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Abstract

In this thesis we study a class of non self-similar fractals {Kα : α ∈ (0, 1/3)},
the so–called Hanoi attractors of parameter α. We investigate the geometric
and analytic relationships between the Hanoi attractors and the Sierpiński
gasket, which is one of the most studied self-similar fractals.

The first part of the thesis treats the problem from a geometric point of
view: For each α ∈ (0, 1/3) we construct the Hanoi attractor Kα and prove
that the sequence (Kα)α converges to the Sierpiński gasket in the Hausdorff
metric as α tends to zero. Moreover, we prove convergence of the Hausdorff
dimension as α tends to zero.

The second part of the thesis deals with the construction of an analysis on
Hanoi attractors. To this end, we introduce an appropriate resistance form
on Kα, choose a suitable Radon measure and obtain a local and regular
Dirichlet form that acts on the associated L

2-space. This form defines a
Laplacian on Kα, whose spectral properties we then investigate.

The study of the asymptotic behaviour of the eigenvalue counting function
of this Laplacian allows us to calculate the spectral dimension of Kα, which
turns out to coincide with the one of the Sierpiński gasket for all α ∈ (0, 1/3).
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Zusammenfassung

Diese Arbeit behandelt eine Klasse nicht selbstähnlicher Fraktale {Kα : α ∈

(0, 1/3)}, die sogenannten Hanoi–Attraktoren zum Parameter α. Die ana-
lytischen und geometrischen Zusammenhänge zwischen den Hanoi–Attrakto-
ren und dem Sierpiński–Dreieck, einem der bekanntesten selbstähnlichen
Fraktale, werden untersucht.

Der erste Teil der Arbeit betrachtet das Problem von einem geometrischen
Standpunkt: Für jedes α ∈ (0, 1/3) konstruieren wir den Hanoi–Attraktor
Kα und beweisen, dass die Folge (Kα)α für α → 0 in der Hausdorff–Metrik
gegen das Sierpiński–Dreieck konvergiert. Darüberhinaus beweisen wir auch
die Konvergenz der Hausdorff Dimension für α → 0.

Der zweite Teil der Dissertation befasst sich mit der Konstruktion einer
Analysis auf Hanoi–Attraktoren. Zu diesem Zweck konstruieren wir eine
resistance form auf Kα und definieren ein geeignetes Radon–Maß. Dadurch
erhalten wir eine lokale und reguläre Dirichletform auf dem zugehörigen L

2–
Raum. Diese Form definiert einen Laplace–Operator, dessen spektrale Eigen-
schaften wir untersuchen.

Die Untersuchung des asymptotischen Verhaltens der Eigenwertzählfunktion
des Laplace–Operators dient dazu, die spektrale Dimension von Kα bestim-
men zu können. Für alle α ∈ (0, 1/3) stimmt sie mit der spektralen Dimen-
sion des Sierpiński–Dreiecks überein.
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Chapter 1

Introduction

What is a fractal? From the Latin adjective fractus, which means irregular
or broken, the word fractal was coined by Mandelbrot in [35] in order to
describe (primarily natural) objects whose shape could not be identified with
anyone known from classical geometry. A fractal is certainly not a strictly
mathematical concept, since it has not been well defined yet. Indeed, its
definition is not unique and it will probably remain so, because there will
always be a mathematician able to define a new “rare” object that does not fit
any of the already existent definitions. A list of the properties of a “typical”
fractal can be found in [11].

Nevertheless, fractals are everywhere, so says the title of the book by M.
Barnsley [6]. Already in the 1970s, Mandelbrot described in [35] how fractal
structures are present from earth reliefs to lungs or even the universe. Later
on, scenarios for numerous physical phenomena like sponges, clouds or blood
vessels have been modelled at best by fractals. As the name itself means,
one of the principal properties of a fractal is its great irregularity, that is
reflected in its lack of smoothness. This prevents the description of physical
phenomena by means of classical partial differential equations like the heat-,
wave-, or Schrödinger equation. In search of an analogue emerges what has
been called fractal analysis, an area of analysis which deals with classical
analytic questions where the underlying space is a fractal.

Fractal analysis has two different approaches, called extrinsic and intrinsic.
The first one embeds the fractal set K in a suitable Euclidean space and
applies the analytic theory of this space to its restriction to K (see [22, 41]
for references). The present work will deal with the intrinsic approach, where
the construction of the analysis is based on the fractal itself. Here, the fractal
set K is typically post critically finite (it can be disconnected by removing
finitely many points) and self-similar (made of “copies” of itself). These
properties allow K to be defined as the renormalised limit of a sequence of
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2 Chapter 1. Introduction

finite sets Vn, as n → ∞. Diverse methods have been developed to construct
this analysis: on one hand, probability theory uses Brownian motion to reach
the definition of an operator on the fractal as the infinitesimal generator of
a stochastic process that arises as the limit of renormalized random walks
on the finite approximations Vn (see [5, 15] for original sources). On the
other hand, Jun Kigami set up in [24] a calculus by means of Laplacians and
Dirichlet forms, that are defined on K as the renormalized limit of sequences
of finite Laplacians and Dirichlet forms on Vn. These coincide with the known
graph Laplacian and graph energy of certain graphs whose vertex set is Vn.
Later on, he presented in [26] the theory of resistance forms, extending his
earlier research to much more general settings.

This work is devoted to the detailed construction of an analysis on a class
of fractals that we call Hanoi attractors, whose principal properties are the
lack of self-similarity and its relationship to one of the most studied post
critically finite self-similar fractals, the Sierpiński gasket (see Figure 1.1).
In fact, Hanoi attractors are closely related to a particular case of so-called
deformed Sierpiński gaskets, defined in [36].
As we already pointed out, we will perform this construction in the spirit
of Kigami’s approach, although we will modify his discrete approximation
of the Dirichlet form on these fractals in order to get an easier and more
natural form. The relationship of Hanoi attractors to the Sierpiński gasket
will provide us with the possibility of comparing our results with the known
ones for this specific fractal.

The origin of this investigation came from the following observation:
Let R2 denote the Euclidean plane, A := {1, 2, 3} the alphabet consisting of
three symbols 1, 2 and 3, and define the points p1, p2, p3 ∈ R2 by

p1 := (0, 0), p2 :=

�
1

2
,

√
3

2

�
, p3 := (1, 0).

For each i ∈ A, define the mappings

Si : R2
−→ R2

x �−→
x+ pi

2
, (1.0.1)

where pi is the fixed point of Si for each i ∈ A. Notice that p1, p2, p3 are
the vertices of an equilateral triangle of side length one.

The Sierpiński gasket, that we denote by K, is defined in [26, p.3] as the
unique non-empty compact subset of R2 such that

K =
3�

i=1

Si(K). (1.0.2)
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Figure 1.1: The Sierpiński gasket K.

We will see in Chapter 3 that this fractal is a post critically finite self-similar
set (p.c.f. for short) and that this property allows us to approximate it by
an increasing sequence of finite sets defined for each n ∈ N0 by

Vn :=
�

w∈An

Sw({p1, p2, p3}), (1.0.3)

where for each w = w1 . . . wn ∈ An and x ∈ R2, Sw(x) = Sw1 ◦ · · · ◦ Swn(x)
and Sø := IdR2 for the empty word ø.

The sets Vn can be considered as the vertex sets of the following graphs (see
Figure 1.2).

Definition 1.0.1. The n-th approximating graph of K is the graph Γn with
vertex set Vn and edge set given by

E(Γn) = {{x, y} | x �= y and ∃w ∈ A
n such that x, y ∈ Sw(V0)} .

Figure 1.2: Approximating graphs Γ0
, Γ1

and Γ2
.

In contrast to these graphs, but at the same time closely related to them,
we find the so-called Hanoi graphs, that have their origin as mathematical
representation of the Tower of Hanoi game (TH game for short), invented
by the French mathematician Édouard Lucas in 1883 (see [33]) and intensely
studied since then. We refer to [18, 19, 30] for a selection of results concerning
these graphs.
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This game consists of three (or in general p ≥ 3) vertical pegs, named 1, 2 and
3, and n discs numbered 1 through n according to rising diameters, n ∈ N.
At the beginning, these discs are situated on the first peg so that the largest
disc lies at the bottom and the smallest at the top, building a tower. The
goal of the game is to reconstruct the tower on one of the other pegs as
Figure 1.3 shows.

1 2 3 1 2 3

Figure 1.3: Starting state with the tower on the first peg and required final state

with the tower on the third peg.

Throughout the construction one must follow two basic rules:

- Each time one and only one disc has to be moved.

- No larger disc lies on a smaller one.

This means that only one disc lying at the top of a peg will be moved
each time. The states of the Tower of Hanoi for n discs and 3 pegs can be
represented by words w = w1 . . . wn ∈ {1, 2, 3}n = An, where wi indicates
the peg on which the disc i is stacked in state w. A move is a pair of states
(w,w�), where w

� results from w by a legal transfer of a disc (see Figure 1.4).

1 2 3 1 2 3

Figure 1.4: Legal move (11111, 21111) of the TH game with p = 3, n = 5.

This game can be modelled by the Hanoi graph H
n, which is defined for any

n ∈ N0 as the graph with vertex set An and edge set given by

E(Hn) =
��

w,w
��

| (w,w�) is a legal move in the TH game
�
.

The different moves done during the game build a trail in the corresponding
Hanoi graph. An example is given in Figures 1.5 and 1.6.
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1 2 3

w = 111

w3 = 1
w2 = 1

w1 = 1

1 2 3

w = 311

w3 = 1
w2 = 1

w1 = 3

1 2 3

w = 321

w3 = 1 w2 = 2
w1 = 3

1 2 3

w = 221

w3 = 1
w2 = 2

w1 = 2

1 2 3

w = 333

w3 = 3
w2 = 3

w1 = 3

Figure 1.5: Moves in the TH game for n = 3.

111 311

211

231 131

331

332
232

132

122 322

312

212
112

113

313 213

233

133123

323

223221

121

321

222

333

Figure 1.6: The marked edges build the trail corresponding to the moves done in

Figure 1.5.
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For our purposes we will label the vertices of H
n as the ones of the so-

called Sierpiński graphs S(n, 3) with vertex set An+1 and edge set defined
recursively as in [30] by

E(S(n+ 1, 3)) =
��

iw, iw
�� : i ∈ A,

�
w,w

��
∈ E(S(n, 3))

�

∪

�
{ij . . . j, ji . . . i} ∈

�
An+1

2

��
. (1.0.4)

It was proved in [19, Lemma 2] that Sierpiński graphs are isomorphic to
Hanoi graphs, thus we can use equivalently this alternative labelling (see
Figure 1.7).

11
21 23

33

31 13

32 12

22

11
13 31

33

12 32

21 23

22

Figure 1.7: Representation of the graphs H
2

and S(2, 3).

We want to regard Hanoi graphs as geometrical objects, treating the vertices
as points in R2 and the edges as straight lines with a determined length. To
this purpose, we define the parameter α > 0 to be the length of the dotted
lines in Figure 1.8. New similar lines appearing over the levels will correspond
to lengths that depend on α.

Roughly speaking, if we let α tend to zero, any Hanoi graph H
n will end up

to the (n− 1)−th approximating graph of K, as Figure 1.8 suggests.

α

α

α

1−α

2
α

α↓0
−−→

a

Figure 1.8: H
3

will become Γ2
as α tends to zero.
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Now the following question arrives: if we define a fractal Kα as “limit” of
these geometric Hanoi graphs, could we state any convergence of the form

“Kα

α↓0
−−→ K”?

In order to answer this, we first need to pose the problem in a proper ma-
thematical way, which means specifying the terms “limit” and “convergence”.

Chapter 2 is devoted to the geometric construction of the Hanoi attractor of
parameter α (see Figure 2.2) denoted by Kα, and the proof of convergence
of sequences (Kαk)k∈N0 to K with respect to the Hausdorff metric as well as
convergence of the Hausdorff dimension. The most important results of this
section have already appeared in [1] by the author and Uta Freiberg, and
they are stated in the following theorem.

Theorem 1.0.2. Let K denote the Sierpiński gasket and for each k ∈ N0,
let Kαk be the Hanoi attractor of parameter αk ∈ (0, 1/3). Then we have:

(i) For any decreasing sequence (αk)k∈N0 with αk ↓ 0, it holds that

h(Kαk ,K) −→ 0 as k → ∞,

where h denotes the Hausdorff distance of R2 between Kαk and K.

(ii) dimHKαk = ln 3

ln 2−ln(1−αk)
=: d and 0 < Hd(Kαk) < ∞. In particular,

dimHKαk

k→∞
−−−→ dimHK.

Figure 1.9: Hanoi attractor of parameter α.

In view of this, we became even more interested in the possibility of an
analytic convergence of these sequences (Kαk)k∈N0 to K in the sense of con-
vergence of the spectral dimension. To this purpose, Chapter 3 reviews the
calculation of the spectral dimension of the Sierpiński gasket. This quantity
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characterizes the asymptotic behaviour of the eigenvalue counting function
associated with the Laplacian on K, ∆K , given by

NN (x) := #{λ is a Neumann eigenvalue of −∆K , λ ≤ x}

respectively

ND(x) := #{λ is a Dirichlet eigenvalue of −∆K , λ ≤ x},

where the eigenvalues are counted with multiplicity.

The spectral dimension of K is the number dSK > 0 such that
2 logNN (x)

log x
� dSK �

2 logND(x)

log x
,

i.e. there exist constants c1, c2 > 0 and x0 > 0 such that

c1x
dSK

2 ≤ NN (x) ≤ c2x
dSK

2 ∀x ≥ x0

and the same holds for ND(x).

Chapter 4 is the core of this work. Here we follow a similar scheme as in
Chapter 3: we define a Laplacian on Kα by means of a suitable Dirichlet form
(EKα ,DKα) and afterwards study the asymptotic behaviour of its associated
eigenvalue counting function in order to calculate the spectral dimension of
the Hanoi attractor Kα. The most important results of this chapter are
Theorem 4.2.1, that states
Theorem 1.0.3. (EKα ,FKα) is a resistance form on Kα,

and Theorem 4.4.3, where we prove the following estimates for the asymp-
totic behaviour of the eigenvalue counting function of the Laplacian subject
to Neumann (resp. Dirichlet) boundary conditions.
Theorem 1.0.4. There exist constants Cα,1, Cα,β,1, Cα,2, Cα,β,2 > 0 depen-
ding on α and β, and x0 > 0 such that

Cα,1x
ln 3
ln 5 + Cα,β,1x

1/2
≤ ND(x) ≤ NN (x) ≤ Cα,2x

ln 3
ln 5 + Cα,β,2x

1/2

for all x ≥ x0.

The constant β will appear in the construction of a Radon measure on Kα.
This theorem allows us to determine the spectral dimension of Kα, which
turns out to be ln 9

ln 5
for all α ∈ (0, 1/3). Since it coincides with dSK for all

α ∈ (0, 1/3), we get analytical convergence.
The results referring to the construction of the Dirichlet form (EKα ,DKα)
have already been accepted for publication in [2], while the results concern-
ing the asymptotics of the eigenvalue counting function and the spectral
dimension will appear in the forthcoming paper [3].

Finally, the last chapter analyses the possible consequences of this result and
discusses some ideas and problems for further work.



Chapter 2

Geometric approximation

Recall the parameter α introduced in the previous chapter. For simplicity,
we will restrict ourselves to the geometric realisation of the Hanoi graph H

n

that fits into an equilateral triangle of side length one and we will consider
α ∈ (0, 1/3).

The aim of this chapter is to define compact sets Kα with a special property:
for any monotone decreasing sequence (αk)k∈N0 such that αk ∈ (0, 1/3) and
limk→∞ αk = 0, the sequence (Kαk)k∈N0 converges to the Sierpiński gasket
K in the Hausdorff metric. For simplicity, any such sequence (Kαk)k∈N0 will
be denoted just by (Kα).

2.1 Hanoi attractors

Let H (R2) denote the space of non-empty compact subsets of R2 and denote
by |·| the Euclidean metric. Given a point x ∈ R2 and a compact set A ∈

H (R2), we define the distance between the point x and the set A by

d(x,A) := min{|x− y| | y ∈ A}.

The minimum is indeed reached since A is compact. Given two non-empty
compact sets A,B ∈ H (R2), we define the Hausdorff distance between A

and B by
h(A,B) := inf {ε > 0 | A ⊆ Bε and B ⊆ Aε} ,

where Aε :=
�
x ∈ R2 | d(x,A) ≤ ε

�
is called the ε−neighbourhood of A.

The mapping

h : H (R2)× H (R2) −→ [0,+∞)

(A,B) �−→ h(A,B)

9



10 Chapter 2. Geometric approximation

defines a metric on H (R2) and (H (R2), h) is a complete metric space (see [6,
Theorem 7.1] for a proof).

A map S : R2 → R2 is called a contraction of ratio c ∈ (0, 1) if and only if

|S(x)− S(y)| ≤ c |x− y| ∀x, y ∈ R2
.

Further, if equality holds, i.e. |S(x)− S(y)| = c |x− y| for all x, y ∈ R2,
then we say that the map S is a contractive similitude of ratio c. In this
case, we can find a unitary 2× 2−matrix U and a point x0 ∈ R2 such that

S(x) = c Ux+ x0

for each x ∈ R2. Note that the image of a compact set under a contraction
is again a compact set.

A metric space such as (R2
, |·|) together with a finite family of contractions

{Si : R2 → R2}N
i=1

is called in [6, Definition 7.1] an iterated function sys-
tem (IFS for short) and it is denoted by {R2; Si, i = 1, . . . , N}. Each IFS
determines a unique non-empty compact set by considering the mapping

S : H (R2) −→ H (R2)

A �−→

N�

i=1

Si(A).

By [20, Section 5.3], S is a contraction in the complete metric space (H (R2), h),
hence it has a unique fixed point F ∈ H (R2) satisfying

F =
N�

i=1

Si(F ).

This set is called the attractor of the IFS {R2; Si, i = 1, . . . , N}. If the map-
pings {Si}

N

i=1
are contractive similitudes, then F is said to be self-similar.

Let us now consider the points in R2

p1 := (0, 0), p2 :=

�
1

2
,

√
3

2

�
, p3 := (1, 0),

p4 :=
p2 + p3

2
, p5 :=

p1 + p3

2
, p6 :=

p1 + p2

2

and define for any fixed α ∈ (0, 1/3) the mappings

Gα,i : R2
−→ R2

x �−→ Ai(x− pi) + pi, i = 1, . . . , 6,
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where A1 = A2 = A3 =
1−α

2
I2 and

A4 =
α

4

�
1 −

√
3

−
√
3 3

�
, A5 = α

�
1 0
0 0

�
, A6 =

α

4

�
1

√
3

√
3 3

�
.

Since α ∈ (0, 1/3), we have that 0 < α <
1−α

2
< 1, thus Gα,i is a contraction

in R2 for all i = 1, . . . , 6.

p1

p2

p3

p6

p5

p4

Figure 2.1:
6�

i=1
Gα,i(�), where � denotes the equilateral triangle of side length 1.

If we consider the IFS {R2;Gα,i, i = 1, . . . , 6}, we know that there exists a
unique Kα ∈ H (R2) such that

Kα =
6�

i=1

Gα,i(Kα).

We call this set the Hanoi attractor of parameter α. The name Hanoi comes
from the fact that it almost looks like the drawing of the graph of the TH
game if we had three pegs and “infinitely many discs”.

Figure 2.2: Hanoi attractor of parameter α.

Observe that the set Kα is not self-similar because Gα,4, Gα,5 and Gα,6 are
not similitudes. This lack of self-similarity will lead to difficulties in later
constructions and proofs.



12 Chapter 2. Geometric approximation

For the rest of this section, let α ∈ (0, 1/3) be fixed and let A denote the
alphabet on the three symbols 1, 2 and 3. Moreover, we define Gα,ø := idR2

for the empty word ø and write

Gα,w(x) := Gα,w1 ◦Gα,w2 ◦ · · · ◦Gα,wn(x)

for any word w = w1 · · ·wn ∈ An and x ∈ R2.

For each n ∈ N0, we define the set Wα,n by

Wα,n :=
�

w∈An

Gα,w({p1, p2, p3}).

For each i ∈ A, let us denote by ei the line segment from Gα,j(pk) to Gα,k(pj),
{i, j, k} = A without its endpoints (see Figure 2.3).

e3

e2

e1

Figure 2.3: The set Jα,1.

For each n ∈ N0, we define the set Jα,n by Jα,0 := ∅ and

Jα,n :=
n−1�

m=0

�

w∈Am

Gα,w

�
3�

i=1

ei

�
.

Note that the sequences (Wα,n)n∈N0 and (Jα,n)n∈N0 are monotonically in-
creasing, so we can define

Wα,∗ := sup
n

Wα,n =
�

n∈N0

Wα,n (2.1.1)

and
Jα := sup

n

Jα,n =
�

n∈N0

Jα,n. (2.1.2)

Finally we define for each n ∈ N0 the sets

Vα,n := Wα,n ∪ Jα,n
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Figure 2.4: Vα,0, Vα,1 and Kα.

and since the sequence (Vα,n)n∈N0 is also monotonically increasing, we can
define

Vα,∗ := sup
n

Vα,n =
�

n∈N0

Vα,n.

The following results present some geometric properties of Kα that will be
important at a later point.

Lemma 2.1.1. Let Fα be the unique non-empty compact set such that

Fα =
3�

i=1

Gα,i(Fα). (2.1.3)

The Hanoi attractor Kα can be written as the disjoint union

Kα = Fα ∪̇ Jα.

