for a possible 

application of multi-agent model such as an Agent Based Models (ABM) (Le et al., 2008, 2012; Linghu et 

al. 2013) to simulate the decisions and actions of the different stakeholders in responding and adapting 

to natural hazards and how these decisions and actions feedback into risk and vulnerability of people in 

other scales. It lays the theoretical basis for upscaling risk indices and presents interesting theoretical 

concepts in the global discourse of risk assessment especially in the area of understanding the dynamic 

nature of risk and predicting future vulnerability and risk.  

Chapter 6 finally concludes the thesis. It provides a summary of the key findings, relevant literature and 

policy implication of the findings and future research outlook. 
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2. Multi-scale Participatory Indicator Development Approaches for 
Climate Change Risk Assessment in West Africa5 

2.1. Introduction 

The dominance of rain-fed agriculture in West Africa where 60% of the population is engaged in 

agriculture (FAO, 2012) makes its population vulnerable to climate change and variability. The recent 

IPCC report (IPCC, 2014, p.3) reported with high confidence that the interaction of climate change with 

non-climate stressors will “exacerbate vulnerability of agricultural systems in semi-arid” Africa such as 

the West Sudanian Savanna region of Burkina Faso, Ghana and Benin.  Vulnerabilities are shaped through 

a host of biophysical and human related issues in the region including rainfall-related soil erosion, 

recurring droughts, poor soil quality and fertility, low input farming systems, decreased fallow periods, 

deforestation, frequent bush fires, and overgrazing (FAO, 2012; USAID, 2011).  Numerous studies exist 

worldwide that measured vulnerability to climate change at different scales from local to national 

assessments (see for example (Damm, 2010; Mohan & Sinha, 2011).  Also, large-scale studies by 

(Birkmann, 2006b; Cardona, 2004; Dilley et al., 2005; UNDP, 2004a; USAID, 2011) have measured 

vulnerability, resilience and adaptation using a variety of concepts, approaches, and indicators.  

However, it is impossible to reduce the concept of vulnerability and risk to a single equation or model 

that has a universal application. This is due to inherent complexity of Social Ecological Systems (SES); the 

multi-dimensional nature of vulnerability and risk (Birkmann, 2006a; Downing, 2004; Mohan & Sinha, 

2011) and a variety of concepts such as exposure, sensitivity, susceptibility, response, coping and 

adaptive capacity, robustness and resilience that are employed in order to measure vulnerability and 

that are defined in many different ways (Thywissen, 2006). 

 

The factors outlined above result in a non-universal applicability of existing indicator based vulnerability 

and risk assessment methods to areas such as the West African sub-region, implying that different and 

well-adapted methods need to be developed. Such methods should tackle complex settings of hazards 

occurrence as well as the dynamic socio-economic and environmental exposure; They also need to be 

context specific, be able to capture all relevant processes shaping vulnerability and risk at various scales 

and, more importantly, still be applicable to local communities affected usually by multiple hazards 

(Adger et al., 2004; Africa Adapt, 2011). However, the available literature suggests that these important 

considerations have been missing in many risk assessments particularly for the West African sub-region. 

To date, no study has attempted to understand the risk patterns of West African rural communities in 

the context of climate change through a set of indicators. The only study that comes close is a study 

conducted in Ghana in 2011 by United States Agency for International Development (USAID, 2011). Even 

in this study, the indicators were derived purely from literature and lack the important element of the 

participatory process from the vulnerable themselves. Furthermore, this study only considered social 

                                                        
5 A version of this paper has been published as: Asare-Kyei, D. K., Kloos, J., & Renaud, F. G. (2015). Multi-scale 

participatory indicator development approaches for climate change risk assessment in West Africa. 
International journal of Disaster Risk Reduction, 11, 13–34.  
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vulnerability to climate change and did not account for the ecological or biophysical aspects which are 

closely linked to the social processes. More importantly, this study conducted risk level assessment at 

the district level and not at the rural community level where risk outcomes are first materialized.  

Other climate risk assessments studied in the region have either been conducted at the country level or 

looked at decoupled SES. Studies from Boko et al. (2007); Briguglio (2009); Challinor et al., (2007); 

Thornton et al. (2006); World Bank (2009a, 2011) aimed at country level comparisons of risk. On the 

other hand, studies such as Challinor et al. (2007) and IFPRI  (2010) looked at decoupled SES and assessed 

narrow segments of it such as the vulnerabilities of agricultural sub-systems or the environmental sub-

system. Most of the studies published in Africa Adapt (2011) fall into the latter category. It is often very 

difficult to link local level results to assessments made at higher scales and vice versa, hindering a 

potential downscaling and upscaling of results.  Besides the USAID (2011) study in Ghana, Raschid (2011) 

undertook a water mediated climate impact assessment for urban areas based on indicators. In the three 

countries studied here, other risk assessment has been carried out at much smaller scales and on 

decoupled SES such as Arnold et al. (2012) in Burkina Faso; World Bank (2009) and IFPRI (2010) in Ghana, 

Benin and Burkina Faso. All these studies however, are based on classical risk assessment and did not 

involve the vulnerable themselves.  More importantly, risk assessment was done only at single scales 

and for single hazards. 

 

In other countries, Bollin & Hidajat (2006) developed a community based risk index for Indonesia based 

on indicators and showed how an indicator based approach could be implemented at the community 

level where risk outcomes are first materialized. In another example, on a more global level, the Alliance 

Development Works led by the researchers of the United Nations University Institute for Environment 

and Human Security has been publishing the World Risk Reports since 2011. The 28 global level 

indicators depicting current conditions underlying exposure to natural hazards, susceptibility, coping 

capacity and adaptive capacity were aggregated to generate the World Risk Index. This index allows for 

the identification of the low and high countries of world (Welle et al., 2013). These are also based on 

classical (top-down) approaches and aimed at country level comparisons. Despite the large amount of 

knowledge available in local areas (Reed et al., 2008) most, if not all risk assessments in the West African 

region have been approached from classical methods   without tapping into the wealth of resources 

available at the local level.  Moreover, many risk assessments in the region are mainly based on 

qualitative assessments without any attempt at combining them to quantitative data even though it has 

been recognized that risk assessment from both quantitative and qualitative (social, psychological, 

ecological) methods is required to deliver a more complete description of risk and risk causation 

processes (Cardona, 2004; Douglas & Wildavsky, 1982; Weber, 2006; Wisner et al., 2004). 

  

In the present study, the points of departure from the studies reviewed above are to explore methods 

to involve at risk populations at multiple scales in a bottom-up participatory process as opposed to the 

classical top-down, single scale approaches; assess risk indicators from multi-hazard perspectives in a 

coupled SES rather than single-hazard-decoupled risk assessments and finally assess risk indicators 

relevant for rural communities across West Africa.  
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Indicator based risk assessment where the indicators have been selected from a rigorous scientific 

process involving active participation of populations at risk at different scales as well as the authorities 

governing these risks is a prerequisite in meeting these criteria.  Although it is often impossible to involve 

large numbers of affected community members in evaluating a set of potential indicators, 

representatives of the main stakeholder groups (farmer representatives, disaster managers, etc.) should 

systematically be consulted. Additionally, to develop localized indicators of risk at both the local and 

sub-national levels, it is imperative to involve government officials and development experts from non-

governmental organizations. This is because: (1) these officials have prolonged contact with vulnerable 

populations, (2) most of them live with them and have themselves been affected by the hazards, and (3) 

their professional training and experience have made them experts in their own right and (4) they have 

comprehensive perspectives of the processes shaping vulnerabilities.   

 

2.2. Indicator functions and indicator based risk assessment 

Like models, indicators are abstraction of reality and limit themselves to the realm of the measureable. 

Nardo et al. (2005) defined indicator as either quantitative or qualitative measures obtained from a 

series of observed phenomena with the ability to reveal relative positions in a given study area. We 

consider here Moldan & Dahl (2007) definition of indicators as being representations of certain construct 

or issue too complex to be measured by a unit variable. 

Indicators have been widely used to measure vulnerability and to understand the risk patterns of 

societies from both natural and anthropogenic hazards. The millennium development goals are a 

classical example of the use of indicators to monitor progress of set targets. The Hyogo Framework for 

Action 2005-2015 emphasized the need to “develop systems of indicators of disaster risk and 

vulnerability at national and sub-national scales that will enable decision-makers to assess the impact of 

disasters” (UNISDR, 2005 p.10). The Millennium Ecosystem Assessment (MEA) makes broad use of 

several indicators both, biophysical and socio-economic to analyse data in order to develop policy 

relevant actions for decision making.  Several examples abound in literature on the use of indicators to 

measure vulnerability, risk and resilience as shown in Table 2-1. 

The IPCC (2014, p.5) summary report for policy makers defined risk as the “potential for consequences” 

where a valuable element is at stake and its outcome uncertain.  It’s the product of the probability of 

occurrence of hazardous events and the impacts if these events were to occur (IPCC 2014).  It is also 

defined as the “the probability of harmful consequences, or expected loss of lives, people injured, 

property, livelihoods, economic activity disrupted (or environment damaged) resulting from interactions 

between natural or human induced hazards and vulnerable conditions’’ (UNDP 2004, p.113). There are 

numerous conceptualizations of risk and vulnerability.  

 

 

 

 



Chapter 2: Participatory indicator development 

               20 

Table 2-1: Examples of indicator based vulnerability, risk and development indices. 

Index  Concept Reference Sub-

indices/components 

Variables 

HDI 

 

Human 

Development 

Index 

Quality of Life Moldan & Dahl 

(2007) 

1 4 

HWI Human Well-

being Index 

Quality of life Prescott-Allen 

(2001) 

5 33 

ESI Environmental 

Sustainability 

Index 

Sustainable 

Development 

Esty et al. (2005) 21 76 

PVI Prevalent 

Vulnerability 

Index 

Social vulnerability Cardona (2004) 3 24 

SVA Index of social 

vulnerability to 

climate change 

in Africa 

Social vulnerability Vincent (2004a) 4 8 

DRI Disaster Risk 

Index 

Socio-ecological 

vulnerability 

UNDP (2004) 3 10 

SOVI Social 

Vulnerability 

Index 

Socio-economic 

vulnerability 

Cutter et al. (2003)  42 

PIV Predictive 

Indicators of 

Vulnerability 

Index 

Social vulnerability Adger et al. (2004) 0 45 

WRI World Risk 

index 

Socio-ecological 

vulnerability 

Welle et al. (2013) 4 28 

VRIP Vulnerability-

Resilience 

Indicator 

Prototype 

Social ecological 

vulnerability and 

resilience 

Moss et al. (2002) 2 17 

 Climate 

Vulnerability 

Index 

Social-ecological 

vulnerability 

Sullivan & Meigh 

(2005) 

6 21 

 Livelihood 

Vulnerability 

Index  

Social vulnerability Hahn et al. (2009) 7 30 

Adapted from (World Bank, 2010a) and Cutter et al. (2009) 
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In this paper, we follow UNDP (2004) which views risk as the result of interaction between vulnerability 

and hazard. 

Development of indicators from participatory processes has long been used in sustainable development 

literature. It has been used extensively to involve communities to monitor progress towards 

achievement of goals in sustainable development and environmental management.  Fraser et al. (2006) 

used the approach to study the United Kingdom’s government effort to develop sustainability indicators 

to assess the socio-economic and environmental impacts of macro-economic changes. Reed et al. (2008) 

complemented participatory approaches with ecological and soil-based methods when they elicited 

environmental sustainability indicators from pastoralists in Botswana and found that the process results 

in more comprehensive lists of indicators than previous indicators published in the fields of rangelands, 

vegetation, soil and socio-economic studies. More importantly, Reed et al. (2008) concluded that a 

participatory process enhances community empowerment in situations where traditional approaches 

have failed.  

Other studies have also used local experts in selecting indicators for risk assessment. Examples of such 

studies include Damm (2010), Adger et al. (2004), Brooks et al. (2005), Fekete & Birkmann, (2008); 

Purnomo, et al. (2011) where expert judgment was complemented with the results of correlation 

analyses and other statistical procedures to select most relevant indicators. Morgan (1996) asserted that 

expert focus group is commonly used to elicit, refine information and produce new data and 

understanding through interactions with stakeholders. However, this common approach asserted by 

Morgan (1996) only refers to using a core group of local experts and does not include iterative selection 

of other remote stakeholders and at multiple scales. Such studies also do not make any attempt to 

triangulate the findings from the local expert group with the opinions with national level experts. An 

original approach is presented in this paper that uses both local and national levels experts to develop 

indicators applicable at different scales to allow for a comparison to be made between the results 

coming from the different categories of expertise at different spatial scales. 

It has been shown that participatory methods of developing indicators are an effective means of 

promoting dialogue about trade-offs and divergent views (Sayer et al., 2007). This study builds on this 

approach to encourage debate among vulnerable people as to what set of processes and system states 

influence risk in their communities.   The present paper explores a participatory approach to develop 

local and national (macro) scales indicators for multi-hazard risk assessment for rural populations in the 

Sudan Savanna ecological zone of Ghana, Burkina Faso and Benin faced with frequent floods and 

droughts events.  A key motivation is to develop locally and nationally validated sets of indicators that 

can be used to develop risk profiles at multiple scales in a coupled SES in subsequent studies. 

2.3. Multiple hazard risk assessment frameworks 

The first step in developing a set of indicators for risk and vulnerability assessment is the development 

or selection of an appropriate conceptual framework. It is critical to have a comprehensive and well-

adapted conceptual framework that establishes clearly the relationships, interactions and feedback 

mechanisms that exist within the SES under investigation. The present study relies on an on-going effort 

to broaden the theoretical concepts underlying two commonly used models, the SUST model by Turner 
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et al. (2003b) and the MOVE model by Birkmann et al. (2013). Most of the existing frameworks do not 

incorporate the concepts of risk and have been criticized for being complex and difficult to 

operationalize (Damm 2010). The analytic frameworks identified are considered as the most suitable to 

the West African context and the research objectives because combining them help bridge the gap 

between vulnerability and risk (Kloos et al., 2015). This proposed hybrid framework served as the 

conceptual basis to categorize the various dimensions of vulnerability. It recognizes the fact that 

vulnerability rests in a multifaceted coupled system with connections operating at different 

spatiotemporal scales and commonly involving stochastic and non-linear processes (Kloos et al., 2015; 

Turner et al., 2003b). The major components of the framework are Exposure, Susceptibility (of both 

social and ecological subsystems) and Capacities (coping and adaptive capacities as well as ecosystem 

robustness). This hybrid framework serves as a template for a reduced form of analysis allowing for the 

operationalization of the complex concept of vulnerability to a placed based assessment (Kloos et al., 

2015). 

2.4. Participatory indicator development  

The development of the hybrid vulnerability framework followed with the participatory indicator 

development process. This study was based on a step-wise approach to indicator development where 

standard procedures were followed to select the indicators as shown in Figure 2-1. The first step is the 

preliminary indicator selection from literature, conceptual frameworks of risk causation processes 

combined with personal experience in the region and knowledge of the processes leading to 

vulnerability of rural farming communities to multiple hazards (droughts and floods).  This first step 

consisted in a review of the status quo in risk assessment including of all global indices such as the World 

Risk Index (Welle et al., 2013) described in section 2.2. The standard indicators that resulted from this 

classical indicator development process were used to develop an Indicator Reference Sheet (IRS). The 

indicator reference sheet is a document detailing most commonly used indicators in the region that have 

been compiled from literature, conceptual frameworks and personal experience of the authors. The 

second step is the participatory selection of local experts based on the snowball principle.  This is where 

a core group of local experts comprising people from local agricultural departments, farmer 

representatives, disaster managers, rural development experts and local government authorities were 

asked to recommend institutions involved in drought or flood prevention or are involved in supporting 

communities to reduce their vulnerabilities to floods and droughts. 
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This resulted in the selection of experts from the local departments in charge of agriculture, disaster 

management and local government authorities as well as farmer group leaders for both crop and 

livestock sub sectors.  These first four groups served as the focal expert group. They were then asked to 

recommend other institutions in the area involved in any of the following thematic areas: agricultural 

development, rural development, disaster/emergency management, weather forecasting, health and 

social work. This provided a list of government institutions, local and international NGOs as well as 

development institutions operating in the area. Representatives of various farmer associations were 

asked to indicate their level of engagement with these institutions as far as their relevance in supporting, 

mitigating, preventing or providing technical assistance on floods, droughts, climate change and general 

socio-economic development are concerned. Equivalent institutions in adjoining districts and regional 

or provincial capitals were also invited to participate in the workshop. Twenty-five institutions were 

identified in both the Vea watershed in Ghana and the Dassari watershed in Benin whilst seventeen were 

identified in the Dano watershed of Burkina Faso. These local experts were then invited to a technical 

expert workshop (step 3).  

Figure 2-1: Adapted systematic procedure for participatory indicator development 
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2.4.1. Local level indicator elicitation and Indicator Reference Sheet 

A day long technical workshop was held in each case study country at the local level. Participants were 

asked to indicate which of the four technical areas they had expertise and competences in.  Four experts’ 

groups were constituted to become the four ‘technical thematic working groups’. These four-technical 

thematic working groups were:  

• Agriculture 

• Socio-economic and health matters e.g. rural development experts, health and development 

practitioners 

• Disaster management/meteorology and  

• Environment.  

institutional support that help the people to cope and adapt to the multiple hazards. 

The nature of the semi-structured questionnaire allowed for practical elicitation of relevant indicators of 

risk and vulnerability as participants actively discussed and debated among them before settling on a 

particular indicator. The same participatory process was also used to reassess and finalize the rankings. 

Each technical group provided rankings within each vulnerability sub-component which would later feed 

into the weighting of the selected indicators. As a result, all indicators were (supposed to be) presented 

in the order of the most important in terms of defining exposure, susceptibility and capacities of people 

living in the area 

Table 2-2 summarizes the expert categories at the various workshops as well as experts engaged at the 

national level. As shown in the bottom half of Figure 2-1, and in steps four to six, three major tasks were 

assigned to each group. The fourth task was the validation of the proposed vulnerability and risk 

assessment framework. A conceptual framework of vulnerability was presented to the groups and they 

were asked to make comments regarding the various components of risks, impacts and perturbations 

within first, the context of the watershed and second, the surrounding areas within Savanna agro-

ecological zone of the respective countries.  

After this and in step five, a separate semi-structured questionnaire with questions ranging from 

indicators of exposure, coping and adaptive capacity to ecosystem robustness was presented to each 

technical group. For instance, those in the agriculture group discussed aspects of risk that are clearly 

linked to agricultural activities such as determinants of a farm exposure, indictors of susceptibility of the 

agricultural system, impacts of drought and floods on the agricultural system in the area and elements 

of farmers’ coping and adaptation capacities to frequent floods and droughts, etc. 

Those in the Disaster management/meteorology group were to discuss indicators of disaster 

preparedness, risk governance, impacts of disasters on human systems and the local economy. Those in 

the environment group discussed questions on the state of the environmental systems, ecological and 

soil properties, water systems etc. The socio-economic and health group were to focus on factors and 

conditions that predispose the people to be affected by floods and drought. They discussed poverty 

levels, housing conditions, food availability, household dependencies as well as social networks and 

institutional support that help the people to cope and adapt to the multiple hazards. 
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The nature of the semi-structured questionnaire allowed for practical elicitation of relevant indicators 

of risk and vulnerability as participants actively discussed and debated among them before settling on a 

particular indicator. The same participatory process was also used to reassess and finalize the rankings. 

Each technical group provided rankings within each vulnerability sub-component which would later feed 

into the weighting of the selected indicators. As a result, all indicators were (supposed to be) presented 

in the order of the most important in terms of defining exposure, susceptibility and capacities of people 

living in the area 

Table 2-2: Number of participants and interviewed experts per working groups in the three research countries. 

Working group Ghana Burkina Faso Benin 

 Expert 

workshop-

local level 

National 

level 

experts 

Expert 

workshop-

local level 

National 

level 

experts 

Expert 

workshop-

local level 

National 

level 

experts 

Agriculture 

Socio-economic/health 

Disaster 

management/climate 

change/meteorology 

Environment 

6 

4 

 

7 

4 

6 

5 

 

3 

6 

5 

4 

 

4 

4 

2 

3 

 

4 

4 

7 

5 

 

4 

4 

5 

6 

 

3 

4 

 

In step six as shown in Figure 2-1, the experts worked on two additional tasks. One was the validation of 

the indicators listed in the ‘Indicator Reference Sheet’ (IRS) and another was the ranking (weighting) of 

the validated Reference Sheet Indicators (RSI).  Each group was given the IRS to determine their 

relevance for the present study. The experts determined the relevance of the given indicators within 

each vulnerability sub-component and had to choose between three options: highly relevant, 

moderately relevant, and irrelevant. 

2.4.2. National level indicator elicitation and Indicator Reference Sheet 

To get an understanding of what kind of indicators are deemed relevant by experts working in national 

capitals of the three countries, the same set of questionnaires used to elicit responses at the expert 

workshops were used in a combination with interviews, focus group discussions and mini-workshops in 

Accra, Ouagadougou and Cotonou. One-on-one interviews were carried out in cases where there was 

only one expert on climate change at a particular institution. Where there were more people involved 

in any of the thematic areas of the study (floods, droughts, disaster management, agriculture, climate 

change), the interview took the form of focus group discussions and mini workshops. Table 2-2 shows 

the number of experts at the national level that were interviewed. It is important to emphasize that the 

national level exercise was focused on developing a set of indicators relevant for macro scale risk 

assessment.  
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The indicators that are selected as either highly relevant or moderately relevant were ranked by the 

experts in decreasing order of importance within each vulnerability sub- component. Indicators were 

reclassified by the authors to ensure that they fall in the proper vulnerability sub-component (as 

determined by the vulnerability framework) and also to allow for comparison with the IRS. In selecting 

the final indicators from the two sources, elicited indicators and IRS, the former always takes precedence 

and preference was given to indicators directly elicited by the experts. The implication is that all 

technically sound elicited indicators were selected by the authors according to the ranking given by the 

experts. Within the same vulnerability sub-component, where the same indicator is chosen as relevant 

from the IRS and also appears on the elicited indicator list, the ranking from elicited indicator is used. In 

cases where a reference sheet indicator is described as highly relevant but not listed on the elicited list, 

author judgment was used to select and rank that indicator. This process is outlined in Figure 2-2.  

Working with indicators and with the concept of vulnerability is a relatively novel approach and not all 

experts invited to the workshop understood clearly what constitute relevant indicators of risks and 

vulnerability.  In some cases, experts could only describe the process affecting risk and were unable to 

Figure 2-2 Selection of final indicators from the two sources 
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provide the technical names of the indicators or were unable to provide good proxies to describe the 

complex term of vulnerability and risk. The use of the IRS made it easier to match the terms used by the 

experts to the standard indicators on the reference sheet. Judgment from the authors was used in 

refining the indicator list from the local and national experts. Combining author judgment with 

participatory inputs has been found to result in robust indicator refinement (Reed & Dougill, 2003). 

 

2.5. Results  

2.5.1. Indicators of risk in West African social-ecological systems 

At the local level, experts from Ghana validated and elicited a total of 37 indicators, those from Benin, 

36 and Burkina Faso, 34. Similarly, at the national level, Ghana elicited 25, Benin, 25 whilst Burkina Faso 

named 22 indicators. Interestingly, as many as 12 indicators deemed to be important by the local level 

experts in all three countries were not selected by their counterparts at the national level. Of these, four 

belong to the vulnerability component, coping capacity whilst three belong to the component 

‘susceptibility of the social sub-system’. These local level unique indicators have been presented in Table 

2-3. 

Table 2-3: Summary of indicators relevant only at the local level. 

Indicator Vulnerability component 

Distance to food market 

Prevalence of wasted children 

Demographic pressure 

Amount of surface run-off 

Normalized Difference Vegetation Index  

Total soil nitrogen 

Ability to survive crisis 

Presence of emergency management 

committee 

Local emergency funds as a percentage of local 

budget 

Access to national emergency funds and relief 

goods and services 

Declining labour availability 

Land ownership 

Susceptibility of social sub-system 

Susceptibility of social sub-system 

Susceptibility of social sub-system 

Susceptibility of ecological sub-system 

Ecosystem robustness 

Ecosystem robustness 

Coping capacity 

Coping capacity 

 

Coping capacity 

 

Coping capacity 

Adaptive capacity 

Adaptive capacity 

 

2.5.2. Unique indicators and differential rankings 

Table 2-4 indicates that there are as many as eight indicators that were unique to only Ghana at the 

national scale, and five at the local level. Burkina Faso recorded only three unique indicators at the 

national level against six at the local level, whilst Benin recorded six indicators at the national scale 

compared to four at the local level. In the case of Ghana, it is important to note that four out of five local 

level unique indicators maintained their uniqueness to Ghana at the national level as no other national 
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expert in the two other countries cited them. The remaining one, ‘crop type’, was cited by Benin national 

experts causing it to lose its uniqueness to Ghana at the national level. Also, Ghanaian national level 

experts cited three new indicators which had never been cited by any expert from the two other 

countries at any level. These are ‘land use planning’; ‘annual water balance’ and ‘access to purchased 

inputs’.  National experts in Burkina Faso also cited a unique indicator, ‘siltation of bas fonds’, bringing 

again to the fore the differences that underline socio-ecological conditions determining the 

vulnerabilities of the different societies. 

Besides the exclusivity of many indicators, there were a number of indicators that were common to all 

three countries, albeit with differences in their rankings. For instance, at the local level, whereas experts 

from Ghana ranked ‘prevalence of poverty’ (Figure 2-3) as the ninth most important determinant of 

susceptibility to droughts and floods out of a total of ten indicators (9 out of 10), their counterparts in 

Benin ranked the same indicator as the first most important (1 out of 8) and those in Burkina Faso ranked 

the same indicator also as the first most important (1 out of 7). 
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Table 2-4 Summary of indicators unique to each study country6. 

Unique Indicators at the local level 

                                                        
6 SUS.ES = susceptibility of ecological subsystem, SUS.SS =susceptibility of social subsystem, Exp.SS=exposure, social 
system, Eco.robust =ecological robustness: NDVI= Normalized Difference Vegetation index: Highlighted indicators for 
Burkina Faso are all drought related indicators 
7 Small reservoirs or dams used for agricultural purposes and animal feeding 
8 Normalized Difference Vegetation Index 

Ghana Vulnerability 

component 

Burkina Faso Vulnerability 

component 

Benin Vulnerability 

component 

1. Crop type 

2. Unimproved 

drinking water 

source 

3. Physical infrastructure 

4. Population 

density 

5. Female headed 

households 

SUS.ES 

 

SUS.SS 

 

Exp. SS 

 

 

SUS.SS 

 

SUS.SS 

 

1. Household 

size 

2. Agroforestr

y cover 

3. Soil depth 

4. Number of 

bas-fonds 7 

5. NDVI8 

6. Early 

warning 

systems 

SUS.SS 

 

SUS.ES 

 

SUS.ES 

 

Eco. robust 

Eco. robust 

 

Coping 

capacity 

1. Forested 

area 

2. Erosion rates 

3. Land 

ownership 

4. Total soil 

nitrogen 

Eco. robust 

 

SUS.ES 

 

Adaptive 

capacity 

 

Eco. Robust 

 

Unique indicators at the national level 

1. Physical 

infrastructure 

2. Population 

density 

3. Unimproved 

drinking water 

source 

4. Female headed 

households 

5. Land use 

planning 

6. Annual water 

balance 

7. Gross margin 

8. Access to inputs 

Exp-SS 

 

SUS-SS 

 

 

SUS-SS 

 

SUS-SS 

 

 

SUS-ES 

 

Eco. robust 

Adaptive cap 

Adaptive cap 

1. Household 

size 

2. Siltation of 

bas fonds 

3. Dry season 

duration 

 

SUS-SS 

 

SUS –ES 

 

SUS -ES 

 

 

 

1. Stunting 

2. Seasonal 

variability 

3. Infiltration 

rate 

4. Groundwater 

5. Local 

knowledge of 

disasters 

6. Leadership& 

management 

SUS-SS 

SUS-ES 

 

Eco. Robust 

 

Eco. Robust 

Coping 

capacity 

Adaptive 

capacity 

 

 

 

 

Figure 2-3: Differential ranking of indicators. 
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2.5.3. New or rarely used indicators 

A number of the indicators have either not been used or are rarely used in classical risk and vulnerability 

assessment literature in the region.  Comparing the final indicator set with the RSI, there are 28 

indicators at the local level and 29 at the national level that were not captured in the RSI. At the national 

level, they constitute 69% of all indicators deemed to be relevant in the context of the study countries 

whilst they represented 56% of all indicators at the local level.   In some cases, proxies of these indicators 

have been used. For instance, a typical indicator used to express the exposure of people to droughts and 

floods is ‘Agricultural Employment’. This indicator measures the percentage of people in an area 

engaged in agricultural-related activities. Although it has been extensively used (see for example, USAID, 

2011; Brooks et al., 2005; O’Brien et al., 2004b). Adger et al. (2004) criticized the use of such indicator 

as being “biased towards wage labour”. In this study, the experts agreed with the assertion of Adger et 

al. (2004) that the ‘Agricultural Dependent Population’ gives a more accurate depiction of people who 

may potentially be exposed to natural hazards since it accounts for all people directly or indirectly 

engaged in the climate sensitive sector of agriculture.  

Indicators such as ‘insecure farms’ which measures the percentage of farm plots located in slopes of 

more than 5%, was reported at the local level in Ghana and Burkina Faso and shows the extent to which 

slope exposes the agricultural system to floods and droughts. Such farms were said to be extremely 

vulnerable to high episodes of rainfall through increased erosion whilst at the same time more prone to 

the impacts of droughts as a short dry spell leads to significant crop failures due to poor water infiltration 

rates. Other conspicuously missing indicators in the literature of existing risk assessment are ‘Number 

of herds per household’ and ‘Gross Margin per Hectare’. These indicators were found to be extremely 

important in influencing the adaptive capacities of farmers in all three countries. Gross margin per 

hectare was seen as far better indicator than crop production which is the one commonly used. This is 

because gross margin analysis incorporates all four aspects of productivity including area cultivated, 

production cost, yield and market prices. The keeping of livestock in the Sudanian region was also seen 

as a social safety net and offers diversified livelihoods especially in times of old age or crisis. Households 

with livestock are more likely to withstand hazards events than those who depend solely on crops for 

their livelihoods. The study found that major coping and adaptation capacities lie in the number of 

livestock owned by the households. It offers both the means of immediate liquidation to cope with a 

present disaster and also offers long term capacity to recover from a disaster. 

 

2.5.4. Comprehensive indicator sets 

Table 2-5to Table 2-11 show the outcomes from the various technical groups working on indicators at 

both the local and at the national levels. The indicators are presented according to the various 

vulnerability components of the proposed framework. The indicators were presented in two parts. The 

first part, Table 2-5 to Table 2-10 details indicators which are rarely used in West African multi-hazard 

risk assessment. Two levels of assessment have been presented. These are the results from the local 

scale and those from the national level (macro scale). The ranking (which can subsequently lead to 

weights) of the indicators has also been presented according to each sub-component of the framework 



Chapter 2: Participatory indicator development 

               31 

used. For example, in Table 2-5 the indicator ‘Agricultural Dependent Population’ is ranked at the Ghana 

local scale as the most important indicator out of three indicators (1/3) within the vulnerability sub-

component ‘exposure of Social system’. That same indicator was not selected at the national/macro 

level in Ghana but was ranked as 1/2 in Burkina Faso within the same vulnerability sub-component. The 

tables also describe the relevance of the indicators for climate change research as stipulated by the 

experts and complemented with literature and knowledge of the authors. 

The second part of the tables (Table 2-11) presents the other commonly used indicators in literature 

which have also been confirmed in this study. Together they form the ‘West African Comprehensive 

Indicator Set’ for flood and drought risk assessment in a coupled SES under climate change. The 

indicators have been grouped into the various components and sub-components of the framework. For 

example, Table 2-5 presents the indicators describing the exposure of the SES, Table 2-6 presents 

indicators describing the susceptibility of the social sub-system and Tables 2-7a and 2-7b shows the 

indicators describing the susceptibility of the ecological sub-system. 
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Table 2-5: Major indicators describing the exposure of the socio-ecological system to drought and floods. 

 

 

 

 

 

 

 

 

 

Indicator 

country reporting and rank 

within the sub-component 

Definition of  

indicator 

Studies using indicator or similar 

indicator 

  local scale macro scale     

Agricultural 

dependant 

population 

(ADP) 

Ghana 1/3, 

Benin 1/2, 

Burkina 

Faso 2/2 

Burkina 1/2, 

Benin 2/2 

The percentage of the 

area's total population 

depending on 

agriculture related 

employment (including 

hunting, fishing and 

forestry) 

Adger et al 2004, USAID (2011) and 

O’Brien et al., 2004b). All these 

studies used the related indicator 

of Agricultural employment. 

 
Relevance for Climate Change Research: The experts believe that the higher the ADP, the more 

a district will be impacted by disruptions in production due to changing environmental 

conditions. High ADP suggest lack of other employment options and therefore in the event of 

crop failures, farmers and their dependants have few opportunities to earn additional income 

(Adger et al 2004, (O’Brien et al., 2004b). In addition, high ADP means that a higher percentage 

of people are exposed to a climate sensitive sector of agricultural particularly in the study areas 

where rain-fed agriculture predominates.   

Insecure 

settlement 

Ghana 3/3, 

Benin 2/2, 

Burkina 1/2 

Ghana 1/2, 

Burkina 2/2  

Benin 1/2 

Percentage of an area 

villages in high flood 

intensity zones 

. 

