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Foreword

One of the most successful concepts in hadron physics is the basic idea of the the parton

model. . .naive parton model, where fast moving hadrons are considered as a jet of quasi-
free partons moving almost collinear. Over more then three decades this simple
and beautiful picture has proven to be an extremely valuable guideline for the
description of a large variety of hard scattering processes. The main physics
effects were indeed correctly - qualitatively and quantitatively - explained by
proper applications of the parton model ideas to hard processes involving hadrons
in the initial state and/or detected hadrons in the final state.

The topic of the present thesis is the discussion of one of the possible directions . . . and beyond

to go beyond the naive parton model, i.e., the effect of transverse motion of
partons. The picture of ‘. . . a jet of partons moving almost collinear. . . ’ in
fact implies that individually partons may have small momentum components
transverse to the momentum of their parent hadrons. Clearly, the effects of
transverse parton momenta play the rôle of corrections to the dominant ones, but
they can be of quite some importance for the detailed understanding of hadronic
substructure:

• the corrections can be of substantial numerical magnitude, as is the case
for many exclusive quantities at presently accessible momentum transfers,

• or the corrections can lead to the existence of new tensor structures not
possible without transverse momenta and resulting in unambiguous angular
dependencies which allow to single out the transverse momentum effects,
as is known from many (semi-)inclusive scattering processes.

Clearly, the investigation on transverse momentum effects results in a more de-
tailed - in a sense, more refined - knowledge on the structure of hadronic matter
and the inner workings of QCD. Often the dependence on transverse momenta
can be combined with the transverse spin structure of hadrons to investigate the
angular momentum aspects of the hadron substructure.

Detailed measurements of semi-inclusive and exclusive processes have become experiment

and theoryfeasible in running experiments (HERMES, H1 and ZEUS at DESY, experiments
at CEBAF/JLAB, at the SLC/SLAC, at LEP/CERN), and will become even
more precise with the experiments presently starting (COMPASS/CERN), or
discussed and planned for the mid-term future (ELFE@TESLA, TESLA-N, an
upgraded version of CEBAF, or EIC into which the former EPIC and eRHIC
proposals have merged). A new generation of accelerators and detectors make
possible experiments with unprecedented precision and kinematic range. The
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2 Foreword

considerable progress in the experimental precision asks for clear theoretical con-
cepts beyond the well-understood and tested parton model ideas, like for instance
the transverse momentum effects. In turn, the outcome of experiments stimu-
lates, and will further stimulate, the theoretical understanding of our fundamental
picture of hadronic substructure.

In this thesis I will try to give a detailed discussion of transverse momentumsemi-inclusive

and exclusive

hard processes
effects in exclusive and (semi-)inclusive hard processes with a comparison of sim-
ilarities and differences between the two distinct classes of reactions. It is based
on the experience gained in the field in the last 10-15 years which showed con-
siderable new developments for both, exclusive and semi-inclusive hard processes
leading to deeper insights. A partial synthesis of the concepts used in the de-
scription of the two distinct classes of reactions was triggered by the discussion of
deeply virtual exclusive processes and the notion of the skewed or generalised par-
ton distributions 3 which were first considered in the mid of the ’80, and recently
received an enormous revived interest which jump started vibrant activities in
the last 6 years.

During the last decade I was happy to participate and contribute to funda-a coherent picture

mental research activities in hadronic physics, being involved in the theoretical
investigation of various exclusive and (semi-)inclusive scattering processes. With
retrospective, I was lucky having worked on both classes of reactions, distinct but
with vast similarities, in a period when new ideas and concepts were developed
merging existing ones in a much more coherent picture. In the present thesis I
will try to review these aspects of coherence in notions and concepts. Therefore,
often I will refer for technical details to the original publications and instead point
to and emphasise the underlying physical picture.

Much of the insights I could gain in the physics topics covered in the present
report I owe to friends and colleagues. Many fruitful discussions and enjoyable
collaborations during the last 10-12 years are gratefully acknowledged.
In particular, I would like to thank

Alessandro Bacchetta, Michael Bergmann, Nicola Bianchi,
Andrea Bianconi, Daniel Boer, Sigfrido Boffi, Jan Bolz, Sabrina Casanova,
Matthias Dahm, Markus Diehl, Thorsten Feldmann, Marco Radici,
Martin Raulfs, Joao Rodrigues, Manfred Schürmann, Wolfgang Schweiger,
and Carsten Vogt,

who will find parts of their results obtained in collaboration with me in the present
report. Special thanks go to

Peter Kroll, Piet Mulders and Nico Stefanis

who guided my – still ongoing – learning in physics and supported me in different
stages of my scientific work.

3The name skewed parton distributions was invented to amalgamate the different terms
(non-forward, off-forward, non-diagonal, off-diagonal) which can be found in the literature for
closely related quantities. Throughout this thesis I will instead use the notion of generalised
parton distributions which emphasises the aspect of generalisation and replaces the - somewhat
unfortunate - older naming convention in the more recent literature.



Foreword 3

Further I would like to mention all colleagues which made working in the field
so much enjoyable by participating in lively discussions, scientific exchange on the
numerous meetings, workshops and conferences where we have met. Being part
of the community – only vaguely characterised by the label of hadronic physics
– for me was a mostly very pleasant experience far beyond sensing the shared
interest in the fundamental questions about the substructure of hadronic matter.
Dedication to physics in general is the basis for our relationship, beyond it many
colleagues became good friends.

Last but certainly not least, special thanks go to Petra Engels and her daugh-
ter Olivia, who had to suffer so much from all the negative consequences it brings
to live with a physicist, i.e. somebody who is always absent when needed most,
who moves every second year to a different place, with whom you never can make
plans beyond the next step, and who comes home late in the evenings and is al-
ways busy, . . . to name but a few of the consequences. Since more than 16 years
I keep on promising that the situation will change and I will spend more time
with you. I am very much indebted to you for your continous support during
my diploma, Ph.D., the post-doc period and habilitation. We have to find out
together what future will bring.

Wuppertal, 12th November, 2002
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1
Introduction

Quantum Chromodynamics (QCD) is well established as the theory which de- QCD as the theory

of strong

interactions
scribes all known phenomena of strong interactions in the realm of short dis-
tance/short time effects where the powerful technical tool of perturbation theory
applies. The successes of perturbative QCD (pQCD) are based on the funda-
mental property of asymptotic freedom, i.e., the strength of the QCD coupling
decreases when going to the regime of short distance scales. Here effectively the
dynamics of hard subprocesses between quasi-free partons (quarks and gluons)
dominates the physical phenomena. A number of so-called infrared safe observ-
ables in high energy physics, like ratios of cross sections or event shape variables,
can be very successfully calculated entirely within pQCD.

Moreover, QCD is presumed to describe also the long distance/long time ef-
fects of strong interactions like the binding of hadrons. Actually, it was the
symmetry patterns observed in the properties of bound hadrons which lead to
the development of the theory: baryon spectroscopy revealed the colour degrees of
freedom, and flavour symmetry was first seen clearly in hadron spectroscopy. Un-
fortunately, the standard tool, perturbation theory, is not applicable in the long
distance regime. There are promising attempts of developing non-perturbative
techniques, or effective theories which incorporate the main features of QCD in
the low energy domain. Lattice gauge theory, has developed into a powerful and
essential tool in QCD, and in principal, will be able to determine the observables
connected to long distance phenomena in hadron physics from first principles.
But still enormous conceptual and technical difficulties have to be overcome.

Thus, it seems fair to state that currently there is no rigorous analytical ex- quarks & gluons
⇓

hadrons
planation for the way partons are bound by strong interactions to form hadrons,
the only objects involved in hard processes which reach our macroscopic physical
world by hitting a detector and producing a signal which finally is transformed
into something suitable for human perception. The missing link for a full descrip-
tion of all phenomena of strong interactions within QCD is the transition from
the elementary objects of the Quantum Field Theory, quark and gluon fields, to
the real physical objects, the hadrons.

A way out of the dilemma is provided by the concepts of the parton model the parton model

which turned out to be extremely successful in the phenomenology of inclusive
processes, and are also generally accepted for the description of exclusive reactions

5



6 1. INTRODUCTION

at very high momentum transfers.
The basic ideas of the parton model applied to inclusive processes are

(a) to treat a rapidly moving hadron as a jet of quasi-free partons moving almost
collinear, and

(b) to calculate the cross section of the hadronic process as a convolution of a
partonic cross section and parton distribution functions (PDFs) summed
incoherently over all partons.

In the application of the parton model ideas to exclusive processes the second
step is done on the level of the scattering amplitudes, i.e., (b) is replaced by

(b’) hadronic scattering amplitudes are calculated from partonic hard scattering
amplitudes convoluted with distribution amplitudes (DAs).

The prescripts (b) and (b’) go under the name of factorisation, which is of
fundamental importance for all considerations in hadron physics and, therefore,
this concept deserves a closer look:
Loosely speaking, factorisation is the - well-defined - splitting of an unsolvablethe concept of

factorisation problem into a tractable part, and a part which we do not know how to handle
within the theory. The intractable part of the problem gets a name and its solu-
tion accordingly can be simply postponed. From a practical minded point of view
we just “parameterise our lack of knowledge in terms of unknown functions”.
A certainly better view at factorisation is that there is a well founded underly-
ing physical picture: The description of hard processes involving hadrons in the
initial or final states is divided in the partonic subprocess taking place at short
distances/times and in the long distance binding effects embodied in hadronic
matrix elements of parton field operators. Thus, partonic subprocesses and bind-
ing effects to a good approximation decouple and do not influence each other.
The former are calculable within pQCD, in principal to arbitrary accuracy, al-
though sometimes quite tedious in practice. The latter are parametrised in form
of a priori unknown phenomenological functions like PDFs, or DAs. In Fig. 1.1
a schematic view of the general concept of factorisation is displayed.

Whereas firstly factorisation in the parton model was introduced as a conceptparton model is

limiting case of

QFT
motivated by physical intuition, it was realised shortly after that the parton model
description is the lowest order of a systematic expansion within the appropriate
Quantum Field Theory, namely QCD. Consequently, the property of factorisation
can be proven to hold to all orders of a perturbative QCD expansion, and at least
to leading or even next-to-leading order in an expansion in inverse powers of the
relevant hard scale. For many hard processes formal field theoretical proofs of the
factorisation property, so-called factorisation theorems have been worked out [1].
Still for other hard processes factorisation theorems are lacking due to technical
difficulties, but nevertheless factorisation is generally assumed to be plausible at
least at leading order in an 1/Q expansion, where Q is the hard scale of the
process.
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common feature in description of hard processes:

factorisation

hard physics
short distance/time effects

soft physics
long distance/time effects

calculable in
perturbative QCD

parameterised as
a priori unknown fcts.

perturbative
(Wilson) coefficients

hadronic matrix elements
of (bilocal/multilocal)

quark/gluon field operators

⇓
• parton distribution fcts.(PDF)

• parton fragmentation fcts.(PFF)

• distribution amplitudes (DA)

• . . .

process dependence

universality

PDFs, PFFs and DAs are
process independent

Figure 1.1: Schematic view of the concepts of factorisation and universality.

In the line of arguments within the parton model, or in the context of factori- hadronic matrix

elements define

phenomenological

functions

sation theorems, respectively, the connection between quark and gluon fields on
one side, and hadrons on the other side is given by hadronic matrix elements of
operators constructed from the elementary field operators [2, 3, 4, 5, 6]. These
hadronic matrix elements are in turn parametrised in form of phenomenological
functions which are process independent. Depending on the type of process under
consideration the matrix elements involved can be, for instance,

• transition matrix elements between a hadronic state and the vacuum defin- DA

ing a distribution amplitude (DA),

• a forward matrix element (expectation value) between the same initial and PDF

final hadronic state defining a parton distribution function (PDF)

• a non-forward matrix element between hadronic states characterised by GPD

different momenta (and eventually different hadronic content) defining a
generalised parton distribution (GPD).
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?

increasing resolution

nucleus in the atom
nucleons in the nucleus

quarks in the nucleon

Figure 1.2: Different fundamental layers of matter as subsequently probed with in-
creasing resolution, i.e., increasing momentum transfer.

Once measured in a hard process, the DAs, PDFs, or GPDs can be insertedthe property of

universality into the calculation of other hard processes involving the same type of functions
unchanged, or at most subjected to a perturbatively controlled rescaling which
results in a logarithmic dependence on the hard scale. This property of process
independence is called universality; and this is the indispensable foundation stone
of the predictive power of the formalism.

The hadronic matrix elements, and the phenomenological functions defined
from them, are the main objects of interest in this thesis. The ultimate goal
for the far future will be to calculate those objects and their properties from
first principles within QCD. Presently, in lack of the necessary technical tools for
the big deal, one follows a standard practice: From hard scattering experiments
as much information as possible on the hadron substructure in partonic degrees
of freedom should be extracted. In particular, hard scattering processes with
electroweak probes are well suited for this investigation. The information gained
from experiments may be compared with model calculations. Models can be
simple-minded or sophisticated; as far as feasible, they should incorporate at least
some basic symmetry principles and features of QCD. Finally, the experiences
from model considerations shall prepare the path to a consistent QCD treatment
of the bound hadrons.

The very principle of exploring the internal substructure of a target by hardexploring the

substructure of

hadronic matter in

experiments

scattering with a known probe is not new at all. It stands in the long tradition
of the pioneering Rutherford experiment [7], in which by scattering of α-particles
on a foil of gold the existence of the nucleus inside the atom was discovered. The
process of deep inelastic scattering (DIS) of leptons on a nucleon target

lepton+ nucleon→ lepton+ anything

is probably the closest analogue to the Rutherford experiment on much smaller
scales (compare Fig. 1.2), and of course in a more refined way using the advanced
technology of today.

In DIS the known probe is represented by the electroweak interaction mediatedprocesses involving

PDFs by the exchange of gauge bosons (photons, Z-, and W -bosons) and the resolution
is high enough to scatter directly on the partons inside the nucleon, i.e., quarks
and gluons. The information on hadron substructure is extracted in form of PDFs
(cf. Fig. 1.3).
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H

γ∗

X

⇒
}XH

γ∗

dσhadronic ∼ dσpartonic ⊗ PDF

Figure 1.3: Lepton-nucleon deep inelastic scattering (DIS) interpreted in the parton
model.

Any other (semi-)inclusive hard scattering process with hadrons in the initial
state employs the very same PDFs in its parton model description. A prominent
example is the high mass dimuon production or Drell-Yan process [8, 9] (see
Fig. 1.4)

hadron+ hadron→ lepton+ anti - lepton+ anything

which played a major rôle in confirming parton model ideas developed in the
context of the DIS process.

H

H

µ+

µ−

⇒
}X

}X

H

H
γ∗

µ+

µ−

dσhadronic ∼ dσpartonic ⊗ PDF1 ⊗ PDF2

Figure 1.4: Parton model description of the Drell-Yan process H1H2 → µ+µ−X.

Hard scattering processes involving the measurement of hadrons in the final processes involving

PFFsstate provide access to the investigation of the hadronisation dynamics. This kind
of information is stored up in form of parton fragmentation functions (PFFs)
defined again from hadronic matrix elements of quark and gluon field operators.
A prominent, perhaps the most simple, example for a hard semi-inclusive process
involving PFFs is the one-hadron inclusive electron-positron annihilation (see
Fig. 1.5)

e+ + e− → hadron+ anything

from which most of our experimental knowledge on hadronisation originates.

Whereas PDFs give the probabilities of finding a specific parton im a hadron
with a certain momentum relative to the one of the parent hadron, the PFFs
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H
γ∗

X

⇒ }X
H

γ∗

dσhadronic ∼ dσpartonic ⊗ PFF

Figure 1.5: One-hadron inclusive electron-positron annihilation e+e− → hX in the
parton model interpretation.

comprise information on the probability that a parton fragments into a certain
hadron. In a sense the PFF are the time-like counterparts of PDFs, and encode
probabilistic information on the formation process of confined hadrons. One
could say that PDFs are related to the results of confinement, and PFFs show
the formation of confinement.

More complicated semi-inclusive processes can involve both, PDFs and PFFs
at the same time. Examples for these types of processes are, for instance, the
semi-inclusive deep inelastic lepton-nucleon scattering (SIDIS)

lepton+ nucleon→ lepton+ hadrons+ anything

or jet production in hadron-hadron scattering

hadron+ hadron→ hadrons+ anything.

Based on the universality property, the experimental information from all hard
processes can be combined to extract PDFs and PFFs from global fits.

It is typically for the class of (semi-)inclusive reactions that information onprobabilities

vs. amplitudes the hadron substructure is obtained in form of distributions, i.e., probabilities of
finding, for instance, a parton in an initial state hadron depending on the partons
momentum relative to the hadrons momentum, or probabilities of finding a final
state hadron in the fragments of a parton. There is no information on the phase
of amplitudes.

Information on hadron substructure on the level of amplitudes can be obtainedprocesses involving

DAs from the measurement of exclusive reactions in which the final state is completely
determined, i.e., all outcoming particles are registered. In this sense exclusive
reactions are complementary to the inclusive ones. Well known examples are the
elastic form factors, like the one of the nucleon

nucleon+ lepton→ nucleon+ lepton

from which for instance the distribution of electric charge and of the magnetic
moment in the nucleon can be learned.
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γ∗

H H’ ⇒
H’H

γ∗

Ap

Ahadronic ∼ Apartonic ⊗DAin ⊗DAout

Figure 1.6: Elastic form factor of the nucleon in the parton model interpretation.

The parton model view of the elastic form factor is schematically given in remarkable

features specific to

hard excl. reactions
Fig. 1.6. A few words are in order here about two remarkable consequences
induced by the extra constraints stemming from the specified final state:

1. Hard exclusive reactions at high momentum transfer receive their dominant valence Fock state

contributions from configurations with the least number of partons, i.e.,
from the valence Fock state of the hadron. Loosely speaking, the smaller
the number of involved partons, the easier it is for them to recombine ap-
propriately into the required final state hadrons.

2. There is a systematic expansion of the partonic amplitude in inverse powers asymptotically

leading term is of

higher order in αs

of the hard scale 1/Q and in powers of the strong coupling αs. The con-
straint of the recombination of partons into final state hadrons results in
another remarkable feature; the asymptotically dominant term is of lowest
order in the 1/Q expansion, but not of lowest order in αs.
Thus, for kinematic regions of intermediate large Q, where the numerical
size of 1/Q is not too different from 1/ ln(Q2), one has to investigate care-
fully the size of the pre-factors of terms which come with a higher power
of 1/Q but lower power of αs compared to the powers of asymptotically
leading term.

The second point above was the reason why the partonic amplitude was not
further specified in Fig. 1.6. In Fig. 1.7 two diagrams are displayed which gener-
ically stand for competing mechanisms contributing to the elastic FF of the nu-
cleon.

(a) H H’

γ∗

+ permutations

(b) H H’

γ∗

x ∼ 1

Figure 1.7: Competing mechanisms for the elastic form factor of the nucleon at inter-
mediate large momentum transfer.
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In diagram (a) the partonic scattering amplitude contains the minimum num-
ber of hard gluon lines necessary to connect all valence Fock state parton lines.
The overall momentum transfer is completely redistributed in the hard subpro-
cess. This diagram and those obtained from it by permutations are the dominant
ones in the asymptotic limit of very high momentum transfers. Note that all
parton lines actively take part in the hard scattering; there are no pure ‘specta-
tor lines’. This is the criterion which results in the lowest possible power of 1/Q
selecting the asymptotically dominant contributions.
In diagram (b), on the other hand, there are two spectator lines, but also two
hard gluons less resulting in a higher power of 1/Q, but lower order in αs. No-
tice that the exact power in the 1/Q expansion depends on details of light-cone
wave functions describing the initial and final nucleon. Although, in the asymp-
totic limit subleading, the contributions from diagram (b) can take the lead at
intermediate large momentum transfers. There is also another class of diagrams
‘between’ type (a) and (b) with one spectator and one hard gluon.

It is instructive to take a closer look at the parton model picture of anotherCompton
scattering

a two-scale process
hard exclusive process, the Compton scattering [10]

photon+ charged target→ charged target+ photon

which historically provided early evidence that the electromagnetic wave is quan-
tised, and hence has the nature of particles.

Let us consider Compton scattering off the nucleon in kinematic regimes where
the nucleon can be replaced by a jet of quasi-free partons. It is important to
realize that there are two dimensional scales which potentially can be large and
thus justify the application of parton model ideas: the virtuality of the initial
photon Q2, and the square of the momentum transfer |t|. Therefore, in Fig. 1.8
the distinction is made between the regime of ’deep virtual Compton scattering’
(DVCS), characterised by large Q2 and small |t|, and the regime of ’wide angle
Compton scattering’ (WACS) characterised by large |t| and small Q2.

In the DVCS regime the amplitude for the partonic subprocess is given byDVCS regime

the Compton scattering off a single parton, the long distance/time part of the
process is described with the help of recently introduced, rather new quantities.
The close similarity to the DIS process – the total cross section of DIS is related to
the imaginary part of the forward Compton scattering amplitude via the optical
theorem – has lead to the introduction of a generalisation of PDFs, the generalised
parton distributions (GPDs). All Fock states contribute to the DVCS process,
since the partonic scattering dominantly takes place on one quark line only and an
increasing number of spectator partons does not lead to a significant suppression.

In the WACS regime the situation parallels the one discussed above for theWACS regime

example of elastic form factors. Since the momentum transfer is high, it is the
lowest Fock state configurations of initial and final nucleon that dominate the
process. For asymptotically large momentum transfer |t| the dominant contri-
butions come from partonic subdiagrams which contain the minimum number of
hard gluons necessary to connect all parton lines, i.e., two hard gluons in the
process under consideration (for instance, the diagram shown in Fig. 1.9(a)).
All parton lines are involved in the hard subprocess, and diagrams obtained by
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H H’

γ∗ γ

DVCS:
large Q2

small |t|

↗

↘
WACS:
large |t|
small Q2

γ∗

γ

H’H

Ahadronic ∼ Apartonic ⊗GPD

or 

H’H

γγ∗ γ

Ap

Ahadronic ∼ Apartonic ⊗DAin ⊗DAout

or Ahadronic ∼ Apartonic ⊗GPD

Figure 1.8: Compton scattering off the nucleon in the parton model interpretation,
which has a somewhat different representation in the DVCS and WACS kinematic
domains. The overlayed dashed box for the DVCS regime indicates a generalised parton
distribution.

all possible permutations of parton lines and photon-parton couplings a priori
contribute at the same order. At intermediate momentum transfer, however, the
cross section may be dominated by the partonic diagram without any hard gluons
– but two more ’spectator’ lines – where the photons couple to the same quark
line (for instance, the diagram shown in Fig. 1.9(b)). For this handbag diagram
the soft physics part is comprised in a GPD, actually at a certain kinematical
point, as we shall see later.

The introduction of the concept of GPDs in fact was a big step forward in our GPDs unify

conceptual ideas of

inclusive and

exclusive processes

understanding of the transition between hadronic and partonic degrees of free-
dom, since formally they link PDFs and form factors, and thus unify conceptual
ideas developed for inclusive and exclusive processes.

In particular, GPDs allow a simultaneous study of longitudinal and trans-
verse degrees of freedom of the partonic motion. Combining the all information
contained in GPDs, at least in principle, for the first time an absolute localisation
of partons inside hadrons seems feasible.
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(a)

or γγ∗

H H’

γ

+ permutations

(b)

or γ

H’H

γγ∗

x ∼ 1

Figure 1.9: Diagrams contributing to WACS. Diagram (a) is an example for the class
of diagrams dominant at asymptotically large momentum transfer. Diagram (b) can
be leading at intermediate momentum transfer.

Several aspects of the partonic substructure of hadrons beyond the basic ideas. . . beyond the

parton model of the parton model have been investigated in a systematic way:

• Higher orders in perturbation theory manifest themselves as QCD loop cor-(αs)n corrections

rections. The absorption of collinear singularities via a redefinition of soft
physics objects (PDFs, PFFs, DAs, and GPDs) leads to a scale depen-
dence of these objects. Finite terms give (αs)

n suppressed corrections to
the physical observables like structure functions. The systematic inclusion
of perturbative corrections into the naive parton model is known as the
QCD improved parton model.

• The inclusion of hadron mass effects leads to corrections suppressed by(1/Q)n corrections

powers of 1/Q – the so-called kinematical power corrections. There are
also dynamical power corrections from non-leading projections of hadronic
matrix elements, and from multi-parton correlations or higher Fock state
components. The incorporation of these classes of corrections is extremely
difficult. Numerical estimates can sometimes be obtained from model con-
siderations or lattice gauge theory.
To the extent that factorisation is expected to hold often the next-to-leading
order power corrections can be systematically classified.

• Intrinsic transverse momenta of partons relative to their parent hadrons,intrinsic transverse

momenta sometimes combined with (transverse) spin degrees of freedom.

(a)

pT

P

p

(b)

kT

Phk

Figure 1.10: Illustration of partonic transverse momenta. In diagram (a) the com-
ponent of a parton momentum transverse relative to the momentum of the parent
hadron is indicated as pT . In (b) the transverse parton momentum kT relative to the
momentum of a produced hadron in a fragmentation process is displayed.

This thesis is devoted to the comparative study of the latter point, i.e., the
effect of intrinsic transverse momenta in the phenomenology of hard (semi-)-
inclusive and exclusive reactions.
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The notion of transverse momenta needs some clarification. Clearly, referring intrinsic transverse

momentato components of a four-vector separately, results in frame dependent statements.
In fact, a particularly convenient set of frames are those, where the momen-
tum vector of a hadron has no transverse components. These systems will be
called “hadron frames”, and the transverse parton momenta p⊥i in an appropri-
ate hadron frame will be referred to as intrinsic transverse momenta. Partonic
transverse momenta in frames related to a hadron frame by a transverse boost take
the form p⊥i + xiP⊥ when P⊥ is the transverse part of the hadron momentum
in the new frame. In other frames of reference transverse momentum effects may
manifest themselves as effects from higher Fock states, with additional gluons
or quark-antiquark pairs, and the simple relations may be obscured. Similarly,
as much as possible, the parton model picture will be used, which implies the
use of an axial gauge, in particular a light cone gauge. Of course, any physical
quantity may be calculated using an arbitrary frame of reference and an arbi-
trary gauge, but interpretations as partonic probabilities (or at least partonic
probability amplitudes) are not always applicable.

In that sense, the present thesis will focus on effects related to transverse
momenta in appropriate hadron frames in the framework of a parton picture.
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Light-Cone
Quantisation

In this section I review some basic features of Light-Cone (LC) quantisation [11, Light-Cone

quantisation12, 13, 14, 15]. The discussion of hard processes is particularly simple in the
context of LC quantisation. Concepts and notions introduced appeal to imagina-
tion and follow closely the basic ideas of the parton model, to which in fact they
provide the formal theoretical background.

The presentation I give in this section is by no means exhaustive, but rather
limited and merely serves as reference for some points used in the discussions of
the later sections. The larger question whether LC quantisation has principal
advantages over the canonical equal-time quantisation will not be pursued here.
Also the known severe problems of LC quantisation connected with zero modes
are beyond the scope of this section.

To set the stage some notation has to be introduced. Here and in the following
I will use the component notation

aµ =
[
a+, a−, a⊥

]
(2.1)

for any four-vector aµ with the LC components a± = (a0 ± a3)/
√

2 and the 2-
dimensional transverse part a⊥ = (a1, a2). Square brackets are reserved for LC
component notation. With the non-diagonal metric tensor (µ, ν = +,−, 1, 2)

gµν =




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1


 (2.2)

the scalar product of two four-vectors is given as

a · b = aµbµ = gµνaµbν = a+b− + a−b+ − a⊥ · b⊥ . (2.3)

17
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Notice that the non-zero off-diagonal entries in the metric tensor make the con-
version of contravariant and covariant vectors somewhat confusing, resulting for
instance in a± = a∓, and ∂± ≡ ∂/∂z± = ∂/∂z∓. Hence I will work with upper
(contravariant) indices as much as possible. Frequently, I will use two light-like
unit vectors n±

n+ ≡ [1, 0,0⊥] , n− ≡ [0, 1,0⊥] (2.4)

satisfying n2
+ = n2

− = 0 and n+ · n− = 1. With the help of n± LC components
can be projected out by

a+ = n− · a , a− = n+ · a . (2.5)

A Lorentz transformation which boosts coordinates from the rest frame oflongitudinal boost

a particle to a frame where the particle moves with velocity v along the z-axis
changes the ordinary components according to

x̃0 =
x0 − vx3

√
1− v2

, x̃3 =
x3 − vx0

√
1− v2

, x̃1 = x1 , x̃2 = x2 . (2.6)

The same relations written in LC components take the form

x̃+ = x+ eψ , x̃− = x− e−ψ , x̃⊥ = x⊥ , (2.7)

where the hyperbolic angle ψ is ln((1− v)/(1 + v))/2, so that v = − tanhψ [16].
The momentum of a particle with mass m obtained by a boost with ψ from the
rest frame is

p̃µ =

[
p+ ,

m2

2 p+
, 0⊥

]
=

[
m√

2
eψ ,

m√
2
e−ψ , 0⊥

]
. (2.8)

A particularly useful Lorentz transformation is a transverse boost (cf. e.g. [12,transverse boost

14]) which leaves the plus component of any momentum vector a unchanged, and
which involves a parameter b+ and a transverse vector b⊥:

aµ =
[
a+ , a− , a⊥

]

−→ ãµ =

[
a+ , a− − a⊥ · b⊥

b+
+

a+ b 2
⊥

2 (b+)2
, a⊥ −

a+

b+
b⊥

]
(2.9)

with

ã2 = 2 a+a− − 2 a+ a⊥ · b⊥
b+

+ 2 a+ a+ b 2
⊥

2(b+)2
− a 2

⊥ + 2
a+

b+
a⊥ · b⊥ −

(
a+

b+

)2

b 2
⊥

= 2 a+a− − a 2
⊥ = a2 . (2.10)

Note the distinction of a transverse boost from a rotation. There is always a rota-
tion in coordinate space which has the same effect on the transverse momentum
components. But a rotation leaves the energy component unchanged and thus
changes the plus LC component. Rotations and transverse boosts in general do
not commute.
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It turns out useful to define projectors P± projectors

P± =
1

2
γ∓γ± (2.11)

with
P+ + P− = 1 , P+ P− = P− P+ = 0 , P2

± = P± , (2.12)

which satisfy

P± γ∓ = γ∓ P∓ , P± γ± = 0 , P± γ⊥ = γ⊥ P± . (2.13)

The canonical way of quantising field theories proceeds via imposing com-
mutation relations between the dynamically independent fields at equal-time,
for instance z0 = 0. As a direct consequence of Lorentz invariance any other
space-like hyper-plane in Minkowski space is equally well suited. A light-front
hyper-plane, as for instance defined by z+ = 0, can be viewed as the limiting case
of a sequence of space-like hyper-planes.

At given light-cone time, say z+ = 0, the independent dynamical fields of “good” & “bad”

field componentsQCD are the so-called “good” LC components of the fields, namely φ cq ≡ P+ψ
c
q

for quarks of flavour q and colour c and the transverse components of the gluon
potential A c

i (where i ∈ {1, 2} is a transverse index and c again denotes colour).
The dependent fields, or “bad” components are χ c

q ≡ P−ψ c
q for the quarks and

the minus component of the gluon potential A− c (see, for instance, [15]).

In order to illustrate the different rôle of “good” and “bad” components of the equations of

motionquark fields, one can use P± to project the Dirac equation down to two separate
equations (colour indices suppressed)

i γ+D−φ = i ~γ⊥ ·D⊥χ+mχ (2.14)

i γ−D+χ = i ~γ⊥ ·D⊥φ+mφ , (2.15)

whereD± = ∂/∂z∓+i g A±. Only Eq. (2.14) describes the propagation of physical
degrees of freedom. In Eq. (2.15) the “light-cone time” z+ does not occur at all,
and thus it is rather a constraint valid at any LC time. In LC gauge A+ = 0 it
takes the form

i γ−
∂

∂z−
χ = ~γ⊥ ·D⊥φ+mφ (2.16)

and constrains χ in terms of φ and A⊥, which therefore should be regarded as
composite χ = F [φ,A⊥]. Similar considerations on the gluon equations of motion
reveal that A− is a constrained variable, too.

The independent dynamical fields have Fourier expansions in momentum expansion in

momentum spacespace (see e.g. [14], Appendix II)

φ cq (z−, z⊥) =
∫ dp+ d2p⊥

p+ 16π3
Θ(p+)

∑

µ{
bq(w) u+(w) exp

(
− i p+z− + ip⊥ · z⊥)

)

+ d †q (w) v+(w) exp
(

+ i p+z− − ip⊥ · z⊥)
)}

(2.17)
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for the free quark field, and (α ∈ {1, 2})

A c
α(z−, z⊥) =

∫ dp+ d2p⊥
p+ 16π3

Θ(p+)
∑

µ{
a (w) εα(w) exp

(
− i p+z− + ip⊥ · z⊥

)

+ a †(w) ε∗α(w) exp
(

+ i p+z− − ip⊥ · z⊥
) }

. (2.18)

for the free gluon field, where Θ(p+) denotes the usual step function. A collective
notation is used for the dependence on the plus and transverse parton momentum
components, the helicity, and the colour in the form

w = (p+,p⊥, µ, c) . (2.19)

The operators b and d† are the annihilator of the “good” component of the quark
fields and the creator of the “good” component of the antifields, respectively, and
u+(w) ≡ P+ u(w) and v+(w) ≡ P+ v(w) are the projections of the usual quark
and antiquark spinors. a and a† are the annihilation and creation operators for
transverse gluons, and εα(w) is a transverse component of the gluon polarisation
vector. The operators fulfil the anticommutation relations

{
bq′(w

′), b †q (w)
}

=
{
dq′(w

′), d †q (w)
}

= 16π3 p+ δ(p′+ − p+) δ(2) (p ′⊥ − p⊥) δq′q δµ′µ δc′c , (2.20)

and the gluon operators a and a† satisfy the commutation relation

[
a (w′), a †(w)

]
= 16π3 p+ δ(p′+ − p+) δ(2) (p ′⊥ − p⊥) δµ′µ δc′c . (2.21)

A key ingredient for a probabilistic interpretation of phenomenological func-Fock state

decomposition tions involved in the description of hard processes is the Fock state decomposi-
tion [14], i.e., the replacement of a hadron state by a superposition of partonic
Fock states containing free quanta of the “good” LC components of (anti)quark
and gluon fields. Single-parton, quark, antiquark or gluon, momentum eigen-
states are created by b†, d† and a† acting on the perturbative vacuum,1

|q;w〉 = b†q(w) |0〉 ,
|q̄;w〉 = d†q(w) |0〉 ,
|g;w〉 = a†(w) |0〉 , (2.22)

and the (anti)commutation relations (2.20) and (2.21) translate into the normal-
isation of these states,

〈s′;w′|s;w〉 = 16π3 p+ δ(p′+ − p+) δ(2) (p ′⊥ − p⊥) δs′s δµ′µ δc′c (2.23)

1A ‘trivial’ perturbative vacuum is assumed, i.e., b |0〉 = d |0〉 = a |0〉 = 0, and possible
problems arising from zero modes are ignored, which are beyond the scope of this investigation.
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for partons s, s′ of any kind. A hadronic state characterised by the momentum
P and helicity λ is written as

|H;P, λ〉 =
∑

N,β

∫
[dx]N [d2p⊥]N Ψλ

N,β(r) |N, β; p1, . . . , pN〉 , (2.24)

where Ψλ
N,β(r) is the momentum LCWF of the N -parton Fock state denoted by

|N, β; p1, . . . , pN〉. The index β labels its parton composition, and the helicity
and colour of each parton.

Apart from their discrete quantum numbers (flavour, helicity, colour) the

partons are characterised by their momenta ki =
[
p+
i , p

−
i , p⊥i

]
. The LCWFs,

on the other hand, do not depend on the momentum of the hadron, but only on
the momentum coordinates of the partons relative to the hadron momentum. In
other words, the centre of mass motion can be separated from the relative motion
of the partons [11]. The arguments of the LCWF, namely xi ≡ p+

i /P
+ and the

transverse momenta p⊥i, can most easily be identified in reference frames where
the hadron has zero transverse momentum. Such frames are called “hadron-
frames” and again a collective notation is used

ri = (xi,p⊥i) (2.25)

and Ψλ
N,β(r) = Ψλ

N,β(r1, . . . , rN ) for the arguments of the LCWFs.2 An N -parton
state is defined as

|N, β; p1, . . . , pN〉 =
1√
fN,β

∏

i

b †qi(wi)√
xi

∏

j

d †qj(wj)√
xj

∏

l

a †(wl)√
xl
|0〉 . (2.26)

The hadron states are normalised as

〈H;P ′, λ′ |H;P, λ〉 = 16π3 P+ δ(P ′+ − P+) δ(2) (P ′⊥ − P⊥) δλ′λ , (2.27)

with ∑

N,β

∫
[dx]N [d2p⊥]N |Ψλ

N,β(r)|2 = 1 . (2.28)

The integration measures in Eqs. (2.24) and (2.28) are defined by

[dx]N ≡
N∏

i=1

dxi δ

(
1−

N∑

i=1

xi

)
, (2.29)

[d2p⊥]N ≡ 1

(16π3)N−1

N∏

i=1

d2p⊥i δ
(2)

(
N∑

i=1

p⊥i − P⊥
)
. (2.30)

Note that the parton states (2.26) do not refer to a specific hadron, rather they
are characterised by a set β of flavour, helicity and colour quantum numbers.
Their coupling to a colour singlet hadron with definite quantum numbers such
as isospin is incorporated in the LCWFs Ψλ

N,β(r). Many of them are zero, and
several of the non-zero ones are related to each other. The three-quark (valence)
Fock state of the nucleon, for instance, has only one independent LCWF for all
configurations where the quark helicities add up to the helicity of the nucleon
[13]. For higher Fock states there are in general several independent LCWFs.

2This notation resembles the definition of the w in (2.19), but refers now to the relative
momentum coordinates.
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With the above outlined concepts and notions at hand it is instructive to takeparton density

operator ψ γ+ ψ a closer look at the bilocal quark field operator ψ(z1) γ+ ψ(z2) which occurs in
the definitions of the unpolarised leading-order quark PDFs and GPDs, and – in
its localised version with z1 = z2 – in electromagnetic form factors.

From the identities

γ0γ+ =
1√
2

(
γ0γ0 + γ0γ3

)
=

1√
2

(
1 + γ0γ3

)

γ3γ+ =
1√
2

(
γ3γ0 + γ3γ3

)
=

1√
2

(
γ3γ0 − 1

)
(2.31)

one readily obtains by summing

γ−γ+ =
1√
2

(
γ0γ+ − γ3γ+

)
=

1√
2

(
2 + γ0γ3 − γ3γ0

)

= 1 + γ0γ3 = γ0γ0 + γ0γ3 =
√

2 γ0γ+ (2.32)

or

γ0γ+ =
√

2P+ =
√

2P+P+ (2.33)

and the bilocal quark field operator under consideration becomes

ψ(z1) γ+ ψ(z2) = ψ†(z1) γ0γ+ ψ(z2) =
√

2 (P+ψ)† (z1) (P+ψ) (z2) (2.34)

since (P+)† = P+. With the help of the Fourier expansion in momentum space
for the good components of the quark fields P+ψ = φ in Eq. (2.17) the density
operator can be cast in the form

1√
2
ψ(z1) γ+ ψ(z2) = φ†(z1)φ(z2)

= 2
∫ dp ′+ d2p ′⊥

p ′+ 16π3
Θ(p ′+)

∫ dp+ d2p⊥
p+ 16π3

Θ(p+)
∑

µ,µ′

×
{

exp
(

+ i p+z−1 − ip⊥ · z1⊥ − i p ′+z−2 + ip ′⊥ · z2⊥
)

× b†(w′) b(w) u†+(w′)u+(w)

+ exp
(
− i p+z−1 + ip⊥ · z1⊥ + i p ′+z−2 − ip ′⊥ · z2⊥

)

× d(w′) d†(w) v†+(w′) v+(w)

+ exp
(
− i p+z−1 + ip⊥ · z1⊥ − i p ′+z−2 + ip ′⊥ · z2⊥

)

× d(w′) b(w) v†+(w′)u+(w)

+ exp
(

+ i p+z−1 − ip⊥ · z1⊥ + i p ′+z−2 − ip ′⊥ · z2⊥
)

× b†(w′) d†(w)u†+(w′) v+(w)
}
, (2.35)

from which the probabilistic interpretation – in terms of only “good” LC com-
ponents – becomes manifest: The operators b†(w′) b(w) and d†(w′) d(w) count the
number of quarks and antiquarks, respectively, whereas d(w′) b(w) and b†(w′) d†(w)
annihilate/create a quark-/antiquark pair.
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The chiral structure of the operator can easily be included in our considera-
tions by defining chiral projectors

PR/L =
1

2
(1 + γ5) (2.36)

which commute with the projectors on “good” and “bad” components such that

ψ(z1) γ+ ψ(z2) =
√

2
(
φ†R(z1)φR(z2) + φ†L(z1)φL(z2)

)
. (2.37)

where I have used the notation

φR/L ≡ PR/L φ = PR/LP+ ψ . (2.38)

The density operator thus counts the sum of right- and lefthanded “good” quark
field quanta.

The above example can be generalised for a bilocal quark field operator with general bilocal

quark field

operator
an arbitrary 4 × 4 matrix A, such as ψ(z1)Aψ(z2). In the chiral representation
(Weyl representation) defined by

γ0 =

(
0 1
1 0

)
; ~γ =

(
0 −~σ
~σ 0

)
; γ5 =

(
1 0
0 −1

)
(2.39)

where σ are the usual Pauli matrices, the projectors to “good” and “bad” LC
components take the explicite form

P+ =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , P− =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (2.40)

such that

P+




a
b
c
d


 =




a
0
0
d


 , P−




a
b
c
d


 =




0
b
c
0


 , (2.41)

i.e., the 1st and 4th component of a four-spinor in Weyl representation represent
the “good” components of the fields, whereas the 2nd and 3rd represent the “bad”
ones. The chiral projectors in Weyl representation have the simple form

PR =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 , PL =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 , (2.42)

such that

PR




a
b
c
d


 = (a , b , 0 , 0) , PL




a
b
c
d


 = (0 , 0 , c , d) . (2.43)
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In other words the upper two components of a four-spinor represent the right-
handed part of the field, whereas the lower components represent the left-handed
one. Combining Eqs. (2.41) and (2.43) a four-spinor in Weyl representation can
be written generically

ψ =




φR
χR
χL
φL


 , (2.44)

and a matrix has the general structure




φ†RφR χ†RφR χ†LφR φ†LφR

φ†RχR χ†RχR χ†LχR φ†LχR

φ†RχL χ†RχL χ†LχL φ†LχL

φ†RφL χ†RφL χ†LφL φ†LφL




(2.45)

where the generic notation indicates that a matrix element labelled for in-
stance by φ†LχR relates a left-handed “good” component of a quark field with a
right-handed “bad” one, and so on.

Equipped with these tools one can read off the properties of the operator
combination ψ(z1)Aψ(z1) = ψ†(z1) (γ0 A)ψ(z2) from its explicite form in Weyl
representation. For instance, with A = γ+ a comparison of

γ0 γ+ =
√

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 (2.46)

with (2.45) results in rediscovering the observation that ψ(z1) γ+ ψ(z2) counts
the sum of right- and left-handed “good” quarks components, i.e. Eq.(2.37). And
with A = γ+ γ5 a comparison of

γ0 γ+ γ5 =
√

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1


 (2.47)

with (2.45) reveals that ψ(z1) γ+γ5 ψ(z2) counts the difference of “good”, right-
handed and “good”, left-handed quarks

ψ(z1) γ+γ5 ψ(z2) =
√

2
(
φ†R(z1)φR(z2)− φ†L(z1)φL(z2)

)
. (2.48)

In Appendix A I list an appropriate basis of 4 × 4 matrices Mi (i=1,. . . ,16) in
Weyl representation which by simple comparison with the generic pattern given
in (2.45) reveals its chiral structure in terms of “good” and “bad” quark field
components.



