Bühlmeier, Judith: Einfluss einer hohen Natriumchlorid-Zufuhr und Kaliumbicarbonat-Ingestion auf Säure-Basen-Status und Proteinstoffwechsel. - Bonn, 2011. - Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn.
Online-Ausgabe in bonndoc: https://nbn-resolving.org/urn:nbn:de:hbz:5N-25828
@phdthesis{handle:20.500.11811/4738,
urn: https://nbn-resolving.org/urn:nbn:de:hbz:5N-25828,
author = {{Judith Bühlmeier}},
title = {Einfluss einer hohen Natriumchlorid-Zufuhr und Kaliumbicarbonat-Ingestion auf Säure-Basen-Status und Proteinstoffwechsel},
school = {Rheinische Friedrich-Wilhelms-Universität Bonn},
year = 2011,
month = jul,

note = {

Der charakteristische Muskelabbau der unteren Extremitäten in Immobilisation wird mit parallel beobachteten Proteinverlusten in Verbindung gebracht. Die selektive Atrophie wird auf eine Reduktion der mechanischen Belastung zurückgeführt, kann aber beispielsweise durch diätetische Einflussfaktoren verstärkt werden. So wird eine hohe Zufuhr von Natriumchlorid (NaCl) infolge azidogener Eigenschaften als unabhängiger Risikofaktor für Proteinverluste diskutiert. Ziel der Arbeit war es daher zum einen, die Auswirkungen einer hohen NaCl-Zufuhr auf den Säure-Basen-Status und Proteinstoffwechsel immobilisierter Versuchspersonen zu untersuchen. Da alkalische Mineralsalze bei metabolischer Azidose eine antikatabole Wirkung haben, sollte zum anderen der Einfluss einer oralen Gabe von Kaliumbicarbonat (KHCO3) auf NaCl-induzierte Veränderungen des Säure-Basen-Status und erwartete Proteinverluste untersucht werden.
Die Fragestellungen wurden im Rahmen von zwei stationär im Stoffwechsellabor des Instituts für Luft- und Raumfahrtmedizin (Köln) durchgeführten Interventionsstudien (Salty Life 7 und 8) bearbeitet. Beide Studien bestanden aus je zwei Studienteilen, welche von acht männlichen Versuchspersonen im randomisierten crossover design absolviert wurden. Die Intervention der Salty Life 7-Studie war eine 14-tägige Bettruhe in 6º Kopftieflage (head-down-tilt bed rest, HDTBR,) während der die Diät durch eine hohe (7,0 mmol NaCl/kgKG/d) bzw. niedrige (0,7 mmol NaCl/kgKG/d) NaCl-Zufuhr gekennzeichnet war. In der Salty Life 8-Studie waren die Probanden in beiden zehntägigen Interventionsphasen „gehfähig“ (ambulatory, ambulant) und erhielten eine hohe NaCl-Zufuhr (7,3 mmol NaCl/kgKG/d). Diese wurde in einem Studienteil durch die Supplementation von 3 x 30 mmol KHCO3/d ergänzt. Den Interventionsphasen ging eine stationäre Adaptationsphase voraus. Während der gesamten Studiendauer erfolgte eine standardisierte Nährstoffzufuhr, die streng kontrolliert wurde. Zur Erfassung des systemischen Säure-Basen-Status wurden Blutgasanalysen durchgeführt, Parameter zur Differentialdiagnostik (Anionenlücke, Chloridkonzentration im Serum) erhoben und pH-Wert sowie Netto-Säureausscheidung im 24h-Urin bestimmt. Veränderungen des Gesamtkörper-Proteingehalts sind anhand der Stickstoffbilanz, berechnet aus Stickstoffaufnahme und -ausscheidung im 24h-Urin, erfasst worden. In der Salty Life 8-Studie wurden zusätzlich Messungen der postabsorptiven Gesamtkörper-Proteinkinetik anhand der Tracer Dilution-Methode durchgeführt. Die Konzentration des anabolen Stoffwechselhormons IGF-1 wurde im Serum, die Ausscheidung der Glucocorticoide (GCs) Cortisol und Cortison im 24h-Urin analysiert.
Die hohe NaCl-Zufuhr hatte in Immobilisation im Vergleich zur niedrigen NaCl-Zufuhr eine hyperchlorämische, latente metabolische Azidose zur Folge. Immobilisationsbedingte renale Stickstoffverluste waren um 180% gesteigert. Gleichzeitig war die Ausscheidung des aktiven GCs Cortisol erhöht. Die Ingestion von KHCO3 bei hoher NaCl-Zufuhr hat die NaCl-induzierte Reduktion der systemischen Pufferbasen temporär vermindert. Eine konstante Kompensation der NaCl-induzierten latenten metabolischen Azidose durch KHCO3 wurde jedoch nicht beobachtet. Dennoch war die Ausscheidung der potentiell bioaktiven GCs und der Netto-Proteinabbau, gemessen als postabsorptive Hydroxylierungsrate von Phenylalanin, moderat vermindert. Dies hatte jedoch keinen Einfluss auf die Stickstoffbilanz.
Die Ergebnisse führen zu folgenden Schlussfolgerungen:
1. Eine hohe NaCl-Zufuhr verstärkt immobilisationsbedingte Proteinverluste. Dies scheint durch eine Wechselwirkung aus Veränderungen des Säure-Basen Status und gesteigerter Aktivität des GCs Cortisol verursacht zu werden.
2. Die Supplementation von 3 x 30 mmol KHCO3/d war bei hoher NaCl-Zufuhr ungeeignet zur beständigen Kompensation der Veränderungen des Säure-Basen Status. Auch wenn bereits die temporäre Kompensation zu einer Reduktion von GC-Aktivität und Netto-Proteinabbau geführt hat, wurden NaCl-induzierte Stickstoffverluste innerhalb von zehn Tagen nicht vermindert.

},

url = {https://hdl.handle.net/20.500.11811/4738}
}

The following license files are associated with this item:

InCopyright