Proof. (1) Fα ⊆ Kα.

Define the mapping

T : H (R2) −→ H (R2)

B �−→

3�

i=1

Gα,i(B),

whose unique fixed point is Fα.

We know from [10, Theorem 9.1] that for any starting set B0 ∈ H (R2) such
that Gα,i(B0) ⊆ B0 for all i = 1, 2, 3, the sequence (Bn)n∈N0 defined by

Bn := T
◦n(B0), n ∈ N0,

converges to Fα in the Hausdorff distance h and

Fα =
�

n∈N0

Bn.
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Further, define the mapping

�T : H (R2) −→ H (R2)

B �−→

6�

i=1

Gα,i(B), (2.1.4)

whose fixed point in H (R2) is Kα.

Again by [10, Theorem 9.1], given a starting set C0 ∈ H (R2) such that
Gα,i(C0) ⊆ C0 for all i = 1, . . . , 6, the sequence (Cn)n∈N0 defined by

Cn := �T ◦n(C0), n ∈ N0,

converges to Kα in the Hausdorff distance h and

Kα =
�

n∈N0

Cn. (2.1.5)

Now, denote by � the (filled) triangle with vertices p1, p2, p3 and set B0 =
� = C0. Then,

Fα =
∞�

n=1

Bn =
∞�

n=1

T
◦n(B0) ⊆

∞�

n=1

�T ◦n(B0) = Kα,

as required.

(2) Kα \ Fα = Jα.

Consider x ∈ Kα, x /∈ Fα. By definition of Fα, there exists a number n ∈ N
and a word w ∈ {1, . . . , 6}n with at least one letter in {4, 5, 6}, such that

x ∈ Gα,w(Kα). (2.1.6)

Let wk, k ≤ n, be the first letter of w such that wk ∈ {4, 5, 6} and define
w := w1w2 . . . wk−1 ∈ Ak−1. By definition, Gα,wk+1...wn(Kα) ⊆ Kα, so we
have that

x ∈ Gα,wwk(Kα), (2.1.7)

and since Gα,wk(Kα) ⊆ Jα,1, it follows from (2.1.6) and (2.1.7) that

x ∈ Gα,w(Jα,1) ⊆ Jα,k ⊆ Jα,

and therefore Kα \ Fα ⊆ Jα.

It remains to prove that Jα ⊆ Kα \ Fα.

Consider the mapping �T defined in (2.1.4) and denote by � the (non filled)
triangle of vertices p1, p2 and p3. Further, set B0 := � and C0 := �. It is
clear that Jα,1 ⊆ B0 and B0 ⊆

�T (B0), thus B0 ⊆
�T ◦n(B0) for all n ∈ N.
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Then we have that

Jα,1 ⊆
�T ◦n(B0) ⊆ �T ◦n(C0) =: Cn

for all n ∈ N, which implies that

Jα,1 ⊆

�

n∈N0

Cn

(2.1.5)
= Kα, (2.1.8)

and finally we get that

Jα =
�

n∈N0

�

w∈An

Gα,w(Jα,1) =
�

n∈N0

�T ◦n(Jα,1)
(2.1.8)
⊆

�

n∈N0

�T ◦n(Kα) = Kα.

Thus Jα ⊆ Kα and it only remains to prove that Fα ∩ Jα = ∅.

By contradiction, suppose that there exists x ∈ Fα ∩ Jα. By definition of Jα
and Wα,∗, we know that Wα,∗ = Fα (see [26, Lemma 1.3.11] for a proof) and

Wα,∗ ∩ Jα = ∅, (2.1.9)

which implies that x has to belong to the boundary of Wα,∗ and therefore,
for any ball of radius δ > 0, B(x, δ) we have that

B(x, δ) ∩Wα,∗ �= ∅. (2.1.10)

Since Jα is the countable union of open sets, it is itself an open set, so if
x ∈ Jα, then there exists δ

�
> 0 such that x ∈ B(x, δ�) ⊆ Jα. This together

with (2.1.10) leads to ∅ �= B(x, δ�)∩Wα,∗ ⊆ Jα ∩Wα,∗ contradicting (2.1.9).

The next proposition shows that the sequence of sets (Vα,n)n∈N0 approxi-
mates Kα in the Euclidean norm.

Lemma 2.1.2. The set Vα,∗ is dense in Kα with respect to the Euclidean
norm.

Proof. Note that Vα,∗ may be decomposed as follows

Vα,∗ = Wα,∗∪̇ Jα,

where Wα,∗ and Jα were defined in (2.1.1) and (2.1.2).

Since Fα is a self-similar set, we know from [26, Lemma 1.3.11] that Wα,∗ is
dense in Fα in the Euclidean norm, i.e.

Wα,∗ = Fα.
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Moreover, we know by Lemma 2.1.1 that Kα = Fα ∪̇ Jα, which implies

Kα = Fα∪̇ Jα = Wα,∗∪̇ Jα ⊆ Wα,∗ ∪ Jα,∗ = V α,∗.

On the other hand, Kα is a compact subset of R2, hence closed with respect
to the Euclidean metric and it follows that

V α,∗ = Wα,∗ ∪ Jα ⊆ Kα = Kα,

as we wanted to prove.

2.2 Geometric convergence to the Sierpiński gasket

Now that we have defined the Hanoi attractor of parameter α ∈ (0, 1/3),
we consider sequences of Hanoi attractors (Kα), and analyse their geometric
behaviour as α tends to zero. The results appearing in this section have
already been published in a paper by Uta Freiberg and myself (see [1]).

Recall the definition of the Sierpiński gasket K in (1.0.2) and the approx-
imating sets Vn :=

�
w∈An Sw(V0) defined in (1.0.3) for each n ∈ N0. We

know from [26, Lemma 1.3.11] that the set

V∗ :=
�

n∈N0

Vn (2.2.1)

is dense in K with respect to the Euclidean norm, thus the sets Vn approxi-
mate K in the Hausdorff metric.

2.2.1 Convergence in the Hausdorff metric

This paragraph is devoted to the proof of the following statement:

Theorem 2.2.1. It holds that

h(Kα,K)
α↓0
−−→ 0.

In order to prove this, we need some preliminary results.

Lemma 2.2.2. Let V∗ be the set defined in (2.2.1), then we have that

h(V∗,Wα,∗) ≤ α

for all α ∈ (0, 1/3).
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Proof. We use the definition of the Hausdorff metric

h(V∗,Wα,∗) = inf {ε > 0 | V∗ ⊆ (Wα,∗)ε and Wα,∗ ⊆ (V∗)ε} .

(1) V∗ ⊆ (Wα,∗)α: we prove by complete induction over m that

Vm ⊆ (Wα,∗)α ∀m ∈ N0.

Case m = 0: there is nothing to prove because V0 = Wα,0.
Assume that Vm ⊆ (Wα,∗)α holds up to some m ∈ N0 and let x ∈ Vm+1 \Vm.
Then, there exist a point x ∈ Vm and a letter k ∈ A such that

x = Sk(x). (2.2.2)

Since x ∈ Vm, we know from the induction hypotheses that there exists
y ∈ Wα,∗ such that

|x− y| ≤ α. (2.2.3)

Consider the point y := Gα,k(y) ∈ Wα,∗, where k ∈ A is the same as
in (2.2.2). Then we get that

|x− y| = |Sk(x)−Gα,k(y)| =

����
1

2
x+

1

2
pk −

1− α

2
y −

1 + α

2
pk

����

=
1

2
|x− y + αy − αpk| ≤

1

2
|x− y|+

α

2
|y − pk|

(2.2.3)
≤

α

2
+

α

2
= α,

and therefore x ∈ (Wα,∗)α.
Thus we have proved that for every m ∈ N0 and for any x ∈ Vm, there exists
y ∈ Wα,∗ such that |x− y| ≤ α, i.e.

Vm ⊆ (Wα,∗)α ∀m ∈ N0.

Since V∗ =
�

m∈N0
Vm, we get

V∗ ⊆ (Wα,∗)α,

and this holds for all α ∈ (0, 1/3).
(2) It would remain to prove the inclusion Wα,∗ ⊆ (V∗)α for all α ∈ (0, 1/3).
The proof of this is analogous to the latter one by simply changing the roles
of V∗ and Wα,∗. Thus

Wα,m ⊆ (V∗)α ∀m ∈ N0,

and therefore
h(V∗,Wα,∗) ≤ α,

as we wanted to prove.
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Note that the bound h(V∗,Wα,∗) ≤ α is quite rough, since one could obtain
sharper estimates. However, this bound is sufficient for our purposes, as the
following corollary shows.

Corollary 2.2.3.
h(V∗,Wα,∗)

α↓0
−−→ 0.

Lemma 2.2.4. Let Fα be the set defined in Proposition 2.1.1. It holds that

h(Kα, Fα)
α↓0
−−→ 0.

Proof. In the proof of Lemma 2.1.1, we showed that Fα ⊆ Kα ∀α ∈ (0, 1/3),
which implies directly that

Fα ⊆ (Kα)ε ∀ ε > 0.

Now we prove that

Kα ⊆ (Fα)α
2

∀α ∈ (0, 1/3). (2.2.4)

Let x ∈ Kα. If x ∈ Fα, then we are done. So let us assume, x ∈ Jα. Then,
there exists n ∈ N and a word w = w1w2 . . . wn ∈ {1, . . . , 6}n, with at least
one letter in {4, 5, 6} (remember x /∈ Fα) such that

x = Gα,w(Kα).

Consider wk, k ≤ n the first letter of w such that wk ∈ {4, 5, 6} and define
w := w1w2 . . . wk−1 ∈ Ak−1. As in the proof of Lemma 2.1.1,

x ∈ Gα,wwk(Kα),

so there exists a point z ∈ Gα,wk(Kα) such that x = Gα,w(z). By con-
struction (see e.g. Figure 2.5) we can find a point y ∈ {Gα,i(pj), Gα,j(pi)}
i, j ∈ A, i+ j + wk = 9 such that

|z − y| ≤
α

2
.

Define y := Gα,w(y) ∈ Fα. Since Gα,1, Gα,2 and Gα,3 are similitudes of ratio
1−α

2
, Gα,w is a similitude of ratio

�
1−α

2

�k−1 and therefore

|Gα,w(z)−Gα,w(y)| =

�
1− α

2

�k−1

|z − y| .

Thus,

|x− y| = |Gα,w(z)−Gα,w(y)| =

�
1− α

2

�k−1

|z − y| ≤

�
1− α

2

�k−1

·
α

2
≤

α

2
,
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x

Gα,1(p3) Gα,3(p1)

Figure 2.5: For any x ∈ Gα,5(Kα) it holds that |x−Gα,1(p3)| ≤
α
2 or

|x−Gα,3(p1)| ≤
α
2 .

and (2.2.4) holds.
This finally implies

h(Kα, Fα) ≤
α

2
α↓0
−−→ 0,

as we wanted to prove.

Now we are ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Since h is a metric, using the triangle inequality we
obtain

h(Kα,K) ≤ h(Kα, Fα) + h(Fα,K). (2.2.5)

Moreover, Wα,∗ and V∗ are dense in Fα and K respectively, hence

h(Fα,K) ≤ h(Fα,Wα,∗)� �� �
=0

+h(Wα,∗, V∗) + h(V∗,K)� �� �
=0

= h(Wα,∗, V∗). (2.2.6)

Finally, applying Lemma 2.2.4 and Lemma 2.2.2, it follows from (2.2.5)
and (2.2.6) that

h(Kα,K) ≤ h(Kα, Fα) + h(Wα,∗, V∗)
α↓0
−−→ 0,

as we wanted to prove.

2.2.2 Convergence of Hausdorff dimension

In this paragraph we centre our interest in the Hausdorff dimension of the
set Kα. In view of Theorem 2.2.1, one expects that the Hausdorff dimension
of Kα converges to the Hausdorff dimension of K as α tends to zero. We
will show that this is true.

Let us recall some important definitions concerning Hausdorff dimension.
Hereby we refer to [10, Chapter 2].
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Definition 2.2.5. Let A be a non-empty subset of the n−dimensional Eu-
clidean space Rn.

(1) The diameter of A is defined as

|A| := sup
x,y∈A

{|x− y|} .

(2) A countable collection of sets {Ui}
∞
i=1

is called a δ−covering of A if

A ⊆

∞�

i=1

Ui and 0 ≤ |Ui| ≤ δ.

(3) Let s ≥ 0. For any δ > 0 we define

H
s

δ
(A) := inf

� ∞�

i=1

|Ui|
s
| {Ui}

∞
i=1

is a δ − covering of A

�
.

(4) The limit
H

s(A) = lim
δ↓0

H
s

δ
(A)

is called the s-dimensional Hausdorff measure of A. This limit exists
as an element of [0,+∞] because the sequence (Hs

δ
(A))δ>0 is monotone

and non-decreasing for δ ↓ 0.

(5) If we consider Hs(A) as a function of s, there exist a critical value of
s where the function jumps down from ∞ to 0 (see [10, pg.31]). This
critical value is called the Hausdorff dimension of A and it is denoted
by dimHA. It holds that

dimHA = inf {s ≥ 0 | H
s(A) = 0} = sup {s ≥ 0 | H

s(A) = ∞} .

(2.2.7)
Observe that for s = dimHA, Hs(A) may be zero, infinite, or some
positive finite number.

In the previous section we defined contractions and contractive similitudes.
A finite family of contractive similitudes

�
Si : R2 → R2

�N

i=1
is said to satisfy

the open set condition (OSC) if there exists a non-empty bounded open set
V ⊆ R2 such that

N�

i=1

Si(V ) ⊆ V and Si(V ) ∩ Sj(V ) = ∅ ∀ i �= j.
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Theorem 2.2.6. Provided that the family {Si}
N

i=1
with contraction ratios

c1, . . . , cN ∈ (0, 1) satisfies the (OSC) and F is the unique non-empty com-
pact set such that

F =
N�

i=1

Si(F ),

then dimH F = s, where s > 0 is the unique solution of the equation

N�

i=1

c
s

i = 1. (2.2.8)

Moreover, for this value of s, 0 < Hs(F ) < ∞.

Proof. See [20, Section 5.3] for the original proof or [10, Theorem 9.3].

Our next goal is to determine the Hausdorff dimension of Kα, but since
Kα is not self-similar, we can not apply the formula in (2.2.8) directly to
calculate it. To solve this problem, we will use the decomposition proved in
Proposition 2.1.1.

Theorem 2.2.7. Let α ∈ (0, 1/3). The Hausdorff dimension of the Hanoi
attractor Kα is given by

dimHKα =
ln(3)

ln(2)− ln(1− α)
.

Notice that this result justifies our condition α ∈ (0, 1/3) since if α ≥ 1/3,
then dimH Kα = 1.

Proof. By Proposition 2.1.1, Kα = Fα ∪̇ Jα, and from the countable stability
of the Hausdorff dimension, we know that

dimHKα = sup{dimH Fα, dimH Jα}.

It is easy to see that Fα satisfies the open set condition (take just V to be
the inner of the equilateral triangle with vertices p1, p2 and p3), so we can
apply Theorem 2.2.6 to calculate dimH Fα. This is the unique number s > 0
such that

3�

i=1

�
1− α

2

�s

= 1.

The solution of this equation is

s =
ln 3

ln 2− ln(1− α)
= dimH Fα.
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On the other hand, the set Jα is a countable union of segments, i.e. of sets
with Hausdorff dimension 1. By countable stability again, we obtain

dimH Jα = sup
n

{dimH Jα,n} = 1.

Thus we get that

dimHKα = max

�
ln(3)

ln(2)− ln(1− α)
, 1

�
.

Since α ∈ (0, 1/3), it follows that ln 3

ln 2−ln(1−α)
> 1 and therefore

dimHKα =
ln 3

ln 2− ln(1− α)
,

as we wanted to prove.

The most important consequence, and the reason for our great interest in
this theorem is the following observation.

Corollary 2.2.8.

dimHKα

α↓0
−−→

ln 3

ln 2
= dimHK.

2.2.3 Hausdorff measure

Remember that the s-dimensional Hausdorff measure of a Borel set with
Hausdorff dimension s can be zero or even infinity. Although we may not use
this fact until Chapter 4, it is important to determine if the dα-dimensional
Hausdorff measure of Kα is positive and finite or not. Hereby dα denotes
the Hausdorff dimension of Kα given in Theorem 2.2.7. The following result
answers this question.

Theorem 2.2.9. For all α ∈ (0, 1/3),

0 < H
dα(Kα) < ∞.

Proof. We apply once more Proposition 2.1.1 and write Kα as the disjoint
union Fα ∪̇ Jα, where the set Fα was defined as the unique non-empty com-
pact set of R2 such that

Fα =
3�

i=1

Gα,i(Fα).

By additivity of the Hausdorff measure, it holds that

H
dα(Kα) = H

dα(Fα) +H
dα(Jα). (2.2.9)
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From the proof of Theorem 2.2.7, we know that dimH Jα = 1 and since
dα > 1, Hdα(Jα) = 0. Thus (2.2.9) becomes

H
dα(Kα) = H

dα(Fα),

and Theorem 2.2.6 implies directly that

0 < H
dα(Kα) < ∞,

as we wanted to prove.

In view of these results, we would like to believe that the Hausdorff measure
of Kα also converges to the Hausdorff measure of K, but this still remains a
conjecture, since none of those quantities is already known.

Conjecture 2.2.10. Set dα := dimH Kα and d := dimH K. Then it holds
that

H
dα(Kα)

α↓0
−−→ H

d(K).



Chapter 3

Analysis on the Sierpiński

gasket K

So far, we have proved convergence of the sequence (Kα) to K as α tends to
zero in the Hausdorff metric and convergence of the Hausdorff dimension. We
would like to establish next the convergence of the spectral dimension, what
we could call “analytic” convergence of the sequence (Kα) to K. Dealing
with spectral dimension of a set requires the definition of a Laplacian or
equivalently a Dirichlet form on it.

The theory of Dirichlet forms where the underlying space is a fractal started
with the construction of Brownian motion on the Sierpiński gasket by Gold-
stein and Kusuoka [15, 31] and it has been enlarged since then with many
results (see for example [5, 24, 25]).

This chapter reviews the construction of the standard Laplacian on K and
the computation of its spectral dimension by means of Dirichlet forms. An
outline of the theory of Dirichlet forms on Hilbert spaces can be found in
the appendix.

3.1 Approximating forms

Recall that a set F ∈ H (R2) is said to be self-similar if there exists a finite
family of contractive similitudes {Si : R2 → R2}N

i=1
such that

F =
N�

i=1

Si(F ).

24
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Let Σ := {1, . . . , N}N and define for each i = 1, . . . , N the mapping

σi : Σ −→ Σ

w1w2 . . . �−→ iw1w2 . . . .

The set Σ can be equipped with a metric d given by

d(w, τ) = 2min{m | wm �=τm}−1

(see [26, Theorem 1.2.2] for a proof) and if there exists a continuous sur-
jection π : Σ → F such that Si ◦ π = π ◦ σi on Σ for every i = 1, . . . , N ,
then (F, {1, . . . , N}, {Si}

N

i=1
) is called in [25, Definition 1.3] a self-similar

structure.

For such a structure, its critical set C (F ) and its post critical set P(F ) are
defined by

C (F ) := π
−1




�

i �=j

Si(F ) ∩ Sj(F )



 and P(F ) :=
�

n≥1

σ
n(C (F )),

where σ : Σ → Σ is the left shift map given by σ(w1w2w3 . . .) = w2w3 . . .

and σ
n means the n−th iterate of σ.

A self-similar set F is called post critically finite (p.c.f. for short) if its post
critical set is finite. This corresponds to the mathematical notion of finitely
ramified fractal.

Hereafter, we consider the self-similar structure (K, {1, 2, 3}, {Si}
3

i=1
) on the

Sierpiński gasket K, where the contractive similitudes S1, S2 and S3 were
defined in (1.0.1) by

Si : R2
−→ R2

x �−→
x+ pi

2
,

for p1 := (1, 0), p2 = (1/2,
√
3/2) and p3 := (1, 0). As in Chapter 2, we set

A := {1, 2, 3} to be the alphabet consisting of the three symbols 1, 2 and
3. Moreover, we know from [26, Theorem 1.2.3] that there is a surjection
π : AN → K such that Si ◦ π = π ◦ i for every i ∈ A.

Moreover, the mappings Si : R2 → R2 are contractive similitudes of ratio 1

2

and the critical and post critical set of K are given by

C (K) = {12, 21, 13, 31, 23, 32},

and
P(K) = {1, 2, 3}
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respectively, where n = nnn . . . for n ∈ N. Hence, K is a p.c.f. self-similar
set.

The key idea in the construction of the Dirichlet form (EK ,DK) for K is
the fact that K can be geometrically approximated by the monotonically
increasing sequence of finite sets (Vn)n∈N0 that were defined in (1.0.3) by
V0 := {p1, p2, p3} (= π(P(K))) and

Vn :=
�

w∈An

Sw(V0)

for each n ∈ N. By [26, Lemma 1.3.11], the set V∗ :=
�

n∈N0
Vn is dense in

K with respect to the Euclidean norm. This allows the Dirichlet form EK

for the whole K to arise as the limit of a sequence of finite bilinear forms
(En)n∈N0 defined for each finite set Vn, n ∈ N0.