 
Relevance for Climate Change Research: Hastily constructed settlements although generally 

inexpensive to build, are more physically vulnerable to hazards especially if located in high flood 

intensity zones.  Adger et al. (2004) contend that People living in such settlement are less likely 

to adopt risk spreading measures such as insurance and will be less able to engage in post-

disaster reconstruction 

Insecure farms Ghana 3/3, 

Burkina 

Faso 2/2 

Ghana 1/2                  

Benin 2/3  

% of farms plots in an 

area located in slopes of 

more than 5% 

  

 
Relevance for Climate Change Research: Farms located in slope of more than 5% are more 

prone to erosion in cases of extreme rainfall. Also, because they have less water infiltration 

rates, a short dry spell can lead to crop failure 
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            Table 2-6: Indicators describing the susceptibility of social sub-system to the hazards. 

 

                                                        
9 This indicator was reclassified from Adaptive capacity to susceptibility because the authors believe poverty actually 
pre-disposes a person to be adversary affected. It however, creates several feedback mechanisms that go on to affect 
his coping and adaptive capacities. 
 

 
Indicator 

country reporting and rank 
within the sub-component 

Definition of  
indicator 

Studies using indicator or 
similar indicator 

  local scale macro scale     

Prevalence of 

Stunted 

children 

Ghana 7/10, 

Benin 2/8 

Benin 4/4 Percent of children under 

5 in an area who are 

stunted (have low height 

for their ages) 

 

Relevance for Climate Change Research: Stunting, or low height for age (UNICEF 2013) is caused 

by long term intake of insufficient nutrients associated with frequent infections. It normally occurs 

before age two, and its effects are largely irreversible. Households having already stunted children 

will have aggravated nutrient deficiencies when drought cause food shortages especially for those 

engaged in rain-fed agriculture. 

Calorie intake 

per capita 

Ghana 8/10, 

Benin 4/8, 

Burkina 2/7  

Burkina 5/5, 

Benin 3/4 

The dietary energy 

consumption per person is 

the amount of food, in 

kcal per day, for each 

individual in the total 

population. 

 Adger et al. (2004) 

Relevance for Climate Change Research: Poor nutrition is associated with poor general health and 

particularly after flooding due to a weakened immune system. Malnourished people or those close 

to malnourishment are less likely to survive food shortages caused by droughts [13].  Adger et al. 

[13] again indicated that although food prices are a better indication of food security, calorific 

intake is a more direct, and strongly related, measurement of nutritional status. 

Prevalence of 

poverty9 

Ghana 9/10, 

Benin 1/8, 

Burkina 1/7 

Burkina 2/5, 

Benin 1/4 

Percent of people living on 

less than 1.25USD a day 

Birkmann et al. (2011); Bollin & 

Hidajat (2006); Vincent (2004b)  

Relevance for Climate Change Research: Poverty is seen in all study countries as major 

determinant of vulnerability. Most experts believe that the effects of poverty on vulnerability are 

most felt in depressing farmer's adaptive capacity. Poor farmers are generally not able to adopt 

improved agricultural practices aimed at adapting to climate change. 

Household size Burkina Faso 

3/7 

Burkina 3/5 Average number of people 

in a household with clearly 

identified household head 

Bollin & Hidajat (2006) used a 

closely related indicator of 

dependency ratio, used also by 

Hahn et al. (2009). 

Relevance for Climate Change Research: The more people there are in a household, the more the 

household has to spread its thin resources in the event of hardships. Households with greater 

number of people invariably spend their food reserves faster than households with fewer people. 

This forces the household to quickly fall back on its other coping measures.  
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Table 2-7: Indicators describing the susceptibility of the ecological sub-system to floods and droughts and floods. 

Indicator country reporting and rank 

within the sub-component 
Definition of  

indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

Land use 

planning 

none Ghana 1/2 Proportions of land 

within an area which 

has been properly 

zoned with clear 

demarcations as to the 

use of the land 

 

Relevance for Climate Change Research: The experts in Ghana believe that areas with effective 

land use plans are able to meet the land needs of its people whilst protecting natural resources. 

In the event of hazard occurrence, areas without proper land use plans are more likely to suffer 

crop, buildings and other property damages than areas with effective land use plans. 

Siltation of 

dams 

none Burkina 3/4 This is measured as the 

depth of water in major 

irrigation dams in an 

area. 

 

Relevance for Climate Change Research: Dams with shallow depths as a result of siltation dry 

faster under short dry spells. In the event of climate change, such dams are more likely to 

experience water shortages than low silted dams and thus farmers relying on such will be 

heavily impacted. 

 

Crop type Ghana 2/2 Ghana 2/2, 

Benin 2/3 

% of area under 

cultivation of drought 

and flood sensitive 

crops. 

 

Relevance for Climate Change Research: Areas with greater share of drought and flood 

sensitive crops are more vulnerable than those growing drought and flood tolerant crop 

cultivars. A typical climate change adaptation among farmers in Ghana is the use of Drought 

and Flood ‘escape crops’ such as early millet". 

Dry season 

duration 

Benin 4/4, 

Burkina 3/3 

 

Burkina 4/4 

 

Duration of dry season 

in days over the past 10 

years. 

 

Relevance for Climate Change Research:  

Climate change in the study area has mainly been experienced in the form of climate variability 

with increasing prolongation of the annual dry season. Farmers already experiencing longer dry 

season are at greater risk of suffering more under increasing climate variability. 
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Table 2-8a: Indicators describing the robustness of the ecological sub-system to cope with floods and droughts. 
Indicator country reporting and rank 

within the sub-component 
Definition of  

indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

Annual 

water 

balance 

none Ghana 4/6 This is the amount of 

water remaining in the 

watershed at the end of 

the rainfall season. It is 

evaluated using the 

general water balance 

equation given as 

P=Q+E+∆S (Oosterban 

et al., 1996)10.  

 Strzepek et al. (2011); Zhang et al., 

(2011) 

Relevance for Climate Change Research: Water balance is an important factor of irrigation 

requirements, runoff assessment and flood control. The Experts believe that areas with below 

average annual water balances are more prone to water shortages. In the event of climate 

change, such areas will be more impacted than areas having average water balance under 

normal rainfall conditions. 

Green 

vegetation 

cover 

Ghana 5/5, 

Benin 5/6, 

Burkina 8/8  

Burkina 4/4, 

Benin 7/7 

Fractional cover of 

green vegetation 

during the dry season 

Rojas et al. (2011) 

Relevance for Climate Change Research: Areas exposed to droughts and floods typically have 

no vegetation cover during the dry season, increasing the risks of water and wind erosions 

Soil depth Burkina 3/8 Ghana 3/6, 

Burkina 2/4 

The maximum rooting 

depth at which major 

crops can grow 

 

Relevance for Climate Change Research: Deep, well drained soils are better able to infiltrate 

excess rain water before generating run-off to cause flooding. Shallow soils have several 

limitations in holding water and this has implications for flood and drought. Whilst shallow soils 

easily saturate and generate run-off, they also dry faster under short dry spells. 

 

 

 

 

 

 

                                                        
10 Where P is precipitation, Q is runoff, E is evapotranspiration and ∆S is change in storage 
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Table 2-8b: Indicators describing the robustness of the ecological sub system to cope with droughts and floods. 

 

Indicator country reporting and rank 

within the sub-component 
Definition of  

indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

Agroforestry Burkina 2/8 Ghana 2/6, 

Burkina 3/4 

The percentage of total 

land in the area under 

agroforestry plantation 

or of secondary forest 

type 

 

Relevance for Climate Change Research: Experts believe that areas with greater agroforestry 

share have improved micro climate that reduces the impacts of droughts and surface run-off. 

Farmers with agroforestry systems have alternative sources of income in periods of annual crop 

failure from drought or floods. The effects of increased climate variability will be felt more in 

areas with little or no dense vegetation. 

Soil organic 

carbon (SOC) 

Ghana 1/5, 

Benin 1/6, 

Burkina 4/8 

Ghana 1/6, 

Benin 1/7 

The percent or mass of 

Soil Organic Carbon 

held per gram of all soil 

constituents 

  

 

Relevance for Climate Change Research: Areas with substantial high levels of organic matter 

are expected to hold moisture effectively and be more fertile even in periods of droughts.   In 

the region, low levels of organic carbon are usually associated with low supply of major 

nutrients [69]. This is worsened by burning of biomass in the prevailing‐slash‐and burn systems, 

frequent bush fires and high temperatures which lead to a rapid decomposition of organic 

matter [70]. Areas with low SOC are more likely to experience food shortage during droughts 

events. 

Conservation 

agriculture 

practice 

none Ghana 6/6, 

Benin 6/7 

Percent of farmers in 

area who practice 

conservation 

agricultural practices. 

These practices include 

soil-water 

management regimes, 

use of cover crops, 

organic manure, stone 

bonding, terracing etc. 

 

Relevance for Climate Change Research: Areas with a greater proportion of its agricultural land 
under conservation agricultural practices are better able to withstand drought conditions and 
flooding. A Study by Kloos and Renaud (2014) in Benin shows that organic cotton production 
using animal manure directly reduces the impacts of climatic risks and indirectly reduces 
economic risks and support women empowerment. Areas with apparent lack of any 
conservation agricultural practice are more likely to suffer from increasing climate variability.  
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Table 2-8c:  Indicators describing the robustness of the ecological sub system to cope with droughts and floods. 

Indicator country reporting and rank 

within the sub-component 
Definition of  

indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

Ground-water 
level 

Ghana 3/5, 
Benin 6/6 

Benin 3/7 Average level at which 
most boreholes in the 
area reach water. 

 

Relevance for Climate Change Research: Experts agreed that high groundwater reserves will 

enable the area to adapt to long term droughts by expanding its irrigation facilities. The ability 

of vulnerable people to adapt to climate change will largely be determined by the availability 

of natural resources (Adger et al., 2004) particularly water resources. Increases in mean land 

surface temperature will lead to an increase in evapotranspiration with a corresponding 

increase in irrigation demands. As more irrigation options are explored, Arid and semi-arid 

regions of West Africa might actually be drawing water from non-renewable aquifers which has 

been recharged in past episodes of high rainfall. Water availability will then be determined by 

a combination of water from present-day precipitation or runoff and water from aquifers. 

Bas-fonds Burkina 
Faso 1/8 

Burkina 1/4, 
Benin 2/7 

The number Low-lying 
areas or depressions, 
for instance valley 
bottoms, which are 
seasonally waterlogged 
without a marked 
stream channel and 
hence can be 
inundated for several 
months during the 
rainy season. 

  

 

Relevance for Climate Change Research: Bas-fonds play crucial role in the lives of people in 

Burkina Faso. Small reservoirs located in bas-fonds provide critical water resources during the 

dry season for vegetable gardening and drinking water. Areas with limited bas-fonds have little 

option to diversify their farm enterprises and are more likely to suffer from drought and crop 

failures. 

Water holding 
capacity 

Ghana 4/5, 

Benin 3/6, 

Burkina 7/8 

 

Ghana 5/6, 

Benin 4/7 

 

Soil water holding 
capacity is the amount 
of water that a soil can 
hold and generally 
depends on the soil 
texture and the soil 
organic matter content.  

  

 

Relevance for Climate Change Research:  

Soils in the area have low water holding capacities.  Moreover, they are also highly susceptible 

to erosion and compaction [69]. Areas with low soil moisture under conditions of normal rainfall 

are expected to be less able to hold water during short dry spells. 
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Table 2-9: Indicators describing the major coping capacities of the social sub-system. 

Indicator country reporting and rank 

within the sub-component 
Definition of  

indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

Alternate food 

and income 

sources 

Ghana 1/7, 

Benin 1/7, 

Burkina 7/7 

Ghana 1/1, 

Benin 1/3 

Percentage of 

population with 

additional food and 

income source other 

than agriculture.  

Crop diversity, Percent of 

household’s dependent solely on 

agriculture as a source of income 

[30]. 

Relevance for Climate Change Research: Experts believe farmers with additional food and 

income sources are better able to cope with disasters. Other income sources include economic 

activities such as teaching, trading, driving carpentry, masonry, etc. whilst other food sources 

include those receiving or can receive food aid 

Local 

knowledge 

Ghana 4/7, 

Benin 3/7, 

Burkina 3/7 

Benin 2/3 The percentage of 

people with adequate 

understanding of local 

climate and local 

environmental issues 

and have benefited 

from emergency 

training programmes. 

  

 

Relevance for Climate Change Research: Local knowledge and experience of the environment 

is as useful as a scientific understanding of climate hazards. This is because generally climatic 

forecasts and written information are unavailable to the most vulnerable members of the 

population who need it most [13]. In the study areas, farmers who have gained local 

understanding of the climate are better able to strategize and plan their production 

accordingly. 

Presence of 

emergency 

management 

committee 

Ghana 6/7, 

Benin 7/7, 

Burkina 4/7 

none Annual meeting 

frequency of local 

emergency committees 

Meeting frequency of risk 

management/emergency 

committee and Local risk 

management/emergency groups 

(Bollin & Hidajat 2006). 

Relevance for Climate Change Research: Household’s ability to cope with disasters is 

determined largely by the effectiveness of the village and local disaster management 

committees. In all the three countries, there's no national budgetary allocation for disaster 

committees. In the case of Ghana, there is a 5% allocation of the district assembly's common 

fund for emergency management but the disbursement and application of this provision is 

vague and local disaster managers have no access to this fund. 

Local 

emergency 

funds 

 

Ghana 7/7, 

Benin 5/7, 

Burkina 5/7 

 

none local emergency fund 

as a percentage of 

national budget 

 

Note: the relevance of these two    

indicators for climate change 

research is the same as the one 

just above. 
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access to 

national 

emergency 

funds and 

relief items 

 

Ghana 5/7,    none 

Burkina 6/7                     

Benin 4/7,  

release period of national 

emergency funds and relief 

items 

 

 

community 
participation/s
ocial capital 

Ghana 3/7, 
Benin 2/7, 
Burkina 1/7 

Burkina 1/1, 
Benin 3/3 

Communities with 
highly or adequate 
participation of people 
in communal activities  

(Mechler, 2005) 

Relevance for Climate Change Research: This was seen as an important determinant of how 

community members can be mobilized in times of crisis. It also measures the strength of social 

cohesion and solidarity existing within the community. In the study areas, communal spirit was 

very strong and really support affected people to cope with crisis.  
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Table 2-10a Indicators describing the major adaptive capacities of the social sub-system. 

 

Indicator country reporting and rank 

within the sub-component 
Definition of  

indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

 Extension 

service 

Ghana 1/7, 

Benin 2/8, 

Burkina 4/5  

Ghana 1/6, 

Burkina 3/4 

Number of agricultural/ 

health extension 

officers/staff in an area 

 

Relevance for Climate Change Research: Agricultural and health extension services were found 

to be highly important in creating awareness about current adaptation options and health 

related issues. Farmers with unhindered access to extension are better positioned to learn 

current developments in climate change adaptation. Also, mentioned as important is access to 

health advice by public health officers in the aftermath of disasters. 

Illiteracy Ghana 3/7, 

Benin 4/8, 

Burkina 1/5 

Ghana 6/6, 

Burkina 2/4 

The percentage of an 

area's total population 

below 15 years that 

can neither read nor 

write 

 USAID (2011),  Brooks et al., 

(2005); Eriksen et al., (2007b); 

O’Brien et al., 2004b) 

 

Relevance for Climate Change Research: Education is closely linked with poverty and 

marginalization – the least educated and lower skilled members of a society are likely to be the 

most vulnerable to climate hazards in terms of livelihoods and geographical location. The least 

educated tend to depend more on climate sensitive sectors of employment such as agriculture 

including fishing, hunting and forestry. Brooks et al. [50] also indicated illiteracy can serve as a 

barrier to facilitating understanding of the complex nature of hazards and appropriate 

responses.   

No of herds 

per household 

Ghana 4/7, 

Benin 3/8, 

Burkina 5/5 

Ghana 3/6, 

Burkina 1/4, 

Ben 1/3 

Number of herds of 

livestock owned by 

households. Herds 

include goats, sheep, 

cattle and donkeys if 

they are used for 

economic activities 

 

Relevance for Climate Change Research: Households with livestock are more likely to 

withstand hazards events than those who depend solely on crops for their livelihoods. The 

study found that a major coping and adaptation capacity lie in the number of livestock owned 

by the households. It offers both the means of immediate liquidation to cope with a present 

disaster and also offer as long-term capacity to recover from a disaster. 
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Table 2-10b: Indicators describing the major adaptive capacities of the social sub-system. 

Indicator country reporting and rank 

within the sub-component 
Definition of  

Indicator 

Studies using indicator or 

similar indicator 

  local scale macro scale     

Gross margin 

per hectare 

Ghana 5/7, 

Benin 5/8 

Ghana 4/6 This is the ratio of the 

difference between 

total revenue and 

variable production 

cost per hectare. 

Bollin & Hidajat (2006) 

Relevance for Climate Change Research: This was seen as a better indicator than crop 

production. Gross margin analyses incorporate all four aspects of productivity including area 

cultivated, production cost, yield and market prices. Areas with already depressed gross margin 

from major commodities are more likely to suffer from drought and floods. 

good 

leadership and 

management 

Ghana 6/7, 

Benin 6/8, 

Burkina 3/5 

Benin 3/3 Percentage of 

communities within an 

area with well 

functional institutional 

network of well-

respected chiefs and 

effective local 

government structures. 

 E.g. institutional capacity building 

and communication Bollin & 

Hidajat (2006) 

Relevance for Climate Change Research: Local leadership was seen as critical in enforcing rules 

and regulations as well as policies aimed at reversing the negative effects of climate change. 

Areas with failed leadership such as powerless tribal chiefs were said to be more vulnerable 

than those with well functional chiefs. 

Access to 

purchased 

inputs 

none Ghana 5/6 Proportion of farmers 

within an area with 

readily access to 

affordable purchased 

inputs. 

 

Relevance for Climate Change Research: Farmers with readily access to affordable inputs are 

better to adopt improved agricultural practices and are thus better able to adapt to climate 

variability. 

Declining 

labour 

availability 

Ghana 7/7 

Benin 8/8 

none Percent of population 

without timely access 

to labour for major 

farm activities 

 

Relevance for Climate Change Research: Agriculture is a labour-intensive activity and most 

adaptation options require labour to implement. Areas with limited labour supply are more 

likely to be unable to implement several adaptation options with the potential to increasing 

their resilience to future climate related hazards. In the study areas, especially Ghana, this was 

seen as a consequence of climate variability as more young people who could have provided 

farm labour have migrated to cities in the South of the country as a result of declining 

agricultural productivity. 
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Table 2-11: Other indicators that are commonly used in the region –Part II indicators11. 

                                                        
11 These are selected indicators which were also found to have been widely used in climate change risk assessment 
literature both in the region such as USAID (2011) and elsewhere Adger et al. (2004) Bollin & Hidajat (2006) 

Vulnerability 

component 

Indicator country reporting and rank within the sub-

component 

Studies using 

indicator or similar 

indicator 

 
  local scale macro scale   

Exposure Physical infrastructure Ghana 2/3 Ghana 2/2 Bollin & Hidajat (2006) 

Agricultural area Ghana 1/3, Burkina Faso 

1/2, Benin 2/2  

Burkina 1/1, Benin 

1/3 

(Mechler, 2005) 

protected area Ghana 2/3, Benin 1/2 Ghana 2/2, Benin 

3/3 

Mechler (2005) 

Susceptibility-

social sub 

system 

Dependent population Ghana 1/10, Burkina 4/7 Ghana 5/5, Burkina 

1/5 

(Brooks et al., 2005; 

Cutter et al., 2003; 

Eriksen et al., 2007b) 

Population density Ghana 2/10,  Ghana 2/5 Mechler (2005) 

Quality of housing Ghana 3/10, Benin 5/8, 

Burkina 5/7 

Ghana 1/5, Burkina 

4/5, Benin 2/4 

Bollin & Hidajat (2006) 

Distance to drinking 

water 

Ghana 4/10, Benin 6/8 None [USAID (2011), Adger 

et al. (2004), Brooks et 

al. (2005), Eriksen et 

al. (2007a) 

Distance to food market Ghana 5/10, Benin 7/8 None 
 

Unimproved drinking 

water source 

Ghana 6/10 Ghana 4/5 USAID (2011), Brooks 

et al. (2005), O’Brien 

et al. (2004) 

Female headed 

households 

Ghana 10 /10 Ghana 3/5 USAID (2011), Cutter 

et al. (2003), Hahn et 

al. (2009), Brooks et 

al. (2005) Eriksen et al. 

(2007a) 

Prevalence of Wasted 

children 

Benin 3/8, Burkina 6/7 None   

Demographic pressure Benin 8/8, Burkina 7/7 None Mechler (2005) 

Susceptibility-

ecological sub 

system 

degraded land Ghana 1/2, Benin 1/4, 

Burkina 1/3 

Burkina 1/4, Benin 

1/3 

Mechler (2005) 

Surface run-off Benin 3/4, Burkina 2/3 None   
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2.6. Discussion and Conclusions 

A participatory approach was followed to select indicators for both the quantitative and qualitative 

assessment of risks faced by people in West Africa under climate change. The objective was to determine 

the most important indicators that could be used to describe the vulnerability and risk to drought and 

floods under climate change. The methodology allowed for a representative participation of 

stakeholders (including farmers) dealing with climate related hazards of drought and floods. The study, 

as a first step, used a conceptual risk assessment framework being developed to categorize vulnerability 

components. The major outcomes are comprehensive sets of indicators grouped according to the 

components of the conceptual framework that can be used to assess the risk to flood and droughts in 

West African socio-ecological systems at various scales in the region. The scales range from the very 

local level (watershed and surrounding areas) to district and region within the Sudan Savanna zone and 

finally at the national level in the West African region.  At the local level, a total of 50 indicators were 

selected in all three countries. At the national level, a total of 42 indicators were found.  As much as 12 

relevant indicators at the local level were not selected by any expert at the national level. These 

indicators which could determine the extent to which a household is vulnerable to a hazard or a 

combination of hazards could not have emerged without a local participatory process, underscoring the 

need to include local people in risk assessment. Local emergency funds, access to relief goods and 

services, or household’s ability to survive crisis, for example, are extremely important in periods of 

disasters and only an engagement with people who have experienced a deficit in these services during 

an event can bring them to the fore. The obvious omission of these indicators at the national level in all 

three countries suggests the need to have sub-national risk assessment so as to truly capture the 

vulnerabilities of people experiencing hazards. One would have expected that the national level experts 

would actually be interested in relief goods and services and emergency funds as important indicators. 

 
erosion rates Benin 2/4 Burkina 2/4, Benin 

3/3 

Bollin & Hidajat (2006) 

Capacity-

ecosystem 

robustness 

Infiltration rate Ghana 2/5, Benin 4/6, 

Burkina 6/8 

Benin 5/7   

Total soil nitrogen Benin 2/6 None   

 
NDVI Burkina 5/8 None Rojas et al. (2011) 

Coping Capacity Ability to survive crisis Ghana 2/7 Benin 6/7  None USAID (2011), Brooks 

et al. (2005), Eriksen et 

al. (2007a) 

 
Early warning system Burkina 2/7 Burkina 5/5, Benin 

2/3, Ghana 7/7 

 

 

Adaptive 

capacity 

Household income Ghana 2/7, Benin 1/8, 

Burkina 2/5 

Ghana 2/6, Burkina 

4/4 

 Per capita income 

Cutter et al. (2003) 

Land ownership Benin 7/8 None   
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The reason why they did not mention them is unclear but could probably mean they underestimate the 

benefits of these services to the local people; a situation which might have led to the fact that in most 

cases it takes too long for victims of disasters to receive relief.  

Differences in indicator types between local and national assessment is important and suggests that a 

simple country or regional level risk assessment could underestimate the risk in rural areas where risk 

outcomes are first materialized. These 12 indicators are important in determining the extent to which a 

household will be potentially impacted by a hazard.  According to the vulnerability framework used; of 

the 12 indicators, as much as five describe the susceptibility of the SES whilst another six determine the 

coping and adaptive capacities available to the people (Table 2-3). 

The study has shown that majority of the indicators (as much as 56% of the local level indicators and 

69% at the national level) have either not been used or are hardly used in the literature related to West 

African multi-hazard risk assessment in the context of climate change.  The World Development Report 

in 2010 reviewed two major vulnerability-driven indices –Disaster Risk Index, DRI (UNDP, 2004) and 

Index of Social Vulnerability to Climate Change for Africa, SVA (Vincent, 2004) and concluded that these 

indices created spatial patterns out of tune with development-driven indicators and consistently showed 

a pattern contradictory to expert knowledge (World Bank, 2010a). The results from the present study 

show that such contradictory results are expected because they ignore the salient indicators deemed to 

be relevant by the local populations. Studies in the region that ignore indicators such as number of herds 

per household, gross margin per hectare, insecure farms, could lead to conclusions that “contradict 

expert knowledge” as found by World Bank (World Bank, 2010a, p.12). It is important to note that the 

relevance and weights of such indicators can only be understood by engaging with the vulnerable people 

themselves. This study has therefore shown the potential disadvantages involved in using the same set 

of indicators for several countries and make comparisons between them. Even within the same country, 

different indicators and weightings apply depending on the scale of assessment. Besides the indicators 

that are unique to each country, differences in risk perceptions, socio-economic conditions and other 

factors will mean that even the same indicator will invariably be ranked differently by different societies. 

The study found that unique indicators were very relevant practically. For example, five of the six local 

level unique indicators for Burkina Faso are all drought related (see highlighted section in Table 2-4  and 

show the importance of drought to the livelihoods of an ordinary rural person in that country. Data from 

United Nations office for Disaster Risk Reduction (UNISDR) archives indicates that the probability of 

drought occurring in Burkina Faso for a typical year is 0.19 and accounts for 84.8% of all people affected 

by any disaster in the country (UNISDR, 2014). In contrast, drought probability in Ghana and Benin is 

0.03 and people affected are 40.2% in Benin and 76.0% in Ghana. The presence of unique indicators has 

wider implications for risk assessment that uses common indicators for several countries and makes an 

effort to derive relative vulnerabilities of those countries or make an effort to compare vulnerability 

levels across countries.  

In the case of Ghana, the issue of land use planning and access to inputs have been topical issues in 

national debates. Most flood events have been linked to the absence of land use plans or unenforced 

building regulations, a situation that has led to many houses built over waterways and impeding run-off 
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during rainstorms. There has been a series of politically and socially sensitive housing demolition 

exercises by local authorities. The emergence of land use planning as an important elicited indicator 

therefore reflects this underlying socio-political condition that successive governments have failed to 

address. Also, access to purchased inputs was elicited probably because of difficulties in Ghana’s inputs 

subsidy programme. Ghana’s fertilizer consumption had decreased from 21.9 kg/ha in 1978 to 8 kg/ha 

in 2006 (MoFA, 2008).  In an attempt to address the situation, the Government in 2007 re-introduced 

fertilizer and seed subsidies. However, a study in two farming communities on the performance of the 

inputs subsidy programme by (Yawson et al., 2010) revealed that operational and bureaucratic 

difficulties have led to about 82% of farmers in these two communities without access to fertilizers. Its 

potential impacts on a wider national crop production have led to debates on potential food insecurity 

problems especially under climate change conditions.  

In Burkina Faso, ‘siltation of bas-fonds’ is a major issue as most farmers rely on small reservoirs for both 

on-season and off-season vegetable farming in this semi-arid environment. However, these small 

reservoirs are being silted from sand from erosive rainfall and windstorms. High deforestation rate, 

estimated at 107,000 ha per year (0.83% per annum), faster rate of land degradation, at 0.5 million ha 

per year and resulting soil erosion, bulldozing (conversion) of protected land for biofuel and commercial 

agriculture are the major causes (DGPEDD, 2012). 

It can be seen from the above that national level experts rely heavily on processes of a wider national 

interest and derive their indicators from major challenges facing the whole country whilst the local level 

experts rely on indicators pertinent to households and the local economy. This is an important dimension 

of risk assessment that a participatory process can help bring to the fore. 

The differential rankings of the indicators in each of the study countries will affect the weights that will 

be applied in the estimation of a composite vulnerability index and subsequently the community risk 

index. Thus, although, an indicator may be common to two countries, their differential rankings will 

result in differences in explaining the risks faced by people living in the two countries. This differential 

ranking arises from differences in perceptions of risks, as well as cultural, political and socio-economic 

disparities in different countries. For example, in Figure 4, Ghana ranked prevalence of poverty as 9/10 

as against 1/7 in Burkina Faso and 1/8 in Benin. This is probably due largely to major economic gains 

Ghana has achieved over the last two decades becoming the first country in Sub-Sahara Africa to reduce 

poverty by half over the past 10 years (USAID, 2013) and achieving a per capita output twice as much as 

all the countries in West Africa combined except Nigeria (British Council, 2012; World Folio, 2013). From 

the foregoing discussions, it is clear that errors can be generated or uncertainties may be increased when 

assigning the same weights to indicators for different countries or when countries are treated with the 

same set of indicators ignoring obvious heterogeneity of factors. This could lead to policy interventions 

that do not reflect reality and ill-informed allocation of scare resources. Alternatively, sub-national risk 

comparisons from a participatory process at multiple scales could result in better identification of high 

and low risk areas and lead to better targeting of development resources. 

Notwithstanding the many strengths of the approach presented above, the methodology is not without 

shortcomings. Reed et al. (2008) found that participatory approaches alone are not enough for objective 
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identification of indicators and suggested a combination of methods to achieve high accuracy. Also, Bell 

and Morse (2003) as well as Freebairn & King (2003) added that more value is added when participatory 

process is used in combination with expert judgment. In this study, also, judgment from the authors had 

to be used on a number of occasions. First, an Indicator Reference Sheet (IRS) was used to provide 

examples of potential indicators to the experts. Second, the IRS was used to derive proper technical 

names of the indicators in cases where the experts could only describe their understanding of the 

indicator. Third, elicited indicators had to be reclassified to properly align them to a vulnerability sub-

component. Fourth, author judgment was employed in assigning weights and rankings of reference 

sheet indicator which were selected as highly relevant but were not directly elicited by the experts.   

It must be noted that this study has only succeeded in identifying the relevant indicators and 

corresponding weights to use for a multi-hazard risk assessment. In subsequent studies, the indicators 

will be subjected to pre-defined criteria such as representativeness, reliability and feasibility (MEA, 2003) 

and correlation analysis to determine which ones can be considered for computation of the proposed 

West Sudanian Savannah Risk index (WSSRI). The indicators developed at the local level will be used in 

an upscaling process to understand the risk faced by people in the district and regional levels within the 

Sudan Savannah zone in a subsequent study. The national level indicators could also be used for national 

scale multi-hazard risk assessment. The indicators will be assessed on their performance towards a 

trajectory of multiple scales in a novel upscaling of risk indices. In cases where an indicator cannot be 

measured quantitatively or described qualitatively, author judgment will be used to either drop the 

indicator or find a proxy variable.  

Although this study has not quantified the actual risk faced by the people, the participatory indicator 

development has allowed for the recognition of multiple “stimuli beyond those related to climate” (Smit 

& Wandel, 2006 p.7) and revealed significant indicators that have never been used in traditional risk 

assessment in the region. The study has also provided a sound scientific basis to allow for risk 

quantification in a related study.  It has highlighted that major attention should be paid to differences in 

risk perceptions, culture, political, institutional and socio-economic dynamics in assessing risk faced by 

people in different countries particularly, for West Africa. More importantly, the rigorous process 

followed has led to the identification of locally and nationally relevant indicator set that can be used in 

assessing the risk to floods and droughts even as the impact of climate change is projected to worsen in 

the region.   

From the discussions above, it is clear that neither a standalone classical approach (top-down) nor a 

purely participatory process is sufficient in determining useful indicators for risk assessment. While it 

has, neither been optimal to completely neglect classical approaches nor to take as an absolute fact 

opinion from local experts, more emphasis should be placed on the later in risk assessment that is 

supposed to serve the very people on whose behalf the assessment is done. Attempts should therefore 

be made in finding mechanisms where the two approaches could interact fruitfully and complement 

each other. We hope the present paper provides a good basis for efforts in this direction. 
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3. Modelling Flood Hazard zones at the sub-district level with the 
rational model integrated with GIS and remote sensing 
Approaches12 

3.1. Introduction 

West Africa is prone to frequent floods and droughts due to high variability in rainfall patterns (Sylla et 

al., 2009). In the last three decades, the sub-region has witnessed a dramatic increase in flood events, 

with severe impacts on livelihoods, food security and ecological systems (Armah et al., 2010; Braman et 

al., 2013; Tall et al.,  2012). Above normal rainfall amounts at the peak of the rainy season in the 

Sudanian and Sahelian regions (i.e. July to September) frequently lead to severe floods, and cause many 

of the major rivers (e.g. Niger Volta river systems, Senegal) to overflow their banks. In 2007, for example, 

a series of anomalous abundant rainfall events caused severe floods in West Africa (WA) and other parts 

of Sub-Saharan Africa (SSA) which affected more than 1.5 million people and resulted in the destruction 

of farm lands, loss of personal effects, destruction of infrastructure, outbreak of epidemic diseases and 

the loss of human lives (Armah et al., 2010; BBC, 2007; Braman et al., 2013; Levinson & Lawrimore, 2008; 

Paeth et al., 2011). Similar floods in 2009 affected an estimated 940,000 people across twelve countries 

in West Africa, killing about 193 people and destroying properties worth $152 million (UNOCHA, 2009). 

In northern Ghana, the impacts of these floods were exacerbated by the spillage of the Bagre dam in 

neighbouring Burkina Faso (Armah et al., 2010; Forkuo, 2011). In 2012, flooding along the river Niger, 

which is the principal river in West Africa, resulted in the death of 81 and 137 people in Niger and Nigeria, 

respectively, while displacing more than 600,000 people (IRIN News, 2012). 

 

Considering the fact that in this region a temperature of 3–6 °C above the late 20th century baseline has 

a “very likely” prediction and the fact that the projection is expected to occur one or two decades earlier 

in West Africa than at the global time, West Africa has been described as a hotspot of climate change 

(IPCC, 2014). The frequency of occurrence of extreme events is expected to increase (Boko et al., 2007). 