3

Transverse momenta
in (semi-)inclusive

reactions

3.1 the concept of PDF and PFF

in (semi-)inclusive reactions

The deep inelastic scattering of leptons on nucleons (DIS) has lead to the discov- PDFs in DIS

ery of partons, and is certainly the archetype of all hard reactions involving the
concept of parton distribution functions.

When a high-energetic lepton beam is scattered on a nucleon target, or alter-
natively a lepton and a nucleon beam are brought to collision, the electroweak
interaction is mediated by the exchange of a highly virtual gauge boson: a pho-
ton, Z- or W -boson. Gravitation is to weak to be of any importance in this
context, and leptons are not subject to strong interactions.

The kinematics of the reaction is characterised by the Lorentz invariants which

elec
tro

n

nucleon

⇒
XH

γ∗

P

l

l′

Figure 3.1: Representation of (deep inelastic) lepton-nucleon scattering in a diagram-
matic language.
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can be built from the momenta of the lepton before and after the scattering, l
and l′, and from the momentum of the nucleon P . Conventionally one chooses
as independent invariants the square of the centre of mass energy

s = (P + l)2 , (3.1)

the virtuality of the gauge boson

q2 = (l′ − l)2 ≡ −Q2 (3.2)

and

ν =
P · q
M

, (3.3)

where M is the nucleon mass. In the rest frame of the nucleon ν has the inter-
pretation of the transfered energy. The remaining possible invariants to be built
from l, l′ and P are fixed by the on-shell conditions P 2 = M2, and l2 = l′ 2 = m2

` ,
with m` the lepton mass.

Two crucial steps have led to the discovery of partons and the formulation of
the parton model:

1. The observation of a phenomenon called Bjorken scaling and its interpre-Bjorken scaling

tation: At very large Q2 there is a relation between the energy and the
momentum transfer innate to elastic scattering processes which leads to aelastic scattering

on point-like

particles
characteristic behaviour of structure functions defined from the differential
cross section as

dσ

dΩ dE ′
=

4αemE
′ 2

Q4

{
2 sin2

(
Θ

2

)
W1(ν,Q2) + cos2

(
Θ

2

)
W2(ν,Q2)

}
,

(3.4)
where E ′ is the energy and Ω the solid angle of the outgoing lepton, and Θ
the scattering angle in the nucleon rest frame.
In the limit Q2 → ∞ for a fixed ratio of Q2/P · q, the so-called Bjorken
limit, the structure functions F1 and F2, defined from W1 and W2, depend
to a good approximation only on a certain combination of Q2 and ν

xBj =
Q2

2 P · q =
Q2

2Mν
. (3.5)

and not on both invariants independently

2MW1(ν,Q2) = F1(ν,Q2)→ F1(xBj)

νW2(ν,Q2) = F2(ν,Q2)→ F2(xBj) . (3.6)

The fact that the dimensionless structure functions F1 and F2 depend on the
dimensionless combination of invariants indicates that the elastic scattering
takes place on point-like particles – otherwise dimensionful form factors
would show up.
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2. A natural interpretation of the phenomenon arises in Feynmans parton Feynmans

parton modelmodel the basic idea of which can be summarised by two simple rules:

(a) a rapidly moving hadron is treated as a jet of quasi-free partons moving
almost collinear, and jet of quasi-free

partons
(b) the cross section of the hadronic process is calculated as a convolution

of a partonic cross section and parton distribution functions (PDFs)
summed incoherently over all partons.

The parton model interpretation of the dominant contribution to deep inelas-
tic lepton nucleon scattering is depicted in Fig. 1.3; its contribution to the cross
section of DIS is given by the famous ‘handbag’ diagram shown in Fig. 3.2, where
also the factorisation in soft and hard parts is indicated.

dσ

dt
∼

P P

pp

q q

Φ soft

hard

Figure 3.2: The ‘handbag’ diagram leading to the dominant contribution to the cross
section of DIS.

This intuitive simple picture of the ‘naive’ parton model turned out to be
very successful, and in fact, to have a more rigorous basis in the underlying
quantum field theory, QCD. In systematic expansions of observables in powers of
the strong coupling (αS) and in powers of 1/Q in the context of QCD, the parton
model is known to reproduce exactly the leading order terms. This holds true in
both approaches, the operator product expansion, as well as in the diagrammatic
approaches.

The non-perturbative information is encoded as quark-quark correlation func- quark-quark

correlation

function
tion which in a light-cone gauge takes the form [2, 3, 4, 5, 6]

Φij(p, P, S) =
∫ d 4z

(2π)4
eip·z 〈P, S |ψj(0) ψi(z) |P, S 〉 (3.7)

depending on the quark momentum p, the target nucleon momentum P , and
possibly on the spin of the nucleon, i.e. the spin vector S. The link operator nor-
mally needed to render the definition gauge-invariant does not appear because
we choose the gauge A+ = 0, which together with an integration path along the
minus direction reduces the link operator to unity. At higher orders in the expan-
sions in powers of 1/Q more complicated non-perturbative objects are involved,
like for instance hadronic matrix elements of gluon fields, or matrix elements of
one gluon and two quark fields, etc.

In the totally inclusive DIS process the quark-quark correlation function (3.7)
occurs traced with certain Dirac matrices, and integrated over three of the four
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quark momentum components

Φ[Γ](x) =
1

2

∫
dp−d2pT Tr (Φ Γ)

∣∣∣∣
p+=xP+

, (3.8)

where Γ is a 4 × 4 Dirac matrix. For instance it can be an element of the basis
(A.5), which is particularly convenient, since its use leads to an automatic order-
ing in powers of 1/Q as will be argued in the next subsections. The integrations
on the RHS of Eq.(3.8) restricts the non-locality of the quantity Φ[Γ](x) to a
light like separation, hence it depends only on the light-cone momentum fraction
x = p+/P+.

The spin-independent quark distribution function occurring at leading order
for instance is defined by

Φ[γ+](x) = f1(x) , (3.9)

and the two rules of the parton model cited above together with the definition
(3.4) establish a direct relation between the observable structure functions and
theoretical constructed PDF

2F1(xBj) =
F2(xBj)

xBj
=
∑

a

e2
a f

a
1 (xBj) , (3.10)

where the index a runs over all types of quarks. The PDF f1(x) – often denoted
q(x) where q may take any flavour value u, d, s, . . . – has a simple probabilistic
interpretation within the parton model.

• The function f a(x), or q(x), gives the probability to find a quark of flavour
a in the parent hadron carrying the light cone momentum fraction x.

Ultimately, this interpretation is justified in the context of Quantumchromody-
namics in its light cone quantised form, i.e. the notion of quarks is to be replaced
by quanta of the good components of the quark field.

Whenever hadrons in the final state are observed in a hard (semi-)inclusivePFFs in

electron/positron

annihilation
process, another bit of non-perturbative information is needed to describe the re-
action: the hadronisation process of a parton. The most simple process involving
hadronisation is the annihilation of an electron/positron pair into hadrons, one
of which is observed, e+e− → hX (see Fig. 1.5).

The dominant contribution to the differential cross section of this process
involves the annihilation of electron and positron into a highly virtual photon
(or Z boson), and the creation of a quark/antiquark pair (see Fig. 3.3). The
hadronisation of one member of the pair, say the final state hadron is observed in
the quark jet, is of non-perturbative nature and described by another quark-quark
correlation function defined as Fourier transform of a hadronic matrix element ofquark-quark

correlation

function
a bilocal quark field operator

∆ij(k, Ph, Sh) =
∑

X′

1

(2π)4

∫
d4z eik·z

×〈0|ψi(z)|Ph, Sh;X ′〉〈Ph, Sh;X ′|ψ̄j(0)|0〉 (3.11)
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dσ

dt
∼ kk

Ph Ph

q-k
q q

∆ soft

hard

Figure 3.3: The dominant contribution to the differential cross section of elec-
tron/positron annihilation with one observed hadron in the final state e+e− → hX.

depending on the momentum of the fragmenting quark k, the momentum of the
observed hadron Ph, and possibly its spin, e.g. the spin vector Sh for a spin 1/2
hadron as assumed in the definition above. Here, in this definition X ′ denotes the
rest of the quark initiated jet modulo the one observed hadron. Again the link
operator normally needed to render the definition gauge-invariant is not shown
adopting a light cone gauge and a suitable choice of the integration path.

For convenience, parton fragmentation functions are defined from ∆ by tracing
the quark-quark correlation function with certain Dirac matrices, and integrating
over three of the four momentum components of the fragmenting quark

∆[Γ](z) ≡ 1

4z

∫
dk+ d2kT Tr [∆Γ]

∣∣∣∣
k−=P−

h
/z
, (3.12)

since these are the quantities encountered in the description of the process e+e− →
hX.1 The non-locality in the expression for ∆[Γ](z) is again restricted to a light-
like separation. The spin-independent PDF for instance is given as

∆[γ−](z) = D1(z) (3.13)

which gives the probability to find a hadron which carries the light cone momen-
tum fraction z = P−h /k

−.

PDFs and PFFs occur together in the description of semi-inclusive hard pro- PDFs and PFFs

together in

semi-inclusive

processes

cesses which involve hadrons in the initial and final state, like for instance the
one-hadron inclusive lepton nucleon scattering, `H → `′hX (see Fig. 3.4). Here
the differential cross section is calculated as a convolution of:

1 Note that throughout this work whenever possible I assume initial state hadrons to move
from left to right with a large plus momentum component, and hadrons in the final state moving
from right to left with a large minus momentum component. This assumption is behind the
interchange of plus and minus components in the definitions of PDFs and PFFs, and corresponds
to a convenient choice of frame for the description of one-hadron semi-inclusive DIS, but has
no fundamental meaning beyond this arbitrary choice of reference.
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H

γ∗

X ′
h ⇒ H

γ∗

X ′
h

dσhadronic ∼ dσpartonic ⊗ PDF ⊗ PFF

Figure 3.4: Semi-inclusive lepton-nucleon scattering interpreted in the parton model.

• a PDF for the probability to find a quark in the target nucleon,

• a partonic cross section describing the scattering of the photon on the struck
quark,

• and the PFF for the hadronisation of the quark forming the observed hadron
and all the unobserved rest of the current jet.

The diagram for the leading contribution to the differential cross section is an
extension of the ‘handbag’ diagram as shown in Fig. 3.5.

For the example of this process we can discuss a peculiarity of all processessensitivity to quark

transverse

momenta
which involve a larger number of external momenta. For the description of to-
tally inclusive DIS one can always choose a frame of reference where the target
momentum P and the photon momentum q are collinear. If one hadron in the
final state is measured, in general there is no frame where all three relevant four-
vectors P , q, and Ph are collinear; one of them will unavoidably have transverse
momentum components. Observables which are unintegrated in this external

dσ

dt
∼

Ph Ph

P P

soft

hard

soft

k

p p

k
q

∆

Φ

Figure 3.5: The diagram leading to the dominant contribution to the cross section of
SIDIS.
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transverse momentum component will have a sensitivity to the transverse mo-
mentum components which quarks can have relative to their parents momenta.
Let us exemplify the situation by assuming a frame, where the momenta P and
Ph are collinear, but the photon momentum q has a transverse component. The
formula for the differential cross section dσ/d . . . d2qT will involve a delta-function
δ2 (pT + qT − kT ) induced by momentum conservation at the photon-quark ver-
tex as illustrated in Fig. 3.6.

This way one can access transverse momentum dependent PDFs and PFFs
related to the integrated ones for instance like

∫
d2pT f1(x,p 2

T ) = f1(x) ,
∫

d2k ′T D1(z,k ′ 2T ) = D1(z)

with k ′T = z kT (see Fig.3.7).

More examples for observables which are indirectly sensitive to intrinsic trans-
verse parton momenta are differential cross sections of two hadron inclusive
electron-positron annihilation, the Drell-Yan process, or (semi-)inclusive hadron-
hadron scattering. Generally, for any hard process involving two or more soft
hadronic matrix elements, there are observables which reveal sensitivity to par-
tonic transverse momentum effects. Those observables at leading order in αs
contain the non-integrated PDFs and PFFs.

There is a classification scheme based on LC quantisation and the notions of
effective twist and chirality which allows to give a systematic and rather simple
overview for all (spin-dependent) PDFs and PFFs occurring at leading and next
to leading order in semi-inclusive processes. The next subsections will be devoted
to this classification scheme.

3.2 transverse momentum dependent

PDFs and PFFs

3.2.1 PDFs of a spin-1/2 hadron

The discussion of quark distribution functions of a spin-1/2 hadron, say a nucleon PDFs (x)

target in DIS, may serve to exemplify a general method for the classification of
independent functions derived from the correlation functions. This method lends
itself to an easy generalisation to other situations, thus it provides classification
schemes also for gluon distribution functions, for distribution functions of a spin-0
or spin-1 hadron, for one- or multiple-hadron fragmentation functions, etc.

In a first step formal properties of the quark-quark correlation function Eq.(3.7)
can be considered which lead to three constraints arising from the hermiticity
properties of the fields, and invariance under parity and time-reversal operations

Φ†(k, P, S) = γ0 Φ(k, P, S) γ0 [Hermiticity] (3.14)
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Ph

p

k

P

q
δ2 (pT + qT − kT )

δ-fct. at the vertex
couples transverse

momentum components
=⇒

dσ

d . . . d 2~qT

sensitive to ~pT , ~kT

Figure 3.6: Illustration how momentum conservation induces quark transverse mo-
mentum sensitivity in observables unintegrated in external transverse momentum com-
ponents.

Φ(k, P, S) = γ0 Φ(k̄, P̄ ,−S̄) γ0 [Parity] (3.15)

Φ∗(k, P, S) = (−iγ5C) Φ(k̄, P̄ , S̄) (−iγ5C) [Time reversal] (3.16)

with the shorthand notation P̄ ≡ (P 0,−P i), etc. for four-vectors with reversed
sign in their spatial components. From the definition (3.7) it is obvious that Φij

is a 4 × 4 matrix in Dirac space, and depends on the four-vectors p, P , and S
only. The most general expression for Φ consistent with the constraints from

pT

P

p kT

Phk

∫
d2pT f1(x,p 2

T ) = f1(x)
∫

d2k ′T D1(z,k ′ 2T ) = D1(z)

Figure 3.7: Illustration of transverse momentum components quarks can have relative
to their parent hadrons momenta, and transverse momentum dependent PDFs and
PFFs.
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hermiticity and parity is [17, 18]:

Φ(p, P, S) =

M A1 + A2 P/ + A3 p/+ (A4/M)σµνPµpν

+ i A5 (p · S)γ5 +M A6 S/γ5 + (A7/M) (p · S) P/γ5 + (A8/M) (p · S) p/γ5

+ i A9 σ
µνγ5 SµPν + i A10 σ

µνγ5 Sµpν + i (A11/M
2) (p · S)σµνγ5 pµPν

+ (A12/M) εµνρσγ
µP νpρSσ, (3.17)

where the amplitudes Ai = Ai(σ, τ) depend on the invariants σ ≡ 2 p · P and
τ ≡ p2. Hermiticity requires all amplitudes Ai(σ, τ) to be real. Note that the
dependence on the spin-vector S is at most linear [15], and it has been made
explicite. The corresponding expression for spin-0 hadrons (or the for description
of hadrons with averaged polarisation) is obtained by keeping the terms with
amplitudes A1, A2, A3, and A4, and discarding the spin-dependent ones.

The constraint from time-reversal invariance would require the amplitudes
A4, A5, and A12 to be purely imaginary and hence to vanish, since this is in
contradiction with the requirements from hermiticity. But there are several sit-
uations conceivable where this constraint is not applicable. So for the moment
we keep the terms in the ansatz and will comment in detail on the issue in the
next subsections. Those terms are conventionally, albeit quite misleading, called
(naive) time-reversal odd.

For a further discussion it is convenient to chose specific frames, where the
hadron momentum P has no transverse components, i.e. P = [P+, P−,0T]. I
will call those systems “hadron frames” and refer to transverse parton momenta
in appropriate hadron frames as “intrinsic” transverse momenta. The on-shell
condition for a physical hadron implies a further relation between the LC com-
ponents P− = M2/(2P+), where M is the mass of the hadron. One component,
say P+, can be freely chosen to fix the system within the class of hadron frames.
This freedom correspond to longitudinal boosts along the z-axis.

Up to now, all considerations on the quark-quark correlation functions were
completely process independent. But actually we are interested in those objects
only in the context of hard processes. The hard momentum scale of such a process
will impose a dominant light-like direction along which the correlation function
is probed. By trivial boosts one can change the frames for the description of any
hard process such that the correlation function under consideration are probed
along the same light-like direction, and results from different processes can be
related to each other. For instance we can chose to have Φ being probed always
along the minus direction and ∆ along the plus direction (compare also foot-
note 1). In a process involving two correlation functions for initial hadrons we
chose a frame that one Φ is probed along the plus direction, the other along the
minus direction. The relation between the two expressions is straightforward, and
the PDFs involved are identical, only their accompanying tensors differ by trivial
exchanges of LC components. The situation is analogous for processes involving
for instance two hadrons in the final state. In this sense, the aforementioned
universality of PDFs and PFFs is to be understood.
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All this will become clear from an explicite example. For instance, in deep-parametrisation of

momenta inelastic lepton-nucleon scattering, a standard choice is to define two light-like
unit vectors n± (satisfying n2

+ = n2
− = 0 and n+ · n− = 1) from the photon

momentum q and the hadron momentum P and parameterise

P = P+ n+ +
M2

2P+
n− =

Q

xBj
√

2
n+ +

M2xBj

Q
√

2
n− (3.18)

and

q =
Q√

2
n+ −

Q√
2
n− (3.19)

in agreement with the definition (3.5) of xBj. With this choice the component
P+ scales in the Bjorken limit like Q and P− like 1/Q. The correlation function
Φ will be probed along a light-like distance z in minus direction. The spin vector
S and the quark momentum p are also expanded in the lightlike vectors and
transverse components in a Sudakov decomposition:

p =
xQ

xBj
√

2
n+ +

xBj(p
2 + p2

T )

xQ
√

2
n− + pT , (3.20)

S =
λQ

MxBj
√

2
n+ −

λMxBj

Q
√

2
n− + ST , (3.21)

where pµT = [0, 0,pT] (and similar ST ) is a four-vector with transverse components
only. Thus x represents the fraction of the momentum in the plus direction carried
by the quark inside the hadron. The spin vector satisfies P ·S = 0 and for a pure
state −S2 = λ2 + S2

T = 1. For later use the following projectors can be defined
in the transverse space

gµνT = gµν − n{µ+ nν}− , (3.22)

εµνT = ε−+µν . (3.23)

Considering transverse momentum integrated observables in a hard scattering
process up to order 1/Q, the components of p along n− and in transverse direction
are irrelevant, and one encounters the quantities

Φ[Γ] (x) =
1

2

∫
dp−d2pT Tr (ΦΓ)

∣∣∣∣
p+=xP+

=
∫

[dσdτ θ( )]
Tr(ΦΓ)

4P+
, (3.24)

where the shorthand notation

[dσdτ θ( )] = πdσdτ θ
(
xσ − x2M2 − τ

)
(3.25)

was used. The projections of Φ on different Dirac structures define PDFs. They
are related to integrals over linear combinations of the amplitudes.

In the context of LC quantisation – as sketched in chapter 2 – the Dirac
projections determine the spin structure on the quark side. The occurrence of
the light cone helicity λ, or a transverse component of the spin vector S iT signals
the polarisation state of the hadron. A complete list of independent 4× 4 Dirac
matrices together with their explicite form in the chiral (Weyl) representation is
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+ ψ γ+ ψ =
√

2ψ†+ (PRPR + PLPL) ψ+

= RR + LL

− ψ γ+γ5 ψ =
√

2ψ†+ (PRPR − PLPL)ψ+

= RR− LL

− ψ iσi+γ5 ψ =
√

2ψ†+
(
PLγ

iPR − PRγiPL
)
ψ+

= LR−RL

Figure 3.8: Dirac projections determine the quark spin information encoded in PDFs.
The table summarises findings from chapter 2, where also the projectors PR and PL
are defined.

given in appendix A. The chiral quark structure of the leading PDFs obtained
by projections with γ+, γ+γ5, and iσi+γ5 is summarised in Fig. 3.8. Note that
the chiral structure induced by the projections with γ+ and γ+γ5 is (RR + LL)
and (RR − LL), respectively. The resulting PDFs are called chiral even. The
chiral structure induced by the projection with iσi+γ5 is (LR−RL), i.e. it evokes
a change of chirality and the associated PDFs are called chiral odd. The diagram
for the iσi+γ5 projection in Fig. 3.8 instead indicates a transverse quark spin,
which amounts to a change of representations of the γ-matrices from a chiral one
to a transverse spin representation. We will comment on this point in some detail
in a following subsection.

The projections leading PDFs(x)

Φ[γ+](x) ≡ f1(x)

=
∫

[dσdτ θ( )] [A2 + xA3] , (3.26)

Φ[γ+γ5](x) ≡ λ g1(x)

= λ
∫

[dσdτ θ( )]

[
−A6 −

(
σ − 2xM 2

2M2

)
(A7 + xA8)

]
, (3.27)

Φ[iσi+γ5](x) ≡ SiT h1(x)

= SiT

∫
[dσdτ θ( )]

[
−(A9 + xA10) +

xσ − x2M2 + τ

2M2
A11

]
(3.28)

are leading in 1/Q. For the distribution functions, this is indicated by the sub-
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q(x) = f1(x) =

momentum distribution

∆q(x) = g1(x) =

helicity distribution

δq(x) = h1(x) =

transversity distribution

Figure 3.9: Probability interpretation of leading order integrated PDFs. The identi-
fication with the more popular names q(x), ∆q(x), and δq(x) is shown. The hadron
is assumed to move from left to right, which defines the longitudinal direction. Green
external arrows symbolise the hadron spin, red internal arrows the spin state of the
quark.

script 1 in the names of the functions. The naming scheme adopted here [18],
and extended where necessary, has the advantage of being flexible enough to en-
case higher order and transverse momentum dependent PDFs and PFFs. The
more popular names q(x), ∆q(x), and δq(x) = ∆Tq(x) lack this flexibility. The
probability interpretation of the leading order PDFs is shown in Fig. 3.9.

The following projections occur with a pre-factor M/P+, which signals thesubleading

PDFs(x) subleading (or higher twist) nature of the corresponding distribution functions

Φ[1](x) ≡ M

P+
e(x)

=
M

P+

∫
[dσdτ θ( )] [A1] , (3.29)

Φ[iγ5](x) ≡ M

P+
λ eL(x)

=
M

P+
λ
∫

[dσdτ θ( )]

[
−
(
σ − 2xM 2

2M2

)
A5

]
, (3.30)

Φ[γi](x) ≡ M

P+
εijT STj fT (x)

=
M

P+
εijT STj

∫
[dσdτ θ( )]

[
−
(
σ − 2xM 2

2M2

)
A12

]
, (3.31)

Φ[γiγ5](x) ≡ M

P+
SiT gT (x)
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=
M

P+
SiT

∫
[dσdτ δ( )]

[
−A6 +

xσ − x2M2 + τ

2M2
A8

]
, (3.32)

Φ[iσijγ5](x) ≡ M

P+
εijT h(x)

=
M

P+
εijT

∫
[dσdτ θ( )]

[(
σ − 2xM 2

2M2

)
A4

]
, (3.33)

Φ[iσ+−](x) ≡ M

P+
λ hL(x)

=
M

P+
λ
∫

[dσdτ θ( )]

[
− (A9 + xA10)

−
(
σ − 2xM 2

2M2

)
A10 +

(
σ − 2xM 2

2M2

)2

A11

]
. (3.34)

The functions eL(x), fT (x) and h(x) are (naive) time reversal-odd as can be easily
seen from the fact that they involve the amplitudes A4, A5 and A12.

3.2.2 transverse momentum dependent PDFs

of a spin-1/2 hadron

As anticipated in the previous subsection there are observables for which the PDFs (x,p2
T )

integration over quark transverse momenta can not be carried out. For instance,
the cross section for one-hadron inclusive DIS kept differential in qT is of the
general structure

dσ

dx dz d . . . d2qT
∝
∫

d2pT d2kT δ
2 (kT − pT + qT )

×w(pT ,kT ) f(x,p 2
T ) D(z,k 2

T ) (3.35)

where f(x,p 2
T ) (orD(z,k 2

T )) generically stands for a PDF (or PFF), and w(pT ,kT )
is a specific weight function which may depend on pT , kT and additional angular
dependencies (not indicated here). On integration of the observable over d2qT
the expression is deconvoluted in the transverse space and one obtains a formula
involving the the usual integrated PDFs and PFFs.

The quark-quark correlation function Φ integrated over the p− component
and projected on different Dirac structures

Φ[Γ] (x,pT ) =
1

2

∫
dp− Tr (ΦΓ)

∣∣∣∣
p+=xP+,pT

=
∫

[dσdτ δ( )]
Tr(ΦΓ)

4P+
, (3.36)

with the shorthand notation (note the occurrence of a δ-function instead of the
θ-function)

[dσdτ δ( )] = dσdτ δ
(
τ − xσ + x2M2 + p2

T

)
, (3.37)

defines pT dependent PDFs.
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The projections leading in 1/Q areleading

PDFs(x,pT )

Φ[γ+](x,pT ) ≡ f1(x,p2
T ) +

εijT pT iSTj
M

f⊥1T (x,p2
T )

=
∫

[dσdτ δ( )]

{
[A2 + xA3] +

εijT pT iSTj
M

[−A12]

}
, (3.38)

Φ[γ+γ5](x,pT ) ≡ λ g1L(x,p2
T ) +

pT ·ST

M
g1T (x,p2

T )

=
∫

[dσdτ δ( )]

{
λ

[
−A6 −

(
σ − 2xM 2

2M2

)
(A7 + xA8)

]

+
pT ·ST

M
(A7 + xA8)

}
, (3.39)

Φ[iσi+γ5](x,pT ) ≡ SiT h1T (x,p2
T ) +

piT
M

(
λ h⊥1L(x,p2

T ) +
pT ·ST

M
h⊥1T (x,p2

T )

)

+
εijT p

j
T

M
h⊥1 (x,p2

T )

=
∫

[dσdτ δ( )]

{
−SiT (A9 + xA10) +

εijT p
j
T

M
[−A4] (3.40)

+
λ piT
M

[
A10 −

(
σ − 2xM 2

2M2

)
A11

]
+
piT
M

pT ·ST

M
A11

}
.

The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2

T ), h⊥1L(x,p2
T ), and h⊥1T (x,p2

T ) are non-vanishing,
if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p2

T ) (the so-called Sivers function [19]) and h⊥1 (x,p2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫

d2pT f(x,p2
T ) (3.41)

for a generic PDF f(x,p2
T ). Note that a symmetric integration of Φ[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫

d2pT

(
h1T (x,p2

T ) +
p2
T

2M2
h⊥1T (x,p2

T )

)
. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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f1(x,p
2
T
) = f⊥1T (x,p2

T
) =

g1L(x,p2
T
) = g1T (x,p2

T
) =

h1T (x,p2
T
) = h⊥1L(x,p2

T
) =

h⊥1T (x,p2
T
) = h⊥1 (x,p2

T
) =

Figure 3.10: Probability interpretation of leading order transverse momentum depen-
dent PDFs. Compared to the integrated leading order PDFs there are two additional
time-reversal odd functions f⊥1T and h⊥1 (indicated with blue shaded hadrons), and
three additional functions g1T , h1L, h⊥1T (indicated with green shaded hadrons) which
correlate quark and hadron spin orientation in different directions.

The following projections occur with a pre-factor M/P+, which signals the subleading

PDFs(x,pT )subleading (or higher twist) nature of the corresponding distribution functions

Φ[1](x,pT ) ≡ M

P+
e(x,p2

T )

=
M

P+

∫
[dσdτ δ( )] A1 , (3.43)

Φ[iγ5](x,pT ) ≡ M

P+

{
λ eL(x,p2

T ) +
pT ·ST

M
eT (x,p2

T )

}

=
M

P+

∫
[dσdτ δ( )]
{
λ

[
−
(
σ − 2xM 2

2M2

)
A5

]
+
pT ·ST

M
A5

}
, (3.44)

Φ[γi](x,pT ) ≡ M

P+

{
piT
M

f⊥(x,p2
T ) + λ

εijT pTj

M
f⊥L (x,p2

T ) + εijT STj fT (x,p2
T )

}

=
M

P+

∫
[dσdτ δ( )]

{
piT
M

A3 + λ
εijT pTj

M
A12
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+ εijT STj

[(
σ − 2xM 2

2M2

)
A12

]}
, (3.45)

Φ[γiγ5](x,pT ) ≡ M

P+

{
SiT g

′
T (x,p2

T )

+
piT
M

(
λg⊥L (x,p2

T ) +
pT ·ST

M
g⊥T (x,p2

T )

)}

=
M

P+

∫
[dσdτ δ( )]

{
SiT [− A6]

− λ piT
M

(
σ − 2xM 2

2M2

)
A8 +

piT
M

pT ·ST

M
A8

}
, (3.46)

Φ[iσijγ5](x,pT ) ≡ M

P+

{
SiTp

j
T − SjTpiT
M

h⊥T (x,p2
T ) + εijT h(x,p2

T )

}

=
M

P+

∫
[dσdτ δ( )]

{
SiTp

j
T − SjTpiT
M

[−A10]

+ εijT

[(
σ − 2xM 2

2M2

)
A4

]}
, (3.47)

Φ[iσ+−](x,pT ) ≡ M

P+

{
λ hL(x,p2

T ) +
pT ·ST

M
hT (x,p2

T )

}

=
M

P+

∫
[dσdτ δ( )]

{
λ

[
−A9 −

σ

2M2
A10 +

(
σ − 2xM 2

2M2

)2

A11

]

− pT ·ST

M

(
σ − 2xM 2

2M2

)
A11

}
. (3.48)

A symmetric integration of Φ[γiγ5](x,pT ) over pT receives two non-vanishing
contributions resulting in the identification

gT (x) =
∫

d2pT

(
g′T (x,p2

T ) +
p2
T

2M2
g⊥T (x,p2

T )

)
. (3.49)

The constraint of the δ-function in the integration over σ and τ is indicated
in Fig. 3.11. Furthermore, the integration is restricted to the region M 2

R ≡
(P − p)2 ≥ 0. This leads to the vanishing of the distribution functions at x = 1.

The relation of transverse momentum dependent PDFs and their integratedrelations between

leading and

subleading PDFs
counterparts finds its simple reflection in the expressions in terms of the ampli-
tudes Ai(σ, τ) by a change of the integration measure. If a generic distribution
function is written as

f(x,p2
T ) =

∫
[dσdτ δ( )] G (Ai(σ, τ), σ, x) (3.50)

with the shorthand notation (3.25) for [dσdτ δ( )], symmetric integration over pT
gives

f(x) =
∫

[dσdτθ( )] G (Ai(σ, τ), σ, x) , (3.51)
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M 2

M 2

2
M R

2
= (k-P)   

M R = 0

z = 1/2
(x = 2)

σ = 2 k.P

2τ = k

x = 1/2

x=1

z =1

k T
2fixed

0

Figure 3.11: The δ-function constraint in the σ-τ plane (using quark momentum
k and hadron momentum P ) coming from fixing x and k2

T in the expression for
the distribution functions F (x,k2

T ) (and similarly for the fragmentation functions
D(z, z2k2

T )) and the full integration regions for the kT integrated functions F (x)
(and similarly for D(z)). The latter region is determined by k2

T ≥ 0 and M 2
R ≥ 0.

with [dσdτθ( )] defined by (3.37). The region covered by the θ-function (for
x = 1/2) is the lower shaded region in Fig. 3.11 corresponding to p2

T ≥ 0. Only the
terms involving the distribution functions f1, g1 = g1L, h1 = h1T +(p2

T/2M
2)h⊥1T ,

e, eL, fT , gT = g′T + (p2
T/2M

2) g⊥T , h and hL are non-vanishing upon integration
over pT . The integrated functions f1(x), g1(x) and h1(x) have the well known
probabilistic interpretations. The twist three functions have no intuitive partonic
interpretation. Nevertheless, they are well defined as hadronic matrix elements
via Eqs. (3.7) and (3.11), and their projections.

We note the appearance of higher p2
T -moments,

f (n)(x) ≡
∫

d2pT

(
p2
T

2M2

)n
f(x,p2

T )

= π
∫

[dσdτ θ( )]

(
xσ − x2M2 − τ

2M2

)n
G (Ai(σ, τ), σ, x) , (3.52)

such as h
⊥(1)
1T and g

⊥(1)
T . The equality in Eq. (3.52) is obtained using the azimuthal

symmetry of the distribution functions, which depend only on x and p2
T . In the

weighted integration,
∫

d2pT p
i
T . . . one will encounter the functions g

(1)
1T and h

⊥(1)
1L .

The distribution functions cannot be all independent because their number is
larger than the number of amplitudes Ai. This is reflected in relations such as

fT (x) = − d

dx
f
⊥(1)
1T (x) , (3.53)

eL(x) = − d

dx
e

(1)
T (x) , (3.54)

gT (x) = g1(x) +
d

dx
g

(1)
1T (x) , (3.55)
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hL(x) = h1(x)− d

dx
h
⊥(1)
1L (x) , (3.56)

h(x) = − d

dx
h
⊥(1)
1 (x) , (3.57)

h
(1)
T (x) = −1

2

d

dx
h
⊥(2)
1T (x) , (3.58)

which can be obtained using their explicit expressions in terms of the ampli-
tudes [20, 21].

The functions g2 = gT − g1 and h2 = 2(hL − h1) thus satisfy the sum rules

∫ 1

0
dx g2(x) = −g(1)

1T (0), (3.59)
∫ 1

0
dx h2(x) = 2h

⊥(1)
1L (0), (3.60)

which are a direct consequence of (3.55) and (3.56). If the functions g
(1)
1T and

h
⊥(1)
1L vanish at the origin, we rediscover the Burkhardt-Cottingham sum rule [22]

and the Burkardt sum rule [23]. These sum rules (Eqs. (3.59) and (3.60) with
vanishing right-hand sides) can also be derived using Lorentz covariance for the
expectation values of local operators [24]. In our approach this would imply con-
straints on the amplitudes Ai.

3.2.3 PFFs of a spin-1/2 hadron

The correlation function ∆ defined in Eq. (3.11) is also constrained by the her-PFFs (z)

miticity properties of the fields and invariance under parity operation, leading to
an expansion identical to that in Eq. (3.17) with the replacements {p, P, S,M} →
{k, Ph, Sh,Mh} [18] and with real amplitudes, say Bi, now depending on τh ≡ k2

and σh ≡ 2k · Ph. Time reversal invariance does not imply any constraints on
the amplitudes, thus B4, B5 and B12, referred to as ‘time-reversal odd’, are, in
general, non-vanishing.

In hard processes one encounters the quantities

∆[Γ] (z) =
1

4z

∫
dk+d2kT Tr (∆Γ)

∣∣∣∣
k−=P−

h
/z

=
∫

[dσhdτh θ( )]
Tr(∆Γ)

8z P−h
, (3.61)

with the shorthand notation

[dσhdτh θ( )] = dσhdτh θ

(
σh
z
− M2

h

z2
− τh

)
. (3.62)

A convenient parametrisation of the momentum of the produced hadron (with
mass Mh) in a hadron frame is

Ph =
M2

h

2P−h
n+ + P−h n− =

M2
h

zhQ
√

2
n+ +

zhQ√
2
n− , (3.63)
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D1(z) =

G1(z) =

H1(z) =

Figure 3.12: Probability interpretation of leading order integrated PFFs. The quark
is assumed to move from left to right, which defines the longitudinal direction. Green
arrows symbolise the hadron spin, red arrows the spin state of the quark.

where the Lorentz invariant quantity zh = 2Ph · q/q2 is used in analogy to the
Bjorken variable. A Sudakov decomposition of the quark momentum and the
spin vector can be written

k =
z(k2 + k2

T )

zhQ
√

2
n+ +

zhQ

z
√

2
n− + kT , (3.64)

Sh = − λhMh

zhQ
√

2
n+ +

λhzhQ

Mh

√
2
n− + ShT . (3.65)

Thus z is the fraction of the momentum in the minus direction carried by the
hadron h originating from the fragmentation of the quark. The spin vector sat-
isfies Ph · Sh = 0 and for a pure state −S2

h = λ2
h + S2

hT = 1.

The projections leading PFFs(z)

∆[γ−](z) = D1(z) , (3.66)

∆[γ−γ5](z) = λh G1(z) , (3.67)

∆[iσi−γ5](z) = SihT H1(z) (3.68)

are leading in 1/Q. We use for the names of the fragmentation functions capital
letters corresponding to the names of the PDFs (with the only exception for the
counterparts of f.. functions which are called D..). Probabilistic interpretation of
the leading order integrated PFFs is shown in Fig. 3.12.
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The following projections occur with a pre-factor Mh/P
−
h , which signals thesubleading

PFFs(z) subleading (or higher twist) nature of the corresponding fragmentation functions

∆[1](z) =
Mh

P−h
E(z) , (3.69)

∆[iγ5](z) =
Mh

P−h
λh EL(z) , (3.70)

∆[γi](z) =
Mh

P−h
εijT ShTj DT (z) , (3.71)

∆[γiγ5](z) =
Mh

P−h
SihT GT (z) , (3.72)

∆[iσijγ5](z) =
Mh

P−h
εijT H(z) , (3.73)

∆[iσ−+γ5](z) =
Mh

P−h
λh HL(z) . (3.74)

In observables differential in transverse momenta there occur also the associatedPFFs (z,k′ 2T )

unintegrated quantities

∆[Γ] (z,kT ) =
1

4z

∫
dk+ Tr (∆Γ)

∣∣∣∣
k−=P−

h
/z,kT

=
∫

[dσhdτh δ( )]
Tr(∆Γ)

8z P−h
, (3.75)

with the shorthand notation

[dσhdτh δ( )] = dσhdτh δ

(
τh −

σh
z

+
M2

h

z2
+ k2

T

)
, (3.76)

which lead to the definition of transverse momentum dependent PFFs.

The projectionsleading

PFFs(z,kT )

∆[γ−](z,−zkT ) = D1(z,k′ 2T ) +
εijT kT iShTj

Mh

D⊥1T (z,k′ 2T ) , (3.77)

∆[γ−γ5](z,−zkT ) = λh G1L(z,k′ 2T ) +
kT · ShT
Mh

G1T (z,k′ 2T ) , (3.78)

∆[iσi−γ5](z,−zkT ) = SihT H1T (z,k′ 2T ) +
εijT kTj
Mh

H⊥1 (z,k′ 2T ) (3.79)

+
kiT
Mh

(
λh H

⊥
1L(z,k′ 2T ) +

kT · ShT
Mh

H⊥1T (z,k′ 2T )

)
(3.80)

are leading in 1/Q. Their partonic interpretation is depicted in Fig. 3.13.
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The functions D⊥1T and H⊥1 are examples of what are generally called ‘time- time-reversal odd

PDFs and PFFsreversal odd’ functions. This somewhat misleading terminology refers to the
behaviour of the functions under the so-called naive time-reversal operation TN
[25], which acts as follows on the correlation functions:

∆(Ph, Sh; k)
TN−→ (γ5C ∆(P̄h, S̄h; k̄)C†γ5)∗ (3.81)

where k̄ = (k0,−k), etc. If TN invariance would apply, the functions D⊥1T , H⊥1 ,
D⊥L , DT , EL, ET and H would be purely imaginary. On the other hand, her-
miticity requires the functions to be real, so these functions should then vanish.

The operation TN differs from the actual time-reversal operation T in that
the former does not transforms in into out-states, and vice versa. Due to final
state interactions, the out-state |Ph, Sh;X〉 in ∆(Ph, Sh; k) is not a plane wave
state and thus, is not simply related to an in-state. Therefore, one has TN 6= T
and since T itself does not pose any constraints on the functions, they need not
vanish.

In the analogous case of distribution functions, which are derived from matrix
elements with plane wave states, T = TN and therefore it was generally believed
there are no ‘time-reversal odd’ distribution functions [26].

The effects of of so-called gluonic poles in twist-three quark-gluon-quark ha-
dronic matrix elements, as first considered by Qiu and Sterman in the Drell-Yan
process [27] and direct photon production [28], were shown to be indistinguish-
able from those of time-reversal odd PDFs. In particular, both gluonic poles and
time-reversal odd distribution functions can lead to the same single spin asym-
metries [29]. This is one of the reasons why the time-reversal odd structures
have been listed in subsections 3.2.1 and 3.2.2. With the working hypothesis of
non-vanishing time-reversal odd PDFs some phenomenology has been done on
observable effects [30, 31, 29, 32, 33].

Recently, the discussion about the possibility for non-vanishing time-reversal
odd PDFs was reopened by a model calculation of a single-spin asymmetry in-
cluding the effects of final state interactions by Brodsky, Hwang and Schmidt [34].
This calculation provided a counterexample and thus invalidated the earlier ar-
gument against time-reversal odd PDFs, since the effects amount to the existence
a non-vanishing Sivers function f⊥1T as soon after was shown by Collins [35]. It
was demonstrated that the effects of final state interactions can be taken into
account by a proper careful treatment of a gauge link operator at infinity [36, 37]
and related questions on the density interpretation of PDFs have been raised [38].
The topic is still not settled and under debate.

The following projections occur with a pre-factor Mh/P
−
h , which signals the subleading

PFFs(z,kT )subleading (or higher twist) nature of the corresponding fragmentation functions

∆[1](z,−zkT ) =
Mh

P−h
E(z,k′ 2T ) ,

∆[γi](z,−zkT ) =
kiT
P−h

D⊥(z,k′ 2T ) + λh
εijT kTj
P−h

D⊥L (z,k′ 2T )
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D1(z,k
′ 2
T

) = D⊥1T (z,k′ 2
T

) =

G1L(z,k′ 2
T

) =

G1T (z,k′ 2
T

) =

H1T (z,k′ 2
T

) =

H⊥1L(z,k′ 2
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H⊥1T (z,k′ 2
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Figure 3.13: Probability interpretation of leading order transverse momentum depen-
dent PFFs. Compared to the integrated leading order PFFs there are two additional
time-reversal odd functions D⊥1T and H⊥1 (indicated with blue shaded hadrons), and
three additional functions G1T , H⊥1L, H⊥1T (indicated with green shaded hadrons) which
correlate quark and hadron spin orientation in different directions.

+
Mh

P−h
εijT ShTj DT (z,k′ 2T ) ,

∆[iγ5](z,−zkT ) =
Mh

P−h

(
λh EL(z,k′ 2T ) +

kT · ShT
Mh

ET (z,k′ 2T )

)
,

∆[γiγ5](z,−zkT ) =
Mh

P−h
SihT G

′
T (z,k′ 2T )

+
kiT
Mh

(
λh G

⊥
L(z,k′ 2T ) +

kT · ShT
Mh

G⊥T (z,k′ 2T )

)
,
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∆[iσijγ5](z,−zkT ) =
Mh

P−h

SihTk
j
T − SjhTkiT
Mh

H⊥T +
Mh

P−h
εijTH ,

∆[iσ−+γ5](z,−zkT ) =
Mh

P−h

(
λh HL(z,k′ 2T ) +

kT · ShT
Mh

HT (z,k′ 2T )

)

Comparing the above equations with the case of the distribution functions,
one sees that the relations between the Dirac projections 2z∆[Γ](z,kT ) and the
amplitudes are identical to those for Φ[Γ](x,pT ) after the replacements

{x, σ, τ,pT , P, ST , λ,M,Ai, plus/minus-components}
=⇒ {1/z, σh, τh,kT , Ph, ShT , λh,Mh, Bi,minus/plus-components} . (3.82)

Furthermore, the definition of fragmentation functions follow the general proce-
dure used to define distribution functions. For example,

∆[γ−](z,kT ) ≡ D1(z,k′2T ) +
εijT kT iShTj

Mh

D⊥1T (z,k′2T )

=
1

2z

∫
[dσhdτh δ( )]

{[
B2 +

1

z
B3

]
+
εijT kT iShTj

Mh

B12

}
, (3.83)

where k′T = −zkT. The choice of arguments z and k′T in the fragmentation func-
tions is worth a comment. In the expansion of k in Eq. (3.64) the quantities
1/z and kT appear in a natural way. However, in the interpretation of ∆ as a
decay function of quarks, the variable z as the ratio of P−h /k

− is more adequate.
Applying a Lorentz transformation that leaves the minus component (and hence
the definition of z) unchanged, one finds that k′T = −zkT is the transverse com-
ponent of hadron h with respect to the quark momentum.