Definition 3.1.1. Any two points x, y ∈ Vn, x �= y, are called (Sierpiński)
n-neighbours if there exists w ∈ An such that x, y ∈ Sw(V0). In this case,
we write x

n
∼ y and Sw(V0) is called the n−cell x and y belong to.

For each n ∈ N0, we consider the functional En : Dn → R defined by





Dn := {u : Vn → R},

En[u] :=
�

x
n∼y

�
u(x)− u(y)

�2
.

For any function u ∈ Dn, the quantity En[u] is also known as the energy of
u at level n. Applying the polarization identity we may define the following
bilinear form En : Dn ×Dn → R,






Dn := {u : Vn → R},

En(u, v) :=
1

2
(En[u+ v]− En[u]− E[v]).

(3.1.1)

Definition 3.1.2. Let n ∈ N0 and u ∈ Dn. The harmonic extension of u to
Vn+1 is the function ũ : Vn+1 → R such that

En+1[ũ] = min{En+1[v] | v ∈ Dn+1 and v|Vn ≡ u}.

Note that the existence and uniqueness of such an extension follows directly
from its construction as the solution of a minimization problem expressed
by a linear system of equations (see [39, p.13] for details).

For the sequence of bilinear forms defined in (3.1.1) we would like to have
invariance under harmonic extension, i.e., if u ∈ Dn and ũ ∈ Dn+1 is its
harmonic extension, then it should hold that

En[u] = En+1[ũ].
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As the following calculation shows, the energy functional En does not fulfill
this invariance property, so we need to find a factor ρn > 0 such that if we
define En[u] := ρ

−1
n En[u], then En satisfies it. For each n ∈ N0, the factor ρn

is called renormalization factor of the energy En.

This factor can be calculated as follows: without loss of generality, consider
the function u0 : V0 → R whose values are given by u0(p1) = 1, u0(p2) = 0 =
u0(p3). It is easy to see that E0[u0] = 2 and if we want ũ1 : V1 → R to be
the harmonic extension of u0, we just need to minimize the quantity

E1[ũ1] =
�

x
n∼y

(ũ1(x)− ũ1(y))
2
,

where the unknowns are the values of u1 at V1 \V0. The property of K being
p.c.f. is very important at this point: thanks to it, the set V1 \ V0 is finite
and therefore we have to solve a finite number of equations.

Solving this minimization problem leads to

E1[ũ1] =
3

5
E0[u0],

and an inductive argument shows that

En+1[ũ] =
3

5
En[u] ∀n ∈ N0,

where ũ : Vn+1 → R is the harmonic extension of u : Vn → R (see [39, p.14]
for details).

Thus, given any function u0 : V0 → R,

En[ũn] =

�
3

5

�n

E0[u0]

for the harmonic extension of u0 to Vn, ũn : Vn → R. If we now define the
bilinear form

En(u, v) :=

�
3

5

�−n

En(u, v), u, v ∈ Dn,

then it is invariant under harmonic extension for all n ∈ N0 and ρn :=
�
3

5

�n

was the factor we were looking for.

An alternative method to obtain this renormalization factor can be found
in [39, Section 1.5].
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3.2 Dirichlet form on the Sierpiński gasket

Let d := dimHK = ln 3

ln 2
and consider the Hilbert space L

2(K,µ), where
µ is the Borel probability measure given by the normalized d-dimensional
Hausdorff measure restricted to K, i.e.

µ(A) :=
1

Hd(K)
H

d

|K (A), A ⊆ R2 Borel.

Remark 3.2.1. It is proved in [20] that µ is the unique Borel probability
measure with the property

µ(A) =
1

3

3�

i=1

µ(S−1

i
(A)), A ⊆ R2 Borel.

Because the measure µ satisfies this property, it is called a self-similar mea-
sure and the factor 1

3
may be understood as its weights.

Further, it is proved in [21, Corollary 2] that the sequence of measures
(µn)n∈N0 supported on Vn and defined by

µn(A) :=
2

3n+1

�

x∈Vn

δx(A) for A ⊆ K Borel,

where δx denotes the Dirac measure at the point x, converges weakly to µ.

The measure µ allows us to consider the Hilbert space L
2(K,µ) with inner

product (·, ·)µ, where we define our desired Dirichlet form.

Given two functions u, v : V∗ → R, we define for any n ∈ N0

En(u, v) := En(u|Vn , v|Vn).

Notice that for fixed u : V∗ → R, the sequence (En(u, u))n∈N0 is non-decreasing
by construction, so we can define the symmetric bilinear form EK : D∗

K
×

D∗
K

→ R by





D
∗
K := {u : V∗ → R | lim

n→∞
En(u, u) < ∞},

EK(u, v) := lim
n→∞

En(u, v).

This definition only involves functions defined on V∗ and we want to consider
functions on K. Fortunately, we know from [39, p.19] that any function
u ∈ D∗

K
is Hölder – and therefore uniformly – continuous on V∗. Since V∗ is

dense in K, any function u ∈ C(V∗) can be uniquely extended to a continuous
function on K. We denote this extension again by u.



3.3 The weak Laplacian 29

Now we can define a symmetric bilinear form EK : �DK × �DK → R by
� �DK := {u : K → R | u|V∗ ∈ D

∗
K},

EK(u, v) := lim
n→∞

En(u|V∗ , v|V∗ ).

Theorem 3.2.2. Let DK be the completion of �DK with respect to the norm

�u�EK,1
:=

�
EK(u, u) + (u, u)L2(K,µ)

�1/2
.

The pair (EK ,DK) is a local regular Dirichlet form on L
2(K,µ).

Proof. The original proof can be found in [31, Theorem 4.6] .

For further properties of this Dirichlet form we refer to [31, 29].

3.3 The weak Laplacian

From the theory of Dirichlet forms (see Appendix) we know that (EK ,DK)
has an associated non-positive self-adjoint operator (L,D(L)) such that D(L)
is dense in DK and for any u ∈ D(L)

EK(u, v) = (−Lu, v)µ ∀ v ∈ DK .

This operator is called the Laplacian on K with respect to the measure µ

and we will denote it by ∆N
µ . The superscript N refers to the fact that, if we

consider V0 = π(P(K)) as the boundary of K, then the normal derivative
of u on V0 (see Definition 3.3.2) is zero for all u ∈ D(∆N

µ ). This means, all
functions on the domain of the Laplacian fulfil Neumann boundary condi-
tions.

Definition 3.3.1. Let u ∈ DK . If there exists a unique continuous function
f ∈ C(K) such that

EK(u, v) = −

�

K

fv dµ ∀ v ∈ DK ,

then we say that u ∈ D(∆N
µ ) and for this u ∈ D(∆µ) we set ∆N

µ u := f .

Normal derivatives are defined on the boundary in the following way.

Definition 3.3.2. [39, p.38] Let x ∈ V0 and u ∈ C(K). The normal deriva-
tive of u at the point x is given by

∂u

∂ν
(x) := lim

n→∞

�
5

3

�n�

y
n∼x

�
u(x)− u(y)

�
,

whenever the limit exists and is finite.
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It can be proven (see [27, Proposition 8.6]) that the functions in the domain
of the Laplacian associated to (EK ,DK) directly satisfy Neumann boundary
conditions. The Laplacian subject to Dirichlet boundary conditions arises
as the operator associated to the following Dirichlet form

�
D

0

K := {u ∈ DK |u|V0 ≡ 0},

E
0

K := EK |D0
K×D0

K
.

(3.3.1)

For a first order analysis of these operators, we shall study their spectrum.
Thus we are interested in the eigenvalue problem for both Laplacians −∆N

µ

and −∆D
µ (i.e. Laplacian subject to homogeneous Neumann (resp. Dirichlet)

boundary conditions). Both problems turn out to be equivalent to the eigen-
value problem for the respective associated Dirichlet form, as the following
shows.

Definition 3.3.3. Let λ ≥ 0 and let (E ,D) be a Dirichlet form in L
2(K,µ).

If there exists a function u ∈ D, u �= 0, such that

E(u, v) = λ(u, v)µ ∀ v ∈ D,

then λ is called an eigenvalue of E and u is an associated eigenfunction.

Proposition 3.3.4. For λ ∈ R and u ∈ DK ,

EK(u, v) = λ(u, v)µ ∀ v ∈ DK

if and only if u ∈ D(∆N
µ ) and ∆N

µ u = λu.

Analogously, for λ ∈ R and u ∈ D0

K
,

E
0

K(u, v) = λ(u, v)µ ∀ v ∈ D
0

K

if and only if u ∈ D(∆D
µ ) and ∆D

µ u = λu.

Proof. See [29, Proposition 5.1], resp. [29, Proposition 5.2].

This means that the set of eigenvalues of the Laplacian −∆N
µ coincides with

the set of eigenvalues of the Dirichlet form (EK ,DK) and the same holds for
−∆D

µ and (E0

K
,D0

K
).

The following proposition shows that the spectrum of the Laplacian on K

subject to Neumann boundary conditions coincides with the set of its eigen-
values. The same results hold for the Dirichlet case just by writing ∆D

µ and
(E0

K
,D0

K
) instead of ∆N

µ and (EK ,DK).
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Lemma 3.3.5. Let ρ(∆N
µ ) denote the resolvent set of ∆N

µ and for any λ ∈

ρ(∆N
µ ), let RN

λ
:= (λ−∆N

µ )−1 be a resolvent of ∆N
µ . Then,

κ ∈ σ(RN

λ
) ⇔

1

κ
− λ ∈ σ(−∆N

µ ).

Proof. See [12, Lemma 6.8].

Proposition 3.3.6. The spectrum of the Laplacian −∆N
µ consists of count-

ably many non-negative eigenvalues with finite multiplicity and only accumu-
lation point at +∞.

Proof. Let R
N

λ
be a resolvent of ∆N

µ , λ ∈ ρ(∆N
µ ). Recall that ∆N

µ is the
operator associated with the Dirichlet form (EK ,DK).

Since EK is symmetric, we know from the theory of Dirichlet forms that RN

λ

is self-adjoint (see Theorem A.2.12 in Appendix).

On the other hand, we know from [29, Section 5] that the inclusion map from
the Hilbert space (DK , EK,1) into L

2(K,µ) is a compact operator. Thus,
by [9, Exercise 4.2] RN

λ
is a compact operator.

Now, it follows from the theory of compact self-adjoint operators that R
N

λ

has countable many eigenvalues, all non-negative and of finite multiplicity
with the only accumulation point at zero (see e.g [7, Theorem 6.8]).

Finally, the assertion follows by Lemma 3.3.5.

3.4 Spectral asymptotics

The study of the asymptotic behaviour of the spectrum of the Laplacian
∆µ has great importance from a physical point of view, since it describes
the density of states for diffusion or wave propagation that are modelled
by differential equations involving ∆µ. We are interested in the asymptotic
order of the eigenvalue distribution of this operator, which is reflected in the
asymptotic behaviour of the so called eigenvalue counting function.

As we showed in Proposition 3.3.6, the Neumann (resp. Dirichlet) eigenval-
ues of ∆µ are non-negative and with finite multiplicity, so it makes sense to
“count” them.

Definition 3.4.1. The eigenvalue counting function of −∆N
µ at any point

x ≥ 0 is given by

NN (x) := #{κ | κ is an eigenvalue of −∆N

µ with κ ≤ x},

where each eigenvalue is counted according to its multiplicity.
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The eigenvalue counting function of −∆D
µ is defined analogously and denoted

by ND(x).

This function can be defined for Dirichlet forms as well: given a Dirichlet
form (E ,D), we define its eigenvalue counting function by

N(x; E ,D) := #{κ | κ is an eigenvalue of E with κ ≤ x}.

Proposition 3.3.4 therefore says that for all x ≥ 0, N(x; EK ,DK) = NN (x)
and N(x; E0

K
,D0

K
) = ND(x).

Theorem 3.4.2. There exist constants C1, C2 > 0 and x0 > 0 such that

C1x
dS
2 ≤ NN (x) ≤ C2x

dS
2 ∀ x ≥ x0.

The exponent dS is called spectral dimension of the Sierpiński gasket K and
for this particular case it holds that

dS =
ln 9

ln 5
.

The same holds for the function ND(x) with the same number dS.

Proof. See [29, Theorem 2.4].

The crucial step in the proof of this theorem is the following lemma:

Lemma 3.4.3. For all x ≥ 0 we have

3�

i=1

ND

�
x

5

�
≤ ND(x) ≤ NN (x) ≤

3�

i=1

NN

�
x

5

�
(3.4.1)

and
ND(x) ≤ NN (x) ≤ ND(x) + #V0. (3.4.2)

Proof. See [29, Lemma 2.3].

On showing inequalities (3.4.1) and (3.4.2), one applies the scaling property of
the Dirichlet form (EK ,DK) and the so called Dirichlet-Neumann bracketing
method. Since both are quite important results, we explain them below.

The scaling property of the Dirichlet form (EK ,DK) is stated as follows:

Lemma 3.4.4. For each u, v ∈ DK it holds that

EK(u, v) =
5

3

3�

i=1

EK(u ◦ Si, u ◦ Si).
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Proof. See [29, Lemma 6.1].

This allows us to define a new Dirichlet form (�EK , �DK) on L
2(K,µ), given

by





�DK := {u : K \ V1 → R | ∀ i = 1, 2, 3, ∃ui ∈ DK s. t. ui|K\V0
= u ◦ Si|K\V0

},

�EK(u, v) :=
5

3

3�

i=1

EK(ui, vi).

Proposition 3.4.5. The pair (�EK , �DK) has the following properties:

(i) D(EK) ⊆ �DK and EK = �EK |DK×DK .

(ii) (�EK , �DK) is a local regular Dirichlet form on L
2(K,µ).

(iii) The inclusion map �DK �→ L
2(K,µ) is a compact operator.

(iv) N(x; �EK , �DK) =
�

3

i=1
N

�
x

5
; EK ,DK

�
.

Proof. See [29, Proposition 6.2].

The method of Dirichlet-Neumann bracketing is based in the max-min prin-
ciple and it was introduced in [8, Chapter VI.1]. This method relates the
eigenvalue counting function of different Dirichlet forms, leading to the fol-
lowing monotonicity principle stated in [32, Proposition 4.2]: Given two
Dirichlet forms (EK ,DK) and (E0

K
,D0

K
) such that D0

K
is a closed subspace

of DK and E0

K
= EK |D0

K×D0
K

, it holds that

N(x; E0

K ,D
0

K) ≤ N(x; EK ,DK) ∀ x ≥ 0.

Equivalently, this means

ND(x) ≤ NN (x) ∀ x ≥ 0,

which is the second inequality in (3.4.1).

Remark 3.4.6. This result can also be obtained using the so–called minimax
principle or variational method, that can be found in [9, Chapter 4]. We will
make use of it in the next chapter.

Due to Proposition 3.4.5 (i)− (ii), we can also apply the Dirichlet-Neumann
bracketing to the Dirichlet forms (EK ,DK) and (�EK , �DK) to get

N(x; EK ,DK) ≤ N(x; �EK , �DK).
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It follows from Proposition 3.4.5 (iv) that

N(x; EK ,DK) ≤
3�

i=1

N

�
x

5
; EK ,DK

�
,

which is equivalent to

NN (x) ≤
3�

i=1

NN

�
x

5

�
,

so the last inequality in (3.4.1) is proved. The inequality

3�

i=1

ND

�
x

5

�
≤ ND(x)

is obtained analogously by considering the pair of Dirichlet forms (E0

K
,D0

k
)

and (�E0

K
, �D0

k
), where

� �D0

K := {u ∈ D
0

K | u|V1 = 0},

�E0

K(u, v) := E
0

K | �D0
K× �D0

K
.

Finally, inequality (3.4.2) assures that Theorem 3.4.2 holds for both functions
NN (x) and ND(x) with the same exponent dS .

Remark 3.4.7. It is proved in [29, Theorem 2.4] that the spectral dimension
dS is the unique positive number such that

3�

i=1

�
1

5

� dS
2

= 1.

The number 1

5
is the product 3

5
·
1

3
, where 3

5
is the renormalization factor of

the energy EK and 1

3
is the contraction factor of the self-similar measure µ.

All results obtained in this chapter will be compared in the next one with
their analogue in the case of Kα.



Chapter 4

Analysis on the Hanoi

attractor Kα

This section is devoted to the establishment of a calculus for any Hanoi
attractor Kα, α ∈ (0, 1/3). The construction is based on the theory of
resistance and Dirichlet forms and it follows an analogous scheme as the
case of the Sierpiński gasket: First, we construct a sequence of renormalized
bilinear forms (Eα,n)n∈N0 , where each Eα,n is defined for the approximating
set Vα,n. Secondly, we obtain a resistance form EKα for the Hanoi attractor
Kα by taking the limit of Eα,n as n → ∞. Afterwards, we introduce a
Radon probability measure µα on Kα, so that EKα becomes a Dirichlet form
on L

2(Kα, µα) with an associated Laplacian on Kα. Finally, we study the
asymptotic behaviour of the distribution of the eigenvalues of this Laplacian
and determine the spectral dimension of Kα.
The results concerning the construction of the Dirichlet form will appear
in the paper by Uta Freiberg and myself, [2], while the calculation of the
spectral dimension will appear in the forthcoming paper [3].

4.1 Approximating forms

In this paragraph we define a sequence of bilinear forms (Eα,n)n∈N0 that will
lead to the Dirichlet form (EKα ,DKα). These bilinear forms (together with
their corresponding domain) have been proved to be also Dirichlet forms
in [2].
We work with the alphabet A := {1, 2, 3}, the IFS {R2;Gα,i, i = 1, . . . , 6}
associated to Kα and the sets Wα,n, Jα,n and Vα,n, defined in Section 2.1 by

Wα,n :=
�

w∈An

Gα,w({p1, p2, p3}), Jα,n :=
n−1�

m=0

�

w∈Am

Gα,w(∪
3

i=1ei)

35
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and Vα,n := Wα,n ∪ Jα,n for each n ∈ N0.

In addition, we denote by Jα,n the set of connected components of Jα,n for
each n ∈ N0 and Jα :=

�
n∈N Jα,n.

Since all results presented in this chapter hold for any α ∈ (0, 1/3), we will
no longer mention this condition explicitly. Moreover, notice that the set
Vα,0 = {p1, p2, p3} is independent of α, thus we will denote it from now on
just by V0 and consider it as the boundary of Kα.

4.1.1 Non-renormalized forms

In order to construct the sequence (Eα,n)n∈N0 , we start by defining a quite
simple bilinear form acting on functions u : Vα,n → R for each n ∈ N0.

Definition 4.1.1. Any two points x, y ∈ Vα,n, x �= y, are called (Sierpiński)
(α, n)-neighbours if there exists w ∈ An such that x, y ∈ Gα,w(V0). In this
case we write x

α,n
∼ y and Gα,w(V0) is called the n−cell x and y belong to.

Definition 4.1.2. For any n ∈ N0 and x ∈ Wα,n we denote by w
x the unique

word of length n + 1, wx

1
. . . w

x

n+1
∈ An+1 such that x = Gα,w

x
1 ...w

x
n
(pwx

n+1
).

The Sierpiński α−graph Γn
α is defined by

�
V (Γn

α) = Wα,n,

E(Γn

α) = {{x, y} | x
α,n
∼ y},

and the Hanoi α−graph H
n
α by

�
V (Hn

α) = Wα,n,

E(Hn

α) = {{x, y} | {w
x
, w

y
} ∈ E(S(n, 3))},

where S(n, 3) is the Sierpiński graph considered in (1.0.4).

Definition 4.1.3. Define D0 := {u : V0 → R} and for each n ∈ N, set

Dα,n := {u : Vα,n → R |u continuous and u|e ∈ W
1,2(e, dx) ∀ e ∈ Jα,n}.

The functional Eα,n : Dα,n → R is defined by

Eα,n[u] :=
�

x
α,n∼ y

(u(x)− u(y))2 +

�

Jα,n

|∇u|
2
dx,

and we call Eα,n[u] the energy of u at level n. Further, the functionals
E

d
α,n, E

c
α,n : Dα,n → R defined by

E
d

α,n[u] :=
�

x
α,n∼ y

(u(x)− u(y))2 (4.1.1)
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and
E

c

α,n[u] :=

�

Jα,n

|∇u|
2
dx, (4.1.2)

are called the discrete resp. continuous part of Eα,n.

The integral expression in (4.1.2) has to be understood as follows: For each
e = (ae, be) ∈ Jα,n, let ϕe : [0, 1] → R2 be the curve parametrization of the
line segment joining ae and be, i.e.

ϕe(t) := (be − ae) · t+ ae.

Then, for any function u ∈ Dα,n,

E
c

α,n[u] =

�

Jα,n

|∇u|
2
dx =

�

e∈Jα,n

�

e

|∇u|
2
dx :=

�

e∈Jα,n

1

be − ae

�
1

0

��(u ◦ ϕe)
���2 dt.

4.1.2 Harmonic extension

Once we have defined the energy functional Eα,n, we are interested in which
functions are energy-minimizers (also called harmonic functions) and in par-
ticular in how to extend any given function u ∈ D0 to a function ũ ∈ Dα,n

minimizing its energy at every level up to n.

Definition 4.1.4. Let u ∈ D0. The harmonic extension at level n+ 1 of u
is the unique function ũ ∈ Dα,n+1 that satisfies

Eα,k[ũ] = inf{Eα,k[v] | v ∈ Dα,k and v|V0 ≡ u}

for all 0 ≤ k ≤ n+ 1.