There is also medium confidence that projected increase in extreme rainfall will “contribute to increases 

in rain-generated local flooding” (Kundzewicz et al., 2014 p. 24). This situation will have dire 

consequences for the sub-region’s agricultural sector and food security (Roudier et al., 2011). 

Despite the major impact of floods on the livelihoods of the people living in this region, no attempt has 

been made to delineate the boundaries of flood intensity at the community level and to identify areas 

most at risk of flooding. Mapping flood hazard zones is an important first step in the proper management 

of future flooding events. Flood hazard maps depict areas (extent and depth) that may be at risk of 

flooding under extreme rainfall conditions (e.g., above normal rainfall). These maps have proven useful 

around the world, especially in the developed countries (De Moel et al., 2009) and have: (a) assisted in 

the early identification of populations and elements at risk; (b) served as a guide in spatial planning in 

                                                        
12 A version of this paper has been published as: Asare-Kyei, D., Forkuor, G., & Venus, V. (2015b). Modeling 

Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote 
Sensing Approaches. Water, 7, 3531-3564. doi: 10.3390/w7073531 
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order to avoid development in flood prone areas (Cantos, 2005; Zimmerman et al., 2005). (c) served as 

information base for implementation of a flood insurance scheme (D’Haeseleer, et al., 2006) and (d) 

raised awareness among the public concerning flood prone areas (De Moel et al., 2009). 

 

The use of flood hazard maps for managing disasters in West Africa is virtually non-existent. Disaster 

managers have for many years relied on traditional methods such as watermarks on buildings, local 

knowledge and media reports to identify possible affected areas during flood events (Nyarko, 2002). 

Lack of proper records on historical flood events, coupled with logistical and financial challenges have 

often resulted in a poor preparedness and response to flooding events. Consequently, fatalities have 

often been high (Braman et al. 2008, Levinson & Lawrimore 2008).  

In order to improve this situation, non-governmental organizations (NGOs) and other international 

bodies have, in recent years, introduced various initiatives, including flood hazard mapping, aimed at 

improving disaster management in the sub-region. For example, the World Health Organization (WHO) 

has produced flood hazard maps at national scale for most countries in SSA (Morjani, 2011). Other 

initiatives have also produced climate change hot spot maps at national, continental and global scales 

(Birkmann et al., 2011; Busby et al., 2014; Yohe et al., 2006) that show regions that are particularly 

vulnerable to current and future climate change impacts. However, these products suffer the limitation 

that they are only useful at the national, continental or global scales, and, thus, are of limited use and 

applicability at the local scale (e.g., district or community level) where small settlements are mostly the 

worst affected flood areas. Some researchers have reported the use of seasonal climate forecasts by 

international bodies (e.g., Red Cross and Red Crescent Society) to manage disasters in the sub-region 

(Tall et al. 2012). However, these forecasts are limited to specific years, and are unable to provide 

information on specific geographical locations that may be at risk of flooding. Other papers reviewed 

the vulnerability of some West African cities (e.g., Bobo-Dioulasso, Burkina Faso and Saint-Louis, 

Senegal) in the light of climate change (Silver et al., 2013), but made no efforts at mapping the spatial 

limits of the flood risk areas. 

 

Development of flood hazard maps at the local level/scale (e.g., sub-district and community) can achieve 

a better targeting of rural communities that are vulnerable to floods than the national/global maps that 

currently exist. Unfortunately, local level flood hazard maps are rare in the Sudanian Savannah of West 

Africa. Some of the few that exist also lack the needed spatial variability (i.e. within the unit of mapping) 

required for an effective management of flood events. For example, in Ghana, Forkuo, (2011) integrated 

topographical, land cover and demographic data to derive a composite flood hazard index for all the 

districts (second administrative unit) in the Northern region of Ghana. The assignment of a composite 

flood index to each district greatly limits the use of these maps for identifying communities in the district 

that may be at risk of flooding. Recently, the Environmental Protection Agency (EPA) of Ghana, with the 

support of the United Nations Development Programs (UNDP) and the African Adaptation Program 

(AAP) have conducted flood risk mapping for five, out of the two hundred and sixteen, districts in Ghana 

(EPA, 2012). They integrated GIS layers of elevation, soil, rainfall, land use and proximity to water bodies 

to map flood risk areas in the five districts. Although this initiative produced high resolution flood hazard 

maps for the selected districts, it is extremely limited in extent (i.e., number of districts considered). 
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Moreover, many flood modelling approaches require complex calibration procedures and demand huge 

data as inputs, making them unsuitable in data scarce environments such as WA. There remains 

therefore an urgent need to explore appropriate methodologies that are able to provide the spatial 

variability at community level and yet yields accurate results with limited data availability.  

In this study, an innovative approach involving the use of a simple hydrological model suitable for data 

scarce environments and integrated with statistical procedures in a GIS environment is proposed to map 

the spatial limits of flood hazard zones at a high spatial resolution. A unique approach is also proposed 

to use a bottom-up participatory method based on the principles of Participatory Geographic 

Information System (PGIS) (Carver, 2003; Craig et al., 2002; Dunn, 2007) and coupled with robust 

empirical methods to evaluate the results of the modelling procedure. The main motivation was to 

develop community level flood hazard maps at a fine spatial resolution that could allow for accurate 

delineation of flood hot spots and flood safe havens at the sub district/community levels in Ghana, 

Burkina Faso and Benin. 

3.1.1. Contexts 

To be able to identify the spatial extent of high and low flood hazard zones, the three focal sites were 

delineated to sub-catchments in a GIS environment. There are a number of approaches used to delineate 

an area into sub- catchments based on a digital elevation model (DEM). In an urban landscape, artificial 

drainage channels may be used in addition to natural water bodies in delineating the boundaries of the 

various catchments in an area. This method works relatively well in drainage areas where the slope of 

the landscape is primarily responsible for the path taken by runoff (Nyarko, 2002; Sanyal & Lu, 2006). 

However, very often in a highly-urbanized setting, control structures such as culverts and detention 

basins can control the boundaries of various sub-catchments (Kemper & Wagner, 2004). 

In this study, the delineation into sub-catchments was based on Digital Elevation Model (DEM), river 

channel systems, populations in the communities as well as the operational plans which are used by 

local disaster managers to segregate and demarcate the areas for effective disaster management. Using 

this approach, the Vea study area was delineated into 13 sub-catchments. The largest of this sub-

catchment is the Kula River drain (Figure 1-5), named after the Kula river which is well known for causing 

many of the floods in the area. Other prominent sub-catchments are the Vea main drain and 

Kolgo/Anateem valley. These sub-catchments are located at the downstream of the Vea and Kolgo Rivers 

and are also significantly exposed to floods. Similarly, the Dano study area has further been delimited 

into thirteen sub-catchments in relation to population, contours and river network. The Yo, Bolembar, 

Gnikpiere and Loffing-Yabogane sub-catchments are prominent among them with extensive river 

system, smallholder agriculture and many scattered settlements and hamlets. The Dassari area in Benin 

was also delineated into twelve (12) sub-catchments to reflect population, river network and local 

administrative structure. The Setcheniga, Porga and Nagassega sub-catchments are most prominent as 

they are run through by a major river network that significantly exposes the area to flooding. The size of 

the sub-catchment largely influences the volume of runoff past the outlet hence the larger the 

catchment size, the greater the potential amount of rainfall that can be captured and directed towards 

the catchment’s outlet (TxTDOT, 2009).  
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3.2. Methods 

3.2.1. Overview of Flood Hazard Mapping 

Development of flood hazard maps has often been through the integration of spatial layers representing 

flood causal factors (e.g., elevation, runoff, land use, etc.) in a Geographic Information System (GIS) 

environment (De Moel et al., 2009; Nyarko, 2002). In recent years, and with the advancement of satellite 

technology, a number of studies have explored the use of satellite images and GIS in developing flood 

hazard maps (Forkuo, 2011; Sanyal & Lu, 2006; Islam & Sado, 2000). Morjani, (2011) reviewed four major 

techniques for developing flood maps. These techniques include hydrological frequency analysis, 

hydraulic modelling, hydrological models and statistical methods. 

1) In Hydrologic frequency analysis, historical flood data is used to estimate the probability and 

spatial extent of future floods events for different time intervals (Kjeldsen et al., 2002; Kroll & 

Vogel, 2002). The reliance of this method on historical data limits its usefulness because physical 

parameters that existed when the floods occurred will no longer remain the same for future 

floods (Morjani, 2011). 

2) A hydraulic model such as the Engineering Centre’s River Analysis System (HEC-RAS) developed 

by the Hydrologic Engineering Centre (HEC) of the US Army Corps of Engineers (USACE) estimates 

inundation extent, duration and changes in water depth and velocity using river steady flow 

measurements (USACE, 2001a, 2001b) This model produces highly accurate results for small 

catchments. However, it requires significant amounts of input such as high resolution Digital 

Elevation Models (DEMs), stream network model and detailed cross-sectional geometries of 

river channels. 

3) In hydrological models, mathematical estimation procedures use a known or an assumed value 

for components of the hydrological cycle to model stream flow behaviour in specific study areas. 

There are two derivates of hydrological models. These are deterministic models that are based 

on physical parameters and processes whilst stochastic model allows for the probabilistic 

variability in both parameters and processes (Nyarko 2002; Al-Rawas et al., 2001; Mannaerts, 

1996; Meijerink et al., 1994; Viessman & Lewis, 1996). 

4) The last method used in determining flood prone areas is the statistical method which combines 

historical flood frequency and associated causal factors to estimate flooded areas. This method 

allows for the derivation of Flood Hazard Index (FHI) as applied in Islam and Islam (2000) and 

Morjani (2011). 

The first two of the flood modelling approaches reviewed above require complex calibration procedures 

and demand large data inputs, making them unsuitable in data scarce environments like West Africa. In 

this study, the last two approaches were integrated with GIS and remote sensing techniques to develop 

a Flood Hazard Index at the community level. 

 

3.2.2. Integration of Hydrological and Statistical Models in GIS 

In this study, two flood modelling approaches—hydrological model and statistical procedures—were 

combined to map the spatial extent of flood hazard areas at a high spatial resolution at sub district level. 
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First, a modified version of the rational hydrological model (Mannaerts, 1996; Meijerink et al., 1994; 

Viessman & Lewis, 1996) was used to estimate the runoff of the respective catchments based on rainfall 

intensity, the area of LULC type within catchments and a runoff coefficient. Thereafter, statistical 

procedures were adopted in a GIS environment to integrate the output of the hydrological model with 

other flood causal factors such as topography (DEM) to determine a flood hazard intensity map for the 

respective study areas. Flood hazard zones were eventually defined through a reclassification of the 

flood hazard intensity maps to derive the Flood Hazard Index (FHI) which determines the flood hazard 

zones of an area. 

Morjani (2011) found that the use of statistical procedures in mapping flood hazards zones resulted in 

the following benefits:  

a) There are reliable estimates of flood hazard zones because the integration of the statistical 

methods avoids the use of a purely empirical model. 

b) There is ease of integration in Geographic Information System (GIS). 

c) Is able to consider both the susceptibility of each small area to be inundated and flood 

emergency management. This could allow for delineating flood hazard zones at community level 

which then helps local disaster managers to effectively manage local disasters. 

d) Allows the use of knowledge of flood causal factors which are readily available from local 

experts. 

The uniqueness of this present study is the integration of the statistical methods which then allows a 

simple hydrological model to be applied in this data scarce environment. Statistical procedures were 

used at two different stages. The first stage is where various standardization methods were applied to 

develop the flood hazard index. The second stage is where statistical procedures were combined with 

PGIS principles to evaluate the results of the flood maps. 

The methodological approach adopted has been diagrammatically summarized in Figure 3-1. As first 

step, the approach retrieves data values from all flood causal factors and then calculates peak runoff 

rates using the rational model. The causal factors for flood which have been elaborated in section 3.2.4 

are land cover/use, soil type and texture, slope, elevation, rainfall and drainage area (Morjani, 2011). It 

then uses the statistical procedures to determine the peak runoff rates at different elevations before 

applying standardization methods to determine flood hazard zones. 
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Figure 3-1: Integration of hydrological and statistical models with GIS. 

 

3.2.3. Determination of Peak Runoff Using the Rational Model 

The rational model (Mannaerts, 1996; Viessman, 1996) belongs to the group of lumped hydrological 

models which treats the unit of analysis (normally a catchment or sub-catchment) as a single element 

whose hydrological parameters (e.g., rainfall) are considered as average values (Díez-Herrero et al., 

2009). The strength of this model lies in its simplicity and the ease of implementation. Consequently, it 

has been widely used to calculate peak surface runoff rate for the design of a variety of drainage 

structures (Bengtson, 2010), study area modelling and flood hazard mapping (Nyarko, 2002). The 

rational model converts rainfall in a catchment into runoff by determining the product of the rainfall 

intensity in the catchment and its area, reduced by a runoff coefficient (C, between 0 and 1), which is a 

function of the soil, land cover and slope in the study catchment. The runoff coefficient, which is the 

most critical parameter in the rational model (ITC, 2014), provides an estimation of how much water 

(rainfall) is lost due to infiltration (soil), interception and evapotranspiration (land cover). Thus, the 

runoff coefficient of a catchment can be considered as the fraction of rainfall that actually becomes 

storm water runoff (Bengtson, 2010). Accurate determination of this parameter is, therefore, vital to the 

successful implementation of this method. The rational model operates on several assumptions 

including: 

a) The entire unit of analysis is considered as a single unit. 

b) Rainfall is uniformly distributed over the drainage area. 
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c) Predicted peak runoff has the same probability of occurrence (return period) as the used rainfall 

intensity (I). 

d) The runoff coefficient (C) is constant during the rain storm. 

The model is given by the equation: 

  

                    
p

0.28 C I AQ      

Equation 3-1: The rational model for estimating peak runoff 

                                                                 

Where, 

Qp = Peak runoff rate (m3/sec) 

C = Runoff coefficient (-) 

I = Rainfall intensity (mm/hr) 

A = Drainage area (Km2) 

The factor “0.28” is required to convert the original units in North American system (i.e., cubic feet per 

second—cfs) to an international system such as cubic meters per second (m3/s). 

 

3.2.4. Flood Causal Factors and Retrieval Methodologies 

In this study, spatial layers of land use and land cover, soil and slope were analysed to accurately 

determine the runoff co-efficient prior to the implementation of Equation 3-1. The sections below, 

3.2.4.1 to 3.2.4.4 detail the source or the methodology used to derive each of the four datasets and the 

preliminary processing conducted on each. 

3.2.4.1. Land Use/Land Cover (LULC) 

The type of LULC in an area determines how much rainfall infiltrates the soil and how much becomes 

runoff. Impervious surfaces such as concretes have runoff coefficients approaching one while surfaces 

with vegetation to intercept rainfall and promote water infiltration have lower runoff coefficients 

(Bengtson, 2010; McCuen, 1998). There is a direct relationship between land cover and hydrological 

parameters of interception, infiltration, runoff and concentration which ultimately influence flooding 

(Nyarko, 2002; Islam & Sado, 2000; Bapalu & Sinha, 2005; Sarma, 1999; Todini et al., 2004). 

In this study, LULC maps for the three study areas were generated by classifying high spatial resolution 

(5m) multi-temporal RapidEye images acquired between April and November 2013 (Forkuo et al., 2014). 

RapidEye provides data in five spectral channels (blue, green, red, red edge and near infrared). Table 3-1 

provides details of all the satellite imagery used.  

The images were atmospherically corrected with ENVI ATCOR2 (Richter & Schläpfer, 2012) prior to 

analysis. Classification was conducted to reveal five broad LULC classes. These are: (1) croplands (all crop 

classes); (2) forest (trees with a crown canopy of greater than 70%); (3) grasslands; (4) mixed vegetation 

(combination of grassland, herbs and shrubs) and (5) artificial surfaces (buildings, bare areas, tarred 

roads, etc.). Training and validation data for these classes were obtained from field campaigns 

conducted between July and October 2013. Training and validation samples for the classification were 
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generated by overlaying the training and validation data (polygons) on the time-series satellite images 

and extracting the corresponding values. 

Table 3-1: Satellite imagery used and their acquisition dates. 

 

Study Area Satellite Data Used Acquisition Dates (DD/MM/2013) 

Vea 
RapidEye 01/04; 02/05; 03/06; 19/09; 02/10; 03/11 

TerraSAR-X 25/09; 21/10 

Dano 

RapidEye 01/04; 03/05; 30/09; 13/10 

TerraSAR-X 30/07; 10/08; 12/09; 15/10 

Landsat 12/06; 14/07; 03/11 

Dassari 
RapidEye 04/04; 02/05; 13/06; 19/09; 12/10; 15/11 

TerraSAR-X 15/05; 17/06; 20/07; 22/08 

 

The Random Forest (RF) classification algorithm (Breiman, 2001) as implemented in the R statistical 

software (Liaw & Wiener, 2002) was used to classify the images of the respective study areas. RF 

generates a large set of independent classification trees, each trained on a bootstrapped sample 

(randomly selected) of the training samples. The training samples consist of a matrix of rows and 

columns, where the columns (also called predictors or variables) represent the individual spectral bands 

of the underlying image, while each row represents the corresponding values of a pixel in the spectral 

bands. RF’s construction of a large number of classification trees overcomes the limitation of single 

decision trees, which often over fit the training data (Gislason et al., 2006). Each classification results 

were independently validated with the validation samples. Overall classification accuracies of 88%, 95% 

and 97% were obtained for the Dano, Vea and Dassari catchments respectively. 

As indicated in the introductory section, this study explores appropriate methods to map flood hazard 

at community level in the face of a daunting challenge relating to limited data availability. One effect of 

scarce data is on the images analysed. It did not spatially cover the studies areas, particularly the Dassari 

study area and to some extent the Vea study area. Consequently, a 500m resolution global LULC map 

produced from Moderate Resolution Image Spectroradiometer (MODIS)—MCD12Q1 (MODIS, 2014) was 

used to fill-in the areas that were not covered by the RapidEye and TerraSAR-X images. MCD12Q1 

products are developed on an annual basis. Thus, to ensure consistency with the LULC map produced in 

this study, the 2013 version was downloaded and utilized. The MODIS product was resampled to the 

resolution of the RapidEye and TerraSAR-X images but some variations in spatial resolutions of the LULC 

can be seen at the affected areas (Figure 3-2). Figure 3-2 shows the final LULC maps of the respective 

watersheds. 
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Figure 3-2: Land Use/Land Cover (LULC) maps of the study areas. 

MODIS—MCD12Q1 product was used to fill in portions of the high resolution RapidEye and TerraSAR-X images 

for particularly the Dassari study area and to some extent the Vea study area. As can be seen, the southernmost 

and north-eastern portions of the Vea study area and in the case of Dassari, the north and southeastern 

portions were the main areas affected. The MODIS product was resampled to the resolution of that of the 

RapidEye and TerraSAR-X images. 

3.2.4.2. Digital Elevation Model (DEM)/Slope 

A study area with a greater slope will have more runoff and thus a higher runoff coefficient than a study 

area with a lower slope, Ceteris Paribus. The probability of a flood increases with decreasing elevation 

and hence is a strong indicator for flood susceptibility (Islam & Sado 2000; Al-Rawas et al. 2011; Peduzzi 

et al., 2005; Sanyal  & Xi, 2003; Shrestha, 2004; UNDP, 2004b). The slope angle and topography are 

important factors of runoff. Probability of flooding increases when slope angle is below a critical value 

and then decreases logarithmically (EPA 2012). In this study, the Advanced Space borne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) developed jointly 

by the Japanese Ministry of Economy, Trade and Industry (METI) and the United States National 

Aeronautics and Space Administration (NASA) was used to derive the slope maps for the respective study 

areas. The ASTER GDEM was produced by applying automated procedures to process the entire 1.5-

million-scene ASTER archive, including stereo-correlation, cloud masking to remove cloudy pixels, 

stacking, removal of residuals and outliers, averaging and finally portioning into 1°-by-1° tiles. This ASTER 

GDEM which has spatial resolution of 1 arc second (approximately 30 m) grid was downloaded in 
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GeoTIFF format from ASTER GDEM webpage (Japan Space Systems, 2012). The data has a vertical 

accuracy of 20m at 95% confidence level (Fujisada et al., 2005). The downloaded DEM was converted to 

percent slope in a GIS application after all the sinks had been filled to remove small imperfections. In 

accordance with standardized tables for calculating runoff coefficient, the slope map was reclassified 

into three classes; (1) areas with slope less than 2%; (2) areas with slope between 2 and 6% and (3) areas 

with slope greater 6%. Besides the slope map that was obtained, the filled DEM layer was maintained 

and used later in the integration of peak runoff and elevation to determine runoff concentration at 

different elevations. 

3.2.4.3. Soil Type and Texture 

Soils that have a high clay content do not allow very much infiltration and thus have relatively high runoff 

coefficients, while soils with high sand content have higher infiltration rates and low runoff coefficients 

(Bengston, 2010; Mccuen, 1998). Nyarko (2002), Todini et al. (2004) found the important role played by 

soil type in influencing water infiltration, runoff and hence flood susceptibility. The texture of a soil 

influences its erodability, water retention capacity, crust formation and aggregate stability. The amount 

of water available for runoff is thus a function also of both soil texture and structure (EPA, 2012). The 

Natural Resource Conservation Service of the United States has classified four broad hydrological soil 

groups that provide useful information in determining study area runoff coefficients. Classification into 

any of these groups can either be on the basis of a description regarding soil texture or measured 

infiltration rates (Bengston, 2010). The study used the 1km resolution soil map from the Harmonized 

World Soil Database (HWSD) version 1.1 produced in 2009 by the International Institute for Applied 

System Analysis (IIASA). The HWSD is an image file linked to a comprehensive attribute database in 

Microsoft Access. This attribute information includes soil mapping units, soil texture for top and sub soils 

and several other soil properties. Details about this database can be found in FAO(2009). Based on the 

soil texture attribute information, the extracted soil maps of the study areas were reclassified into the 

four-main soil hydrological groups (A to D) defined by the United States Soil Conservation Service (USDA, 

2007). 

3.2.4.4. Rainfall 

The probability of a flood increases with increasing rainfall within a specified time period (Nyarko, 2002; 

Morjani, 2011; Todini et al. 2004). We obtained daily data of precipitation at a resolution of about 11 × 

11 km based on the African Rainfall Climatology, version 2 (ARC2), subsetted to our period of analysis 

(2004–2013) and study area in West Africa. This period was chosen because of increased occurrence of 

flood events recorded in the areas as mentioned in Section 2. These data were then further aggregated 

to capture long-term precipitation magnitude (97.5th percentile, median, and 2.5th percentile) and 

extremes (97.5th percentile). To capture long-term precipitation magnitude (97.5th percentile, median, 

and 2.5th percentile) and extremes (97.5th percentile), the time-series of records per grid are 

statistically considered as a population (rainfall records per grid, 2004–2013). The extreme (97.th 

percentile) for each grid was retained as input to the calculation of Peak Storm Water Runoff Rate. The 

rational for this non-parametric aggregation is found in the stochasticity of rainfall; a parametric 

aggregator (i.e., maximum or mean) would be sensitive to outliers and data errors. Called the African 

Rainfall Climatology, version 2 (ARC2), the underlying dataset is a revision of the first version of the ARC 
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(Novella & Thiaw, 2013) consistent with the operational Rainfall Estimation, version 2, algorithm (RFE2), 

ARC2 uses inputs from two sources: 

• Three-hourly geostationary infrared (IR) data cantered over Africa from the European 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and 

• Quality-controlled Global Telecommunication System (GTS) gauge observations reporting 24-h 

rainfall accumulations over Africa. 

The main difference with ARC1 resides in the recalibration of all Meteosat First Generation (MFG) IR 

data (1983–2005). Results show that ARC2 is a major improvement over ARC1. It is consistent with other 

long-term datasets, such as the Global Precipitation Climatology Project (GPCP) and Climate Prediction 

Centre (CPC) Merged Analysis of Precipitation (CMAP), with correlation coefficients of 0.86 over a 27-yr 

period. However, a marginal summery dry bias that occurs over West and East Africa is examined. Daily 

validation with independent gauge data shows RMSEs of 11.3, 13.4, and 14, respectively, for ARC2, 

Tropical Rainfall Measuring Mission Multi satellite Precipitation Analysis 3B42, version 6 (3B42v6), and 

the CPC morphing technique (CMORPH) for the West African summer season. The reconstructed Africa 

Rainfall Climatology (ARC2) offers a number of advantages compared to other long-term climatological 

rainfall datasets that are widely used. First, high resolution historical rainfall estimates on a daily basis 

would help not only to monitor precipitation associated with synoptic and mesoscale disturbances, but 

also to undertake studies of extreme events, wet and dry spells, number of rain days (i.e., rainfall 

frequency), and onset of the rainfall seasons. Second, a 0.1° (~11km) spatial resolution allows users to 

see rainfall phenomenon on local scales that cannot be captured by coarser climate datasets (Novella & 

Thiaw, 2013) 

3.2.5. Development of Peak Runoff Maps 

Within the study area, more than one land cover type, slope and soil group exists. In order to find 

representative runoff coefficients within a given land cover, sub-catchment runoff coefficient was 

determined using the areas of the different LULC type and then the hydrologic soil group, and slope 

complexes as weighting factors. The classical application of the rational model requires treating the 

entire sub-catchment as a single unit and thus, does not lead to spatial variability of the runoff and for 

that matter, flood risk within sub-catchments. In this study, however, a novel technique is introduced 

where the various classes of LULC types within the sub-catchments are used as the unit of analysis to 

ensure spatially explicit assessment of flood risk. This was required because the key purpose of this study 

is to explore methods to derive community level flood risk in a data scarce environment. Therefore, we 

sought to operationalize the rational model in a way that meets the objective of the study. It was realized 

that treating the whole sub-catchment as a single unit will not lead to a determination of the spatial 

variability of discharge within a sub-catchment which is required to understand community level flood 

risk. Therefore, instead of using the sub-catchment as the unit of analysis (which is the classic application 

of the rational model), the area of the different land use units was used as the unit of analysis. In other 

words, the area of the various LULC classes was computed and peak runoff estimated for each cover 

type. Although this approach has some limitation especially regarding catchment boundaries where a 

land use/cover type crosses the boundaries, it was found to be conceptually and operationally better 
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than implementing the rational model in its raw form which can only give single peak runoff for each 

sub-catchment based on many averages (i.e., average coefficient, rainfall and total area). 

A runoff coefficient map was first generated by vectoring the reclassified layers of LULC, slope and soil 

layers and overlaying them in a GIS. The overlay resulted in multiple polygons each having a unique LULC, 

soil and slope class. Based on Table 3-2, which specifies a runoff coefficient for a combination of LULC, 

soil type and slope, the attribute table of the resultant overlay layer was populated with the 

corresponding runoff coefficient number. This layer was eventually rasterized (30 m resolution) for 

subsequent analysis. 

In order to allow for integration with the generated runoff coefficient map, the rainfall intensity map 

was resampled to a cell resolution of 30 m to correspond to the spatial resolution of the ASTER GDEM 

layer. A vector layer of the sub-catchment map containing the areas (in km2) of each LULC type within 

each sub-catchment was also rasterized into a 30m resolution raster. Once the raster layers of the runoff 

coefficient (C), rainfall intensity (I) and sub-catchment areas (A) was ready, the runoff peak layer was 

calculated by implementing Equation (1) in a GIS using raster algebra. 

Table 3-2: Rational method runoff coefficients. 

LULC 
Runoff Coefficient 

Soil Group A Soil Group B Soil Group C Soil Group D 

Slope <2% 2%–6% >6% <2% 2%–6% >6% <2% 2%–6% >6% <2% 2%–6% >6% 

Cropland 0.1

4 

0.18 0.22 0.16 0.21 0.28 0.20 0.25 0.34 0.24 0.29 0.41 

Forest 0.0

8 

0.11 0.14 0.10 0.14 0.18 0.12 0.16 0.20 0.15 0.20 0.25 

Grassland 0.1

5 

0.25 0.37 0.23 0.34 0.45 0.30 0.42 0.52 0.37 0.50 0.62 

Mixed 

vegetation 

0.1

4 

0.22 0.30 0.20 0.28 0.37 0.26 0.35 0.44 0.30 0.40 0.50 

Artificial 

Surfaces 

0.3

3 

0.37 0.40 0.35 0.39 0.44 0.38 0.42 0.49 0.41 0.45 0.54 

Source: (Knox County Tennessee, 2014). 

3.2.6. Statistical Modelling 

The generated peak runoff map was combined with the elevation layer to produce the flood hazard 

intensity map. However, prior to that, the two layers (peak runoff and elevation) were standardized. 

Due to the dissimilar units (i.e., m3/s for peak runoff and m for elevation), standardization was necessary 

to make any combination of the two layers meaningful. The fuzzy set theory (Malczewski, 2000) was 

used to standardize the layers into comparable scales prior to combining them. Compared to other 

methods (e.g., Boolean sets) that allow only binary membership functions (i.e., true (1) or false (0)—

membership or no membership), the fuzzy set theory admit the possibility of a partial membership 

(Burrough & Rachel, 1998). This means that the transition between membership (1) and non-

membership (0) of a location in the set is gradual, compared to sharp boundaries, in for example, 

Boolean sets (Malczewski, 2000). Fuzzy sets are, therefore, characterized by a membership grade that 
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ranges from “0” to “1”, indicating a continuous increase from non-membership (0) to complete 

membership (1). 

The fuzzy membership function implemented in ESRI’s ArcGIS was used to standardize the peak runoff 

and elevation layers. Due to the positive linear relationship between peak runoff and probability of 

flooding, the peak runoff layer was linearly rescaled between the minimum and maximum values using 

a linear membership type. This means the lowest peak runoff value in each study area was assigned a 

value of “0” (i.e., no membership or low probability of flooding) while the highest peak runoff value was 

assigned a value of “1” (full membership or high probability of flooding), with all other values in-between 

the two extremes rescaled between “0” and “1”. Thus, the lowest likelihood for a flood to occur in a 

given sub-catchment was rescaled as 0 with 1 for categories with the highest likelihood.  

The reverse, however, was done for the elevation layer. Theoretical principle underlying the relationship 

between elevation and probability of flooding indicate a negative relationship. In other words, areas 

with low elevation have a higher probability of flooding than areas with high elevation values. Therefore, 

in rescaling the respective elevation layers, the lowest value was assigned a membership of “1” (i.e., high 

probability of flooding) while the highest value was assigned a membership of ‘0’ (low probability), will 

all other values in-between have been rescaled between “0” and “1”. 

3.2.7. Developing Intensity Level of Flood Hazard Distribution Map 

The standardized peak runoff and elevation layers were combined using the weighted linear 

combination method (Malczewski, 2000) to produce the flood hazard intensity map at different 

elevations. Equation 3-2 was implemented in a GIS to achieve this. The method permits the assignment 

of weights, which indicates the relative importance of a layer. The weights must add up to one. In this 

study, the two standardized layers were considered equally important, thereby assigning a weight of 0.5 

each to the layers in Equation 3-2. 

 





n
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ii xwFHI
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 Or more simply as 
1

0.5 ( ) 0.5 (peak runoff )
n
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FHI X DEM X


   

Equation 3-2: Model for integrating DEM and Peak runoff 

 

3.3. Results and Discussion 

3.3.1. Peak Runoff Rates 

Maps of the peak runoff rates in cubic meters per second (M3/s) have been produced for the three study 

areas and show the distribution of runoff within all the catchments in the three areas studied. These 

maps are presented in Figure 3-3. 

 



                                Chapter 3: Modelling flood hazard zones 

               60 

 

Figure 3-3 Peak runoff maps of the three study areas. 

 

Table 3-3 presents the total amount of peak runoff generated within the various sub-catchments. In the 

Vea study area, the Kula river sub-catchment generates the highest amount of runoff in excess of 713.0 

M3/s whilst the lowest amount was generated in the Balungu sub-catchment with an amount of 26.0 

M3/s. In the Dano study area in Burkina Faso, the Yo sub-catchment recorded the highest peak runoff 

rate of 119.6 M3/s whilst the Meba Pari segment generates a meager 25.5 M3/s. In the Dassari study 

area in Benin, the Sétchindiga sub-catchment generates the highest amount of 290.5 M3/s as against 

the lowest amount of 13.6 M3/s generated in the Tetonga sub-catchment. Comparing the three study 

areas in the three countries, the Vea study area in Ghana generates an average of 155.7 M3/s per sub-

catchment. This amount is higher than the average sub-catchment runoff of 113.11 M3/s in the Dassari 

study area and 69.0 M3/s in the Dano study area. High runoff is positively correlated with increased 

susceptibility of flood hazards. As reported in Islam and Sado, (2000); Todini et al. (2004); Bapalu and 

Sinha (2005), there is a direct relationship between hydrological parameters of interception, infiltration, 

runoff concentration and flooding. Although there is limited data available at the community level in 

Dano and Dassari study areas, available data collected during the field work shows that the Vea study 

area record more flood events and more people suffer from flood impacts than both Dano and Dassari 

study areas. Records from local authorities also show that the Dassari study area also reports more flood 

events than the Dano study area in conformity with the average runoff figures shown in this study. For 

instance, between the periods 2008 to 2012, over 294,000 people have been affected by floods in the 

Vea study area (NADMO, 2013) whilst 3600 were affected in the Dassari study area with Dano recording 

only 1130 people as affected. In addition, whilst the Dassari and Dano study areas have experienced 
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three flood events between 2008 and 2012, there has been consecutive flood event in the Vea study 

area of Ghana over the same period. 

Table 3-3: Results of total amount of peak-runoff generated within the various sub-catchments. 