The constraint imposed by the δ-function in the σh-τh plane is also indicated relations between

leading and

subleading PFFs
in Fig. 3.11. The integration is restricted to the region M 2

R = (Ph−k)2 ≥ 0, which
implies that the fragmentation functions vanish at z = 1. We note the reciprocity
of x and z, i.e., the constraint for z = 1/2 is the same as one would have for x
= 2. Note, however, that the integration involves different regions. For the
distributions one has (roughly) spacelike quark momenta, for the fragmentation
timelike quark momenta. If a generic quark fragmentation function is given by

D(z,k′ 2T ) =
1

2z

∫
[dσhdτh δ( )] G(Bi(σh, τh), σh, z), (3.84)

the integrated functions are given by

D(n)(z) ≡ z2
∫

d2kT

(
k2
T

2M2
h

)n
D(z,k′ 2T )

=
π z

2

∫
[dσhdτh θ( )]

(
σh − 2M 2

h/z

2M2
h

)n
G(Bi(σh, τh), σh, z) , (3.85)
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where

[dσhdτh θ( )] = dσhdτh θ

(
σh
z
− M2

h

z2
− τh

)
. (3.86)

Non-vanishing upon integration over kT are the fragmentation functions D1, G1 =
G1L, H1 = H1T + (k2

T/2M
2
h)H⊥1T ), E, GT = G′T + (k2

T/2M
2
h)G⊥T , HL and DT .

As for the distributions, the integrated fragmentation functions are not all
independent. Using Eq. (3.85) one obtains relations such as

EL(z) = z3 d

dz


E

(1)
T (z)

z


 , (3.87)

DT (z) = z3 d

dz


D

⊥(1)
1T (z)

z


 , (3.88)

GT (z) = G1(z)− z3 d

dz


G

(1)
1T (z)

z


 , (3.89)

HL(z) = H1(z) + z3 d

dz


H

⊥(1)
1L (z)

z


 , (3.90)

H(z) = z3 d

dz


H

⊥(1)
1 (z)

z


 , (3.91)

leading to
∫ 1

0
dz

EL(z)

z3
= lim

z→0

E
(1)
T (z)

z
, (3.92)

and similar ones for DT , G2 = GT − G1, H2 = 2(HL − H1) and H. Provided
that the functions labelled with superscript (1) vanish at the origin faster than
one power of z, the right hand side vanishes. Finally, let us remark that this
formalism can be easily extended to include antiquarks [18, 21].

3.2.4 the naming scheme

At first glance, the names of PDFs and PFFs look unnecessary complicated witha consistent

naming scheme all their sub- and superscripts. But in fact, they follow a simple systematics re-
flecting the unambiguous way of the determination of all independent functions
from quark-quark correlation functions spelled out in the previous subsections.
Last but not least, the names publicly announce the physical situation to be con-
sidered, in which these quantities can be accessed. The scheme is based on works
by Jaffe and Ji, was largely extended by Mulders, Levelt and Tangerman [39, 18],
and recently ported to the cases of gluon PDFs and PFFS by Rodrigues and Mul-
ders [40], to spin-one functions by Bacchetta and Mulders [41], and to 2-hadron
PFFs by Bianconi, Boffi, Jakob and Radici [42].

The naming scheme can be summarised with the following set of five rules:
exemplified for the k2

T/(2M
2
h) moment of the fragmentation function D⊥1T in

Fig. 3.14.
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D
⊥ (1)
1 T (z)

fragmentation function
of unpolarised quark

at leading twist

in transversely
polarised hadron

unsaturated
transverse

momentum index

(
k2
T/(2M

2
h)
)1

-moment

Figure 3.14: Application of the name scheme exemplified for the D
⊥(1)
1T (z) fragmen-

tation function. The name reveals that the fragmentation of an unpolarised quark
into a transversely polarised hadron at leading order is described. There is a non-
contracted transverse momentum index in the accompanying tensor structure, and the(
k2
T/(2M

2
h)
)1

-moment of the unintegrated PFF is to be taken.

1. the Dirac projection of the correlation function, i.e., the matrix Γ, deter-
mines the letter of the resulting PDF or PFF:

Dirac projection with Γ PDF PFF

vector γ+, γi, γ− f D

axial vector γ+γ5, γiγ5, γ−γ5 g G

tensor σ+iγ5, σijγ5, σ+−γ5, σ−iγ5, h H

(pseudo) scalar 1, γ5 e E

Note that corresponding PDFs and PFFs are denoted with the same small
and capital letter; with the only exception that the counterparts of the f -
PDFs are denoted with a capital D for consistence with widespread used
names for spin-independent PFFs.

2. the first subscript indicates the ‘effective twist’ of the function:

effective twist subscript

“2” 1

“3” none (or 2)

“4” 3
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3. the second subscript indicates the polarisation of the hadron:

hadron polarisation subscript

unpolarised none

longitudinal L

transverse T

4. non-contracted transverse index of a quark momentum → superscript ⊥

5. higher p2
T -moments (or k2

T -moments) → superscript (n)

f (n)(x) ≡
∫

d2pT

(
p2
T

2M2

)n
f(x,p2

T )

The application of the name scheme is exemplified for the k2
T/(2M

2
h) moment

of the D⊥1T fragmentation function in Fig. 3.14.

3.2.5 towards a global analysis of transversity

The spin of the nucleon is certainly a key issue in the investigation of its structure.spin of the nucleon

It is nowadays well confirmed that only 20-30% of the longitudinal spin of the
nucleon is carried by its quark and antiquark constituents. The rest is provided
by the polarisation of gluons and by orbital angular momenta of quarks and glu-
ons. First indications on the sign and size of the gluon polarisation have been
seen (HERMES@DESY), and precision measurements are on the way (COM-
PASS@CERN, RHIC-spin@BNL, E-161@SLAC).

For the full picture still another fundamental piece of the puzzle is missing:transversity

distribution to complete the knowledge of the nucleon spin in the parton model sector one
has to consider the third leading twist PDF, the transversity distribution h1(x)
(frequently also called δq(x), or ∆Tq(x)), which is associated to a situation where
the nucleon spin is oriented transverse to the direction of its motion. As an
example for the rôle of intrinsic transverse momentum in semi-inclusive reactions
and its interplay with spin degrees of freedom in this subsection we will elaborate
on the issue of possible measurements of h1(x), one of the hot topics of present-
days hadron physics.

The problem with h1(x) is related to its unusual spin property, it is one of
the chiral-odd PDFs, which requires for compensation the occurrence of a second
chiral-odd object with similar unusual spin property. Therefore, as a matter of
principle it can not be accessed in the inclusive lepton-nucleon scattering mea-
surements mostly performed so far. Hence h1(x) escaped notice until 1979, when
it was discussed by Ralston and Soper in a paper on Drell-Yan spin asymme-
tries [17].

The chirality properties of h1(x) deserve a closer look, which is best done in the
context of light-cone quantisation as sketched in chapter 2, and using the Weyl (or
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chiral) representation of appendix A. In Eq. (3.26) the transversity distribution
h1(x) (multiplied by a transverse component of the spin vector S iT ) is defined as
the projection Φ[iσi+γ5](x). From the discussion of different operator structures in
appendix A, in particular Eqs. (A.9) and (A.10), the operator under consideration
is readily identified as density of good light-cone components φ ≡ P+ψ of the
quark fields

ψ iσi+γ5 ψ =
√

2φ†
(
PLγ

iPR − PRγiPL
)
φ (3.93)

with the chirality structure LR−RL expressed by the chiral projectors PR/L =
(1 + γ5) /2 (cf. Eq.(2.36)). Thus a situation is considered where a right-handed
quark is taken out from the hadron and a left-handed quark is reinserted, or vice
versa: h1(x) involves a flip of quark chirality. The notion of a ‘chiral-odd’ function
is used precisely in this sense. Since for the good component of the (massless)
quark fields helicity and chirality are identical, h1(x) is also often referred to
as ‘helicity-flip’ distribution. Strong interactions are helicity (or chirality) con-
serving up to negligible quark mass terms. As a consequence the helicity-flip
of h1(x) cannot be compensated for by the hard part of a diagram, in order to
form a physical observable. The occurrence of a chiral-odd projection of a second
soft hadronic matrix element is mandatory for h1(x) to be observable in a hard
process. This is the reason why h1(x) is not seen in inclusive lepton-nucleon
scattering – a process whose dominant contribution is described by the hand-
bag diagram involving only one soft matrix element. More complex processes,
like Drell-Yan scattering or semi-inclusive DIS instead allow for the extraction
of h1(x), if the observables are chosen carefully. The situation is schematically
exemplified in Fig. 3.15

R
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LΦ
L

L

L

∆R

R

L

L

R LΦ

∆R

R

R

R

L

L

L

√
(a) (b) (c)

Figure 3.15: Chiral odd functions can hardly be probed in the simple processes (a)
DIS and (b) e+e− → hX, where they contribute only via (suppressed) quark mass
effects. But they are accessible when combined with another chiral odd quantity like
e.g. in (c) (`H → `′hX).

With the above discussion h1(x) appears to have a very special rôle within the
three leading twist nucleon PDFs. Actually, though this is certainly true for its
experimental accessibility, from a theoretical point of view and the information
comprised on the spin decomposition of the nucleon, the transversity distribu-
tion is on the same footing as the helicity distribution g1(x). In a helicity or
chirality basis (compare the Weyl representation in appendixA), where γ5 and
Σ3 = i

2
[γ1, γ2] are diagonal, the h1(x) function appears to be non-diagonal and
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thus behaves different from f1(x) and g1(x). A different choice of basis, for in-
stance the so-called transversity basis, where γ1 (or equivalently γ2) is diagonal
reveals that there is nothing special about h1(x). In fact, in the transversity
basis f1(x) and h1(x) are diagonal, and g1(x) is non-diagonal. It is in this basis,
that h1(x) acquires a simple interpretation in terms of transverse spin orienta-
tions as indicated for instance in Fig. 3.9. These considerations show that the
spin information obtained in h1(x) and g1(x) are on the same level; it is just
the conventional choice of the helicity basis which makes h1(x) seemingly so un-
usual [15, 43, 44].

An ideal strategy to extract the transversity distribution from data wouldideal strategy to

extract transversity roughly have the following steps:

1. Identify and measure an observable in a process which involves h1(x) to-
gether with a second chiral odd function, say a fragmentation function
generically called H(z).

2. If possible, measure the second chiral odd function H(z) in a different pro-
cess and combine the information to eliminate the H(z) dependence in order
to isolate h1(x).

3. Repeat steps 1 and 2 with two more processes for a second independent
determination of h1(x) to check universality.

Evidently, the analysis requires the combination of a number of rather compli-complications

cated measurements on different processes. A reliable determination of h1(x)
furthermore is complicated by the following items:

• To relate the chiral odd PDFs and PFFs from different experiments, and
thus naturally obtained at different scales, one has to control the scale
dependence of the functions. Evolution presently is known at least for
the leading twist integrated PDFs and PFFs, but for instance only in the
theoretical limit of large-NC for the transverse momentum dependent func-
tions [45].

• Next to leading order αs corrections to the asymmetries involving h1(x) are
largely unknown though expected to be significant. Of particular impor-
tance is the dilution of asymmetries by Sudakov factors in process which
do not have a strict collinear factorisation [26]; fortunately, theoretical con-
siderations and numerical estimates do exist for this problem [46].

• In many of the relevant observables the transversity distribution h1(x) oc-
curs together with the second chiral-odd function as a convolution integral
in transverse momentum space.

Given the complexity of the task it is more likely that a combined fit of a modelglobal fit of h1(x)

ansatz to the available data is more promising to learn about h1(x), than following
the above outlined procedure step by step. Of course, to the best knowledge as
much as possible of the listed ingredients should be included in such a global
fitting.

In the following we will list and discuss several processes involving h1(x): [43]
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• In the Drell-Yan process with two transversely polarised protons h
q/p
1 (x)

occurs together with its counterpart for an antiquark h
q̄/p
1 (x). This process

is understood to next to leading order, but the function h
q̄/p
1 (x) for an anti-

quark in a proton presumably is very small, and Drell-Yan rates are gener-
ically low compared to purely hadronic processes at colliders. Moreover,
an upper limit for this double spin asymmetry derived in a next-to-leading
order analysis by using the Soffer bounds on transversity was found to be
discouraging low [47].

• In pion production in DIS at twist three level h
q/p
1 (x) occurs together with

the chiral-odd fragmentation function E(z). But the process is power sup-
pressed and there is a competing chiral-even mechanism gT (x)⊗D1(z) which
must be subtracted.

• The transversity distribution h
q/p
1 (x) occurs at leading twist together with

the chiral-odd PFF H1(z) in Λ production in electron scattering ep↑ → Λ↑X
on a transversely polarised target, or proton scattering pp↑ → Λ↑X on a
transversely polarised target [48]. By the kinematics of the observed decay
of the Λ its polarisation can be determined. But semi-inclusive data with
Λ in the final state are scarce. The relevant quantity here in both cases is
a double spin asymmetry.

There are more observables involving h1(x) in different hard semi-inclusive
processes (for discussions of various options see [49, 50]). Some of them deserve
special consideration in the context of this report and will be discussed in more
detail in the following, since they exemplify the rôle of quark transverse momenta.

3.2.5.1 Collins effect in SIDIS (`H → `′hX):

Following Collins and collaborators a very promising option to access transversity SSA in SIDIS

is given by a single spin asymmetry (SSA) in semi-inclusive DIS, if the transverse
momentum of the produced hadron, say a pion, is determined relative to the
current fragmentation jet. The kinematical situation is sketched in Fig. 3.16.

The relevant terms in the differential cross section at leading order for DIS
with an unpolarised beam and a transversely polarised target are [26, 18, 33, 51]

dσOT
dxBj dy dzh dφ`d2Ph⊥

=
2α2 xBjs

Q4
|S⊥|

∑

a,ā

e2
a

×
{

(1− y) sin(φ`h + φ`S) F
[
ĥ·kT
Mh

ha1 H
⊥a
1

]

+ (1− y) sin(3φ`h − φ`S)

×F
[

4(ĥ·pT )2(ĥ·kT )− 2(ĥ · pT )(pT · kT )− p2
T (ĥ · kT )

M2M2
h

h⊥a1T H
⊥a
1

]
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Figure 3.16: Kinematics for one-hadron inclusive DIS. The final hadron is observed
in a direction out of the lepton scattering plane. The photon momentum defines the
longitudinal direction. A decomposition of the Ph momentum in longitudinal and per-
pendicular components, defines the azimuthal angle φ`h relative to the lepton scattering
plane . It is convenient to introduce a normalised vector by ĥ = Ph⊥/|Ph ⊥ |.

+

(
1− y +

y2

2

)
sin(φ`h − φ`S) F

[
ĥ·pT
M

f⊥a1T Da
1

]

+O
(

1

Q

)
+O (αs) + . . .

}
(3.94)

with the azimuthal angles φ`h of the momentum of the produced hadron Ph, and
the azimuthal angle φ`S of the target spin vector, each taken with respect to the
lepton scattering plane, and the convolution

F [w(pT ,kT ) fD] ≡∫
d2pT d2kT δ

2(pT + qT − kT )w(pT ,kT ) f(x,pT )D(z,kT ) . (3.95)

The occurrence of this convolution reveals the link between the observable mo-
mentum components Ph⊥ in which the cross section is kept differential and the
quark transverse momenta pT and kT . The connection is induced by momentum
conservation on partonic vertices as schematically illustrated in Fig. 3.7. Note
that an integration over d2Ph⊥ can be easily carried out by using the δ-function
in Eq. (3.95) and the kinematical relation Pµ

h⊥ = −z qµT. Both contributions in
(3.94) vanish under symmetric integration over d2Ph⊥.

The part (3.94) can be isolated from the rest of the cross section by reversing
the target polarisation and subtracting the results. The first term involving H1(x)
is known as the ‘Collins effect’ [26, 52], the second term was found in [18], the
third term involves the time-reversal odd PDF f⊥1T (x) [33, 51]. The three terms
have distinct angular dependences which can be used to discriminate between the
contributions. The big advantages of accessing transversity via the Collins effect
are that it occurs at leading order, and there is no determination of a spin state
of a final hadron necessary. In a sense, a necessary second spin vector was traded
for a dependence on transverse momentum relative to the jet.
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Figure 3.17: Single spin azimuthal asymmetry in electroproduction of pions in
deep inelastic scattering (Collins effect) measured at HERMES. Shown is the
sin(φ) moment Asin

UL for unpolarised beam and longitudinally polarised target
vs. z,x, and pT .

Though the possibility was mentioned in the original proposal by Collins [26]
the importance of a dilution of the effect by Sudakov factors was quantitatively
estimated only recently [46]. The origin for this additional complication lies in
the fact that collinear factorisation does not apply, since it is a multiple scale
process depending on Q2, |Ph⊥| (with |Ph⊥| � Q2). However, one can avoid this
problem by considering an asymmetry expression that is weighted with a power
of the observed transverse momentum [33]

〈sin(φ`h + φ`S)QT/Mh〉
4π α2 s/Q4

= |S⊥| (1− y)
∑

a,ā

e2
a xh

a
1(x)H

⊥(1)a
1 (z) (3.96)

with QT ≡ |Ph⊥|/z, the moment

H
⊥(1)a
1 (z) ≡ z2

∫
d2kT

(
k2
T

2M2
h

)
H⊥a1 (z,k2

T ) , (3.97)

and where the weighting of a cross section is defined by

〈
W (QT , φ

`
h, φ

`
S)
〉
≡
∫

dφ`d2qT W (QT , φ
`
h, φ

`
S)

dσ

dxBj dy dzh dφ`d2qT
(3.98)

The observation of a sin(φ`h) asymmetry in semi-inclusive DIS has been re-
ported by HERMES [53] and SMC [54]. In Fig. 3.17 the HERMES data are
shown as sin(φ) weighted asymmetry.

Though the asymmetry was measured with a longitudinal polarised target,
it involves the weighted cross section of Eq. (3.96), since the direction of po-
larisation experimentally refers to the lepton beam, which results in large spin
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components longitudinal to the photon, but also – on the average small – compo-
nents transverse to the photon. Therefore, the asymmetry receives two different
contributions, from Eq. (3.96) and from the weighted cross section [18, 55]

〈
QT

M
sin(φlh)

〉

OL
=

4πα2s

Q4
λ (2− y)

√
1− y 2Mh

Q

×
∑

a,a

e2
a

{
xBj h

⊥(1)a
1L (xBj)

H̃a(z)

z

− xBj
[
xBj h

a
L(xBj)−

m

M
ga1L(xBj)

]
H
⊥(1)a
1 (z)

}
, (3.99)

where H̃(z) is an interaction dependent twist three PFF defined by the relation

H(z,k′ 2T ) = − k
2
T

M2
h

zH⊥1 (z,k′ 2T ) + H̃(z,k′ 2T ) . (3.100)

There is some confusion in the literature about the relative sign between the two
contributions caused by a typo in Ref. [18], which was corrected in [55] (see also
the Erratum to Ref. [56] 3).

Since the target polarisation is in the lepton plane, the azimuthal angle of
the spin vector components transverse to the photon φ`S can take only the val-
ues φ`S = {π, 0} leading to sin(φ`h + φ`S) → {sin(φ`h),− sin(φ`h)}. Consequently,
both contributions Eqs. (3.96) and (3.99) feed into the same sin(φ`h) asymme-
try. Although the contributions from (3.99) are power suppressed compared to
(3.96), they cannot be neglected for the asymmetry shown in Fig. 3.17, since
they are enhanced by the large longitudinal polarisation components compared
to the small transverse polarisation components accompanying (3.96). Thus, for

a direct extraction of h1(x) — even if one would know the function H
⊥(1)
1 (z)

— these data are not sufficient; the sensitivity of the SSA in an experiment
with longitudinally polarised target to h1(x) is very small. On the other hand,
utilising theoretical estimates and approximation, like the neglect all interaction
dependent functions known as Wandzura-Wilczek approximation [58], combined
with model calculations for all involved functions a good agreement with data
can be achieved [57]. The positive conclusions from the experimental observation
of this single spin asymmetry is that a significant large moment of the Collins
fragmentation function H

⊥(1)
1 (z) is very likely.

A similar positive conclusion on H
⊥(1)
1 (z) can be drawn from the observed

large asymmetry in pionproduction in pp scattering, p↑p→ πX, at the Tevatron
(Fermilab) [59]. However, an extraction of the function here is even more difficult,
because the description of this process involves three soft matrix elements. A
phenomenological analysis relating the asymmetry to the Collins effect has been
done [60].

In the near future measurements will be done at HERMES and COMPASS
with targets polarised transverse to the lepton beam. Here the polarisation com-
ponents transverse to the photon direction will be dominant on the average,

3Contrary to a statement in the Erratum to Ref. [56] the sign was taken correctly in Refer-
ences [57] (private communication by K. Oganessian).
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Figure 3.18: Two-hadron (in separate jets) inclusive electron-positron annihilation in
the parton model interpretation.

which allows a much more direct access to the cross section of Eq. (3.94), and
the asymmetry of Eq. (3.96).

3.2.5.2 Collins effect in e+e− annihilation (e+e− → h1h2X):

Information on the time-reversal odd and chiral-odd fragmentation function, H⊥1 from e+e−

annihilationH⊥1 (z), can be obtained from the electron-positron annihilation with two hadrons
observed, each in a separate jet, e+e− → h1h2X (see Fig. 3.18).

The complete differential cross section to next-to-leading twist accuracy (al-
beit at tree-level in the strong coupling) was discussed in [61], and the leading
twist asymmetries at the Z-pole where the bulk of the data is available in [62].
The leading contribution to the process is described by a handbag-type diagram
involving two soft matrix elements for the quark(antiquark) hadronisation (see
Fig. 3.19), up to order 1/Q gluonic corrections connecting soft and hard scattering
parts have to be included (see Fig. 3.20).

The physical picture of the process at tree-level is the following. Electron and
positron annihilate forming a photon or Z-boson which creates a quark-antiquark
pair. The spin of the quark and antiquark will be anticorrelated for each single
event. If the quark spin has a transverse component, it can be correlated to the
transverse momentum a produced hadron has relative to the jet via the Collins
effect described by the function H⊥1 (z). The same holds true for the antiquark;
its transverse spin component can be correlated to the transverse momentum of

a hadron relative to the antiquark jet by a function H
⊥
1 (z). As the net effect of

the double occurrence of the Collins effect in each of the two jets, the azimuthal
distributions of two hadrons relative to their respective jet directions can be
correlated in a measurable way.

The kinematics of the process in a lepton centre of mass frame is shown
in Fig. 3.21. The hadron momenta are denoted P1 and P2, one of the hadron
momenta, say P2, serves to define the longitudinal direction, the other hadron



58 3. TRANSVERSE MOMENTA . . .

∆
_

kq

P1

∆

p

k

p

P1

P P
2 2

Figure 3.19: Quark diagram contributing to e+e− annihilation in leading order.
There is a similar diagram with reversed fermion flow.

momenta in general is out of the lepton plane and its perpendicular direction de-
fines the azimuthal angle φ1. For convenience normalised vectors ĥ = P1⊥/|P1⊥|
(in the hadron plane) and l̂⊥ (in the lepton plane) are defined.

Considering the asymmetry at the Z-pole where most of the electron/positron
data are available (and where contributions from photons and γ−Z interference
can safely be neglected) the the vector and axial couplings of the Z boson to
quark lines occur, which are given by:

gjV = T j3 − 2Qj sin2 θW , (3.101)

gjA = T j3 , (3.102)

where Qj denotes the charge and T j3 the weak isospin of particle j (i.e., T j3 = +1/2
for j = u and T j3 = −1/2 for j = e−, d, s). Combinations of the couplings
occurring frequently in the formulas are

cj1 =
(
gjV

2 + gjA
2
)
,

cj2 =
(
gjV

2 − gjA2
)
, j = ` or u, d, s

cj3 = 2gjV g
j
A. (3.103)

In leading order in 1/Q and αs the following expression for the cross section are
obtained in case of unpolarised (or spinless) final state hadrons:

dσ(e+e− → h1h2X)

dΩdz1dz2d2qT
=
∑

a,a

3α2
wQ

2

(Q2 −M 2
Z)2 + Γ2

ZM
2
Z

z2
1z

2
2

×
{(

c`1 c
a
1

(
1

2
− y + y2

)
− 1

2
c`3 c

a
3 (1− 2y)

)
F
[
Da

1D
a
1

]

+ cos(2φ1) c`1 c
a
2 y(1− y) F

[(
2 ĥ·kT ĥ·pT − kT ·pT

) H⊥a1 H⊥a1

M1M2

]}
, (3.104)

where dΩ = 2dy dφl and φl gives the orientation of l̂µ⊥. The convolution notation

F
[
DaDa

]
≡
∫

d2kT d
2pT δ

2(pT + kT − qT )Da(z1, z
2
1k

2
T )Da(z2, z

2
2p

2
T ) (3.105)
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Figure 3.20: Diagrams contributing to e+e− annihilation at order 1/Q.

was used. The angle φ1 is the azimuthal angle of ĥ (see Fig. 3.21). In order to
deconvolute these expressions one can define weighted cross sections

〈W 〉 =
∫ dφ`

2π
d2qT W

dσ(e+e− → h1h2X)

dΩdz1dz2d2qT
, (3.106)

where W = W (QT , φ1, φ2, φS1 , φS2). To access the relevant information one
utilises the weighted cross sections

〈1〉O =
3α2

wQ
2

(Q2 −M 2
Z)2 + Γ2

ZM
2
Z

∑

a,ā

×
(
c`1 c

a
1

(
1

2
− y + y2

)
− 1

2
c`3 c

a
3(1− 2y)

)
Da

1(z1)Da
1(z2) , (3.107)

and
〈

Q2
T

4M1M2

cos(2φ1)

〉
=

3α2
wQ

2

(Q2 −M 2
Z)2 + Γ2

ZM
2
Z

∑

a,ā

×c`1 ca2 y(1− y) H
⊥(1)a
1 (z1)H

⊥(1)a
1 (z2) , (3.108)

where the k2
T -moments for a generic fragmentation function F are defined by

F (n)(zi) = z2
i

∫
d2kT

(
k2
T

2M2
i

)n
F (zi, z

2
i k

2
T ) . (3.109)

Note that the same moment of H⊥1 (z,k2
T ) enters Eq. (3.108) as in the weighted

cross section of SIDIS (3.96).
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Figure 3.21: Kinematics of the annihilation process in the lepton centre of mass
frame for a back-to-back jet situation. P1 (P2) is the momentum of a fast hadron
in jet one (two).

A first indication of a nonzero correlation comes from a preliminary analy-
sis [63] of the 91-95 LEP data (DELPHI). Several phenomenological analyses used
this information together with additional assumptions, for instance on isospin re-
lations, or model input to look for possible agreement with data.

The cos(2φ) asymmetry of e+e− → h1h2X is a very clear example for the in-
terplay of spin degrees of freedom and the intrinsic transverse momenta of partons
with respect to their parent hadrons. Even without determining polarisation of a
final state hadron a subtle test of our understanding of spin transfer mechanisms
in perturbative QCD can be done here. The information on the production of
a transversely polarised quark-antiquark pair, which subsequently fragment into
unpolarised (or spinless) hadrons with probabilities depending on the orientation
of the (anti)quarks spin vector relative to its transverse momentum, is contained
in an azimuthal asymmetry. This is in fact spin physics with spin-0 hadrons.

3.2.5.3 SSA in ππ production – interference fragmentation functions:

There is another very promising option to access the transversity distributiontwo-hadron

interference PFFs in processes where two hadrons in the same jet are detected [52, 64, 65, 43,
44]. As in the previous subsection, again there is no determination of spin of
final state hadrons necessary, which facilitates the experimental requirements.
The measured hadrons for instance can be a pair of pions (or Kaons) which are
abundant in energetic jets and provide large counting rates.

Before proceeding with the discussion on the strategies for a possible extrac-
tion of h1(x) making use of the two-hadron interference fragmentation functions
we have to set up some definitions, thereby generalising the methods and the
classification scheme of subsection 3.2.3 for the case of a single detected spin-1/2
hadron to the present case. The notation will largely follow Reference [42].

In analogy with the quark-quark correlation function involving one detected
hadron in the final state, the simplest matrix element for the hadronisation into
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two hadrons is the quark-quark correlation function describing the decay of a
quark with momentum k into two hadrons with momenta P1, P2 (see Fig. 3.22),
namely

∆ij(k;P1, P2) =
∑∫

X

∫ d 4ζ

(2π)4
eik·ζ

×〈0|ψi(ζ) a†2(P2) a†1(P1) |X〉 〈X| a1(P1) a2(P2)ψj(0) |0〉 , (3.110)

where a†(P ) (a(P )) are hadronic creation (annihilation) operators, and the sum
runs over all the possible intermediate states involving the two final hadrons
P1, P2. For the Fourier transform only the two space-time points 0 and ζ matter,
i.e. the positions of quark creation and annihilation, respectively. Their relative
distance ζ is the conjugate variable to the quark momentum k.

k k

P1 P2 P2
P1

∆ (k;P1 ,P2 )

Figure 3.22: Quark-quark correlation function for the fragmentation of a quark
into a pair of hadrons.

By generalising the Collins-Soper light-cone formalism [66, 5] for fragmenta-
tion into multiple hadrons [64, 44], the cross sections for semi-inclusive processes
with two-hadron detected in the same jet can be expressed in terms of specific
Dirac projections of ∆(k;P1, P2) after integrating over the (hard-scale suppressed)
light-cone component k+ and, consequently, taking ζ as light-like [18], i.e.

∆[Γ] =
1

4zh

∫
dk+ Tr[∆Γ]

∣∣∣∣
ζ−=0

=
1

4zh

∫
dk+

∫
dk− δ

(
k− − P−h

zh

)
Tr[∆Γ] . (3.111)

Let us discuss the kinematical variables the projection ∆[Γ] depends on. The
integrand of (3.111) in principal depends on all the invariants which can be built
from the momenta k, P1, P2 and the light-like vector n+ = [1, 0,0T ] induced by the
δ-function. We choose for convenience a frame where the total pair momentum
Ph = P1 + P2 has no transverse component. The constraint to reproduce on-
shell hadrons with fixed mass (P 2

1 = M2
1 , P

2
2 = M2

2 ) and the condition n2
+ =

0 reduces to seven the number of independent degrees of freedom. They can
conveniently be reexpressed in terms of the light-cone component of the hadron
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pair momentum, P−h = Ph ·n+, of the light-cone fraction of the quark momentum
carried by the hadron pair, zh = P−h /k

− = z1 + z2, of the fraction of hadron
pair momentum carried by each individual hadron, ξ = z1/zh = 1 − z2/zh, and
of the four independent invariants that can be formed by means of the momenta
k, P1, P2 at fixed masses M1,M2, i.e.

τh = k2 ,

σh = 2 k · (P1 + P2) ≡ 2 k · Ph ,
σd = 2 k · (P1 − P2) ≡ 4 k ·R ,

M2
h = (P1 + P2)2 ≡ P 2

h , (3.112)

with R ≡ (P1−P2)/2 being (half of) the relative momentum between the hadron
pair. An explicit parametrisation for the three momenta external to ∆ is

k =


 P

−
h

zh
, zh

k2 + ~k 2
T

2P−h
, ~kT




P1 =


 P−h

z1

zh
,
zh(M

2
1 + ~R 2

T )

2 z1P
−
h

, ~RT




P2 =


 P−h

z2

zh
,
zh(M

2
2 + ~R 2

T )

2 z2P
−
h

, −~RT


 . (3.113)

After the two integrations the projection ∆[Γ] now depends on five variables,
apart from the Lorentz structure of the Dirac matrix Γ. In order to make this
more explicit and to reexpress the set of variables in a more convenient way, let
us rewrite the integrations in Eq. (3.111) in a covariant way using

2P−h =
dσh
dk+

, 2 k+ =
dτh
dk−

, (3.114)

and the relation

1

2k+
δ

(
k− − P−h

zh

)
= δ

(
2k+k− − 2k+P−h

zh

)

= δ

(
τh + ~k 2

T −
σh
zh

+
M2

h

z2
h

)
(3.115)

which leads to the result

∆[Γ](zh, ξ,~k
2
T ,M

2
h , σd) =

∫
dσh dτh δ

(
τh + ~k 2

T −
σh
zh

+
M2

h

z2
h

)

×Tr[∆(zh, ξ, P
−
h , τh, σh,M

2
h , σd) Γ]

8zhP
−
h

, (3.116)

where the dependence on the transverse quark momentum ~k 2
T through σh is made

explicit by means of

σh = 2k · Ph =




M2

1 + ~R 2
T

zh ξ
+
M2

2 + ~R 2
T

zh (1− ξ)



+ zh (τh + ~k 2

T ) (3.117)
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and
~R 2
T = ξ (1− ξ)M 2

h − (1− ξ)M 2
1 − ξ M 2

2 . (3.118)

with ξ = z1/zh.

Using further the relations

τh = k2

σd = 2k · (P1 − P2)

=




M2

1 + ~R 2
T

zh ξ
− M2

2 + ~R 2
T

zh (1− ξ)



+ zh(2ξ − 1)(τh + ~k 2

T )− 4~kT · ~RT

M2
h = P 2

h

= 2P+
h P

−
h =




M2

1 + ~R 2
T

ξ
+
M2

2 + ~R 2
T

1− ξ



 (3.119)

makes it possible to reexpress ∆[Γ] as a function of zh, ξ, ~k
2
T and ~R 2

T , ~kT · ~RT ,

where ~RT is (half of) the transverse momentum between the two hadrons in the
considered frame. In this manner ∆[Γ] depends on how much of the fragmenting
quark momentum is carried by the hadron pair (zh), on the way this momentum
is shared inside the pair (ξ), and on the “geometry” of the pair, namely on

the relative momentum of the two hadrons ( ~R 2
T ) and on the relative orientation

between the pair plane and the quark jet axis (~k 2
T , ~kT · ~RT , see also Fig. 3.23). The

kinematical dependencies derived by general considerations have been rewritten
to quantities in a specific frame, which have an obvious geometric meaning.

RT

P1

Ph

P2

Tk

jet axisk
α

quark/observed-hadronic-system plane
hadron pair plane

Figure 3.23: Kinematics for a fragmenting quark jet containing a pair of leading
hadrons.

If the polarisations of the two final hadrons are not observed, the quark-quark
correlation ∆(k;P1, P2) of Eq. (3.110) can be generally expanded, according to
hermiticity and parity invariance, as a linear combination of the independent
Dirac structures of the process

∆(k;P1, P2) = B1 (M1 +M2) + B2 P/1 + B3 P/2 + B4 k/
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+
B5

M1

σµνP1µkν +
B6

M2

σµνP2µkν +
B7

M1 +M2

σµνP1µP2ν

+
B8

M1M2

γ5 ε
µνρσγµP1νP2ρkσ . (3.120)

Symmetry constraints are obtained in the form

γ0 ∆†(k;P1, P2) γ0 = ∆(k;P1, P2) [Hermiticity] , (3.121)

γ0 ∆(k̄; P̄1, P̄2) γ0 = ∆(k;P1, P2) [Parity] , (3.122)
(
γ5C ∆(k̄; P̄1, P̄2)C†γ5

)∗
= ∆(k;P1, P2) [Time reversal] , (3.123)

where ā = (a0,−~a) and C = i γ2 γ0. From the hermiticity of the fields it follows
that

B∗i = Bi for i = 1, .., 12 (3.124)

and, if constraints from time-reversal invariance can be applied, that

B∗i = Bi for i = 1, .., 4 B∗i = −Bi for i = 5, .., 8 , (3.125)

which means in that case B5 = B6 = B7 = B8 = 0, i.e. terms involving B5, .., B8

are naive “T-odd”.

Inserting the ansatz (3.120) in Eq. (3.116) and reparametrising the momenta
k, P1, P2 with the indicated new set of variables, one gets the following Dirac
projections

∆[γ−](zh, ξ,~k
2
T ,
~R 2
T ,
~kT · ~RT ) ≡ D1(zh, ξ,~k

2
T ,
~R 2
T ,
~kT · ~RT ) (3.126)

=
1

2zh

∫
[dσhdτh]

[
B2 ξ + B3 (1− ξ) + B4

1

zh

]

∆[γ−γ5](zh, ξ,~k
2
T , ~R

2
T ,
~kT · ~RT ) ≡ εijT RT i kTj

M1 M2

G⊥1 (zh, ξ,~k
2
T , ~R

2
T ,
~kT · ~RT ) (3.127)

=
εijT RT i kTj
M1 M2

1

2zh

∫
[dσhdτh] [−B8]

∆[iσi−γ5](zh, ξ,~k
2
T , ~R

2
T ,
~kT · ~RT ) ≡ εijT RTj

M1 +M2

H<)
1 (zh, ξ,~k

2
T , ~R

2
T ,
~kT · ~RT ) (3.128)

+
εijT kTj

M1 +M2

H⊥1 (zh, ξ,~k
2
T ,
~R 2
T ,
~kT · ~RT )

=
εijT RTj

M1 +M2

1

2zh

∫
[dσhdτh]

[
−B5

(
M1 +M2

zhM1

)
+ B6

(
M1 +M2

zhM2

)
−B7

]

+
εijT kTj

M1 +M2

1

2zh

∫
[dσhdτh]

[
B5 ξ

(
M1 +M2

M1

)
+ B6 (1− ξ)

(
M1 +M2

M2

)]
,

where εµνT ≡ ε−+µν (such that i, j are transverse indices) and

∫
[dσhdτh] ≡

∫
dσh dτh δ

(
τh + ~k 2

T −
σh
zh

+
M2

h

z2
h

)
. (3.129)

Transverse 4-vectors are defined as aµT = gµνT aν = [0, 0,~aT ] (with gµνT = gµν −
nµ+n

ν
− − nν+nµ−).
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Figure 3.24: Probabilistic interpretation for the leading order FF arising in the
decay of a current quark into a pair of unpolarised hadrons.

The functions D1, G⊥1 , H<)
1 , H⊥1 are the FF that arise to leading order in 1/Q

for the fragmentation of a current quark into two unpolarised hadrons inside the
same jet. The different Dirac structures used in the projections are related to
different spin states of the fragmenting quark and lead to a nice probabilistic
interpretation [42]. As illustrated in Fig. 3.24, D1 is the probability for an un-
polarised quark to produce a pair of unpolarised hadrons; G⊥1 is the difference
of probabilities for a quark with opposite chiralities to produce a pair of unpo-
larised hadrons; H<)

1 and H⊥1 both are differences of probabilities for a transversely
polarised quark with opposite spins to produce a pair of unpolarised hadrons.

The interference functions G⊥1 , H<)
1 and H⊥1 are (naive) “T-odd”. In fact, the

probability for an anyway polarised quark with observed transverse momentum
to fragment into unpolarised hadrons is non-vanishing only if there are residual
interactions in the final state. In this case, the constraint (3.123) still holds, but
does not imply the condition (3.125) and indeed the projections (3.128), (3.129)
are non-vanishing. A measure of these functions would directly give the size and
importance of such FSI inside the jet.

G⊥1 is chiral even; it has a counterpart in the FF for one-hadron semi-inclusive
production. In that case, from the ∆[γ−] projection a “T-odd” FF arises, named
D⊥1T , which describes the probability for an unpolarised quark with observed
transverse momentum to fragment in a transversely polarised hadron [18]. It is
known also in a different context [67] that the similarity is recovered by substi-
tuting an axial vector (the hadron transverse spin) with a vector (the momentum
of a second detected hadron) and by balancing this change in parity with the
introduction of the quark polarisation.

The functions H<)
1 and H⊥1 are chiral odd and can, therefore, be identified as

the chiral partners needed to access the transversity h1. Given their probabilistic
interpretation, they can be considered as a sort of “double” Collins effect [26].



66 3. TRANSVERSE MOMENTA . . .

They differ just by geometrical weighting factors that are selectively sensitive
either to the relative momentum of the final hadrons ( ~RT ) or to the relative

orientation of the total pair momentum with respect to the jet axis (~kT , see also
Fig. 3.23).

3.2.5.4 DSA in inclusive ρ production:

The consideration of spin-one hadrons in the final state, for instance in semi-
inclusive ρ production by deep inelastic scattering on a transversely polarised
nucleon target provides additional options to access the transversity distribution.
Since the ρ will be identified by its decay into two pions, it is obvious that the
involved spin-one PFFs have a close relationship to the two-hadron PFFs. A
complete analysis of the relations has been performed recently [68]. Here only
the most interesting asymmetry in the cross section is quoted from [41]

2π dσUT (l + ~H → l′ +
~~h+X)

dφl dxBj dzh dy
=

−4πα2s

Q4
xBj(1− y)|ST ||ShLT | sin(φlhLT + φlS) h1(xBj)H1LT (zh) (3.130)

involving the spin-one fragmentation function H1LT corresponding to the p-wave
part the H<)

1 two-hadron PFF [68].

3.3 model calculations of PDFs and PFFs

The transverse momentum dependence of PDFs and PFFs is often modelled in
form of Gaussian distributions (as for instance in [39, 18, 69, 57]). A typical
ansatz for a PDF would be

f(x,p2
T ) = f(x, 0) exp

(
−R2

Hp
2
T

)
= f(x)

R2
H

π
exp

(
−R2

Hp
2
T

)
(3.131)

or similarly

D(z,k′ 2T ) = D(z, 0) exp
(
−R2

hk
2
T

)
= D(z)

R2
h

z2 π
exp

(
−R2

hk
2
T

)
(3.132)

for a PFF, with radii RH and Rh governing the fall-off of the functions in a way
specific for the hadron under consideration. In principle, these radii again may
depend on the LC fractional momentum and on the specific function, i.e. RH =
Rf
H(x) and Rh = RD

h (z).

Instead of directly guessing an ansatz for transverse momentum dependence,
alternatively suitable model calculations can be used. Of course, the behaviour of
PDFs and PFFs resulting from such a calculation depends on the model assump-
tions put in the first place. The advantage is merely that transverse momentum
dependence such is linked to model properties which influence other phenomena.
For instance, models typically relate the longitudinal and transverse momentum
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dependence of the functions in a specific way. Ultimately all those ideas and
assumptions will have to be checked against experiments.

More generally, in order to investigate the structure of the quark-quark cor-
relation functions it is instructive to employ models which illustrate the conse-
quences of the various constraints. Model calculations of PDFs and PFFs serve
several purposes:

• Realistic model predictions for unknown PDFs and PFFs are needed to
estimate the size of observables for future experiments. In particular, in
planning the measurements of small quantities like azimuthal asymmetries
it is crucial to have an idea in advance of what can be expected.

• From a comparison of results from model calculations with the actually
measured functions relevant mechanisms and properties can be identified
which are responsible for characteristic features of the functions.

Many models for PDFs and PFFs are on the market, like bag models [70, 71,
72, 73], quark models [74, 75, 76], soliton models [77, 78], or spectator models
[79, 80, 20, 21, 81, 82, 83], to name but a few.

In the following we will focus on a spectator model where the spectrum of
intermediate states, which can be inserted in the definition of the correlation
function Φ in Eq. (3.7), or which are explicitly displayed in the definition of the
correlation function ∆ in Eq. (3.11), is replaced by one state with a definite mass.

Though simple in its physical input, it has the advantage of being covariant
and producing the right support. It incorporates the properties of quark-quark
correlation functions discussed in the subsections 3.2.1, 3.2.2 and 3.2.3. Its struc-
tural simplicity results in analytical expressions for these functions, which can
be projected in order to obtain transverse momentum dependent and integrated
PDFs and PFFs.