Note that this is well defined by the following propositions. Once we have
analysed the case n = 0, the harmonic extension of any given function at
any level n ∈ N will be obtained by a straightforward process of iteration.

Proposition 4.1.5. For any function u ∈ D0, the infimum

inf{Eα,1[v] | v ∈ Dα,1 and v|V0 ≡ u}

is attained by a unique function ũ ∈ Dα,1 given on Wα,1 by

ũ1(Gα,i(pj)) =
2 + 3α

5 + 3α
u(pi) +

2

5 + 3α
u(pj) +

1

5 + 3α
u(pk) (4.1.3)

for any i ∈ A, {i, j, k} = A, and linear interpolation on Jα,1.
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Proof. Without loss of generality, we may assume that the function u0 ∈ D0

is given by
u0(p1) = 1, u0(p2) = 0, u0(p3) = 0.

Let us denote by ũ1 the function we want to determine. If we look at the
expression of the energy Eα,1[ũ1], we see that its continuous part,

E
c

α,1[ũ1] =
�

e∈Jα,1

�

e

|∇ũ1|
2
dx,

is minimized when each of the integrals
�
e
|∇ũ1|

2
dx does.

This can be easily obtained by extending the function ũ1|Wα,1 linearly to
Jα,1, i.e. by defining

ũ1|e(x) :=
ũ1(be)− ũ1(ae)

be − ae
· x+

ũ1(ae)be − ũ1(be)ae
be − ae

at each x ∈ e = (ae, be) = (Gα,i(pj), Gα,j(pi)) ⊆ Jα,1, i �= j (see Figure 4.1).

e

Gα,2(p3)

Gα,3(p2)

Figure 4.1: Harmonic extension ũ1.

The integral expression becomes
�

e

|∇ũ1|
2
dx =

(ũ1(be)− ũ1(ae))2

|be − ae|
,

and all we need to obtain the total energy Eα,1[ũ1] is the value of ũ1 on Wα,1.

Due to the definition of u0 and the symmetry of Vα,1 we have that

ũ1(Gα,1(p2)) = ũ1(Gα,1(p3)) = x,

ũ1(Gα,2(p1)) = ũ1(Gα,3(p1)) = y,

ũ1(Gα,2(p3)) = ũ1(Gα,3(p1)) = z,

where x, y and z are the values we are looking for (see Figure 4.2).
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1

0

0

x

y

x y

z

z

Figure 4.2: Values of ũ1 in Wα,1.

Let us define

c
α,1

pq :=

�
1, if {p, q} ∈ E(Γ1

α),
α
−1

, if {p, q} ∈ E(H1
α) \ E(Γ1

α),

where Γ1
α and H

1
α are the Sierpiński (resp. Hanoi) α−graph with vertex set

Wα,1 of Definition 4.1.2.

Now, the energy of the harmonic extension ũ1 can be expressed as the sum

Eα,1[ũ1] =
�

{p,q}∈E(H1
α)

c
α,1

pq (ũ1(p)− ũ1(q))
2

and solving the minimization problem

Eα,1[ũ1] = min{Eα,1[v] | v ∈ Dα,1 such that v|V0 ≡ u0}

is equivalent to minimizing the quantity

Eα,1[ũ1] = 2
�
(1− x)2 + y

2 + z
2 + (y − z)2

�
+

2

α
(x− y)2.

This is easily obtained by solving

∂E1[ũ1]

∂x
=

∂E1[ũ1]

∂y
=

∂E1[ũ1]

∂z
= 0,

which leads to the linear system





(1 + α
−1)x = α

−1
y + 1

(2 + α
−1)y = α

−1
x+ z

2z = y.

(4.1.4)

Note that the uniqueness of the extension follows from the fact that this
linear system has a unique solution, which can be calculated directly and
which is given by

x =
2 + 3α

5 + 3α
, y =

2

5 + 3α
, z =

1

5 + 3α
. (4.1.5)
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Because of the symmetry, we get the same solution if we put the value 1 at
any of the vertices of V0, so if the initial values u0 : V0 → R are

u0(p1) = a, u0(p2) = b, u0(p3) = c,

the harmonic extension ũ1 satisfies the following “rule”:

ũ1(p) =
2 + 3α

5 + 3α
a+

2

5 + 3α
b+

1

5 + 3α
c,

for a point p whose nearest vertex in V0 has the function value a, the second
b and the furthest c as Figure 4.3 shows. This proves the proposition.

a

b

c

ũ1(p)

Figure 4.3: The extension ũ1 at p ∈ Wα,1 for an arbitrary u0.

The expression given in (4.1.3) may be considered as a kind of “extension
algorithm”, where α is the length of the lines in Jα,1.

The equalities in (4.1.4) express the “weighted mean value property” that the
function value at each point is the weighted average of the function values
of the neighbouring points in the Hanoi graph H

1
α. For example, the point

p := Gα,1(p2) has three neighbours, Gα,1(p1), Gα,1(p3) and Gα,2(p1), where
the function takes the values 1, x and y respectively (see Figure below). The
value of the function at this point therefore satisfies

ũ1(p) := x =
x · 1 + y · α−1 + 1 · 1

1 + 1 + α−1
.

1

0

0

x

y

x y

z

z
α−1

1 1

Our next step consists in constructing the harmonic extension to the next
level of any given function u ∈ Dα,n. The extension to an arbitrary level
will be obtained using the following induction argument: if we know how to
construct the harmonic extension from level n to n+1 for any n ∈ N0, then
we just need to iterate the process as many times as necessary until we reach
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the desired level. Note that this is only possible because Kα is p.c.f. and
therefore we always get a finite number of equations to solve.

Proposition 4.1.6. Define dα,0 := 0 and for each n ∈ N

dα,n := |Gα,wj(pk)−Gα,wk(pj)| , (4.1.6)

where w ∈ An−1, j, k ∈ A and j �= k. Then, for any function u ∈ Dα,n, the
infimum

inf{Eα,n+1[v] | v ∈ Dα,n+1 and v|Vα,n ≡ u}

is attained by a unique function ũ ∈ Dα,n+1 given on Wα,n+1 by

ũ(Gα,wi(pj)) =
2 + 3dα,n
5 + 3dα,n

u
�
Gα,wi(pi)

�

+
2

5 + 3dα,n
u
�
Gα,wj(pj)

�
+

1

5 + 3dα,n
u
�
Gα,wk(pk)

�

for each wi ∈ An+1, {i, j, k} = A, and linear interpolation on Jα,n+1 \ Jα,n.

Proof. First, note that dα,n coincides with the length of the shortest lines in
Jα,n and equals α

�
1−α

2

�n−1.

We define for each edge {p, q} ∈ E(H1
α) its so–called conductance

c
α,n

pq :=

�
1 if {p, q} ∈ E(Γ1

α),
d
−1
α,n if {p, q} ∈ E(H1

α) \ E(Γ1
α),

and for any u : Wα,1 → R we write

�Eα,n[u] :=
�

{p,q}∈E(H1
α)

c
α,n

pq

�
u(p)− u(q)

�2
. (4.1.7)

Given any function u ∈ Dα,n, the finite energy of any extension v : Vα,n → R
is given by

Eα,n+1[v] = E
c

α,n[v] +
�

w∈An

�

x
α,1∼ y

�
v ◦Gα,w(x)− v ◦Gα,w(y)

�2

+

�

Jα,n+1\Jα,n

|∇u|
2
dx,

where the first term of this sum is already known because v|Vα,n ≡ u. Since
the harmonic extension ũ minimizes energy, it will be defined on Jα,n+1\Jα,n
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as the linear extension of ũ|Wα,n+1 . In this way, the integral expression above
is minimized and it becomes
�

Jα,n+1\Jα,n

|∇ũ|
2
dx =

�

e∈Jα,n+1\Jα,n

�

e

|∇ũ|
2
dx

=
�

e∈Jα,n+1\Jα,n

d
−1

α,n+1

�
u(be)− u(ae)

�2
,

=
�

w∈An

�

{x,y}∈E(H1
α)\E(Γ1

α)

d
−1

α,n+1

�
u ◦Gα,w(x)− u ◦Gα,w(y)

�2
.

Using the notation introduced in (4.1.7), the finite energy at level n + 1 of
the harmonic extension can be written as

Eα,n+1[ũ] = E
c

α,n[u] +
�

w∈An

�Eα,n+1[ũ ◦Gα,w],

hence minimizing Eα,n+1[ũ] is equivalent to minimizing �Eα,n+1[ũ ◦Gα,w] for
each w ∈ An. In this way we have reduced the initial minimization problem
to |An| = 3n local minimization problems of the sort we solved for the case
n = 0.

Applying the harmonic extension algorithm obtained in Proposition 4.1.5, we
get that the harmonic extension ũ : Vα,n+1 → R is given at each Gα,w(Wα,1),
w ∈ An, by

ũ ◦Gα,w

�
Gi(pj)

�
=

2 + 3dα,n
5 + 3dα,n

u
�
Gα,wi(pi)

�

+
2

5 + 3dα,n
u
�
Gα,wj(pj)

�
+

1

5 + 3dα,n
u
�
Gα,wk(pk)

�
,

and extended linearly on Gα,w(Jα,1) (see Figure 4.4).

Gα,w1(p1)

Gα,w2(p2)

Gα,w3(p3)

Gα,w1(p2)

Gα,w2(p1)

Gα,w1(p3) Gα,w3(p1)

Gα,w2(p3)

Gα,w3(p2)

Figure 4.4: The set Gα,w(Vα,1).
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Finally, since
�

w∈An

(Gα,w(Wα,1) ∪Gα,w(Jα,1)) =
�

w∈An

Gα,w(Vα,1) = Vα,n+1 \ Jα,n,

the function ũ minimizing energy is defined for all x ∈ Vα,n+1, as was to be
proven. The uniqueness of the extension follows from the same argument as
in Proposition 4.1.5.

4.1.3 Renormalization factor

So far we have defined the bilinear form Eα,n just by “glueing” its discrete
and continuous part E

d
α,n and E

c
α,n. This means that, until now, both parts

of the energy have been independent of each other. However, since we want
the energy functionals to be invariant under harmonic extension, we still
have to renormalize them. This renormalization is precisely what correlates
E

d
α,n and E

c
α,n.

Definition 4.1.7. A sequence of functionals {En : Dn → R}n∈N0 is said to
be invariant under harmonic extension if for any u ∈ Dn and its harmonic
extension ũ ∈ Dn+1 it holds that

En[u] = En+1[ũ].

Further, if {En : Dn → R}n∈N0 is another sequence of functionals and for
each n ∈ N0 we can write En[u] = ρ

−1
n En[u] for some number ρn > 0, then

ρn is called the renormalization factor of En.

In our case, we need to introduce some notation before computing this factor.

Define for each n ∈ N the quantities

r
d

α,n :=
15

(5 + 3dα,n)
2

and r
c

α,n :=
(1− α)

2
r
d

α,n , (4.1.8)

where dα,n was defined in (4.1.6).

In order to clarify calculations, we adopt in this section the following matrix
form notation

Eα,n[u] :=

�
E

d
n[u]

E
c
n[u]

�
for u ∈ Dα,n.

Lemma 4.1.8. Let u0 ∈ D0 and denote by ũn ∈ Dα,n its harmonic extension
at level n ∈ N. Then, for any w ∈ An−1 we have that ũn ◦Gα,w ∈ Dα,1 and

Eα,1[ũn ◦Gα,w] =
(5 + 3dα,n)2

15 + 18dα,n
Eα,0[ũn ◦Gα,w]. (4.1.9)



44 Chapter 4. Analysis on the Hanoi attractor Kα

Further, for any n ≥ 2 and w ∈ An−2 it holds that ũn ◦Gα,w ∈ Dα,2 and

Eα,2[ũn ◦Gα,w] =

�
r
d
α,n 0
0 1 + r

c
α,n

�
Eα,1[ũn ◦Gα,w]. (4.1.10)

Proof. The equality (4.1.9) for n = 1 follows directly from Proposition 4.1.5:
without loss of generality, we can consider again the function u0 ∈ D0 given
by u0(p1) = 1, u0(p2) = 0 = u0(p3), so that Eα,0[ũ1] = Eα,0[u0] = 6. If we
substitute in the expression of the energy

Eα,1[ũ1] =
�

{x,y}∈E(H1
α)

c
α,1

xy (u(x)− u(y))2

the values given by the extension algorithm in (4.1.3), we get

Eα,1[ũ1] =
15

(5 + 3dα,1)2
Eα,0[ũ1] + 2

9dα,1
(5 + 3dα,1)2

=
15 + 18dα,1
(5 + 3dα,1)2

Eα,0[ũ1],

as we wanted to prove.

Given an arbitrary n > 1, we obtain the very same calculations just replacing
dα,1 by dα,n as in Proposition 4.1.6.

Let us now prove equality (4.1.10) for the case n = 2. We consider the
function ũ1 ∈ Dα,1 being defined on Wα,1 as described in Figure 4.5 and by
linear interpolation on Jα,1.

a1

b2

c3

b1

a2

c1 a3

c2

b3

Figure 4.5: Values of ũ1 in Wα,1.

Note that this choice of ũ1 is completely general because we know that
ũ1 ∈ Dα,1 is the harmonic extension of a function u0 ∈ D0 and it therefore
has to be linear on Jα,1.

Let ũ2 : Vα,2 → R be the harmonic extension of ũ1, whose energy at level 2
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can be written using the expression (4.1.7) as

Eα,2[ũ2] =
3�

i=1

�Eα,2[ũ2 ◦Gα,i] + E
c

α,1[ũ2]

=
3�

i=1

�Eα,2[ũ2 ◦Gα,i] +
1

dα,1

�
(a2 − b1)

2 + (a3 − c1)
2 + (c2 − b3)

2
�
.

(4.1.11)

The quantities to be minimized are thus
�Eα,2[ũ2 ◦Gα,i] =

�

{x,y}∈E(H1
α)

c
α,2

xy

�
ũ2 ◦Gα,i(x)− ũ2 ◦Gα,i(y)

�2

for each i ∈ A. By construction of ũ2 ◦Gα,i we get that

�Eα,2[ũ2 ◦Gα,i] =
15

(5 + 3dα,2)
2
Eα,0[ũ2 ◦Gα,i]

+
9dα,2

(5 + 3dα,2)
2
((ai − bi)

2 + (ai − ci)
2 + (bi − ci)

2),

thus (4.1.11) becomes

Eα,2[ũ2] =
15

(5 + 3dα,2)
2

3�

i=1

Eα,0[ũ2 ◦Gα,i]

+
9dα,2

(5 + 3dα,2)
2

3�

i=1

((ai − bi)
2 + (ai − ci)

2 + (bi − ci)
2)

+
1

dα,1

�
(a2 − b1)

2 + (a3 − c1)
2 + (c2 − b3)

2
�
. (4.1.12)

On the other hand, we know that ũ1 is the harmonic extension of a function
u0 defined in V0, i.e. the values of ũ1 on Vα,1 \ V0 can be expressed in terms
of a1, b2 and c3 as follows:

b1 =
2 + 3dα,1
5 + 3dα,1

a1 +
2

5 + 3dα,1
b2 +

1

5 + 3dα,1
c3

a2 =
2 + 3dα,1
5 + 3dα,1

b2 +
2

5 + 3dα,1
a1 +

1

5 + 3dα,1
c3

c2 =
2 + 3dα,1
5 + 3dα,1

b2 +
2

5 + 3dα,1
c3 +

1

5 + 3dα,1
a1

b3 =
2 + 3dα,1
5 + 3dα,1

c3 +
2

5 + 3dα,1
b2 +

1

5 + 3dα,1
a1

a3 =
2 + 3dα,1
5 + 3dα,1

c3 +
2

5 + 3dα,1
a1 +

1

5 + 3dα,1
b2

c1 =
2 + 3dα,1
5 + 3dα,1

a1 +
2

5 + 3dα,1
c3 +

1

5 + 3dα,1
b2. (4.1.13)
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Substituting this values in (4.1.12), we obtain

Eα,2[ũ2] =
15

(5 + 3dα,2)
2

3�

i=1

Eα,0[ũ2 ◦Gα,i]

+
9dα,2

(5 + 3dα,2)2
15

(5 + 3dα,1)2
�
(b2 − a1)

2 + (c3 − a1)
2 + (b2 − c3)

2
�

+
9dα,1

(5 + 3dα,1)2
�
(b2 − a1)

2 + (c3 − a1)
2 + (b2 − c3)

2
�

=
15

(5 + 3dα,2)
2
E

d

α,1[ũ2] +

�
1 +

15(1− α)

2(5 + 3dα,2)2

�
E

c

α,1[ũ2]

=

�
r
d

α,2
0

0 1 + r
c

α,2

�
Eα,1[ũ2],

as we wanted to show.

Note that this proves the result for all n > 2: substitute in this last proof
ũ2◦Gα,i by ũn◦Gα,wi, where w ∈ An−2, and dα,2 by dα,n

�
=

�
1−α

2

�n−2
dα,2

�
.

This substitution comes from the fact that Gα,w(Vα,2) is a
�
1−α

2

�n−2
−times

smaller “copy” of Vα,2.

Proposition 4.1.9. For each n ∈ N0 and u ∈ Dα,n+1 it holds that

Eα,n+1[u] =
3�

i=1

�
1 0
0 2

1−α

�
Eα,n[u ◦Gα,i] +

�
0 0
0 1

�
Eα,1[u].

Proof. Decomposing the energy into its discrete and continuous part, we
have to prove that

E
d

α,n+1[u] =
3�

i=1

E
d

α,n[u ◦Gα,i]. (4.1.14)

and

E
c

α,n+1[u] =
2

1− α

3�

i=1

E
c

α,n[u ◦Gα,i] + E
c

α,1[u]. (4.1.15)

On one hand, for any (α, n + 1)−neighbours x, y ∈ Wα,n, there exists
iw ∈ An+1 such that x, y ∈ Gα,iw(V0) and x

�
, y

� ∈ Gα,w(V0) such that
x = Gα,i(x�), y = Gα,i(y�), i.e. x

� α,n∼ y
�.
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From the definition of Ed

α,n+1
[u] in (4.1.1) we obtain

E
d

α,n+1[u] =
�

x
α,n+1∼ y

(u(x)− u(y))2

=
3�

i=1

�

Gα,i(x
�)
α,n∼ Gα,i(y

�)

�
u(Gα,i(x

�))− u(Gα,i(y
�))

�2

=
3�

i=1

�

x�α,n∼ y�

�
u ◦Gα,i(x

�)− u ◦Gα,i(y
�)
�2

=
3�

i=1

E
d

α,n[u ◦Gα,i],

hence (4.1.14) holds.

On the other hand, since Jα,n+1 =
3�

i=1

Gα,i(Jα,n) ∪ Jα,1, it follows from the

definition of Ec

α,n+1
[u] in (4.1.2) that

E
c

α,n+1[u] =

�

Jα,n+1

|∇u|
2
dx

=
3�

i=1

�

Gi(Jα,n)

|∇u|
2
dx+

�

Jα,1

|∇u|
2
dx.

Applying the change of variables x = Gi(y), we have that dx = 1−α

2
dy and

∇(u ◦Gi) = ∇u(Gi)G
�
i =

1− α

2
∇u(Gi).

By plugging this in the expression above we get

E
c

n+1[u] =
3�

i=1

2

1− α

�

Jα,n

|∇(u ◦Gα,i)|
2
dy +

�

Jα,1

|∇u|
2
dx

=
2

1− α

3�

i=1

E
c

α,n[u ◦Gα,i] + E
c

α,1[u],

as asserted in (4.1.15).

Corollary 4.1.10. Let n ∈ N0 and u ∈ Dα,n+1. Then,

Eα,n+1[u] =
�

w∈Am

�
1 0

0
�

2

1−α

�m

�
Eα,n+1−m[u ◦Gα,w]

+
m−1�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[u ◦Gα,w]

holds for 0 ≤ m ≤ n.
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Proof. The case m = 1 is Proposition 4.1.9 and the assertion follows by
induction over m.

The next theorem determines the renormalization factor at each level n ∈ N0.
Observe that, since we are using matrix notation, this “factor” turns out to
be a 2× 2− matrix.

Theorem 4.1.11. Let u0 : V0 → R and denote by ũn ∈ Dα,n its harmonic
extension at level n ∈ N. Then,

(i) for n = 0,

Eα,0[ũ1] =

�
ρα,0 0
0 0

�
Eα,1[ũ1], (4.1.16)

where ρα,0 :=
(5+3dα,1)

2

15+18dα,1
.

(ii) for n ∈ N,

Eα,n[ũn] =

�
ρ
d
α,n 0
0 ρ

c
α,n

�
Eα,1[ũ1], (4.1.17)

where
ρ
d

α,n :=

�
1, for n = 1,�

n

i=2
r
d

α,i
, for n ≥ 2,

and

ρ
c

α,n :=

�
1, for n = 1,

1 +
�

n

j=2

�
j

i=2
r
c

α,i
, for n ≥ 2,

where r
d

α,i
and r

c

α,i
were defined in (4.1.8) for each i ∈ N.

Proof. Note that the equality (4.1.16) has already been proven in Lemma 4.1.8.
We prove the formula in (4.1.17) by induction over n ∈ N: the case n = 1 is
trivial since ρ

d

α,1
= ρ

c

α,1
= 1 by definition.