Vea Study Area (Ghana) Dano Study Area (Burkina Faso) Dassari Study Area (Benin) 

Sub Catchment Runoff (m3/s) Sub Catchment Runoff (m3/s) Sub Catchment Runoff (m3/s) 

Balungu 26.0 Tambalan 100.3 Dassari 236.8 

Beo Adaboya 191.0 Bolembar 86.1 Firihoun 25.8 

Bongo zone 68.0 Dano sector 

1,2&4 

57.0 Nagassega 100.2 

Anfobissi 82.4 Batiara 80.8 Ouriyori 27.5 

Apatanga 128.6 Gnipiere 88.3 Porga 204.4 

Kolgo/Anateem 107.7 Sarba 42.9 Pouri 71.5 

Kula river channel 713.2 Kpeleganie 32.6 Sétchindiga Tankouri 290.5 

Samboligo 60.3 Lare 34.2 Tetonga 32.1 

Soe 201.6 Loffing-Yabogane 112.0 Tigniga 13.6 

Valley zone 138.0 Meba Pari 25.5 Tihoun 63.7 

Vea main drain 178.0 Dano sector 7 65.1 Koulou 34.0 

Tarongo 54.2 Complan 52.2  257.3 

Kanga 75.2 Yo 119.6   

 

3.3.2. Digital Elevation Model (DEM) 

The map presented in          Figure 3-4 show the DEM of the three study areas. In the Vea study area, 

high elevations values are concentrated in the Apatanga, Soe, Beo Adaboya and parts of Samboligo sub-

catchments whilst the Kula River, Vea main drain and Kolga Anateem valley records very low elevation. 

Indeed, in the southernmost part of the Kula River, a low elevation of 89 m is found. From the peak 

runoff map, the Kula river sub-catchment simultaneously records high runoff generation. This area is 

therefore expected to fall in the category of high flood intensity zone) in the Flood Hazard Index (FHI). 

In the Dano study area, high elevations values are found in Dano, Sarba and parts of Yo sub-catchments. 

In this study area, low elevation areas are found in the north-eastern part and largely correspond to the 

river networks in the area. These areas also generate significant amounts of runoff as can be seen in the 

maps. In the Dassari study area, high elevation values are found in the southern parts of Tigniga, Tihoun, 

Koulou, parts of Dassari and Ouriyori sub-catchments. Similar to the Vea study area and Dano study 

areas, areas in Dassari with low elevation values and hence high-risk areas for flooding also correspond 

to areas generating the largest amounts of runoff. These areas are the Sétchindiga and Porga sub-

catchments and are thus expected to result in high flood risk zone. 

Comparing the elevation maps of the three study areas, the Vea and Dassari study areas are generally 

more low-lying than the Dano study area in Burkina Faso. Average elevation in Vea is 196 m as against 

379 m in Dano and 197.5 m in Dassari. This fact coupled with relatively high amounts of runoff 

generation will thus make the Vea more prone to flooding than the other two study areas. 
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         Figure 3-4: Digital Elevation Model (DEM) of the study areas. 

 

3.3.3. Flood Hazard Intensity Levels and Flood Hazard Index 

By combining the standardized peak runoff maps with the standardized DEM, the flood hazard intensity 

map was produced. This map was then classified using the Natural Break (Jenks) method into five classes 

to produce the Flood Hazard Index (FHI). The index ranges from 1 (very low flood hazard intensity) to 5 

(very high flood hazard intensity). In Figure 8 below, the final Flood Hazard Index is represented in a 

graduated colour map. 

         Figure 3-5 presents the flood hazard intensity maps of the respective study areas. In the Vea study 

area of Ghana, the very high flood hazard intensity zone is concentrated in the Kula river sub-catchment. 

As indicated in Sections 3.3.1 and 3.3.2, this sub-catchment has the highest runoff of 330 M3/s and also 

has the lowest elevation of 89 m. Consequently, more than half of the sub-catchment falls into the very 

high flood hazard zone. This sub-catchment has the highest population density. The capital of the Upper 

East region, Bolgatanga, is found in this sub-catchment and it is the most urbanized and with good 

infrastructure. Records from the National Disaster Management Organization (NADMO) show that of 

the 702,000-people affected by floods in northern Ghana between 2010 and 2012, as much as 42% were 

from the Bolgatanga municipality (NADMO, 2013). This result of the Kula river sub-catchment having the 

highest flood risk correlates with the modelling result of Ghana’s Water Research Institute (WRC, 2012)] 

when it was found that up to 75 cm of runoff is added to the maximum water level at Pwalugu, an area 

at the southernmost part of the sub-catchment. 
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         Figure 3-5: Flood Hazard Index 

 

In addition, the Kolga Anateem valley and Vea main drain sub-catchments are found in the high flood 

hazard intensity zones. With the exception of the valley sub-catchment in Bongo district, none of the 

sub-catchments in Bongo are located in the very high flood intensity zone. However, there are pockets 

of high flood hazard intensity zones in the Soe sub-catchment. Almost all of Balungu and parts of 

Samboligo and Beo Adaboya sub-catchments fall in the very low flood intensity zone and are thus 

expected to pose no flood risk. 

In the Dano study area, very high and high intensity flood hazard zones are distributed throughout the 

study area. However, the sub-catchments of Yo, Bolembar, Gnipiere, Loffing-Yabogana and Tambalan 

have significant areas classified as very high flood risk zones. Contrary to the Vea study area, the most 

populous area in this study area fall into the very low to medium flood hazard intensity zones. Therefore, 

the Dano township, the capital of the province with a projected population of 20,786 in 2010 (Yili, 2006) 

largely falls into low flood risk zone. 

In the Dassari study area, two sub-catchments stand out in terms of flood risk. The Porga and Sétchindiga 

sub-catchments have very high flood hazard intensity. This is as a result of low elevation values 

coinciding with high runoff generation as explained in Sections 4.1 and 4.2. In addition, in this study area, 

significant parts of Koulou and Dassari fall in the high flood intensity zone. There are also pockets of high 

flood intensity zones in Nagessega, Ouriyori, and Firihoun and Tetonga sub-catchments. 

From Table 3-4, more than half of the Dano study area (52.1%) falls in the two-high flood hazard intensity 

zones of very high and high. In addition, in the Vea and Dassari study areas, almost half of the entire 



                                Chapter 3: Modelling flood hazard zones 

               64 

study areas fall into the very high and high flood risk zone. It must be noted that, the data ranges for the 

FHI differ among all the study areas but they can all be translated into the five-qualitative classification 

scheme of very high (5), high (4), medium (3), low (2) and very low (1). This is the same procedure 

adopted by Beck et al. (2012) and Birkmann et al. (2011) in the World Risk Reports. In addition, important 

to note is that an area classified as very low flood hazard intensity in the Vea study area could be 

rendered a high-risk due to cross scale interactions. Flood risks from outside the sub-catchment area 

could lead to cascading hazards. For example, some of the flood events recorded in the Vea study area 

is as a result of the opening of the Bagre dam in nearby Burkina Faso. 

Table 3-4: Proportions of areas under various flood intensity zones. 

Flood Hazard Intensity Number Flood Hazard Intensity Zone/Class Percent of Study Area 

  Vea Dano Dassari 

1 Very low 15.2 16.4 23.2 

2 Low 18.8 11.2 13.3 

3 Medium 19.5 20.3 16.7 

4 High 28.2 18.1 22.1 

5 Very high 18.42 34.0 24.7 

Total High and Very High Risk Zone 46.6 52.1 46.8 

  

These cascaded flood events are independent or partially independent of local rainfall in the Vea area 

and conditions of other flood causal factors. The implication is that an area classified as low or medium 

flood intensity zone in the Vea area as a result of the interactions of the factors considered in this paper 

could still experience significant flood episodes whenever overflow upstream in the Bagre dam is 

allowed to pass. At the same time, however, whenever this cross-scale influence coincides with high 

episodes of local rainfall anomalies, sub-catchments such as the Kula River which is already classified as 

very high flood intensity could experience catastrophic flood event. This is absolutely important for local 

disaster managers in the Vea area to constantly monitor the operations of dams upstream so as to 

prevent or minimize the impacts of this knock-on effect. 

The study found most of the high flood hazard risk areas close to the major rivers in the area. This was 

the case in Kula River sub-catchment in Vea, Porga and Sétchindiga in Dassari as well as Yo, Gnikpiere 

etc. in the Dano study area. This finding is contrary to the assertion by Forkuo (2011) that high hazard 

zones are not necessarily located very near to river bodies. 

3.3.4.  Quantitative Validation of the Flood Hazard Index with PGIS and Confusion Matrix 

The study introduced an innovative method of applying the principles of Participatory GIS (PGIS) to 

evaluate the flood map. The approach involves using local disaster managers, community leaders and 

local disaster volunteers to undertake field evaluation of the five flood categories. The team randomly 

visited known locations over 5 days in the Vea study area and 3 days in the Dano study area. At each 

location visited, the local experts were asked to classify the spot into the five flood hazard classes based 

on their knowledge of flood intensity at that particular location. A GPS receiver was then used to record 

the geographic coordinates of the location and its attributes. The objective was to construct a confusion 

matrix which will then allow for the quantitative validation of the flood map using statistical procedures. 
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Typically, the confusion matrix (Congalton & Green, 1999; Joshi et al., 2006; Stehman & Czaplewski, 

1998) is used to display class membership of observations according to the map and according to field 

observations. The diagonal of the confusion matrix lists the correct classifications while off diagonal cells 

list errors. The overall accuracy quantifies the proportion of correctly classified pixels. Using this 

approach, the flood hazard of the Vea and Dano study areas have an overall accuracy of 77.62% and 

81.41% respectively (Table 3-5 and Table 3-6). 

Table 3-5: Confusion matrix in the Vea study area.  
Very High High Medium Low Very Low Total Accuracy (%) 

very high 34 0 3 3 1 41 82.93 

high 0 15 0 0 0 15 100.00 

medium 0 0 16 0 1 17 94.12 

low 2 1 0 12 0 15 80.00 

very low 4 4 5 0 13 26 50.00 

Total  40 20 24 15 15 114 81.41 

 

An in-depth look at the errors in Table 3-5 and 3-6 (off-diagonals) show that some classes are frequently 

confused. For example, in the Vea study area, there are eight sites classified as very high intensity flood 

zones but in reality, there are low intensity flood zones. 

 

Table 3-6: Confusion matrix in the Dano study area.  
Very High High Medium Low Very Low Total Accuracy (%) 

very high 34 0 3 3 1 41 82.93 

high 0 15 0 0 0 15 100.00 

medium 0 0 16 0 1 17 94.12 

low 2 1 0 12 0 15 80.00 

very low 4 4 5 0 13 26 50.00 

Total  40 20 24 15 15 114 81.41 

 

The study applied the chi-square statistic to test the assumption that the errors associated with the flood 

modelling are coincidence or that the modelling procedure makes errors randomly. A null hypothesis 

stating that the frequency in the confusion matrix results from a random process assigning pixels to the 

five categories of flood hazard. The alternative hypothesis was then formulated that the frequencies are 

not random and that there is a systematic error in the confusion matrix. Based on this, we expect that 

77.62% of ground truth observations in the Vea study area and 81.41% in the Dano study area in every 

class to be accurately classified while 22.38% (Vea) and 18.59% (Dano) would be randomly assigned to 

erroneous pixels in the column belonging to this class. 

To predict the expected outcomes for the correct observations in the Vea study area, we expect that 

77.62% of the 27 “Very high” intensity flood zones (20.96 records) to be classified as very high intensity 

zones. Table 3-7 shows in bold the expected number of accurately classified observations. The marginal 
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values indicate the residual observations or errors for every row and column which are not yet 

distributed over the remaining pixels. 

Table 3-7 shows that there are 5.69 observations which were “High” intensity zone which in reality 

remain to be classified. The proportion of this assigned to “very low” intensity zone would be 5.69 

multiplied by the row total of 3.36 divided by the grand total of 18.57 less the row total for “High” 

intensity zone of 2.69. This is expressed as (5.69 × 3.36)/ (18.57 − 2.69) = 1.20. Using this approach, Table 

3-8 is filled completely assuming that the errors are randomly distributed. 

Table 3-7: Expected number of correct classifiers and total error margins in the Vea study area. 
 

Very High High Medium Low Very Low Column Error 

very high 20.96 
   

  6.04  

high 
 

9.31 
  

  2.69 

medium 
  

13.97 
 

  4.03 

low 
   

8.54 
 

2.46 

very low 
    

11.64 3.36 

row error 0.04 5.69 4.03 8.46 0.36 18.57 

Table 3-8: Expected number of misclassified observations based on random error assumption. 
 

Very High High Medium Low Very Low 

very high 
 

2.16 1.67 3.17 0.14 

high 0.01 
 

0.74 1.41 0.06 

medium 0.01 1.44 
 

2.12 0.09 

low 0.01 0.88 0.68 
 

0.06 

very low 0.01 1.20 0.93 1.76 
 

Total 0.04 5.69 4.03 8.46 0.36 

Applying the Chi square, x2 statistics given as  

𝑥2 =∑(
𝑂𝑖 − 𝐸𝑖
𝐸𝑖

)
2

𝑛

𝑖=1

 

Where Oi indicates the observed frequency and Ei is expected frequency in pixel i. The difference 

between the observed and expected frequency in every pixel was squared and divided by the expected 

frequency. This was finally summed up as showed above to calculate the chi-square statistic. 

In the Vea study area, the results showed that the observed chi square statistics of 1025.25 with 12 

degrees of freedom (df) is much higher than the expected chi square at 5% significant level of 21.03. 

However, in the Dano study area, the observed x2 was estimated to be 9.46 which is much lower than 

the expected x2 of 21.03 with 12 df at 5% significant level.  

Following these results and in the case of the Vea study area; we rejected the null hypothesis which 

stated that the frequencies in the table were the result of a random process assigning pixels to the five 

flood hazard classes. A conclusion was therefore made that the frequency of observed errors differs 



                                Chapter 3: Modelling flood hazard zones 

               67 

significantly from the frequency of errors expected under the randomness hypothesis and that the 

observed frequencies are unlikely to have resulted from a random process indicating a systematic error 

in the confusion matrix. However, in the case of the Dano study area, we fail to reject the null hypothesis 

stating that the errors are random and conclude that there is no systematic error or bias in the five 

hazard intensity zones as predicted by the modelling procedures introduced in this study (Chi square, x2 

= 9.46, df = 12, α = 5%, x2(critical) = 21.03). 

An in-depth look at Table 3-9 will explain which combinations of flood hazard categories contribute to 

the bias or systematic error in the confusion matrix for the Vea study area. In Table 9, the squared 

differences for “very high” intensity zone and “very low” intensity were quite large compared to the 

squared differences for the same combination of categories in the Dano study area ( 

Table 3-10). There could be several reasons why the confusion matrix of the Vea study area showed a 

systematic error. Besides the rapid rate of land use change as a result of high population density and 

intensive agricultural activities (Challinor et al., 2007; Oduro-Afriyie & Dukpo, 2006), the subjective 

nature of classifying the various locations visited into the five hazard categories could also contribute to 

the element of bias. During the field evaluation in the Vea area, the relatively large number of local 

experts involved led to some instances where the local experts argued among themselves regarding the 

proper classification of a particular spot. Lessons learnt from the field evaluation in the Vea study was 

used to improve the Dano field evaluation and this serves as important lesson for PGIS techniques. There 

was therefore improved selection of local stakeholder participation as well as improved sampling of 

locations to be evaluated. The lesson here is, in using local experts to evaluate geographic information, 

it is important that the participation of community members is limited to few opinion leaders and local 

elders whose expertise, knowledge and day to day activities have a direct bearing on the topic under 

study. Expanding the list to include many interested parties could lead to unnecessary arguments and 

introduced some elements of subjectivity in the results. 

Table 3-9: Squared deviances estimated based on observed and expected frequencies—Vea study area. 

 Very High High Medium Low Very Low 

very high  2.16 0.06 7.34 0.14 

High 0.01  0.74 1.41 0.06 

Medium 0.01 1.44  2.12 89.45 

Low 119.75 0.02 0.68  0.06 

very low 797.49 0.53 0.01 1.76  

Total 917.26 4.15 1.49 2.63 89.71 

 
Table 3-10: Squared deviances estimated based on observed and expected frequencies —Dano study area.  

Very High High Medium Low Very Low 

very high 
 

3.23 0.39 2.95 −5.22 

High 1.36 
 

1.57 0.42 −1.05 

Medium 1.54 1.34 
 

0.48 −4.03 

Low 0.30 0.03 1.57 
 

−1.05 

very low 1.14 1.87 1.90 0.73 
 

Total 4.35 6.46 5.44 4.58 −11.35 
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3.3.5. Qualitative Validation of the Flood Hazard Index with Historical Flood Events 

The resulting FHI was also subjected to qualitative validation procedures to assess how the modelling 

outcome conforms to generally held knowledge and local opinion of flood hazard occurrence in the 

study areas. A similar approach has been successfully used in the region to validate the results of flood 

modelling. For example, EPA (2012) engaged beneficiary communities and local experts in a series of 

validation workshops to assess the results of a multi-criteria flood mapping approach.  

In addition to statistical validation procedure, the present study also relied on local expert knowledge 

and four-year historical records of flood events in the Vea study area where significant historical data is 

available. In this study area, 19 communities showed in Figure 3-6 are generally known by local disaster 

managers, agriculture development officers and local people as highly prone to flood hazards. 

Consecutive flood events have been recorded in these communities since 2007 when local disaster 

managers started to systematically record flood events. In the qualitative validation process, these 

communities were plotted and then overlaid on the FHI map as shown in          Figure 3-7. The results (         

Figure 3-7) show that, of the communities listed as “flood prone” in Figure 3-6, only 21% fall in the 

medium flood hazard intensity zone. The remaining 79% were all correctly classified by the flood 

modelling procedure used in this study as high flood prone communities. Of the communities that are 

classified as flood prone, 37% fall in the very high intensity whilst 42% fall in the high intensity zones. 

 

                  Data source: District MoFA office, Bolgatanga, Ghana. 

This suggests that the developed flood hazard index reasonably predicts areas likely to be flooded. It is 

interesting to note the result from the qualitative validation closely approximates the results achieved 

from the empirical validation process. In the Vea study area, the confusion matrix recorded a mapping 

accuracy of 77% and this is quite close to the 79% achieved with the qualitative validation with historical 

flood events. 

Figure 3-6: List of flood prone communities as listed by local agricultural authority. 
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         Figure 3-7 Qualitative validation of FHI with local expert knowledge. 

 

3.3.6. Determining Flood Safe Havens 

The 30m spatial resolution of the final flood hazard map could be one ingredient to allow for accurate 

determination of areas normally safe from floods at the community level. Such areas are critical in 

periods of severe hazard occurrence. They are needed for evacuation plans, temporal shelters and 

provision of general relief efforts. However, accurate derivation of evacuation plans requires access 

routes to and from the flood zones (Forkuo, 2011), which was not investigated in this study. 

The results obtained in this study can contribute to the development of community-based sustainable 

flood risk management plans that can ensure prevention, protection and preparedness for flood events. 

For example, effective community based education could help community members to identify 

agricultural areas on the map that fall within the high flood hazard zones and to avoid cultivating such 

areas during certain periods of the year. This will translate into a reduction in the socio-economic and 

environmental related losses that are mostly associated with the occurrence of floods and enhance 

efforts at achieving sustainable development in West Africa. In Figure 3-8 for example, all the areas 

marked in green shades and classified as very low flood intensity zones could be considered as flood safe 

havens. In combination with field inspections with local people, these flood safe havens can be verified 

and marked as flood safe havens for the purpose of effective emergency management. Additionally, 

policy makers and development planners can, through an assessment of the flood hazard zones, develop 
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appropriate policies and rules that will limit development in flood hot spots and consequently reduce 

the effects of flooding on the livelihoods of rural small holder farmers in the study watersheds. 

  

Figure 3-8:  Flood safe havens in Vea study area. 

3.4. Conclusions 

The study has applied flood modelling approaches to demonstrate the feasibility of flood modelling in 

data scarce environments and limited resources. This study has drawn on the strengths of a simple 

hydrological model and statistical methods integrated in GIS to develop a Flood Hazard Index to an 

acceptable accuracy level. The flood hazard index shows that almost half of the study areas in Ghana 

and Benin falls into the “very high and high flood intensity zones” whilst more than half of the study area 

in Burkina Faso fall in high intensity flood zones.  

The study also introduced an innovative flood modelling validation procedure using statistical and PGIS 

principles to evaluate the robustness of the methods used. Using the remote sensing technique of a 

confusion matrix, the overall accuracy of the flood hazard index was estimated at 77.62% in the Vea 

study area and 81.41% in the Dano study area. 

The study also conducted qualitative validation of the results obtained for the Ghana site with local 

expert knowledge and found that the flood modelling methods accurately classified 79% of communities 

deemed to be highly susceptible to flood hazard and classified the remaining 21% into medium risk zone. 

The close similarity in the accuracy levels of the Vea flood Hazard index between the statistical-PGIS 
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validation and qualitative assessment showed the robustness of the methods employed in mapping 

community flood hotspots. 

Integration of the two approaches (hydrological and statistical) and combined with GIS and remote 

sensing techniques have shown the potential for diverse applications of the Flood Hazard Index. With 

this approach, flood risk of various land uses can be determined with a higher spatial resolution of 30 m. 

Such a high mapping scale could allow for accurate estimation of most flood risk elements and 

identification of flood safe havens. 

However, although this approach has yielded an acceptable accurate Flood Hazard Index, it must be 

pointed out that under increased flood intensity occasioned by climate change, areas originally classified 

as flood safe havens under this model could offer protection, albeit only within the limits of the model 

inputs. For instance, an increase in rainfall intensity far beyond the anomalous (extreme) rainfall values 

used in this study could lead to the reclassification of these safe havens into another flood hazard 

intensity zone. This study also used a hydrological model which relied on globally available runoff 

coefficients to estimate the peak runoff values. These coefficients may not necessarily be exactly the 

same as those determined from field measurements in the study areas. In addition, the study did not 

investigate the contribution of flood inundation statistics such as flood depth, velocity, and progression 

as well as physical infrastructure which could also influence the intensity level of flooding. Again, lack of 

adequate data especially high resolution remote sensing imagery which necessitated the merging of 

courser resolution imagery for limited portions of the Dassari and Vea study areas should be taken into 

account in interpreting the results of the affected areas. 

Flood risk is projected to increase with increasing exposure of populations and therefore effective flood 

management must include changes in the landscape that impacts the response to floods, locations of 

people and elements at risk (Kundzewicz et al., 2014). Using this community level flood hazard map 

could contribute to effective disaster management operations as recommended by Kundzewics et al. 

(2014) including prevention. For instance, in combination with high resolution satellite imagery, the FHI 

could help in rapid post-disaster assessments to estimate the economic impacts of flood disasters. This 

could be done by overlaying the maps of critical infrastructure in addition to detail land use maps. 

Availability of “non-structural measures such as flood risk maps help in reducing flood risk in the area 

with relatively little investment” (WRC 2012, p. 5). In addition, the output from this approach will be 

very useful in the retrieval of socio-ecological indicators such as those identified in chapter two crucial 

for the assessment of risk and vulnerability in a coupled socio-ecological system in subsequent studies. 

The result of this study can be used by local disaster managers in Disaster Risk Reduction (DRR) and 

Health Emergency Preparedness and Response Programmes (HEPRP) and serve, among other things, “to 

build safer” public infrastructure, improve mass movement of “casualties during emergencies” (Morjani, 

2011, p. 7) and help build more climate resilient rural communities. 
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4. Development and validation of risk profiles of West African rural 
communities facing multiple natural hazards13 

4.1. Introduction 

Africa is currently a continent under pressure from climate stresses and is highly vulnerable to the 

impacts of climate change (UNFCCC, 2007, IPCC, 2014).  West Africa (WA) in particular, has been 

described as a hotspot of climate change (IPCC, 2014). In this region, a temperature of 3-6°C above the 

late 20th century baseline is “very likely” to materialize within the 21st century and the fact that this 

projection is expected to occur one or two decades earlier than other regions (IPCC, 2014) contributes 

to making the region more vulnerable to climate change. The frequency of occurrence of extreme events 

is expected to increase and the interaction of climate change with non-climate stressors will aggravate 

vulnerability of agricultural systems in semi-arid Africa such as the West Sudanian Savanna region of 

Burkina Faso, Ghana and Benin (IPCC, 2014).  There is also medium confidence that projected increase 

in extreme rainfall will “contribute to increases in rain-generated local flooding” (Kundzewicz et al., 

2014: p.24).  

For West Africa, Sylla et al. (2015) projected a decrease in the absolute number, but an increase in the 

intensity of very wet events – leading to increased drought and flood risks towards the late 21st century. 

Increases in the frequency and intensity of extreme weather events constitute an immediate and 

damaging impact of climate change (DRDLR, 2013). This situation will have dire consequences for the 

sub-region's agricultural sector and food security (Roudier et al., 2011). The region’s vulnerability to 

climate change is compounded by the reliance of much of the population (65%) on agriculture, 

particularly rain-fed agriculture (FAO, 2012). More than half of this people are women. This situation 

means that high vulnerability to climatic hazards particularly droughts, rainstorms, flood and other 

environmental factors is inevitable in the region (FAO, 2011). This makes it even harder to achieve 

sustainable development. On an annual basis, the Food and Agricultural Organization estimates 

countries within WA and the Sahelian sub-region to be adversely affected by natural disasters, such as 

droughts and floods, as well as transboundary animal diseases, economic crises and civil conflicts (FAO, 

2011). Destructive floods particularly, since 2005 have weakened agriculture-based livelihoods and 

rendered local development efforts unsustainable (Armah et al., 2010, BBC, 2007, Braman et al., 2013). 

The severity on rural livelihoods is compounded by the exposure to one or multiple natural hazards 

which are predominantly hydro-meteorological and climatologically in nature (World Bank, 2010), a 

situation which according to Vincent (2004) has resulted in a growing interest on the inter-relationships 

between natural and human systems.   This should lead to an acknowledgement of the nexus between 

Disaster Risk Reduction (DRR) and Climate Change Adaptation (CAA) but in this region, these inter-

linkages are yet to be fully recognized by policy makers.  Empirical evidence further shows that climatic 

change impacts will not evenly be borne across countries, communities and households; and also, the 

                                                        
13Asare-Kyei D, Renaud FG, Kloos J, Walz Y, Rhyner J (2017).  Development and validation of risk profiles of 
West African rural communities facing multiple natural hazards. PLoS ONE 12(3): e0171921. doi: 
10.1371/journal.pone.0171921. 
 



                                          Chapter 4: Community risk profiles 

               73 

capacity to respond effectively to climate change is differentiated, with poor rural communities often 

being the least equipped to respond (DRDLR, 2013).  

  Fields (2005) argues that the influence of multiple stressors such as environmental disasters, infectious 

disease, economic turbulence from globalization, resource privatization, and civil conflicts, combined 

with the lack of resources for adaptation, will present serious challenges for African communities 

struggling to adapt to climate change. Yet, comprehensive and quantitative understanding of the 

vulnerability and risk faced by WA rural communities to these multiple hazards, not even the common 

occurring hazards of floods and droughts are still lacking. The few studies available in the area have 

either qualitatively assessed vulnerabilities (e.g. Trench et al., 2007; Tschakert 2007) or only looked at 

specific aspects such as vulnerability to food insecurity (Bacci et al. 2005; Barbier et al., 2009), or focused 

on single hazards such as floods (e.g. Adelekan, 2011; Armah et al., 2010).  

  All these studies have measured vulnerability, resilience and adaptation using a variety of concepts, 

approaches, and indicators, however, important considerations such as applicability to local 

communities, methods to estimate localized risks, inclusion of at risk populations in developing the 

indicators themselves, use of multiple hazards and multiple scales were often missing.  Studies such as 

Linstädter et al. (2016) assess the resilience of pastoral SES to droughts in South Africa whilst Martin et 

al. (2016) assessed livelihood loss to drought using a model based approach. Although these recent 

studies introduce new and interesting dimensions to resilience assessment in the context of droughts; 

using multidisciplinary approaches (Linstädter et al., 2016) and scenario comparison (Martin et al., 

2016) they do not integrate multiple hazards occurrence, and limit their assessments to pastoral 

systems. For West Africa, chapter two indicated that, “no study has attempted to understand the risk 

patterns of rural communities in the context of climate change” through a set of participatory developed 

indicators. The only study that comes close is provided by the United States Agency for International 

Development (USAID, 2011) however, indicators were derived purely from literature without a 

participatory process with the vulnerable themselves. For more information of available risk and 

vulnerability indices, refer back to Chapter two of this thesis. 

Studies such as Beckmann et al. (2011) and Welle et al. (2013) have also developed risk indices across 

countries and compared countries with high and low risk levels. However, it has been found that studies 

that use the same indicator set and make an effort to derive relative vulnerabilities across countries 

produce results that may be contradictory to expert knowledge (World Bank, 2010).  The World 

Development Report in 2010 reviewed two major vulnerability-driven indices –Disaster Risk Index, DRI 

(UNDP, 2004) and Index of Social Vulnerability to Climate Change for Africa, SVA (Vincent, 2004) and 

concluded that these indices created spatial patterns out of tune with development-driven indicators 

and consistently showed a pattern contradictory to expert knowledge (World Bank, 2010). This 

contradictory result is expected because using the same indicators ignores the salient indicators deemed 

to be relevant by the local populations. In countries, even where the same indicators apply, they differ 

in their ranking and hence the weights that must be applied in estimating the final risk index. To this 

end, this study does not intend to use common indicators and make comparisons across countries but 

rather uses a participatory bottom-up approach where case study specific indicators are used. 
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A significant number of models predict the impacts of climate change, but many do so at a very coarse 

scale and are also unable to predict localized impacts, which may typically differ from coarser scale 

assessments. Research on risks and the accompanying vulnerabilities of the Social-Ecological Systems 

(SES) to climate change has largely addressed the expected impacts of climatic change on national, 

regional or sectoral scales but are largely unavailable at community level where risk outcomes are first 

materialized. In 2007, Birkmann (2007) indicated that a discussion has just begun as to whether and how 

global approaches and the associated indicators can be down-scaled to estimate localized risk and 

vulnerability and whether they provide appropriate and useful information. However, to date, little is 

known about the vulnerability profiles of rural WA communities particularly regarding risk to multiple 

hazards.  Yet, it is acknowledged that risk and vulnerability identification and measurement before and 

after the occurrence of hazards are essential tasks for effective and long term DRR (Birkmann, 2007). 

There is an increasing need for a shift from global and regional assessments to sub-national and 

community level assessments because these are the scales where major decisions against risk are made 

and expected to be implemented.  

4.1.1. Community level vulnerability and risk assessment 

A study By USAID (2011) is the only study known to the authors that tried to assess risks by measuring 

social vulnerabilities to climate change in Ghana at the district level and recently the National Disaster 

Management Organization (NADMO) through the Community Resilience and Early Warning (CREW) 

project undertook extensive risk assessment of 10 flood and drought hotspots in Ghana as well as their 

early warning gaps (UNDP, 2015).   However, the indicators used to construct the vulnerability index 

were derived solely from literature and lack the important element of the participatory process from 

the vulnerable populations themselves. Moreover, this study only measured social vulnerability to 

climate change and did not account for the ecological or biophysical aspects which are closely linked to 

the social processes. This study conducted risk level assessment at the district level and not at the rural 

community level as indicated in chapter one. 

Douglas et al. (2008) carried out a study on participatory vulnerability analysis to ascertain the 

dimensions of flood problems in poor communities in the cities of Accra, Kampala, Lagos, Maputo and 

Nairobi. He assessed the perception of the local people on why floods occur and how they adjust to 

them. In another study, Antwi-Agyei et al. (2012) observed considerable differences between districts 

in terms of vulnerability which could only be partly explained by socioeconomic variables and stressed 

the importance of employing further community and household-scale research to explain the causes of 

differences in the observed vulnerability which their study did not look at. Moreover, many risk 

assessments in the region are mainly based on qualitative assessments without any attempt at 

combining them to quantitative data despite the fact that it has been recognized that risk assessment 

from both quantitative and qualitative (social, psychological, ecological) methods is required to deliver 

a more complete description of risk and risk causation processes (Cardona, 2004; Douglas and 

Wildavsky, 1982; Weber, 2006; Wisner et al., 2004). Other climate risk assessments in the region have 

either been conducted at the country level or looked at decoupled SES. Most of these studies have been 

reviewed in chapter two of this thesis and are more oriented towards vulnerability assessments and deal 

less with risk scenarios or multiple natural hazards.  
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Validation or model evaluation is an essential aspect of assessing the accuracy of complex model 

outcomes. Gall (2007) outlined six critical dimensions of model evaluation, of which validation is a key 

component. However, in almost all risk assessment studies reviewed, the only validation approach is 

based on statistical assessments of model intrinsic uncertainties. Damm (2010) observed that the 

development of indicators and subsequent modelling of composite risk indices has inherent 

uncertainties due to the many subjective decisions made by authors, yet “conventional validation of 

vulnerability is not possible as vulnerability cannot be measured in the traditional sense” and concluded 

that “validation still remains an open challenge” in risk assessment (Damm, 2010, p.17, 197). To this end, 

major risk assessments studies such as the World Risk Index (Beck et al., 2012; Birkmann et al., 2011; 

Depietri et al. 2013; Welle et al., 2013) used statistical Monte Carlo analysis and sensitivity analysis as 

validation tools. Other studies such as Adger & Vincent (2005) and Brooks et al. (2005) attempted to 

undertake indicator validation using mortality outcome. On the other hand, the difficulties with 

validating complex risk assessment models means that some studies don’t undertake any validation at 

all, (e.g. Antwi Adyei et al., 2012). To address this open challenge in risk assessment, the study introduces 

the concept of community impact score (CIS) to validate the indicator-based risk and vulnerability 

modelling. The CIS is a novel and innovative approach to validate risk assessment and uses observed 

disaster impacts to validate the results of a complex indicator aggregation model. The results of this 

aggregation model are termed in this study as the West Sudanian Community Risk Index (WESCRI). The 

contributions of single constituent parameters to WESCRI describe the specific risk index of a community 

in terms of the main determinants of risk. 