3.3.1 PDF and PFF in a spectator model

Estimates not only for the usual spin-independent PDFs and PFFs, but also for
spin-dependent ones and for subleading (higher twist) functions for the nucleon
have been obtained in the spectator model [20]. Also PDFs and PFFs up to
subleading order are discussed in the same publication.

The treatment of intermediate states, to be inserted in the definition of Φ in basic assumption

of the

spectator model
Eq. (3.7) and explicitely present in Eq. (3.11) for ∆, as a spectator state with a
definite mass amounts to making a specific ansatz for the spectral decomposition
of these correlation functions. This may be best illustrated using the support
plot in σ ≡ 2 p · P and τ ≡ p2. In this plot the mass MR of the remainder,
called the spectator, is constant along the lines (P − k)2 = τ − σ + M 2 = M2

R,
as indicated in Fig. 3.25. The quantum numbers of the intermediate state are
those determined by the action of the quark field on the state |P, S〉, hence the
name diquark spectator. In the most naive picture of the quark structure of the
nucleon, such that in its rest frame all quarks are in 1/2+ orbitals, the spin of
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Figure 3.25: The constraint in the σ − τ plane coming from fixing the spectator
mass MR (compare with Fig. 3.11).

the diquark system can be either 0 (scalar diquark s) or 1 (axial vector diquark
a). For a pion state we have an antiquark spectator. The inclusion of antiquark
and gluon distributions would require a more complex spectral decomposition of
intermediate states; for an exploratory study the restriction to the simplest case
seems reasonable [20]. The correlation function Φ (the correlation function ∆calculation of Φ in

the spectator

model
will be treated later) is then given in the spectator model by

ΦR
ij(p, P, S) =

1

(2π)3
〈P, S|ψj(0)|X(λ)〉 θ(P+

R )

×δ
[
(p− P )2 −M 2

R

]
〈X(λ)|ψi(0)|P, S〉, (3.133)

where PR = P − p and X(λ) represents the spectator and its possible spin states
(indicated with λ). One projects onto different spins in the intermediate state
and allows for different spectator masses.

To start with the correlation function Φ for a nucleon, the matrix element
appearing in the RHS of (3.133) is given by

〈Xs|ψi(0)|P, S〉 =

(
i

p/−m

)

ik

Υs
kl Ul(P, S) , (3.134)

in the case of a scalar diquark, or by

〈X(λ)
a |ψi(0)|P, S〉 = ε∗(λ)

µ

(
i

p/−m

)

ik

Υaµ
kl Ul(P, S) , (3.135)

for a vector diquark. The matrix elements consist of a nucleon-quark-diquark
vertex Υ(N) yet to be specified, the Dirac spinor for the nucleon Ul(P, S), a
quark propagator for the untruncated quark line (m is the constituent mass of
the quark) and a polarisation vector ε∗(λ)

µ in the case of an axial vector diquark.
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The next step is to fix the Dirac structure of the nucleon-quark-diquark vertex
Υ. A possible assumption are the following structures:

Υs(N) = 1 gs(p
2), (3.136)

Υaµ(N) =
ga(p

2)√
3

γνγ5
P/ +M

2M

(
−gµν +

P µP ν

M2

)

=
ga(p

2)√
3

γ5

(
γµ +

P µ

M

)
. (3.137)

The functions gR(p2) (where R is s or a) are form factors that take into account
the composite structure of the nucleon and the diquark spectator. In the choice
of vertices, the factors and projection operators are chosen to assure that in the
target rest frame, where the nucleon spinors have only upper components, the
diquark spin 1 states are purely spatial and in which case the axial vector diquark
vertex reduces to χ†Nσ · εχq. The most general structure of the vertices can be
found in [84]. With the choices of Eqs.(3.136), one finds

ΦR(p, P, S) =
|gR(p2)|2
2(2π)3

δ (τ − σ +M 2 −M 2
R)

(p2 −m2)2

× ( p/+m)
(
P/ +M

)
(1 + aRγ5 S/) ( p/+m), (3.138)

where aR is a spin factor, which takes the values as = 1 and aa = −1/3. In
obtaining this result the polarisation sum for the axial vector diquark was used
in the form

∑
λ ε
∗(λ)
µ ε(λ)

ν = −gµν + PµPν/M
2, which is consistent with the choice

that the axial vector diquark spin states are purely spatial in the nucleon rest
frame. The same form factors for scalar and axial vector diquark is used:

g(τ) = N
τ −m2

|τ − Λ2|α . (3.139)

The quantity Λ is another parameter of the model which ensures that the vertex
is cut off if the virtuality of the quark leg is much larger than Λ2. N is a normal-
isation constant. This choice of form factor has the advantage of killing the pole
of the quark propagator as suggested in [84].

In passing one may note that in the same way a simple spectator model for
the pion can be obtained. The matrix element can be written as

〈X(α)|ψi(0)|Pπ〉 =

(
i

p/−m

)

ik

Υkl v
(α)
l . (3.140)

The spinor v
(α)
l describes the spin state of the antiquark spectator. The simplest

vertex is given by

Υ(π) =
g(p2)√

2

P/π +Mπ

2Mπ

γ5 . (3.141)

Taking for the spectator antiquark spin sum
∑
α v

(α)
l v̄

(α)
l = P/π −Mπ one arrives

at precisely the same expression as for the nucleon (Eq. (3.138)) with aR = 0.
This option will not be pursued further here, but the focus will be on the example
of nucleon PDFs to exemplify transverse momentum dependence in the model.
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From the correlation function Φ one easily obtains the distribution functions.
Taking out the explicit δ-function,

ΦR(p, P, S) = Φ̃(p, P, S) δ
(
τ − σ +M 2 −M 2

R

)
, (3.142)

one finds immediately from Eq. (3.36) the result

Φ[Γ](x,pT ) =
Tr(Φ̃Γ)

4(1− x)P+

∣∣∣∣∣
τ = p2(x,p2

T )
, (3.143)

with

− p2(x,p2
T ) =

p2
T

1− x +
x

1− x M
2
R − xM 2 . (3.144)

For completeness the calculation of fragmentation functions is sketched in
the following , which is very similar to the case of the distribution functions,
involving the same type of matrix elements. Further assuming that the hadron h
has no interactions with the spectator allows to use a free spinor to describe this
outgoing hadron. Then it is seen that the correlation function ∆ is the same as
the one needed for the distributions, after obvious replacements in the arguments,
namely

∆R(k, Ph, Sh) =
|gR(k2)|2
2(2π)3

δ (τh − σh +M2
h −M 2

R)

(k2 −m2)2

×( k/+m)
(
P/h +Mh

)
(1 + aRγ5 S/h) ( k/+m). (3.145)

A direct consequence is

∆[Γ](z,kT ) =
1

2z
Φ[Γ′]

(
1

z
,kT

)
=

1

2z
Φ[Γ′]

(
1

z
,− k

′
T

z

)
, (3.146)

where Γ′ and Γ involve an interchange of + and − components. Defining ∆̃ by
∆(k, Ph, Sh) = ∆̃(k, Ph, Sh) δ ((k − Ph)2 −M 2

R), Eq. (3.75) leads to

∆[Γ](z,kT ) =
Trx(∆̃Γ)

8(1− z)P−h

∣∣∣∣∣
τh = k2(z,k2

T )
, (3.147)

with

k2(z,k2
T ) =

z

1− z k
2
T +

M2
R

1− z +
M2

h

z
. (3.148)

The consequence of using free spinors to describe the outgoing hadron in this
variant of the spectator model is that all T-odd fragmentation functions vanish
and there is a one-to-one correspondence between distribution and fragmentation
functions. As can be seen in Fig. 3.25 the actual behaviour of the distribution
and fragmentation functions comes from different regions in τ , roughly spacelike
and timelike, respectively. Therefore, the above reciprocity (Eq. (3.146)) is of use
for the analytic expressions, less for the actual values.
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3.3.2 results and discussion

Complete results and discussions can be found in the original publication [20].
The results of the spectator model calculation for PDFs and PFFs have been used
to discuss properties of the structure functions of one-hadron inclusive DIS [85].
Here the focus will be on the transverse momentum dependence of nucleon PDFs
only. Since the dependence for PFFs of the nucleon, and PDFs and PFFs of
pions is very similar, this serves as a typical example.

3.3.2.1 PDFs of the nucleon:

Using the expression in Eq. (3.138) one can compute the amplitudes Ai of the
ansatz in Eq. (3.17). Taking out some common factors by defining

Ai =
N 2

2(2π)3

δ (τ − σ +M 2 −M 2
R)

|τ − Λ2|2α
Ãi, (3.149)

one obtains, as expected from the absence of final state interaction in the present
form of the model, the T-odd amplitudes Ã4 = Ã5 = Ã12 = 0, and

Ã1 =
m

M

(
(M +m)2 −M 2

R

)
+ (τ −m2)

(
1 +

m

M

)
, (3.150)

Ã2 = −
(
τ −m2

)
, (3.151)

Ã3 = (M +m)2 −M 2
R + (τ −m2) , (3.152)

Ã6 = −aR
[
m

M

(
(M +m)2 −M 2

R

)
+ (τ −m2)

(
1 +

m

M

)]
, (3.153)

Ã7 = 2 aRmM , (3.154)

Ã8 = 2 aRM
2 , (3.155)

Ã9 = aR (τ −m2) , (3.156)

Ã10 = −aR
[
(M +m)2 −M 2

R + (τ −m2)
]
, (3.157)

Ã11 = −2 aRM
2 . (3.158)

Introducing the function λ2
R(x) such that

Λ2 − p2 =
p2
T + λ2

R(x)

1− x , (3.159)

which implies
λ2
R(x) = Λ2(1− x) + xM 2

R − x(1− x)M 2 , (3.160)

one gets the following results for the p2
T -dependent distribution functions, PDFs(x,pT )

f1(x,p2
T ) =

N 2 (1− x)2α−1

16π3

(xM +m)2 + p2
T

(p2
T + λ2

R)2α , (3.161)

g1L(x,p2
T ) = aR

N 2 (1− x)2α−1

16π3

(xM +m)2 − p2
T

(p2
T + λ2

R)2α , (3.162)
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g1T (x,p2
T ) = aR

N 2 (1− x)2α−1

8π3

M(xM +m)

(p2
T + λ2

R)2α , (3.163)

h1T (x,p2
T ) = aR f1(x,p2

T ) , (3.164)

h⊥1L(x,p2
T ) = − g1T (x,p2

T ) , (3.165)

h⊥1T (x,p2
T ) = − aR

N 2 (1− x)2α−1

8π3

M2

(p2
T + λ2

R)2α , (3.166)

e(x,p2
T ) =

N 2 (1− x)2α−2

16π3

×
(1− x)(xM +m)(M +m)−M 2

R

(
x+ m

M

)
−
(
1 + m

M

)
p2
T

(p2
T + λ2

R)2α , (3.167)

f⊥(x,p2
T ) =

N 2 (1− x)2α−2

16π3

×(1− x2)M2 + 2mM(1− x)−M 2
R − p2

T

(p2
T + λ2

R)2α , (3.168)

g′T (x,p2
T ) = aR e(x,p

2
T ) , (3.169)

g⊥L (x,p2
T ) = − aR

N 2 (1− x)2α−2

16π3

(1− x)2M2 −M 2
R − p2

T

(p2
T + λ2

R)2α , (3.170)

g⊥T (x,p2
T ) = aR

N 2 (1− x)2α−1

8π3

M2

(p2
T + λ2

R)2α , (3.171)

h⊥T (x,p2
T ) = aR f

⊥(x,p2
T ) , (3.172)

hL(x,p2
T ) = aR

N 2 (1− x)2α−2

16π3

×
(1− x)(xM +m)(M +m)−

(
x+ m

M

)
M2

R +
(
1− 2x− m

M

)
p2
T

(p2
T + λ2

R)2α ,(3.173)

hT (x,p2
T ) = − g⊥L (x,p2

T ) . (3.174)

Although there is a certain freedom in the choice of the parameters, one im-
mediately sees that the occurrence of singularities in the integration region (see
Fig. 3.25) will cause problems which are avoided if there is no zero in the de-
nominator. The requirement that λ2

R(x) is positive implies for the distribution
functions (0 ≤ x ≤ 1)

MR > M − Λ, (3.175)

while for the fragmentation functions (using reciprocity, we have to look at x ≥ 1)
it leads to

MR > Λ−Mh. (3.176)
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Provided condition (3.175) is fulfilled, one obtains the integrated distribution PDFs(x)

functions,

f1(x) =
N 2 (1− x)2α−1

32π2 (α− 1)(2α− 1)

2(α− 1) (xM +m)2 + λ2
R(x)

(λ2
R(x))2α−1 , (3.177)

g1(x) =
N 2aR (1− x)2α−1

32π2 (α− 1)(2α− 1)

2(α− 1) (xM +m)2 − λ2
R(x)

(λ2
R(x))2α−1 , (3.178)

h1(x) =
N 2aR (1− x)2α−1

16π2(2α− 1)

(xM +m)2

(λ2
R(x))2α−1 , (3.179)

e(x) =
N 2 (1− x)2α−2

32π2(α− 1)(2α− 1)

×
2(α− 1)

(
x+ m

M

)
[(1− x)(M +m)M −M 2

R]−
(
1 + m

M

)
λ2
R(x)

(λ2
R(x))2α−1 , (3.180)

gT (x) =
N 2aR (1− x)2α−2

32π2(α− 1)(2α− 1)

×
2(α− 1)

(
x+ m

M

)
[(1− x)(M +m)M −M 2

R]−
(
x+ m

M

)
λ2
R(x)

(λ2
R(x))2α−1 , (3.181)

hL(x) =
N 2aR (1− x)2α−2

32π2(α− 1)(2α− 1)

×
2(α− 1)

(
x+ m

M

)
[(1− x) (M +m)M −M 2

R] +
(
1− 2x− m

M

)
λ2
R(x)

(λ2
R(x))2α−1 . (3.182)

Examples of the p2
T/2M

2-weighted distributions are

g
(1)
1T (x) = − h⊥(1)

1L (x) =
N 2aR (1− x)2α−1

32π2 (α− 1)(2α− 1)

x+ m
M

(λ2
R(x))2α−2 . (3.183)

These latter functions do not vanish at x = 0, implying non-vanishing sum rules
for g2 and h2, in accordance with Eqs. (3.59) and (3.60), except if the quarks are
massless.

The functions g2 and h2 are given by

g2(x) =
h2(x)

2

=
N 2aR (1− x)2α−2

32π2 (α− 1)(2α− 1)

×
2(α− 1)

(
x+ m

M

)
[M2(1− x)2 −M 2

R] +
(
1− 2x− m

M

)
λ2
R(x)

(λ2
R(x))2α−1 . (3.184)

A direct check reveals that Eqs. (3.55) and (3.56) are satisfied.
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Up to now, flavour in the distributions is not specified . For the nucleon onlyfixing parameters

two types of distributions, f s1 and fa1 , etc. are distinguished. Since spin 0 diquarks
are in a flavour singlet state and spin 1 diquarks are in a flavour triplet state, in
order to combine to a symmetric spin-flavour wave function as demanded by the
Pauli principle, the proton wave function has the well-known SU(4) structure,

|p ↑〉 =
1√
2
|u ↑ S0

0〉+
1√
18
|u ↑ A0

0〉

− 1

3
|u ↓ A1

0〉 −
1

3
|d ↑ A0

1〉+

√
2

9
|d ↓ A1

1〉, (3.185)

where S (A) represents a scalar (axial vector) diquark and the upper (lower)
indices represent the projections of the spin (isospin) along a definite direction.
Since the coupling of the spin has already been included in the vertices, the
flavour coupling is needed

|p〉 =
1√
2
|u S0〉+

1√
6
|u A0〉 −

1√
3
|d A1〉, (3.186)

to find that for the nucleon the flavour distributions are

fu1 =
3

2
f s1 +

1

2
fa1 , (3.187)

fd1 = fa1 , (3.188)

and similarly for the other functions. The proportionality of the numbers is
obtained from Eq. (3.186), while the overall factor is chosen to reproduce the
sum rules for the number of up and down quarks if f s1 and fa1 are normalised to
unity upon integration over pT and x. This will fix the normalisation N in the
form factor in Eq. (3.139). Notice that the factors as = 1 and aa = −1/3 in the
distribution functions will produce different u and d weighting for unpolarised
and polarised distributions. Further differences between u and d distributions
can also be induced by different choices of MR, Λ or α. For the nucleon α = 2
reproduces the right large x behaviour of fu1 , i.e. (1 − x)3, as predicted by the
Drell-Yan-West relation and reasonably well confirmed by data. Though tuning
the large x behaviour of f d1 to match the (1−x)4 form indicated by data could be
easily obtained by choosing a different form factor for the vector diquarks, since
fd1 is only affected by the latter, such a fine-tuning would probably take things too
far with the simple model under consideration. Similarly, only one common value
for Λ is used. However, different masses for scalar and vector diquark spectators
are considered. The colour magnetic hyperfine interaction, held responsible for
the nucleon-delta mass difference of 300 MeV, will also produce a mass difference
between singlet and triplet diquark states. Neglecting dynamical effects, group-
theoretical factors lead to a difference Ma −Ms = 200 MeV [86].

The remaining parameters of the model are fixed as follows. In Ref. [20] it is
argued that a satisfactory qualitative agreement with the valence distributions of
Glück, Reya and Vogt (GRV) calculated at the low scale µ2

LO = 0.23 GeV2 [87] can
be obtained with the choices m = 0.36 GeV, Ms = 0.6 GeV and Ma = 0.8 GeV,
given the fact that the neglect of sea-quark and gluon spectator components is
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Figure 3.26: Twist two distributions for the nucleon. The plot at the top shows
xf s1 (x) (full line) and xf a1 (x) (dashed line) for Ms = 0.6 GeV, Ma = 0.8 GeV
and Λ = 0.5 GeV. The plot on the middle shows xfu1 (x) (full line) and xf d1 (x)
(dashed line) for the same values of the parameters. The third plot shows the
low scale (µ2 = 0.23 GeV2) valence distributions of Glück, Reya and Vogt [87].

known to lead to more narrow distributions then the ones observed in experiment.
It turns out the distributions are rather insensitive to the quark mass value.

Another important constraint comes from the axial charge of the nucleon,
given by

gA =
∫ 1

0
dx
[
gu1 (x)− gd1(x)

]
=
∫ 1

0
dx
[
3

2
gs1(x)− 1

2
ga1(x)

]
. (3.189)

This constraint is used to fix Λ. The value Λ = 0.5 GeV gives gA = 1.28, close
to the experimental value.

Fig. 3.26 shows the distribution f1(x) multiplied by x in comparison with
the valence distributions of Glück, Reya and Vogt (GRV) [87]. For u and d
quarks, the first moment of f1(x) is clearly larger in the spectator model, which
would imply that these results describe the nucleon at an even lower scale than
GRV. Fig. 3.27 shows the distributions gu1 (x) and gd1(x) multiplied by x. Again,
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a qualitative agreement with the polarised valence distributions of Glück et al.
[88] is found.

0.8 1 x
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x ∆uV(x,µLO
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x ∆dV(x,µLO
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Figure 3.27: Polarised proton distributions gu1 (x) and gd1(x). The first plot shows
the model estimates for xgu1 (x) (full line) and xgd1(x) (dashed line). The second
plot shows the low scale µ2

LO = 0.23 GeV2 parametrisation of Glück, et al. [88]
for the same functions.

After having fixed all parameters by the requirement of a rough qualita-
tive agreement of the integrated distribution functions, f1(x) and g1(x), with
phenomenological parametrisations, the transverse momentum dependence as
predicted by the model can be considered. In Fig. 3.28 the spin-independent
PDFs xfu1 (x,p2

T ) and xf d1 (x,p2
T ) are displayed. In comparison the spin-dependent

PDFs, xgu1L(x,pT ) and xgd1(x,pT ), are shown in Fig. 3.29. Finally, in Fig. 3.30
the combination

xh1(x,pT ) = xh1T (x,pT ) + x
p2
T

2M2
h⊥1T (x,pT ) (3.190)

is displayed for u- and d-quarks.

Though the three distributions, say for u-quarks, look very similar at first
glance in the 3-dimensional plots, a closer inspection reveals that the transverse
momentum dependence indeed is different in each case. This is due to the different
p2
T dependence in the numerators of the Eqs. (3.161), (3.162), (3.164) and (3.166).

From the same equations one reads off that in the scalar diquark sector the Soffer
inequality [89]

|h1| ≤
1

2
|f1 + g1| (3.191)
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Figure 3.28: The transverse momentum dependent distribution xf1(x,p2
T ) plotted

against 0 ≤ x ≤ 1 and 0 ≤ p2
T ≤ 0.25 Gev2 for the u-quark (left panel) and the

d-quark (right panel).
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Figure 3.29: The transverse momentum dependent distribution xg1(x,p2
T ) plotted

against 0 ≤ x ≤ 1 and 0 ≤ p2
T ≤ 0.25 Gev2 for the u-quark (left panel) and the

d-quark (right panel).

is saturated, i.e. |h1(x,k2
T )| takes the allowed maximum for each value of k2

T . In
the vector diquark sector the inequality is not saturated because aR differs from
unity.
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Figure 3.30: The transverse momentum dependent distribution xh1(x,p2
T ) =

xh1T (x,p2
T ) + (xp2

T/2M
2)h⊥1T (x,p2

T ) plotted against 0 ≤ x ≤ 1 and 0 ≤ p2
T ≤

0.25 Gev2 for the u-quark (left panel) and the d-quark (right panel).

Not surprisingly the transverse momentum dependence at asymptotical large
p2
T follows a power law; this behaviour merely reflects the choice of the form

factors of the scalar and vector diquark in Eq. (3.139), and thus is a consequence
of the model assumption with rather limited predicting power. However, more
interesting to note is that covariant kinematics, and flavour structure (with dif-
ferent spin couplings in the scalar and vector diquark sector) enforce a different
transverse momentum dependence on the specific PDF projections. Thus, this
simple model shows that generally not only relations between longitudinal and
transverse momentum dependence are to be expected, but also interrelations
with the spin-dependence of the functions. This feature is very likely to hold
more generally beyond the model, since it rather follows from general properties
than from assumptions specific to the model. Thus, phenomenologically moti-
vated ansätze which ascribe uniformly the same p2

T -dependence to all PDFs likely
miss the full complexity of nucleon structure, though possibly can very well be
good approximations depending on the context they are used for.
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(a) (b)

(c) (d) (e)

Figure 3.31: Real one-loop corrections to the DIS handbag diagram.

3.4 transverse momentum dependence

and evolution

Up to here the question about the origin of the partonic transverse momentum intrinsic transverse

momentawas left untouched. Implicitly it was assumed that there is some non-perturbative
mechanism – the same which is responsible for the confinement effect in general –
which allows partons to have transverse momentum components relative to their
parent hadrons of the order of a typical hadronic mass scale, say 1 GeV. This
transverse momentum inherent to all partons is usually called intrinsic.

On top of it there is another source for partons to develop transverse momenta radiative

transverse

momenta
relative to parent hadrons: the perturbative radiation of fellow partons leading to
the famous logarithmic scale dependence of PDFs and PFFs known as evolution.

The partonic interpretation of evolution is sketched in the following for the
example of totally inclusive DIS. One-loop corrections to the leading order hand-
bag diagram for DIS can be sorted into two separately gauge-invariant subgroups:
real corrections where a perturbative gluon crosses the final state cut (shown in
Fig. 3.31 together with the quark box diagram (b), which completes the set of
one-loop diagrams), and virtual loop corrections (shown in Fig. 3.32).

In the calculation of these loop diagrams one encounters two different types
of singularities:

1. Soft divergencies where all components of an internal momentum become in-
finitely small, such that a pole in the denominator of a propagator emerges.
The soft divergencies mutually cancel when all real and virtual corrections
are summed up.

2. Collinear divergences where an internal momentum k becomes collinear
to an external momentum P such that P · k → 0 which also leads to a
propagator pole in the case of massless particles.
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(a) (b) (c)

(d) (e) (f)

Figure 3.32: Virtual one-loop corrections to the DIS handbag diagram.

Both types of divergencies are conventionally named infrared divergencies 4. In
an axial gauge the collinear divergencies occur only in the ladder-type diagrams
Fig. 3.31 (a) and (b), but not in the diagrams Fig. 3.31 (c), (d), (e), neither
in the diagrams Fig. 3.31 (a) − (f). The principle observation actually holds
true also at higher orders: in an axial gauge the leading logs (i.e. those terms
with the highest powers of logarithms in a given order of αs) result from ladder
diagrams (cf. Fig. 3.33, here the naming ladder becomes more apparent, since the
ladder has more than just one rung). Collinear divergencies can be absorbed by
a redefinition of the integrated PDFs, thus relating bare PDFs with the physical
ones, very much in the spirit of the renormalisation program, which absorbs
UV divergencies in the redefinition of charge, mass, wave function etc. The
redefinition of PDFs is unique up to finite terms; the precise prescription defines
a factorisation scheme like the popular DIS scheme, or M̄S scheme, or any other
scheme one might think of. Depending on the scheme the finite corrections to the
partonic cross sections differ exactly corresponding to the choice which parts of
the finite terms were absorbed in the PDFs. Thus, the arbitrariness in choosing
a certain scheme vanishes (to the order in αs of a given calculation) when putting
together soft parts, PDFs and PFFs, and the partonic cross section in order to
derive a physical quantity.

As a consequence of the redefinition physical (integrated) PDFs acquire aDGLAP equations

logarithmic scale dependence described by the famous DGLAP evolution [90]

dq(x,Q2)

d lnQ2
=
αs(Q

2)

2π

∫ 1

x

dy

y

{
q(y,Q2)Pqq

(
x

y

)
+G(y,Q2)PqG

(
x

y

)}
, (3.192)

for a generic quark distribution q(x,Q2) and similarly for the gluon distribution
functions

dG(x,Q2)

d lnQ2
=
αs(Q

2)

2π

∫ 1

x

dy

y

{
q(y,Q2)PGq

(
x

y

)
+G(y,Q2)PGG

(
x

y

)}
, (3.193)

4In the literature the usage of the notions of soft and infrared divergencies is not uniform.
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where Pqq, PqG, PGq, PGG are the splitting functions, formally given as inverse
Mellin transforms of the anomalous dimensions of the operators defining the
distribution functions. Splitting functions also have a partonic interpretation.
For instance, Pqq(x/y) is the probability for a quark with LC momentum fraction
y to split into a quark-gluon pair where the quark carries the reduced fraction x.
Similar interpretation hold for the other splitting functions.

Thus, DGLAP evolution at O(αs) takes into account that the quark with mo-
mentum fraction x which is struck by the highly virtual photon, may have started
off as quark with the larger momentum fraction y before radiating off a gluon
(with probability Pqq). It even may have started off as gluon with momentum
fraction y which turned into a qq̄-pair (with probability PqG) taken into account
by the 2nd term in Eq. (3.192). Evolution at higher order in O(αs) is interpreted
as iteration of the basic radiation processes.

Here a detailed discussion of evolution of PDFs and PFFs shall no be pursued
(in extenso treatments can be found in the vast literature, see for instance [91] as
a good starting point for further reading), but the aspect of perturbative origin
of partonic transverse momenta is commented on. To this end one may look at
the example of a 3-rung quark ladder diagram as shown in Fig. 3.33. For the
sake of simplicity of the argument regularisation of singularities by momentum
cut-off is assumed, thereby neglecting for the moment the known problems with
gauge-invariance and translational invariance introduced by this regularisation
method.

Φ

l1

l2

l3

(a)

µ2
F ≤ l12

T ≤ l22
T ≤ l32

T

Φ

l1

l2

l3

(b)

l1
2
T ≤ µ2

F ≤ l22
T ≤ l32

T

Φ

l1

l2

l3

(c)

l1
2
T ≤ l22

T ≤ µ2
F ≤ l32

T

Figure 3.33: Schematic interpretation of the scale dependence of PDFs. An analogous
picture can be drawn for PFFs.

An explicit calculation reveals that only those regions of phase space are
responsible for leading logs where the gluon momenta along the ladder reveal a
strong ordering [92, 93]

l1
2
T � l2

2
T � . . .� ln

2
T β1 � β2 . . .� βn (3.194)

βi being the LC fraction of the quarks momentum lead away by the i-th gluon.
The interpretation is that the quark-quark correlation dependent on a cut-off fac-
torisation scale, Φ = Φ(µ2

F ), contains information an all soft gluons with lT
2
i ≤ µ2

F ,
whereas all harder gluons with µ2

F ≤ lT 2
i have to be taken into account explicitely
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by perturbative calculations. By shifting up the factorisation scale µ2
F more and

more gluons are absorbed into Φ as indicated by the sequence of diagrams in
Fig. 3.33 (a) − (c). The effect of shifting the factorisation scale is described by
the logarithmic scale dependence of the DGLAP evolution equations for PDFs
(and similarly for PFFs) as long as µ2

F stays in the perturbative regime 5. Shifting
µ2
F below the perturbative regime would require non-perturbative modifications

to the evolution equations not known at present days.

From the above intuitive picture it becomes clear that partonic transverse
momenta play a double rôle. Undoubtedly, there is some non-perturbative con-
finement mechanism responsible for the intrinsic transverse momenta inherent to
partons. Hard radiation off further partons results in an increase of transverse
momentum on the perturbative level. The perturbative transverse momenta,
when integrated over for the ladder diagrams, produce the leading logarithmic
scale dependence of integrated PDFs and PFFs. There is no clear-cut distinction
between non-perturbative and perturbative partonic transverse momenta, but a
smooth transition. Factorisation scheme and scale independence of observables
guarantees that the net effect of both is taken correctly into account.

Because of this inextricable intertwining of the double rôle the theoretical
understanding of evolution of transverse momentum dependent PDFs and PFFS
is yet in its infancy, only few exploratory studies [94] and large NC-limit consid-
erations [45] exist.

5It is generally believed that the perturbative regime in this context can be safely extended
down to values as small as 1 GeV2; perhaps to even smaller values with some additional courage.
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3.5 summary

In this section different aspects of transverse momentum effects in (semi-)inclusive
reactions have been discussed. Starting from the definitions of non-integrated,
i.e. transverse momentum dependent PDFs and PFFS the decisive rôle of observ-
ables like azimuthal asymmetries in a global analysis of the transversity distribu-
tion function has been emphasised. These observables typically show sensitivity
to transverse momentum components, either of parton momenta, or of the rel-
ative momentum in a produced hadron pair. Angular distributions thus can be
used to unravel the spin content of nucleons.

The transverse momentum dependence of PDFs and PFFs resulting in a sim-
ple spectator model calculation has been revealed. The actual outcome of the
model is a consequence of the assumptions build in on a more elemental level.
In the model under consideration the transverse momentum dependence of cor-
relation functions is entirely governed by the assumed fall-off of elementary form
factors for composite objects. Furthermore, it was observed that transverse mo-
mentum behaviour is not only entangled with the longitudinal momentum depen-
dence, but also with the spin projections used to reduce correlation functions to
PDFs and PFFs. This is very likely to be a general property: different PDFs in
general have different transverse momentum dependence. For instance, a model
using a Gaussian shape with the same constant radius in the exponent for all
PDFs can be a reasonable approximation for phenomenology, but does not de-
scribe the full complexity of nucleon spin structure.

Finally, the double rôle of partonic transverse momenta from intrinsic non-
perturbative origin, and resulting from perturbative hard radiation has been com-
mented on. The relation to the DGLAP evolution behaviour of integrated PDFs
and PFFs has been indicated.
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4

Transverse momenta
in exclusive reactions

4.1 advantages of being exclusive

By definition, exclusive hard reactions are subject to stricter constraints than exclusive hard

reactions are

difficult to measure
inclusive reactions. The requirement of a specific final state has the unavoidable
consequence of low counting rates in an experiment, since most events with pos-
sible final states of an comparable inclusive measurement are simply discarded
for the exclusive measurement. The situation is even worse, there is not only the
suppression by the fact that only one out of many possible channels is retained
in the measurement, but moreover, typically one is interested in a channel with
final states that are quite unlikely to occur. For practical reasons one considers
reactions with final states having a rather low number of hadrons in order to
allow full experimental determination. The occurrence of a hard scale, on one
hand necessary in order to probe hadron substructure on the level of quarks and
gluons, on the other hand conflicts with the requirement of low multiplicities in
the final state. Loosely speaking: it is difficult to hit a composite complex object
very hard and avoid the break-up into many fragments. Expressed in technical
terms this means that cross sections of exclusive hard reactions typically fall off
with increasing hard scale according to a power-law behaviour. Dimensional ar-
guments known as dimensional power counting relate the number of partons in
the valence Fock states of the involved hadrons to the powers of the asymptoti-
cal fall-off. Practically, these general considerations result in the conclusion that
hard exclusive reactions are very difficult to measure, though not impossible as
experience has taught us. What is the motivation to take such an effort ?

Exclusive hard reactions allow for a complementary view and in fact reveal complementary

view on hadron

substructure
a richer information on hadron substructure compared to inclusive hard reac-
tions. Since factorisation into soft and hard physics takes places on the level of
amplitudes, phase information on soft hadronic matrix elements is accessible in
exclusive processes by utilising interference phenomena. The price to pay is an
indirect and tedious extraction of the soft hadronic matrix elements from observ-

85
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ables: typically only moments of hadronic matrix elements enter cross sections.

As will be argued in the following (partonic) transverse momenta play a crucial
rôle in exclusive hard reactions in many different aspects. A distinction between
processes at large momentum transfer and those with small momentum transfer
but a highly virtual external photon is useful.

• In most processes with large momentum transfer – think of form factors orlarge momentum

transfer wide angle exclusive scatterings – an internal redistribution of the momen-
tum is necessary to prevent break-up of the struck hadron, and allow for
the formation of the requested final state. The redistribution of momentum
is easier with fewer partons involved, thus the lowest Fock states dominate
the process. This effect becomes more pronounced with increasing momen-
tum transfer, and thus the behaviour of exclusive reactions in this respect
is in contrast to the one of inclusive reactions, where conversely, higher
Fock states with additional gluons and sea-quarks become more and more
important with increasing external scale.

The relevant scale for the distinction of soft and hard regimes is the one of
the internal redistribution instead of the overall momentum transfer. As all
internal variables are integrated over, the internal scale is not always large,
but contributes over the full kinematical range. Compared to the internal
scale partonic transverse momentum components can be significant or even
dominant in some regions of phase space, even so they may be always
small compared to the external hard scale. A strong enhancement of the
importance of partonic transverse momentum effects is thus observed in
many exclusive reactions at large momentum transfer.

• Also at small momentum transfer exclusive reactions allow access to par-high photon

virtuality tonic degrees of freedom of the hadron structure, if a second scale is hard
instead. An incoming photon can have a high virtuality as for instance
in deeply virtual Compton scattering (DVCS) or deeply virtual exclusive
meson production. If the momentum transfer is small, no internal redistri-
bution of momentum transfer is necessary and consequently there is no a
priori preference for configurations with low number of partons. In fact, all
Fock states generally contribute to an observable quantity, though with dif-
ferent importance in the course of integrations over internal variables. The
relevant scale for distinction of soft and hard physics is the virtuality of the
photon. A very close similarity to DIS is noticeable. In fact, the treatment
of DVCS and deeply virtual meson production is a generalisation of the one
of DIS; GPDs are generalisations of PDFs.
Also in the deeply virtual kinematical regime transverse momenta effects
play a crucial rôle, since they offer opportunities to study a uniquely new
aspect of hadronic substructure, the localisation of partons in the plane
transverse to the motion of the hadron.

A complete, exhaustive discussion of exclusive reactions is beyond the scope
of this paper; in the following the focus will be on the specific effects induced by
transverse momentum dependence exemplified for different exclusive quantities
in hard reactions.
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4.2 exclusive reactions

at large momentum transfer

4.2.1 reaction mechanisms

It is instructive to discuss the principles of different possible reaction mechanisms
for elastic electromagnetic form factors at large momentum transfer, before con-
sidering the specific consequences of transverse momentum effects in those quan-
tities. In the present subsection it will be done – in an admittedly schematic and
strongly simplified manner. The basic principles of the presented simplified view
though hold true and are confirmed in more explicite and elaborate calculations.

γ∗

Q2 large

(a)

γ∗

(b)

Figure 4.1: Schematical view of the internal momentum redistribution in the hard
scattering mechanism for elastic form factor of the nucleon. (a) One parton taking
all of the momentum transfer leads to a configuration very unlikely to form a nucleon
in the final state. (b) Internal redistribution of the momentum by hard gluons allows
formation of the final state nucleon.

In Fig. 4.1 the need for internal momentum redistribution by hard gluons is
schematically indicated for the example of the elastic nucleon form factor. An
incoming nucleon is replaced by three valence quarks, i.e. the lowest possible
Fock state with correct quantum numbers, carrying roughly equal longitudinal
momentum fractions. One quark is hit by a highly virtual photon and deflected
in its direction as indicated in (a) (in the drawing arbitrarily the momentum
transfer is assumed to have a large transverse component, an assumption which is
inessential for the argument). In order to allow a reformation of the three quarks
to the final nucleon with a reasonable non-vanishing probability, as requested by
the definition of an elastic form factor, the overall momentum transfer has to be
redistributed internally by exchange of additional hard gluons as shown in (b).

The internal redistribution of momentum transfer is the characterising prin- hard scattering

mechanismciple of the so-called hard scattering mechanism. The corresponding Feynman
diagrams to lowest order in αs are shown in Fig. 4.2 for the elastic pion form fac-
tor and in Fig. 4.3 for the Dirac form factor of the nucleon. Each additional hard
gluon needed for the redistribution of momentum transfer introduces a suppres-
sion of the amplitude by the large momentum flow and a power of αs. Therefore,
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the lowest Fock states with a minimal number of parton lines, and correspondingdominance of

lowest Fock states diagrams with a minimal number of hard gluons necessary to connect all parton
lines, contribute dominantly to the hard scattering mechanism. Dimensional ar-
guments, in fact, allow to relate the minimum number of partons in initial (final)
state hadrons ni (nf ) to the asymptotic power-law fall-off predicted by the hard
scattering mechanism for differential cross-sections of hard exclusive processes

dσ

dt
(s, t) = f (s/t) s2−ni−nf (modulo logs) , (4.1)

for a fixed ratio of Mandelstam variables s/t = const. equivalent to a fixed scat-
tering angle. These relations are known as dimensional counting rules. For in-dimensional

counting rules stance, for the Dirac form factor of the nucleon with ni = nf = 3 the dimensional
counting rules imply

F1(Q2 →∞) ∼ Q−4 (modulo logs) (4.2)

and for the elastic form factor of the pion with nf = ni = 2

Fπ(Q2 →∞) ∼ Q−2 (modulo logs) . (4.3)

The formalism describing the hard scattering mechanism was developed in
the late 70’s[95, 96, 97, 98, 99, 100]. The leading order contribution to an elastic
form factor takes the form

F h(Q2) =
(
Nh
N

)2
∫ 1

0
[dx]N

∫ 1

0
[dx ′]N φ∗N(x ′j, µF ) TH(xi, x

′
j, Q

2, µF ) φN(xi, µF ) (4.4)

where Nh
N is a normalisation specific to the N -particle Fock State of the hadron h.

The distribution amplitudes are obtained from LCWFs by integration over trans-
verse momenta up to a factorisation scale µ2

F

φN(xi, µF ) =
1

Nh
N

∫ µ2
F
[
d2p⊥

]
N

ΨN(xi,p⊥i) (4.5)

with the integration measures

[dx]N = δ

(
1−

N∑

i=1

xi

)
N∏

i=1

dxi , (4.6)

[
d2p⊥

]
N

= 16π3 δ(2)

(
N∑

i=1

p⊥i

)
N∏

i=1

d2p⊥i
16π3

. (4.7)

The normalisation Nh
N is determined such that

∫ 1

0
[dx]N φN(xi) = 1 , (4.8)

which implies for instance

Nπ
2 =

fπ

2
√

6
, NN

3 =
fN

8
√

6
, (4.9)
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where fπ(= 133 MeV) is the usual pion decay constant and fN plays the rôle of
the nucleon wave function at the origin of coordinate space. The hard scattering
amplitude TH describes the scattering of collinear partons calculated perturba-
tively from connected Feynman diagrams. The diagrams contributing at lowest
order in αs in a calculation of the hard scattering amplitude for the pion form
factor Fπ are shown in Fig. 4.2.

x1

x2

x ′1

x ′2

(a)

x1

x2

x ′1

x ′2

(b)

x1

x2

x ′1

x ′2

(c)

x1

x2

x ′1

x ′2

(d)

Figure 4.2: Lowest order diagrams to the hard scattering amplitude TH of the pion
form factor Fπ.

Neglecting pion masses, it is convenient to choose for the evaluation of the
diagrams a special Breit frame, a brick wall frame (cf. appendix C.1.1), where
the incoming pion moves fast in positive z-direction and photon and outgoing
pion move in the negative z-direction. With the notations of Chapter 2, i.e. aµ =
(a0, a1, a2, a3) = [a+, a−,a⊥] the parametrisation reads

P µ = (1, 0, 0, 0)Q/2 = [ 1 , 0 , 0⊥ ] Q/
√

2 incoming pion

qµ = (0, 0, 0,−1)Q = [ −1 , 1 , 0⊥ ] Q/
√

2 virtual photon

P ′µ = (1, 0, 0, 0)Q/2 = [ 0 , 1 , 0⊥ ] Q/
√

2 outgoing pion (4.10)

such that q2 = −Q2 and P + q = P ′, and momenta of collinear partons (par-
tons which have no transverse momentum components relative to their parent
nucleons) are given as

pµi = [ xi , 0 , 0⊥ ] Q/
√

2 incoming parton

p ′µi = [ 0 , x ′i , 0⊥ ] Q/
√

2 outgoing parton . (4.11)

Using symmetry of the pion wave function under the replacement x1 ↔ x2 the relevant hard

scale(from C invariance) with collinear partons one arrives at

TH(x1, x
′
1, Q

2, µF ) =
16π αs(µ)CF
x1 x ′1 Q2

(4.12)

where CF = 4/3 is the colour factor given as the value of the Casimir operator
in SU(3)C . The denominator of the gluon propagator involves the scale x1 x

′
1 Q

2,
which is the virtuality of the exchanged hard gluon in the collinear approxima-
tion. In fact, the observation that the scales of internal momentum flow are x1 x ′1 Q

2

related to the external momentum transfer by multiplication with momentum
fractions holds true generally for hard scattering amplitudes calculated in the
approximation of partons moving collinear to their parent hadrons.
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For a further example of this rule one may look at a little more complex
object, the hard scattering amplitude TH for the Dirac form factor of the nucleon
F N

1 . It has to be calculated from 14 diagrams (10 with non-zero contributions)
[96, 98, 101, 99] as shown in Fig. 4.3. For the present purpose it is sufficient to
have a look at typical scales occurring in the denominators of quark and gluon
propagators. As an example Fig. 4.3 (1a) shall be considered (the same diagram
as discussed in [102]).

In the Breit-brick wall frame (cf. appendix C.1.1) with the approximation of
collinear moving partons (4.11) the scales in the denominators of quark and gluon
propagators are readily calculated as

f1 ≈ p1 + q = [ x1 − 1 , 1 , 0⊥ ] Q/
√

2

→ f 2
1 ≈ −(1− x1)Q2 (4.13)

g1 ≈ f1 − p′1 = p1 + q − p′1 = [ x1 − 1 , 1− x ′1 , 0⊥ ] Q/
√

2

→ g 2
1 ≈ −(1− x1) (1− x ′1)Q2 (4.14)

f2 ≈ p2 + g1 = p2 + p1 + q − p′1 = [ −x3 , 1− x ′1 , 0⊥ ] Q/
√

2

→ f 2
2 ≈ −x3 (1− x ′1)Q2 (4.15)

g2 ≈ p′3 − p3 = [ −x3 , x
′
3 , 0⊥ ] Q/

√
2

→ g 2
2 ≈ −x3 x

′
3 Q

2 , (4.16)

where use of the identities
3∑

i=1

xi =
3∑

i=1

x ′i = 1 (4.17)

was made.