In order to prove the case n + 1, consider u1 ∈ Dα,1 and let ũn+1 ∈ Dα,n+1

be its harmonic extension at level n + 1. From the expression obtained in
Corollary 4.1.10, we have that

Eα,n+1[ũn+1] =
�

w∈An−1

�
1 0

0
�

2

1−α

�n−1

�
Eα,2[ũn+1 ◦Gα,w]

+
n−2�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[ũn+1 ◦Gα,w], (4.1.18)

and by Lemma 4.1.8,

Eα,2[ũn+1 ◦Gα,w] =

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

�
Eα,1[ũn+1 ◦Gα,w]
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holds for all w ∈ An−1.

On substituting this in (4.1.18) we obtain

Eα,n+1[ũn+1] =

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

� �

w∈An−1

�
1 0

0
�

2

1−α

�n−1

�
Eα,1[ũn+1 ◦Gα,w]

+
n−2�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[ũn+1 ◦Gα,w], (4.1.19)

and again by Corollary 4.1.10 we can replace the first summation in (4.1.19)
by

Eα,n[ũn+1]−
n−2�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[ũn+1 ◦Gα,w],

which leads to

Eα,n+1[ũn+1] =

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

�
Eα,n[ũn+1]

−

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

� n−2�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[ũn+1 ◦Gα,w]

+
n−2�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[ũn+1 ◦Gα,w]

=

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

�
Eα,n[ũn+1]

−

n−2�

k=0

�

w∈Ak

�
0 0

0 r
c

α,n+1

�
2

1−α

�k

�
Eα,1[ũn+1 ◦Gα,w]. (4.1.20)

The last term of the expression above can be rewritten using Corollary 4.1.10
as

E
c

α,n−1[ũn+1] =

�
0 0
0 1

�
Eα,n−1[ũn+1] =

n−2�

k=0

�

w∈Ak

�
0 0

0
�

2

1−α

�k

�
Eα,1[ũn+1◦Gα,w],

and substituting this in (4.1.20) we obtain

Eα,n+1[ũn+1] =

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

�
Eα,n[ũn+1]

−

�
0 0
0 r

c

α,n+1

��
0 0
0 1

�
Eα,n−1[ũn+1].
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Applying the induction hypotheses we get

Eα,n+1[ũn+1] =

�
r
d

α,n+1
0

0 1 + r
c

α,n+1

���
n

i=2
r
d

α,i
0

0 1 +
�

n

j=2

�
j

i=2
r
c

α,i

�
Eα,1[ũn+1]

−

�
0 0
0 r

c

α,n+1

���
n−1

i=2
r
d

α,i
0

0 1 +
�

n−1

j=2

�
j

i=2
r
c

α,i

�
Eα,1[ũn+1]

=

��
n+1

i=2
r
d

α,i
0

0 (1 + r
c

α,n+1
)
�
1 +

�
n−1

j=2

�
j

i=2
r
c

α,i
+

�
n

i=2
r
c

α,i

�
�
Eα,1[ũn+1]

−

�
0 0

0 r
c

α,n+1

�
1 +

�
n−1

j=2

�
j

i=2
r
c

α,i

�
�
Eα,1[ũn+1]

=

��
n+1

i=2
r
d

α,i
0

0 1 +
�

n−1

j=2

�
j

i=2
r
c

α,i
+

�
n

i=2
r
c

α,i
+

�
n+1

i=2
r
c

α,i

�
Eα,1[ũn+1]

=

��
n+1

i=2
r
d

α,i
0

0 1 +
�

n+1

j=2

�
j

i=2
r
c

α,i

�
Eα,1[ũn+1],

as we wanted to prove.

This last theorem allows us to define the renormalization factor ρα,n at level
n ∈ N0 by

ρα,n :=

�
ρ
d
α,n 0
0 ρ

c
α,n

�
,

and the renormalized energy functional Eα,n : Dα,n → R is therefore given by

Eα,n[u] := ρ
−1

α,nEα,n[u].

Applying the polarization identity leads to the renormalized symmetric bili-
near form Eα,n : Dα,n ×Dα,n → R,

Eα,n(u, v) :=
1

2
(Eα,n[u+ v]− Eα,n[u]− Eα,n[v]) .

which can also be written as

Eα,n(u, v) := (ρdα,n)
−1

E
d

α,n(u, v) + (ρcα,n)
−1

E
c

α,n(u, v).

We call Ed
α,n(u, v) := (ρdα,n)

−1
E

d
α,n(u, v) and Ec

α,n(u, v) := (ρcα,n)
−1

E
c
α,n(u, v)

the discrete and continuous part of Eα,n.

Note that the expression ρ
−1
α,n is consistent in its matrix form because

ρ
−1

α,n =

�
ρ
d
α,n 0
0 ρ

c
α,n

�−1

=

��
ρ
d
α,n

�−1
0

0
�
ρ
c
α,n

�−1

�
.
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The bilinear form Eα,n has now the property of being invariant under har-
monic extension: given u0 : V0 → R, its harmonic extension ũn ∈ Dα,n at
level n ∈ N satisfies

Eα,n(ũn, ũn) :=ρ
−1

n Eα,n(ũn, ũn) = ρ
−1

n ρnEα,1(ũn, ũn)

= Eα,1(ũ1, ũ1) = Eα,1(ũ1, ũ1).

Hence

Eα,0(u0, u0) = Eα,1(ũ1, ũ1) = Eα,2(ũ2, ũ2) = . . . = Eα,n(ũn, ũn) = . . .

which implies that for all n ∈ N0,

Eα,n+1(ũn+1, ũn+1) = min{Eα,n+1(v, v) | v ∈ Dα,n+1, and v|Vα,n ≡ ũn}.

Remark 4.1.12. It is important to notice that the continuous and discrete
part are no more independent of each other because both renormalization
factors ρ

d
α,n and ρ

c
α,n depend on the whole energy Eα,n, and therefore on

both E
d
α,n and E

c
α,n. These factors have also the following properties.

(1) The sequence (rd
α,i

)i∈N is monotonically increasing and r
d

α,i

i→∞
−−−→

3

5
.

Thus the sequence (ρdα,n)n∈N is monotonically decreasing and it is ma-
jorized by

��
3

5

�n−1
�

n∈N
.

(2) The sequence (rc
α,i

)i≥2 is monotonically increasing and r
c

α,i

i→∞
−−−→

3(1−α)

10
.

This implies that the sequence (rc
α,i

)i≥2 is bounded from below by 1 and
from above by 3(1−α)

10
. Hence the sequence (ρcα,n)n∈N is monotonically

increasing and it holds that

ρ
c

α,n = 1 +
n�

j=2

j�

i=2

r
c

α,i ≤ 1 +
n�

j=2

j�

i=2

3(1− α)

10

= 1 +
n�

j=2

�
3(1− α)

10

�j−1

=
n−1�

k=0

�
3(1− α)

10

�k

n→∞
−−−→

∞�

k=0

�
3(1− α)

10

�k

< ∞

because 3(1−α)

10
< 1, and we can write Θα := lim

n→∞
ρ
c
α,n. This quantity

will appear in later calculations.
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4.2 Resistance and Dirichlet form on the Hanoi at-

tractor Kα

Once we have defined the sequence of approximating forms (Eα,n)n∈N0 , we
proceed to establish a Dirichlet form for the whole fractal by using the theo-
ry of resistance forms developed by Kigami in [26, Chapter 2] and deeply
studied in the case of p.c.f. self-similar fractals in [27, 40]. A short review of
the basic notions of this theory is given in the Appendix and we refer to [28,
Chapter 3] for more details.

We start constructing a resistance form on Kα whose associated resistance
metric is compatible with the original (Euclidean) topology of Kα. This
resistance form will induce our desired Dirichlet form on Kα.

4.2.1 Resistance form

Resistance forms are analytic structures for sets of functions defined on a
metric space that do not require any measure on the space. While developing
our analysis on Kα, we begin with the most general possible structure (a
resistance form) and end up with a very specific one (the Laplacian on Kα).

For ease of notation, we write Eα,n[u] := Eα,n(u, u) for any u ∈ Dα,n and
n ∈ N0, and for each function u : Vα,∗ → R, we define its energy at level
n ∈ N by

Eα,n[u] := Eα,n[u|Vα,n ].

It follows from the definition of Eα,n that the sequence (Eα,n[u])n∈N0 is non-
decreasing, so we may consider the (non-trivial) functional EKα : F

∗
Kα

→ R
given by 





F
∗
Kα

:= {u : Vα,∗ → R | lim
n→∞

Eα,n[u] < ∞},

EKα [u] := lim
n→∞

Eα,n[u] < ∞.

Let us now define C(Jα) := {u : Vα,∗ → R |u ∈ C([ae, be]) ∀ e ∈ Jα}. Since
Vα,∗ is dense in Kα by Lemma 2.1.2 and by Proposition 4.2.2 any function
u ∈ F∗

Kα
∩ C(Jα) is Hölder -and therefore uniformly- continuous on Vα,∗, u

can be uniquely extended to a continuous function on Kα. We denote this
extension again by u and set

FKα := {u : Kα → R |u|Vα,∗ ∈ F
∗
Kα

∩ C(Jα), EKα [u] < ∞}.

The rest of the paragraph is devoted to the proof of the following theorem.

Theorem 4.2.1. (EKα ,FKα) is a resistance form on Kα.
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Before proving this we need a previous result.

Proposition 4.2.2. Every function in FKα is continuous on Kα.

Proof. Since know from 2.1.2 that Vα,∗ is dense in Kα with respect to the
Euclidean norm, it suffices to show continuity on Vα,∗. Consider u ∈ FKα

and x, y ∈ Vα,∗.

1. If x, y ∈ Wα,n are (α, n)−neighbours, then |x− y| =
�
1−α

2

�n and

�
ρ
d

α,n

�−1

|u(x)− u(y)|2 ≤ E
d

Kα
[u] ≤ EKα [u],

which implies that

|u(x)− u(y)| ≤
�
ρ
d

α,n

�1/2

E
1/2

Kα
[u] ≤

�
3

5

�1/2

E
1/2

Kα
[u]

= E
1/2

Kα
[u] |x− y|

lα
,

where lα := ln 3−ln 5

2(ln(1−α)−ln 2)
.

2. If x, y ∈ Wα,n are not neighbours we proceed as follows: Consider a
chain of points xn, yn+1, xn+2, yn+2, . . . , xn+k−1, yn+k ∈ Vα,∗ such that
xn+j , yn+j+1 ∈ Wα,n+j are (α, n+j+1)-neighbours and (yn+j+1, xn+j+1) ∈
Jα,n+j \ Jα,n+j−1 for each 0 ≤ j ≤ k − 1 (see Figure 4.6).

x1

x2

y2

y3

Figure 4.6: Chain with x1 ∈ Wα,1, y2, x2 ∈ Wα,2 and y3 ∈ Wα,3.

If there exists some k > 1 such that x := xn ∈ Wα,n and y :=

yn+k ∈ Wα,n+k \Wα,n+k−1, then, |xn+j − yn+j+1| =
�
1−α

2

�n+j+1 and
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|yn+j − xn+j | = α
�
1−α

2

�n+j−1 and we get that

|u(x)− u(y)| ≤
k−1�

j=0

|u(xn+j)− u(yn+j+1)|+
k−1�

j=1

|u(yn+j)− u(xn+j)|

≤ E
1/2

Kα
[u]

k−1�

j=0

|xn+j − yn+j+1|
lα +Θ1/2

α E
1/2

Kα
[u]

k�

j=1

|yn+j − xn+j |
1/2

= E
1/2

Kα
[u]

�
1− α

2

�(n+1)lα k−1�

j=0

�
1− α

2

�lαj

+Θ1/2

α E
1/2

Kα
[u]α1/2

�
1− α

2

�n−1
2

k�

j=1

�
1− α

2

�j/2

.

Since lα < 1/2, α
�
1−α

2

�−1
< 1 and

�
1−α

2

�lα
< 1, we get that

|u(x)− u(y)| ≤ E
1/2

Kα
[u]

�
1− α

2

�nlα k−1�

j=0

�
1− α

2

�lαj

+Θ1/2

α E
1/2

Kα
[u]

�
1− α

2

�nlα k�

j=1

�
1− α

2

�lαj

≤ (1 + Θ1/2

α )E1/2

Kα
[u]

�
1− α

2

�nlα ∞�

j=0

��
1− α

2

�lα
�j

= (1 + Θ1/2

α )E1/2

Kα
[u]

�
1−

�
1− α

2

�lα
�−1�

1− α

2

�nlα

.

Finally,
�
1−α

2

�n
≤ |x− y| because y /∈ Wα,n by assumption, hence, if

we set C := (1 + Θ1/2

α )
�
1−

�
1−α

2

�lα�−1

, we obtain

|u(x)− u(y)| ≤ CE
1/2

Kα
[u] |x− y|

lα
.

In the case k = 0, i.e. x, y ∈ Wα,n \Wα,n−1 are not (α, n)-neighbours,
we can join them by at most two such chains, say x := xn, . . . , yn+k and
y := x

�
n, . . . , y

�
n+k

for some k ∈ N and an extra segment (yn+k, y
�
n+k

)

of length α
�
1−α

2

�n+k−1 (in the case that yn+k �= y
�
n+k

) so that we get

|u(x)− u(y)| ≤ |u(x)− u(yn+k)|+
��u(yn+k)− u(y�

n+k
)
��+

��u(y�
n+k

)− u(y)
��

≤ 2CE
1/2

Kα
[u]

�
1− α

2

�(n+1)lα

+Θ1/2

α E
1/2

Kα
[u]α1/2

�
1− α

2

�n+k−1
2
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and by using again the fact that lα < 1/2, α
�
1−α

2

�−1
< 1, k ≥ 1 and

|x− y| >
�
1−α

2

�(n+1), we obtain

|u(x)− u(y)| ≤ (2C +Θ1/2

α )E1/2

Kα
[u]

�
1− α

2

�(n+1)lα

≤ (2C +Θ1/2

α )E1/2

Kα
[u] |x− y|

lα
.

3. If x, y belong to the same component e ∈ Jα,n for some n ∈ N, u is in
particular continuous on e so we have that

|u(x)− u(y)|2 =

����
�

y

x

∇u dx

����
2
C−S

≤

�
y

x

|∇u|
2
dx · |x− y|

≤

�

e

|∇u|
2
dx · |x− y| ,

and therefore
�
ρ
c

α,n

�−1
|u(x)− u(y)|2 ≤

�
ρ
c

α,n

�−1

�

e

|∇u|
2
dx · |x− y|

≤ |x− y|
�
ρ
c

α,n

�−1

�

Jα

|∇u|
2
dx

≤ EKα [u] |x− y| ,

which leads to

|u(x)− u(y)| ≤
�
ρ
c

α,n

�1/2
E
1/2

Kα
[u] |x− y|

1/2

≤ Θ1/2

α E
1/2

Kα
[u] |x− y|

1/2
. (4.2.1)

The same calculations apply if x ∈ e ∈ Jα,n and y ∈ Wα,n is one of its
endpoints.

4. If x, y ∈ Jα,n \Jα,n−1 do not belong to the same edge, then there exists
e1, e2 ∈ Jα,n such that x ∈ e1, y ∈ e2. Now we can join both points
as follows: consider x

� ∈ Wα,n the nearest endpoint of e1 to x, and
y
� ∈ Wα,n the nearest in e2 to y. Then, by an analogous calculation as

the previous case we have

|u(x)− u(y)| ≤
��u(x)− u(x�)

��+
��u(x�)− u(y�)

��+
��u(y�)− u(y)

��

≤ (2C + 3Θ1/2

α )E1/2

Kα
[u] |x− y|

lα
. (4.2.2)

Now, choosing C̃ := 2C + 3Θ1/2

α , it follows from inequalities (4.2.1)–
(4.2.2) that

|u(x)− u(y)| ≤ C̃ E
1/2

Kα
[u] |x− y|

lα

for all x, y ∈ Wα,∗, hence u is uniformly Hölder-continuous.
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x�

y�

x

y

Figure 4.7: Chain with x ∈ e1, y ∈ e2.

5. Finally, the case when x ∈ Jα,n and y ∈ Wα,n follows by combining
the two last cases.

Proof of theorem 4.2.1.

(RF1) FKα is a linear subspace of {u : Kα → R} and EKα is a non-negative
quadratic form on FKα . Moreover, it follows from the definition of Eα,n
that 0 = EKα [u] = lim

n→∞
Eα,n[u] if and only if u ≡ const, which implies

that FKα contains constants.

(RF2) Define the equivalence relation on FKα by u ∼ v ⇔ u−v ≡ const and
consider the space (FKα/∼, EKα). We prove now that this is a Hilbert
space.
All properties of EKα for being an inner product are satisfied by defi-
nition except that EKα [u] = 0 ⇔ u ≡ 0. This follows from the fact
that EKα [u] = 0 if and only if u ≡ const on Kα and constants are the
zero class in FKα/∼.
In order to prove that (FKα/∼, EKα) is complete, we identify the set
FKα/∼ with the set Rα := {u ∈ FKα |u(p1) = 0} by the isomorphism

FKα/∼ −→ Rα

u �−→ u− u(p1).

Let (um)m∈N0 be a Cauchy sequence in Rα, EKα [un − um]
n,m→∞
−−−−−→ 0.

For all x ∈ Wα,∗, (un(x))n∈N0 is a Cauchy sequence on R and therefore
convergent, so its limit exists.
On the other hand, by definition of EKα , we know that for each edge
e = (ae, be) ∈ Jα, un|e ∈ W

1,2(e, dx) and

�∇un|e −∇um|e�2 ≤ E
1/2

Kα
[un − um]

m,n→∞
−−−−−→ 0, (4.2.3)
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hence (∇un|e)n∈N0 is a Cauchy sequence in L
2(e, dx) and it converges.

Thus, there exists ve ∈ L
2(e, dx) such that �∇un|e − v

e�
2

n→∞
−−−→ 0 and

we may choose v
e to be continuous.

Now, since ae ∈ Wα,∗, we can set u(ae) := lim
n→∞

un(ae) and define

u
e(x) :=

�
x

ae

v
e
dx+ u(ae) ∀x ∈ (ae, be).

We claim that the limit we were looking for is (the unique extension
to Kα of) the function u : Vα,∗ → R defined by

u(x) :=

�
lim
n→∞

un(x), x ∈ Wα,∗,

u
e(x), x ∈ e ∈ Jα.

(4.2.4)

Indeed, since un ∈ Rα, un is continuous, so applying (4.2.3) and the
definition of u we get

|u(be)− un(be)| =

����
�

be

ae

v
e
dx+ u(ae)− un(be)

����

≤

����
�

be

ae

v
e
dx+ un(ae)− un(be)

����+ |u(ae)− un(ae)|

=

����
�

be

ae

v
e
dx−

�
be

ae

∇un dx

����+ |u(ae)− un(ae)|

=

����
�

be

ae

(ve −∇un) dx

����+ |u(ae)− un(ae)|

≤

�
be

ae

|v
e
−∇un| dx+ |u(ae)− un(ae)|

≤ |ae − be|
1/2

�v
e
−∇un|e�2 + |u(ae)− un(ae)|

n→∞
−−−→ 0.

Hence u ∈ C(Kα). Moreover,

lim
n→∞

EKα [un − u] = lim
n→∞

lim
k→∞

�
ρ
d

α,k

�−1 �

x
α,k∼ y

�
u(x)− un(x)− u(y) + un(y)

�2

+
�
ρ
c

α,k

�−1
�

e∈Jα,k

�

e

|∇u
e
−∇un|

2
dx

= lim
k→∞

�
ρ
d

α,k

�−1 �

x
α,k∼ y

lim
n→∞

�
u(x)− un(x)− u(y) + un(y)

�2

+ lim
k→∞

�
ρ
c

α,k

�−1
�

e∈Jα,k

lim
n→∞

�v
e
−∇un|e�

2

2

= 0,
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and u ∈ FKα .

Finally, u(p1) = lim
n→∞

un(p1) = 0 by definition, so u ∈ Rα and we are
done.

(RF3) If x, y ∈ Kα are such that x �= y, we can construct a function u ∈ FKα

with u(x) �= u(y) in the following manner: without loss of generality,
we can consider x, y ∈ Vα,n for some n ∈ N0. Since x �= y, there exists
a neighbourhood of x, Bε(x) such that y ∈ Vα,n \Bε(x)(=: Vε). Define
un : Vα,n → R by un(x) := 1, un|Vε ≡ 0. If x ∈ e ∈ Jα,n, define un on
e = (ae, be) to be some smooth function with un(ae) = 0 = un(be) and
u(x) = 1.

Clearly, un ∈ Dα,n because Eα,n[un] < ∞, thus by defining u : Kα → R
to be the harmonic extension of un, we get that u ∈ FKα , u(x) = 1
and u(y) = 0, so in particular u(x) �= u(y), as desired.

(RF4) We have to prove that for any x, y ∈ Kα

sup

�
|u(x)− u(y)|2

EKα [u]
| u ∈ FKα , EKα [u] < ∞

�
< ∞.

From Proposition 4.2.2 we know that there exists C̃ > 0 such that

|u(x)− u(y)| ≤ C̃ EKα [u] |x− y|
lα

∀u ∈ FKα , x, y ∈ Kα.

Hence,

sup

�
|u(x)− u(y)|2

EKα [u]
| u ∈ FKα , EKα [u] < ∞

�
≤ C̃ |x− y|

2lα
< ∞

(4.2.5)
and the assertion is proved.

(RF5) EKα satisfies the Markov property. From the definition of Eα,n, n ∈ N0,
we see that for any v ∈ Dα,n, 0 ∨ v ∧ 1 ∈ Dα,n and

Eα,n[0 ∨ v ∧ 1] ≤ Eα,n[v].