The present study therefore addresses the gaps noted above and in particular aims at (1) conducting 

multiple hazard risk assessment through a bottom-up participatory process as opposed to the classical 

top-down, large scale approaches; (2) assessing risk from the perspectives of a coupled SES rather than 

single-hazard-decoupled risk assessments; and (3) assess risk using indicators relevant for rural 

communities across West Africa. A key motivation for this study was to identify and support decision-

makers with information to recognize and map risk hotspots in order to support priority setting for risk-

reduction strategies. It is against this backdrop that this study develops vulnerability profiles of selected 

West African rural communities faced with multiple climate change related natural hazards. The study 

helps to provide a better understanding of the risks and vulnerabilities of rural communities in three 

West African countries. In so doing, the study helps differentiate communities in terms of the elements 

characterizing their risks and vulnerabilities. Studying risk and vulnerability profiles of rural communities 

also provides an insight on how to situate vulnerability, risk and climate change adaptation efforts within 

the context of the community’s sustainable development agenda and can help to develop appropriate, 

inclusive and well-integrated mitigation and adaptation plans at the local level.  

4.2. Context 

Within the structure of the West African Science Service Centre for Climate Change and Adapted Land 

use (WASCAL project), three study areas in three West African countries have been selected. These areas 

are (i) the Vea area in the Upper East region of Ghana (ii) the Dano area in the province of Sud-Ouest of 

Burkina Faso and (iii) the Dassari area in the Commune of Materi in North West Benin. In the study, these 

three watersheds are used for the community level risk profiling.  Field observations and interactions 
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with the people reveal that all these communities are frequently exposed to droughts and floods and 

life in these communities has been reduced to routine adaptation to these two hazards. The survival of 

a household’s livelihood now depends on the household’s ability to manage the impacts of droughts and 

floods events. Table 4-1 provide information on the physical characteristics of the study areas. Other 

details about these study areas are provided in section 1.5.2.  

 
Table 4-1: Physical characteristics of the three watersheds. 

Watershed Average annual 
rainfall 
(mm/year) 

Average peak 
runoff (M3/sec) 

Evapotranspiration 
(mm/year) 

Mean slope 
(%) 

Vea 980 155.70 1455 0.4 
Dano 910 68.96 1747 0.5 
Dassari 1000 113.11 1552 0.3 

Data source: runoff data from Chapter three of this thesis, other data from Ibrahim et al. (2015). 

4.3. Methods 

The development of a common methodology to identify and measure risk and vulnerability to climatic 

hazards in order to define disaster risk reduction measures is still not sufficiently developed (Antwi-Agyei 

et al., 2012, Birkmann, 2007). To this end, participatory “bottom–up” methods are increasingly being 

employed to identify and document the processes that occur at a local level, involving decision-makers 

in communities and societies (Smit and Wandel, 2006; van Aalst et al., 2008; Yamin et al., 2005).  

However, despite the growing acknowledgement of the necessity of enhanced community participation 

for sustainable disaster reduction, this has not been translated into actions to carry out participatory 

community based vulnerability and risk assessments in the West African sub region. In this study, a 

community based participatory method of assessing risk to multiple natural hazards based on indicators 

is introduced. A stepwise process (        Figure 4-1) is followed, first to develop the community level 

vulnerability index and subsequently the West Sudanian Community Risk Index (WESCRI). As illustrated 

in         Figure 4-1, the index is developed from ten work steps including:  

 

1) Development of context specific risk assessment framework (Kloos et al., 2015) 

2) A novel participatory indicator development approach as presented in chapter two. 

3) Exploratory data analysis to understand the indicator data values. 

4) Construction of bivariate correlation matrices following the approach of Damm (2010). 

5) Normalization of indicators to scale the values to a range between 0 and 1 to allow for 

comparability of indicators of varying measuring units as applied in Welle et al. (2013). 

6) Weighting of normalized indicators by converting expert judgment ranking to weights using rank 

to weight conversion model proposed by Al-Essa (2011). 

7)  Application of a three-tiered linear aggregation process as applied in Birkmann et al. (2011) and 

Welle et al. (2013) to develop the sub-indices of exposure, susceptibility and the three capacity 

sub-components to derive the composite vulnerability index. 
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8) Multi-hazard characterization and mapping using a flood hazard index developed inn n chapter 

three and vegetation health index from FAO Global Information and Early Warning System on 

Food and Agriculture (FAO GIEWS, 2015) to denote drought severity. 

9) Integration of the developed vulnerability index and the multi-hazard index based on the 

framework to derive the final multi-risk index (WESCRI). This index is then used to construct the 

multi-risk indices of the rural communities in GIS environment; 

10) The final work step is the introduction of a novel technique termed the ‘Community Impact 

Score’ (CIS) as vulnerability and risk validation procedure.  The sections below present detail 

descriptions of these work steps. 

 

 
        Figure 4-1: A stepwise process to quantify risk and vulnerability at the community level. 

4.3.1. Development of a multi-hazard vulnerability and risk assessment framework 

Although several frameworks have been developed to measure vulnerability and risk as reviewed in 

Birkmann et al. (2013) and Turner et al. (2003), most of these frameworks have several limitations 

making them difficult to use for risk assessment in a multi-hazard context and in a coupled Socio-

Ecological System (SES) perspective (Kloos et al., 2015). In developing an adapted framework suitable 

for multi-hazard (Figure 4-2) coupled SES studies in West African context, Kloos et al. (2015) provided an 

extensive overview of existing frameworks for assessing vulnerability and enumerated a number of 

shortcomings of these models. In this study, an attempt is made to conduct the first operationalization 

of the framework proposed by Kloos et al. (2015) at the community level in three West African countries.  
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The framework is based on the key element, a social-ecological system (SES), reflecting the connections 

and feedbacks between the environmental and social sub-systems taking place at various spatial scales 

(local, sub-national and national). Multiple temporal scales of different components of the framework 

are also covered by looking at the dynamics within the system.  

 Risk is to be evaluated against hydro-climatic hazards and stressors (Figure 4-2), which may materialize 

as sudden shocks such as floods and/or heavy rainfall events, slow onset events such as droughts, late 

onset of the rainy season but also more gradual changes such as changes in variability or averages of 

rainfall. At the same time, an SES is affected by socio-economic drivers and stressors (Figure 4-2) that 

may lead to environmental changes that can turn into stressors or hazards in themselves. 

Ecosystem services are essential components of SES and provide numerous monetary and non-monetary 

benefits to people living in the system. To account for the multi-hazard nature, two hazards are 

introduced to the framework, ‘H1’ and ‘H2’, and the combination of both hazards selected for the West 

Sudanian Savanna case, ‘H1+H2’.  For details about the framework, see Kloos et al. (2015).  

In this framework, vulnerability is characterized by exposure, susceptibility and the capacity of the 

coupled SES to cope and adapt to the impacts of either a single hazard or the combined effects of 

multiple hazards. Risk is a product of vulnerability and the characteristics of the hazard. Characteristics 

of the hazards in this study are construed to mean the intensity and frequency of occurrence of the two 

hazards, floods and droughts.  

Studies such as Beck et al. (2012) and Welle et al. (2013) have included the exposure term in risk 

quantification and there have been debates as to whether exposure should be included in vulnerability 

component or the risk term (Birkmann, 2006b). In this study, however, the point of departure from the 

framework proposed by Kloos et al. (2015) is that exposure is only construed to mean the elements of 

the SES that are exposed to the multiple hazards, hence the term ‘Exposure’ as used by Kloos et al. 

(2015) is replaced with ‘Exposed Elements’. 
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Figure 4-2: The proposed West Sudanian Savana Vulnerability framework by Kloos et al. (2015). 

 

This conceptualization helps to provide an avenue to deal with the debate on whether exposure should 

be part of vulnerability or included in the risk term. According to Birkmann (2006b, p.38], “an element 

or system is only at risk if the element or system is exposed and vulnerable to the potential 

phenomenon”. Although exposure is often related to the hazard, excluding exposure from vulnerability 

assessment entirely makes such an analysis “politically irrelevant” (Birkmann 2006b, p.38). This is 

because once vulnerability is agreed to mean those conditions that intensify the susceptibility and 

decrease the capacity of the SES to the impact of the hazard, it also rests on the spatial dimension, by 

which the degree of exposure of the SES to the hazard is referred to (Birkmann, 2006b; Cardona 2004). 

This study is based on the assertion of Birkmann (2006b), that the location’s general exposure is 

essentially a component of the hazard whilst the degree of exposure of its critical elements such as 

farmlands, schools, houses etc. falling in hazard prone areas indicates the spatial dimension of 

vulnerability. In this study, therefore, this spatial dimension of vulnerability is termed as ‘Exposed 

Elements’ and shows that exposure is a partial characteristic of vulnerability. To this end, indicators used 

to describe the SES spatial dimension of vulnerability in this study include: agricultural areas in hazard 

zones, insecure settlements (share of the area’s settlement intersecting the hazard zones), protected 

areas in hazard zones, agricultural dependent population, etc.  

From these conceptualizations, vulnerability (V) and risk (R) of the SES can be expressed as: 
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 sessessesses CSEEV  1  

Equation 4-1: Model to quantify vulnerability. 
 

Hsesses MVR   

Equation 4-2: Model to quantify risk from multiple hazards. 
                                          

where V is the vulnerability of the SES, EE is the exposed elements within the SES indicating their degrees 

of exposure, S is the susceptibility of the SES, C is the capacity of the SES to cope, adapt and resist the 

hazard, R is the risk faced by the SES and MH represents the characteristics of the multi-hazards (here 

intensity and frequency of droughts and floods). MH represents the SES general exposure to the hazards 

under study.  This conceptualization agrees with the IPCC summary report for policy makers (IPCC, 2014, 

p. 5), which defines risk as the “potential for consequences” where a valuable element is at stake and its 

outcome uncertain. This framework serves as a template for a reduced form of analysis allowing for the 

operationalization of the complex concept of vulnerability to a place based assessment. Note that all the 

quantities in Equation 4-1 are assessed by set of indicators which have been developed through 

participatory methods as described in chapter 2.  

4.3.2. Participatory Indicator Development 

In this study, the indicators developed in chapter two were used to construct the vulnerability and risk 

indices. The approach here followed a participatory approach to select indicators suitable for both 

quantitative and qualitative assessment of risks faced by people in WA under climate change. The 

methodology allowed for a representative participation of all stakeholder groups dealing with or 

affected by drought and floods. This was achieved through local stakeholder workshops where 

participants elicited indicators they considered as important in describing the risk they face revealing 

many new indicators which either have not been used or are rarely used in the literature related to West 

African risk assessment in the context of climate change.  

A standardized questionnaire was developed to collect fine scale data for each applicable indicator 

identified in chapter two in three case studies.     Table 4-2 shows the number of households sampled 

per study area. The selection of households was done with the use of a sampling frame received from 

the local authorities. The sampling frame contained information about communities frequently affected 

by floods and droughts, number of people affected, population as well as relief items provided by the 

local authorities. Almost all the communities affected by the hazards were sampled. Within each 

community, simple random sampling was used to select households usually affected by the hazards 

based on the sampling frame provided. The number selected from each community depended on total 

number of affected households, thus communities with higher affected populations received more 

representation.  Unaffected households in these communities were also randomly selected to serve as 

basis for comparing the responses from affected households. In addition, 10 focus group discussions 

were held in the three study areas to capture the processes and impacts associated with droughts and 

floods and in situations where the two hazards occur in the same year. 
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    Table 4-2: Households sampled for indicator data collection. 

Study area Number of households selected 

Vea (Bolgatanga and Bongo districts, Ghana) 

Dano (Burkina Faso) 

Dassari (Benin) 

240 

100 

92 

Total 432 

 

For indicators, which cannot be described by household data such as Green Vegetation Cover, soil 

organic matter, population density, etc., secondary data were used. While some of these secondary data 

came from local statistical reports, some were also retrieved from remote sensing through Geographic 

Information System (GIS) procedures. Appendix 2 describes the construction of the data values for each 

indicator. The household data was analysed with SPSS statistics Version 17.0.  

4.3.3. Exploratory Data analysis 

Exploratory data analysis is the next step after the data values have been retrieved for all the indicators. 

Here, the indicators were described by their minimum, range, mean, maximum and standard deviation.  

In the Vea study area, two indicators in the adaptive capacity component were removed from 

subsequent analysis after the statistical descriptive procedure. The indicator, ‘access to national 

emergency funds’ was removed for lack of data whilst the indicator ‘local emergency funds as 

percentage of national budget’ was removed due to lack of variability within the community clusters. 

Similarly, in the Dano study area, two indicators in the adaptive capacity component were removed from 

further analysis. The indicators, ‘social capital’ and ‘early warning system’ were removed for lack of 

variability within the community clusters. In the Dassari study area, four indicators were removed from 

further analysis. Two of the indicators, ‘prevalence of stunted children under age five’ and ‘prevalence 

of wasted children under age five’ which belong to susceptibility of the social system were removed for 

lack of community level data. Furthermore, one coping capacity indicator, ‘local emergency funds as a 

percentage of local budget’ and as well as one adaptive capacity indicator, ‘Farm labour availability’ were 

removed due to lack of variability within the datasets of the various community clusters. 

4.3.4. Construction of correlation matrix 

Following the approach of Backhaus et al. (2006) and Damm (2010), a bivariate correlation matrix was 

constructed to understand the strength and direction of the linear relationships between the indicators 

especially between those indicators in the same component of the framework. The Pearson correlation 

coefficient was estimated for indicators with absolute metric variables whilst the Spearman correlation 

coefficient was estimated for indicators with ordinal variables. Similar to the approach of Damm (2010), 

a rule of thumb was used where all relationships with a coefficient above a threshold value of r=0.65 

were carefully scrutinized.  

In the Vea study area, this approach resulted in the following correlation relationships: 

1) The indicator ‘Physical infrastructure’ is significantly correlated with the indicator ‘Insecure 

settlement’ with r=0.9. Since both indicators belong to the same vulnerability sub-component 
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“exposure of social system”, one of them is dropped. Physical infrastructure was dropped 

because the only data available to describe physical infrastructure within the community clusters 

was road network which could grossly underestimate the number and types of other 

infrastructure in the communities such as schools and markets.  

2) The indicators ‘Protected area’ and ‘Agricultural area’ were significantly correlated (r=0.95). 

These two indicators belong to the same sub-component “exposure of ecological subsystem” 

and hence one is redundant and was removed. Protected Area was removed because its retrieval 

involved considerable uncertainty and thus could not meet the criteria of good data quality. 

3) ‘Unimproved drinking water source’ has a significant correlation with two other indicators 

belonging to the same component. It correlates significantly with ‘Number of dependents per 

household’(r=0.68) and ‘Distance to drinking water’ (r=0.78). This double correlation means that 

removing ‘Unimproved water source’ will help avoid redundancy. 

4)  Again, the indicator ‘Prevalence of poverty’ correlates strongly with ‘Prevalence of stunted 

children’ (r=0.9). These two indicators belong to the same vulnerability component, yet within 

this component, they fulfil different analytical purposes and also describe different factors that 

determines the extent to which a household or community is vulnerable to droughts and floods. 

Whilst ‘Prevalence of poverty’ belongs to ‘Economic and dependencies’ category of the social 

system, ‘Children under age five who are stunted’ is a health and nutrition factor. Since there 

are just two health and nutrition related indicators in the framework, the two indicators were 

kept. However, Prevalence of stunted children was weighted lower due to its inherent data 

quality.  

In the Dano study area, the following correlation matrixes were observed: 

5) The indicator ‘Prevalence of poverty’ exhibits significant correlation with two indicators. It has 

positive association with ‘Caloric intake per capita’ (r=0.77) and ‘Population density’ (r=0.73). 

Due to these double correlations exhibited by ‘Prevalence of poverty’, it was removed to avoid 

redundancy and doubling effects.  

In the Dassari study area of Benin, observed relationships are outlined below:  

6) ‘Total soil nitrogen’ correlates with ‘Soil organic matter’ (r=0.68). Since both indicators belong to 

the capacity sub-component’ Ecosystem robustness’, one of them is redundant and must be 

removed. ‘Total soil nitrogen’ was removed because of poor data quality. 

7) Again, in this study area, ‘Green vegetation cover’ also has a strong correlation with ‘Soil organic 

matter’ with a coefficient of r = 0.84. Both indicators belong to the component ‘Ecosystem 

robustness’ and were all retrieved from remote sensing procedures. However, in terms of 

understandability of the two indicators among practitioners, ‘Green vegetation cover’ was found 

difficult to be understood and was thus removed from subsequent analysis.  

8) Expectedly, ‘Water holding capacity’ and ‘Infiltration rates’ have a perfect positive relationship 

(r=1). Since both belong to the same component, ‘Infiltration rates’ which exhibited a lower 

variability within all community clusters were removed. 
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9) Finally, in this study area, ‘Access to agricultural extension service’ and ‘Farm labour availability 

have a significant negative correlation of r =-0.77. Both belong to the adaptive capacity 

component and subsequently, ‘Farm labour availability’ was removed due to its rank within the 

sub-component.  

It must be noted that varying degrees of significant correlations were found among other indicators in 

all the three study areas. However, since they belong to different components of the vulnerability, they 

are deemed to represent different causes and aspects of vulnerably and thus those relationships were 

neglected.  

The final indicators used to construct the vulnerability indices for the three watersheds are presented in       

Figure 4-3 to              Figure 4-5. 

 

 

      Figure 4-3: Development of West Sudanian Community vulnerability index in the Vea study area of Ghana 
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            Figure 4-4: Development of community vulnerability index in the Dano area of Burkina Faso 

 

             Figure 4-5: Development of community vulnerability index in the Dassari area of Benin. 
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4.3.5.  Normalization and Weighting of indicators 

The re-scaling normalization technique was applied to convert different measurement units into a 

dimensionless unit. This method (equation 3) normalizes indicators X to have an identical range between 

0 and 1. 

 
   

qq

qq
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XMinX
I
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Equation 4-3: Normalization of indicators 

 

Where I is the normalized indicator and q is each value/observation of the indicator.  

The drawback of this approach is that outliers can distort the transformed indicator. To prevent this, the 

exploratory data analysis described above removed all extreme values (outliers) within the datasets 

based on statistical methods. The approach however, has an advantage of widening the range of 

indicators lying within a small interval and increases the effect on the composite indicator more than 

the z-score transformation which has been used by Damm (2010). The world risk report used this 

approach to develop the “WorldRiskIndex” (Birkmann et al., 2011, Welle et al., 2013). 

After the indicators, have been normalized to have identical ranges, the indicators were weighted. There 

are several weighting methods ranging from statistical methods like factor analysis and data 

envelopment analysis, but also participatory methods such as budget allocation, analytical hierarchy 

process to a combination of statistical and expert judgment (Damm, 2010). In this study, an expert 

opinion approach was used to weigh indicators to better reflect policy priorities and at-risk populations’ 

understanding of important indicators that influence risk and vulnerability in the study area. As 

explained in chapter two, the experts provided rankings for all indicators within each vulnerability 

component. This ranking was converted to weights before the indicators were combined to develop the 

vulnerability index.  The rank to weight conversion model developed by Al-Essa (2011) was used in this 

study. This model assumes that there is a consistent relationship between ranks provided by the experts 

and weight. This relationship is independent of the problem context. The slope is a function of the 

number of criteria, n and assumes a linear relationship with the model.  

The model is given as: 

 1100  rSnWr  

Where wr is the weight of the indicator, r is the rank, and Sn is the absolute value of the slope estimated 

by least squares regression when the number of indicators is equal to n. Using least-squares regressions 

to Sn versus n, Al-Essa (2011) obtained equation 5 which converts all the ranks provided by the experts 

into weights. 
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Equation 4-4: Rank to weight conversion model 
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Where nr 1   and r and n are integer 

However, the model was used to convert the first three highest ranked indicators. This is because there 

is some element of subjectivity when experts had to rank more than four indicators within a component 

of the framework. It was observed that when experts had to rank more than four indicators, the ranking 

becomes highly subjective after the fourth indicator. This fact coupled with the limitation imposed by 

the aggregation method which stipulated that the sum of all the weights in single vulnerability 

component must be equal to 100, or in this case 1, means that equal weights were used from the fourth 

indicator up to indicator n. See       Figure 4-3 for the final weights applied in the Vea area. Those for 

Dano study area is in             Figure 4-4 and Dassari study area is in              Figure 4-5.  

4.3.6. Aggregation to develop the composite vulnerability index 

Applying the linear aggregation method, the normalized and weighted indicators were summed up to 

derive the composite vulnerability index. This approach has been applied in several studies such as 

Damm (2010) in mapping socio-ecological vulnerability to flooding in Germany, and by Beck et al. (2012), 

Birkmann et al. (2011) and Welle et al. (2013) in developing the World Risk Reports since 2011. Although 

there are other aggregation techniques, the linear aggregation technique proposed in this study is the 

most widespread aggregation method. This approach is basically the summation of weighted and 

normalized individual indicators.  

This method imposes limitations on the nature of individual indicators. For example, to get a meaningful 

composite indicator (CI) is dependent on the quality of the underlying individual indicators and the 

measurements units. It also has implications for the interpretation of weights. This additive aggregation 

function works only if the individual indicators are mutually independent preferentially. This implies that 

the function allows the assessment of the marginal contribution of each indicator separately (OECD, 

2008).  

The linear aggregation technique applied in this study is given as 

 


Q

q qcqc IwCI
1  

Equation 4-5: Linear aggregation model for composite indicator development 

                                       

With 1q qw  and 10  qw  for all Qq ,...,1  and  .,...,1 Mc   

 

4.3.7. Developing the vulnerability and risk profiles – sub components aggregation 

Using Equation 4-5, a three-tier aggregation process was followed to develop the West Sudanian 

Community Vulnerability Index (WESCVI). From the vulnerability framework presented in Figure 4-2, 

vulnerability is composed of three main components, exposure of the SES to droughts and floods, 

Susceptibility to these hazards and capacity of the SES to cope, adapt and resist the hazards.   
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To quantify vulnerability therefore means applying the weights to the data values of each variable and 

then adding them up. Before doing so, a sub-index for each component was developed (see       Figure 

4-3 to              Figure 4-5). As shown in       Figure 4-3 for the Vea study area, the weight applied to each 

indicator is indicated in percentages. It must be noted that the indicators within each component have 

been listed in order of the ranking provided by the experts. The ranks for the first three indicators have 

been converted to weights as described above and equal weights were applied for all remaining 

indicators. In cases where we have two indicators in a sub-component, weighting was influenced by 

inherent data quality and the indicators were either weighed equally or equation 5 was applied. For the 

exposure component, two indicators each for exposure of social system and ecological system exposure 

finally went to the computation of the exposure index after the bivariate correlation analysis (Indicators 

A, B and A, B).  

There are four thematic areas within the susceptibility component of the social subsystem according to 

which the indicators have been structured. These are ‘poverty and dependencies’, ‘housing conditions’, 

‘public infrastructure’ and ‘health and nutrition’. The further categorization of the indicators into these 

thematic areas will allow for the development of additional sub-indices if so desired and thus will be 

crucial for determining which social aspect is most or least important in influencing the vulnerability of 

the people living in the study areas.  

Similarly, to calculate the susceptibility index, the weights assigned against each indicator were applied 

and summed up to derive the two sub-indices of social conditions (A to I indicators) and environmental 

status (A and B indicators). The sub-indices were then summed up by applying equal weights to derive 

the susceptibility index.  

The capacity component has three sub-components, these are coping capacity, adaptive capacity and 

ecosystem robustness. An index was calculated for each of these sub-components by applying equation 

6 before being combined into the capacity index. Each of these sub-components were given equal 

weights of 33%, thus giving the social system a higher weight of 66% compared to the 33% from the 

ecological system. The reason is that capacity to cope or adapt is more construed to be pertaining to the 

social system than more of the ecological system. Weighing them equally here will mean 

underestimating the inherent ability of social systems to respond through coping and adaptation 

measures to the impact of the hazards.    

It must be noted that in quantifying the WESCVI, coping capacities are not considered but instead their 

lack thereof. This lack of coping capacity is estimated by subtracting the estimated coping capacity value 

from one. This approach which is also used in the estimating of the WorldRiskIndex (Birkmann et al., 

2011, Welle et al., 2013) was used to calculate lack of adaptive capacity and lack of ecosystem 

robustness. In vulnerability analysis, susceptibility by definition is construed to mean all factors that 

increase vulnerability whilst Capacities does the opposite effect. Therefore, the negative variants of data 

values were used for susceptibility (e.g. distance of more than 30 minutes to water source) whilst 

positive variants of capacity indicators were used. E.g. Literacy levels instead of illiteracy levels. 

In calculating lack of coping capacities, four main indicators (A to D) that support the reduction of 

negative impacts of droughts and floods induced by climate change were used.  One indicator, access to 
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national emergency funds and relief items could not be used due to lack of adequate data at the 

community level. However, due to the high relevance of this indicator as described in Asare-Kyei et al 

(2015a), they have been included in the final indicator set listed in Figure 6. 

Also in calculating lack of adaptive capacities in the Vea study area, five indicators (A to G) that “describe 

the capacities for long-term adaptation of societies and SES” (Birkmann et al., 2011) were used. The 

weights assigned to these indicators were multiplied by the normalized indicator data values to derive 

the lack of adaptive capacity index. In the same way, the index for lack of ecosystem robustness was 

calculated by using the indicators, M to Q. The weights assigned to these indicators were multiplied by 

the normalized indicator values. Finally, the lack of capacity index was estimated by applying equal 

weights (33%) to each of three sub-indices.  

The West Sudanian Community Vulnerability Index (WESCVI) was finally estimated by combining the 

three indices describing exposure, susceptibility and (lack of) capacity. Equal weights were applied to 

each of the three indices. The vulnerability indices for the Dano (            Figure 4-4) and Dassari (             

Figure 4-5) were estimated by using the same approach described above for the Vea study area. 

4.3.8. Multi-hazard index development 

The development of the multi-hazard index maps considered two components (Figure 4-6). The first part 

was the development of a flood hazard index map. This approach presented in detail in chapter three 

drew on the strengths of a simple hydrological model and statistical methods integrated in GIS to 

develop a Flood Hazard Index (FHI) to an acceptable accuracy level. The resulting FHI shows that almost 

half of the study areas in Ghana and Benin falls into the “very high and high flood intensity zones” whilst 

more than half of the study area in Burkina Faso falls in high intensity flood zones.  This is a relative 

approach and one cannot assume equal flood intensity in the different catchments even if they fall in 

the same category. The FHI was validated with participatory GIS techniques using information provided 

by local disaster managers and historical data.  

The second component involves the development of Drought Severity Index (DSI). The DSI is computed 

from Vegetation Condition Index (VCI) and Temperature Condition Index (TCI) as explained in FAO GIEWS 

(2015). In this study, the final Vegetation Health Index (VHI) dataset was received from FAO Global 

Information and Early Warning System on Food and Agriculture (GIEWS) covering a period of 30 years 

(1984 to 2013). The mean VHI is an average of the decadal VHI values over the crop growing season to 

date and have non-cropland areas masked to cover only cultivated land. It is a good indicator of drought 

at pixel level (FAO GIEWS, 2015). 
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Figure 4-6: Development of multi-hazard index map. Symbols are explained in text below. 
The figure on the left is a modified representation of the flood modelling approach introduced in chapter three whilst 
the right figure is a modified abstraction of FAO GIEWS (2015) illustrating the development of DSI as computed from 
the mean season one VHI.  VCI is the scaling of maximum and minimum Normalized Difference Vegetation Index 
(NDVI) and TCI is the scaling of maximum and minimum Brightness temperature, BT estimated from thermal infrared 
band of AVHRR channel 4. The final VHI is derived by applying weight, “a” to the VCI and TCI.  The end results of these 
two methods were combined in GIS to develop the multi-hazard map. 

 

The mean VHI was temporally integrated for every major season from 1984 to 2013 to derive the 

seasonal mean VHI. Two main estimations pathways were followed to derive the DSI which measures 

both the magnitude (intensity) of the drought and its frequency. The intensity was measured by 

computing the thirty-year average VHI. Kogan (1995) developed a threshold value of 35% below which 

a pixel is described as having agricultural drought condition. This threshold value was set by correlating 

VCI with different crop yields and various ecological conditions. The result was a logarithmic fit between 

VCI and crop yields at r-square of 0.79 (Kogan, 1995, Rojas et al., 2011).  

To estimate the frequency of droughts at each pixel, a routine was established in the program R that 

calculates the number of times within the 30-year period that a pixel registers a VHI value of less than 

35%. Using this approach, the frequency of drought was established for every pixel over the entire study 

area (Figure 4-7). The highest frequency was found to be 10 indicating that those pixels have registered 

exceptional drought conditions in 10 out of the 30-year period. Table 4-3 presents the classification of 

the drought frequency and intensity into five classes corresponding to the categories of the FHI. 
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Figure 4-7: Conceptual basis for estimating the drought frequency over the 30-year period. 
Adapted from Rojas et al. (2011) and FAO GIEWS (2015). 

 

Table 4-3: Classification of drought frequency and intensity datasets. 

Classification according to the Jenks method implemented in ESRI ArcGIS and as modified from FAO GIEWS (2015). 
VHI is Vegetation Health Index and DSI is Drought Severity Index. 

 

The drought frequency and intensity were normalized between 0 and 1 and combined using the 

weighted linear combination method given in Equation 4-6 (Malczewski, 2000) to produce the Drought 

Severity Index (DSI) in a GIS. The method permits the assignment of weights, which indicates the relative 

importance of a layer. The weights must sum up to one. In this study, the two standardized layers were 

considered equally important, thereby assigning a weight of 0.5 each to the layers in Equation 4-6. 

Frequency Drought category Av. VHI (intensity) DSI at pixel level  

9- 10 Exceptional drought <35 5 

7 - 8 Extreme drought 36 – 45  4 

 5 – 6 Severe drought 46 – 55  3 

 3 – 4 Moderate drought 56 – 65  2 

1 – 2  abnormal drought 66 – 75  1 

0 no drought >75 1 
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Equation 4-6: Derivation of Drought Severity Index. 

 

Where i indicates the number of pixels or spatial units within each layer. This formulation then allowed 

the spatial combination of FHI and DSI to derive the multi-hazard index maps. Equation 4-6 was again 

applied to combine the DSI and FHI to derive the Multi-Hazard Index (MHI) map. It is important to 

mention that there are other approaches one could follow to combine the two hazards. Another 

example could be using the maximum function, in which case, a more than usual higher value in one 

quantity (hazard) could be rewarded.  However, in this study, the weighted average function was found 

to be much simpler to implement. It therefore remains a possibility for subsequent studies to test the 

results of using different approaches of combining the two hazards. Note that the flood intensity (FHI) 

was also later normalized between 0 and 1 to allow for the spatial combination with the DSI.   

4.3.9. Risk index approaches 

Once the vulnerability and multi-hazard indices have been estimated, the multi-risk indices of all the 

communities can be estimated by implementing Equation 4-2. This is graphically represented in Figure 

4-8. 

 

Figure 4-8: The modular structure of the community multi-risk index. 

 

Populations exposed to the hazards were not intersected or overlaid with the quantity, MH as this was 

already captured in the vulnerability estimation pathway where the degrees of exposure of the critical 

elements (people, farmlands, protected area etc.) were used. The quantity, MH in Equation 4-2 measures 

a spatially explicit assessment of the SES general exposure to the two hazards of floods and drought.  
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4.3.10. Validation of risk and vulnerability indices 

The robustness and the quality of the composite vulnerability indicator as well as the soundness of the 

risk indices in estimating the potential impacts of the hazards on the communities studied were further 

tested.  In this study, two main approaches are presented to evaluate the results of the community level 

vulnerability and risk indices.  

4.3.10.1.  The Concept of Community Hazard Impact Score 

A novel technique is introduced in this study that validates the underlying models and assumptions used 

to develop the community risk indices with real historical impact data collected from at risk populations. 

To do this type of risk model validation, which as far as available literature on risk assessment confirms 

has not been pursued, we introduce an approach to develop an impact score for each community cluster 

called ‘Community Impact Score’ (CIS). The CIS measures the cumulative impact of the occurrence of the 

multiple hazards over a period of five years. During the field work as described above, households were 

asked to recount the impact they have suffered over the last five years as result of the occurrence of 

drought, floods and multiple hazard occurrence. The impact assessment captured data on the following 

key variables. 

1) Population affected by floods (%) by community cluster 

2) Population affected by droughts (%) by community cluster  

3) Population affected by floods and droughts in the same year (%) by community cluster 

4) Average area of cropland affected per community (acres) 

5) Average number of livestock affected/killed by hazards 

6) Number of people killed by floods (human loss) 

7) Number of housing units destroyed or partially damaged by floods 

8) Economic value of properties (houses, personal effects etc.) destroyed by floods 

The results of this detailed assessment are presented in appendix 1 (section 4.4.11).  To develop the CIS, 

these impact variables were first standardized to make any combination meaningful. The linear 

interpolation method was applied to standardize the impact variables. This procedure results in 

standardized impact values on a scale of 1 to 4; with one being the lowest impact level and 4 for the 

categories with the highest impact levels. The linear interpolation scheme (Equation 4-7) as applied in 

Morjani (2011) was used to standardize all the variables. This procedure first involves the determination 

of minimum and maximum impact levels and then calculating the slope and intercepts of the impact 

level for each variable. The minimum and maximum values were used as the known variables in the 

horizontal axis whilst the scale range of 1 to 4 was used as the known variables in the vertical axis in the 

estimation of the slope and intercept. The resulting slope and intercept values of the respective variables 

were then applied to each impact variable value using Equation 4-7 below. This procedure resulted in 

standardized impact variables, which were then multiplied to derive the CIS. 