Going through the full calculation with all contributing diagrams one findsxi x
′
j Q

2 or

xiQ
2, x′iQ

2 that scales in the denominators of gluon propagators are given by Q2 multiplied
with two momentum fractions, i.e. of the generic form xi x

′
j Q

2, and the corre-
sponding scales in fermion propagators come in two classes, Q2 either multiplied
with one momentum fraction, xiQ

2 or x′j Q
2, or multiplied with two momentum

fractions xi x
′
j Q

2.

Since the calculation of the elastic form factors involves integrals over the
full range 0 ≤ {xi, x′j} ≤ 1 of all momentum fractions in Eq.(4.4), it is obvious
that contributions from the end-point regions, {xi, x′j} ≈ 0 or {xi, x′j} ≈ 1,
are unavoidable. In the kinematical end-point regions the gluons become very
soft, and the basic assumption of the rescattering by hard perturbative gluons
is invalid. The severeness of this inconsistency, i.e. how much end-point regions
contribute to the full result, depends on the value forQ2, but also on the weighting
by the a priori unknown distribution amplitudes φ(xi).

In fact, the assumption of dominance of the hard scattering mechanism has
been criticised [103, 104] on account of large end-point contributions to form fac-
tors in the kinematical regions where data are presently available, i.e. up to about
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Figure 4.3: The 14 lowest order diagrams to be calculated for the hard scattering
amplitude TH to the Dirac form factor of the nucleon F N

1 . The momentum flow
through quark and gluon propagators for the example of diagram (1a) is indicated (see
text).
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Q2 = 10 GeV2 for Fπ(Q2) and up to about Q2 = 30 GeV2 for F p
1 . In particular,

in calculations with end-point concentrated DAs, like the Chernyak-Zhitnitsky
DA type for the pion [105], and of the Chernyak-Ogloblin-Zhitnitsky [106], Gari-
Stefanis [107], King-Sachrajda [108], or the heterotic (HET) [109] type DAs for
the nucleon, the contradictory situation emerges that the main part of the results
originates from kinematic regions where the basic assumptions of the formalism,
as for instance the one-gluon-exchange approximation, are unreliable. With DAs
closer to the asymptotic form, φasy,π(xi) ∼ x1x2 and φasy,N(xi) ∼ x1x2x3, the
end-point regions contribute less, but the full results are way below the data.

Another aspect – of special relevance in the present context – is the qualityimportance of
transverse

momentum effects

in (m)HSA

of the collinear approximation for the lowest order hard scattering amplitude.
Intrinsic transverse momenta of the partons, typically permitted by LCWFs to
be up to about a few hundred MeV, have to be compared with the size of the
longitudinal scales

√
xix′j Q or

√
xiQ. In the end-point regions of the integrations

over momentum fractions the neglect of transverse momenta is clearly not justified
at all.

These considerations have led to the development of the modified hard scat-the modified hard

scattering

approach
tering approach (mHSA). [110, 111, 112, 113, 114, 115, 116, 117, 118]. The main
ingredients of the mHSA are (without going into details here; for a recent review
see [102]):

• Transverse momenta of partons in the hard scattering amplitude are taken
into account in the form that TH is calculated with (off-shell) partonic
momenta

pµi =
[
xiQ/

√
2 , 0 , p⊥i

]

p ′µi =
[

0 , x ′i Q/
√

2 , p ′⊥i
]
. (4.18)

For instance, the hard scattering amplitude for the elastic form factor of
the pion now takes the form (compare to Eq.(4.12))

TH(x1, x
′
1, Q

2, µF ) =
16π αs(µF )CF

x1 x′1 Q2 + (p⊥1 + p ′⊥1)2

x1 Q
2

x1 Q2 + p2
⊥1

(4.19)

Similar modifications apply to the hard scattering amplitude of the Dirac
form factor of the nucleon (see [112, 114] for the detailed formulae).

As a consequence transverse momenta can not be integrated out on the
level of the soft hadronic matrix elements, such that elastic form factors
are calculated from

F h(Q2) =
(
Nh
N

)2
∫ 1

0
[dx]N

∫ [
d2p⊥

]
N

∫ 1

0
[dx′]N

∫ [
d2p ′⊥

]
N

×Ψ∗0,N (x′i,p
′
⊥i, µF ) TH(xi, x

′
i,p⊥i,p

′
⊥i, Q

2, µF ) Ψ0,N (xi,p⊥i, µF ) (4.20)

with a convolution involving LCWFs Ψ0,N (xi,p⊥i, µF ) for N -particle Fock
states instead of DAs ΦN(xi, µF ). The LCWFs Ψ0,N carry an additional
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index “0” to remind that those are merely the soft parts of the wave func-
tions, i.e. the full wave functions with the perturbative tail removed, since
it is taken care of explicitely in the hard scattering amplitude TH .

• Double logarithmic, radiative gluon corrections – resummed to all orders
of αs by exponentiation – generate Sudakov type form factors. These form
factors have been derived [66] and adapted to hard exclusive reactions [110]
in a mixed representation, where the LC plus and minus momentum compo-
nents are kept, but the two transverse momentum components are Fourier
transformed to impact parameter space. The leading order diagrams con-
tributing dominantly in an axial gauge are shown in Fig. 4.4; diagrams with
radiative gluons connecting parton lines from different LCWFs are subdom-
inant in this gauge. Thus, the Sudakov factors can be taken into account
by multiplying the LCWFs (in the mixed representation) by exponentials.
The (partly) Fourier transformed expression for an elastic form factor thus
takes the form

F h(Q2) =
(
Nh
N

)2
∫ 1

0
[dx]N

∫ [
d2b⊥

]
N

∫ 1

0
[dx′]N

∫ [
d2b′⊥

]
N

×Ψ̂∗0,N (x′j, b
′⊥j, µF ) T̂H

k
(xi, x

′
j , b⊥i, b

′⊥j, Q
2, t) Ψ̂0,N (xi, b⊥i, µF )

× exp
[
−Sk(xi, x′j, b⊥i, b′⊥j, Q, tk)

]
(4.21)

where the index “k” indicates a summation over Feynman diagrams. The
impact parameter integration measure is

[
d2b⊥

]
N

= 4π δ(2)

(
N∑

i=1

b⊥i

)
N∏

i=1

d2b⊥i
4π

, (4.22)

and the convention

f̂(b⊥) =
1

(2π)2

∫
d2p⊥ exp (−i b⊥ · p⊥) f(p⊥) (4.23)

for a Fourier transformed function f̂(b⊥) is used. As argument of the strong
coupling the largest mass scale appearing in the hard scattering amplitude
(in diagram “k”) is taken. For instance for the pion form factor tye argu-
ment of αs(tk) is

tk = max
(√

x1x′1Q,
√
x1Q, 1/b⊥i, 1/b′⊥j

)
. (4.24)

The Sudakov form factor is defined as

Sk(xi, x
′
j, b⊥i, b

′⊥j, Q, tk) =

exp

[
−

N∑

i=1

(
s(xi, b⊥i, Q) +

∫ tk

1/b⊥i

dµ̄

µ̄
γq
(
g(µ̄2)

))]

+ exp


−

N∑

j=1

(
s(x′j, b

′⊥j, Q) +
∫ tk

1/b′⊥j

dµ̄

µ̄
γq
(
g(µ̄2)

))

 , (4.25)
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where ′′k′′ is a generic index for the contributing diagrams; the scale tk is
chosen corresponding to the scales in the hard scattering diagram [114, 102].
The function s(xi, b⊥i, Q) for a single parton line is listed in appendix B.

• Intrinsic transverse momentum dependence of the soft wave functions has
to be taken into account in form of a phenomenological model (constrained
by electromagnetic charge radii and the probability limit PN ≤ 1 valid for
any N particle Fock state). For practical purposes in almost all applications
a Gaussian form of the transverse momentum is assumed, which is based
on a harmonic oscillator model in LC coordinates [119]. A typical ansatz
for the LCWF has the form [113, 114, 118, 120]

ΨN (xi,p⊥i) = Nh
N φN(xi) ΩN(xi,p⊥i) (4.26)

with the normalisation conditions Eq. (4.8) and
∫ [

d2p⊥
]
N

ΩN(xi,p⊥i) = 1 (4.27)

and a Gaussian for the p⊥-dependence

ΩN(xi,p⊥i) =
(16π2a2

N)N−1

x1x2 . . . xN
exp

[
−a2

N

N∑

i=1

p2
⊥i
xi

]
. (4.28)

(a) (b) (c)

Figure 4.4: Diagrams contributing at leading order in an axial gauge to the Sudakov
corrections to the pion LCWF.

In the mHSA perturbative calculations are rendered self-consistent in the
sense that most of the contributions picked up in integrations are truly from
hard regions, and the singularities from (the one-loop pQCD form of) the run-
ning coupling are regularised, since contributions from soft end-point regions are
sufficiently suppressed by transverse momentum effects and Sudakov factors.

The price to pay is that results for exclusive quantities calculated in the mHSA
typically are significantly smaller than results obtained in HSA. The phenomeno-
logical implications will be discussed for some examples in following subsections.

A competing reaction mechanism, originally proposed by Feynman [121], alsoFeynman

mechanism known under the names soft-overlap mechanism or handbag mechanism, is shown
in Fig. 4.5 for the elastic nucleon FF. Here an asymmetric, and thus rare, con-
figuration for the longitudinal momentum fractions in the incoming nucleon is
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assumed as indicated by the different length of momentum vectors. If the quark
struck by the highly virtual photon carries most of the momentum of the nu-
cleon, it can recombine with the two ‘wee’ spectator partons without the need
for a redistribution of the momentum transfer. The spectators carry practically
no information about a direction; as a perfect null-vector is not oriented in (Eu-
clidean) space at all. The corresponding Feynman diagram is the one shown in
Fig. 1.7(b).

x1 ≈ 1

x2 ≈ x3 ≈ 0

γ∗

Figure 4.5: Schematical indication of the Feynman mechanism. For an asymmetric
initial state configuration (x1 ≈ 1 and x2 ≈ x3 ≈ 0) no internal redistribution of the
momentum transfer is necessary.

The Feynman mechanism receives no suppression by large momentum flow
and powers of αS from the hard gluons; instead the price has to be paid on the
level of the wave functions as probability amplitudes to find a certain parton
configuration in the nucleon. A configuration where one parton carries (almost)
all of the nucleon momentum is extremely rare which is reflected by a strong sup-
pression by the wave function. From the nature of the suppression it is clear that
in the asymptotical limit, Q2 → ∞, the hard scattering mechanism will be the
dominant one, since the suppression by powers of αs goes with powers of 1/ ln(Q),
whereas the suppression induced by the wave functions in the Feynman mecha-
nism comes with powers of 1/Q. Formally, the Feynman mechanism represents a
power correction to the hard scattering mechanism. But, at any finite momentum
transfer it is not possible to decide a priori which mechanism dominates. Only ex-
plicite calculations of the diagrams for a given exclusive observable, thereby using
assumptions on the non-perturbative input, allow a quantitative comparison. In
fact, in many exclusive quantities –though not all– there is now convincing phe-
nomenologically evidence that the Feynman mechanism, or its equivalent in other
exclusive quantities than form factors, contributes significantly or even dominant
in the kinematical regions where data are available today. This is not surprising
regarding the fact that ΛQCD/Q is not much smaller than 1/ ln(Q/ΛQCD) in the
few GeV region.

According to Drell and Yan [122] an elastic (helicity non-flip) form factor can
be represented as the overlap of LCWFs as (in the notation of [120])

F (t) =
∑

N

F (N)(t) (4.29)
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hard scattering mechanism soft-overlap (Feynman) mechanism
additional hard gluons
→ higher order in αs(Q

2)
suppression by powers of 1/ ln(Q)

asymmetric configuration
→ suppression by wave function
suppression by powers of 1/Q

asymptotically dominant important at intermediate |t|

Figure 4.6: Comparison of sources for suppression in the hard scattering mechanism
and and the soft-overlap (Feynman) mechanism.

with individual Fock state contributions

F (N)(t) =
∑

a

ea
∑

j

∑

β

∫
[dx̃]N [d2p̃⊥]N Ψ∗Nβ(x̂′i, p̂

′
⊥i) ΨNβ(x̃i, p̃⊥i) , (4.30)

where β labels different spin-flavour combinations of the partons [123] and j
runs over all partons of type “a”1. The “Breit-symmetric” frame, detailed in
appendix C.1.2, with a purely transverse momentum transfer q2

⊥ = (p ′⊥−p⊥)2 =
−t is used to evaluate the overlap. Incoming and outgoing parton momenta
in the overlap contributions are related by p ′i = pi (i 6= j) for the spectator
partons and p′j = pj +q for the active parton which takes the momentum transfer
in the scattering. Using the transformations between the symmetric frame and
the in/out-hadron frames one can directly express the LCWF arguments for the
outgoing hadron (denoted by a hat) in terms of the ones for the incoming hadron
(denoted by a tilde) as established in appendix C.1.5

x̂′i = x̃i , p̂′⊥i = p̃⊥i − x̃i q⊥ for i 6= j ,

x̂′j = x̃j , p̂′⊥j = p̃⊥j + (1− x̃j) q⊥ , (4.31)

where the hat/tilde notation could have been dropped for the momentum frac-
tions which are not changed by the boost (2.9). The shifts −x̃i q⊥ result from
the transverse boost relating the “in-hadron” and “out-hadron” frames, the ac-
tive parton additionally takes the overall momentum transfer q⊥ which is purely
transverse in the present frame.

To obtain the contribution of the Feynman mechanism to an elastic form factor
the Drell-Yan formula Eq. (4.30) has to be evaluated with the soft parts of the
LCWFs Ψ0,Nβ(xi,p⊥i) only, i.e. with their perturbative tails of p⊥-dependence
removed. The effect of the overlap of the perturbative tails is properly described
within the (modified) HSA and must not be double-counted.

From the form of the arguments (4.31) to be used in Eq.(4.30) it is evidentimportance of
transverse
momenta

in Feynman

mechanism

that the p⊥-dependence of the soft parts of the LCWFs Ψ0,Nβ(xi,p⊥i) completely
determines the size of the soft overlap contributions. What renders the overlap
integral non-trivial are the shifted arguments in transverse momentum space.

1Whenever it is necessary to distinguish the momenta of active and spectator partons the
active one will be labelled with an index j and the spectators with an index i (i 6= j); outgoing
momenta will always be indicated by a prime.
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In the above considerations the relation between the contribution of the Feyn-
man mechanism to elastic FFs and the p⊥-dependence of the soft LCWFs be-
comes directly evident because of the choice of convenient frames. The question
arises whether this close connection is peculiar to chosen frames. Since the result
for the overlap contribution is Lorentz invariant, one could use a different frame
for the calculation, for instance one where the momentum transfer is not purely
transverse. In that case Eq. (4.30) would acquire additional contributions which
represent overlap integrals of Fock states with different particle numbers, N − 1
and N + 1 (see discussion in [123, 124]).

4.2.2 form factors at large |t|

Purely theoretical considerations on different reaction mechanisms in hard ex-
clusive reactions at large momentum transfer remain incomplete, since a priori
unknown non-perturbative matrix elements determine the prefactors and there-
fore the relative importance of the various contributions. In the following, several
exclusive quantities are briefly discussed phenomenologically as examples of how
the transverse momentum effects manifest themselves. A consistent phenomeno-
logical picture arises.

4.2.2.1 form factor of the pion Fπ(Q2)

The elastic form factor of the pion Fπ is defined from the matrix element of the Fπ(Q2)

electromagnetic current operator

〈π(P ′)| jµe.m. |π(P )〉 = eπ (P ′ + P )
µ
Fπ(Q2) , (4.32)

where eπ is the charge of the pion and the momentum transfer is given as Q2 =
(P ′ − P )2. In obtaining (4.32) the on-shell condition P 2 = P ′ 2 = m2

π and
conservation of the electromagnetic current ∂µj

µ
e.m. = 0 was used.

In Fig. 4.7 different contributions to the quantity Q2 Fπ(Q2) are compared to
the available experimental data. For the theoretical calculations the asymptotic
form of the DA of the lowest Fock state φ(x1, x2) = 6x1 x2 was chosen. The
p⊥-dependence of the soft LCWFs was modelled with a Gaussian ansatz in the
form of Eq. (4.28). The contribution obtained in the mHSA is clearly below
the data, which are admittedly very uncertain; only statistical errors are shown,
for a discussion of systematical problems to extract Fπ(Q2) from the data for
electroproduction on the proton see [127, 128].

The Feynman (or soft-overlap) contribution is significantly larger, but also
seems to be insufficient to explain the data alone. For comparison the soft-
overlap contribution obtained with a Gaussian ansatz for the p⊥-dependence
and containing an additional mass term as suggested by the Brodsky-Huang-
Lepage model [129] is also shown. As expected, for larger values of Q2 the two
curves differ substantially, whereas at intermediate momentum transfers they are
rather similar; in particular the height of the maximum is almost the same. This
behaviour is easy to understand. At small to intermediate relative shifts in the
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Figure 4.7: The elastic form factor of the pion plotted against Q2. The dash-dotted
(red) curve represents the result obtained in the mHSA with the asymptotic DA and
Gaussian p⊥-dependence of Eq. (4.28). The full (blue) line shows the soft-overlap con-
tribution obtained with the same LCWF. For comparison the soft-overlap contribution
obtained with a DA with additional mass term is also shown as dotted (blue) curve.
Data are taken from [125, 126] (open/full black circles) and [127](open red circles).

transverse momentum arguments in Eq. (4.30) the results are mainly governed by
the width of the LCWFs in p⊥ space, which is related to the radius of the lowest
pion Fock state and thus practically the same in all models. And at larger shifts of
arguments the details of the model strongly matter; the tails of the assumed p⊥-
dependence determine the size of the overlap integral (4.30). Fig. 4.7 corresponds
to Fig. 4 of [116] where more details of the calculation are to be found. Some
more recent data of the JLAB-F(pi) collaboration [127] are included in Fig. 4.7.

From Fig. 4.7 it is tempting to claim that the data are well explained, if
one sums up the mHSA and soft-overlap contributions. It should be mentioned
however that more issues related to the pion form factor have been considered.
Model calculations within QCD sum rule approaches confirm the principal ob-
servation of large soft contributions [130, 131]. Perturbative loop corrections in
the HSA are found to be sizable, but strongly depend on the choice of the hard
scale in the strong coupling [132, 133, 134, 135, 136, 137, 138]. Loop corrections
in the mHSA have not been calculated. LC sum rules indicate that higher twist
corrections to the pion form factor might be substantially [131], and the relation
between resummed gluon corrections and non-perturbative power corrections has
been investigated [139]. The influence of choices for factorisation and renormali-
sation scales together with an infrared analytic coupling has been considered in
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the context of the mHSA [140, 141]. In view of the above listed issues related
to the pion form factor it becomes clear that though many subtle problems have
been addressed and understanding made considerable progress, it would be pre-
mature to claim that the elastic pion form factor is fully understood. Eagerly
awaited more precise data certainly will reopen the theoretical discussions. The
purpose of the present subsection is merely a comparison of the relative impor-
tance of the two reaction mechanisms under consideration, which can be done
rather safely without having all smaller details of the full picture.

In conclusion, for the elastic FF of the pion, both reaction mechanisms dis-
cussed in the previous subsection are of significant size. Soft-overlap contribu-
tions, formally power corrections to the hard scattering, seem to be dominant at
small to intermediate momentum transfer. The value of Q2 for the transition to
a kinematical regime where the hard scattering becomes dominant depends on
model assumptions of the calculations. Transverse momentum effects are clearly
non-negligible up to very high values of momentum transfer Q2 � 40 GeV2.

4.2.2.2 elastic form factor of the nucleon

The electromagnetic Dirac-FF, F1(Q2), and Pauli-FF, F2(Q2), of the nucleon are F1(Q2)

defined from the matrix element of the electromagnetic current operator

〈N(P ′, S ′)| jµe.m. |N(P, S)〉 (4.33)

= ū(P ′, S ′)
{
γµ F1(Q2) +

iσµν∆ν

2M
F2(Q2)

}
u(P, S) , (4.34)

where the momentum transfer is given as Q2 = (P ′ − P )2. In obtaining (4.33)
the on-shell condition P 2 = P ′ 2 = m2

N and conservation of the electromagnetic
current ∂µj

µ
e.m. = 0 was used. The definition (4.33) implies the normalisations

F1
p(0) = 1 , F2

p(0) = κp ' 1.79 , for the proton

F1
n(0) = 0 , F2

n(0) = κn ' −1.81 , for the neutron (4.35)

where κp/n are the anomalous magnetic moments of proton and neutron.

Alternatively, by use of the Gordon identity the electric and magnetic Sachs
FFs [142, 143] can be defined, which are related to the Dirac and Pauli FFs by

GE = F1 − τF2 ,

GM = F1 + F2 (4.36)

with the shorthand notation

τ =
Q2

4m2
N

. (4.37)

In Fig. 4.8 (left panel) the results for the the magnetic FF of the proton
are shown obtained in the mHSA with a whole set of end-point concentrated
DAs [144, 145, 102] as suggested by QCD sum-rules [106]. Those DAs have
been chosen together with a maximum normalisation to the LCWF, imposed by
assuming unity for the probability of the valence Fock state, in order to probe the
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maximum contribution to Q4 Gp
M(Q2) within the mHSA. The p⊥-dependence was

modelled with a Gaussian ansatz in the form of Eq. (4.28). Since the difference
between Gp

M and F p
1 , corresponding to proton helicity flip, is predicted to be zero

in HSA and mHSA, both data sets are shown in comparison.
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Figure 4.8: The proton magnetic form factor vs. Q2. Data are taken from [146]. The
GpM data are represented by black circles, whereas those for F p

1 are indicated by open
circles. Left: Contributions obtained in the modified hard scattering approach. The
shadowed band indicates the range of predictions derived from the set of DAs deter-
mined in [144, 145] in the context of QCD sum rules. The solid (dotted) line corresponds
to the COZ [106] (optimised GS) DA. Right: Soft-overlap contributions obtained with
the Bolz-Kroll DA [118, 147] (see text). Possible improvements by modelling N = 4, 5
Fock states or utilising the inclusive PDF data as input are indicated.

Fig. 4.8 (left panel) is similar to Fig. 6 in [114], but shows instead the band of
results of the improved and more accurate calculation of [118], which was men-
tioned in [114], but not shown explicitely. The higher accuracy was obtained by
retaining p⊥-dependence not only in gluon propagators, but also in the class of
fermion propagators which come with a longitudinal scale bilinear in momentum
fractions, i.e. of the generic form xi yj Q

2, and neglecting it only in fermion prop-
agators which come with scales xiQ

2 or yiQ
2 (compare the discussion of scales in

subsection 4.2.1). The resulting 9-dimensional integrations are technically very
demanding and were fully completed only after the publication of [114]. With the
improved accuracy of the calculation the estimates for a maximum of the (modi-
fied) hard scattering contributions were altered even more constraining than from
the results of the 7-dimensional integrations displayed in [114].

The fact that contributions to the magnetic FF of the proton in the mHSA are
down by at least an order of magnitude in comparison with – in this case rather
precise – experimental data is understandable. The internal redistribution of the
momentum transfer in the proton proceeds via at least two hard gluons. Thus,
the suppression of hard scattering contributions, as observed in the pion FF with
one hard gluon exchange, is even more pronounced in the proton case. Assuming
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a DA of the asymptotic form φ(xi) = 120x1 x2 x3 leads to mHSA contributions
which are close to zero (with the scales of Fig. 4.8 they would be practically
indistinguishable from the zero-line).

When the suppression of the mHSA contribution to the magnetic FF of the
proton is more pronounced than for Fπ, what is the situation for the soft-overlap
contributions to the elastic FF of the proton ? Is the tendency of enhanced effects
carried on, i.e. are soft-overlap contributions much larger than the ones proceed-
ing via hard gluon scattering ? In fact, in [118] it was observed that the soft
overlap contributions calculated with end-point concentrated DAs of the COZ
type (modelling the p⊥-dependence by the Gaussian ansatz (4.28)) overshoot the
data by factors 5 - 10, i.e. larger than the (m)HSA contributions by up to two
orders of magnitude. There is yet another very strong argument disfavouring
endpoint-concentrated proton DAs from the observation that they lead to va-
lence quark distributions much larger at large x than those extracted from DIS
data [148]. A model wave function was determined, close to the asymptotic form
but not fully symmetric, which provides a soft-overlap contribution in agreement
with the data; the mHSA contribution calculated with the same DA is negligible.

The Bolz -Kroll (BK) model wave function for the valence qqq Fock state
reads

Ψ123(xi,p⊥i) ≡ Ψ(x1, x2, x3;p⊥1,p⊥2,p⊥3) =
f3

8
√

6
φ123(xi) Ω3(xi,p⊥i) , (4.38)

where again the p⊥-dependence is give by the ansatz (4.28), and at the input
scale µ0 = 1 GeV the DA has the simple form

φ123(xi, µ0 = 1 GeV) = 60x1x2x3 (1 + 3x1) . (4.39)

The values of the normalisation f3 and the transverse size parameter a3 have
been determined in [118] at the scale of reference µ0 = 1 GeV as

f3 = 6.64 · 10−3 GeV2 , a3 = 0.75 GeV−1 . (4.40)

Fig. 4.9 shows the BK model DA in comparison with the COZ DA, the latter
as a typical example for the class of end-point concentrated DAs derived from
sum rule constraints (see [145, 102] for a detailed discussion on classifications of
nucleon DAs from sum-rules). The Bolz-Kroll DA has a much less pronounced
asymmetry, where the peak is shifted only moderately away from the symmetric
point of x1 = 1/3 to larger values of x1. The variable x1 by construction denotes
the momentum fraction which corresponds to an up quark in the proton with
spin aligned to the proton spin [118].

Fig. 4.8 (right panel) demonstrates a reasonable agreement of the soft-overlap
(Feynman) contribution to the Dirac FF of the proton, obtained with the BK
soft LCWF from the Drell-Yan formula (4.30), with the data for Gp

M(Q2) and
F p

1 (Q2). Possible improvements by generically adding effects of the N = 4 (qqq g)
and N = 5 (qqq q̄q) Fock states are indicated. More details of this improvement
are to be found in [120].
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Figure 4.9: Comparison of different DAs for the proton displayed in 3-dimensional and
contour plots. Left: DA used in the Bolz-Kroll model wave function [118]. Right: DA
proposed by Chernyak-Ogloblin-Zhitnitsky [106] from sum-rule considerations.

In conclusion, there is phenomenological evidence that the elastic FF of the
proton is strongly dominated by the soft-overlap contribution at presently acces-
sible momentum transfers, i.e. up to Q2 = 30 GeV2, and far beyond. The hard
scattering mechanism seems to contribute negligibly, though it is generally agreed
that it has to take the lead at asymptotically large values of Q2. The tendency of
a suppressed hard scattering and a large overlap contribution is much more pro-
nounced than observed for the elastic pion FF as was expected from the fact that
more hard gluons are necessary for the internal redistribution of the momentum
transfer. This confirms the general observations made in [103, 104].

4.2.2.3 pion-γ transition form factor

A further very illustrating example is the pion-γ transition form factor Fπγ(Q
2)Fπγ(Q2)

which is defined from the γ∗π0 → γ vertex for eπ → eγ

Γµ = −i e2 Fπγ(Q
2) εµνρσP

ν
π ε

ρ qσ , (4.41)

where Pπ and q are the momenta of the initial pion and virtual photon, respec-
tively, and ε is the polarisation vector of the final (on-shell) photon. Q2 is the
virtuality of the off-shell photon.
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At lowest order pQCD Fπγ is described by a pure QED diagram (see Fig. 4.10
(left panel)), and there is no soft-overlap contribution, since only one hadron is
involved in the process 2.
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Figure 4.10: Pion-γ transition form factor vs. Q2. Right: The lowest order diagram
for γ∗π0 → γ. Left: Results from calculation in the mHSA with asymptotic DA (CZ
DA) are shown as solid red line (dashed red line) in comparison with the data from
CELLO [150] (circles), and CLEO [151](squares). The level of the pQCD prediction
for the asymptotic limit Q2 →∞ is indicated as (blue) dotted line.

In fact, the mHSA contribution obtained with the asymptotic pion DA and
ansatz (4.28) for the p⊥-dependence describes the data astonishing well as shown
in Fig. 4.10 (right panel), which is taken from [116] with the more recent CLEO
data [151] added (see also the discussion in [152]). The level of the pQCD pre-
diction for the asymptotic limit Q2 → ∞ is indicated as (blue) dotted line in
Fig. 4.10 (right panel). For comparison the mHSA contribution obtained with
the CZ pion DA is also shown which is significantly off the data. In particular,
since the measurement of the more recent CLEO data [151] the pion-γ transition
FF provides strong evidence that the pion DA already at intermediate values of
Q2 is rather close to its asymptotic form. No uncertainties from competing reac-
tion mechanisms obscure this observation. Similar conclusions on the form of the
pion DA have been also drawn from a local quark hadron duality model [153].
One loop corrections to Fπγ are known to be moderate [154, 134, 136, 155] and
do not spoil the general observation in favour of a DA close to the asymptotic
form.

In conclusion, the pion-γ transition FF is an example of an exclusive hard
quantity, where the transverse momentum effects show up only moderately. The
asymptotic limit – one of the very few parameter-free predictions of pQCD –
seems to be approached by the data already at intermediate large values of Q2.
Thus, Fπγ(Q

2) plays a unique rôle in the determination of the pion DA.

2The overlap of the pion LCWF with a wave function describing the hadronic content of
the on-shell photon is not only suppressed by factors αS , but also disfavoured by a helicity
mismatch [149].
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+
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suppressed by
m2

|t|
... intermediate classes of diagrams
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hard scattering(c)

+

hard scattering
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higher order αs/higher Fock states/higher twist

asymptotically dominant !

Figure 4.11: Some of the diagrams contributing to WACS ordered with increasing
number of hard gluons. The dots between the upper and lower diagrams indicate an
intermediate class of diagrams with one exchanged hard gluon, whereas the dots at
the bottom stand for diagrams with a higher number of gluons (αs corrections), and
diagrams from higher Fock states (power corrections).

4.2.3 wide angle Compton scattering (WACS)

A process with close relationship to the elastic FF of the proton is real Compton
scattering off the proton in the kinematical regime of large |t|, or at wide angles3.
In the following different contributions to real WACS are compared; results on the
kinematical regime of virtual, but not deeply virtual, Compton scattering at wide
angles are published in [156]. Examples of diagrams for real WACS are displayed
in Fig. 4.11: The soft-overlap mechanism is described by the handbag diagram
(a), the contribution from the ‘cat ears’ diagram (b) is suppressed relative to (a).
Typical examples for diagrams of hard scattering contributions are displayed in
(c) and (d).

4.2.3.1 WACS off protons in the hard scattering approach

Calculations for the Compton scattering process at wide angles in the modifiedhard scattering

contribution to

WACS
3Wide angles in the present context refers to angles around 90◦ corresponding to large

momentum transfer, and not backward scattering.
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HSA exist only for scattering off pions [157], where no data are available for
comparison and a phenomenological discussion, but not for the proton. Thus, in
the following results are quoted from a recent leading order calculation of real
WACS off protons in the standard HSA [158], i.e. in the approximation of collinear
partons, superseding (and partly correcting) earlier calculations [159, 160].

The unpolarised cross section, scaled by s6, obtained with different DAs is
shown in Fig. 4.12 in comparison to the data. To minimise the influence of choices
for the αs(µ) argument, the same quantity normalised to the factor (Q4 F p

1 (Q2))2,
where F p

1 is the Dirac form factor of the proton, is also shown. Uncertainties are
expected to cancel from this ratio to a large extent.

Figure 4.12: Left: The hard scattering contribution to the unpolarised differential
cross section for WACS obtained with different DAs compared to the data [161]. Right:
The same quantity scaled by the pQCD result for (Q4 F p1 (Q2))2. Figures reproduced
from [158] with one additional curve (BK) provided by the same authors.

Clearly, the results of the hard scattering contributions to the unpolarised
cross sections fall short to describe the available data, which are admittedly
at rather low momentum transfers. The results obtained with end-point con-
centrated DAs are 1 - 2 orders of magnitude smaller than the data, the ones
obtained with the asymptotic DA and the BK model wave function are about a
factor 1000 smaller than the data. From the ratio shown on the RHS the authors
of [158] conclude that ‘. . . it seems unlikely that the elastic proton form factor
and the Compton scattering amplitudes are both described by pQCD at presently
accessible energies’. 4,5

4Conclusions from the ratio of s6 (dσγp/dt) (Q4 F p1 (Q2))−2 though should be taken with some
care, since the authors of [158] claim a discrepancy of a factor 1/2 in the formulas compared to
previous calculations of F p1 (Q2), a point which up to now has not been finally clarified.

5Note that in [158] ‘pQCD’ is used synonymously for the HSA in the collinear approximation,
i.e. for the term which is leading in pQCD at asymptotic large |t|. However, it should be
stressed that also the handbag contribution is based on a factorisation picture with the hard
part described by pQCD and the soft part by a hadronic matrix element.
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These results suggest, that hard scattering is not the dominant reaction mech-
anism at the intermediate large momentum transfer, a situation very similar to
the one observed for the elastic nucleon form factors, and less pronounced for the
pion form factor.

4.2.3.2 WACS of protons in the soft-overlap approach

The contribution from the overlap integral of soft LCWFs (Feynman mechanism)soft-overlap

contribution to

WACS
to WACS is also denoted as handbag contribution, since the amplitude of the pro-
cess is described by a handbag diagram [162]. This diagram factorises in a hard
photon-parton amplitude and a non-perturbative part [120], the latter described
by a generalised parton distribution at vanishing skewedness, which can be calcu-
lated from the overlap of LCWFs, as indicated by diagram (a) in Fig. 4.11. The
representation of generalised parton distributions as overlap integrals of LCWFs
will be discussed in detail in the following section. The contribution from the
cat-ears diagram (b) was shown to be suppressed by inverse powers of |t| relative
to the handbag diagram [120].

The (unpolarised) differential cross section can be written

dσ

dt
=

2πα2
em

s2

[
−u
s
− s

u

]

×
{

1

2

(
R2
V (t) +R2

A(t)
)
− us

s2 + u2

(
R2
V (t)−R2

A(t)
)}

(4.42)

with new form factors [162] specific to Compton scattering depending on −t only

∑

a

e2
a

∫ 1

0

dx

x
P+

∫ dz−

2π
ei xP

+z− 〈P ′|ψa(0) γ+ ψa(z
−)− ψa(z−) γ+ ψa(0) |P 〉

= RV (t) ū(P ′) γ+u(P ) +RT (t)
i

2m
ū(P ′)σ+ν∆ν u(P ) .(4.43)

RT being related to nucleon helicity flips is neglected in Eq. (4.42). An analogous
definition holds for RA involving the axialvector nucleon matrix element

∑

a

e2
a

∫ 1

0

dx

x
P+

∫ dz−

2π
ei xP

+z− 〈P ′|ψa(0) γ+γ5 ψa(z
−) + ψa(z

−) γ+γ5 ψa(0) |P 〉

= RA(t) ū(P ′) γ+γ5u(P ) +RP (t)
∆+

2m
ū(P ′) γ5 u(P ) .(4.44)

In a frame where ∆+ = 0 – like the CMS-symmetric of appendix C.2.1 – the
pseudoscalar form factor RP decouples from Eq. (4.42).

The new Compton form factors RV (t), RT (t), RA(t), RP (t) are x−1-moments
of generalised parton distributions, which have a representation as overlap inte-
grals of LCWFs. This parallels the situation of elastic form factors, which are
x0-moments of the same GPDs, and therefore are given by the Drell-Yan overlap
formula. Thus, from the knowledge of LCWFs the Compton form factors could
be directly calculated. Since the exact LCWFs of nucleons are unknown, it is
a good strategy to use additional assumptions on the pT -dependence of LCWFs
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to establish a connection to related non-perturbative quantities which are rather
well-known from experiments.

Assuming the Gaussian model (4.28) for transverse parton momenta the
form factors RV (t) and RA(t) factorise in ordinary parton distribution functions
(PDFs) and a (t, x)-dependent exponential for each N parton Fock state sepa-
rately

R
(N)
V (t) =

∫ 1

0

dx

x
exp

[
a2
N t

2

1− x
x

]

×
{
e2
u [u(N)

v (x) + 2 u(N)(x)] + e2
d [d(N)

v (x) + 2 d(N)(x)] + e2
s 2 s(N)(x)

}
,(4.45)

and analogously for RV → RA, q(x)→ ∆q(x). The valence PDF for an N parton
Fock state can be calculated from model LCWFs as

q(N)
a (x) =

∑

j

∑

β

∫
[dx]N [d2k⊥]N δ(x− xj) |ΨNβ(xi,k⊥i)|2 (4.46)

where the sum j runs over all partons of type a. The results for the form factors
RV and RA obtained with the ansatz (4.28) and the BK model DA for the N = 3
Fock state are shown in Fig. 4.13 together with estimates for additional contri-
butions from the next higher Fock states (N = 4, 5) in a generic model [120].
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Figure 4.13: CS form factors calculated from the valence Fock state only (thin solid
line), N=3,4,5 Fock states (thick solid line), and with an additional estimate for higher
Fock states(dashed line). Left: RV (t). Right: RA(t).

Under the additional assumption that all Fock states come with the same
transverse size parameter aN = a the sums

∑
N R

(N)
V (t) and

∑
N R

(N)
A (t) can be

directly related to the full proton valence PDFs, i.e. summed over all Fock states,
which can be taken from phenomenological parametrisations. An estimate for
the effect of all higher Fock states arises. Results for the estimate based on
parametrisations for PDFs [163, 164] are also shown in Fig. 4.13. For details see
Ref. [120].

Neglecting the effect of the helicity-flip form factor RT (t) compared to RV (t),
as might be justified by the known suppression of the analogous ratio F p

2 (t)/F p
1 (t),
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Figure 4.14: Cross sections for WACS obtained from the handbag diagram. Data are
from [161]. Left: for E = 5 GeV the contributions from the valence Fock state, the
N=3,4,5 Fock states, and for all Fock states are compared. Right: the cross sections
for different photon energies obtained by the ‘all Fock state estimate’. Data are from
[161].
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Figure 4.15: Initial state helicity correlation. Left: Predictions of the handbag contri-
bution for different energies. Right: Comparison of different predictions at E = 4 GeV
(taken from [158]; additional curve (BK) provided by the same authors).

the cross section of WACS are obtained by inserting the form factors RV (t) and
RA(t) into Eq. (4.42). Results are displayed in Fig. 4.14 taken from [120]. A com-
parison shows that the predictions for cross sections from the handbag diagram
are much higher then the corresponding ones obtained in the hard scattering
picture and can fairly well describe the present data. Note that for a direct com-
parison a curve was added in Fig. 4.12 (left) obtained within the hard scattering
approach in exactly the same way (same value for the parameter fN ) as the other
curves in Fig. 4.12, but with the BK distribution amplitude as input.

Of particular interest is the initial state helicity correlationALL

ALL
dσ

dt
=

1

2

(
dσ(µ = +1, ν = +1/2)

dt
− dσ(µ = +1, ν = −1/2)

dt

)
(4.47)
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where µ, ν are the helicities of the incoming photon and proton, respectively.
The prediction for this quantity from the handbag diagram is distinctively dif-
ferent from predictions obtained in the hard scattering approach, or the diquark
model [165].

The JLAB E99-114 collaboration [166] has reported a first yet preliminary
measurement of ALL at a c.m.s. scattering angle of 120◦ which seems to be in
agreement with the prediction from the handbag contribution while the HSA cal-
culations fail badly. Further measurements of ALL at higher energies are planned
at JLAB.

Perturbative loop corrections to next-to-leading order in αs to the handbag
approach to WACS have been calculated including contributions correspond-
ing to proton helicity flip hadronic matrix elements [167]. The argument for
a neglect of helicity flip matrix element is based on the analogy of the ratios
RT/RV ' F2/F1, which is indicated to behave like F2/F1 ' −M 2/t by the SLAC
data [168]. However, the new JLAB data [169] on F2 seems to be compatible
with a F2/F1 ' M/

√−t behaviour, which in conclusion by analogy would im-
ply a non-negligible correction effect of the RT form factor to the WACS cross
sections, if the JLAB result is confirmed. Huang, Kroll and Morii [167] studied
the bearings of the helicity flip form factor RP on WACS cross sections, and
estimated correction effects of about 10%. Moreover, these corrections from a
non-negligible RT lead to a wealth of polarisation phenomena which may be of
importance for severe experimental tests of the handbag approach to be expected
in the near future.

In conclusion it can be noted that similar to the case of elastic nucleon form intrinsic transverse

momenta

determine

soft-overlap

contributions

factors at intermediate values of |t| there is evidence that also the real WACS off
protons is completely dominated by the soft overlap (or handbag) contribution.
The size of the contribution calculated from an overlap integral is entirely de-
termined by the functional dependence the partonic transverse momenta in the
LCWFs.

It is particularly interesting that the soft physics approach can account for dimensional

counting rulesthe experimentally observed approximate dimensional counting rule behaviour,
at least for Compton scattering and for form factors. This tells us that it is
premature to infer the dominance of perturbative physics from the observed scal-
ing behaviour. One may object that the perturbative explanation (leaving aside
the logarithms from the running of αs and from the evolution) works for many
exclusive reactions, while in the soft physics approach the approximate counting
rule behaviour is accidental, depending on specific properties of a given reaction.
In [156] however it was argued that the approximate counting rule behaviour is
an unavoidable feature of the soft physics approach related to a scale set by the
transverse hadron size.
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4.2.3.3 wide angle meson production

It was shown that also the amplitudes for photoproduction and electroproduc-
tion of flavour neutral pseudoscalar and longitudinally polarised vector mesons
at large s, −t and −u factorise into parton-level subprocess amplitudes and form
factors representing 1/x-moments of generalised parton distributions, which can
be calculated from overlap integrals of LCWFs [170]. These form factors are
of the same type as appear in WACS. It seems however that the contributions
from the hadronic component of the photon dominate the photoproduction for
values of energy and momentum transfer accessible in current experiments. The
measurement of large momentum transfer electroproduction of mesons – though
certainly difficult – seems to be feasible at an upgraded JLAB, or at proposed
future facilities as ELFE, EVELINE or EIC [170].

4.3 deeply virtual exclusive reactions

In the last 7 years exclusive reactions initiated by a highly virtual photon re-
ceived a lot of interest. It was realised that these processes are dominated by
contributions where only one parton participates in the hard subprocess. Thus,
for instance in Compton scattering in the deeply virtual kinematical regime it isfactorisation of

DVCS the handbag diagram which describes the dominant part of of the amplitude (cf.
Fig. 4.16).

H H’

γ∗ γ

Φ′P P ′

p p ′

γ∗ γ

Figure 4.16: The handbag diagram leading to the dominant contribution to the am-
plitude of Compton scattering in the kinematical regime of a deeply virtual photon.

In close analogy to the Bjorken limit of DIS, there is a kinematical limit of
asymptotically rising photon virtuality Q2 →∞ with fixed ratio xB = Q2/(2P ·q)
(while the squared momentum transfer ∆2 = (P ′ − P )2 stays small to avoid a
second hard scale) in which the amplitude of the Compton scattering process fac-
torises. The hard partonic subprocess is the (deeply virtual) Compton scattering
off a single quark, and the soft part is a hadronic matrix element of a quark field
operator describing a quark taken out from the initial proton and reinserted with
a different momentum to form the final proton. The quark-quark correlation



. . . IN EXCLUSIVE REACTIONS 111

function

Φ′(p, P,∆) =
∫ d 4z

(2π)4
eip̄·z 〈P ′, S ′| ψ(

−z
2

)ψ(
z

2
) |P, S〉 , (4.48)

where p̄ = (p ′ + p)/2, is a direct generalisation of the quark-quark correlation
Eq.(3.7) from which the ordinary PDFs are defined as demonstrated in some
detail in subsection 3.2. The bilocality of the quark field operator in (4.48) was
chosen in a symmetric way which can always be achieved by a translation of
the operators. An important difference between the quark-quark correlation of
Eq.(3.7) and its generalisation (4.48) is that the initial and final proton states
are not identical, but characterised in general by different momentum and spin
vectors. Also it should be emphasised that the factorisation in deeply virtual CS
takes place on the level of the amplitude of the process, and for DIS it is the cross
section which factorises leading to a probabilistic interpretation.