This implies that

EKα [0∨ u∧ 1] = lim
n→∞

Eα,n[0∨ u|Vα,n ∧ 1] ≤ lim
n→∞

Eα,n[u] = EKα [u] < ∞,

thus in particular 0 ∨ u ∧ 1 ∈ FKα and we are done.
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By [27, Proposition 2.10], the supremum in (RF4) is in fact the maximum be-
cause (EKα ,FKα) is a resistance form. The function R : Kα×Kα → [0,+∞]
defined by

R(x, y) := max

�
|u(x)− u(y)|2

EKα [u]
|u ∈ FKα , EKα [u] < ∞

�
(4.2.6)

is thus a distance in Kα, which is called the resistance metric on Kα associ-
ated with (EKα ,FKα). It follows immediately (see [27] for a proof) that

|u(x)− u(y)|2 ≤ EKα [u]R(x, y) ∀x, y ∈ Kα, u ∈ FKα ,

and therefore any function u ∈ FKα is continuous with respect to the resis-
tance metric.

The metric R also satisfies the following property, that is crucial for the
construction of the Dirichlet form.

Lemma 4.2.3. The resistance metric R defined in (4.2.6) is compatible with
the original topology of (Kα, |·|).

Proof. We follow the standard proof in [4, Proposition 7.18]. On the one
hand, given a sequence (xn)n∈N0 ⊆ Kα that converges to x ∈ Kα with
respect to the Euclidean metric, it follows from (4.2.5) that

R(xn, x) ≤ C̃ |xn − x|
2lα n→∞

−−−→ 0

thus (xn)n∈N converges with respect to the resistance metric too.

On the other hand, let (xn)n∈N0 ⊆ Kα converge to some x ∈ Kα with respect
to the resistance metric. Then, ∀ ε > 0, ∃n0 ∈ N0 such that R(xn, x) < ε

for all n ≥ n0.

Now, for each ε > 0 we can consider a function u ∈ FKα such that u(x) = 1
and supp(u) ⊆ Bε(x). Then we have that

R(x, y) >
1

EKα [u]
> 0 ∀ y ∈ Kα \Bε(x),

hence there exists n0 ∈ N0 such that xn ∈ Bε(x) for all n ≥ n0, which
means that (xn)n∈N0 converges with respect to the Euclidean norm too.
This finishes the proof.

4.2.2 Dirichlet form

In this section, we use the resistance form (EKα ,FKα) to obtain our desired
Dirichlet form. Dirichlet forms are defined in the context of a Banach (in our
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case Hilbert) space, therefore we need to introduce a locally finite measure
µα on Kα at this point. The choice of such measure is of course not unique
and we will not specify it until the next section, when this is required for the
study of the associated Laplacian.

Let L
2(Kα, µα) be the Hilbert space associated with a Radon measure µα

on Kα and define for any u, v ∈ L
2(Kα, µα)

EKα,1(u, v) := EKα(u, v) +

�

Kα

uv dµα. (4.2.7)

It follows from [26, Theorem 2.4.1] that (FKα∩L
2(Kα, µα), E

1/2

Kα,1
) is a Hilbert

space, so we can define DKα as the closure of C0(Kα)∩FKα with respect to
the norm EKα,1.

The main result of this paragraph is the following theorem.

Theorem 4.2.4. (EKα ,DKα) is a local regular Dirichlet form on L
2(Kα, µα).

Before proving this, we need to prove some previous results.

Proposition 4.2.5. For any u ∈ DKα and i ∈ A, denote ui := u ◦ Gα,i.
Then,

EKα(u, v) =
3�

i=1

�
5

3
E
d

Kα
(ui, vi) +

2

1− α
E
c

Kα
(ui, vi)

�
+Θ−1

α E
c

α,1(u, v) (4.2.8)

for all u, v ∈ DKα .

Proof. By Proposition 4.1.9 we have that

E
d

α,n+1[u] =
3�

i=1

E
d

α,n[u ◦Gα,i]

and

E
c

α,n+1[u] =
2

1− α

3�

i=1

E
c

α,n[u ◦Gα,i] + E
c

α,1[u],
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hence

Eα,n+1(u, v) =
�
ρ
d

α,n+1

�−1

E
d

α,n+1(u, v) +
�
ρ
c

α,n+1

�−1
E

c

α,n+1(u, v)

=
�
ρ
d

α,n+1

�−1
3�

i=1

E
d

α,n(ui, vi)

+
�
ρ
c

α,n+1

�−1

3�

i=1

2

1− α
E

c

α,n(ui, vi) +
�
ρ
c

α,n+1

�−1
E

c

α,1(u, v)

=
ρ
d
α,n

ρ
d

α,n+1

3�

i=1

E
d

α,n(ui, vi)

+
ρ
c
α,n

ρ
c

α,n+1

3�

i=1

2

1− α
E
c

α,n(ui, vi) +
�
ρ
c

α,n+1

�−1
Eα,1(u, v). (4.2.9)

Now, note that

ρ
d
α,n

ρ
d

α,n+1

=

�
n

i=1
r
d

α,i�
n+1

i=1
r
d

α,i

=
1

r
d

α,n+1

=

�
5 + 3α

�
1−α

2

�n�2

15
n→∞
−−−→

5

3
,

and since (ρcα,n)n∈N is a convergent sequence, we have that

ρ
c
α,n

ρ
c

α,n+1

n→∞
−−−→ 1.

Letting n → ∞ in both sides of the equality (4.2.9), we obtain (4.2.8).

Corollary 4.2.6. For any m ∈ N0 and u, v ∈ DKα

EKα(u, v) =
�

w∈Am

�
5

3

�m

E
d

Kα
(u ◦Gα,w, v ◦Gα,w)

+
�

w∈Am

�
2

1− α

�m

E
c

Kα
(u ◦Gα,w, v ◦Gα,w)

+ Θ−1

α

m−1�

k=0

�
2

1− α

�k �

w∈Ak

E
c

α,1(u ◦Gα,w, v ◦Gα,w).

Lemma 4.2.7. Kα is a compact set with respect to the resistance metric R.

Proof. Let V
R

α,∗ denote the closure of Vα,∗ with respect to the resistance
metric and consider the mappings Gα,i : R2 → R2 of the IFS associated
to Kα. We prove that they are contractions on the complete metric space
(V

R

α,∗, R), i.e. for all i = 1, . . . , 6 there exists ri ∈ (0, 1) such that

R(Gα,i(x), Gα,i(y)) ≤ riR(x, y) ∀x, y ∈ Vα,∗.
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On one hand we know by Proposition 4.2.5 that for any u ∈ DKα

EKα [u] =
5

3

3�

i=1

EKα [u ◦Gα,i] +
1 + 5α

3(1− α)

3�

i=1

E
c

Kα
[u ◦Gα,i] + Θ−1

α E
c

α,1[u],

which implies that

EKα [u] ≥
5

3
EKα [u ◦Gα,i] ∀ i = 1, 2, 3.

This leads to

|u(Gα,i(x))− u(Gα,i(y))|
2

EKα [u]
≤

3

5

|u ◦Gα,i(x)− u ◦Gα,i(y)|
2

EKα [u ◦Gα,i]
∀u ∈ DKα ,

and since u ◦Gα,i ∈ DKα , we have that

R(Gα,i(x), Gα,i(y)) ≤
3

5
R(x, y) ∀x, y ∈ Vα,∗.

Hence Gα,i are contractions with respect to the resistance metric with con-
traction factor ri =

3

5
for i = 1, 2, 3.

On the other hand, for each i = 4, 5, 6, there exists e ∈ Jα,1 such that
supp(u ◦Gα,i) ⊆ e ∈ Jα,1. Thus,

EKα [u ◦Gα,i] = Θ−1

α

�

Jα,1

|∇(u ◦Gα,i)|
2
dx

= Θ−1

α

�

e

|∇u(Gα,i(x))|
2
α
2
dx

= Θ−1

α

�

Gα,i(e)

|∇u(y)|2 α2
dy

α
(y = Gα,i(x))

≤ αΘ−1

α

�

e∈Jα

�

e

|∇u|
2
dy

≤ αEKα [u].

and we obtain

R(Gα,i(x), Gα,i(y)) ≤ αR(x, y) ∀x, y ∈ Vα,∗.

Thus, Gα,i is also a contraction with respect to the resistance form with
contraction factor ri = α for i = 4, 5, 6 and {Gα,i}

6

i=1
is a family of contrac-

tions on the complete metric space (V
R

α,∗, R). Hence there exists a unique
non-empty compact set �Kα ⊆ V

R

α,∗ such that

�Kα =
6�

i=1

Gα,i( �Kα).
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From [26, Lemma 1.3.11], the set S :=
�

n∈N0

�
w∈{1,...,6}n Gα,w(V0) is dense

in �Kα with respect to R and dense in Kα with respect to the Euclidean
metric, thus by Lemma 4.2.3

�Kα = S
R
= S

|·|
= Kα,

hence Kα is compact with respect to the resistance metric as we wanted to
prove.

Remark 4.2.8. Note that this Lemma implies that C0(Kα) = C(Kα), so
Lemma 4.2.2 and (RF2) in Theorem 4.2.1 imply that in this case we actually
have DKα = FKα .

Proof of Theorem 4.2.4. On one hand, it follows from Lemma 4.2.7 that
C0(Kα) = C(Kα) and DKα = FKα . On the other hand, it follows from [28,
Corollary 6.4] that (EKα ,FKα) is regular, hence DKα is dense in C(Kα) with
respect to the uniform norm. Due to the properties of the measure µα, we
know from classical analysis (see [38, Thm.3.14.] for a proof) that C(Kα)
is dense in L

2(Kα, µα). Hence DKα is also dense in L
2(Kα, µα) and by [28,

Theorem 9.4], (EKα ,DKα) is a regular Dirichlet form.

Let us now consider u, v ∈ DKα such that supp(u) ∩ supp(v) = ∅. Since
supp(u) and supp(v) are compact sets, there exists n ∈ N such that for all
w ∈ An, either supp(u) ∩ Gα,w(Kα) = ∅ or supp(v) ∩ Gα,w(Kα) = ∅. By
Corollary 4.2.6 we get that EKα(u, v) = 0, hence the form is local.

4.3 Laplacian on Kα

It is a known fact from the theory of Dirichlet forms that (EKα ,DKα) defines
a Laplacian on Kα in the weak sense as follows.

Definition 4.3.1. The Laplacian on Kα is the unique non-positive self-
adjoint operator ∆µα : D(∆µα) → L

2(Kα, µα) such that D(∆µα) is a dense
subset of DKα and for any u ∈ D(∆µα)

EKα(u, v) = (−∆µαu, v)µα ∀ v ∈ DKα .

We say that u ∈ D(∆µα) if and only if u ∈ DKα and there exists f ∈ L
2(Kα, µα)

such that
EKα(u, v) = −

�

Kα

fv dµα ∀ v ∈ DKα .

In this case, we define ∆µαu := f .



64 Chapter 4. Analysis on the Hanoi attractor Kα

4.3.1 A Borel regular measure on Kα

From the definition of the Laplacian ∆µα , it is clear that this operator
strongly depends on the measure µα and in general there is no canonical
choice of it. The measure constructed here has been chosen in this particu-
lar manner for technical reasons. We will discuss this point in the outlook
after this chapter.

From now on, we fix the following Radon probability measure µα on Kα.

Let λ(·) denote the 1−dimensional Hausdorff measure, set dα := dimH Kα

and consider some positive number β satisfying

0 < β < β
1/2

<
2

3(1− α)
. (4.3.1)

On the one hand, let µ
d
α be the Radon measure on R2 with support on Fα

(recall the definition of this set from Lemma 2.1.1) given by the normalized
dα−dimensional Hausdorff measure

µ
d

α(A) :=
1

Hdα(Fα)
H

dα
|Fα

(A), A ⊆ R2 Borel.

On the other hand, let µc
α be the the Radon measure on R2 with support on

Jα defined by

µ
c

α(A) :=
1

µ̃
c

α,β
(Jα)

µ̃
c

α,β
(A) for A ⊆ R2 Borel,

where
µ̃
c

α,β
(A) :=

�

e∈Jα

βeλ(A ∩ e)

and βe := β
k for e ∈ Jα,k+1 \ Jα,k, β being the constant chosen in (4.3.1).

By Proposition 2.1.1, Kα can be decomposed into the disjoint union Fα ∪̇ Jα,
so we may define the Radon measure on R2 as the sum

µα(A) :=
1

2

�
µ
d

α(A ∩ Fα) + µ
c

α(A ∩ Jα)
�

for A ⊆ R2 Borel.

Note that supp(µα) = Kα and µα(Kα) = 1.

Remark 4.3.2.
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(1) The choice of β in the definition of µ̃c

α,β
ensures that µ̃

c

α,β
(Jα) < ∞.

We have that

µ̃
c

α,β
(Jα) =

∞�

k=0

β
k

�

e∈Jα,k+1\Jα,k

λ(e) =
∞�

k=0

β
k

�

e∈Jα,k+1\Jα,k

α

�
1− α

2

�k

=
∞�

k=0

β
k3k+1

α

�
1− α

2

�k

= 3α
∞�

k=0

�
3β(1− α)

2

�k

and since 3β(1−α)

2
< 1, this quantity is finite. The measure µα is thus

locally finite.

(2) Let A∗ :=
�

n∈NAn be the set of all words on the alphabet A of finite
length. The measure µα is a Borel probability measure and belongs to
the set

M(Kα) :=

�
µ
�� µ is a probability measure on Kα, µ({x}) = 0 ∀x ∈ Kα,

µ(Gα,w(Kα)) > 0 and µ(Gα,w(V0)) = 0 for any w ∈ A
∗

�
.

(3) We will prove in Lemma 4.4.5 that µα is an elliptic measure, i.e. there
exists γ ∈ (0,∞) such that µα(Gα,wi(Kα)) ≥ γµα(Gα,w(Kα)) for all
w ∈ A∗, i ∈ A.

(4) For each w ∈ A∗, define µ
w
α := 1

µα(Gα,w(Kα))
µα ◦ Gα,w. We have that

µ
w
α ∈ M(Kα) and for any Borel measurable function u : Kα → R,
�

Kα

u ◦Gα,w dµ
w

α (x) =
1

µα(Gα,w(Kα))

�

Kα

u ◦Gα,w dµα(Gα,w(x))

=
1

µα(Gα,w(Kα))

�

Gα,w(Kα)

u dµα.

4.3.2 Normal derivatives and Gauss-Green formula

In this paragraph we would like to establish a Gauss-Green formula for our
Laplacian ∆µα as we have in the classical case

�

Ω

∇u∇v dx = −

�

Ω

(∆u)v dx+

�

∂Ω

∂u

∂ν
v dσ

for Ω ⊆ R open and dσ the surface measure on ∂Ω. Since the boundary of
Kα consists of just three points, we expect something of the form

EKα(u, v) = −

�

Kα

(∆µαu)v dµα +
�

x∈V0

∂u

∂ν
(x)v(x),

where ∂u

∂ν
denotes the normal derivative of u on the boundary V0 which is

given in [39, Definition 2.3.1] as follows.
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Definition 4.3.3. Let x ∈ V0 and u ∈ DKα . The normal derivative of u at
x is defined by

∂u

∂ν
(x) = lim

n→∞

�
ρ
d

α,n

�−1 �

y
α,n∼ x

(u(x)− u(y)),

whenever the limit exists.

The next theorem shows how this definition fits into the Gauss-Green formula
for ∆µα .

Theorem 4.3.4. Let u ∈ D(∆µα). Then, ∂u

∂ν
(x) exists for all x ∈ V0 and

the Gauss-Green formula

EKα(u, v) = −

�

Kα

(∆µαu)v dµα +
�

x∈V0

∂u

∂ν
u(x)v(x)

holds for all v ∈ DKα .

Proof. The proof can be found in [39, Theorem 2.3.2], but we include a more
detailed version for completeness. Without loss of generality, we may choose
v ∈ DKα with v(p1) = 1 and v(p2) = 0 = v(p3).

Then, for all n ∈ N0 we have that

Eα,n(u, v) = E
d

α,n(u, v) + E
c

α,n(u, v)

=
�
ρ
d

α,n

�−1 �

y
α,n∼ x

x∈V0

�
u(x)− u(y)

�
v(x)−

�
u(x)− u(y)

�
v(y)

+
�
ρ
d

α,n

�−1 �

y
α,n∼ x

x,y /∈V0

�
u(x)− u(y)

��
v(x)− v(y)

�
+ E

c

α,n(u, v)

=
�
ρ
d

α,n

�−1 �

y
α,n∼ p1

�
u(p1)− u(y)

�
+ E

d

α,n(u, v0) + E
c

α,n(u, v0),

where v0 ≡ v on Kα \ V0 and v0 ≡ 0 on V0.

Taking the limit n → ∞ in both sides we get

EKα(u, v) = lim
n→∞

�
ρ
d

α,n

�−1 �

y
α,n∼ p1

�
u(p1)− u(y)

�
+ EKα(u, v0),

which implies that

∂u

∂ν
(p1) = EKα(u, v)− EKα(u, v0) < ∞,
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proving the existence of the normal derivative ∂u

∂ν
at p1 and therefore on V0.

Finally, we may argue analogously for an arbitrary v ∈ DKα and get

Eα,n(u, v) =
�
ρ
d

α,n

�−1 �

y
α,n∼ x

x∈Vα,0

�
u(x)− u(y)

�
v(x) + E

d

α,n(u, v0) + E
c

α,n(u, v0)

for all n ≥ 0.
Taking the limit n → ∞ in both sides of the equality we obtain

EKα(u, v) =
�

x∈V0

v(x) lim
n→∞

�
ρ
d

α,n

�−1 �

y
α,n∼ x

�
u(x)− u(y)

�
+ EKα(u, v0)

=
�

x∈V0

∂u

∂ν
(x)v(x)−

�

Kα

(∆µαu)v0 dµα.

Since v = v0 µα−a.e. in Kα, last equality becomes the Gauss-Green formula

EKα(u, v) = −

�

Kα

(∆µαu)v dµα +
�

x∈V0

∂u

∂ν
(x)v(x).

Note that since the Laplacian ∆µα is the operator associated to (EKα ,DKα),
we know that for any u ∈ D(∆µα)

EKα(u, v) = −(∆µαu, v)µα = −

�

Kα

(∆µαu)v dµα ∀ v ∈ DKα ,

so it follows directly from this last theorem that
�

x∈V0

∂u

∂ν
(x)v(x) = 0 ∀ v ∈ DKα ,

hence
∂u

∂ν
(x) = 0 ∀x ∈ V0.

The set V0 was defined to be the boundary of Kα, therefore last equality
means that all functions in the domain of ∆µα have normal derivative zero on
the boundary, i.e. they satisfy homogeneous Neumann boundary conditions.
Thus from now on we will adopt the notation ∆N

µα
for the Laplacian asso-

ciated to (EKα ,DKα).

The Laplacian subject to Dirichlet boundary conditions is defined analo-
gously as the non-positive self-adjoint operator ∆D

µα
associated to the Dirich-

let form (E0

Kα
,D0

Kα
) given by

�
D

0

Kα
:= {u ∈ DKα | u|V0 ≡ 0},

E
0

Kα
:= EKα |D0

Kα
×D0

Kα
.
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Note that the domain D0

Kα
sets explicitly Dirichlet boundary conditions and

Theorem 4.3.4 holds trivially for ∆D
µα

because v = 0 on V0 for all v ∈ D0

Kα

and therefore �

x∈V0

∂u

∂ν
(x)v(x) = 0 ∀u ∈ D(∆D

µα
).

In the same way as we did for (EKα ,DKα), one can prove that (E0

Kα
,D0

Kα
) is

a resistance form and all results that derive from this fact hold in this case
too.

4.3.3 Green’s function

In this paragraph we define the Green function for the Laplacian with Neu-
mann (resp. Dirichlet) boundary conditions by means of resistance forms.
Hereby we refer to [27, Section 4].

Definition 4.3.5. Let V be a finite set. For any point x ∈ V , the charac-
teristic function χ

V
x : V → {0, 1} is defined as

χ
V

x (y) :=

�
1, if y = x,

0, otherwise.

Proposition 4.3.6. Let V ⊆ Vα,∗ be a finite set. Then for any u0 : V → R,
there exists a unique ũ ∈ DKα such that ũ|V = u0 and

EKα [ũ] = min{EKα [v] | v ∈ DKα and v|V = u0}.

Proof. See[26, Lemma 2.3.5].

We denote the harmonic extension ũ appearing in the above proposition by
hV (u).

Definition 4.3.7. For any finite subset V ⊆ Vα,∗ define HV := Im(hV ). If
ũ = hV (u0) for u0 : V → R, then ũ ∈ HV is called the V−harmonic function
with boundary value u0 with respect to (EKα ,FKα). Also, hV (χV

x ) is denoted
by ψ

V
x for any x ∈ V .

Note that HV is spanned by {ψV
x }x∈V , so for any u ∈ HV we can write

u =
�

x∈V u(x)ψV
x .

From now on, we fix the set V to be V0 and write ψx := ψ
V0∪x
x for each

x ∈ Vα,∗.

Proposition 4.3.8. The space HV0 of harmonic functions on L
2(Kα, µα)

with respect to (EKα ,FKα) has dimension 3.
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Proof. This follows directly from the fact that HV0 is spanned by {ψV0
x }x∈V0

and #V0 = 3.