  5.0int IVslopeIntegerIVst  

Equation 4-7: Standardization of CIS variables 
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Where IV is the impact variable, IVst is the standardized impact variable and “int” is the intercept. The 

derived CIS was then scaled between 0 and 1 to correspond to the multi-risk index. Three statistical 

model validation tools were used to assess how well the risk model approximate actual disaster impacts. 

The Root Mean Square Error (RMSE), the Coefficient of determination (r2) and the Nash-Sutcliffe 

efficiency (NSE) index (Nash & Sutcliffe, 1970; Walz et al., 2015) were used. The NSE index determines 

the relative magnitude of residual variance or noise compared to observed impact data variance and 

ranges between one and minus infinity. 

 

 

 

Where Yiobs is the ith observation (impact score) for the total number of community clusters, n, Yipre 

is the ith predicted value for the corresponding community cluster and Ymean is the mean value of the 

observed data, in this case, the mean impact score.  

4.3.10.2.  Sensitivity analysis 

The vulnerability model was also validated with the use of a sensitivity analysis to examine the sources 

of variation in the model output and also to determine the input variables contributing to this variation. 

The study favoured the use of local sensitivity analysis which allows the influence of one varying variable 

to be studied while all the other variables are held constant. A local sensitivity analysis could reveal 

complementary information that have policy relevance, allowing policy makers to understand the 

variables which when intervened on could have significant impact on the overall vulnerability of the 

communities. This is important for the objective of this study which seeks to identify variables 

contributing to household’s vulnerability so as to influence programmatic interventions at the 

community level. In this study, sensitivity was analysed by way of volatility of the variable to be changed 

in relation to its original state.  In accordance with Damm (2010), OECD (2008) and Groh et al. (2007), 

volatility is measured by the standard deviation of community vulnerability index across all community 

clusters in each study area. 

4.4. Results and Discussion 

The results and discussion for all the sub-components including exposure (4.4.2), susceptibility (4.4.3) 

and Capacity (4.4.4) are presented in this section as well as the risk indices and profiles of vulnerability. 

The study also developed a framework for selecting relevant indicators for risk assessment in West 

Africa, results of which is presented first.  

4.4.1. A framework for indicator selection 

One objective of this research is to have a flexible indicator set to account for local circumstances. This 

was achieved through a bottom-up participatory indicator development process combined with expert 

judgement and validated in three case studies.  A framework for this flexibility must be provided to allow 

other researchers in the West African sub-region or the wider African context to select indicators for 

similar studies. In the table below, we summarize the indicators for all three countries showing explicitly 
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the cases where we have multiple possibilities and where a choice could be made between one indicator 

and the other. The aim is for example, for someone in Cote d'Ivoire who cannot do an in-depth 

participatory exercise as was done in chapter two to see what indicators are preferred by stakeholders 

but knows the region well, to be able to select some indicators on top of others. 

Table 4-4: Indicator reference table for West Africa risk assessment. 

Vulnerability sub 

component 

 Indicator Ghana Burkina Faso Benin 

Exposure of social 

system 

Agricultural dependent population √ √ √ 

Insecure settlement √ √ √ 

Exposure of 

environmental 

system 

Agricultural area in hazard zones √ √ √ 

Insecure farms (cropland in high slopes areas) √ √ x 

Protected area in hazard zones x x √ 

Susceptibility of 

social system 

Number of dependents √ √ x 

Population density √ √ √ 

Quality of housing √ √ √ 

Distance to drinking water source √ x x 

Distance to food market √ x √ 

Prevalence of stunted children √ x x 

Caloric intake per capita √ √ √ 

Prevalence of poverty √ x √ 

Female headed households √ x x 

Susceptibility of 

ecological system 

Degraded areas √ √ √ 

Crop type (crop diversification practices) √ x x 

Runoff  x √ √ 

Dry season duration x √ √ 

Erosion rates x x √ 

Capacity ecosystem 

robustness 

Soil organic matter √ x √ 

Infiltration rates √ √ x 

Groundwater level √ x √ 

Water holding capacity √ x √ 

Green vegetation cover √ √ x 

Bas fonds x √ x 
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Agroforestry cover x √ x 

Soil depth (distance to bedrock) x √ x 

Normalized Difference Vegetation Index  x √ x 

Coping capacity Alternative food and income sources √ √ √ 

 Ability to survive crisis √ x √ 

 Social capital √ x √ 

 Local knowledge √ √ √ 

 Emergency management committee √ √ √ 

 Relief period of emergency items x √ √ 

Adaptive capacity Access to agric and health extension officers √ √ √ 

Average annual household income per capita √ √ √ 

Literacy levels √ √ √ 

Tropical livestock units (Number of herds) √ √ √ 

Gross margin per hectare √ x √ 

Farm labour availability √ x x 

Access to farmland x x √ 
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4.4.2. Exposure of the rural communities to the multiple hazards 

Exposure to hazards is an important dimension of the overall risks faced by a system or community. The 

implementation of an SES approach means that the exposure index represents both the exposure of the 

environmental sub-system to droughts and floods as well as the exposure of the social sub-system. In 

Table 4-5 below, the exposure of all the community clusters studied in the three countries have been 

presented. In the Vea study area (Ghana), the Kula river community cluster comes out on top as the 

most exposed community, followed by communities in the Vea main drain and Valley zone in that order. 

Communities in the Kanga cluster have the least exposure with an index value of just 0.13. Similarly, in 

the Dano study area (Burkina Faso), communities in the Loffing-Yabogane cluster are the most exposed 

to the multiple hazards followed by those in Batiara, Bolembar and Gnipkiere in that order. In this study 

area, Meba Pari has the lowest exposure index of 0.225%. Also in the Dassari study area (Benin), Porga 

cluster of communities are the most exposed followed by Tankouri and Sechendiga clusters. 

Table 4-5: Community ranking of the exposure of SES to droughts and floods. 

  Vea study area Dano study area Dassari study area 

Rank Community 
cluster 

Exposure 
index 

Community 
cluster 

Exposure 
index 

Community 
cluster 

Exposure 
(%) 

1 Kula river drain       0.581  Loffing-Yabogane        0.591  Porga        0.405  

2 Vea main drain       0.496  Batiara        0.585  Tankouri        0.269  

3 Valley zone       0.349  Bolembar        0.554  Setchendiga        0.234  

4 Balungu       0.341  Gnikpiere        0.551  Nagassega        0.224  

5 Kolgo-Anateem       0.313  Yo        0.542  Ouriyori        0.222  

6 Anafobiisi       0.299  Complan        0.535  Firihoun        0.192  

7 Apatanga       0.297  Tambalan        0.523  Pouri        0.154  

8 Samboligo       0.297  Dano sector 1,2,4        0.482  Tetonga        0.139  

9 Soe       0.295  Kpeleganie        0.462  Tigniga        0.121  

10 Tarongo       0.195  Lare        0.283  Tihoun        0.120  

11 Beo Adaboya       0.193  Sarba        0.275  Dassari        0.113  

12 Bongo zone       0.164  Dano sector 7        0.236  Koulou        0.044  

13 Kanga       0.134  Meba Pari        0.225      

 

The results show that the mean exposure index is highest for communities in the Dano study area (0.45) 

as against a mean of 0.30% in Vea and only 0.19 in Dassari. Exposure of communities in Dano is also 

more variable within communities. The variability is estimated at 0.14 around the mean in Dano and 

0.12 in Vea. The higher variability of the exposure index in Dano means significant differences exist 

between the communities in terms of exposure.  

It is interesting to note that exposure of communities followed the same pattern of the Flood Hazard 

Index maps developed in chapter three  where the distribution of flood hazard in the study areas was 

modelled. In their study, the Kula River and Vea main drain in Vea; Porga in Dassari and Loffing-Yabogone 

in Dano were reported to be falling in high flood intensity zones. This study reinforces this finding and 

showed that the exposure index followed the pattern of flood hazard intensity zones. Although, there 

are other determinants of exposure as can be seen in the indicators used to construct the index, this 

fact shows the strong effect proximity to hazards has on the overall SES exposure to floods. Another 

major driving factor influencing community exposure to multiple occurrences of drought and flood is 
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the indicator measuring the share of the population engaged in agriculture. This indicator measures 

populations whose livelihood depends solely on agriculture and which have no other income or food 

sources. As expected, 72% of people in the Dano area belong to this category of ‘Agricultural Dependent 

Population’ (ADP), 42% in Dassari and Vea having the least number of people (35%) engaged in only 

agriculture. Although this indicator was ranked second in Dano and first in both Vea and Dassari, its 

effect on exposure is still significant. 

4.4.3. Susceptibility of the communities to drought and floods 

Susceptibility is measured as inherent conditions within the communities that predispose them to be 

adversely affected by the two hazards. The SES approach measures susceptibility for both the socio-

economic and environmental sub-systems. Within the social-economic sub-system, four dimensions 

comprising ‘poverty and dependencies’, housing, public infrastructure and health and nutrition are 

considered. In Table 4-6 below provides details about the susceptibility indices of the communities. 

Table 4-6: Community rankings in terms of susceptibility to the multiple hazards. 

  Vea study area Dano study area Dassari study area 

Rank Community 
cluster 

Susceptibility 
index 

Community cluster Susceptibility 
index 

Community 
cluster 

Susceptibility 
index 

1 Tarongo     0.693  Bolembar      0.534   Setcheniga       0.537  

2 Samboligo     0.594  Yo      0.506   Tetonga       0.505  

3 Balungu     0.525  Dano sector 7      0.398   Dassari       0.497  

4 Bongo zone     0.473  Complan      0.395   Porga       0.494  

5 Kula river drain     0.468  Loffing-Yabogane      0.379   Tigniga       0.476  

6 Apatanga     0.438  Dano sector 1,2,4      0.375   Koulou       0.466  

7 Beo Adaboya     0.406  Gnikpiere      0.368   Firihoun       0.446  

8 Kanga     0.384  Lare      0.349   Tihoun       0.436  

9 Anafobiisi     0.382  Sarba      0.334   Tankouri       0.404  

10 Vea main drain     0.382  Batiara      0.318   Ouriyori       0.398  

11 Valley zone     0.375  Meba Pari      0.302   Nagassega       0.383  

12 Soe     0.345  Tambalan      0.290   Pouri       0.343  

13 Kolgo-Anateem     0.219  Kpeleganie      0.234 
 

  

  Mean       0.437           0.367           0.448  

  Standard deviation       0.119  
 

       0.814  
 

       0.575  

 

In Table 4-6, the three most susceptible community clusters have been highlighted in grey. Interestingly, 

all the highly susceptible communities in the Vea area are in the Bongo district. In this study area, 

Tarongo has the highest susceptibility of 0.693 and Kolgo-Anateem clusters having the least 

susceptibility. Susceptibility indices in the Dassari area are generally higher with a mean of 0.44 and 

lower in Dano area with a mean of 0.37. However, there are sharp differences in susceptibility indices in 

the Vea area measured by the standard deviation of 0.12 while communities in the Dassari area record 

less variability (0.6) from each other.  
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4.4.4. Lack of capacity index 

Community lack of capacity to cope and adapt to the hazards occurrence is an integral part of the overall 

vulnerability of the community. Total lack of capacity in this study has been computed from three sub-

indices, lack of coping capacity, lack of ecosystem vitality and lack of adaptive capacity to respond to 

long-term hazards. 

Table 4-7: Community rankings in terms of lack of capacity to cope, adapt and ecosystem vitality. 

  Vea study area Dano study area Dassari study area 

Rank Community 
cluster 

 Lack of 
capacity 
(%)  

Community cluster Lack of 
capacity 
(%) 

Community 
cluster 

Lack of 
capacity 
(%) 

1 Samboligo       0.614  Loffing-Yabogane       0.600  Tankouri       0.616  

2 Apatanga       0.613  Yo       0.586  Firihoun       0.658  

3 Soe       0.606  Complan       0.582  Tetonga       0.595  

4 Kolgo-Anateem       0.580  Tambalan       0.551  Ouriyori       0.587  

5 Balungu       0.544  Batiara       0.524  Pouri       0.564  

6 Bongo zone       0.534  Kpeleganie      0.499  Tihoun       0.497  

7 Beo Adaboya       0.532  Sarba       0.495  Porga       0.495  

8 Vea main drain       0.493  Gnikpiere       0.494  Tigniga       0.481  

9 Anafobiisi       0.475  Lare       0.485  Nagassega       0.475  

10 Valley zone       0.465  Bolembar       0.482  Koulou       0.449  

11 Kanga       0.465  Dano sector 1,2,4       0.478  Dassari       0.438  

12 Tarongo       0.422  Dano sector 7       0.432  Setcheniga       0.423  

13 Kula river drain       0.399  Meba Pari       0.374      

  Mean       0.519           0.506           0.519  

  Standard deviation      0. 722  
 

      0.634            0.710  

 

Table 4-7 presents the lack of capacities existing within the three study areas. In the Vea area, Samboligo, 

Apatanga and Soe, all in the Bongo district are the three clusters with the least capacity to cope, adapt 

and have poor state of the environment. In Dano, Loffing-Yabogane, Yo and Complan are the top three 

communities with least capacity whilst Tankouri, Firihuou and Tetonga in Dassari area have the least 

capacity. In terms of capacity, there is no significant difference between the three study areas with mean 

lack of capacity.  All of them are > 50% with minimal differences in variability. Lack of coping and adaptive 

capacities are major contributors to the total lack of capacity.  

4.4.5. The West Sudanian Community vulnerability index (WESCVI) 

Following the three tier-aggregation procedures, the sub-indices of exposure, susceptibility and lack of 

capacity were combined to develop the composite vulnerability index and mapped in GIS (Figure 4-9). 

This composite index measures the degree of vulnerability across all community clusters in the study 

areas. To illustrate the variability of vulnerability across the clusters, five classes of vulnerability have 

been developed using the Quantile Classification system implemented in ESRI ArcGIS. 
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Figure 4-9: The composite community vulnerability index. 
Note that the class ranges for the three maps differ because each represents a distinct study area. The vulnerability 
indices for the study areas are presented together here just to conserve space and they are not intended for 
comparisons.  

 

Results show that in the Vea study area, the Samboligo community cluster is the most vulnerable area 

with a vulnerability score of 0.50. It is followed by communities in the Kula River drain (0.478) and 

Balungu (0.460). In this context, the level of exposure of these communities explains the high 

vulnerability. For instance, although the Kula River communities have the highest capacity to cope and 

adapt to changing climate pattern (see Table 4-7 ) and relatively moderate level of susceptibility, its high 

level of exposure (Table 4-5) affects its overall vulnerability score. Contrary, in the case of Samboligo, 

high levels of susceptibility and weakened capacity to cope and adapt make it highly vulnerable even 

though its exposure to the hazards is significantly lower. Balungu’s high vulnerability status results from 

moderate to high levels score recorded for all three vulnerability components. It has moderate levels of 

rankings of 4, 3 and 5 out of 13 community clusters for exposure, susceptibility and lack of capacity 

respectively. This means that in vulnerability analysis, a consistent moderate ranking of an area or 

system will ultimately put the community or system into a high vulnerability class.  In the Vea area, 

Samboligo emerges as the hotspot of vulnerability due its lowest level of coping capacity, poor adaptive 

capacity and generally poor state of its ecosystem. It is also highly susceptible to droughts and floods as 

results of inherent poverty and high dependency ratios, poor housing and lack of infrastructure. The 

results of the household survey show, that as much as 93% of its inhabitants have poor housing 

conditions living in primarily mud and thatch houses which are easily damaged by flash floods and 
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torrential rains. On the other hand, the Beo-Adaboya, Kolgo Anateem and Kanga are clusters with the 

least vulnerable levels. In the Kanga area, moderate levels of susceptibility are mitigated by low exposure 

(13.4% in Table 4-5), high coping and adaptive capacities and generally robust ecosystems.  

In the Dano study area, the hotspots of vulnerability are the Yo, Bolembar and Loffing-Yabogane 

community clusters. The Yo area remains the highest vulnerable area due its high susceptibility to the 

hazards and weak capacities. It also has moderate exposure ranking 5 out of 13 clusters. The vulnerability 

of the Yo communities results mainly from its low levels of coping and adaptive capacities. Only 37% of 

its inhabitants have adequate local knowledge regarding droughts and floods coping strategies, DRR 

measures, etc. This coupled with a meagre percentage of households having access to alternate food 

and income sources (12.5%) and an absolute illiteracy levels makes the Yo area a hotspot of vulnerability 

in the commune of Dano of Burkina Faso.   

In the Dassari study area, Porga, Tankouri and Firihoun are the three top vulnerability hotspots with 

Tihoun, Dassari and Koulou being the least vulnerable areas. The high level of exposure in the Porga area 

counteracts its moderate levels of susceptibility and capacity, making it the most vulnerable area in the 

Dassari arrondissement of Benin. This high exposure results primarily from two indicators, ‘insecure 

settlement’ and ‘agricultural area in hazard zones’. All the settlements in the area (100%) are located in 

high flood and drought intensity zones whilst over 33% of their agricultural land is also found in high 

flood intensity zone. The study found a common destruction of settlements by wild fires due to 

prolonged drought conditions and flash floods. As much as 90% of all houses are made of mud and thatch 

and are of poor quality. These houses are hastily constructed after each disaster. These settlements may 

be inexpensive to build but are more physically vulnerable to hazards such as floods and increase the 

risk to physical injury to those who live in them (Adger et al., 2004). 

 

4.4.6. Community vulnerability profiles in the West Sudanian Savannah zone 

In Figure 4-10 to Figure 4-12, the detail vulnerability profiles of two community clusters each in the Vea, 

Dano and Dassari study areas are presented and show the main causative factors to vulnerability in the 

area. In the Vea study area (Figure 4-11), the two community clusters all fall into the high vulnerability 

index category and a look into the indicators contributing to this high vulnerability class show that both 

clusters have similar underlying vulnerability profiles. In both cases, exposure is the highest causative 

factor to total vulnerability, contributing 38.32% in the Kula River drain cluster and 34.66 in the Vea main 

drain cluster. There are also similar profiles at the sub-component level, exposure in both clusters are 

more influenced by agriculture area in hazard zones, ADP and insecure farms whilst Alternate Food and 

Income Sources (AFIS) is the main cause of communities’ lack of capacity. However, the Dano community 

clusters present different vulnerability profile scenarios. Although both clusters, Sarba and Meba Pari 

fall in a low vulnerability category, their vulnerability profiles are markedly different from each other. 

Exposure contributes far less to risk (24.4%) in the Sarba area and far more to vulnerability in the Dano 

Meba Pari (34.81%).  Whist three indicators, Dry Season Duration (DSD), Caloric Intake per Capita (CIPC) 

and housing are the main drivers of susceptibility in the Sarba cluster, only CIPC and population density 

have a significant contribution to susceptibility in the Meba Pari cluster.  
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These result show that different communities can be in the same vulnerability category but the 

underlying factors defining their vulnerability and subsequently their risk levels can be fundamentally 

different from each other. It’s therefore incumbent on policy makers and practitioners to understand 

the detail causative factors of vulnerability so as to deploy interventions that effectively targets the 

principal factors affecting vulnerability in a given area.  

Maximum vulnerability level for all community clusters studied is in the Yo area of Dano whilst the Meba 

Pari cluster of communities has the least vulnerability levels. Also, communities in the Kula River drain 

registered significant high vulnerability level of 40.30%.  

The statistically significant vulnerability risk faced by people in the Dano area results from poor socio-

economic systems, high exposure to droughts and rainstorms. The household survey found several cases 

of collapsed buildings due to flash floods and generally poor living standards as evident in the high 

vulnerability scores estimated. 

 

 

Figure 4-11:  Detail vulnerability profiles of two community clusters in the Vea study area. 

Figure 4-10: Detail vulnerability profiles of two community clusters in the Dano study area. 
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Figure 4-12: Detail vulnerability profiles of two community clusters in the Dassari study area. 
In these figures, two levels of factors contributing to final community vulnerability level are presented. The first is the 

three major components of vulnerability, which are exposure, susceptibility and lack of capacity. The second level 

shows the relative contribution of each indicator to first, the sub-component such as exposure and then to final 

vulnerability. Only indicators contributing to more than 5% of the vulnerability risk are shown. Major contributory 

factors to vulnerability are: AFIS = Access to Alternative Food and Income Sources; SE-CropT = Crop type or the proxy 

of crop diversification practices; ADP = Agricultural Dependent Population; SS-QH = Quality of Housing; SE-DSD = 

Length of Dry Season Duration; CC-EMC = presence of Emergency Management Committee; C-A AHHIPA = Annual 

household income; CA-Lit= Literacy levels of adult population above age 15; CA-GLaM = Good leadership and 

Management at the community level and CIPC= Caloric Intake per Capita, C-ER SOM= soil organic matter; SS-PovPR 

= prevalence of poverty. 

4.4.7. Risk indices from multiple hazards 

By combining the vulnerability and the multi-hazard indices through the arithmetic multiplicative 

function in GIS (Equation 4-2Error! Reference source not found. implementation), the multi-risk indices 

of all communities in the study area were developed. This multi-risk index represents the combined 

effect of the occurrence of multiple hazards and their interaction with vulnerable SES. It measures the 

extent to which households within the communities will be impacted by floods, droughts and a 

combination of them. In Figure 4-13, the results of the West Sudanian Community Risk Index (WESCRI) 

are presented and show contrasting levels of risk among community clusters.  

In the Vea study area, the Kula River drain and Vea Main drain remain the hotspot of risk to droughts 

and floods. Communities in these areas are characterized by high exposure to floods and droughts and 

at the same time have the highest levels of vulnerability. The study shows the strong effect of exposure 

to overall risk faced by a community. This is evident from the relatively good scores recorded by the two 

clusters in the vulnerability sub-components of susceptibility and capacity to cope, adapt and state of 

ecosystem. 
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Figure 4-13: The West Sudanian Community Risk Index (WESCRI) in the study areas. 
Following the approach in the WorldRiskIndex (Beck et al., 2012, Birkmann et al., 2011). The risk indices have been 
translated into five qualitative classification schemes of very high (5), high (4), medium (3), low (2) and very low (1). 
Classification algorithm employed is the Quantile method. 

 

Kula River drain in particular has the highest capacity in the Vea area, yet it has the highest vulnerability 

and subsequently is amongst the high-risk areas due primarily to its exposure to floods and droughts. 

This means that an area will still be classified as having significantly high multiple risk levels when 

unusually high exposure levels are combined with moderate levels of susceptibility, no matter how 

strong its capacity to cope and adapt to the hazards might be. The reverse is also true. However, poor 

state of inherent conditions and lack of capacity could still place an area in high risk zone although its 

exposure to the hazards is low. This is the case of Samboligo where its low exposure index of 0.297 could 

not mitigate the high negative scores in susceptibility (0.594) and lack of capacity (0.614). Balungu 

cluster of communities shows reverse situation where elevated levels of vulnerability (Figure 4-9) are 

mitigated by very low levels of multiple hazards occurrence.  

In the Dano study area, Yo, Loffing-Yabogane as well as Bolember and Gnipiere are the hotspots of risk. 

These areas also are the hotspots of vulnerability. However, in the Complan community cluster, 

vulnerability is comparatively lower because of low levels of multiple hazards occurrences pushing the 

communities in the area into a medium risk class. The high levels of risk in these community clusters are 

due to underlying poor socio-economic conditions. Only 37% of its inhabitants have adequate local 

knowledge regarding droughts and floods coping strategies, DRR measures etc. This coupled with a 
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meagre percentage having access to alternate food and income sources (12.5%) and an absolute 

illiteracy level in most clusters (100%) makes the area a hotspot of vulnerability and risk. 

In the Dassari study area, Porga, Sétchindiga followed by Dassari and Tankouri are the risk hotspots. The 

medium vulnerability profile of Sétchindiga was not enough to mitigate the effects of high multiple 

hazards occurrence and, as can be seen in Figure 4-9, pushes the communities in the area to high risk 

levels. Similarly, Dassari has a significant lower level of vulnerability (Figure 4-9); yet high occurrence of 

multiple hazards eventually increases its overall risk to droughts and floods. 

4.4.8. Results and discussion of the CIS validation concept 

The CIS estimated above was compared with the simulated risk index to determine the robustness of 

modelling procedures. In the Vea study area, the RMSE was estimated relatively low at 0.29, r2 was found 

to be 0.45 whilst the NSE index was estimated at -0.04. In the Dano study, RMSE was found to be 0.29, 

r2 was estimated at 0.76 and NSE index was -0.05. These results present an interesting dimension to the 

validation of complex aggregation models. Although the RMSE was a bit higher for both studies, the 

multi-risk model closely approximates the observed impacts of the hazards. In the Dano study area, as 

much as 76% of the variance in observed impact of hazards was explained by the risk model whilst 45% 

of the variability in observed hazard impact in Vea study area was explained by the multi-risk modelling 

procedures (Figure 4-14). These levels of variance are considered relatively high against the background 

of uncertainties associated with the observed impact data. The impact data as recounted by at risk 

populations were derived from memory and there were no systematically documented records of the 

impacts of the hazards. Most of the respondents were able to recount only the high intensity or 

magnitudes of the hazards and small impacts events were generally not recalled. In the Dassari study 

area, the responses were found to be highly inconsistent and were subsequently discarded. Therefore, 

no validation based on reported impacts was possible. Figure 4-14 shows the strong linear relationship 

between the observed disaster impact and the modelled output of multi-risk index. As can be seen from 

this graphic, despite the difficulties in recounting disaster impacts from memory, communities with high 

simulated disaster risk generally follows areas with high observed disaster impacts. This shows the 

robustness of the vulnerability and risk models in predicting high and low risk areas in the study areas.  

 

Figure 4-14: Relationship between simulated risk index and observed disaster impacts. 
Left chart represents the Vea study area with the trendline, LogWESCRI = 0.1045*LogCIS+1.4828.                                              
 The right chart shows the Dano study area with the trendline, LogWESCRI = 0.0511*LogCIS + 1.4367. 
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Moreover, the NSE indices for both study areas closely approximate positives. Although the NSE indices 

are relatively lower than those achieved in other studies such as in Walz (2014) which recorded only 

positive values of NSE for disease risk suitability studies in Burkina Faso, yet the close to positive values 

obtained in this study  means that in predicting high and low disaster risk areas, the approach presented 

in this study will yield accurate results than simply averaging the observed impact data and using that to 

represent the risk indices for all communities in question. 

4.4.9. Results of the sensitivity analysis 

In this study, six scenarios based on observed relationship between the input variables (indicators) and 

the vulnerability composite have been carried out to understand which inputs account more to a 

community’s vulnerability profile.  

Table 4-8: Mean volatility between 6 different vulnerability scenarios. 

 Scenario Mean volatility 

 
 

Vea Dano Dassari 

1 Equal weights of all indicators     0.050        0.071        0.048    

2 Excluding Agricultural Dependent population     0.046        0.075        0.036    

3 Excluding insecure settlement, population density, Soil organic carbon 
(Basfonds for Dano), Ability to survive crisis (alternate food % income 
source for Dano) and access to extension 

    0.049        0.051        0.036    

4 Increased Agricultural Dependent population by 10%     0.056        0.074        0.043    

5 A. Increased by 10% Agriculture area, population density, Caloric Intake 
per Capita and B.  decrease by 10% SOC (Bas fonds in Dano & Dassari) and 
annual household income 

    0.057        0.076        0.043    

6 Excluding number of dependents (Dano & Dassari, Vea) and distance to 
market (Vea) 

    0.047        0.066        0.039    

 Minimum     0.046        0.051        0.036    

 Maximum     0.057        0.076        0.048    

 

Table 4-8 presents the mean volatility of the six different scenarios compared to the original vulnerability 

estimations. In accordance with Damm (2010), OECD (2008) and Groh et al. (2007), volatility is measured 

by the standard deviation of community vulnerability index across all community clusters in each study 

area. In the Vea study area, volatility ranges from 0.046 to 0.057. Overall, the mean volatilities for all 

three study areas are found to be very low indicating that the sensitivity of the composite vulnerability 

index to the varied or excluded indicator is negligibly low. This means the aggregation technique 

introduced, the weighting system applied as well as the modelling procedure followed resulted in robust 

estimates and that the final indices are largely unaffected by changes in single indicators. 

4.4.10. Conclusion 

The aim of this study was to carry out a multi-hazard risk assessment in a bottom-up participatory 

process at the community level to derive community vulnerability profiles in marked departure from the 
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classical top-down, large scale approaches. The study also aims to develop a new concept for 

quantitative validation of risk assessment and followed the perspectives of a coupled SES rather than 

single-hazard-decoupled risk assessments. The study used three sets of indicators from three case 

studies that have been verified by at risk population as highly relevant for multiple hazard risk 

assessment in their respective communities. The study sought to develop approaches that could support 

practitioners and policy makers by informing them about vulnerability and risk profiles at the community 

level. A key motivation for this study was to identify high risk communities by mapping risk hotspots in 

the study areas. 

The study found that community’s exposure to the multiple hazards follow the same pattern of flood 

hazard intensity and as expected exposure is logically a key determinant of vulnerability. Although, there 

are other determinants of exposure, the study found the strong effects proximity to hazards has on an 

SES overall exposure to droughts and floods. Besides this proximity effect, a major driving factor 

influencing community exposure is the indicator measuring the share of the population engaged in 

agriculture. This finding confirms the assertions by Adger et al. (2004) and O’Brien et al. (2004) that high 

Agricultural Dependent Population (ADP) means that a higher percentage of people are exposed to a 

climate sensitive sector of agriculture. In the study areas, rain-fed agriculture predominates further 

aggravating people’s exposure to irregular rainfall.  High ADP suggest lack of other employment options 

and therefore in the event of crop failures, farmers and their dependents have few opportunities to earn 

additional income (Adger et al. 2004, O’Brien et al. 2004). 

The study found that an area will still be classified as having significantly high-risk levels when unusually 

high exposure levels are combined with moderate levels of susceptibility, no matter how strong its 

capacity to cope and adapt to the hazards might be. The reverse is also true. However, poor state of 

inherent conditions and lack of total capacity could still place an area in elevated risk zone although its 

exposure to the hazards is low. 

Using five-year historical impact data collected from at risk populations, a novel technique was 

introduced to validate the underlying models and assumptions used to construct the vulnerability 

profiles. The concept of Community Impact Score (CIS) was thus introduced and measures the 

cumulative impact of multiple hazard occurrences in the study areas. Three statistical validation models 

were used to assess how well the risk model approximate actual disaster impacts. Against the 

background of large uncertainties associated with the observed impact data, this study found relatively 

high levels of variance explained, 76% for the Dano study area and 45% for the Vea study area.  

 The study also employed local sensitivity analysis to reveal complementary information that may have 

significant impact on the overall vulnerability of the communities. Six scenarios based on the observed 

relationship between the input variables (indicators) and the vulnerability composite were implemented 

to understand which inputs account more to a community’s vulnerability profile. The results show that 

the mean volatilities for all three study areas were very low indicating that the sensitivity of the 

composite indicator is relevant for policy makers and could allow them to understand the variables 

which when intervened could affect vulnerability index. For instance, the vulnerability profiles shown 

in Figure 4-10 to Figure 4-12 showed that varying agricultural areas in hazard zones in two community 
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clusters (Kula river drain and Vea main drain) will have significant effect in the level of vulnerability and 

overall risk faced by the SES in those areas. Policy makers could therefore implement interventions 

aimed at reducing cropland areas in high hazard zones. 

In an attempt to deal with the on-going scientific debate on whether to include the exposure component 

in vulnerability assessment, this study provided an alternative approach where the degrees of exposure 

of elements in the SES (spatial dimension of exposure) are considered as contributing to the SES total 

vulnerability, rather than using the SES’s general exposure as part of vulnerability or rather than 

excluding the exposure term altogether. This procedure therefore eliminates a key drawback of the 

summation conceptualization of vulnerability which could place a community in a high vulnerability class 

although its exposure may be zero.  To counter this effect, indicators that indirectly measure exposure 

such as Agricultural Dependent Population were used to describe the exposed elements to the hazards. 

The point is that, in reality, people are still vulnerable even though they may not be exposed to any 

hazard due to inherent and depressed socio-economic conditions. This phenomenon is very common in 

the study areas where existing socio-economic conditions in most cases is very dire and leaves people 

vulnerable even though there are no obvious physical exposure. In the final risk assessment, however, 

where there’s no hazard, risk will be zero even though Vulnerability could be high. This is the upside of 

the multiplicative effect which was finally used to estimate the risk index. This area of risk assessment 

where a system could be still be vulnerable even though there may not be obvious linkages to physical 

hazards requires further studies.  

The study provides a framework for conducting risk assessment for multiple cultural and social contexts 

spanning three countries using indicators developed from a bottom-up participatory process. Unlike risk 

assessment from classical approaches, the differential risks from these three study areas therefore 

uniquely represents actual risks faced by its SES as identified by the at-risk populations. At the same 

time, the study sets the pathway for conducting risk assessment using a unified indicator set if so desired 

by practitioners or policy makers. The details of this framework are presented in Table 4-4. It must be 

noted however that, practitioners or policy makers desiring to conduct multiple hazard risk assessment 

based on the methodologies presented in this study need to have several scientific competencies to be 

able to follow all the approaches outlined here. 