From the quark-quark correlation (4.48) generalised parton distributions are
defined as Dirac projections integrated over three quark momentum components,
dp̄− and dp̄⊥, which constrains the bilocality of the quark field operators to a
light-like distance in minus directions. The different initial and final states lead
to an increased number of independent functions compared to the corresponding
ordinary PDFs occurring in forward amplitudes. For instance the leading twist
projection with γ+ defines two functions H(x, ξ, t) and E(x, ξ, t) corresponding
to proton helicity non-flip and helicity-flip exactly in the same way as the form
factors F1(t) and F2(t). With P̄ ≡ (P + P ′)/2 the projection with γ+ defines

P̄+
∫

dp̄− d2p̄⊥ Tr
(
Φ′ γ+

)∣∣∣∣
p̄+=xP̄+

=

ū(P ′, S ′)

{
γ+Hq(x, ξ, t) +

iσ+ν∆ν

2M
Eq(x, ξ, t)

}
u(P, S) , (4.49)

where the GPDs H(x, ξ, t) and E(x, ξ, t) depend on the (average) momentum
fraction x, the skewedness ξ characterising the change of momentum fraction be-
tween initial and final quark, and the squared momentum transfer t. A more
detailed discussion on GPDs, their properties and interpretation will follow in
the next sections.

Also the hard production of mesons in the deeply virtual kinematical regime factorisation of

deeply virtual

meson production
close to the forward direction receives its dominant contribution from diagrams
where only one parton participates in the hard subprocess. At the same order
in αs diagrams occur involving generalised quark distributions and generalised
gluon distributions (cf. Fig. 4.17).

Soon after factorisation was made plausible for DVCS [171, 172, 173] and factorisation

theoremsdeeply virtual meson production [174] all order factorisation theorems have been
developed to leading twist accuracy [175, 176, 177, 178]. Establishing those formal
theorems have put the perturbative treatment of DVCS and deeply virtual meson
production on the same sound and rigorous mathematical basis as many of the
inclusive hard processes.

Hard exclusive reactions in the deeply virtual kinematical regime are difficult first glimpses on

GPDsto measure. Counting rates and cross sections are small and it is extremely hard
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Figure 4.17: Diagrams leading to the dominant contributions to the amplitude of
deeply virtual meson production.

to ensure exclusiveness, i.e. to single out experimentally one specific channel from
other channels which have a similar signature. For instance, DVCS contributions
to cross sections have to be separated from a channel with an additional soft pion
in the final state which may go unobserved because of limited detector acceptance
in particular in the beam direction. In addition the DVCS contribution has a
background by the Bethe-Heitler process consisting of real photon emission by
the incoming or outgoing electron. Nevertheless, first observations of DVCS have
been reported. In Fig. 4.18 DVCS cross sections (after subtraction from Bethe-
Heitler contributions) from the ZEUS experiment at DESY [179] are displayed in
comparison with two model predictions.

Measurements of differential cross sections have also been reported by the H1
experiment at DESY [182] shown in Fig. 4.19 as functions of the virtuality of the
photon Q2 and the invariant mass of the final state W . Also here a clear excess
over the expected cross section from the Bethe-Heitler process alone is observed.
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Figure 8: Cross section measurement for the γ∗p → γp DVCS process as a
function of Q2 in the kinematic range 5 < Q2 < 100 GeV2 and 40 < W < 140 GeV
for e+p data. The data are compared to the theoretical predictions of Frankfurt,
Freund and Strikman (FFS) and Donnachie and Dosch (DD). The upper bound
of the predictions corresponds to b = 4.5 GeV−2 and the lower bound is given by
b = 7 GeV−2. The error bars denote the statistical uncertainty (inner) and the
quadratic sum of the statistical and the systematic uncertainties (outer).
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Figure 9: Cross section measurement for the γ∗p → γp DVCS process as a
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b = 7 GeV−2. The error bars denote the statistical uncertainty (inner) and the
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Figure 4.18: Observation of the DVCS reaction e+p→ e+γp at HERA in data taken
with the ZEUS detector [179]. Cross section as a function of Q2 (left panel) and W
(right panel) in the kinematic range 5 ≤ Q2 ≤ 100 GeV2 and 40 ≤ W140 GeV. The
data are compared to two theoretical model predictions from [180] and [181].
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Figure 4.19: Differential cross section measurements for the DVCS reaction e+p →
e+γp from H1 as a function of Q2 (left) and W (right) [182].

It was pointed out [183] that the Bethe-Heitler process not only plays the rôle
of an obstacle as unwanted background, but on the contrary can be made use of
as a welcome mechanism enhancing small effects otherwise difficult to access. The
QED process of the radiation of a real photon by an electron can be calculated
to arbitrary precision and combined with the rather precise data on the nucleon
form factors. Having thus a good knowledge on the Bethe-Heitler amplitudes,
the DVCS amplitudes can be extracted from interference terms in cross sections.
In particular azimuthal asymmetries are suitable for separating out single terms
with different angular dependencies. The relevant azimuthal asymmetries have
been identified up to and including twist three accuracy [183, 184]. Also beam
charge asymmetries, e.g. by comparing electron and positron scattering data,
contain valuable information.
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angle φ. The data correspond to the missing mass region between 0.4 and 1.4 GeV.
Right: The beam-spin analysing power Asin

LU for hard electroproduction of photons on
hydrogen as a function of the missing mass.
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Figure 4.21: Single spin asymmetry for exclusive π+ production at HERMES [187].

Kinematic dependence of Asinφ
UL on the variables x, Q2, and t for the reaction e+ +

~p → e′+ + n + π+. The error bars and bands represent the statistical and systematic
uncertainties, respectively. The solid lines show the upper limits for any asymmetry
arising from the transverse target polarization component.

The first measurement of a DVCS azimuthal asymmetry was reported from
the HERMES experiment at DESY [185]. The results are shown in Fig. 4.20
together with a fit of a sinφ curve to the data (dashed line) and in comparison
with a prediction based on a GPD model [186] (solid line). From the experimental
setup it is impossible to ensure strict exclusiveness; instead, the data are plotted
against the missing mass indicating a clear effect in the exclusive domain.

A similar single spin azimuthal asymmetry in exclusive electroproduction of
π+ mesons on a longitudinally polariesd target was observed by HERMES [187]
and is shown in Fig. 4.21. A next to leading twist analysis would be necessary
for a complete description of the data, but the measurement combined with a
similar one on transversely polarised target opens the way to experimentally dis-
entangle the asymmetry arising from the two polarisation components and thus
may provide another first glimpse on certain GPDs [187].
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4.4 generalised parton distributions

Generalised parton distributions have been first discussed as objects showing GPDs

evolution behaviour interpolating between the DGLAP evolution of PDFs and
the ERBL evolution of DAs [188] and were mentioned in a conference proceeding
in the context of helicity flip form factors[189]. The full importance of these
generalisations of PDFs went almost unnoticed by the community of hadron
physics. Only in 1996 a renewed interest was triggered by a proposal of Ji to access
the orbital angular momentum of partons via the GPDs in the DVCS process[171,
172], and very shortly after by two publications of Radyushkin on DVCS [173]
and GPDs in hard diffractive electroproduction[174]. In the recent years plenty
of publications on GPDs and on the processes involving GPDs appeared. In the
present report only some basic features of GPDs are mentioned briefly, before the
rôle of transverse momentum dependence is investigated more thoroughly. For
more details on GPDs it is referred to the available reviews on the topic, among
them [176, 190, 191, 192].

Generalised quark distributions of the nucleon at leading twist are defined definitions of

leading twist GPDsby projections on different Dirac structures leading to quark helicity non-flip
projections (cf. the interpretation of operators in terms of “good” LC components
of quark fields worked out in appendix A)

2P̄+
√

1− ξ2 Hq
λ′λ ≡ (4.50)

P̄+
∫ dz−

2π
ei x̄ P̄

+z− 〈P ′, λ′|ψ(
−z̄
2

) γ+ ψ(
z̄

2
) |P, λ〉

= ū(P ′, λ′)

{
γ+H(x̄, ξ, t) +

i σ+ν∆ν

2M
E(x̄, ξ, t)

}
u(P, λ) , (4.51)

P̄+
∫ dz−

2π
ei x̄P̄

+z−〈P ′, λ′|ψ(
−z̄
2

) γ+γ5 ψ(
z̄

2
) |P, λ〉

= ū(P ′, λ′)

{
γ+γ5 H̃(x, ξ, t) +

γ5∆+

2M
Ẽ(x, ξ, t)

}
u(P, λ) , (4.52)

where the quantity Hq
λ′λ was defined for later convenience, and quark helicity flip

projections [193]

P̄+
∫ dz−

2π
ei x̄P̄

+z−〈P ′, λ′|ψ(
−z̄
2

)σ+jγ5 ψ(
z̄

2
) |P, λ〉

= ū(P ′, λ′)

{
σ+jγ5 HT (x, ξ, t) +

ε+jαβ∆αP̄β
M2

H̃T (x, ξ, t)

+
ε+jαβ∆αγβ

2M
ET (x, ξ, t) +

ε+jαβP̄αγβ
M

ẼT (x, ξ, t)

}
u(P, λ) , (4.53)
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where λ, λ′ denote the proton helicities, and z̄ is a shorthand notation for
[0, z−,0⊥]. Flavour and colour labels are suppressed. The link operator nor-
mally needed to render the definition (4.50), (4.52) and (4.53) gauge-invariant
does not appear because the gauge A+ = 0 is chosen, which together with an
integration path along the minus direction reduces the link operator to unity 6.

A short digression on the involved kinematics will clarify the meaning of thesome kinematics

momenta and momentum fractions occurring in the definitions (cf. appendix C.3).
The initial and final hadron states are characterised by the momenta P and P ′.
In order to parameterise them one defines the average momentum

P̄ =
1

2
(P + P ′) , (4.54)

chooses the three-momentum P̄ to be along the e 3-axis (see Fig. 4.22, the frame
defined this way is named the “average” frame in appendix C.3). One writes in
light-cone components

P =

[
(1 + ξ)P̄ + ,

M2 + ∆2
⊥/4

2(1 + ξ) P̄ +
, −∆⊥

2

]
,

P ′ =

[
(1− ξ) P̄ + ,

M2 + ∆2
⊥/4

2(1− ξ) P̄ +
, +

∆⊥
2

]
(4.55)

with the transverse vector ∆⊥, the plus momentum P̄ +, and the skewedness
parameter

ξ =
(P − P ′)+

(P + P ′)+
, (4.56)

which describes the change in plus momentum. The momentum transfer takes
the form

∆ = P ′ − P =

[
−2ξ P̄ + ,

ξ(M 2 + ∆2
⊥/4)

(1− ξ2)P̄ +
, ∆⊥

]
, (4.57)

and with the parameterisation (4.55) its square reads

t = ∆2 = −4 ξ2 M2 + ∆2
⊥

1− ξ2
. (4.58)

Notice that the positivity of ∆2
⊥ implies a minimal value

− t0 =
4ξ2M2

1− ξ2
(4.59)

for −t at given ξ, which translates into a maximum allowed ξ at given t. As
shown in Fig. 4.22(a) the parton emitted by the hadron has the momentum p,
and the one absorbed has momentum p ′. The average parton momentum p̄ is
defined as (p + p′)/2, in analogy to (4.54), and correspondingly a momentum
fraction x̄ = p̄+/P̄+ is introduced. This is Ji’s variable x [171].

6In the light of the recent discussions about possible time-reversal odd PDFs (cf. the dis-
cussion in subsection 3.2.3) this argument needs to be reconsidered critically also for GPDs in
future investigations.
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Figure 4.22: Illustration of two common choices to fix the longitudinal direction in the
definition of the off-forward hadronic matrix element which defines generalised parton
distributions. The flow of momenta is indicated on the lines. Bottom: The ranges of
momentum fractions for partons, antipartons and the central region specific to GPDs
is shown for the two choices (X ≡ p+/P+, ζ ≡ −∆+/P+).

In an alternative parametrisation of the hadron momenta frequently found
in the literature (see for instance [176]), the three-momentum of the incoming
proton is chosen to lie along the e 3-axis. In Fig. 4.22 the two different choices
are illustrated.

The off-forwardness of the defining hadronic matrix elements, P ′ 6= P , allows
for hadron helicity non-flip and helicity flip contributions which enlarges the
number of independent functions. For the projections with γ+ and γ+γ5 there
are twice as many GPDs than corresponding PDFs, for the projection with σ+jγ5

four independent functions occur of which one corresponds to the transversity
distribution h1(x) 7.

Similarly generalised gluon distributions Hg(x̄, ξ; t) and Eg(x̄, ξ; t) are defined definition of gluon

GPDsfrom the Fourier transform of a hadronic matrix element involving two gluon field
strength tensors at a light-like distance:

−2 g⊥α′α

∫ dz−

2π
eix̄ p̄

+z− 〈P ′, λ′|G+α′
c (−z̄/2)G+α

c (z̄/2) |P, λ〉

= ū(P ′, λ′)

{
γ+Hg(x̄, ξ; t) +

iσ+α∆α

2M
Eg(x̄, ξ; t)

}
u(P, λ) (4.60)

with the transverse metric tensor gα
′α
⊥ , which has g11

⊥ = g22
⊥ = −1 as only non-zero

elements.

7This result is quoted from Diehl [193] which extends the definitions and corrects the count-
ing of independent functions in the previous literature [194].
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The polarised gluon GPDs H̃g(x̄, ξ; t) and Ẽg(x̄, ξ; t) are defined from

−2i ε⊥α′α

∫ dz−

2π
eix̄ p̄

+z− 〈P ′, λ′|G+α′
c (−z̄/2)G+α

c (z̄/2) |P, λ〉

= ū(P ′, λ′)

{
γ+γ5 H̃

g(x̄, ξ; t) +
∆+γ5

2M
Ẽg(x, ξ; t)

}
u(P, λ) . (4.61)

A direct comparison of the quark GPDs with ordinary PDFs and the nucleoncomparison

PDF - FF - GPD form factor is very illustrative. In Fig. 4.23 the definition of PDFs, form factors
and GPDs are listed for the ψγ+ψ quark field operators together with the cor-
responding diagrams. The differences (as highlighted in the figure by different
colours) are:

PDFs: the quark-field operator is bilocal with arguments −z̄/2 and +z̄/2,
the initial and final proton state is identical, i.e. it is a forward matrix
element

FFs: the quark-field operator is local,
the initial and final proton states are different, i.e. it is a non-forward matrix
element

GPDs: the quark-field operator is bilocal with arguments −z̄/2 and +z̄/2,
the initial and final proton states are different, i.e. it is a non-forward matrix
element

This comparison reveals that GPDs are hybrid objects combining properties of
the ordinary PDFs and elastic FFs. In fact, from the definitions it can be directlyforward limit

read off that GPDs reduce to ordinary PDFs 8 in the forward limit (ξ → 0, t→ 0)

H q(x̄, 0, 0) = f q1 (x̄) H̃ q(x̄, 0, 0) = g q1 (x̄) H q
T (x̄, 0, 0) = h q1 (x̄) (4.62)

Hg(x̄, 0, 0) = x̄ g(x̄) H̃g(x̄, 0, 0) = x̄∆g(x̄) . (4.63)

Furthermore, an integration of the GPDs over x̄ ∈ [−1, 1] together with thex0-moments

exponential factor in the definitions leads to a δ-function, δ(z−), rendering the
hadronic matrix element local. Thus, the lowest moments of GPDs are related
to parton contributions to elastic form factors. For instance the lowest moment
of the unpolarised quark GPD leads to

∫ 1

−1
dx̄ H q(x̄, ξ, t) = F q

1 (t) Dirac FF , (4.64)

which is related the full Dirac form factor by summing over all quarks

F1(t) =
∑

q

eq F
q

1 (t) (4.65)

8Note that the normalisations of gluon GPDs used here correspond to the one of [123, 193]
and thus differ from those of Hoodbhoy and Ji [194] by a factor 1/(2x̄).
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ei xP

+z−〈P, S|ψ(
−z̄
2
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2
) |P, S〉

= ū(P, S) γ+ u(P, S) f1(x)
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〈P ′, S ′|ψ(0) γ+ ψ(0) |P, S〉

= ū(P ′, S ′)

{
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iσ+ν∆ν

2M
F2(t)

}
u(P, S)
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2π
ei x̄P̄

+z−〈P ′, S ′|ψ(
−z̄
2

) γ+ ψ(
z̄

2
) |P, S〉

= ū(P ′, S ′)
{
γ+H(x, ξ, t)

+
i σ+ν∆ν

2M
E(x, ξ, t)

}
u(P, S)

Figure 4.23: Comparison of diagrams for processes involving PDFs, FFs and GPDs
together with the respective definitions of these quantities.

Similarly relations of lowest moments of E q(x̄, ξ, t), H̃ q(x, ξ, t) and Ẽ q(x, ξ, t) to
the quark contributions of Pauli, axial and pseudoscalar FFs exist in the form

∫ 1

−1
dx̄ E q(x̄, ξ, t) → F q

2 (t) Pauli FF (4.66)

∫ 1

−1
dx̄ H̃ q(x, ξ, t) → G q

A(t) axial FF (4.67)

∫ 1

−1
dx̄ Ẽ q(x, ξ, t) → G q

P (t) pseudoscalar FF . (4.68)

Correspondingly the (logarithmic) scale dependence of GPDs is a combination evolution

of the DGLAP evolution of ordinary (nucleon) PDFs and the ERBL evolution
of (meson) DAs [188, 171, 172, 173, 176]. The generalised evolution kernels are
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known two-loop accuracy [195, 196, 197]. Here conformal symmetry has proven
to be a particularly useful tool. It implies that leading order kernels can be
diagonalised in a basis spanned by Ggenbauer polynomials; beyond leading order
conformal symmetry is violated by quantum corrections [198].

From the foregoing brief discussion it becomes obvious that GPDs link many
different inclusive and exclusive quantities. In fact, besides the quantities men-
tioned here GPDs naturally occur in many more processes, like the timelike
CS [199], wide angle meson production [170], or in a {t, s} → {s, t} crossed ver-
sion in proton/antiproton (or π+π−) annihilation and two photon processes [200,
201, 202] (cf. Fig. 4.24).

GPDs

orbital angular
momentum

transverse localisation

form
factors

wide angle
Compton
scattering

deep inelastic
scattering

PDFs

exclusive
meson production

deep virtual/large t

deeply virtual
Compton
scattering

timelike
Compton
scattering

pp̄ annihilation

γγ → ππ, γγ → KK

Figure 4.24: Generalised parton distributions provide a unifying formalism linking
many inclusive and exclusive quantities and processes.

4.4.1 LCWF overlap representation of GPDs

The interpretation of GPDs is largely facilitated by considering a representationGPD ↔ LCWFs

as overlap integrals of LCWFs. To this end one can use the LC quantisation
techniques and the notions of “good” LC components of the parton fields as
introduced in chapter 2.

The bilocal quark field operator in the definition of the unpolarised quark
GPD (4.50) can be related to creation and annihilation operators of the “good”
LC components of quark fields by writing Eq. (2.35) in the form

1√
2

∫
dz−

2π
ei x̄ P̄

+z− ψq(−z̄/2) γ+ ψq(z̄/2)
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Figure 4.25: Overlap representations for GPDs in different kinematic regions for the
case ξ > 0. The flow of momenta is indicated on the lines. Top (bottom) right: the
region ξ < x̄ < 1 (−1 < x̄ < −ξ), where the GPDs are given by N → N overlaps.
Middle right: the central region −ξ < x̄ < ξ, where N + 1 → N − 1 overlaps are
relevant.

= 2
∫ dp′+ d2p′⊥

p′+ 16π3
Θ(p′+)

∫ dp+ d2p⊥
p+ 16π3

Θ(p+)
∑

µ,µ′{
δ(2x̄P̄+ − p′+ − p+) b†q(w

′) bq(w)u†+(w′)u+(w)

+ δ(2x̄P̄+ + p′+ + p+) dq(w
′) d†q(w) v†+(w′) v+(w)

+ δ(2x̄P̄+ + p′+ − p+) dq(w
′) bq(w) v†+(w′)u+(w)

+ δ(2x̄P̄+ − p′+ + p+) b†q(w
′) d†q(w)u†+(w′) v+(w)

}
, (4.69)

which readily allows one to interpret the GPDs in the parton picture [190].

Which of the four terms in (4.69) contributes to the matrix element in (4.50)
is determined by the positivity conditions p+ ≥ 0 and p′+ ≥ 0 for the parton
momenta, together with momentum conservation, which imposes p+ − p′+ =
P+ − P ′+ = 2ξP̄ +. For definiteness we consider the case ξ > 0 in the following,
which is relevant for the applications of the GPDs in hard processes that have so
far been considered in the literature. In the region ξ < x̄ < 1 the GPDs describe
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the emission of a quark from the nucleon with momentum fraction x̄ + ξ and
its reabsorption with x̄ − ξ. In the region −1 < x̄ < −ξ one has the emission
of an antiquark from the nucleon with momentum fraction −(x̄ + ξ) and its
reabsorption with −(x̄−ξ). In the third region −ξ < x̄ < ξ, however, the nucleon
emits a quark-antiquark pair. The three cases will be discussed separately firstly
focusing on the region ξ < x̄ < 1 (see Fig. 4.25). The last term in (2.35), going
with b†(w′) d†(w) and describing the absorption of a quark-antiquark pair, does
not contribute for ξ > 0.

4.4.1.1 the region ξ < x̄ < 1

The Fock state decomposition (2.24) of the hadronic states is the starting point forξ < x̄ < 1

the overlap representation of GPDs [120, 123, 124] 9. The matrix element Hq
λ′λ

defined in Eq. (4.50) is represented as a sum over contributions from separate
Fock states

Hq
λ′λ =

∑

N

Hq(N→N)
λ′λ . (4.70)

Using the properties of creation and annihilation operators of the “good” quark
LC field components – including their anti-commutation relations – one arrives
after a few steps at the overlap representation of the quark GPD in the region
ξ < x̄ < 1:

Hq(N→N)
λ′λ =

√
1− ξ

1−N√
1 + ξ

1−N ∑

β=β′

∑

j

δsjq

×
∫

[dx̄]N [d2p̄⊥]N δ (x̄− x̄j) Ψ∗λ
′

N,β′(r̂
′) Ψλ

N,β(r̃) , (4.71)

with ri = (xi,p⊥i) in the collective notation of Eq. (2.25), and sj (s′j) denoting
the flavour of the initial (final) active quark. The arguments r̃ (r̂′) of the LCWF
for the incoming (outgoing) proton are most easily found by considering the
momenta of the active and spectator partons in the “average” frame and applying
transverse boosts to appropriate hadron frames (cf. appendix C.3). This way
relations between r̃ (r̂′) and the integration variables x̄i and p̄⊥i are found in the
form

x̃i =
x̄i

1 + ξ
, p̃⊥i = p̄⊥i +

x̄i
1 + ξ

∆⊥
2

, for i 6= j ,

x̃j =
x̄j + ξ

1 + ξ
, p̃⊥j = p̄⊥j −

1− x̄j
1 + ξ

∆⊥
2

. (4.72)

and

x̂′i =
x̄i

1− ξ , p̂ ′⊥i = p̄⊥i −
x̄i

1− ξ
∆⊥
2

, for i 6= j ,

x̂′j =
x̄j − ξ
1− ξ , k̂

′
⊥j = k̄⊥j +

1− x̄j
1− ξ

∆⊥
2

, (4.73)

respectively. Summation of Eq. (4.71) over N leads to the full expression of Hq
λ′λ

in the region ξ < x̄ < 1.

9The presentation here is an excerpt of the derivation in the context of LC quantisation
worked out in [123] where many more details can be found.
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4.4.1.2 the region −1 < x̄ < −ξ

For active antiquarks the derivation of the overlap representation of the GPDs −1 < x̄ < −ξ
goes in full analogy to the one just indicated.

The final result for the region −1 < x̄ < −ξ is

Hq(N→N)
λ′λ = −

√
1− ξ

1−N√
1 + ξ

1−N ∑

β=β′

∑

j

δs̄jq

×
∫

[dx̄]N [d2p̄⊥]N δ (x̄+ x̄j) Ψ∗λ
′

N,β′(r̂
′) Ψλ

N,β(r̃) , (4.74)

with the LCWF arguments r̃ and r̂′ given by (4.72) and (4.73), respectively.

4.4.1.3 the region −ξ < x̄ < ξ

As mentioned above, only the case ξ > 0 is considered here. Therefore, the quark −ξ < x̄ < ξ

GPDs in this region describe the emission of a quark-antiquark pair from the
initial proton. In the Fock state decompositions of the initial and final protons
we thus have to consider only terms where the initial state has the same parton
content as the final state plus one additional quark-antiquark pair. We thus have

Hq
λ′λ =

∑

N

Hq(N+1→N−1)
λ′λ (4.75)

as opposed to (4.70). This particular type of overlap was recently identified in
[203] in the context of transition form factors between heavy and light mesons.
One arrives at the overlap representation of Hq

λ′λ in the region −ξ < x̄ < ξ for
the N + 1→ N − 1 transition:

Hq(N+1→N−1)
λ′λ =

√
1− ξ

2−N√
1 + ξ

−N ∑

β,β′

N+1∑

j,j′=1

1√
njnj′

δs̄j′sj δsjq δµj′−µj

×
N+1∏

i=1
i6=j,j′

δµ′iµi δs′isi

∫
dx̄j

N+1∏

i=1
i6=j,j′

dx̄i δ


1− ξ −

N+1∑

i=1
i6=j,j′

x̄i




×
∫

d2p̄⊥j

N+1∏

i=1
i6=j,j′

d2p̄⊥i (16π3)1−N δ(2)




∆⊥
2
−

N+1∑

i=1
i6=j,j′

p̄⊥i




× δ (x̄− x̄j) Ψ∗λ
′

N−1,β′(r̂
′) Ψλ

N+1,β(r̃) , (4.76)

The arguments r̃ and r̂′ of the wave functions are given in terms of x̄i and p̄⊥i by

x̃i =
x̄i

1 + ξ
, p̃⊥i = p̄⊥i +

x̄i
1 + ξ

∆⊥
2

, for i 6= j, j′ ,

x̃j =
x̄j + ξ

1 + ξ
, p̃⊥j = p̄⊥j −

1− x̄j
1 + ξ

∆⊥
2

,

x̃j′ = − x̄j − ξ
1 + ξ

, p̃⊥j′ = −p̄⊥j −
1 + x̄j
1 + ξ

∆⊥
2

, (4.77)
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and

x̂′i =
x̄i

1− ξ , p̂⊥′i = p̄⊥i −
x̄i

1− ξ
∆⊥
2

, for i 6= j, j′ . (4.78)

nj (nj′) in (4.76) is the number of (anti)quarks in the initial proton wave function
Ψλ
N+1,β(r) with the same discrete quantum numbers as the active (anti)quark

(cf. [123] for a discussion of the non-trivial statistical factors). As was to be
expected, the operator ψ̄qγ

+ψq in (4.50) projects out colour singlet qq̄ pairs with
total helicity zero in the initial proton LCWF.

4.4.1.4 interpretation of overlap formulas

Overlap representation formulas for polarised quark and antiquark GPDs, and forinterpretation of

GPDs the gluon GPDs – unpolarised and polarised – are to be found in [123]. Having
thus established the connection between GPDs and LCWFs in a Fock space
decomposition the interpretation of GPDs become evident. Unlike the ordinary
PDFs, the GPDs relate different parton configurations. Instead of being parton
densities the GPDs are amplitudes for a transition between different kinematical
situations, where a parton is kicked out from the initial hadron and reinserted
with a different momentum to form the final hadron with momentum different
from the one of the initial hadron.

In the central region −ξ < x̄ < ξ the GPD moreover relates initial and final
states not only different in their kinematics, but also with a different parton
content. A pair of partons – a quark-antiquark pair, or a pair of gluons – is taken
out from an N + 1 parton Fock state to form the final N − 1 parton Fock state.
The full GPDs are obtained by a summation over all Fock states. In this way
properties of moments of the full GPDs, i.e. for integrals over −1 < x̄ < 1, induce
constraints and relations between LCWFs with different parton content in the
Fock space representation.

Furthermore, the reduction formulas (4.62), (4.63) and (4.64) to (4.68) become
obvious in the overlap representation. In the forward limit ξ → 0, t→ 0 (implying
∆⊥ → 0) the central region −ξ < x̄ < ξ shrinks to zero and the shifts in the initial
and final parton momenta in Eqs. (4.72) and (4.73) vanish leading the modulus
squared of the LCWFs of Eq. (4.46). Thus, the N parton Fock state contribution
to the ordinary PDFs results, to be interpreted as probability density to find a
parton with certain momentum fraction x̄ inside an N parton Fock state of the
hadron under consideration.

Eq. (4.71) is a direct generalisation of the Drell-Yan formula of Eq. (4.30)generalisation of

the Drell-Yan

formula
for elastic form factors which is readily obtained by taking the ξ = 0 limit and
integrating over x̄.

4.4.2 orbital angular momentum

The 1988 observation by the EMC collaboration [204] that only a small fraction
(ca. 20-30 %) of the nucleon spin is explained by the quark and antiquark spins
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was confirmed in the meanwhile by several measurements at CERN, SLAC and
DESY [205, 206, 207]

∆Σ(5GeV2) ∼ 0.20± 0.08 . (4.79)

The rest of the nucleon spin is provided by the polarisation of the gluons and by
the orbital angular momentum of quarks and gluons

1

2
=

∆Σ(µ2)

2
+ L̂q(µ

2) + ∆Ĝ(µ2) + L̂g(µ
2) . (4.80)

First indications on the sign and size of the gluon polarisation have been seen orbital angular
momentum

of partons
(HERMES@DESY), and precision measurements are on the way (COMPASS@-
CERN, RHIC-spin@BNL, E-161@SLAC). X. Ji’s proposal [171] to access the
orbital angular momentum in DVCS initiated lively discussions and renewed the
interest in the concept of GPDs which had almost escaped notice before. The
proposal is based on a gauge-invariant decomposition of the angular momentum
operator

J q =
∫

d3x ψ† [γγ5 − (x×D)]ψ ,

Jg =
∫

d3x (x× (E ×B)) . (4.81)

Denoting the matrix element of the angular momentum operators as

Jq,g 2S = 〈P, S|Jq,g |P, S〉 (4.82)

it was argued that the total angular momentum is related to form factors of the
energy-momentum tensor A(t = 0) and B(t = 0) in the form

Jq,g =
1

2
(Aq,g(t = 0) + Bq,g(t = 0)) (4.83)

with

〈P ′|T µνq,g |P 〉 = Ū(P ′)
[
Aq,g(t) γ

(µP̄ ν) + Bq,g(t) P̄
(µiσν)α∆α/(2M)

+Cq,g(t) ∆(µ∆ν)/M
]
U(P ) (4.84)

where brackets denote symmetrisation of indices. The form factors A(t) and B(t)
in principle can be measured in non-forward reactions at small but finite values
of −t and are related to the first moment of GPDs by

∫ 1

−1
dx x (Hq,g(x, ξ, t) + Eq,g(x, ξ, t)) = Aq,g(t) + Bq,g(t) . (4.85)

A measurement of the t dependence might allow a subsequent extrapolation to
t = 0 and the desired information (cf. [208]).

Ji’s proposal has been criticised among others by Jaffe (see [209] and refer- partonic
interpretation

questionable
ences therein). Jaffe distinguishes between a properly defined ‘sum rule’, which
identifies the expectation value of a local operator in a certain nucleon state with
an integral over a distribution measured in an inelastic production involving the
same state, and an operator relation. According to this classification Ji’s ‘spin
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sum rule’ in fact is merely an operator relation: there are no parton represen-
tations for ∆Ĝ(x), L̂q, L̂g; and ∆Ĝ(x) is not the the integral of the helicity
weighted gluon distribution. There is however a sum rule for the contributions
to the nucleon’s angular momentum involving proper parton distributions (in LC
gauge)[210, 211, 212], but it appears that the respective distributions Lq(x) and
Lg(x) are not experimentally accessible 10.

While the proper access o the question of orbital angular momentum of par-
tons is still under debate it was realised however, that GPDs carry most valuable
information on hadron substructure of a different kind – though closely related
to the angular momentum. The t dependence of GPDs permits the investigation
of the absolute localisation of partons in the plane transverse to the direction of
hadron motion. The next subsection is devoted to this observation.

4.4.3 transverse localisation of partons

There are several observations indicating the kind of additional information onWhere are the
quarks

in the nucleon ?
hadron substructure carried by GPDs compared to the ordinary PDFs.

• It is directly obvious that GPDs carry information on transverse degrees of
freedom, since they depend on three variables, H(x, ξ, t), etc.: the momen-
tum transfer t = ∆2 in general has longitudinal 11 and transverse compo-
nents.

• The GPDs Eq(x, ξ, t) and Ẽq(x, ξ, t) describe hadron helicity flip matrix
elements where the quark helicity is conserved. These can be non-vanishing
only if quarks carry orbital angular momenta.

• Forward hadronic matrix elements are sensitive to distances on the light-
cone, i.e. the difference of the arguments (z − z′) of the parton field opera-
tors, which is the conjugate variable to the sum of incoming and outgoing
parton momenta (k′ + k) (with k = k′ in the forward case). Non-forward
matrix elements however, are also sensitive to the sum (z+ z ′) which is the
conjugate variable to (k′ − k) = P ′ − P = ∆. This gives principally access
to the overall location of partons[213]. Ralston, Buniy and Jain summarise
their observation as “Measurement of the ∆T dependence of amplitudes, by
Fourier transform, can be inverted to find the spatial b⊥ location of the par-
tons. The transverse structure is directly observable when amplitudes are
measured by interference.”

A more formal basis can be given to these generic observations. Burkardt
found out that for the special case ξ = 0 GPDs are Fourier transforms of PDFs
in transverse ‘impact parameter’ space

H(x, ξ = 0, t = −∆2
⊥) =

∫
d2b⊥ e

−i∆⊥·b⊥ f1(x, b⊥) (4.86)

10This quandary was summarised by Jaffe as “What can be interpreted cannot be measured,
what can be measured cannot be interpreted” (quoted from [209]).

11In an infinite momentum frame; otherwise the notion of longitudinal components is to be
replaced by plus LC components
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corresponding to

f1(x, b⊥) =
∫ d2∆⊥

(2π)2
H(x, ξ = 0,−∆2

⊥) eib⊥·∆⊥ . (4.87)

The impact parameter representation of GPDs was worked out by Diehl [214] for
the general case of ξ 6= 0 based on the overlap of LCWFs. Here the main results
of [214] are quoted for the unpolarised quark GPD.

Diehl noticed that due to Lorentz invariance the invariant momentum transfer
depends on the transverse components of proton momenta P and P ′ only through
the combination

D⊥ =
p′⊥

1− ξ −
p⊥

1 + ξ
. (4.88)

in the form

− t = −(p′ − p)2 =
4ξ2m2

1− ξ2
+ (1− ξ2)D2

⊥ . (4.89)

In the “average-frame” the relation D2
⊥ = ∆2

⊥/(1 − ξ2)2 holds. Thus, the ∆⊥-
dependence of the above considerations is replaced by a D⊥ dependence in the
following to avoid reference to a specific choice of transverse momenta P ⊥ and
P ′⊥.

With the phase convention for proton spinors given in [193] one has for the
matrix elements Hλ′λ of Eq. (4.50)

H++ = H−− = H − ξ2

1− ξ2
E ,

H−+ = −(H+−)∗ =
D1 + iD2

2m
E , (4.90)

and

H̃++ = −H̃−− = H̃ − ξ2

1− ξ2
Ẽ ,

H̃−+ = (H̃+−)∗ =
D1 + iD2

2m
ξẼ . (4.91)

With these preliminaries the matrix elements can now be transformed to trans-
verse impact parameter space, 12

I++(x̄, ξ, b̄⊥) =
∫ d2D⊥

(2π)2
e−iD⊥·b̄⊥H++(x̄, ξ,D⊥)

=
1

4π

∫ ∞

0
d(D2

⊥) J0

(
|D⊥||b̄⊥|

)(
H − ξ2

1− ξ2
E

)
,

I−+(x̄, ξ, b̄⊥) =
∫ d2D⊥

(2π)2
e−iD⊥·b̄⊥H−+(x, ξ,D⊥)

=
1

4π

b̄2 − ib̄1

|b̄⊥|
∫ ∞

0
d(D2

⊥) J1

(
|D⊥||b̄⊥|

) |D⊥|
2m

E , (4.92)

with analogous relations for the other helicity combinations.

12Note that the transformation is done for the two transverse dimensions only.
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The derivation of the overlap representation of GPDs in terms of LCWFsx̄ ∈ [ξ, 1]

as sketched in subsection 4.4.1 can be repeated this time in transverse impact
parameter space. The result in the DGLAP region x̄ ∈ [ξ, 1] is found in [193] as

Iλ′λ(x̄, ξ, b̄⊥) =
∑

N,β

√
1− ξ2

1−N ∑

j=q

∫
[dx̄]N [d2b̄⊥]N (4.93)

× δ(x̄− x̄j) δ(2)
(
b̄⊥ − b̄⊥j

)
ψ̃∗λ

′
Nβ (x̂i, b̄⊥i − b̂⊥0) ψ̃λNβ(x̃i, b̄⊥i − b̃⊥0)

with wave function arguments

x̃i =
x̄i

1 + ξ
, x̂i =

x̄i
1− ξ for i 6= j,

x̃j =
x̄j + ξ

1 + ξ
, x̂j =

x̄j − ξ
1− ξ , (4.94)

and transverse locations of the proton states

b̃⊥0 =
ξ

1 + ξ
b̄⊥j, b̂⊥0 = − ξ

1− ξ b̄⊥j. (4.95)

The label j denotes the struck parton and is summed over all quarks with appro-
priate flavour in a given Fock state, and the labels (N, β) are summed over the
corresponding Fock states. The representation in the DGLAP region x ∈ [−1,−ξ]
is obtained from (4.93) by reversing the overall sign, by changing δ(x− xj) into
δ(x+ xj), and by summing j over antiquarks.

The wave functions for definite transverse momentum or impact parameter
are related by

ψ̃λNβ(xi, b⊥i − b⊥) =
∫

[d2p⊥]N exp
[
i
N∑

i=1

p⊥i · b⊥i
]
ψλNβ(xi,p⊥i) ,

ψλNβ(xi,p⊥i − xiP⊥) =
∫

[d2b⊥]N exp
[
−i

N∑

i=1

p⊥i · b⊥i
]
ψ̃λNβ(xi, b⊥i) (4.96)

with b⊥=
∑N
i=1 xib⊥i and P⊥ =

∑N
i=1 p⊥i, and are normalised to

P λ
Nβ =

∫
[dx]N [d2p⊥]N

∣∣∣ψλNβ(xi,p⊥i)
∣∣∣
2

=
∫

[dx]N [d2b⊥]N
∣∣∣ψ̃λNβ(xi, b⊥i)

∣∣∣
2
, (4.97)

where P λ
Nβ is the probability to find the corresponding Fock state in the proton,

so that in total
∑
N,β P

λ
Nβ = 1. The shorthand notation

[d2b⊥]N = (4π)N−1
N∏

i=1

d2b⊥i δ
(2)
( N∑

i=1

xib⊥i
)
, (4.98)

is used for the N -parton impact parameter integration element.
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In the ERBL region x̄ ∈ [−ξ, ξ] Diehl finds x̄ ∈ [−ξ, ξ]

Iλ′λ(x̄, ξ, b̄⊥) =
∑

N,β,β′

√
1− ξ

2−N√
1 + ξ

−N ∑

j,j′

1√
njnj′

(4.99)

×
∫

dx̄j
∏

i6=j,j′
dx̄i δ

(
1− ξ −

∑

i6=j,j′
x̄i
)

× (4π)N−1
∫

d2b̄⊥j
∏

i6=j,j′
d2b̄⊥i δ

(2)
(
ξb̄⊥j +

∑

i6=j,j′
xib̄⊥i

)

× δ(x̄− x̄j) δ(2)
(
b̄⊥ − b̄⊥j

)
ψ̃∗λ

′
N−1, β′(x̂i, b̄⊥i − b̂⊥0) ψ̃λN+1, β(x̃i, b̄⊥i − b̃⊥0)

with b̃⊥0 and b̂⊥0 as in (4.95) and

x̃i =
x̄i

1 + ξ
, x̂i =

x̄i
1− ξ for i 6= j, j′,

x̃j =
ξ + x̄j
1 + ξ

, x̃j′ =
ξ − x̄j
1 + ξ

. (4.100)

The partons j, j ′ are the ones emitted from the initial proton, and in (4.99) one
has to sum over all quarks j and antiquarks j ′ with opposite helicities, opposite
colour, and appropriate flavour in the initial state proton, over all Fock states
(N+1, β) containing such a qq̄ pair, and over all Fock states (N−1, β ′) of the final
state proton with matching quantum numbers for the spectator partons i 6= j, j ′.
The statistical factors nj (nj′) give the number of (anti)quarks in the Fock state
(N+1, β) that have the same discrete quantum numbers as the (anti)quark pulled
out of the target (see [123, 214] for a discussion of the statistical factors).

A few words are in order here for a geometrical interpretation of the results.
Inside a proton in a N parton Fock state described by (4.96) the parton i is
transversely localised at b⊥i. The wave function ψ̃Nβ depends only on its position
relative to the centre b⊥ of the proton, where the constraint

b⊥ =
N∑

i=1

xib⊥i (4.101)

identifies b⊥ as the transverse centre of momentum [216] of the partons in each
separate Fock state (Nβ). Note that each parton i contributes to the transverse
centre of momentum not just by its impact parameter, but additionally weighted
with the momentum fraction xi.

13

The geometrical situation for the matrix element I(x̄, ξ = 0, b̄⊥) in the
DGLAP region is indicated in Fig. 4.26, where the initial and final proton is
depicted as a Lorentz contracted ‘pancake’, and the active parton as wave pack-
ets with transverse extension ∼ 1/Q. The e3 axis is chosen to coincide with the
transverse centres of proton momenta.

In the case of a non-vanishing change of momentum fraction ξ 6= 0 the trans-
verse centres of momenta are shifted resulting from the different weights the active

13In [193] the analogy to the centre of mass
∑
miri/

∑
mi is drawn.
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Figure 4.26: Redrawing of Fig. 1 in [215] with x̄ = 0.4 and ξ = 0.

parton brings into the sum
∑
xib⊥i before and after the scattering. The shifts in

transverse direction out of the e3 axis are given by Eqs. (4.95). The geometrical
situation is indicated in Fig. 4.27 for the example of x = 0.4 and ξ = 0.3.

The analogy of transverse parton localisations via GPD to optical imaging pro-
cedures was noticed by Ralston and Pire [217], who speak about the “. . . femto-
photography of the interior structure of the proton”. In [217] and also recently
in [218] the analogy with holograms was stressed, where in the case of imaging
the nucleon the real Bethe-Heitler amplitude serves as ‘reference beam’ to the
complex DVCS amplitude which carries the detailed information on the nucleon
substructure.
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ξ = 0.3
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Figure 4.27: Redrawing of Fig. 1 in [213] combined with the generalisation to ξ 6= 0
derived by Diehl [214] (cf. Fig. 1 in [214]) for the example of x = 0.4 and ξ = 0.3. The
modulus of longitudinal proton momenta is indicated by the length of arrows.

4.5 summary

In this chapter it was argued by a number of examples discussed on a phe-
nomenological level that the soft overlap contributions (also denoted as Feynman
or handbag mechanism) play a significant, in many cases dominant rôle in the
description of exclusive processes at intermediate momentum transfers of a few
GeV, where data are available (or will become available soon). Since the con-
tributions are calculated from overlap integrals of (soft) LCWFs shifted in their
transverse momentum arguments, it is the a priori unknown transverse momen-
tum dependence of the (soft) wave functions which is tested in these processes 14.
In particular, the case of WACS is instructive, where the recent measurement
of the ALL helicity correlation seems to confirm the dominance of the handbag
contribution and reveals a behaviour typical for the Compton scattering on a
single quark line.