If we define

PV0 : FKα −→ HV0

u �−→ hV0(u|V0),

any u ∈ FKα can be thus written as

u = PV0u� �� �
∈HV0

+(u− PV0u)� �� �
∈F0

Kα

,

where F0

Kα
:= {u ∈ FKα |u|V0 ≡ 0}. Thus FKα (or equivalently DKα) may

be decomposed into the sum FKα = HV0 ⊕ F0

Kα
. Moreover, by [27, Lemma

2.20], EKα(u, v) = 0 for any u ∈ HV0 and v ∈ F0

Kα
, so HV0 may be seen as

the “orthogonal complement” of F0

Kα
(and vice versa) with respect to EKα ,

although this is not an inner product on FKα .

Definition 4.3.9. Let the function g̃ : Vα,∗ × Vα,∗ → R be defined by

g̃(x, y) :=

�
0, if x ∈ V0,

(EKα [ψx])
−1

ψx(y), otherwise .
(4.3.2)

The extension of this function to Kα, g : Kα ×Kα → R is called the Green
function of the resistance form (EKα ,FKα) with boundary V0.

This function is symmetric and g(x, y) = 0 if x ∈ V0 or y ∈ V0. Further
properties can be read in [27, Proposition 4.2].

Proposition 4.3.10. For each x ∈ Kα, let g
x(y) := g(x, y) be the Green

function defined in (4.3.2). Then,

EKα(g
x
, u) = u(x)−

�

y∈V0

u(y)ψy(x)

for any u ∈ DKα .

Proof. Notice that D0

Kα
= F0

Kα
. We prove first that

EKα(g
x
, u) = u(x) ∀u ∈ D

0

Kα
and x ∈ Kα. (4.3.3)

We may suppose that x /∈ V0 (otherwise the result is trivial) and define
V

x

0
:= V0 ∪ {x}.
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Then,

EKα(g
x
, u) = EKα [ψx]

−1
EKα(ψx, u)

= EKα [ψx]
−1

�
EKα(ψx, PV

x
0
u+ u− PV

x
0
u)
�
.

Since u− PV
x
0
u ≡ 0 in V

x

0
and ψx ∈ HV

x
0
, it follows that

EKα(ψx, u− PV
x
0
u) = 0

so we get

EKα(g
x
, u) = EKα [ψx]

−1
EKα(ψx, PV

x
0
u)

= EKα [ψx]
−1

EKα

�
ψx,

�

y∈V x
0

u(y)ψy

�

= EKα [ψx]
−1

EKα(ψx, u(x)ψx)

= u(x),

as we wanted to prove.
Now, given any function u ∈ DKα we have that

EKα(g
x
, u) = EKα(g

x
, PV0u+ u− PV0u).

Since ψx ∈ D0

Kα
and PV0u ∈ HV0 , it follows that

EKα(ψx, PV0u) = 0,

and therefore
EKα(g

x
, u) = EKα(g

x
, u− PV0u).

Finally, u− PV0u ∈ D0

Kα
and we obtain from (4.3.3)

EKα(g
x
, u) = EKα(g

x
, u− PV0u)

= u(x)− PV0u(x)

= u(x)−
�

y∈V0

u(y)ψy(x),

as required.

As a consequence, the last result of this paragraph shows that g is the re-
producing kernel of the form (E0

Kα
,D0

Kα
).

Theorem 4.3.11. Given f ∈ C(Kα), there exists a unique u ∈ D(∆D
µα
)

such that
∆D

µα
u = f

and this function u is given by

u(x) = −

�

Kα

f(y)g(x, y) dµα(y).
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Proof. Suppose there exist u, u
� ∈ D(∆D

µα
) such that ∆D

µα
u = ∆D

µα
u
�. Then

E0

Kα
(u− u

�
, v) = 0 for all v ∈ D0

Kα
, which implies that u = u

�.

From the definition of ∆D
µα
u we know that

EKα(u, v) = −

�

Kα

fv dµα ∀ v ∈ D
0

Kα
.

In particular, if we take v = g
x, by Proposition 4.3.10 we obtain that

EKα(u, g
x) = u(x)−

�

y∈V0

u(y)ψy(x),

and since u ∈ D0

Kα
, u = 0 on V0, which leads to

u(x) = EKα(u, g
x) =

�

Kα

f(y)g(x, y) dµα(y),

as we wanted to prove.

4.3.4 The spectrum of the Laplacian

We already announced that the theory of resistance forms is a very useful tool
in order to characterise the spectra σ(−∆N

µα
) and σ(−∆D

µα
), as the following

theorem shows.

Theorem 4.3.12. The operator −∆N
µα

has pure point spectrum consisting
of countable many non-negative eigenvalues with finite multiplicity and only
accumulation point at +∞. The same holds for the operator −∆D

µα
.

Proof. By Lemma 4.2.7, K is compact in the resistance metric R. Hence it
follows from [28, Lemma 9.7] that the inclusion map

(DKα , EKα,1) �→ L
2(Kα, µα)

is a compact operator. This together with the fact that −∆N
µα

is a non-
negative self-adjoint operator on L

2(Kα, µα) implies that the operator −∆N
µα

has a compact resolvent (see [9, Exercise 4.2]). Thus by [9, Theorem 4.5.1],
σ(−∆N

µα
) is a countable set, all eigenvalues have finite multiplicity and the

only accumulation point is +∞.

The same arguments writing D0

Kα
instead of DKα hold and prove the theorem

for −∆D
µα

.
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4.4 Spectral dimension

In the last paragraph we showed that −∆N
µα

and −∆D
µα

are self-adjoint ope-
rators with a discrete spectrum {κi}

∞
i=1

whose eigenvalues have finite mul-
tiplicity and an only accumulation point at +∞. This property allows us
to ask ourselves about the distribution of these eigenvalues in [0,+∞). To
this purpose we study the asymptotic behaviour of the eigenvalue counting
function associated to each operator.

Definition 4.4.1. Let H be a Hilbert space and L : D(L) → H be some
densely defined operator. The eigenvalue counting function of L is defined
(if possible) for each x ≥ 0 as

NL(x) := #{κ | κ eigenvalue of L and κ ≤ x}

counted with multiplicity.

In our case, we write NN (x) := N−∆N
µα
(x) and ND(x) := N−∆D

µα
(x).

Remark 4.4.2. Let H be a Hilbert space and (E ,D) a Dirichlet form on H.
We say that κ ∈ R is an eigenvalue of E with eigenfunction u ∈ D if and
only if E(u, v) = κ(u, v) for all v ∈ D. The eigenvalue counting function can
therefore be defined also for a Dirichlet form (E ,D) on a Hilbert space H as

N(x; E ,D) := #{κ | κ eigenvalue of E and κ ≤ x}

for any x ≥ 0.
Moreover, we know from [32, Proposition 4.2] that NN (x) = N(x; EKα ,DKα)
and ND(x) = N(x; E0

Kα
,D0

Kα
).

Our interest in this section is the spectral dimension of Kα, that describes
the asymptotic scaling in the eigenvalue counting function and it is defined
as the number dS(Kα) > 0 such that

2 logNN (x)

log x
� dS(Kα) �

2 logND(x)

log x
. (4.4.1)

The following estimate of the eigenvalue counting function is therefore crucial
to determine dS(Kα).

Theorem 4.4.3. There exist constants Cα,1, Cα,β,1, Cα,2, Cα,β,2 > 0 depend-
ing on α and β, and x0 > 0 such that

Cα,1x
ln 3
ln 5 + Cα,β,1x

1/2
≤ ND(x) ≤ NN (x) ≤ Cα,2x

ln 3
ln 5 + Cα,β,2x

1/2 (4.4.2)

for all x ≥ x0.
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The proof of this result will be divided into several lemmas and it follows
mainly the ideas of Kajino in [23], based on the minimax principle (also
called variational principle) for the eigenvalues of non-negative self-adjoint
operators.

4.4.1 Preliminaries

In this paragraph we prove some technical results that will be used in the
lemmas leading to Theorem 4.4.3. As usual, we work with the alphabet A

and the set of words of finite length, A∗ =
�

n∈NAn. Moreover, given any
word w ∈ A∗, we write Kα,w := Gα,w(Kα).

Lemma 4.4.4. For any m ∈ N0 and w ∈ Am it holds that

µα(Kα,w) =
1

2

�
1

3m
+

�
β
1− α

2

�m�
.

Proof. Since Gα,w is a contraction with factor
�
1−α

2

�m and
�
1−α

2

�dα = 1

3
, by

definition of µd
α we have that

µ
d

α(Gα,w(Fα)) =

�
1

3

�m

µ
d

α(Fα). (4.4.3)

Further, by definition of µ
c
α and since the length of the largest lines in

Gα,w(Jα) is α
�
1−α

2

�m, we get that

µ̃
c

α(Gα,w(Jα)) =
∞�

k=1

3kα

�
1− α

2

�m+k−1

β
m+k−1

= 3α

�
1− α

2

�m

β
m

∞�

k=0

�
3β(1− α)

2

�k

=

�
1− α

2

�m

β
m
µ̃
c

α(Jα). (4.4.4)

Hence, µc
α(Gα,w(Jα)) =

1

µ̃c
α(Jα)

µ̃
c
α(Gα,w(Jα)) =

�
1−α

2

�m
β
m.

Finally, applying (4.4.3) and (4.4.4) we obtain

µα(Kα,w) =
1

2

�
µ
d

α(Gα,w(Fα)) + µ
c

α(Gα,w(Jα))
�

=
1

2

�
1

3m
+

�
β
1− α

2

�m�
,

as we wanted to prove.
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Lemma 4.4.5. The measure µα is elliptic.

Proof. Consider w ∈ A∗ and i ∈ A. Then, w ∈ Am for some m ∈ N0 and
since 1

3
≥ β

1−α

2
, we have that

µα(Kα,wi) =
1

2

�
1

3m+1
+

�
β
1− α

2

�m+1
�

≥ β
1− α

4

�
1

3m
+

�
β
1− α

2

�m�

= β
1− α

2
µα(Kα,w).

Hence choosing γ := β
1−α

2
∈ (0, 1) we have that µα(Kα,wi) ≥ γµα(Kα,w) for

any w ∈ A∗ and i ∈ A, as we wanted to prove.

We finish this paragraph with a definition and a remark that connect directly
with the beginning of the proof of Theorem 4.4.3.

Definition 4.4.6. For any non-empty set U ⊆ Kα, we define

CU := {u ∈ DKα : supp(u) ⊆ U}, DU := CU ,

where the closure is taken with respect to EKα,1, and write EU := EKα |DU×DU .
The pair (EU ,DU ) is called the part of the Dirichlet form (EKα ,DKα) on U .

Remark 4.4.7. Since u ≡ 0 µα−a.e. on Kα \ U for any u ∈ DU , we can
regard DU as a subspace of L

2(U, µα|U ). In the case when U ⊆ Kα is
open, we know from [14, Theorem 4.4.3] that (EU ,DU ) is a Dirichlet form
on L

2(U, µα|U ). We denote by HU the non-negative self-adjoint operator on
L
2(U, µα|U ) associated to (EU ,DU ).

4.4.2 Spectral asymptotics of the Laplacian

This section is devoted to the proof of Theorem 4.4.3, that we divide into
two parts: the lower and the upper bound.

Upper bound of (4.4.2)

First of all, note that for any m ∈ N, Jα,m is an open set, hence we know from
Remark 4.4.7 that (EJα,m ,DJα,m) is a Dirichlet form on L

2(Jα,m, µα|Jα,m).
Moreover, since Jα,m is just a finite union of 1−dimensional open intervals,
it follows from the definition of µα that in fact DJα,m can be identified with
the Sobolev space

�
e∈Jα,m

H
1

0
(e, dx).
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Lemma 4.4.8. For each m ∈ N, the non-negative self-adjoint operator
HJα,m associated with the Dirichlet form (EJα,m ,DJα,m) on L

2(Jα,m, µα|Jα,m)
has compact resolvent. Further, there exists a constant Cα,β,2 > 0 depending
on α and β, and x0 > 0 such that

NJα,m(x) ≤ Cα,β,2x
1/2 (4.4.5)

for all x ≥ x0.

Proof. Note that the operator HJα,m is nothing but the classical Laplacian
∆ restricted to the 1−dimensional subset Jα,m which has compact resolvent
since Jα,m is of finite length.
Let us now prove the inequality (4.4.5). Let u ∈ DJα,m be an eigenfunction
of (EJα,m ,DJα,m) with eigenvalue κ, i.e.

EJα,m(u, v) = κ(u, v)µα|Jα,m
∀ v ∈ DJα,m . (4.4.6)

Now consider e ∈ Jα,m and for any h ∈ H
1

0
(e, dx) define

h̃(x) :=

�
h(x), if x ∈ e,

0, if x ∈ Jα,m \ e.

Then, h̃ ∈ DJα,m and we get from (4.4.6) that
�

e

∇u∇h dx = Θα lim
n→∞

�
ρ
c

α,n

�−1
�

e∈Jα,m

�

e

∇u∇h̃ dx

= ΘαEJα,m(u, h̃) = Θακ(u, h̃)µα|Jα,m

= Θακ

�

e

uh dµα(x)

= Θακβe

�

e

uh dx,

where βe = β
n for e ∈ Jα,n+1 \ Jα,n and Θα = limn→∞ ρ

c
α,n.

Thus, �

e

∇u∇h dx = κΘαβe

�

e

uh dx ∀h ∈ H
1

0 (e, dx),

which implies that κΘαβe is an eigenvalue of the classical Laplacian −∆ on
L
2(e, dx) subject to Dirichlet boundary conditions with eigenfunction u|e.

Conversely, it is easy to see that if for any e ∈ Jα, κΘαβe is an eigen-
value of the classical Laplacian −∆ on L

2(e, dx) subject to Dirichlet bound-
ary conditions with eigenfunction u ∈ H

1

0
(e, dx), then κ is an eigenvalue of

(EJα,m ,DJα,m) with eigenfunction

ũ(x) :=

�
u(x), x ∈ e,

0, x ∈ Jα,m \ e.
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Since Jα,n is the disjoint union of all its connected components e, if we denote
by Ne(x) the eigenvalue counting function of the classical −∆|e subject to
Dirichlet boundary conditions for each e ∈ Jα,n, we have that

NJα,m(x) =
�

e∈Jα,m

Ne (βeΘαx) . (4.4.7)

Since these components e ∈ Jα,m are 1−dimensional, we know from Weyl’s
theorem [42] that

Ne(x) =
λ(e)

π
x
1/2 + o(x1/2) as x → ∞

for each e ∈ Jα,m and in particular, there exists c̃1 > 0 (independent of e)
and x0 > 0 such that

Ne(βeΘαx) ≤ c̃1
(βeΘα)1/2

π
λ(e)x1/2 ∀x ∈≥ x0.

By substituting this in (4.4.7) we get

NJα,m(x) ≤
�

e∈Jα,m

c̃1
(βeΘα)1/2

π
λ(e)x1/2 ≤

c̃1Θ
1/2

α

π
x
1/2

�

e∈Jα

β
1/2

e λ(e),

and since βe was chosen in (4.3.1) so that
�

e∈Jα
β
1/2

e λ(e) < ∞, by setting

Cα,β,2 :=
c̃1Θ

1/2

α

π

�

e∈Jα

β
1/2

e λ(e),

the assertion is proved.

Let us now define for each m ∈ N the set Kα,m :=
�

w∈Am Kα,w and consider
the pair (EKα,m ,DKα,m) given by

�
DKα,m := (DJα,m)

⊥
,

EKα,m := EKα |DKα,m×DKα,m
,

(4.4.8)

where (DJα,m)
⊥ denotes the orthogonal complement of DJα,m with respect

to the inner product EKα,1 defined in (4.2.7). By definition, u ≡ 0 µα−a.e.
on Kα \Kα,m(= Jα,m) for all u ∈ DKα,m , hence DKα,m can be regarded as a
subspace of L2(Kα,m, µα|Kα,m).

Lemma 4.4.9. The pair (EKα,m ,DKα,m) defined in (4.4.8) is a Dirichlet
form on L

2(Kα,m, µα|Kα,m).



4.4 Spectral dimension 77

Proof. First we show that DKα,m is a dense subspace of L2(Kα,m, µα|Kα,m).
Any function u ∈ L

2(Kα,m, µα|Kα,m) may be extended by zero to a function
ũ ∈ L

2(Kα, µα) that can be approximated in the L
2−norm by a sequence

(ũn)n∈N ⊆ DKα such that ũn = ṽn + w̃n, where ṽn ∈ DKα,m and w̃n ∈ DJα,m

for each n ∈ N.

Since supp(ũ) ⊆ Kα,m and supp(ṽn) ⊆ Jα,m, we have that

�ũ− ũn�
2

L2(Kα)
=

�

Kα,m

|u− ṽn|
2
dµα +

�

Jα,m

|w̃n|
2
dµα,

thus �w̃n�L2(Kα)
= �w̃n�L2(Jα,m)

n→∞
−−−→ 0 and hence

�u− ṽn�L2(Kα,m)
= �ũ− ṽn�L2(Kα,m)

≤ �ũ− ũn�L2(Kα)
+ �w̃n�L2(Kα)

n→∞
−−−→ 0.

Therefore, (ṽn)n∈N ⊆ DKα,m approximates u in the corresponding L
2−norm.

Secondly, (DKα,m , EKα,1) is a Hilbert space because DKα,m is a closed sub-
space of DKα .

Finally, the Markov property is inherited from the form EKα and we are
done.

Although the following lemma may not seem very special, it is in fact essen-
tial for the proof of Theorem 4.4.3: here we use the idea of decomposing Kα

(and therefore the domain of the Laplacian) into two distinguished pieces
where we have a better control of the eigenvalues.

Lemma 4.4.10. For any m ∈ N0, let HJα,m be the non-negative self-adjoint
operator on L

2(Jα,m, µα|Jα,m) associated with the Dirichlet form (EJα,m ,DJα,m)
and let HKα,m be the non-negative self-adjoint operator on L

2(Kα,m, µα|Kα,m)
associated with the Dirichlet form (EKα,m ,DKα,m). Then, HJα,m and HKα,m

have compact resolvent and for NJα,m(x) := N(x; EJα,m ,DJα,m) = NHJα,m
(x)

and NKα,m(x) := N(x; EKα,m ,DKα,m) = NHKα,m
(x), we have that

NN (x) ≤ NKα,m(x) +NJα,m(x)

holds for any x ∈ [0,∞).

Proof. The statements about compactness of the resolvent are proved in
Lemma 4.4.8 and Lemma 4.4.13 respectively.

On one hand, we have that L2(Kα, µα) = L
2(Kα,m, µα|Kα,m)⊕L

2(Jα,m, µα|Jα,m)
because Kα,m ∩ Jα,m = ∅ and by definition of (EKα,m ,DKα,m) we have that
EKα = EKα,m ⊕ EJα,m .
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On the other hand, DKα ⊆ DKα,m ⊕ DJα,m and it follows from [32, Propo-
sition 4.2, Lemma 4.2] that

NN (x) ≤ N(x; EKα ,DKα,m ⊕DJα,m) = NKα,m(x) +NJα,m(x),

as we wanted to prove.

We recall now the following result from spectral theory of self-adjoint oper-
ators.

Lemma 4.4.11. Let (E ,D) be a Dirichlet form on a Hilbert space H and
let A be non-negative self-adjoint operator on H associated with it. Further,
define

κ(L) := sup {E(u, u) |u ∈ L, �u�
H

= 1} , L ⊆ D subspace,

and
κn := inf{κ(L) |L subspace of D, dimL = n}.

If the sequence {κn}
∞
n=1

is unbounded, then the operator A has compact re-
solvent.

Proof. This follows from [9, Theorem 4.5.3], the converse of [9, Theorem
4.5.2] and [9, Corollary 4.2.3].

The proof of the next lemma will make use of the following so–called uniform
Poincaré inequality.

Definition 4.4.12. A Dirichlet form (E ,D) on L
2(Kα, µα) is said to satisfy

the uniform Poincaré inequality if and only if ∃ CP > 0 such that for any
w ∈ A∗ and all u ∈ {u ∈ L

2(Kα, µ
w
α ) | ∃ v ∈ D ∩ C(Kα), u ≡ v ◦Gα,w}

E(u, u) ≥ CP

�

Kα

��u− u
µ
w
α
��2 dµw

α ,

where µ
w
α is the measure defined in Remark 4.3.2-(5) and u

µ
w
α :=

�
Kα

u dµ
w
α .

In our case, the uniform Poincaré inequality holds for the Dirichlet form
(EKα ,DKα) by [23, Proposition 4.4] because FKα = DKα ⊆ C(Kα) and
(EKα ,FKα) is a resistance form whose associated resistance metric is com-
patible with the original (Euclidean) topology of Kα by Lemma 4.2.3.

Lemma 4.4.13. Let m ∈ N0 and define

κ(L) := sup

�
EKα,m [u] | u ∈ L,

�

Kα,m

|u|
2 = 1

�
, L ⊆ DKα,m subspace,

κn := inf{κ(L) | L subspace of DKα,m , dimL = n}.
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Then, there exists a constant CP > 0 such that

κ3m+1 ≥ 5mCP . (4.4.9)

In particular, the non-negative self-adjoint operator on L
2(Kα,m, µα|Kα,m)

associated with (EKα,m ,DKα,m) has compact resolvent.