The validation procedure has shown the relative robustness of the models in predicting low and high-

risk areas despite the uncertainties in the validation dataset. The present study helps to provide a better 

understanding of the risks and vulnerabilities of rural communities in three West African countries as 

well as the differential impacts of climatic hazards in the communities studied. Studying risk and 

vulnerability profiles of rural communities also provides an insight on how to situate vulnerability, risk 

and climate change adaptation efforts within the context of the community’s sustainable development 

agenda and can help to develop appropriate, inclusive and well-integrated mitigation and adaptation 

plans at the local level. To cope with climate change and achieve poverty reduction, it is essential to 

pursue actions at sector and community levels (Armah et al. 2011) and we believe the present study 

contributes greatly to efforts in this direction. Another key output is development of comprehensive 

methods allowing practitioners to conduct similar community level assessment and to continue to 

update the vulnerability profiles. Generally, vulnerability and risk assessment are rarely verified against 
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impact data. This is because such impact data are rarely available in the level of detail and/or spatial 

scale required. We attempted here to validate the computed risks by introducing the novel and 

pioneering concept of CIS which remains improvable but can allow for a first estimation of the validity 

of risk indices in global scientific studies of risk assessment under climate change context.   
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4.4.11. Appendix 1: Variables used to construct the Community Impact Score 

 

Community 
cluster 

Study 
area 

P-droughts P-floods P-multi Human 
loss 

Housing Eco-value cropland livestock impact score 

Anafobiisi Vea         100.00          92.86          40.00               -            30.00              10,541.00          88.50        323.00          1,536.00    

Apatanga Vea         100.00          50.00          42.86            2.00          11.00                8,420.00          78.00          81.00             384.00    

Balungu Vea         100.00          20.00          50.00               -            43.00                4,050.00        102.00          47.00               48.00    

Beo Adaboya Vea         100.00          93.33          30.00            2.00          24.00                9,430.00          58.00          31.00             128.00    

Bongo zone Vea         100.00          82.35          52.94               -            15.00              32,949.00        110.50        159.00             576.00    

Kanga Vea         100.00          20.00          20.00            1.00          25.00              15,728.00          51.00          51.00               32.00    

Kolgo-Anateem Vea         100.00            6.00          60.00            4.00          80.00              20,110.00          25.00        141.00             648.00    

Kula river drain Vea         100.00        100.00          87.10            6.00        120.00              10,499.00        129.75        200.00        24,576.00    

Samboligo Vea           93.33          80.00          60.00            4.00          86.00                2,050.00          85.00          12.00             729.00    

Soe Vea         100.00            6.67          60.00               -          118.00              25,951.00          58.50          91.00             576.00    

Tarongo Vea           92.86          40.00          28.57               -            75.00                7,891.00          51.50        134.00             144.00    

Valley zone Vea           84.62          76.92          53.85               -            25.00              11,040.00          57.50          52.00               36.00    

Vea main drain Vea         100.00        100.00          80.00            3.00        104.00                9,399.00          85.00        225.00        13,824.00    

Batiara Dano           71.43        100.00          57.14               -            17.00            278,571.43          13.00                -                 96.00    

Bolembar Dano           90.00        100.00          78.00               -            27.00            353,125.00          59.00          34.00          4,608.00    

Complan Dano           62.50          75.00          25.00               -            18.00            308,333.33          44.00          35.00             144.00    

Dano sector 1,2,4 Dano         100.00          83.33          41.67               -            13.00            379,166.92          20.00            4.00             192.00    

Dano sector 7 Dano           92.86        100.00          33.00            1.00          10.00              83,923.08          16.00          12.00               96.00    

Gnikpiere Dano           83.33        100.00          78.00               -            24.00            150,000.00          66.80          37.00          2,304.00    
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Kpeleganie Dano           90.00          80.00          60.00               -            17.00            150,000.00          16.50          13.00             108.00    

Lare Dano           90.00          66.00          40.00               -              3.00            150,000.00          47.50          10.00               36.00    

Meba Pari Dano         100.00          60.00          33.00               -              8.00            148,285.71            9.75          12.00               16.00    

Sarba Dano           80.00          80.00          80.00            3.00            6.00            172,500.00            9.00            1.00               72.00    

Tambalan Dano         100.00        100.00          66.67               -            12.00            185,000.00          16.00          11.00             192.00    

Loffing-Yabogane Dano           95.00          80.00        100.00               -            27.00            275,000.00          59.50          31.00          6,144.00    

Yo 

N=26 

Dano         100.00        100.00        100.00            1.00          22.00         1,115,875.00          35.40          32.00        12,288.00    
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4.4.12. Appendix 2: Construction of indicator data values and data sources 

                                                        
14 These numbers represent the rank of the indicator within the vulnerability sub-component. In this case, 
Agricultural dependent population is ranked as the first out of three indicators in the Vea study area.  

Vulnerability Component: Exposure 

Indicator: rank & 

applicable study 

area 

Definition and Measuring unit Indicator construction and limitation of 

indicator 

Data source 

Agricultural 

dependent 

population 

Vea 1/314; Dano 

2/2 and Dassari ½ 

The percentage of the area's total 

population depending on only 

agriculture related employment 

(including hunting, fishing and 

forestry). The number of people 

with only agriculture as their 

source of livelihood was divided by 

the total number of sampled 

households and scaled from 0 to 1 

The survey instrument sought to know if the 

respondents are engaged in only agricultural 

activities and has no other source of 

livelihood. This indicator is valid as several 

experts believe it gives a better description 

of people depending on agriculture (Adger 

2004). 

Own household 

survey 

Insecure 

settlement: 

Vea 3/3; Dano 1/2 

and Dassari 2/2 

Percentage of communities within 

the cluster which are located in 

high hazard intensity zones. 

Using the flood hazard intensity map 

developed by Asare-Kyei et al. (2015b), in 

GIS environment, the very high and high 

intensity flood zones were considered. The 

process begun by intersecting the three 

vector layers, the flood index map, land 

cover and slope to determine land cover 

types under two intensity zones. After 

intersecting, a new field is added and area in 

hectares was calculated. The community 

cluster maps were used to clip the 

intersected features to allow for community 

level analysis. Then the total area occupied 

by each community cluster was estimated 

using the summarize tool in ArcGIS. Then, 

Asare-Kyei et al. 

(2015b) 
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the flood intensity zone field was sorted in 

descending order and the very high and high 

zones were selected. The summarized tool 

was again used to calculate the area of the 

respective land covers that fall in the two 

hazard intensity zones. 

Physical 

infrastructure 

Vea 2/3 

Number of physical infrastructure 

in an area. Such as irrigation dams, 

hospitals, schools, food markets 

and major bridges located in 

floodplains 

 

Physical infrastructure was estimated using 

road network map of Ghana. Each 

community cluster was used to extract the 

very high and high areas of the flood 

intensity map and then also the road 

network map. The clipped flood intensity 

map and road network map were 

intersected in GIS to determine the 

percentage of the road network in a 

community cluster that falls within the two 

high flood intensity zones. 

Lack of local level data means only road 

network could be used to describe the 

physical infrastructure located in flood 

plains. 

Results from 

chapter 3 and 

Road network map 

from Ghana base 

maps 

Insecure Farms 

Vea 3/3; Dano 2/2 

Percentage of cropland within the 

community cluster located in 

slopes of more than 5%. 

Retrieval of data values for these indicators 

follow the approach used to construct the 

data values for the indicator “Insecure 

settlement” describe above. 

From 30m spatial 

resolution Global 

Digital Elevation 

Model developed 

jointly by the 

Japanese Ministry 

of Economy, Trade 

and Industry 

(METI) and the 

United States 

National 

Aeronautics and 

Space 

Administration 

(NASA). 
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Agricultural Area 

Vea 1/3; Dano 

1/2; Dassari 2/2 

Percent of total land used for 

agricultural activities in an area 

located in flood plain. This includes 

arable land and pastures in flood 

plains 

LULC maps for the 

three study areas 

were generated by 

classifying high 

spatial resolution 

(5m) multi-

temporal RapidEye 

images developed 

by (Forkuor et al., 

2014). Flood map 

from Asare-Kyei et 

al. (2015b). 

Protected Area 

Vea 2/3; Dassari ½ 

Percent of area of land that are 

protected including national parks, 

forest reserves, watersheds etc. 

located in flood plains 

Same as above 
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Vulnerability Component: Susceptibility of social system 

 

Indicator:  Definition and 

Measuring unit 

Indicator construction and Validity/limitation of 

indicator 

Data Source 

Number of 

dependents

: Vea 1/10, 

Dano, 4/7 

Average number of 

household members 

below the age 15 and 

above the age of 65.  

This is retrieved from household survey data where 

the number of household members below the age 

of 15 and above 65 years were added and divided by 

the total number of households sampled in a 

community cluster. High number of dependents 

population per household denotes high vulnerability 

as such individuals rely on family members or social 

services for financial services and other support. 

From own household survey 

Population 

density: 

Vea 2/10, 

Dano 7/7, 

Dassari 8/8 

This is the number of 

people per square 

kilometer in the 

inhabited area of the 

study areas. In Dano and 

Dassari study areas, the 

original indicator, 

Demographic pressure 

was replaced with the 

population density. 

High population density 

increases vulnerability.  

Population density data at 100m resolution 

estimated in 2013 for the year 2015 was retrieved. 

The data has been adjusted for UN national 

population estimates. This data was extracted as 

ESRI shapefile and overlaid on the community 

cluster maps. Geoprocessing techniques were used 

to estimate average population density per 

community cluster.  

Secondary data from Africa 

Population database 

(AFRIPOP) was used. Details 

about can be found at: 

http://www.worldpop.org.uk

/data/summary/?contselect=

Africa&countselect=Ghana&t

ypeselect=Population 

Quality of 

Housing: 

Vea 3/10, 

Dano 5/7, 

Dassari 5/8 

Percentage of 

households within a 

cluster living in houses 

prone to flood damage 

and or bushfires. Higher 

percentage increases 

vulnerability.  

This is also termed percent of poor housing. Poor 

housing includes mud and thatch with no concrete 

and proper roofing system. The percentage of 

people living in mud and thatch house or mud with 

aluminum roofing sheets was computed.  

From own household survey 

data 

http://www.worldpop.org.uk/data/summary/?contselect=Africa&countselect=Ghana&typeselect=Population
http://www.worldpop.org.uk/data/summary/?contselect=Africa&countselect=Ghana&typeselect=Population
http://www.worldpop.org.uk/data/summary/?contselect=Africa&countselect=Ghana&typeselect=Population
http://www.worldpop.org.uk/data/summary/?contselect=Africa&countselect=Ghana&typeselect=Population
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Distance to 

water: Vea 

4/10 

Percentage of total 

households within a 

community cluster that 

travel more than 30 

minutes for drinking 

water. Higher 

percentage increases 

vulnerability. 

Respondents were asked about the time spent in 

getting to the nearest water source.  

From own household survey 

data 

Distance to 

food 

market: 

Vea 5/10, 

Dassari 7/8 

Percentage of 

households within a 

community cluster that 

travels for more than 30 

minutes to reach the 

nearest food market. 

High percentage 

increases vulnerability.  

Respondents were asked about the time spent in 

getting to the nearest food market to either sell 

farm produce or buy foodstuffs.  

From own household survey 

data 

Prevalence 

of stunted 

children: 

Vea 7/10 

Percent of children 

under 5 in a community 

cluster who are stunted 

(have low height for their 

ages). Higher percentage 

denotes higher 

vulnerability.  

The USAID METSS project conducted a Population 

Based Survey (PBS) of key socio-economic variables. 

The data is available at the district scale and was thus 

downscaled to the community clusters. Prevalence of 

poverty was assumed to directly affect stunting and 

therefore poverty scores in the clusters were used as 

weighting factors to derive stunting values from the 

district stunting data.  

From secondary data, which 

has been collected by United 

States Agency for 

International Development 

(USAID) funded METSS 

project in Ghana 
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Caloric 

intake per 

Capita: Vea 

8/10, Dano 

2/7, Dassari 

4/8 

The dietary energy 

consumption per person 

is the amount of food, in 

kcal per day, for each 

individual in the total 

population. The study 

couldn’t directly measure 

this indicator in the field 

and so Household food 

insecurity was used as a 

proxy. High percentage 

denotes higher 

vulnerability 

Following the approach of World Food Program 

(WFP, 2012), household food insecurity is measured 

as a percentage of households classified as severely 

food insecure and moderately food insecure. Using 

non-food income, total crop production from all 

crops produced by the household and Tropical 

Livestock Unit (TLU), each of these variables were 

ranked and divided into quintiles (5 equal parts). The 

scores were subsequently multiplied and the final 

total score divided into 4 parts. This means the 

households have been classified into 4 food security 

levels. Households with severe and moderate food 

insecurity were computed for each cluster (WFP, 

2012).  

Data source for estimating 

household food insecurity is 

from own household survey. 

Female 

headed 

households

: Vea 10/10 

Percentage of total 

households in a 

community cluster that is 

headed by a female. High 

percentage denotes high 

vulnerability.  

Respondents were simply asked to indicate the head 

of the household by sex.  

From own Household survey 

data 

Prevalence 

of poverty: 

Vea 9/10, 

Dassari 1/8 

Percentage of 

households living below 

the national absolute 

poverty line. High 

percentage increases 

vulnerability.  

Household equivalent scale was used as weighting 

factor for household size. Then all income sources 

including non-farm income and farm income were 

added. Absolute national poverty line estimated by 

Ghana Statistical Service (GSS) in 2014 as 

Ghc3.6/person per day was used for the Vea study 

and national absolute poverty line in Benin 

estimated in 2003 ass FCFA82, 672 was used for the 

Dassari study area. The percentages of poverty 

levels in Dassari are relatively low probably because 

the national poverty line is outdated.  

Household survey data 

Household 

size: Dano 

3/7 

Average number of total 

household members in a 

community cluster 

From household survey data. Respondents were 

asked to indicate the total number of people in the 

household.  

From own Household survey 

data 
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Vulnerability Component: Susceptibility of ecological sub-system 

Indicator:  Definition and 

Measuring unit 

Indicator construction and limitation of 

indicator 

Data sources 

Degraded 

areas: Vea 

1/2, Dano 1/3, 

Dassari 1/4 

Percentage of land in the 

community cluster that is 

degraded or deserted.  

The land degradation classes ‘map shows 

the complete status in provision of 

biophysical ecosystem services and the 

processes of declining biophysical 

ecosystem services by considering the 

combined value of each biophysical axis’ 

(FAO LADA). The land degradation 

dataset in Geotiff format was imported 

into ArcGIS for analysis. Of the eight 

classes listed in the GLADIS database, five 

were used to compute the percent 

degraded area per community cluster. 

These classes are:  

a)  low status, medium to strong  

b) high status, medium to strong  

c) low status, weak degradation  

d) low status improving and  

e) Bare lands.  

A key limitation of the datasets is its 

spatial resolution. At a spatial resolution 

of 9km, the dataset is not ideal for local 

scale assessment but no better dataset 

could be found.  

Data was obtained from FAO LADA 

project hosted at the Global Land 

Degradation Information System 

(GLADIS) database. For details see 

LADA (2011),  

http://www.fao.org/nr/lada/gladis

/glad_ind/ 

http://www.fao.org/nr/lada/gladis/glad_ind/
http://www.fao.org/nr/lada/gladis/glad_ind/
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Runoff rates: 

Dano 2/3, 

Dassari 3/4 

Surface runoff measured 

in mm/hour is the flow 

of water that occurs 

when the soil is 

infiltrated to full capacity 

and excess water from 

rain flows over the land. 

Higher runoff increases 

vulnerability of 

ecological system.  

Runoff was estimated by applying the 

rational model integrated with remote 

sensing and GIS techniques 

Data source from Asare-Kyei et al. 

(2015b). 

Crop type: 

Vea 2/2 

This indicator was 

originally defined in 

Asare-Kyei et al (2015a) 

as percent of community 

cluster under cultivation 

of drought and flood 

sensitive crops. 

However, this was 

difficult to operationalize 

and hence the variable 

“lack of crop 

diversification” was used 

as a proxy.  Higher 

percentage increases 

vulnerability.  

Lack of crop diversification measures the 

percentage of households in a 

community cluster having three or less 

different crops under cultivation in any 

farming season. This was estimated by 

counting the number of different farm 

plots of different crops cultivated by 

sampled farmers and deriving the 

average per cluster. Relationship 

between crop diversification and 

adaptive capacity/vulnerability can be 

found in (Tarleton, M., & Ramsey, D. 

2008; Ngigi 2009). 

From own household survey 
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Dry season 

duration: 

Dano 3/3, 

Dassari 4/4 

The average duration in 

days of the dry season 

over the last decade. This 

was operationalized by 

using the frequency of 

irregular rainfall events.  

Higher occurrence or 

irregular rainfall events 

increases vulnerability.  

This was operationalized with the 

frequency of irregular rainfall recorded 

over the period, obtained from 

household surveys. Responses were 

converted to categorical variable as 

follows:    

a) 6 represents irregular rainfall 
event every year  

b) 5 represents irregular rainfall 
occurrence once every two 
years 

c) 4 is once in three years 
irregular rainfall  

d)  3 is once in four years irregular 
rainfall 

e) 2 is once in five years and 
f) 1 represents once in more than 

5 years.  

This sort of measures of the return 

period of drought events - 

 

From own household survey 

Erosion rates: 

Dassari 2/4 

Amount of water erosion 

recorded in each 

community cluster 

measured in 

tons/ha/year. High 

erosion rates increase 

vulnerability 

This dataset was retrieved from FAO 

LADA project database (GLADIS) as 

described above.  

Data was obtained from FAO LADA 

project hosted at the Global Land 

Degradation Information System 

(GLADIS) database. For details see 

LADA (2011),  

http://www.fao.org/nr/lada/gladis

/glad_ind/ 

 

http://www.fao.org/nr/lada/gladis/glad_ind/
http://www.fao.org/nr/lada/gladis/glad_ind/
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Vulnerability Component: Capacity, ecosystem robustness 

Indicator:  Definition and Measuring unit Indicator construction and /limitation of 

indicator 

Data source 

Soil Organic 

Matter (SOM): 

Vea 1/5, Dano 

4/8, Dassari 1/6 

The amount of Soil Organic 

Carbon held per unit area of land 

per year. Soil organic carbon 

content (fine earth fraction) in 

2.5cm (mean estimate) depth 

(topsoil) was used. 

Higher SOM levels decreases 

vulnerability.  

SoilGrids1km provides a collection of updatable 

soil property and class maps of the world at a 

relatively coarse resolution of 1 km. This data is 

derived from state-of-the-art model-based on 

statistical techniques including “3D regression 

with splines for continuous soil properties and 

multinomial logistic regression for soil classes”. In 

this study, the SOM was sub-setted and extracted 

into GIS and the areas of the various community 

clusters were intersected to determine the 

average amount of SOM per square km in each 

cluster. This dataset has a limitation of limited 

spatial accuracy and contain artefacts and missing 

pixels. However, they presented the best options 

of readily accessible data in this category in the 

study areas. For details see ISRIC (2013). 

This data was 

obtained from 

SoilGrids1km 

which is a global 

soil data product 

generated at 

ISRIC - World Soil 

Information 

(http://soilgrids1

km.isric.org). 

Water holding 

capacity: Vea 

4/5, Dano 7/8, 

Dassari 3/6 

This is the amount of 'Water in 

Millimeters stored in or at the 

land surface and available for 

evapotranspiration' (IPCC, 2012). 

High water capacity reduces 

vulnerability.  

Available water capacity from regridded HWSD is 

used here. Categorical values use is indicated 

below:  

a) 7 = 150mm 
b) 6 = 125mm 
c) 5 = 100mm 
d) 4 = 75mm 
e) 3 = 50mm 
f) 2 = 15mm 
g) 1 = 0mm 

Data taken from 

rigridded 

Harmonized 

World Soil 

Database 

(HWSD) (FAO, 

2009)  

Bas Fonds: Dano 

1/8 

The number of reservoirs and 

water bodies (bas-fonds) located 

in the study area. Operational 

definition adopted here is the 

percentage of the cluster’s total 

area suitable for bas-fonds 

management. Higher percentage 

reduces vulnerability.  

This is derived from International Water 

Management Institute (IWMI) bas fonds 

management suitability maps, Category one on 

the map representing areas highly suitable for 

bas fonds management was extracted and used. 

This is expressed as a percentage of the total land 

area within the cluster that are described as 

highly suitable for bas fonds management.  

Details about this 

are found at FAO 

(2012). 

http://soilgrids1km.isric.org/
http://soilgrids1km.isric.org/
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Infiltration rate: 

Vea 2/5, Dano 

6/8 

The rate measured in Millimeters 

per hour at which soil absorbs 

rainfall or irrigation water. This 

indicator could not be measured 

in the field due to time constrains 

and a proxy, Drainage class was 

used.  High drainage class values 

denote reduced vulnerability.  

The study used Drainage class as proxy. This is a 

1km resolution soil map from the Harmonized 

World Soil Database (HWSD) version 1.1 

produced in 2009 by the International Institute 

for Applied System Analysis (IIASA). The HWSD is 

an image file linked to a comprehensive attribute 

database in Microsoft Access. This attribute 

information includes soil mapping units, soil 

texture for top and sub soils and several other 

soil properties including Drainage. There are 7 

drainage classes in this database. In this study, 

the 7 classes were converted to categorical 

values as follows:  

a) very poor, excessive = 1 
b)  poor = 2 
c) Imperfectly, somewhat excessive = 3 
d) moderately well = 4 
e) well = 5 

Details about this database can be found in FAO 

(2009). 

This is a 1km 

resolution soil 

map from the 

Harmonized 

World Soil 

Database 

(HWSD) version 

1.1 produced in 

2009 by the 

International 

Institute for 

Applied System 

Analysis (IIASA). 

Green 

Vegetation 

Cover (GVC): 

Vea 5/5, Dano 

8/8 

Fractional cover of green 

vegetation during the dry season. 

Higher GVC reduces vulnerability.  

Green Vegetation was computed from 1 km 

MODIS-based Maximum Green Vegetation 

Fraction. These data describe annual maximum 

green vegetation fraction (MGVF), and are based 

on 12 years (2001-2012) of Collections of 5 

MOD13A2 Normalized Difference Vegetation 

Index (NDVI) data. The data is based on the 

annual maximum NDVI and linear mixing models 

that describe green vegetation fraction (vs. non-

vegetated area) for each land cover class for each 

year. Generation of these data is described in 

Broxton et al., 2014b. The data has been re-

gridded from the MODIS sinusoidal grid to a 

regular latitude-longitude grid. Details at: Broxton 

et al. (2014). Average GVC for each community 

cluster was computed with geostatistical 

techniques in GIS.  

Details at: Broxton 

et al. (2014). 
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Groundwater 

level (GWL): Vea 

3/5, Dassari 6/6 

Average level at which most 

boreholes in the area reaches 

water. This is measured in meters 

below ground level. Lower GWL 

denotes reduced vulnerability 

The WRI conducted Hydro-geological Assessment 

Project to monitor the water levels of 37 

observation boreholes throughout the three 

northern regions since 2005. Using the mean 

water level in cm recorded between 2005 and 

2011, the 37 observation points were 

interpolated with Kriging method in GIS to obtain 

data for all community clusters. To follow the 

general trend of data in this vulnerability sub-

component, the GWL data have to be ranked. 

Ranking was done by sorting the GWL data in 

descending order. The area with the highest GWL 

was given a lowest value of 1 and the area with 

the lowest GWL was given a highest value of 13. 

This is based on theoretical understanding that 

areas with lower groundwater levels offer more 

water access to communities in times of climate 

change and these will have more capacity to cope 

or adapt (less energy required to extract water, 

less costs to dig wells). 

Data values are categorical values representing 

meters below ground level (mbgl) as follows: 

a) 1 = >250 

b) 2= 100 to 250 

c) 3 =50 to 199 

d) 4 = 25 to 50 

e) 5 = 7 to 25 and 

f) 6 = 0 to 7. 

The higher the categorical score the better in 

terms of access to groundwater and thus 

increases community capacity to cope with 

limited access in the face of climate change.  

Thus, a community with a score of 6, means 

depth to groundwater is relatively shallow, 

depth range 0 to 7 mbgl and will normally has 

access to more water in the event of drought. 

In the Vea study 

area of Ghana, 

GWL data was 

obtained from 

the Water 

Research 

Institute (WRI) of 

Ghana. 

In the Dassari 

study area, the 

GWL data was 

obtained from 

the British 

Geological 

Survey of Africa 

wide 

groundwater 

mapping project 

(Macdonald et 

al., 2012).  
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Agroforestry 

cover: Dano 2/8 

The percentage of total land in 

the community cluster under 

agroforestry plantation or of 

considerable tree density.  

Where respondents were asked to indicate if they 

practice agroforestry system. Farming practices 

where 10 or more/acre economic trees such as 

Shea and Baobab are purposely left in the farms 

were also counted as agroforestry system. 

From own 

household survey 

Soil depth: Dano 

3/8 

The maximum rooting depth at 

which major crops can grow. This 

is operationalized as the depth to 

bedrock in centimeters. 

This data is obtained from ISRIC-World Soil 

Information as described above.  

From ISRIC- 

World Soil 

Information as 

described above. 

Normalized 

Difference 

Vegetation 

Index (NDVI): 

Dano 5/8 

Normalized difference vegetation 

index during peak crop growth 

This follows the computational description of 

Green Vegetation Cover described above. 
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Vulnerability Component: Capacity, Coping capacity 

Indicator:  Definition and Measuring unit Indicator construction and /limitation of 

indicator 

Data source 

Alternate food 

and income 

source: Vea 1/7, 

Dano 7/7, 

Dassari 1/7 

Percentage of population in a 

community cluster with 

additional food and income 

source other than agriculture. 

Higher percentage increase 

capacity and reduces 

vulnerability 

This is from household survey data and it’s 

computed as percent of households with 

alternate food and income sources. Computed by 

adding percent with alternate income sources 

and percent with outside family support. 

From Household 

survey 

Ability to survive 

crisis: Vea 2/7, 

Dassari 6/7 

The percentage of total 

households within a community 

cluster that is able to survive 

crisis. Higher percentage reduces 

vulnerability.  

From household survey data. Respondents were 

asked about their sense of security. Household 

who feel insecure or somewhat insecure are not 

able to survive crisis. Households that feel either 

“somewhat” or “very” insecure about their ability 

to withstand any hardships have low coping 

capacity. 

From household 

survey 

Social capital: 

Vea 3/7, Dassari 

2/7 

Percentage of communities 

within a cluster with highly or 

adequate participation of people 

in communal activities such as 

clean-up campaigns, village 

meetings etc. Higher ordinal 

score increases coping capacity 

and reduces vulnerability.  

This is from household survey and focus group 

discussion. Community leaders were asked to 

rank the level of participation of community 

members in communal activities. Four ordinal 

classes were used: 

a) total apathy of community members =1 
b) barely adequate participation = 2 
c) adequate participation =3 
d) highly participatory =4 

From household 

survey 

Local 

knowledge: Vea 

4/7, Dano 3/7, 

Dassari 3/7 

The percentage of people in a 

community cluster with good 

knowledge of climate variability, 

local environmental issues and 

have taken part in any disaster 

risk reduction education in the 

last five years. Higher percentage 

reduces vulnerability.  

From household survey data. Households were 

asked to indicate their knowledge on local 

environmental issues, disaster risk reduction, 

climate change adaptation and awareness of 

climate variability. Households who described 

their knowledge level as high and very high were 

computed as having adequate understanding of 

local climate change issues.  

From own 

household survey 
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Emergency 

management 

committee 

(EMC): Vea 5/7, 

Dano 4/7, 

Dassari 7/7 

Annual meeting frequency of 

local emergency committees in 

the community cluster. Higher 

meeting frequencies reduces 

vulnerability 

From household surveys and focus group 

discussion. It was difficult for the disaster 

volunteers to estimate the number of times they 

meet in a year and therefore an operational 

definition of the indicator was found.  The 

indicator was operationalized as a binary variable 

with two indicating the presence of emergency 

committees and 1 representing absence thereof. 

In a cluster of communities, the dominant 

response was used. For instance, in a cluster of 7 

communities, if 5 out of the 7 communities 

indicate they that they have EMC, that average 

response was used to represent the cluster.  

From own 

household survey 

Relief period of 

emergency 

items: Dano 6/7, 

Dassari 4/7 

The length of time in days it takes 

for disaster managers to provide 

relief items and emergency 

support services to affected 

people. Relief items could include 

medicines, temporal shelters, 

blankets, food aid etc. in times of 

emergencies. High categories 

increase coping capacity and 

reduce vulnerability.  

This indicator from field surveys measures access 

to national emergency funds and relief items.  

Relief response is the response time that disaster 

managers takes to provide relief to affected 

people. It is stated in days and converted into 

categorical variables as values: 

a) 6 = 1 to 7 days after disaster 

b) 5 =8 to 15 days after disaster 

c) 4 = 16 to 30 days after disaster 

d) 3 = 31 to 60 days after disaster 

e) 2 = 61 to 300 days after disaster 

f) 1 = beyond 300 days after disaster 

From own 

household survey 
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Vulnerability Component: Capacity, Adaptive capacity 

Indicator:  Definition and Measuring unit Indicator construction and limitation 

of indicator 

Data sources 

Access to 

agricultural 

extension service: 

Vea 1/7, Dano 4/5, 

Dassari 2/8 

Average number of agriculture 

extension officers per community in 

the cluster. High number increases 

adaptive capacity and reduces 

vulnerability.  

                                                                                        

From household survey 

 

Household income 

per annum: Vea 

2/7, Dano 2/5, 

Dassari 1/8 

Average household income per 

annum in the community cluster. 

Higher income decreases 

vulnerability.  

From household survey data. All 

income sources from all farm plots 

cultivated by the households, income 

from sales of livestock and poultry, 

non-farm income from activities of all 

economically active household 

members as well as remittances and 

support received from friends and 

family were computed.  

From own 

household survey 

Literacy rates: Vea 

3/7, Dano 1/5, 

Dassari 4/8 

The percentage of the cluster’s 

household heads that can read and 

write. Higher percentage increases 

adaptive capacity and decrease 

vulnerability.  

From field surveys: Initially, the 

illiteracy rates computed from 

percentage of household’s heads who 

can neither read nor write was 

estimated from people without any 

education both formal and informal. 

This was subsequently subtracted from 

one to give an indication of percent 

literate. 

From own 

household survey 
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Number of herds 

per household: 

Vea 4/7, Dano 5/5, 

Dassari 3/8 

Average number of herds of 

livestock owned by households. 

Herds include goats, sheep, poultry, 

cattle and donkeys if they are used 

for economic activities. Higher 

herds per household increases 

adaptive capacity and reduces 

vulnerability. 

From household surveys. The number 

of all livestock and poultry including 

cattle, sheep, goats, pigs, chicken, 

guinea fowls, ducks, dogs and donkeys 

were recounted by households. These 

absolute numbers were converted to a 

common scale to allow for comparison 

using the Tropical Livestock Units 

indicated below: 

a) Cattle = 0.8 

b) Sheep, goats = 0.1 

c) Pigs = 0.3 

d) Chicken, guinea fowl, ducks = 0.007 

e) Donkey = 0.5 

From own 

household survey 

Gross margin per 

hectare: Vea 5/7, 

Dassari 5/8 

This is the ratio of the difference 

between total crop revenue and 

variable production cost per 

hectare. Higher Gross margin 

increases adaptive capacity and 

reduces vulnerability. 

From household surveys. Production 

information for all crops produced by 

the household was collected. This 

information included area cultivated 

per crop, yield/ha, market prices of the 

commodities and production cost.   

Gross margin was estimated as total 

crop revenue less the variable cost of 

production. Variable cost for gross 

margin estimation is the sum of all 

inputs which cost constitutes more 

than 5% of the total production cost.  

Sum of gross margins from three most 

important crops in terms of area under 

production were then estimated to 

derive the Gross margin/ha. 

From own 

household survey 
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Good leadership & 

management: Vea 

6/7, Dano 3/5, 

Dassari 6/8 

Percentage of communities within a 

cluster with well functional 

institutional network comprising 

well respected chiefs and effective 

local government structures. 

Higher categorical values increase 

adaptive capacity and reduce 

vulnerability.  

This is from field surveys. Community 

members were asked to indicate the 

level of effectiveness of local 

government structures and tribal chiefs 

in managing the affairs of the 

community especially in times of 

emergencies. Four ordinal variables 

were ranked. These are classified as 

follows: 

a) 1 is nonfunctional local leadership  

b) 2 is ineffective local leadership 

c) 3 is effective local leadership and 

d) 4 is highly effective local leadership 

From own 

household survey 

Access to farm 

labour: Vea 7/7 

Percent of households within a 

cluster with timely access to labour 

for major farm activities. Higher 

percentage increases adaptive 

capacity and reduces vulnerability 

This is from household surveys. 

Respondents were asked to indicate 

whether they have immediate access to 

labour for major farm operations in a 

situation where funding is not a 

constraint.   

 

Access to land or 

land ownership: 

Dassari 7/8 

Percentage of households within a 

cluster with unhindered access to 

land. Higher percentage increases 

adaptive capacity and reduces 

vulnerability. 

 

From household surveys. Respondents 

were asked to indicate whether they 

own their farmlands or have readily 

access to farmland to rent especially in 

settler communities where the people 

do not own land.  

From own 

household survey 
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5. From Communities to Nations: Upscaling risk and vulnerability 
Indices – Theoretical concepts 

5.1. Introduction 

O'Brien et al., (2004), observed that for people to cope with actual and potential changes in climate and 

climate variability, it is important to recognize climate vulnerabilities at the regional and local scales, and 

to address them accordingly and that multi-scale assessment are important for a comprehensive 

understanding of global change impacts.  According to the MEA (2003), results obtained from a given 

scale are invariably influenced by interactions of ecological, socio-economic, and political factors from 

other scales and that relying on a single scale is likely to lead to missing interactions which are important 

for our understanding of ecosystem determinants and their effects on human well-being. For example, 

local non-codified knowledge or information systems of marginalized people are often overlooked in larger 

spatial scale assessment or higher levels of aggregation (MEA, 2003).  An important prerequisite therefore 

is to explore how multi-scale and cross scale interactions can contribute to decision making at various 

levels and how that affects the overall risk faced by people in nearby areas. This can help in the 

visualization of complex patterns (UNDP, 2004) and can also help to identify important dynamics of the 

system that might otherwise be discounted. Trends that take place at much larger scales according to 

MEA (2003), although can be expressed at a local scale, could go undetected in purely local-scale 

assessments. Yet, the global risk assessment literature and discourse lack this perspective and normally 

assesses risk at single scales and also to single hazards. Little is known about upscaling risk and 

vulnerability indices from a local scale to larger spatial scales and studies that take into consideration 

the effects of the interactions among various decision makers on the overall risk in other scales are 

lacking.  