Hard exclusive processes in the kinematical regime of deeply virtual photons
are described by a factorisation of the dominant diagrams into hard perturbative
partonic subprocesses and soft parts represented by generalised parton distribu-
tions. GPDs are very powerful tools for the exploration of hadronic substructure,
since they link plenty of hard inclusive and exclusive processes and quantities:

14The Drell-Yan formula provides an exact relation between the full LCWFs and the elastic
FFs.
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(elastic) FFs, handbag contributions to wide angle CS and meson production,
(semi-)inclusive DIS involving ordinary PDFs (i.e. GPDs in the forward limit),
deeply virtual CS and meson production, to name but a few.

One of the main motivations to consider GPDs was the possible access to the
orbital angular momentum of partons contributing to the nucleon spin. While this
point is still under debate with respect to the correct interpretation of measurable
quantities (or at least quantities which might be extractable by extrapolation to
kinematical limits) in the context of the parton model, it was realised the GPDs
carry more profound and general information. The representation of GPDs as
overlap integrals of LCWFs reveals this information most clearly when trans-
formed to impact parameter space [219, 215, 213, 214]. The dependence of GPDs
on the transverse components of the external momentum transfer provides access
to the absolute position of partons in transverse impact parameter space. This is
peculiar to non-forward processes, since forward processes from general principles
are sensitive only to relative distances, never to absolute localisations. A gen-
eralisation from the special case of vanishing change of longitudinal momentum
fractions ξ = 0 during the process to the general ξ 6= 0 situation reveals an in-
tricate relation between longitudinal momentum fractions and transverse impact
parameter space localisations., or transverse momentum distributions, which are
conjugate variables.
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Conclusions and
outlook

The present report addresses the rôle of intrinsic transverse momentum in the
phenomenology of hard (semi-)inclusive and exclusive reactions. As was argued
these effects beyond the parton model are of great importance in the investigation
of hadronic substructure. For the understanding of reaction mechanisms and
the dominant contributions to many observable quantities the effect of intrinsic
transverse momenta is a key ingredient.

(semi-)inclusive processes Observables sensitive to intrinsic transverse mo-
menta play a key rôle in unravelling the partonic spin contributions to the
nucleon spin. In particular the azimuthal angular dependencies of single
spin asymmetries allow access to the hitherto unknown transversity distri-
bution function, which completes the leading order picture of quark spin.
These findings are summarised in section 3.5.

exclusive processes Intrinsic transverse momentum effects manifest themselves
in different ways in the kinematical regions of large momentum transfer and
of processes initiated by a deeply virtual photon:

• Many wide angle exclusive processes at intermediate momentum trans-
fer probe the intrinsic transverse momentum dependence of LCWFs,
since significant – and in many cases dominant – contributions can be
assigned to overlap integrals of the wave functions, which are shifted
in the transverse momentum arguments. The relative importance of
partonic transverse momentum effects is strongly enhanced in large
|t| exclusive processes, since transverse momenta have to be compared
to the relevant longitudinal scales which become small in kinematical
end-point regions.

• Consideration of deeply virtual CS and meson production has lead to
the introduction of GPDs, which provide a uniform concept and thus

133
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link many inclusive and exclusive quantities. Furthermore, GPDs pro-
vide access to the overall localisation of partons in transverse impact
parameter space. The key to this most valuable information on hadron
substructure is the dependence on transverse components of momen-
tum transfer.

These findings are summarised in section 4.5.

In the present report the rôle and importance of intrinsic transverse mo-
mentum effects has been discussed mainly from phenomenological perspective.
Many more formal aspects have still been not clarified or not even addressed
in a satisfactory way. As an example at the end of chapter 3 the interplay of
partonic transverse momenta and evolution effects of ordinary PDFs has been
briefly sketched. It is this interweaving of perturbative radiative effects and non-
perturbative intrinsic partonic properties which makes a proper treatment of the
evolution of unintegrated PDFs so difficult, an issue still in its infancy.

Even more problematic, from a principal perspective, the notion of intrinsic
transverse momenta carries subtle ambiguities in itself. By the definition of the
covariant derivative Dµ = ∂µ + i gs(λa/2)Aµ

a (λa being the Gell-Mann matrices)
the transverse components of the partial derivative, or transverse moments as
their conjugate variables, are related to transverse degrees of the gauge field.
Since transverse components of the gluon fields are the “good” LC components
representing independent dynamical degrees of freedom, transverse momentum
effects can be rephrased in terms of additional gluon quanta by means of the
equations of motion. For the case of totally inclusive DIS Ellis, Furmanski and
Petronzio (EFP) [222] have shown strict equivalence of a field theoretic approach
to the operator product expansion. In the course of the proof they introduced
the so-called transverse operator basis – as opposed to the collinear operator
basis advocated by Politzer and implemented by Jaffe and Soldate, where off-
shellness and transverse momenta are generated dynamically by interaction of
partons. In the transverse operator basis however off-shellness is eliminated using
the equations of motions, but the transverse momentum is retained.

The interpretation of transverse momenta in the present report is done in the
spirit of the EFP transverse operator basis. One has to be aware that only with
this special choice the formal definitions of field theoretical quantities parallel
so closely our figurative imagination of transverse momenta of partons inside a
compound. This freedom of choice is nothing to be worried about, since it is
about the partonic interpretation of effects only. Physical observables in the end
are independent of any arbitrary choices, as it should be. We are all used to the
fact that the intuitive partonic interpretation of integrated PDFs strictly hold
only in a physical, LC gauge and an infinite momentum frame. 1 What worries
more, is the question whether the ideas on the transverse momenta developed for
inclusive DIS can be taken over unchanged to semi-inclusive reactions, and in par-
ticular to observables which depend explicitely on external transverse momentum
components.

1 Alternatively, one can relax the restriction to the infinite momentum frame, when working
in LC quantisation and considering only “good” LC components of the fields.



. . . AND OUTLOOK 135

Also for the case of hard exclusive reactions there has been an attempt to find
a clear field theoretical definition of transverse momentum effects starting from
the consideration of the pion gamma transition form factor [155]. The subject
still is not settled on a satisfactory level and certainly needs further investigations.

The eminent importance of intrinsic transverse momentum effects in the phe-
nomenology of hard inclusive and exclusive reactions underlines the needs for
further theoretical progress on the subject – as was demonstrated in the present
report. The communities working in the field of hadron physics in the US and
in Europe currently undergo a crucial phase of self-organisation. Proposals for
future accelerators and dedicated experiments – as ELFE@TESLA, EVELINE
or TESLA-N in Europe, or an JLAB upgrade to an energy of 24 GeV, EIC at
Brookhaven in the US – are discussed and worked out in detail. Current hot top-
ics in hadron physics have been identified as the determination of the transversity
distribution and the localisation of partons via generalised parton distributions
(see for instance [223, 224] or [225]). To both topics the understanding of trans-
verse momentum effects is an absolutely crucial ingredient. Great opportunities
to improve and refine our knowledge of hadron substructure have openend up.
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A

Dirac matrices
in chiral (Weyl)

representation

Dirac matrices: (Weyl or chiral representation) One writes the representation of
Dirac matrices compactly in the “bispinor” notation [15]. If (σ1, σ2, σ3) and
(ρ1, ρ2, ρ3) are two copies of the standard 2 × 2 Pauli matrices, any 4 × 4 Dirac
matrix can be represented as ρi ⊗ σj.

The chiral (Weyl) representation is defined by

γ0 = ρ1 ⊗ 1 =

(
0 1
1 0

)
; ~γ = −iρ2 ⊗ ~σ =

(
0 −~σ
~σ 0

)
; (A.1)

and

γ5 = ρ3 ⊗ 1 = i γ0γ1γ2γ3 =

(
1 0
0 −1

)
. (A.2)

A commonly used basis for the space of all 4× 4 matrices are the 16 independent
matrices

1, γ5, γµ, γµγ5, σµν (A.3)

in terms of which any matrix M can be decomposed as1

M =
Tr [M 1]

4
1 +

Tr [M γ5]

4
γ5

+
Tr [M γµ]

4
γµ −

Tr [M γ5γ
µ]

4
γ5γµ +

Tr [M σµν ]

2 · 4 σµν (A.4)

1note the minus sign of the 4th term and the extra factor 1/2 in the last term to avoid
double counting in the summation over µ and ν.
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138 A. DIRAC MATRICES . . .

Instead one can use the alternative basis

γ+, γ+γ5, i σi+γ5,

1, γi, i γ5, γiγ5, i σijγ5, i σ+−γ5,

γ−, γ−γ5, i σi−γ5 (A.5)

(where now i, j are purely transverse indices, i.e., i, j ∈ {1, 2})
leading to the decomposition2

M =
Tr[M γ+]

4
γ− − Tr[M γ+γ5]

4
γ−γ5 +

Tr[M iσi+γ5]

4
i σi−γ5

+
Tr[M 1]

4
1 − Tr[M γi]

4
γi − Tr[M iγ5]

4
i γ5 +

Tr[M γiγ5]

4
γiγ5

− Tr[M iσijγ5]

2 · 4 i σijγ5 −
Tr[M iσ+−γ5]

4
i σ−+γ5

+
Tr[M γ−]

4
γ+ − Tr[M γ−γ5]

4
γ+γ5 +

Tr[M iσi−γ5]

4
i σi+γ5 (A.6)

Below I list all matrices of the basis (A.5) multiplied from the left by γ0,
since this is the form relevant for a classification of bilocal quark field operators
ψ(z1)Aψ(z2) according to powers of 1/Q and their chiral properties by a simple
comparison with the generic pattern given in (2.45). The “effective twist” and
chirality of ψ(z1)Aψ(z2) with A ∈ basis (A.5) is indicated, as well.

effective twist 2:

(
γ0 γ+

)
=
√

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




φ†RφR + φ†LφL
chiral even, eff. twist 2

(A.7)

(
γ0 γ+ γ5

)
=
√

2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1




φ†RφR − φ†LφL
chiral even, eff. twist 2

(A.8)

(
γ0 i σ1+ γ5

)
=
√

2




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




φ†LφR + φ†RφL
chiral odd, eff. twist 2

(A.9)

(
γ0 i σ2+ γ5

)
= i
√

2




0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0




−φ†LφR + φ†RφL
chiral odd, eff. twist 2

(A.10)

2again note signs and factors.
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effective twist 3:

(
γ0 1

)
=




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




χ†LφR + φ†LχR + φ†RχL + χ†RφL
chiral odd, eff. twist 3

(A.11)

(
γ0 γ1

)
=




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0




χ†RφR + φ†RχR − φ†LχL − χ†LφL
chiral even, eff. twist 3

(A.12)

(
γ0 γ2

)
= i




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




−χ†RφR + φ†RχR + φ†LχL − χ†LφL
chiral even, eff. twist 3

(A.13)

(
γ0 i γ5

)
= i




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




−χ†LφR − φ†LχR + φ†RχL + χ†RφL
chiral odd, eff. twist 3

(A.14)

(
γ0 γ1 γ5

)
=




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




χ†RφR + φ†RχR + φ†LχL + χ†LφL
chiral even, eff. twist 3

(A.15)

(
γ0 γ2 γ5

)
= i




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




−χ†RφR + φ†RχR + φ†LχL + χ†LφL
chiral even, eff. twist 3

(A.16)

(
γ0 i σ12 γ5

)
= i




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




−χ†LφR + φ†LχR + φ†RχL − χ†RφL
chiral odd, eff. twist 3

(A.17)

(
γ0 i σ+− γ5

)
=




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0




χ†LφR − φ†LχR + φ†RχL − χ†RφL
chiral odd, eff. twist 3

(A.18)
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effective twist 4:

(
γ0 γ−

)
=
√

2




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




χ†RχR + χ†LχL
chiral even, eff. twist 4

(A.19)

(
γ0 γ− γ5

)
=
√

2




0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0




χ†RχR − χ†LχL
chiral even, eff. twist 4

(A.20)

(
γ0 i σ1− γ5

)
=
√

2




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0




χ†LχR + χ†RχL
chiral odd, eff. twist 4

(A.21)

(
γ0 i σ2− γ5

)
= i
√

2




0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0




χ†LχR − χ†RχL
chiral odd, eff. twist 4

(A.22)



B

Sudakov factor

The Sudakov function in impact parameter space s(ξ, b, Q) was derived by Collins
and Soper in a paper on e+e− → jets [66], and ported to exclusive reactions by
Botts, Sterman and Li [110, 111, 112]. Expressed in the variables

q̂ ≡ ln
(
ξQ/
√

2ΛQCD

)
, b̂ ≡ ln (1/bΛQCD) (B.1)

it is given in [111, 112] by

s(ξ, b, Q) =
2A(1)

β0

q̂ ln

(
q̂

b̂

)
− 2A(1)

β0

(
q̂ − b̂

)
+

4A(2)

β2
0

(
q̂

b̂
− 1

)

− c1
A(1)β1

4β3
0

q̂

[
ln(2b̂) + 1

b̂
− ln(2q̂) + 1

q̂

]

−
(

4A(2)

β2
0

− c2
A(1)

β0

ln

(
e2γ−1

2

))
ln

(
q̂

−b̂

)

− c3
A(1)β1

8β3
0

[
ln2(2q̂)− ln2(−2b̂)

]
(B.2)

with

β0 ≡ 11− 2

3
nf , β1 ≡ 102− 38

3
nf , (B.3)

and

A(1) ≡ 4

3
, A(2) ≡ 67

9
− π2

3
− 10

27
nf +

2β0

3
ln
(
eγ

2

)
, (B.4)

where γ is the Euler constant. Note that in [111, 112] a different convention for
the β-function was used with

βLS1 =
β0

4
, βLS2 =

β1

16
. (B.5)

In Eq. (B.2) factors c1 = c2 = c3 = 1 have been inserted to indicate corrections
found later. In fact, Bolz [147] derived (see also [117])

c1 = −4 , c3 = 4 , (B.6)
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142 B. SUDAKOV FACTOR

which was confirmed by Li [226] 1 Stefanis, Schroers and Kim rederived the
Sudakov function and found a further correction amounting to

c2 =
1

2
. (B.7)

As in the original derivation by Collins and Soper [66] also Stefanis, Schroers and
Kim [141] kept explicitely scheme constants C1 and C2 related to the ambiguity
introduced by the (arbitrary) choice of a factorisation scheme. With the choices

CCS
1 = CSSK

1 = 1 , CCS
2 =

√
2CSSK

2 = 1 (B.8)

Eq. (B.2) is obtained.

1In the appendix of [226] a complete expression for the function s(ξ, b,Q) including leading
and next-to-leading logarithms can be found. The additional terms are negligible for numerical
studies.



C

Reference frames for
elastic FFs and CS

Various frames of reference for elastic form factors, wide angle Compton scattering
and deeply virtual Compton scattering are compiled in this Appendix.

In particular, for the exclusive processes at large momentum transfer, frames
in which the momentum transfer has a vanishing LC plus component play a special
rôle. The evaluation of overlap contributions of LCWFs requires some care. An
example is the Drell-Yan overlap formula [122] of the elastic form factor, for which
Isgur and Llewellyn Smith [103] observed that different results are obtained in
different reference frames. Sawicki [227] has shown the origin of this discrepancy:
in certain reference frames there are overlap contributions which are not contained
in the Drell-Yan formula; when they are taken into account Lorentz invariance is
restored. Recently, the formalism of generalised parton distributions has allowed
a more detailed understanding how this can be achieved [120, 123]. However, for
an explicite treatment knowledge of higher Fock states of the hadrons is necessary.
Thus, for practical model calculations it is preferable to use frames of reference
where the momentum transfer has zero LC plus component.

Secondly, the arguments in the LCWFs are given by the LC fraction (ratio of
LC plus-components of parton/hadron momentum), and by the parton transverse
momenta (relative to the momentum of the parent hadron). The arguments of
the LCWFs are most easily identified in a frame, where the parent hadron has
no transverse momentum.
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144 C. REFERENCE FRAMES . . .

C.1 elastic FF, different reference frames

The elastic nucleon form factor will be considered, i.e. the (sub)process

γ?(~q) +N(~P )→ N(~P ′).

C.1.1 “Breit-brick wall”

The condition of zero energy transfer defines a class of reference frames known as
“Breit frames”. One more condition is to be chosen to completely fix the frame;
here a purely longitudinal momentum transfer is chosen.

scattering plane:

~z

~x

~P

~P ′ = ~P + ~q

~q

define lightlike vectors:

vµ = [ 1 , 0 , 0⊥ ]

v ′µ = [ 0 , 1 , 0⊥ ] (C.1)

P = P + v + P − v ′ + P⊥

P ′ = P ′+ v + P ′ − v ′ + P ′⊥ (C.2)

In this frame qµ is purely longitudinal, i.e.

P⊥ = P ′⊥ = q⊥ = 0 (C.3)

and

P ′ 0 = P 0 (Breit frame)

P ′ 3 = −P 3 (choice of frame)

}
=⇒ q+ = P ′+ − P + = −

√
2P 3 6= 0

(C.4)
• The LC components of the involved external vectors are

P µ =

[
Q√

2
, 0 , 0⊥

]
, P ′µ =

[
0 ,

Q√
2
, 0⊥

]
,

qµ = P ′µ − P µ =

[
− Q√

2
,
Q√

2
, 0⊥

]
. (C.5)

• Parton momenta in the “Breit-brick wall” frame read

pµi =

[
xi P

+ ,
p2
i + p 2

⊥i
2xi P +

, p⊥i

]
, p ′µi =

[
x ′i P

+ ,
p ′2i + p ′ 2⊥i
2x ′i P +

, p ′⊥i

]
.

(C.6)
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C.1.2 “Breit-symmetric”

For the evaluation of overlap contributions a Breit frame combined with a sym-
metric choice of the z-direction leading to a purely transverse momentum transfer
is more suitable.

scattering plane:

~z

~x

~P ~P ′ = ~P + ~q

~q

define lightlike vectors:

vµ = [ 1 , 0 , 0⊥ ]

v ′µ = [ 0 , 1 , 0⊥ ] (C.7)

P = P + v + P − v ′ + P⊥

P ′ = P ′+ v + P ′ − v ′ + P ′⊥ (C.8)

In this frame the plus-component of the momentum of the incoming proton
is not changed in the process, i.e. qµ is purely transverse

P ′ 0 = P 0 (Breit frame)

P ′ 3 = P 3 (choice of frame)

}
=⇒ q+ = P ′+ − P + = 0 (C.9)

and for the transverse components we have

P⊥ = −P ′⊥ = −q⊥
2
. (C.10)

• The LC components of the involved external vectors are

P µ =

[
P + ,

M2 + q 2
⊥/4

2P +
, −q⊥

2

]
, P ′µ =

[
P + ,

M2 + q 2
⊥/4

2P +
,
q⊥
2

]
,

qµ = P ′µ − P µ = [ 0 , 0 , q⊥ ] . (C.11)

• Parton momenta in the “Breit-symmetric” frame read

pµi =

[
xi P

+ ,
p2
i + p 2

⊥i
2xi P +

, p⊥i

]
, p ′µi =

[
x ′i P

+ ,
p ′2i + p ′ 2⊥i
2x ′i P +

, p ′⊥i

]
.

(C.12)
• The spectator condition for the Feynman (soft overlap) contribution in the
“Breit-symmetric” frame takes the form

p ′i = pi for i 6= j =⇒ x ′i = xi ; p ′⊥i = p⊥i (C.13)

and for the active quark one finds

p ′j = pj + q =⇒ x ′j = xj ; p ′⊥j = p⊥j + q⊥ . (C.14)

Those relations hold exactly without any approximations.
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C.1.3 “hadron-in” frame

Utilising the transformation (2.9) one can obtain a frame in which the incom-
ing nucleon has no transverse momentum and we can most easily identify the
arguments of its LC wave function, but in which qµ still has a vanishing plus-
component and the LC fractions x and x ′ are the same
(quantities in this frame are denoted with a “tilde”).

With the choice b⊥ = − q⊥/2 and b+ = P + the transformation (2.9) leads to

P µ −→ P̃ µ =

[
P + ,

M2

2P +
, 0⊥

]
(C.15)

pµi −→ p̃µi =


 xi P

+ ,
p 2
i + (p⊥i + xi q⊥/2)2

2xi P +
, p⊥i + xi q⊥/2︸ ︷︷ ︸

= p̃⊥i




The arguments of the incoming proton LC wave function are Ψin(xi, p̃⊥i).

C.1.4 “hadron-out” frame

Similarly, a frame where the outgoing nucleon has no transverse momentum serves
to identify the kinematical arguments of its LCWF
(quantities are denote with a “hat”).

With the choice b⊥ = q⊥/2 and b+ = P + the transformation (2.9) leads to

P ′µ −→ P̂ ′µ =

[
P + ,

M2

2P +
, 0⊥

]
(C.16)

p ′µi −→ p̂ ′µi =


 x

′
i P

+ ,
p ′ 2i + (p ′⊥i − x ′i q⊥/2)2

2x ′i P +
, p ′⊥i − x ′i q⊥/2︸ ︷︷ ︸

= p̂ ′⊥i




The arguments of the outgoing proton LC wave function are Ψout(x ′i , p̂
′
⊥i).

C.1.5 arguments of Ψout in terms of

“hadron-in” quantities

• momentum fractions:
Expressing the arguments of the LC wave function of the outgoing nucleon in
terms of “hadron-in” frame quantities thereby using the relations for the spectator
partons (C.13) and for the active parton (C.14) leads to

xi = x̃i = x̂i = x ′i = x̃ ′i = x̂ ′i (C.17)

the fractions are neither changed by the process nor by the transformation (2.9);
that’s just how the frames were chosen!
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• transverse parton momenta:
For the transverse parton momenta in the outgoing nucleon expressed in terms
of “hadron-in” frame quantities one finds (the “primes” on the fractions are now
left out)

p̂ ′⊥i
(C.16)

= p ′⊥i − xi
q⊥
2

(C.18)





(C.13)
= p⊥i − xiq⊥2

(C.15)
= p̃⊥i − xi q⊥ i 6= j

(C.14)
= p⊥j + q⊥ − xj q⊥2

(C.15)
= p̃⊥j + (1− xj) q⊥ active

To obtain the above relation one has to

• identify the transverse momenta of the partons in the outgoing nucleon in
the “hadron-out” frame to be p̂ ′⊥i

• express them in terms of “Breit-symmetric” quantities p ′⊥i by (C.16)

• use relations for spectator(C.13)/active parton(s)(C.14) to relate them with
p⊥i and p⊥j, respectively

• and finally, express the results in terms of the transverse parton momenta
of the incoming nucleon in the “hadron-in” frame p̃⊥i and p̃⊥j (C.15).

The above relations are exact; no approximations where made, i.e. the ratios
M2/(−t) and p 2

⊥/(−t), or p 2
i /(−t) are not neglected !

C.1.6 scheme of different reference frames

The “in/hadron-out” frames are related to the “Breit-symmetric” frame by trans-
verse boosts (2.9) which leave the LC plus-components unchanged. The following
scheme may help to visualise the relations between the different coordinate sys-
tems:

“Breit-symmetric”

transf.(2.9)

b⊥ = −q⊥/2; b+ = P +

transf.(2.9)

b⊥ = q⊥/2; b+ = P +

“hadron-in” “hadron-out”
transformation(2.9)

b⊥ = ∆⊥; b+ = P +
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C.2 RCS, different reference frames

Real Compton scattering (RCS) on a nucleon will be considered, i.e., the process

γ(~q) +N( ~P )→ γ(~q′) +N(~P ′).

C.2.1 “CMS-symmetric”

A centre of mass system (CMS) with the choice of the z-direction as the symme-
try axis of the process is a convenient frame for the description of RCS.

scattering plane:

~z

~x

~P ~P ′ = ~P + ~q

~q~q ′ = ~q −~∆

ϑ

define lightlike vectors:

vµ = [ 1 , 0 , 0⊥ ]

v ′µ = [ 0 , 1 , 0⊥ ] (C.19)

P = P + v + P − v ′ + P⊥

P ′ = P ′+ v + P ′ − v ′ + P ′⊥ (C.20)

In this frame the LC plus-component of the momentum of the incoming nu-
cleon is not changed in the process

P ′ 0 = P 0 (elastic scattering)

P ′ 3 = P 3 (choice of frame)

}
=⇒ ∆+ = P ′+ − P + = 0 (C.21)

and for the transverse components we have

P⊥ = −P ′⊥ = −∆⊥
2

(C.22)

• The LC components of the involved external vectors are

P µ =

[
P + ,

M2 + ∆ 2
⊥/4

2P +
, −∆⊥

2

]
P ′µ =

[
P + ,

M2 + ∆ 2
⊥/4

2P +
,

∆⊥
2

]

q µ =

[
q+ ,

∆ 2
⊥/4

2 q+
,

∆⊥
2

]
q ′µ =

[
q+ ,

∆ 2
⊥/4

2 q+
, −∆⊥

2

]

∆µ = P ′µ − P µ = qµ − q ′µ = [ 0 , 0 , ∆⊥ ] . (C.23)

with q+ = (W/
√

2) − P + and W 2 = (P + q)2; the explicit form of q+ is ugly,
fortunately, it is not needed !

• Parton momenta in the “CMS-symmetric” are

pµi =

[
xi P

+ ,
p2
i + p 2

⊥i
2xi P +

, p⊥i

]
p ′µi =

[
x ′i P

+ ,
p ′2i + p ′ 2⊥i
2x ′i P +

, p ′⊥i

]
. (C.24)
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Note: (p⊥i)y are small; but (p⊥i)x are close to xi|∆⊥|.

• The spectator condition for the Feynman (overlap) contribution in the
“CMS-symmetric” frame reads

p ′i = pi for i 6= j =⇒ x ′i = xi ; p ′⊥i = p⊥i (C.25)

and for the active parton we find

p ′j = pj + ∆ =⇒ x ′j = xj ; p ′⊥j = p⊥j + ∆⊥ (C.26)

Those relations hold exactly; no approximations are made yet.

C.2.2 scheme of different reference frames

By a rotation about −ϑ/2 (ϑ/2) in the scattering plane the “CMS-symmetric”

frame can be transformed in a CMS-frame where ~P (~P ′) has no transverse com-
ponents. Those rotations change the fractions x, x ′ and, obviously, the transverse
momenta of the partons.

Applying transverse boosts (2.9) instead also results in frames where ~P (~P ′)
has no transverse components, but the LC plus-components are left unchanged.
In lack of better names, we call the resulting frames “hadron-in/out” systems.

The following scheme may help to visualise the relations between the different
coordinate systems:

“CMS-symmetric”

transf.(2.9)

b⊥ = −∆⊥/2; b+ = P +

transf.(2.9)

b⊥ = ∆⊥/2; b+ = P +

“hadron-in” “hadron-out”
transformation(2.9)

b⊥ = ∆⊥; b+ = P +

“CMS-in”
rotation

−ϑ/2
“CMS-out”

rotation

ϑ/2
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C.2.3 “hadron-in frame”

Utilising the transformation (2.9) one can obtain a frame where the incoming
proton has no transverse momentum (quantities in this frame are denoted with
a “tilde”). This is a convenient frame to read off the arguments of the light-cone

wave function of the incoming proton, i.e., Ψin(x̃i,
~̃ki⊥).

• Starting from the “CMS-symmetric” we get to a (non CMS) hadron-in frame
with the help of the transformation (2.9). ∆µ still has a vanishing LC plus-
component and the LC fractions x and x ′ have the same values as in the CMS-
symmetric.

With the choice b⊥ = −∆⊥/2 and b+ = P + the transformation (2.9) leads to

P µ =

[
P + ,

M2 + ∆ 2
⊥/4

2P +
, −∆⊥

2

]
−→ P̃ µ =

[
P + ,

M2

2P +
, ~0⊥

]

(C.27)

P ′µ =

[
P + ,

M2 + ∆ 2
⊥/4

2P +
,

∆⊥
2

]
−→ P̃ ′µ =

[
P + ,

M2 + ∆ 2
⊥

2P +
, ∆⊥

]

(C.28)
and

∆µ = [ 0 , 0 , ∆⊥ ] −→ ∆̃µ =

[
0 , − ∆ 2

⊥
2P +

, ∆⊥

]
. (C.29)

• For the partons inside the incoming nucleon one finds

pµi =

[
xi P

+ ,
p 2
i + p 2

⊥i
2xi P +

, p⊥i

]
−→

p̃µi =


 xi P

+ ,
p 2
i + (p⊥i + xi ∆⊥/2)2

2xi P +
, p⊥i + xi ∆⊥/2︸ ︷︷ ︸

= p̃⊥i


 (C.30)

In the “hadron-in” frame p̃⊥i = p⊥i + xi ∆⊥/2 is small compared to xi P
+.

• The parton momenta in the outgoing nucleon are

p ′µi =

[
x ′i P

+ ,
p ′ 2i + p ′ 2⊥i
2x ′i P +

, p ′⊥i

]
−→

p̃ ′µi =

[
x ′i P

+ ,
p ′ 2i + (p ′⊥i + x ′i ∆⊥/2)2

2x ′i P +
, p ′⊥i + x ′i ∆⊥/2

]
. (C.31)

The transverse part of the momenta of the partons in the outgoing nucleon, p̃ ′⊥i
are not small, but close to xi ∆⊥ !

C.2.4 “hadron-out” frame

A frame where the outgoing nucleon has no transverse momentum (quantities in
this frame are denoted with a “hat”) is convenient to read off the arguments of
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the LC wave function of the outgoing nucleon, i.e., Ψout(x̂ ′i , p̂
′
⊥i).

• With the choice b⊥ = ∆⊥/2 and b+ = P + one obtains

P ′µ =

[
P + ,

M2 + ∆ 2
⊥/4

2P +
,

∆⊥
2

]
−→ P̂ ′µ =

[
P + ,

M2

2P +
, ~0⊥

]

(C.32)
and

∆µ = [ 0 , 0 , ∆⊥ ] −→ ∆̂µ =

[
0 ,

∆ 2
⊥

2P +
, ∆⊥

]
. (C.33)

• For the partons in the outgoing nucleon one finds

p ′µi =

[
x ′i P

+ ,
p ′ 2i + p ′ 2⊥i
2x ′i P +

, p ′⊥i

]
−→

p̂ ′µi =



x ′i P

+ ,
p ′ 2i + (p ′⊥i − x ′i ∆⊥/2)2

2x ′i P +
, p ′⊥i − x ′i ∆⊥/2︸ ︷︷ ︸

= k̂
′
⊥i




(C.34)

We can read off the arguments of the LC wave function of the outgoing nucleon

as Ψout(x̂ ′i , k̂
′
⊥i).

C.2.5 arguments of Ψout in terms of
“hadron-in” quantities

• momentum fractions:
Expressing the arguments of the LC wave function of the outgoing nucleon in
terms of “hadron-in” frame quantities thereby using the relations for the spectator
partons (C.25) and for the active parton (C.26) leads to

xi = x̃i = x̂i = x ′i = x̃ ′i = x̂ ′i (C.35)

the fractions are neither changed by the process nor by the transformation (2.9);
that’s just how the frames were chosen!

• transverse parton momenta:
For the transverse parton momenta in the outgoing nucleon expressed in terms
of “hadron-in” frame quantities we find (the “primes” on the fractions are now
left out)

p̂ ′⊥i
(C.34)

= p ′⊥i − xi
∆⊥
2

(C.36)





(C.25)
= p⊥i − xi∆⊥

2
(C.30)

= p̃⊥i − xi ∆⊥ i 6= j

(C.26)
= p⊥j + q⊥ − xj∆⊥

2
(C.30)

= p̃⊥j + (1− xj) ∆⊥ active

To obtain the above relation one has to
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• identify the transverse momenta of the partons in the outgoing nucleon in
the “hadron-out” frame to be p̂⊥i

′;

• express them in terms of “CMS-symmetric” quantities p ′⊥i;

• use relations for spectator(C.25)/active parton(s)(C.26) to relate them with
p⊥i and ~pj⊥, respectively;

• and finally, express the results in terms of the transverse parton momenta
of the incoming nucleon in the “hadron-in” frame p̃⊥i and p̃⊥j.

The above relations are exact; no approximations where made, i.e. the ratios
M2/(−t) and p 2

⊥/(−t), or p 2
i /(−t) are not neglected !

C.2.6 “CMS-in”

Starting from the “CMS-symmetric” frame we get by a simple rotation of ϑ/2 to
a CMS system, where the incoming nucleon has no transverse momentum. For
convenience we switch to the notation aµ = (a0, a1, a2, a3).

P µ =
(
P 0 , |~p| sin(ϑ/2) , 0 , |~p| cos(ϑ/2)

)

P ′µ =
(
P 0 , −|~p| sin(ϑ/2) , 0 , |~p| cos(ϑ/2)

)
(C.37)

The rotation in the scattering plane (x − z plane) is done with the help of the
matrix (

cos(ϑ/2) sin(ϑ/2)
− sin(ϑ/2) cos(ϑ/2)

)
(C.38)

leading to the transformations

P µ −→ P rot, µ =
(
P 0 , 0 , 0 , |~p|

)
(C.39)

P ′µ −→
P ′ rot, µ =

(
P 0 , −|~p|2 sin(ϑ/2) cos(ϑ/2) , 0 , |~p|

(
cos2(ϑ/2)− sin2(ϑ/2)

) )

=
(
P 0 , −|~p| sinϑ , 0 , |~p|cosϑ

)
(C.40)

and

∆µ = ( 0 , −|∆⊥| , 0 , 0 ) = ( 0 , −|~p| 2 sin(ϑ/2) , 0 , 0 )

−→ ∆rot, µ = ( 0 , −|∆⊥| cos(ϑ/2) , 0 , −|∆⊥| sin(ϑ/2) )

= ( 0 , −|~p| sinϑ , 0 , −|~p|(1− cosϑ) ) (C.41)

C.2.7 “CMS-out”

Starting from the “CMS-symmetric” frame with the a rotation by −ϑ/2 one gets
to a CMS system, where the outgoing nucleon has no transverse momentum.
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C.3 DVCS, different reference frames

Now we consider deeply virtual Compton scattering on a nucleon, i.e., the process
γ∗(~q) + p(~p)→ γ(~q′) + p(~P ′) ,where −q2 = Q2 is large.

Unfortunately, there is no useful reference frame where the momentum transfer
does not have a plus component, i.e. where ∆+ = 0 (in such a frame the nucleons
would be slow).

C.3.1 “average” frame

Close to Ji’s conventions [172, 190] we chose a frame where the longitudinal
direction is defined by the nucleon average momentum:

�

~e3

P = P̄ − ∆

2
P ′ = P̄ +

∆

2
= P + ∆

q q ′ = q −∆ P 2 = P ′ 2 = M2

q2 = −Q2, q ′ 2 = 0

⇓

P ·∆ = −∆2

2

q ·∆ =
∆2 −Q2

2

The nucleon average momentum is defined by

P̄ = (P + P ′)/2 such that





P = P̄ −∆/2

and

P ′ = P̄ + ∆/2

(C.42)

• the Sudakov decomposition of the external vectors reads (with P̄ and q chosen
to be collinear)

P̄ µ =

[
P̄ + ,

M̄2

2P̄ +
, ~0⊥

]
(C.43)

qµ =

[
−xN P̄ + ,

Q2

2xN P̄ +
, ~0⊥

]
xN = − q+

P̄ +
(C.44)

∆µ =

[
−2ξ P̄ + ,

ξM̄2

P̄ +
, ∆⊥

]
ξ = − ∆+

2 P̄ +
(C.45)

with

M̄2 = P̄ 2 = (P + ∆/2)2 = M2 + P ·∆ + ∆2/4 = M 2 −∆2/4 (C.46)



154 C. REFERENCE FRAMES . . .

and

P̄ ·q =
Q2

2xN
−xN M̄

2

2
=⇒ xN =

(
−P̄ · q +

√
(P̄ · q)2 +Q2M̄2

)
/M̄2 (C.47)

where the limiting behaviour of xN is

lim
M̄2→0

xN =
Q2

2 P̄ · q (de l’Hospital) .

The component ∆− is determined by

P̄ ·∆ = (P ′ + P )/2 · (P ′ − P ) = (P ′ 2 − P 2)/2 = 0

= (P + ∆/2) ·∆ = P ·∆ + ∆2/2

= P̄ +∆− +
M̄2

2P̄ +
∆+

=⇒ ∆− = − M̄2

2(P̄ +)2
∆+ =

ξ M̄2

P̄ +
. (C.48)

The Mandelstam variable t reads

t = ∆2 = −4 ξ2 M̄2 −∆2
⊥ , (C.49)

from which one obtains (by insertion of Eq. (C.49) in Eq. (C.46))

M̄2 (1− ξ2) = M 2 + ∆2
⊥/4 (C.50)

or (insert Eq. (C.46) in Eq. (C.49))

∆2 =
−4 ξ2M2 −∆2

⊥
1− ξ2

. (C.51)

The momentum of the real photon is

q ′µ = (q −∆)µ =

[
(2ξ − xN) P̄ + ,

Q2 − 2xNξM̄
2

2xN P̄ +
, −∆⊥

]
(C.52)

• for later use we also show the explicit form of the incoming and outgoing
nucleon momenta

P µ = (p̄−∆/2)µ =

[
(1 + ξ) P̄ + ,

M2 + ∆2
⊥/4

2(1 + ξ)P̄ +
, −∆⊥/2

]

P ′µ = (p̄+ ∆/2)µ =

[
(1− ξ) P̄ + ,

M2 + ∆2
⊥/4

2(1− ξ)P̄ +
, ∆⊥/2

]
(C.53)

Note that the minus components can also be written as

P − =
M̄2 (1− ξ)

2P̄ +
P ′ − =

M̄2 (1 + ξ)

2P̄ +
(C.54)
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• parton momenta

It is useful to distinguish three different kinematical regions depending on the
value of an external momentum fraction variable x̄, which finally will be identified
as the momentum fraction of the active parton. The partonic interpretation in
the three regions is

in the DGLAP region ξ < x̄ < 1:
a quark is emitted, takes the momentum transfer ∆, and is finally reab-
sorbed by the hadron.

in the ERBL region −ξ < x̄ < ξ:
a quark-antiquark pair is emitted, which takes the momentum transfer ∆;
the rest of the nucleon (spectator system) forms the final hadron .

in the DGLAP region −1 < x̄ < −ξ
an antiquark is emitted, takes the momentum transfer ∆, and is finally
reabsorbed by the hadron.

DGLAP regions: (ξ < x̄ < 1) and (−1 < x̄ < −ξ)

N N

q q ′ = q −∆

pi = p ′i
P = P̄ −∆/2 P ′ = P̄ + ∆/2

pj = p̄j −∆/2 p ′j = p̄j + ∆/2

In order to achieve a formulation symmetric in incoming and outgoing quantities
it is useful to define as auxiliary variables the averages of incoming and outgoing
parton momenta in the average frame

p̄i =
1

2
(pi + p′i) , x̄i =

p̄+
i

P̄+
, (C.55)

which satisfy

P̄ + =
N∑

i=1

p̄+
i =

N∑

i=1

x̄iP̄
+; P̄⊥ =

N∑

i=1

p̄⊥i
average

= 0⊥ (C.56)

Note: the auxiliary fractions x̄i correspond to Ji’s definition xi, Ji !

The auxiliary p̄i are identical to the momenta of the spectator partons

pi = p ′i = p̄i for i 6= j =⇒ xi = x ′i = x̄i ; p⊥i = p ′⊥i = p̄⊥i (C.57)
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and are related to the momentum of the active parton by simple relations

pj = p̄j −∆/2 and p ′j = p̄j + ∆/2

=⇒ xj = x̄j + ξ and x ′j = x̄j − ξ
p⊥j = p̄⊥j −∆⊥/2 and p ′⊥j = k̄⊥j + ∆⊥/2 (C.58)

Note: the fractions xi are fractional momenta with respect to the plus component
of the average nucleon momentum P̄ !

For the calculation of an overlap integral the momentum fractions of the partons
with respect to their parent hadron momenta are needed, which are given for the
incoming partons as

p+
i

P +
=

x̄i
1 + ξ

for i 6= j ;
p+
j

P +
=
x̄j + ξ

1 + ξ
active (C.59)

and for the outgoing partons as

p ′+i
P ′+

=
x̄i

1− ξ for i 6= j ;
p ′+j
P ′+

=
x̄j − ξ
1− ξ active (C.60)

ERBL region: (−ξ < x̄ < ξ)

N N

q q ′ = q −∆

pi = p ′i
P = P̄ −∆/2 P ′ = P̄ + ∆/2

pj = p̄j −∆/2 p ′j = −(p̄j + ∆/2)

We label the quark-antiquark pair with indices j for the quark and j ′ for the
antiquark. For i 6= j, j ′ we again use the auxiliary variables

p̄i =
1

2
(pi + p′i) , x̄i =

p̄+
i

P̄+
, (C.61)

and for j, j ′ we introduce

p̄j =
1

2
(pj − pj′) , x̄j =

p̄+
j

P̄+
, (C.62)

which is half the relative momentum (and momentum fraction) between the active
quark and antiquark. It can as well be viewed as the average of pj and the reverse
of the momentum pj′ (i.e., −pj′), in complete analogy with the definitions (C.55).
The auxiliary p̄i are identical to the momenta of the spectator partons

pi = p ′i = p̄i for i 6= j, j′ =⇒ xi = x ′i = x̄i ; p⊥i = p ′⊥i = p̄⊥i (C.63)
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and are related to the momentum of the active parton by simple relations

pj = p̄j −∆/2 and pj′ = −(p̄j + ∆/2)

=⇒ xj = x̄j + ξ and xj′ = −(x̄j − ξ)
p⊥j = p̄⊥j −∆⊥/2 and p⊥j′ = −(p̄⊥j + ∆⊥/2) .(C.64)

Note: the fractions xi are fractional momenta with respect to the plus component
of the average nucleon momentum P̄ !

For the calculation of an overlap integral the momentum fractions of the partons
with respect to their parent hadron momenta are needed, which are given for the
incoming partons as

p+
i

P +
=

x̄i
1 + ξ

for i 6= j, j′ ;

p+
j

P +
=

x̄j + ξ

1 + ξ
,

p+
j′

P +
=
−(x̄j − ξ)

1 + ξ
active (C.65)

and for the outgoing partons as

p ′+i
p′+

=
x̄i

1− ξ for i 6= j, j′ . (C.66)

C.3.2 “hadron-in” frame

To identify the arguments of the LC wave function for the incoming nucleon we
may use a transverse boost (2.9) with b⊥ = −∆⊥/2 and b+ = (1 + ξ) P̄ + to a
frame where p has no transverse component (quantities in this frame are denoted
with a “tilde”).

P µ =

[
(1 + ξ) P̄ + ,

M2 + ∆ 2
⊥/4

2 (1 + ξ)P̄ +
, −∆⊥

2

]

−→ P̃ µ =

[
(1 + ξ) P̄ + ,

M2

2 (1 + ξ)P̄ +
, 0⊥

]
(C.67)

and

∆µ =

[
−2ξ P̄ + ,

ξM̄2

P̄ +
, ∆⊥

]

−→ ∆̃µ =

[
−2ξ P̄ + , −∆2 + ∆2

⊥/(1 + ξ)2

2ξ P̄ +
,

∆⊥
1 + ξ

]
(C.68)

spectator partons

pµi =

[
x̄i P̄

+ ,
p 2
i + p 2

⊥i
2 x̄i P̄ +

, p⊥i

]
(C.69)

−→ p̃µi =



x̄i P̄

+ ,
p 2
i +

(
p⊥i + x̄i

1+ξ
∆⊥/2

)2

2 x̄i P̄ +
, p⊥i +

x̄i
1 + ξ

∆⊥/2
︸ ︷︷ ︸

= p̃⊥i



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active parton

pµj =

[
(x̄j + ξ) P̄ + ,

p 2
j + p 2

⊥j
2 (x̄j + ξ) P̄ +

, p⊥j

]
(C.70)

−→ p̃µj =




(x̄j + ξ) P̄ + ,
p 2
j +

(
p⊥j + x̄j+ξ

1+ξ
∆⊥/2

)2

2 (x̄j + ξ) P̄ +
, p⊥j +

x̄j + ξ

1 + ξ
∆⊥/2

︸ ︷︷ ︸
= p̃⊥j




pµj′ =

[
−(x̄j − ξ) P̄ + ,

p 2
j′ + p

2
⊥j′

−2 (x̄j + ξ) P̄ +
, p⊥j′

]
(C.71)

−→ p̃µj′ =



−(x̄j − ξ) P̄ + ,

p 2
j′ +

(
p⊥j′ − x̄j−ξ

1+ξ
∆⊥

2

)2

−2 (x̄j + ξ) P̄ +
, p⊥j′ −

x̄j − ξ
1 + ξ

∆⊥/2
︸ ︷︷ ︸

= p̃⊥j′




The arguments of the LCWF for the incoming nucleon become (DGLAP and
ERBL, respectively)

Ψin

(
x̃i =

x̄i
1 + ξ

, k̃⊥i; x̃j =
x̄j + ξ

1 + ξ
, p̃⊥j

)

Ψin

(
x̃i =

x̄i
1 + ξ

, p̃⊥i; x̃j =
x̄j + ξ

1 + ξ
, p̃⊥j; x̃j′ =

−(x̄j − ξ)
1 + ξ

, p̃⊥j′

)
(C.72)

C.3.3 “hadron-out” frame

To identify the arguments of the LC wave function for the outgoing nucleon we
may use a boost with b⊥ = ∆⊥/2 and b+ = (1− ξ) P̄ + to a frame where P ′ has
no transverse component (quantities in this frame are denoted with a “hat”).