 
In this chapter, a conceptual basis for conducting risk upscaling at higher spatial hierarchies is outlined. 

This conceptual approach allows for a unified risk assessment at higher spatial scale which is required to 

support comparative assessment of risk across equivalent spatial scales in different countries. This 

approach is referred to as upscaling and it involves combining the different indicators from all three 

study areas, investigated in the preceding chapters, into a unified indicator set without losing the fine 

details from local scale experts. In this chapter, the fundamental principle to upscale the information 

per indicator in a relevant manner for the next hierarchical scale is outlined. This upscaling process is 

seen as a tightrope walk between achieving comparability for a regional based risk assessment but at 

the same time carrying all relevant information from the specific watershed sites. This then allows for 

multi scale risk assessment and also multi-location comparison. This indicator upscaling principle then 

lays the foundation for a more quantitative risk assessment by future researchers across multiple spatial 

scales.  

In this study, disaster risk upscaling is defined as the indicator-based determination of disaster risk at 

higher spatial scale using results of current risk indicators at lower spatial scale. The disaster risk 

determined at the higher spatial scale is not simply scaling up the lower risk indices but it takes into 
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account the interactions and cross-scale influences from different actors acting independently to reduce 

disaster risk at that scale.  The lower spatial scale can be a watershed or the community level where the 

principle of participatory approaches has been used to develop indicators to determine the risk faced by 

the SES in chapter two of this thesis.  

In vulnerability and risk assessments, scale is important for two main reasons. SES and processes operate 

at a wide variety of scales and across scales, they can change in their nature and sensitivity to various 

driving forces and so it cannot be assumed that results obtained at a given scale will invariably be the 

same at another.  Focusing on single scale can lead to missing these interactions (Kremen et al., 2000, 

McConnell, 2002). This is observed in the recent World Risk Report 2014 (Garschagen et al., 2014) issued 

by the United Nations University-Institute for Environment and Human Security and the Alliance 

Development Works where it was found that some parts of West Africa, particularly Ghana and Mali are 

classified as having very high national-level risk, yet the urban risk in these countries fall in the very low 

risk category (Garschagen et al., 2014). Among the many causes of this phenomenon is the huge 

dependency on climate sensitive sectors in the rural areas but probably also, as a result of cross-scale 

interactions resulting from decisions from various stakeholders acting at different scales. However, the 

underlying reasons and specific interactions of such phenomenon are poorly understood. For these 

reasons, disaster risk reduction practices need to be multi-hazard, multi-sectoral and inclusive in nature 

so as to make it efficient and effective (UNISDR, 2015). A good way to achieve this is to pursue inclusive 

risk assessment approaches that recognize the effects different stakeholder actions have on the mean 

risk of other at-risk populations at different scales. 

In  

      Figure 5-1 below, the different stakeholders acting at different scales are shown. It shows that several 

stakeholders operate at different scales and in most cases the actions of these stakeholders operating 

at different scales leave unintended results which affect the risk or increases the exposure of the people 

and the SES in adjoining scales. 

Nelson et al., (2010) outlined the steps and scales of mainstreaming ( 

      Figure 5-1) needed to integrate Climate Change Adaptation (CAA) and Disaster Risk Reduction (DRR) 

and indicated that for the integration to be effective and to mitigate these cross-scale interactions, there 

is a need to create “comprehensive integration and interweaving of climate change and DRR issues 

combined with environmental and socio-economic themes and dealing with the trade-offs in the 

decision making” (Nelson et al. 2010, p.28). These trade-offs can be assessed when the nature of these 

interactions is better understood, an area that is not covered in current risk assessment discourse.  
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      Figure 5-1: Level of mainstreaming climate change adaptation into DRR.  
      Adapted from Nelson et al., (2010).  

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Typical stakeholders and their interactions for DRR in the three case study countries. Data 
derived from UNDP (2012). 
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2. The concept of indicator upscaling in risk assessment 

Upscaling, according to (MEA, 2003, p.129) is “essentially an aggregation challenge, complicated by the 

fact that simply adding smaller-scale values can give misleading results” as the data may fail to meet 

established sampling methods or may not take account of stochastic variability in processes and 

interactions among different stakeholders as well as decisions and actions emanating from the many 

actors”.  

5.2. Upscaling levels 

The three levels to upscale the risk index derived at the watershed scale is proposed (Figure 5-3). These 

spatial levels are: 

• Sub-national (refers to 2nd sub-national administrative levels of districts or communes or county 

or province depending on the terminology used in the country under study) 

• National (Refers to 1st sub-national administrative level of regions or departments or state as 

used in the country under study) 

• Regional (refers to sub-continental groupings such as ECOWAS or continental grouping such as 

Africa or Europe). 

 The basis for upscaling is the watershed scale where fine scale data were collected from both primary 

and secondary data sources including remotely sensed estimated biophysical parameters. Here the unit 

of analysis is the household. Community vulnerability profiles relating to multiple hazards of floods and 

droughts have been developed and presented in chapter four. The vulnerability index developed at the 

watershed scale will be upscaled to several administrative hierarchies (Figure 5-3) within the West 

African sub-region as a case study. The first upscaling level will be the sub-national administrative level 

of districts; the second is national level of regions and provinces whilst the third   could extend the 

framework to allow for the index to be upscaled to the national or regional level. Beyond the 

administrative scales herein proposed for upscaling, the concepts of upscaling can also be applied based 

on agro-ecological zones or climatic zones to assess if different agro-ecological zones which are largely 

determined by climate and geomorphology exhibit differences in disaster risks.  
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Figure 5-3: Different scales for upscaling risk index.   
Note that, as a case study, the risk and vulnerability indices have already been developed at the basis scale (the 
watershed level and presented in Chapter 4. In the present study, the next upscaling level, the sub-national with 
administrative districts as the unit of analysis will be assessed under autonomous conditions. The indices will then be 
upscaled to the national level where the unit of analysis is the administrative region/province.  
 

5.2.1. Upscaling indicators of drought and flood vulnerability of a socio-ecological system in West 
Africa– conceptual basis 

In chapter two, a set of indicators for quantifying the vulnerability and risk to flood and drought hazards 

were developed from participatory methods. The approach followed a step-wise procedure to develop 

Indicator Reference Sheet based on conceptual risk assessment framework developed by Kloos et al. 

(2015) and combined with knowledge of local experts iteratively selected through a snowball approach. 

These indicators, which differed from each study area, have been used to construct community level 

vulnerability profiles for the three case study areas, Vea in Ghana, Dano in Burkina Faso and Dassari in 

Benin. In the present study, an approach is presented to upscale indicators to the next higher spatial 

scale in a unified manner without losing important features.  This is important to scale-up essential 

information gathered from the lower scale assessment to a higher spatial scale. As can be seen in Figure 

5-3, upscaling risk indices from lower scale at multiple locations to higher spatial scales has inherent 

complexity and aggregation as one transcends the higher scales and it’s therefore essential to reduce 

this complexity through for example, a unified indicator approach for all the multiple locations.  

To do this, a tiered upscaling process is conducted to allow indicators within each component to be 

upscaled from the watershed scale to the next scale which would be districts or regional scales (at the 

sub-national level). A grid-based upscaling procedure is proposed allowing each study area to retain the 

original ranking and then by extension the weights that were assigned to that particular indicator as 

described in chapter two. In the indicator development process described in chapter two, each study 

area provided the ranking indicating the relative importance of each indicator for that study area. To be 

able to use this ranking at higher spatial scales and without compromising this important location 
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specific indicator ranking system, a grid-based upscaling process is introduced. The grid size to be used 

for the next upscaling level depends on data availability and the need to reduce model complexity but 

generally a 1 km grid could be used for sub-national spatial levels. The use of uniform grid-based 

approach allows risk assessment from a watershed level to be upscaled to any desired spatial scale. The 

boundary criterion is then defined by the research interest and this could range from administrative 

boundaries to climatic zones to agro-ecological zones or any boundary layer defined by research interest.   

In this study, the MEA (2003) approach of indicator categorization was combined with author judgement 

and literature to upscale indicators from the watershed scale to the next higher scale. Indicators are 

then categorized as either (i) scale dependent with known scaling rules or (ii) scale independent or (iii) 

non-scalable.  

Scale-dependent indicators that have a known or potentially knowable translation rules are scalable and 

can be expressed in smaller or larger aggregated units. Usually the scaling rules are complex and 

nonlinear. These variables tend to follow nonlinear or discontinuous scaling rules for reasons such as 

spatial or temporal interactions, organizational scope and the limits of institutional authority as one 

transcends to a higher scale, and high heterogeneity or changes in the nature of the regulating factors 

as the scale changes (MEA, 2003). 

The second category of scale-independent variables can be scaled rather simply by addition or 

proportionality. They show conservation of mass or value and have no or little spatio-temporal 

interdependencies. Simply dividing the numerical values of such variables by their measurement unit 

such as per square meter or per year will render such variables scale independent. A typical example is 

population density where the number of people is divided by the land area.  

Variables or processes whose meanings are defined only at particular scales are described by MEA, 

(2003) as non-scalable. For instance, the process of decision-making within a household cannot be scaled 

up to the nation as different principles apply.  Such variables can only be “qualitatively scaled” by placing 

them in clusters with conceptually related variables at different scales. 

Combining this theory and that of author knowledge, a decision tree is developed and shown in Figure 

5-4 below that forms the conceptual basis for upscaling indicators from a lower spatial scale to a higher 

spatial and multiple scales. The upscaled indicator from the watershed level is then assumed to be 

relevant for all higher spatial hierarchies beyond the watershed/local scale. This is the upside of using a 

grid based approach for the upscaling.  

In the decision tree below (Figure 5-4), all indicators are subjected to four fundamental questions and 

three sub-questions resulting in a total of seven questions during the upscaling process. Four of the 

seven total questions are terminal questions. This means if an indicator fails that particular question; it’s 

immediately dropped from further analyses and does not go through the upscaling process. These 

questions are described below: 
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Figure 5-4: Decision tree for upscaling indicators from a lower spatial scale to higher scale. 

 [1] Is watershed indicator scalable? This is the first fundamental question that an indicator must satisfy 

before being subjected to the next criteria. If an indicator is not scalable, it’s immediately 

dropped from subsequent analysis. Scalable indicators can either be scale dependent or scale 

independent.  

[2] Is the indicator scale independent? If an indicator is scale independent, that indicator is upscaled 

based on the principle of scale independent upscaling by simply dividing the numerical values of such 

variables by their measurement unit such as per square meter or per year. For instance, the indicator 

‘Population density’ in the susceptibility component is upscaled to the next spatial hierarchical scale of 

say, a district by dividing the number of people who live in that district by the total land area defined by 

the district boundary.   

 [3] Is the indicator scale dependent?  If a group of indicators are relevant in one or more local scale 

study areas and are scale dependent, the next sub-question is whether that indicator has some known 

scaling rule, if that is true, then that indicator is upscaled by using the scaling rule and author judgment. 

If not, it’s classified as non-scalable.  For example, indicators ‘Bas fonds’ and ‘Agroforesty area’ are scale 

dependent but with the application of remote sensing techniques, those indicators can be upscaled to 

the next spatial hierarchy. Similarly, Indicators ‘Runoff rates’ and ‘Soil erosion’ are scale dependent but 

have scaling rules. These indicators can be upscaled with the application of runoff and erosion models 
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such as the rational hydrological model and universal soil loss equations to upscale them to the next 

higher spatial hierarchy. Again, in this category, if an indicator has no known scaling rules, that indicator 

is described as non-scalable and is therefore dropped from subsequent analysis.  For example, the 

indicator ‘Local knowledge’ in the coping capacity component has no known scaling rule and was thus 

dropped. In sum, there are two basic criteria for upscaling scale dependent indicators. These are: 

a) Indicators with potentially known scaling rules. Here the scaling rule is combined with 

author/expert knowledge and then the indicator is upscaled.  

b) Practical relevance of the indicator for the next spatial hierarchy in the context of multi-hazard 

risk assessment. This is described below: 

[4] Is indicator or its proxy applicable at the next higher spatial scale with reasonable data availability? 

This an important sub-question below both the scale independent and scale dependents criteria that 

seeks to confirm whether the indicator if upscaled will be applicable at the next higher spatial scale. This 

is also another terminal sub-question. If an indicator will be irrelevant at higher scales either because it 

doesn’t apply or lacks reasonable course scale data or a proxy variable cannot be found, that indicator 

is classified as non-scalable and is dropped.  Such indicators are not relevant for climate change risk 

assessment at the next spatial scale and are thus also classified as non-scalable. For example, the 

indicator, ‘Female headed households’ has no practical relevance for risk assessment in urban areas 

since vulnerability in urban centres is neutral to whether the household is headed by a female or not, 

whereas, in rural areas, access to economic resources such as land has important gender dimensions. 

Scale independent indicators are further subjected to two other sub-criteria described below: 

a) Is the indicator relevant at the local scale in two or all the three case study areas? Note the use 

of word “two or more study areas”. If so, that indicator is directly upscaled to the next spatial 

scale. Direct upscaling relies on the principle that simply using proportions, additions or 

averaging the pixel values within each spatial unit provides a data value for the upscaled 

indicator at the next higher spatial scale. For instance, the indicator, ‘Caloric intake per capita’ in 

the susceptibility component is directly upscaled to the next higher spatial hierarchy by 

averaging the calories consumed per capita from all pixels that constitute the spatial unit. At the 

district upscaling level, this spatial unit is the boundary layer of the district.  

b) The next sub-question under the scale independent category is whether an indicator or group of 

closely related indicators in the same vulnerability sub-component is/are relevant at the local 

level in one or more study areas?  If this question cannot be satisfied, the indicator under 

consideration is dropped. If the question is affirmed, the group of scale independent indicators 

are typically aggregated and converted to a closely related variable or proxy. This aggregation of 

indicators is based on observed relationships between the indicators from literature and authors 

knowledge. This indicator reductionist approach is required to minimize model complexity in 

subsequent analysis needed to estimate risk index at higher spatial scales and also to aggregate 

fine scale information obtained at a lower spatial scale to higher scale with less detailed 
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information. For example, in the susceptibility component, two indicators, ‘Number of 

dependents’ and ‘Household size’ are aggregated and converted into ‘Dependent Population’ 

since the two Indicators measure the similar phenomenon in climate change risk assessment. 

The converted indicator ‘Dependent population’ at the next upscaled level is derived by 

averaging people above age 65 and below age 15 for all households in the spatial unit. 

It must be noted however, that, directly upscaling indicators described in category [4a] are also scale 

independent indicators just as those as described in category [4b]. They show conservation of mass or 

value, can be scaled by addition or proportionality and have little or no spatio-temporal 

interdependencies, the main difference between the two in this study is that, indicators in category [4b] 

are typically aggregated and converted into a proxy variable whereas indicators in category [4a] are 

“directly upscaled” without any translation or conversion. Moreover, for an indicator to belong to 

category [4a] and be directly scaled, it must be relevant in at least two watershed case study areas whilst 

category [4b] indicators need to be relevant in one or more watershed case study areas.  

The results of the application of this upscaling have been presented in accordance with the risk 

assessment framework adopted for this study. These results are presented in the section below. 

5.2.2.  Illustration of indicator upscaling concept 

To upscale indicators that describe the exposed elements in the social sub-system, two indicators, 

‘Agricultural Dependent Population’ and ‘Insecure settlements’ are combined to form ‘critical elements 

in hazard zones’ during the upscaling process. This is because both indicators describe the exposure of 

elements within the SES, in this case including people and settlements. The relevance of this broad 

category in risk assessment is that the higher the proportion of critical elements in hazard zones, the 

more an area will be impacted by disruptions in production system due to changing environmental 

conditions (Adger et al. 2004, O’Brien et al, 2004). 
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Figure 5-5: Procedure for upscaling exposed elements indicators. 

 

Figure 5-6a: Procedure for upscaling social system susceptibility indicators 
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Figure 5-7b: Procedure for upscaling ecological system susceptibility indicators. 

 

 
Figure 5-8: Procedure and results for upscaling coping capacity indicators 
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Figure 5-9: Procedure and results for upscaling adaptive capacity indicators. 

 

 
Figure 5-10: Procedure and results for upscaling ecosystem robustness indicators. 

 

5.3. Weighting of indicators in the upscaling process 

To determine the aggregate weight of the upscaled indicator, the original rank of that indicator in the 

applicable study area was converted to weights by using the Al-Essa (2011) model presented in Equation 
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4-4. Then the average weights of the indicator across all applicable study areas within the same sub-

component are computed. Within that sub-component, the indicators are ranked in ascending order 

based on the derived weights. The new ranking is then used to determine the new weights of the 

indicator in the unified system by using the Al-Essa model. The final weight is determined as an average 

of the weightings of all indicators in a sub-component. This is finally converted to percentages to ensure 

the sum of all weights in a sub-component adds up to 100. 

 

5.4. Conclusions 

The results of this approach in the context of the present research shows that there is a total of 27 

indicators to be used for upscaling risk indices from the watershed scale to the next spatial scale. This is 

a clear example of indicator reductionist approach where as one transcends higher scales; the number 

of indicators and detail information are reduced due to increasing level of aggregation. For instance, the 

lower scale Vea study area used a total of 32 indicators to determine the risk index at that scale. This 

type of indicator aggregation theory agrees with the assertion of Cushman et al., (2010) that up-scaling 

usually involves changes in the organizational-level of observation and inference. Moving across 

organizational levels changes the grain and extent of observations in space and time, together with the 

entities observed, variables measured and the processes underlying the phenomena.  

 

In this chapter, the theoretical concepts have been formulated to provide the foundation to upscale 

disaster risk index from watershed to numerous administrative units. In order to evaluate risk across 

equivalent administrative units in a number of countries, it’s important to have unified indicators. A grid-

based conceptual framework is therefore proposed and introduced to upscale the indicators from a 

watershed scale to higher scale.  This approach allows the application of complex models such as Agent 

Based Model (ABM) to be applied in further studies to understand the interactions and feedbacks loops 

that influence risk outcomes particularly, in higher spatial scales. The thesis has also introduced a useful 

concept of risk index upscaling. These theoretical concepts although could not be operationalized and 

quantified in this thesis due to time constraint, provides an interesting shift in the scientific discourse of 

risk assessment. Lack of appropriate approaches has limited the assessment of climate change impacts 

to regional or global levels. In some cases, attempts have been made to downscale these courser scale 

assessments to a local level. This thesis therefore provides the theoretical basis to enable a reverse 

assessment i.e. from lower spatial level such as watershed level to a higher spatial level such as 

administrative regions or country level. This is absolutely important as it allows policy makers, 

practitioners and in particular disaster managers to better understand the effects of their interventions 

across a trajectory of spatial scales and to institute inclusive and well-integrated adaptation strategies 

so as to sustainably reduce disaster impacts.  
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6. Synthesis and outlook 

Disasters, particularly recurring small-scale disasters and slow-onset natural disasters have been 

affecting communities, impacting inherently weak households and small and medium-sized enterprises 

(UNISDR, 2015).  

This constitutes a high percentage of all losses and impedes sustainable development. In West Africa, 

these losses have been significantly high over the last decade due to increasing climate variability and 

inherently depressed socio-economic systems. The region has been described as a hotspot of climate 

change as all climate projections indicate a marked departure from historical weather phenomenon. Of 

particular importance is rainfall which Sylla et al. (2015) projected a decrease in the absolute number, 

but an increase in the intensity of very wet events – leading to increased drought and flood risks towards 

the late 21st century.  The reliance on rain-fed agriculture by over 65% of the population means that 

vulnerability to climatic hazards such as droughts, rainstorms and floods will continue.  

However, till date, no study has attempted to understand the risk and vulnerability profiles in West 

Africa to these multiple hazards across several scales; from rural communities and watersheds to 

districts to regions and to the national levels. Few studies in the region and across the world that have 

assessed risks to natural hazards have done so at single scales and used indicators from literature, 

therefore lacking an important element of a participatory process that could allow at risk populations to 

be involved in determining what factors (indicators) characterise their own risks. Another drawback of 

these existing studies is sectorial risk assessment where either only the social sub-system or only the 

ecological sub-system are assessed and also using single hazards.  

A significant number of studies predict the impacts of climate change, but many do so at a very coarse 

scale and are also unable to predict localized impacts, which may typically differ from coarser scale 

assessments. Research on risks and the accompanying vulnerabilities of the Social-Ecological Systems 

(SES) to climate change has largely addressed the expected impacts of climatic change on national, 

regional or sectoral scales but are largely unavailable at community level where risk outcomes are first 

materialized. There is an increasing need for a shift from global and regional assessments to sub-national 

and community level assessments because these are the scales where major decisions against risk are 

made and expected to be implemented. 

There have been arguments that conventional validation of vulnerability and risk is impossible because 

vulnerability cannot be measured in the traditional sense and a conclusion that validation still remains 

an open challenge in risk assessment has been made (Damm, 2010). To this end, the risk assessment 

literature commonly uses statistical methods such as Monte Carlo analysis, sensitivity analysis etc. as 

the only validation tools although actual evaluation of complex model outcome against real data is an 

integral part of risk assessment. 

 Also, despite the major impact of floods on the livelihoods of the people living in this region, no attempt 

has been made to delineate the boundaries of flood intensity at the community level and to identify 

areas most at risk of flooding. The use of flood hazard maps for managing disasters in West Africa is 
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uncommon and disaster managers have for many years relied on traditional methods such as 

watermarks on buildings, local knowledge and media reports to identify possible affected areas during 

flood events (Nyarko, 2002). 

Again, despite much efforts in vulnerability assessments, there has been limited success in 

‘’simultaneously traversing scale and hierarchy from a lower scale to large scale and vice versa’’ 

(Cushman et al., 2010). The underlying reasons, effects and specific interactions resulting from decisions 

from various stakeholders acting at different scales are poorly understood. There is an urgent need to 

pursue inclusive risk assessment approaches that recognizes the effects different stakeholder actions 

have on the mean risk of other at-risk populations.  

This thesis therefore purports four main objectives to address the gap outlined above:  

[1] To develop indicators using both local and national levels experts at different scales to allow for a 

comparison to be made between the results coming from the different categories of expertise at 

different spatial scales. To do this, the study followed a step-wise procedure to develop Indicator 

Reference Sheet based on conceptual risk assessment framework and combined with knowledge of local 

experts iteratively selected through snowball approach. 

 [2] To develop community level flood hazard intensity maps at high spatial resolutions to aid local 

disasters manages to effectively manage flood disasters. To achieve this, remote sensing and Geographic 

Information System (GIS) techniques were combined with hydrological and statistical models to 

delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and 

Benin. The study also employed empirical validation methods using statistical confusion matrix and the 

principles of Participatory GIS to evaluate the results of the flood hazard intensity zones.  

[3] To conduct multiple hazard risk assessment through a bottom-up participatory process as opposed 

to the classical top-down, large scale approaches; assessing risk from the perspectives of a coupled SES 

rather than single-hazard-decoupled risk assessments; and assess risk using indicators relevant for rural 

communities across West Africa. The study also aims to explore appropriate validation approaches to 

evaluate the results of a complex risk assessment. Several methodological procedures including 

statistical, GIS and remote sensing approaches were followed to develop community vulnerability and 

risk indices.  

[4] To simulate the decisions and actions of the different stakeholders in responding and adapting to 

natural hazards and how these decisions and actions feedback into risk and vulnerability of people in 

other scales through a novel indicator upscaling concept.   
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6.1. Conclusions at a  glance 

The key findings of the thesis are: 

In Chapter 2: 

• The study developed comprehensive list of indicators relevant for multi-sectorial, multi-

hazard and spanning three watersheds in three countries. The study has systematically 

produced comprehensive indicator set that now could support policy makers, researchers 

and practitioners in West Africa and across the world with a set of indicators ready to be 

used for risk and vulnerability assessment in the context of climate change, multi-hazard 

scenarios and when a coupled SES approach is desired.  

• The methodology allowed for a representative participation of at risk populations facing 

multiple hazards of drought and floods and then developed indicators for both the 

quantitative and qualitative assessment of risk.  

•  The study showed that majority of the indicators have either not been used or are hardly 

used in the literature related to West African multi-hazard risk assessment in the context of 

climate change. Different study areas or cultures have specific indicators that were unique 

to its socio-economic context. 

• However, even among common indicators, there are differential rankings across different 

countries and this differential ranking indicates the relative importance of the indicator in 

other socio-economic and environmental settings.  

• The study showed that the relevance and weights of indicators can only be properly 

understood by engaging with the vulnerable people themselves.   

• However, participatory approaches were not without shortcomings. This has been 

collaborated by Bell & Morse (2003; Freebairn & King, (2003) and Reed et al. (2008).  

• In some cases, classical approaches were combined so as to derive the best results. This 

chapter concludes that neither standalone classical approaches (top-down) nor a purely 

participatory process is sufficient in determining useful indicators for risk assessment and 

that appropriate mechanism must always be sought to strike a balance.  

In chapter 3: 

• The study demonstrated the feasibility of flood modelling in data scarce environments and 

mapped flood hazard intensity zones at community levels.  

• The study introduced an innovative flood modelling validation procedure using statistical 

and PGIS principles to evaluate the robustness of the methods used.  

• Using the remote sensing technique of a confusion matrix, the overall accuracy of the flood 

hazard index was estimated to be 77.62% in the Vea study area and 81.41% in the Dano study 

area.  

• The flood modelling method introduced in this study delineated hotspots of flooding and 

showed areas within the three watersheds which are generally free from flood risk.  
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• These so-called flood safe havens are extremely important in times of emergencies. They 

support effective disaster management operations as recommended by Kundzewicz et al. 

(2014) and allow for the preparation of evacuation plans (Morjani, 2011). 

•  These high mapping accuracies notwithstanding, the flood index categories may change 

under conditions of very high rainfall intensities beyond the anomalies used to construct the 

model. Under such situations, areas previously classified as flood safe havens may fail to 

offer protection.  

• To this end, further studies aimed at understanding projected flood intensities under varying 

rainfall intensities beyond the anomalies used in this study will be very important to 

determine the trajectory of flood safe havens across the study areas.  

In chapter 4:  

• The study also developed the vulnerability profiles of communities in the three study 

countries using a multi-hazard context and an SES orientation.  

• The study developed two important indices, The West Sudanian Community Vulnerability 

Index (WESCVI) and The West Sudanian Community Risk Index (WESCRI). 

• The underlying factors constituting the two indices were then taken as constituting the risk 

and vulnerability profiles of communities in West Africa.  

• These vulnerability profiles are significantly important and provide the main pointers to 

policy makers to reduce vulnerability and risk.   

• For instance, the results show that sharp differences in vulnerability among communities in 

the Vea study area of Ghana is due to huge disparities in the socio-economic profiles of the 

people.  

• The results went further to show that a low exposure level can mitigate moderate levels of 

susceptibility and subsequently help reduce vulnerability and risk.  

• Policy makers can then deploy interventions that reduce exposure levels to help bring down 

vulnerability and risk.  

• Similarly, the study found that an area will still be classified as having significantly high risk 

levels when unusually high exposure levels are combined with moderate levels of 

susceptibility, no matter how strong its capacity to cope and adapt to the hazards might be. 

This finding is important and has several implications for policy makers and development 

practitioners striving to undertake only adaptation measures without the commensurate 

efforts to reduce people’s exposure to obvious physical hazards.  

• However, this must not be misconstrued as over-emphasizing the importance of exposure 

reduction.  

• Because the study also found that poor state of inherent conditions and lack of total adaptive 

capacity could still place an area in high risk zone although its exposure to the hazards is low.  

• Therefore, it’s absolutely important to pursue development activities and Climate Change 

Adaptation (CCA) interventions that are well integrated, inclusive and address all facets of 

vulnerability and development.  
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• The community level risk and vulnerability profiles fulfils an increasing need for a shift from 

global/regional assessments to community level where major decisions against risk are 

actually made and implemented. 

• To evaluate the results of the vulnerability and risk indices, this thesis introduced a novel 

technique to validate the results of complex aggregation methods.  

• The Community Impact Score (CIS) which measured the cumulative impact of the occurrence 

of multiple hazards over five years in a community is the first in the available literature of 

risk assessment.  

• The CIS uses several variables to determine the aggregated impact of multiple hazards and 

compare this result with simulated risk index.  

• This is a significant contribution to scientific knowledge in this field and opens new frontiers 

in the search for appropriate methods to evaluate the results of complex aggregation 

methods.  

• Several notably studies in this area including the WorldRiskIndex, index of social vulnerability 

to climate change in Africa, Social Vulnerability Index and many others (Cutter et al., 2003; 

Esty et al., 2005; Prescott-Allen, 2001; UNDP, 2004b; Vincent, 2004a; Welle et al., 2013) have 

tried to evaluate the robustness of their indices using only pure statistical methods such as 

Sensitivity analysis and Monte-Carlo analysis and could not compare the simulated index to 

real impact data.  

• This failure to link simulated complex aggregated index to real data on the ground is in most 

cases due to lack of disaggregated primary data.  

• It must be noted that this thesis was able to pursue actual evaluation of the indices because 

of the scale at which the indices were developed. At higher spatial scales, it may be 

impractical to collect actual impact data from the ground or such data may simply be 

unavailable.  

• A key drawback with the methodologies used to develop the community vulnerability 

profiles is the concept of summation used to describe vulnerability.  

• This approach means that in some cases, a community could still be highly vulnerable 

although its exposure may be zero. This is counterintuitive to the basic definition of 

vulnerability which determines that a system must be exposed to a known hazard in order 

to be said to be vulnerable.  

• To counter this effect, the thesis used indicators that indirectly measure exposure such as 

Agricultural Dependent Population to describe the elements within SES that are exposed to 

the hazards. 

•  It introduced two variants of exposure. These were ‘Exposed Elements’ measured by indirect 

indicators of exposure and ‘General Exposure’, measured by intensity and frequency of 

hazards under study.  

• These definitions of exposure allowed for much better interpretation and avoided the 

debate in risk assessment literature about whether to include exposure term in either 

vulnerability or risk component.    
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• In reality, however, people are still vulnerable as a result of inherent depressed socio-

economic conditions although there may not be any obvious hazard to which they are 

exposed to. 

•  This calls for a new definition of vulnerability to be proposed especially in West Africa where 

people are still severely vulnerable in the face of no physical hazard.  

• In the final risk assessment, however, where there’s no hazard, risk will be zero even though 

Vulnerability could be high. This is the upside of the multiplicative effect which was finally 

used to estimate the risk index.  

• This area of risk assessment where a system could still be vulnerable even though there may 

not be obvious linkages to physical hazards requires further studies.  

In Chapter 5: 

• The thesis has also introduced a pioneering concept of risk index upscaling. A grid-based 

conceptual framework was proposed to upscale the indicators from a watershed scale to 

higher scale.  

• This approach can then allow the application of complex models such as Agent Based Model 

(ABM) to be applied in future studies to understand the interactions and feedbacks loops 

that influence risk outcomes across multiple scales. Studies that can apply ABMs to 

understand the cross-scale interactions and feedbacks are needed.  

•  These theoretical concepts of risk index upscaling, represent an interesting shift in the 

scientific discourse of risk assessment.  

• Lack of appropriate approaches has limited the assessment of climate change impacts to 

regional or global levels. In some cases, attempts have been made to downscale these 

courser scale assessments to a local level. This thesis therefore provides the theoretical basis 

to enable a reverse assessment i.e. from lower spatial level such as watershed level to a 

higher spatial level such as administrative regions or country level.  

• This is absolutely important as it allows policy makers, practitioners and in particular disaster 

managers to better understand the effects of their interventions across a trajectory of spatial 

scales and to institute inclusive and well-integrated adaptation strategy so as to sustainably 

reduce disaster impacts.  

• The thesis has also provided a framework for conducting risk assessment relevant for 

multiple cultural, political and institutional contexts. 

•  The indicators were developed from a highly participatory process. The strength of this 

approach lies in the fact the risk and vulnerability profiles developed can be said to represent 

actual risk and vulnerability of the people living in the SES. The same cannot be said of risk 

and vulnerability profiles developed from classical approaches since the foundation of such 

an approach (indicators from literature) are in most cases of abstract nature and do not 

uniquely represent the SES under study. 

•  At the same time and as key outlook, the study sets the pathway for conducting risk 

assessment using a unified indicator set if so desired by practitioners or policy makers. It lays 
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the foundation for researchers interested in an emerging field of study discovered in this 

thesis in the area of risk index upscaling. 

•  There is an urgent call for more research, investment in fine scale data generation and real-

time transmission; as well as   interventions to better understand risk to multiple hazards 

beyond droughts and floods across multiple scales.  

•  It must be noted however that, practitioners or policy makers desiring to conduct multiple 

hazard risk assessment based on the methodologies presented in this study need to have 

several scientific competencies to be able to follow all the approaches outlined in this study.  

• This thesis has however, provided the basic methodologies that have been lacking in the 

West African region in particular, and in the global risk assessment literature in general, and 

show how multiple hazard risk and vulnerability profiles could be assessed, validated and 

upscaled across several scales.  We believe the present study contributes to efforts to finding 

innovative approaches in understanding climate change impacts to rural communities 

affected by multiple hazards. 
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