P ′µ =

[
(1− ξ) P̄ + ,

M2 + ∆ 2
⊥/4

2 (1− ξ)P̄ +
,

∆⊥
2

]

−→ P̂ ′µ =

[
(1− ξ) P̄ + ,

M2

2 (1− ξ)P̄ +
, 0⊥

]
(C.73)

spectator partons

p ′µi =

[
x̄i P̄

+ ,
p ′ 2i + p ′ 2⊥i
2 x̄i P̄ +

, p ′⊥i

]
(C.74)

−→ p̂ ′µi =



x̄i P̄

+ ,
p ′ 2i +

(
p ′⊥i − x̄i

1−ξ ∆⊥/2
)2

2 x̄i P̄ +
, p ′⊥i −

x̄i
1− ξ ∆⊥/2

︸ ︷︷ ︸
= p̂ ′⊥i



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active parton

p ′µj =

[
(x̄j − ξ) P̄ + ,

p ′ 2j + p ′ 2⊥j
2 (x̄j + ξ) P̄ +

, p ′⊥j

]
(C.75)

−→ p̂ ′µj =




(x̄j − ξ) P̄ + ,
p ′ 2j +

(
p ′⊥j + x̄j−ξ

1−ξ
∆⊥

2

)2

2 (x̄j − ξ) P̄ +
, p ′⊥j −

x̄j − ξ
1− ξ ∆⊥/2

︸ ︷︷ ︸

=
~̂
k
′
j⊥




The arguments of the LC wave function for the outgoing nucleon are (DGLAP
and ERBL, respectively)

Ψout

(
x̂′i =

x̄i
1− ξ , p̂

′
⊥i; x̂

′
j =

x̄j − ξ
1− ξ , p̂

′
⊥j

)

Ψout

(
x̂′i =

x̄i
1− ξ , p̂

′
⊥i

)
(C.76)

C.3.4 arguments of LCWFs in terms of auxiliary variables

DGLAP regions: (ξ < x̄ < 1) and (−1 < x̄ < −ξ)
LCWF arguments for the incoming hadron (i.e., the momenta of the partons
belonging to the incoming hadron in the hadron-in frame) are related to the
momenta in the average-frame by

x̃i =
x̄i

1 + ξ
, p̃⊥i = p̄⊥i +

x̄i
1 + ξ

∆⊥
2

for i 6= j ,

x̃j =
x̄j + ξ

1 + ξ
, p̃⊥j = p̄⊥j −

1− x̄j
1 + ξ

∆⊥
2

. (C.77)

Likewise, the LCWF arguments for the outgoing hadron (i.e., the momenta of the
partons belonging to the outgoing hadron in the hadron-out frame) are related
to the momenta in the average-frame by

x̂′i =
x̄i

1− ξ , p̂ ′⊥i = p̄⊥i −
x̄i

1− ξ
∆⊥
2

for i 6= j ,

x̂′j =
x̄j − ξ
1− ξ , p̂ ′⊥j = p̄⊥j +

1− x̄j
1− ξ

∆⊥
2

. (C.78)

ERBL region: (−ξ < x̄ < ξ)

LCWF arguments for the incoming hadron are related to the parton momenta in
the average-frame by

x̃i =
x̄i

1 + ξ
, p̃⊥i = p̄⊥i +

x̄i
1 + ξ

∆⊥
2

for i 6= j, j′ ,

x̃j =
x̄j + ξ

1 + ξ
, p̃⊥j = p̄⊥j −

1− x̄j
1 + ξ

∆⊥
2

,

x̃j′ = − x̄j − ξ
1 + ξ

, p̃⊥j′ = −p̄⊥j −
1 + x̄j
1 + ξ

∆⊥
2

, (C.79)
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and that the LCWF arguments for the outgoing hadron are given by

x̂′i =
x̄i

1− ξ , p̂ ′⊥i = p̄⊥i −
x̄i

1− ξ
∆⊥
2

for i 6= j, j′ . (C.80)

C.3.5 arguments of Ψout in terms of “hadron-in”

quantities

spectator partons

use

Xi =
x̄i

1 + ξ
=⇒ x̄i = Xi (1 + ξ) (C.81)

to obtain

X ′i =
x̄i

1− ξ =
Xi (1 + ξ)

1− ξ (C.82)

for the transverse momentum

p̂ ′⊥i = p ′⊥i −
x̄i

1− ξ
∆⊥
2

= p⊥i −
x̄i

1− ξ
∆⊥
2

= p̃⊥i −
x̄i

1 + ξ

∆⊥
2
− x̄i

1− ξ
∆⊥
2

= p̃⊥i −
∆⊥
2

(
Xi +Xi

1 + ξ

1− ξ

)
= p̃⊥i −

Xi

1− ξ ∆⊥ (C.83)

active parton

use

Xj =
x̄j + ξ

1 + ξ
=⇒ x̄j = Xj (1 + ξ)− ξ (C.84)

to obtain

X ′j =
x̄j − ξ
1− ξ =

Xj (1 + ξ)− 2 ξ

1− ξ (C.85)

for the transverse momentum

p̂ ′⊥j = p ′⊥j −
x̄j − ξ
1− ξ

∆⊥
2

= p⊥j + ∆⊥ −
x̄j − ξ
1− ξ

∆⊥
2

= p̃⊥j −
x̄j + ξ

1 + ξ

∆⊥
2

+ ∆⊥ −
x̄j − ξ
1− ξ

∆⊥
2

= p̃⊥j +
∆⊥
2

(
2−Xj −

Xj(1 + ξ)− 2 ξ

1− ξ

)
= p̃⊥j +

1−Xj

1− ξ ∆⊥ (C.86)

note: the transverse part of the momentum transfer in the “hadron-in” frame is
given as (see Eq. (C.68))

~̃∆⊥ =
∆⊥

1 + ξ
(C.87)
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C.3.6 “γ∗-nucleon c.m.”-frame

Alternatively, one can chose the momentum of the incoming nucleon p and of the
virtual photon q to be collinear.
This is not the “hadron-in” frame from above, since there the photon momentum
q̃µ has a non-vanishing transverse component.

P µ =

[
P + ,

M2

2P +
, ~0⊥

]

∆µ =

[
−ζ P + ,

ζM 2 + ∆2
⊥

2P +(1− ζ)
, ∆⊥

]

qµ =

[
−xN P + ,

Q2

2xN P +
, ~0⊥

]

P ′µ = P µ + ∆µ =

[
(1− ζ)P + ,

M2 + ∆2
⊥

2P + (1− ζ)
, ∆⊥

]
(C.88)

Partons in the incoming nucleon have momenta

pµi =

[
Xi P

+ ,
p2
i + p2

⊥i
2Xi P +

, p⊥i

]
, (C.89)

and partons in the outgoing nucleon

p ′µi = pµi for i 6= j

p ′µj = pµj + ∆µ

=

[
(Xi − ζ)P + ,

p ′ 2j + (p⊥j + ∆⊥)2

2 (Xi − ζ)P +
, p⊥j + ∆⊥

]
active(C.90)

a boost with~b = ∆⊥ and b+ = (1−ζ)P + leads to a frame, where the outgoing
nucleon has no transverse momentum components

P ′µ −→ P̆ ′µ =

[
(1− ζ)P + ,

M2

2 (1− ζ)P +
, ~0⊥

]
(C.91)

and

p ′i −→ p̆ ′i =


 Xi P

+ ,
p ′ 2i + (p⊥i − Xi

1−ζ∆⊥)2

2Xi P +
, p⊥i −

Xi

1− ζ∆⊥


 for i 6= j

p ′j −→ p̆ ′j =


 (Xj − ζ)P + ,

p ′ 2j + (p⊥j + 1−Xj
1−ζ ∆⊥)2

2 (Xj − ζ)P +
, p⊥j +

1−Xj

1− ζ ∆⊥


(C.92)

such that the arguments for the outgoing nucleon wave function read (DGLAP
region)

Ψout

(
Xi

1− ζ ,p⊥i −
Xi

1− ζ∆⊥;
Xj − ζ
1− ζ ,p⊥j +

1−Xj

1− ζ ∆⊥

)
(C.93)
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C.3.7 relation to X and ζ variables

Using the variable (compare Radyushkin [176] Eq. (9.5) and Ji [190] Eq. (23)).

ζ =
2ξ

1 + ξ
(C.94)

we get

X ′i =
Xi

1− ζ p̂⊥i = p̃⊥i −
Xi

1− ζ
~̃∆⊥

X ′j =
Xj − ζ
1− ζ p̂⊥j = p⊥j +

1−Xj

1− ζ
~̃∆⊥ (C.95)



D
List of Acronyms

A list of acronyms used throughout the text:

CMS centre of mass system

DA distribution amplitude

DIS deep inelastic scattering

DVCS deeply virtual Compton scattering

FF form factor

GPD generalised parton distribution

HSA hard scattering approach

mHSA modified hard scattering approach

LCWF light cone wave function

PDF parton distribution function

PFF parton fragmentation function

pQCD perturbative Quantum Chromo Dynamics

QCD Quantum Chromo Dynamics

RCS real Compton scattering

WACS wide angle Compton scattering
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M. Stratmann and W. Vogelsang, “Tranverse Double-Spin Asymmetries For
Muon Pair Production In P P Collisions,” Phys. Rev. D 60 (1999) 117502,
(SPIRES).

[48] J. Soffer, M. Stratmann and W. Vogelsang, “Accessing transversity in
double-spin asymmetries at the BNL-RHIC,” Phys. Rev. D 65 (2002)
114024, (SPIRES); D. de Florian, J. Soffer, M. Stratmann and W. Vogelsang,
“Bounds on transverse spin asymmetries for Lambda baryon production in
p p collisions at BNL RHIC,” Phys. Lett. B 439 (1998) 176, (SPIRES).

[49] V. Barone, A. Drago and P. G. Ratcliffe, “Transverse polarisation of quarks
in hadrons,” Phys. Rept. 359 (2002) 1, (SPIRES).

[50] E. Leader, “Spin In Particle Physics,” Cambridge Monogr. Part. Phys. Nucl.
Phys. Cosmol. 15 (2001) 1, (SPIRES).

[51] D. Boer, R. Jakob and P. J. Mulders, “Angular dependences in electroweak=⇒
semi-inclusive leptoproduction,” Nucl. Phys. B564 (2000) 471, (SPIRES).

[52] J. C. Collins, S. F. Heppelmann and G. A. Ladinsky, “Measuring transversity
densities in singly polarized hadron-hadron and lepton - hadron collisions,”
Nucl. Phys. B 420 (1994) 565, (SPIRES).

[53] A. Airapetian et al. [HERMES Collaboration], “Observation of a single-spin
azimuthal asymmetry in semi-inclusive pion electro-production,” Phys. Rev.

http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD63%2c094021
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD62%2c114004
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD62%2c034008
http://www.arxiv.org/pdf/hep-ph/9710465
http://www.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9710465
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c80%2c1166
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB620%2c331
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB603%2c195
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD57%2c3084
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD60%2c117502
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD65%2c114024
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB439%2c176
http://www.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2c359%2c1
http://www.slac.stanford.edu/spires/find/hep/www?a==leader&t=spin+and+particle+and+physics
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB564%2c471
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB420%2c565


169

Lett. 84 (2000) 4047, (SPIRES); A. Airapetian et al. [HERMES Collabo-
ration], “Single-spin azimuthal asymmetries in electroproduction of neutral
pions in semi-inclusive deep-inelastic scattering,” Phys. Rev. D 64 (2001)
097101, (SPIRES).

[54] A. Bravar [Spin Muon Collaboration], “Hadron azimuthal distributions and
transverse spin asymmetries in DIS of leptons off transversely polarized tar-
gets from SMC,” Nucl. Phys. Proc. Suppl. 79 (1999) 520, (SPIRES).

[55] M. Boglione and P. J. Mulders, “Azimuthal spin asymmetries in semi-
inclusive production from positron proton scattering,” Phys. Lett. B 478
(2000) 114, (SPIRES).

[56] A. V. Efremov, K. Goeke and P. Schweitzer, “Azimuthal asymmetry in elec-
troproduction of neutral pions in semi-inclusive DIS,” Phys. Lett. B 522
(2001) 37, (SPIRES); A. V. Efremov, K. Goeke and P. Schweitzer, “Erratum
to ’Azimuthal asymmetry in electro production of neutral pions in semiin-
clusive DIS’ published in Phys. Lett. B522 (2001) 37,” hep-ph/0204056.

[57] E. De Sanctis, W. D. Nowak and K. A. Oganessian, “Single-spin azimuthal
asymmetries in the ’reduced twist-3 approximation’,” Phys. Lett. B 483
(2000) 69, (SPIRES); K. A. Oganessian, N. Bianchi, E. De Sanctis and
W. D. Nowak, “Investigation of single spin asymmetries in pi+ electropro-
duction,” Nucl. Phys. A 689 (2001) 784, (SPIRES).

[58] S. Wandzura and F. Wilczek, “Sum Rules For Spin Dependent Electropro-
duction: Test Of Relativistic Constituent Quarks,” Phys. Lett. B 72 (1977)
195, (SPIRES).

[59] D. L. Adams et al. [FNAL-E704 Collaboration], “Analyzing power in inclu-
sive pi+ and pi- production at high x(F) with a 200-GeV polarized proton
beam,” Phys. Lett. B 264 (1991) 462, (SPIRES).

[60] M. Boglione and E. Leader, “Reassessment of the Collins mechanism for
single-spin asymmetries and the behavior of Delta(d)(x) at large x,” Phys.
Rev. D 61 (2000) 114001, (SPIRES).

[61] D. Boer, R. Jakob and P. J. Mulders, “Asymmetries in polarized hadron=⇒
production in e+ e- annihilation up to order 1/Q,” Nucl. Phys. B504 (1997)
345, (SPIRES).

[62] D. Boer, R. Jakob and P. J. Mulders, “Leading asymmetries in two-hadron=⇒
production in e+ e- annihilation at the Z pole,” Phys. Lett. B424 (1998)
143, (SPIRES).

[63] A. V. Efremov, O. G. Smirnova and L. G. Tkachev, “Study of T-odd quark
fragmentation function in Z0 → 2-jet decay,” in C98/07/02 Nucl. Phys.
Proc. Suppl. 74 (1999) 49, (SPIRES).

[64] J. C. Collins and G. A. Ladinsky, “On pi - pi correlations in polarized quark
fragmentation using the linear sigma model,” hep-ph/9411444.

http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c84%2c4047
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD64%2c097101
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2c79%2c520
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB478%2c114
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB522%2c37
http://www.arxiv.org/pdf/hep-ph/0204056
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB483%2c69
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cA689%2c784
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB72%2c195
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB264%2c462
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD61%2c114001
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB504%2c345
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB424%2c143
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2c74%2c49
http://www.arxiv.org/pdf/hep-ph/9411444


170 BIBLIOGRAPHY

[65] X. Artru and J. C. Collins, “Measuring transverse spin correlations by 4
particle correlations in e+ e-→ 2 jets,” Z. Phys. C 69 (1996) 277, (SPIRES).

[66] J. C. Collins and D. E. Soper, “Back To Back Jets In QCD,” Nucl. Phys. B
193 (1981) 381 [Erratum-ibid. B 213 (1983) 545], (SPIRES).

[67] S. Boffi, C. Giusti, F. D. Pacati, and M. Radici, Electromagnetic Response
of Atomic Nuclei, Vol. 20 of Oxford Studies in Nuclear Physics (Oxford
University Press, Oxford, 1996).

[68] A. Bacchetta, “Probing the transverse spin of quarks in deep inelastic scat-
tering,” Ph.D. thesis, VU Amsterdam, 2002, unpublished.

[69] A. M. Kotzinian and P. J. Mulders, “Probing transverse quark polarization
via azimuthal asymmetries in leptoproduction,” Phys. Lett. B 406 (1997)
373, (SPIRES).

[70] R. L. Jaffe, “Deep Inelastic Structure Functions In An Approximation To
The Bag Theory,” Phys. Rev. D 11 (1975) 1953, (SPIRES).

[71] C. J. Benesh and G. A. Miller, “Valence Quark Distributions In The Soliton
Bag Model,” Phys. Lett. B 215 (1988) 381, (SPIRES); C. J. Benesh and
G. A. Miller, “Deep Inelastic Scattering In A Modified Bag Model,” Phys.
Rev. D 38 (1988) 48, (SPIRES).

[72] A. W. Schreiber, A. I. Signal and A. W. Thomas, “Structure Functions In
The Bag Model,” Phys. Rev. D 44 (1991) 2653, (SPIRES).

[73] X. Song and J. S. McCarthy, “Model Calculation Of Nucleon Structure Func-
tions,” Phys. Rev. D 49 (1994) 3169 [Erratum-ibid. D 50 (1994) 4718],
(SPIRES).

[74] M. Ropele, M. Traini and V. Vento, “Parton Polarization And Constituent
Quarks,” Nucl. Phys. A 584 (1995) 634, (SPIRES); S. Scopetta, V. Vento
and M. Traini, “Towards a unified picture of constituent and current quarks,”
Phys. Lett. B 421 (1998) 64, (SPIRES); S. Scopetta, V. Vento and M. Traini,
“Polarized structure functions in a constituent quark scenario,” Phys. Lett.
B 442 (1998) 28, (SPIRES); M. Traini, A. Mair, A. Zambarda and V. Vento,
“Constituent Quarks And Parton Distributions,” Nucl. Phys. A 614 (1997)
472, (SPIRES).

[75] R. G. Roberts and G. G. Ross, “Quark Model Description of Polarised Deep
Inelastic Scattering and the prediction of g2,” Phys. Lett. B 373 (1996) 235,
(SPIRES).

[76] V. Barone, T. Calarco and A. Drago, “A confinement model calculation of
h1(x),” Phys. Lett. B 390 (1997) 287, (SPIRES); V. Barone, T. Calarco and
A. Drago, “Gluon spin in a quark model,” Phys. Lett. B 431 (1998) 405,
(SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cC69%2c277
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB193%2c381
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB406%2c373
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD11%2c1953
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB215%2c381
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD38%2c48
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD44%2c2653
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD49%2c3169
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cA584%2c634
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB421%2c64
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB442%2c28
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cA614%2c472
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB373%2c235
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB390%2c287
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB431%2c405


171

[77] H. Weigel, L. P. Gamberg and H. Reinhardt, “Nucleon Structure Functions
from a Chiral Soliton,” Phys. Lett. B 399 (1997) 287, (SPIRES); H. Weigel,
L. P. Gamberg and H. Reinhardt, “Polarized nucleon structure functions
within a chiral soliton model,” Phys. Rev. D 55 (1997) 6910, (SPIRES);
H. Weigel, L. P. Gamberg and H. Reinhardt, “Unpolarized Nucleon Struc-
ture Functions In The Nambu-Jona-Lasinio Chiral Soliton Model,” Mod.
Phys. Lett. A 11 (1996) 3021, (SPIRES); L. P. Gamberg, H. Reinhardt and
H. Weigel, “Odd structure functions from a chiral soliton,” Phys. Rev. D 58
(1998) 054014, (SPIRES); H. Weigel, E. Ruiz Arriola and L. P. Gamberg,
“Hadron structure functions in a chiral quark model: Regularization, scaling
and sum rules,” Nucl. Phys. B 560 (1999) 383, (SPIRES).

[78] D. Diakonov, V. Y. Petrov, P. V. Pobylitsa, M. V. Polyakov and C. Weiss,
“Unpolarized and polarized quark distributions in the large-N(c) limit,”
Phys. Rev. D 56 (1997) 4069, (SPIRES); P. V. Pobylitsa, M. V. Polyakov,
K. Goeke, T. Watabe and C. Weiss, “Isovector unpolarized quark distribu-
tion in the nucleon in the large-N(c) limit,” Phys. Rev. D 59 (1999) 034024,
(SPIRES); K. Goeke, P. V. Pobylitsa, M. V. Polyakov, P. Schweitzer and
D. Urbano, “Quark distribution functions in the chiral quark-soliton model:
Cancellation of quantum anomalies,” Acta Phys. Polon. B 32 (2001) 1201,
(SPIRES); A. V. Efremov, K. Goeke and P. V. Pobylitsa, “Gluon and quark
distributions in large N(c) QCD: Theory vs. phenomenology,” Phys. Lett.
B 488 (2000) 182, (SPIRES); P. Schweitzer, D. Urbano, M. V. Polyakov,
C. Weiss, P. V. Pobylitsa and K. Goeke, “Transversity distributions in the
nucleon in the large-N(c) limit,” Phys. Rev. D 64 (2001) 034013, (SPIRES).

[79] H. Meyer and P. J. Mulders, “Polarized And Unpolarized Structure Func-
tions In A Diquark Model For The Nucleon,” Nucl. Phys. A 528 (1991) 589,
(SPIRES).

[80] M. Nzar and P. Hoodbhoy, “Quark fragmentation functions in a diquark
model for proton and Lambda hyperon production,” Phys. Rev. D 51 (1995)
32, (SPIRES).

[81] B. Q. Ma, I. Schmidt, J. Soffer and J. J. Yang, “Quark distributions of octet
baryons from SU(3) symmetry,” Phys. Rev. D 65 (2002) 034004, (SPIRES).

[82] A. Bianconi, S. Boffi, R. Jakob and M. Radici, “Two-hadron interference=⇒
fragmentation functions. II: A model calculation,” Phys. Rev. D62 (2000)
034009, (SPIRES).

[83] M. Radici, R. Jakob and A. Bianconi, “Accessing transversity with interfer-=⇒
ence fragmentation functions,” Phys. Rev. D 65 (2002) 074031, (SPIRES).

[84] W. Melnitchouk, A. W. Schreiber and A. W. Thomas, “Deep inelastic scat-
tering from off-shell nucleons,” Phys. Rev. D 49 (1994) 1183, (SPIRES).

[85] A. Bacchetta, S. Boffi and R. Jakob, “Semi-inclusive structure functions in=⇒
the spectator model,” Eur. Phys. J. A9 (2000) 131, (SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB399%2c287
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD55%2c6910
http://www.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2cA11%2c3021
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD58%2c054014
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB560%2c383
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD56%2c4069
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD59%2c034024
http://www.slac.stanford.edu/spires/find/hep/www?j=APPOA%2cB32%2c1201
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB488%2c182
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD64%2c034013
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cA528%2c589
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD51%2c32
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD65%2c034004
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD62%2c034009
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD65%2c074031
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD49%2c1183
http://www.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2cA9%2c131


172 BIBLIOGRAPHY

[86] F. E. Close and A. W. Thomas, “The Spin And Flavor Dependence Of
Parton Distribution Functions,” Phys. Lett. B 212 (1988) 227, (SPIRES).

[87] M. Glück, E. Reya and A. Vogt, “Dynamical parton distributions of the
proton and small x physics,” Z. Phys. C 67 (1995) 433, (SPIRES).

[88] M. Glück, E. Reya, M. Stratmann and W. Vogelsang, “Next-to-leading order
radiative parton model analysis of polarized deep inelastic lepton - nucleon
scattering,” Phys. Rev. D 53 (1996) 4775, (SPIRES).

[89] J. Soffer, “Positivity constraints for spin dependent parton distributions,”
Phys. Rev. Lett. 74 (1995) 1292, (SPIRES).

[90] V. N. Gribov and L. N. Lipatov, “Deep Inelastic E P Scattering In Per-
turbation Theory,” Yad. Fiz. 15 (1972) 781 [Sov. J. Nucl. Phys. 15 (1972)
438], (SPIRES); Y. L. Dokshitzer, “Calculation Of The Structure Func-
tions For Deep Inelastic Scattering And E+ E- Annihilation By Perturba-
tion Theory In Quantum Chromodynamics. (In Russian),” Sov. Phys. JETP
46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216], (SPIRES); G. Altarelli
and G. Parisi, “Asymptotic Freedom In Parton Language,” Nucl. Phys. B
126 (1977) 298, (SPIRES).

[91] R. G. Roberts, “The Structure Of The Proton: Deep Inelastic Scattering,”
Cambridge, UK: Univ. Pr. (1990) 182 p. (Cambridge monographs on math-
ematical physics).

[92] R. D. Peccei, “High-energy lepton hadron scattering as a probe of QCD,”
UCLA-92-TEP-5 Lectures given at SLAC Summer Inst., SLAC, Aug 5-16,
1991.

[93] Y. L. Dokshitzer, D. Diakonov and S. I. Troian, “Hard Processes In Quantum
Chromodynamics,” Phys. Rept. 58 (1980) 269, (SPIRES).

[94] A.-K. Kashani-Poor, “Q2-Evolution kT -abhängiger Parton-Verteilungsfunkt-
ionen” Diploma thesis, Goethe Universität Frankfurt, 1997, (in German),
unpublished.

[95] V. L. Chernyak, A. R. Zhitnitsky and V. G. Serbo, “Asymptotic Hadronic
Form-Factors In Quantum Chromodynamics,” JETP Lett. 26 (1977) 594
[Pisma Zh. Eksp. Teor. Fiz. 26 (1977) 760], (SPIRES).

[96] V. L. Chernyak and A. R. Zhitnitsky, “Asymptotic Behavior Of Exclusive
Processes In QCD,” Phys. Rept. 112 (1984) 173, (SPIRES).

[97] A. V. Efremov and A. V. Radyushkin, “Factorization And Asymptotical
Behavior Of Pion Form-Factor In QCD,” Phys. Lett. B 94 (1980) 245,
(SPIRES).

[98] G. P. Lepage and S. J. Brodsky, “Exclusive Processes In Quantum Chro-
modynamics: Evolution Equations For Hadronic Wave Functions And The
Form-Factors Of Mesons,” Phys. Lett. B 87 (1979) 359, (SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB212%2c227
http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cC67%2c433
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD53%2c4775
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c74%2c1292
http://www.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2c15%2c438
http://www.slac.stanford.edu/spires/find/hep/www?j=JTPHE%2c46%2c641
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB126%2c298
http://www.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2c58%2c269
http://www.slac.stanford.edu/spires/find/hep/www?j=JTPLA%2c26%2c594
http://www.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2c112%2c173
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB94%2c245
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB87%2c359


173

[99] G. P. Lepage and S. J. Brodsky, “Exclusive Processes In Perturbative Quan-
tum Chromodynamics,” Phys. Rev. D 22 (1980) 2157, (SPIRES).

[100] A. Duncan and A. H. Mueller, “Asymptotic Behavior Of Composite Particle
Form-Factors And The Renormalization Group,” Phys. Rev. D 21 (1980)
1636, (SPIRES); A. Duncan and A. H. Mueller, “Asymptotic Behavior Of
Exclusive And Almost Exclusive Processes,” Phys. Lett. B 90 (1980) 159,
(SPIRES).

[101] G. P. Lepage and S. J. Brodsky, “Exclusive Processes In Quantum Chromo-
dynamics: The Form-Factors Of Baryons At Large Momentum Transfer,”
Phys. Rev. Lett. 43 (1979) 545 [Erratum-ibid. 43 (1979) 1625], (SPIRES).

[102] N. G. Stefanis, “The physics of exclusive reactions in QCD: Theory and
phenomenology,” Eur. Phys. J. direct C 7 (1999) 1, (SPIRES).

[103] N. Isgur and C. H. Llewellyn Smith, “The Applicability Of Perturbative
QCD To Exclusive Processes,” Nucl. Phys. B 317 (1989) 526, (SPIRES).

[104] A. V. Radyushkin, “Hadronic Form-Factors: Perturbative QCD Versus
QCD Sum Rules,” in C90-10-08.1 Nucl. Phys. A 532 (1991) 141, (SPIRES).

[105] V. L. Chernyak and A. R. Zhitnitsky, “Exclusive Decays Of Heavy Mesons,”
Nucl. Phys. B 201 (1982) 492 [Erratum-ibid. B 214 (1983) 547], (SPIRES);
V. L. Chernyak, A. R. Zhitnitsky and I. R. Zhitnitsky, “Meson Wave
Functions And SU(3) Symmetry Breaking,” Nucl. Phys. B 204 (1982) 477
[Erratum-ibid. B 214 (1983) 547], (SPIRES).

[106] V. L. Chernyak, A. A. Ogloblin and I. R. Zhitnitsky, “The Wave Functions
Of The Octet Baryons,” Z. Phys. C 42 (1989) 569 [Yad. Fiz. 48 (1988
SJNCA,48,896-904.1988) 1410], (SPIRES)

[107] M. Gari and N. G. Stefanis, “Electromagnetic Form-Factors Of The Nu-
cleon From Perturbative QCD And QCD Sum Rules,” Phys. Lett. B 175
(1986) 462, (SPIRES).

[108] I. D. King and C. T. Sachrajda, “Nucleon Wave Functions And QCD Sum
Rules,” Nucl. Phys. B 279 (1987) 785, (SPIRES).

[109] N. G. Stefanis and M. Bergmann, “On the Nucleon distribution amplitude:
the Heterotic solution,” Phys. Rev. D 47 (1993) 3685, (SPIRES).

[110] J. Botts and G. Sterman, “Hard Elastic Scattering In QCD: Leading Be-
havior,” Nucl. Phys. B 325 (1989) 62, (SPIRES); J. Botts and G. Sterman,
“Sudakov Effects In Hadron-Hadron Elastic Scattering,” Phys. Lett. B 224
(1989) 201 [Erratum-ibid. B 227 (1989) 501], (SPIRES); J. F. Botts, “Hard
Elastic Scattering In QCD: Leading Behavior,” Ph.D.thesis, Stony Brook
NY, 1989, UMI-90-10466.

[111] H. n. Li and G. Sterman, “The Perturbative pion form-factor with Sudakov
suppression,” Nucl. Phys. B 381 (1992) 129, (SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD22%2c2157
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD21%2c1636
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB90%2c159
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c43%2c545
http://www.slac.stanford.edu/spires/find/hep/www?j=EPHJD%2cC7%2c1
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB317%2c526
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cA532%2c141
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB201%2c492
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB204%2c477
http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cC42%2c569
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB175%2c462
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB279%2c785
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD47%2c3685
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB325%2c62
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB224%2c201
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB381%2c129


174 BIBLIOGRAPHY

[112] H. n. Li, “Sudakov suppression and the proton form-factor in QCD,” Phys.
Rev. D 48 (1993) 4243, (SPIRES).

[113] R. Jakob and P. Kroll, “The Pion form-factor: Sudakov suppressions and=⇒
intrinsic transverse momentum,” Phys. Lett. B 315 (1993) 463 [Erratum-
ibid. B 319 (1993) 545], (SPIRES).

[114] J. Bolz, R. Jakob, P. Kroll, M. Bergmann and N. G. Stefanis, “A Critical=⇒
analysis of the proton form-factor with Sudakov suppression and intrinsic
transverse momentum,” Z. Phys. C 66 (1995) 267, (SPIRES).

[115] J. Bolz, R. Jakob, P. Kroll, M. Bergmann and N. G. Stefanis, “Neutron=⇒
form-factor: Sudakov suppression and intrinsic transverse size effect,” Phys.
Lett. B 342 (1995) 345, (SPIRES).

[116] R. Jakob, P. Kroll and M. Raulfs, “Meson - photon transition form-factors,”=⇒
J. Phys. G 22 (1996) 45, (SPIRES).

[117] M. Dahm, R. Jakob and P. Kroll, “A Perturbative approach to B decays=⇒
into two pi mesons,” Z. Phys. C 68 (1995) 595, (SPIRES).

[118] J. Bolz and P. Kroll, “Modelling the nucleon wave function from soft and
hard processes,” Z. Phys. A 356 (1996) 327, (SPIRES).

[119] G. P. Lepage, S. J. Brodsky, T. Huang and P. B. Mackenzie, “Hadronic
Wave Functions In QCD,” in C81-08-16.10 CLNS-82/522 Invited talk given
at Banff Summer Inst. on Particle Physics, Banff, Alberta, Canada, Aug
16-28, 1981.

[120] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, “Linking parton distribu-=⇒
tions to form factors and Compton scattering,” Eur. Phys. J. C8 (1999) 409,
(SPIRES).

[121] R. P. Feynman, “Photon hadron interactions” (Benjamin, Reading, MA,
1972).

[122] S. D. Drell and T. M. Yan, “Connection Of Elastic Electromagnetic Nucleon
Form-Factors At Large Q2 And Deep Inelastic Structure Functions Near
Threshold,” Phys. Rev. Lett. 24 (1970) 181, (SPIRES).

[123] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, “The overlap representation=⇒
of skewed quark and gluon distributions,” Nucl. Phys. B 596 (2001) 33
[Erratum-ibid. B 605 (2001) 647], (SPIRES).

[124] S. J. Brodsky, M. Diehl and D. S. Hwang, “Light-cone wavefunction repre-
sentation of deeply virtual Compton scattering,” Nucl. Phys. B 596 (2001)
99, (SPIRES).

[125] C. J. Bebek et al., “Measurement Of The Pion Form-Factor Up To Q2 =
4 GeV2,” Phys. Rev. D 13 (1976) 25, (SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD48%2c4243
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB315%2c463
http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cC66%2c267
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB342%2c
http://www.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2cG22%2c45
http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cC68%2c595
http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cA356%2c327
http://www.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2cC8%2c409
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c24%2c181
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB596%2c33
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB596%2c99
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD13%2c25


175

[126] C. J. Bebek et al., “Electroproduction Of Single Pions At Low Epsilon And
A Measurement Of The Pion Form-Factor Up To Q2 = 10GeV2,” Phys. Rev.
D 17 (1978) 1693, (SPIRES).

[127] J. Volmer et al. [The Jefferson Lab F(pi) Collaboration], “New results for
the charged pion electromagnetic form-factor,” Phys. Rev. Lett. 86 (2001)
1713, (SPIRES).

[128] J. Volmer, “The Pion Charge Form Factor via Pion Electroproduction on
the Proton,” Ph.D. thesis, VU Amsterdam, 2000, unpublished.

[129] S. J. Brodsky, T. Huang and G. P. Lepage, “Hadronic Wave Functions And
High Momentum Transfer Interactions In Quantum Chromodynamics,” In
*Banff 1981, Proceedings, Particles and Fields 2*, 143-199.

[130] V. A. Nesterenko and A. V. Radyushkin, “Sum Rules And Pion Form-
Factor In QCD,” Phys. Lett. B 115 (1982) 410, (SPIRES).

[131] V. M. Braun, A. Khodjamirian and M. Maul, “Pion form factor in QCD
at intermediate momentum transfers,” Phys. Rev. D 61 (2000) 073004,
(SPIRES).

[132] R. D. Field, R. Gupta, S. Otto and L. Chang, “Beyond Leading Order
QCD Perturbative Corrections To The Pion Form-Factor,” Nucl. Phys. B
186 (1981) 429, (SPIRES).

[133] F. M. Dittes and A. V. Radyushkin, “Radiative Corrections To The Pion
Form-Factor In Quantum Chromodynamics,” Sov. J. Nucl. Phys. 34 (1981)
293, (SPIRES); R. S. Khalmuradov and A. V. Radyushkin, “One Loop Cor-
rections To Pion Form-Factor In QCD In A Lightlike Gauge,” Sov. J. Nucl.
Phys. 42 (1985) 289, (SPIRES);

[134] E. P. Kadantseva, S. V. Mikhailov and A. V. Radyushkin, “Total αs cor-
rections to processes γ∗γ∗ → π0 and γ∗π → π in a perturbative QCD,” Sov.
J. Nucl. Phys. 44 (1986) 326, (SPIRES).

[135] E. Braaten and S. M. Tse, “Perturbative QCD Correction To The Hard
Scattering Amplitude For The Meson Form-Factor,” Phys. Rev. D 35 (1987)
2255, (SPIRES).

[136] F. del Aguila and M. K. Chase, “Higher Order QCD Corrections To Ex-
clusive Two Photon Processes,” Nucl. Phys. B 193 (1981) 517, (SPIRES).

[137] A. Szczepaniak, A. Radyushkin and C. R. Ji, “Consistent analysis of
O(alpha(s)) corrections to pion elastic form factor,” Phys. Rev. D 57 (1998)
2813, (SPIRES).

[138] B. Melic, B. Nizic and K. Passek, “Complete next-to-leading order pertur-
bative QCD prediction for the pion form factor,” Phys. Rev. D 60 (1999)
074004, (SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD17%2c1693
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c86%2c1713
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB115%2c410
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD61%2c073004
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB186%2c429
http://www.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2c34%2c293
http://www.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2c42%2c289
http://www.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2c44%2c326
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD35%2c2255
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cB193%2c517
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD57%2c2813
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD60%2c074004


176 BIBLIOGRAPHY

[139] A. I. Karanikas and N. G. Stefanis, “Analyticity and power corrections
in hard-scattering hadronic functions,” Phys. Lett. B 504 (2001) 225,
(SPIRES).

[140] N. G. Stefanis, W. Schroers and H. C. Kim, “Pion form factors with im-
proved infrared factorization,” Phys. Lett. B 449 (1999) 299, (SPIRES);
N. G. Stefanis, W. Schroers and H. C. Kim, “Infrared-finite factorization
and renormalization scheme for exclusive processes. Application to pion form
factors,” hep-ph/9812280.

[141] N. G. Stefanis, W. Schroers and H. C. Kim, “Analytic coupling and Sudakov
effects in exclusive processes: Pion and γ∗γ → π0 form factors,” Eur. Phys.
J. C 18 (2000) 137, (SPIRES).

[142] F. J. Ernst, R. G. Sachs and K. C. Wali, “Electromagnetic Form Factors
of the Nucleon,” Phys. Rev. 119 (1960) 1105.

[143] R. G. Sachs, Phys. Rev. 126 (1962) 2256.

[144] M. Bergmann and N. G. Stefanis, “Heterotic approach to the nucleon dis-
tribution amplitude,” Phys. Lett. B 325 (1994) 183, (SPIRES).

[145] M. Bergmann and N. G. Stefanis, “Bounds On GM
N /G

M
P From QCD Sum

Rules,” Phys. Rev. D 48 (1993) 2990, (SPIRES).

[146] S. Rock et al., “Measurement Of Elastic Electron - Neutron Cross-Sections
Up To Q2 = 10 (GeV/c)2,” Phys. Rev. Lett. 49 (1982) 1139, (SPIRES);
R. G. Arnold et al., “Measurement Of Elastic Electron Scattering From
The Proton At High Momentum Transfer,” Phys. Rev. Lett. 57 (1986)
174, (SPIRES). S. Platchkov et al., “Deuteron A(Q2) Structure Function
And The Neutron Electric Form-Factor,” Nucl. Phys. A 510 (1990) 740,
(SPIRES); S. Rock et al., “Measurement of elastic electron - neutron scat-
tering and inelastic electron - deuteron scattering cross-sections at high
momentum transfer,” Phys. Rev. D 46 (1992) 24, (SPIRES); A. Lung et
al., “Measurements of the electric and magnetic form-factors of the neutron
from Q2 = 1.75 (GeV/c)2 to 4 (GeV/c)2,” Phys. Rev. Lett. 70 (1993) 718,
(SPIRES); A. F. Sill et al., “Measurements of elastic electron - proton scat-
tering at large momentum transfer,” Phys. Rev. D 48 (1993) 29, (SPIRES).

[147] J. Bolz, “Das Nukleon im modifizierten harten Streubild,” Ph.D. thesis,
Bergische Universität Wupertal, 1995, (in German), unpublished.

[148] A. Schafer, L. Mankiewicz and Z. Dziembowski, “A Bound For The Three
Quark Component Of The Nucleon Wave Function,” Phys. Lett. B 233
(1989) 217, (SPIRES).

[149] P. Kroll, private communication.

[150] H. J. Behrend et al. [CELLO Collaboration], “A Measurement Of The Pi0,
Eta And Eta-Prime Electromagnetic Form-Factors,” Z. Phys. C 49 (1991)
401, (SPIRES).

http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB504%2c225
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB449%2c299
http://www.arxiv.org/pdf/hep-ph/9812280
http://www.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2cC18%2c137
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB325%2c183
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD48%2c2990
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c49%2c1139
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c57%2c174
http://www.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2cA510%2c740
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD46%2c24
http://www.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2c70%2c718
http://www.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2cD48%2c29
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2cB233%2c217
http://www.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2cC49%2c401


177

[151] J. Gronberg et al. [CLEO Collaboration], “Measurements of the meson pho-
ton transition form factors of light pseudoscalar mesons at large momentum
transfer,” Phys. Rev. D 57 (1998) 33, (SPIRES).

[152] P. Kroll and M. Raulfs, “The πγ transition form factor and the pion wave
function,” Phys. Lett. B 387 (1996) 848, (SPIRES).

[153] S. V. Mikhailov and A. V. Radyushkin, “The Pion Wave Function And
QCD Sum Rules With Nonlocal Condensates,” Phys. Rev. D 45 (1992)
1754, (SPIRES).

[154] E. Braaten, “QCD Corrections To Meson - Photon Transition Form-
Factors,” Phys. Rev. D 28 (1983) 524, (SPIRES).

[155] I. V. Musatov and A. V. Radyushkin, “Transverse momentum and Sudakov
effects in exclusive QCD processes: γ∗γπ0 form factor,” Phys. Rev. D 56
(1997) 2713, (SPIRES).

[156] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, “Skewed parton distribu-=⇒
tions in real and virtual Compton scattering,” Phys. Lett. B460 (1999) 204,
(SPIRES).

[157] C. Coriano and H. n. Li, “QCD sum rule and perturbative QCD approaches
to pion Compton scattering,” Phys. Lett. B 309 (1993) 409, (SPIRES).

[158] T. C. Brooks and L. J. Dixon, “Recalculation of proton Compton scattering
in perturbative QCD,” Phys. Rev. D 62 (2000) 114021, (SPIRES).

[159] A. S. Kronfeld and B. Nizic, “Nucleon Compton scattering in perturbative
QCD,” Phys. Rev. D44 (1991) 3445, (SPIRES).

[160] M. Vanderhaeghen, P. A. Guichon and J. Van de Wiele, Nucl. Phys. A622
(1997) 144c, (SPIRES).

[161] M. A. Shupe et al., “Neutral Pion Photoproduction And Proton Compton
Scattering At Large Angles,” Phys. Rev. D19 (1979) 1921, (SPIRES).

[162] A. V. Radyushkin, “Nonforward parton densities and soft mechanism for
form factors and wide-angle Compton scattering in QCD,” Phys. Rev. D58
(1998) 114008, (SPIRES).

[163] M. Glück, E. Reya and A. Vogt, “Dynamical parton distributions revisited,”
Eur. Phys. J. C5 (1998) 461, (SPIRES).

[164] M. Glück, E. Reya, M. Stratmann and W. Vogelsang, “Next-to-leading
order radiative parton model analysis of polarized deep inelastic lepton -
nucleon scattering,” Phys. Rev. D53 (1996) 4775, (SPIRES).
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