Proof. The last assertion follows from Lemma 4.4.11 in view of inequal-
ity (4.4.9). Let us thus prove it. Define

�DKα,m :=

�
u ∈ L

2(Kα,m, µα|Kα,m)
�� ∃ v ∈ DKα,m , u ◦Gα,w = v ◦Gα,w

on Kα,m ∀w ∈ Am

�
,

�EKα,m [u] :=
�

w∈Am

�
5

3

�m

E
d

Kα
[u ◦Gα,w] +

�
2

1− α

�m

E
c

Kα
[u ◦Gα,w],

and

κ̃(L) := sup

�
�EKα,m [u] |u ∈ L,

�

Kα,m

|u|
2 = 1

�
, L ⊆ �DKα,m subspace,

κ̃n := inf{κ̃(L) |L subspace of �DKα,m , dimL = n}.

It is clear that DKα,m ⊆ �DKα,m and by Corollary 4.2.6, �EKα,m coincides with
EKα,m on DKα,m . Hence the minimax principle implies that κn ≥ κ̃n for all
n ∈ N0.

Let us consider L0 := {
�

w∈Am aw Kα,m | aw ∈ R}, which is a 3m-dimensional
subspace of �DKα,m . Note that �EKα,m |L0×L0 ≡ 0. Now, let L ⊆ �DKα,m be a
(3m + 1)-dimensional subspace of �DKα,m and set �L := L0 + L. The bilinear
form �EKα,m on �L is associated with a non-negative self-adjoint operator A

satisfying �EKα,m(u, v) =
�
Kα,m

(Au)v dµα for all u, v ∈ �L.

By the theory of finite-dimensional real symmetric matrices, the (3m+1)-th
smallest eigenvalue of A is given by

κA := inf{κ̃(L�) | L� is a subspace of �L, dimL
� = 3m + 1}.

Let uA ∈ �L be the eigenfunction corresponding to the eigenvalue κA and
normalize it so that

�
Kα,m

|uA|
2
dµα = 1. Note that this function is orthogo-

nal to L0, so we can apply the Poincaré inequality to it. Now, since 3

5
<

2

1−α
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and 3mµα(Kα,w) < 1 for all w ∈ Am, we have that

κ̃(L) ≥ κA = κA

�

Kα,m

|uA|
2
dµα = �EKα,m [uA]

=
�

w∈Am

�
5

3

�m

E
d

Kα
[uA ◦Gα,w] +

�
2

1− α

�m

E
c

Kα
[uA ◦Gα,w]

≥

�

w∈Am

�
5

3

�m

EKα [uA ◦Gα,w]

≥

�
5

3

�m �

w∈Am

CP

�

Kα

|uA ◦Gα,w|
2
dµ

w

α

=

�
5

3

�m �

w∈Am

CP

µα(Kα,w)

�

Kα,w

|uA|
2
dµα

≥
5mCP

3mmaxw∈Am{µα(Kα,w)}

�

Kα,w

|uA|
2
dµα

≥ 5mCP .

It follows that κ3m+1 ≥ 5mCP , as we wanted to prove.

Proposition 4.4.14. There exist Cα,2, Cα,β,2 > 0 depending on α and β,
and x0 > 0 such that

NN (x) ≤ Cα,2x
ln 3
ln 5 + Cα,β,2x

1/2

for all x ∈ [x0,∞).

Proof. Let x0 > CP and x ∈ [x0,∞). Then we can choose m ∈ N such that
CP 5m−1 ≤ x < CP 5m. From Lemma 4.4.13 we know that

κ3m+1 ≥ 5mCP > x,

hence NKα,m(x) ≤ 3m ≤ Cα,2x
ln 3
ln 5 , where Cα,2 := 3C

− ln 3
ln 5

P
. Finally, by

Lemma 4.4.10 and Lemma 4.4.8 we obtain

NN (x) ≤ Cα,2x
ln 3
ln 5 + Cα,β,2x

1/2
,

as we wanted to prove.

Lower bound

Let us write K
0
α := Kα \ V0 and K

0
α,w := Gα,w(K0

α) for any w ∈ A∗ and set
K

0
α,m :=

�
w∈Am K

0
α,w.
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Lemma 4.4.15. Let m ∈ N. For any w ∈ Am, the operators HK0
α,w

and
HK0

α,m∪Jα,m
have compact resolvent and for any x > 0 we have that

�

w∈Am

NK0
α,w

(x) +NJα,m(x) = NK0
α,m∪Jα,m

(x) ≤ ND(x). (4.4.10)

Proof. Note that by definition, DU ⊆ DK0
α

and EU = EK0
α
|U×U for both

U ∈ {DK0
α,m

,DK0
α,m∪Jα,m

} and any m ∈ N. Since HK0
α

has compact resolvent
by Theorem 4.3.12, the minimax principle implies that the operators HK0

α,w

and HK0
α,m∪Jα,m

also have compact resolvent and the inequality in (4.4.10)
holds.

Let us now prove the equality

NK0
α,m∪Jα,m

(x) = NJα,m(x) +NK0
α,m

(x) (4.4.11)

Let u ∈ DJα,m . Since Kα \ Jα,m ⊆ Kα,m, Lα := suppKα
(u) ∩ Kα ⊆ Jα,m

and therefore u · Jα,m ∈ C(Kα) and suppKα
(u · Jα,m) ⊆ Jα,m. Since Lα

is compact and Jα,m is open, we know by [14, Exercise 1.4.1] that we can
find a function ϕ ∈ DKα such that ϕ ≥ 0, ϕ|Lα ≡ 1 and ϕ|Kα,m ≡ 0. Then,
u · Jα,m = uϕ ∈ DJα,m and u · Jα,m ∈ CJα,m (recall Definition 4.4.6).

Similarly, if u ∈ DK0
α,m

and �Lα := suppKα
(u) ∩ Kα ⊆ K

0
α,m, we can find

ψ ∈ DKα such that ψ ≥ 0, ψ|�Lα
≡ 1 and ψ|Jα,m ≡ 0. Thus u · Kα,m =

uψ ∈ DK0
α,m

and we have that CK0
α,m∪Jα,m

= CKα,m ⊕ CJ0
α,m

, both spaces
being orthogonal to each other with respect to EKα and the inner pro-
duct of L

2(Kα, µα). Taking the closure with respect to EKα,1 we get that
DK0

α,m∪Jα,m
= DK0

α,m
⊕ DJα,m , where both spaces keep being orthogonal to

each other. Hence (4.4.11) follows.

It remains to prove that

NK0
α,m

(x) =
�

w∈Am

NK0
α,w

(x). (4.4.12)

In this case we argue as above: for any w ∈ Am and u ∈ DK0
α,w

, since
Kα,m \ K

0
α,w = Gα,w(V0) ∪

�
w�∈Am\{w}Kα,w, we have that L

�
α := Kα,w ∩

suppKα
(u) ⊆ K

0
α,m and suppKα

(u · K0
α,w

) ⊆ K
0
α,w. Again, L�

α is compact
and K

0
α,w is open, so we find ϕw ∈ DKα such that ϕw ≥ 0, ϕw|L�

α
≡ 1 and

ϕw|Kα,m\K0
α,w

≡ 0. Then, u · K0
α,w

= uϕw ∈ DK0
α,m

, hence u · K0
α,w

∈ CK0
α,w

and CK0
α,m

=
�

w∈Am CK0
α,w

, where CK0
α,w

are orthogonal to each other with
respect to both EKα,m and the inner product of L2(Kα,m, µα|Kα,m). Taking
the closure with respect to EKα,1 we get DK0

α,m
=

�
w∈Am DK0

α,w
, with all

DK0
α,w

again orthogonal to each other so (4.4.12) follows.
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Lemma 4.4.16. Let m ∈ N. There exists a constant Cα,β,1 > 0 depending
on α and β, and x0 > 0 such that

Cα,β,1x
1/2

≤ NJα,m(x)

for all x ≥ x0.

Proof. We know from the proof of Lemma 4.4.8 that

NJα,m(x) =
�

e∈Jα,m

Ne (βeΘαx) , (4.4.13)

and
Ne(x) =

λ(e)

π
x
1/2 + o(x1/2) as x → ∞

for all e ∈ Jα,m. Thus, there exists c̃2 ∈ (0,∞) (independent of e) and
x0 > 0 such that

c̃1
(βeΘα)1/2

π
λ(e)x1/2 ≤ Ne(βeΘαx) ∀x ≥ x0.

By substituting this in (4.4.13) we get

NJα,m(x) ≥
�

e∈Jα,m

c̃1
(βeΘα)1/2

π
λ(e)x1/2 ≥

c̃1Θ
1/2

α

π
x
1/2

�

e∈Jα,m

β
1/2

e λ(e),

and setting Cα,β,1 :=
c̃1(Θαβα)

1/2

π
, the assertion is proved.

For the proof of the next lemma we need to introduce the following identi-
fication mapping. Recall the IFS {R2;Si, i = 1, 2, 3} associated with K and
{R2;Gα,i, i = 1, . . . , 6} associated with Kα as well as the sets V∗ and Wα,∗
defined in (2.2.1) and (2.1.1). Further, we know that for any x ∈ Wα,∗, there
exists a word w

x ∈ A∗ such that x = Gα,wx(pi) for some pi ∈ V0, so we can
define

I : Wα,∗ −→ V∗

x �−→ Swx(pi).

This mapping allows us to construct functions in DKα from functions in DK

(the domain of the Dirichlet form defined in Theorem 3.2.2) as follows: for
any u ∈ DK , we define the function uα : Vα,∗ → R by

uα(x) :=

�
u ◦ I(x), x ∈ Wα,∗,
u ◦ I(ae), x ∈ [ae, be], e ∈ Jα,

(4.4.14)
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which is well defined since I(ae) = I(be) for all e ∈ Jα. If (EK ,DK) denotes
the Dirichlet form associated with K, then

EKα [uα] = lim
n→∞

�
ρ
d

α,n

�−1

E
d

α,n[uα] +
�
ρ
c

α,n

�−1
E

c

α,n[uα]

= lim
n→∞

3n

5nρdα,n

�
3

5

�−n

E
d

α,n[u]

and since

L := lim
n→∞

3n

5nρdα,n
≤ lim

n→∞

�
1 +

α

5

�
1− α

2

�n−1
�2n

< ∞

because 1 + α

5

�
1−α

2

�n−1
≤ 1 + α/5

n
for sufficiently large n, we get that

EKα [uα] = E
d

Kα
[uα] = L · EK [u] < ∞,

hence uα ∈ DKα .

Lemma 4.4.17. Let m ∈ N. There exists CD ∈ (0,∞) such that for all
w ∈ Am

κ1(K
0

α,w) := inf
u∈CK0

α,w
u�=0

�
EKα [u]

�u�
2

L2(K0
α,m)

�
≤ 5mCD. (4.4.15)

Proof. Let v ∈ A∗ such that Sv(K) ⊆ K \V0 and consider u ∈ D0

K
a function

such that supp(u) ⊆ K \ V0 and u ≡ 1 on Sv(K) (such a function exists
by [14, Exercise 1.4.1] because Sv(K) is compact and K \ V0 is open). The
function uα ∈ D0

Kα
defined as in (4.4.14) has by construction the property

that uα ≡ 1 on Kα,v. Now, for any w ∈ Am we define the function

u
w(x) :=

�
uα ◦G−1

α,w(x), x ∈ K
0
α,w,

0, x ∈ Kα \K0
α,w.

Then, uw ∈ CK0
α,w

and by Corollary 4.2.6 we have that

EKα [u
w] =

�
5

3

�m �

w�∈Am

E
d

Kα
[uw ◦Gα,w� ] +

�
2

1− α

�m �

w�∈Am

E
c

Kα
[uw ◦Gα,w� ]

+ Θ−1

m−1�

k=0

�
2

1− α

�k �

w�∈Ak

E
c

α,1[u
w
◦Gα,w� ]

=

�
5

3

�m

E
d

Kα
[uw ◦Gα,w] =

�
5

3

�m

E
d

Kα
[uα]

=

�
5

3

�m

LEK [u]. (4.4.16)
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On the other hand,
�

Kα

|u
w(x)|2 dµα(x) =

�

K0
α,m

��uα ◦G
−1

α,w(x)
��2 dµα(x)

=

�

Kα

|uα|
2
dµα(Gα,w(y))

≥

�

Kα,v

dµα(Gα,w(y))

= µα(Gα,w(Kα,v)) = µα(Kα,wv),

and since µα is elliptic by Lemma 4.4.5, there exists γ ∈ (0,∞) such that
µα(Kα,vw) ≥ γ

|v|
µα(Kα,w), thus
�

Kα

|u
w(x)|2 dµα(x) ≥ γ

|v|
µα(Kα,w). (4.4.17)

From inequalities (4.4.16) and (4.4.17) and the fact that 3mµα(Kα,w) >
1

2
,

we obtain

inf
u∈CK0

α,w
u�=0

�
EKα [u]

�u�
2

L2(K0
α,m)

�
≤

EKα [u
w]

�
K0

α,w
|uw|

2
dµα

≤
EKα [u

w]

γ|v|µα(Kα,w)

=

�
5

3

�m
LEK [u]

γ|v|µα(Kα,w)
=

5mLEK [u]

3mγ|v|µα(Kα,w)

≤ CD5
m
,

where CD := 2LEK [u]

γ|v| is independent of w. Thus, inequality (4.4.15) follows
for all w ∈ Am.

Now we are ready to prove the lower bound of Theorem 4.4.3.

Proposition 4.4.18. There exist Cα,1, Cα,β,1 > 0 depending on α and β,
and x0 > 0 such that

Cα,1x
ln 3
ln 5 + Cα,β,1x

1/2
≤ ND(x)

for all x ≥ x0.

Proof. For x ≥ CD, choose m ∈ N0 such that CD5m ≤ x < CD5m+1. We
know from Lemma 4.4.17 that

κ1(K
0

α,w) ≤ CD5
m

∀w ∈ A
m
,

which implies that NK0
α,w

(x) ≥ 1 for all w ∈ Am.
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By Lemmas 4.4.15 and 4.4.16 we get that

ND(x) ≥
�

w∈Am

NK0
α,w

(x) +NJα,m(x) ≥ #A
m + Cα,β,1x

1/2

≥ Cα,1x
ln 3
ln 5 + Cα,β,1x

1/2
,

where Cα,1 :=
1

3
C

− ln 3
ln 5

D
.

Finally, we are ready to prove Theorem 4.4.3

Proof of Theorem 4.4.3. First note that the Dirichlet form (E0

Kα
,D0

Kα
) cor-

responds to (EK0
α
,DK0

α
) in the notation of Definition 4.4.6.

By Theorem 4.3.12, its associated non-negative self-adjoint operator on L
2(Kα, µα)

has compact resolvent and since DK0
α
⊆ DKα and EK0

α
= EKα |DK0

α
×DK0

α
, it

follows from the minimax principle that ND(x) ≤ NN (x) for any x ≥ 0.

Finally, consider x0 > max{CP , CD}. Then Propositions 4.4.14 and 4.4.18
provide the first and third inequality and the theorem is proved.

Remark 4.4.19. In the discussion of Section 4.3.3, we showed the decom-
position DKα = HV0 ⊕ D0

Kα
, where HV0 denoted the space of harmonic

functions. By Proposition 4.3.8, this is a 3-dimensional subspace and there-
fore

dim(DKα/DK0
α
) = 3,

hence by [29, Corollary 4.7], we also have that

ND(x) ≤ NN (x) ≤ ND(x) + 3.

Corollary 4.4.20. For any α ∈ (0, 1/3), it holds that

dS(Kα) =
2 ln 3

ln 5
= dS(K).

Proof. Looking to the definition of spectral dimension in (4.4.1), the asser-
tion follows from Theorem 4.4.3 and the previous Remark.



Chapter 5

Consequences and further

research

The most important conclusion of this work is Corollary 4.4.20, telling us
that the spectral dimension of the Hanoi attractor coincides with the one of
the Sierpiński gasket for all α ∈ (0, 1/3). This means that, although both the
Sierpiński gasket and Hanoi attractors have been proved to be geometrically
different in chapter 2, they coincide as analytic objects. One could say that
we can distinguish them if we see them, but we could not do so if we would
just “hear” them.

Measure

It is important to remark once again that the spectral dimension of Kα

strongly depends on the choice of the measure µα because the operators ∆N
µα

and ∆D
µα

also depend on it. It would be therefore interesting to study Dirich-
let forms induced by the resistance form (EKα ,FKα) on different L

2−spaces
and investigate the influence of the choice of the measure on the spectral
properties of the corresponding Laplacian. In this way one could eventually
answer the question which measure is the best for what purposes?

Heat kernel estimates

Since (EKα ,FKα) is a regular resistance form, it follows from [28, Theo-
rem 10.4] that the induced Dirichlet form (E0

Kα
,D0

Kα
) (the one associated

with Dirichlet boundary conditions) has a jointly continuous heat kernel
p(t, x, y) : (0,∞) × Kα × Kα → [0,∞) and in particular one has the on-
diagonal estimate

p(t, x, x) ≤
2R(x,A)

t
+

√
2

µα(A)
∀ x ∈ Kα, t > 0,
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where R(x,A) := sup{R(x, y) | y ∈ A} and A is any Borel set satisfying
0 < µα(A) < ∞.

It would be thus very interesting to study if one can find more (and better)
estimates for this kernel. In particular, since the Dirichlet form (EKα ,DKα)
is local, we know from [14, Theorem 7.2.1] that there exists an associated
diffusion process. In such cases one is interested in so–called Li-Yau type
(sub-)Gaussian estimates because they are closely related to the concept of
walk dimension, that we discuss afterwards. This kind of estimates are of
the form

p(t, x, y) �
C1

µ(Bd(x, t1/δ))
exp

�
−C2

�
d(x, y)δ

t

�1/(1−δ)
�
,

where µ is a regular measure on Kα, Bd(x, r) denotes the ball of radius r > 0
with respect to the distance d and 1 < δ < 2.

One of the principal assumptions needed is the volume doubling property for
the measure µ, i.e.

µ(Bd(x, 2r) ≤ Cµ(Bd(x, r))

for some constant C ∈ (0,∞).
In the case that this does not hold for the measure µα, which would make
finding this sort of estimate almost hopeless, one could substitute the Eu-
clidean distance by the distance induced by the resistance metric in order to
get the volume doubling property and restore the hope for Li-Yau type es-
timates. Eventually, one could answer the question, under what distance
and measure do we have Li-Yau type heat kernel estimates associated to
(EKα ,DKα)?

Note that a change in the distance can carry a change in the Hausdorff
dimension of the set Kα. It would be thus interesting to answer the question:
does the Hausdorff dimension of Kα (with respect to the resistance metric)
converge to the Hausdorff dimension of Kα?

Walk dimension and Einstein relation

As we already pointed out, the local regular Dirichlet form (EKα ,DKα) has an
associated diffusion process (Xt)t≥0. The space-time relation of this process
is given by the so–called walk dimension, defined as

dwKα = lim
r↓0

logEx[TBd(x,r)
]

log r
,

where TBd(x,r)
denotes the (random) time the process needs to exit a ball of

radius r centred at x ∈ Kα. If the set is sufficiently homogeneous, this limit
is independent of x.
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Moreover, if one has Gaussian estimates for the heat kernel, this dimension
coincides with the parameter δ of the estimate (see [17, Example 3.2] for the
case of the Sierpiński gasket).

Spectral dimension and walk dimension are in general related by the so–
called Einstein relation

dSdw = 2dH ,

where dH denotes the Hausdorff dimension of the set. This relation shows
the connection between three fundamental points of view on a set, namely
analysis, probability theory and geometry.

The Einstein relation has not yet been proven to hold in general but it is
known to be truth in the case of the Sierpiński gasket (see e.g. [13]). The
case of Hanoi attractors seems to be quite interesting because of the fact
that

dH(Kα) < dS(Kα) ∀α ∈ (1−
2
√
5
,
1

3
).

In case this relation holds, then we get dwKα < 2 for α ∈ (1 −
2√
5
,
1

3
).

This would mean that the diffusion process associated to the Dirichlet form
(EKα ,DKα) for these α’s moves faster than two-dimensional Brownian mo-
tion and we would be facing a super-diffusive process on a set that can be
embedded into the Euclidean space, turning Kα into a superconductor.

Generalization

Since it was possible to apply the ideas of [23] also in an non self-similar
case, one could investigate if and what conditions could be modified in order
to generalize these results.

Further topics

Hanoi attractors are closely related to the Sierpiński gasket, so it would also
be interesting to look at these fractals in harmonic coordinates and study
their relationship with the Sierpińksi gasket in harmonic coordinates, studied
in [40] as an example of a self-similar space where it is possible to develop
the concept of a weak gradient. In this case, the associated Dirichlet form
can be expressed as the integral of the norm squared of the gradient with
respect to an energy measure.
Finally, I would like to mention that this thesis has produced a joint work
(still in process) on quantum graphs with D. Kelleher and A. Teplyaev from
the University of Connecticut, due to the fact that the continuous part of the
Dirichlet form (EKα ,DKα) suggests the study of Dirichlet forms on quantum
graphs with fractal nature.



Appendix A

Theoretical background

A.1 Resistance forms

This section makes a short review of the basic notions on resistance forms
that are used in chapter 4. This theory was established by Kigami in [26,
Chapter 2] but we will mostly refer to his most recent work [28], where
definitions and results have been improved.

A resistance form is a quite general analytic structure, for which just a metric
space is needed. We therefore consider a metric space (X, d) and denote by
�(X) the space of all real valued functions u : X → R. Moreover, we use the
notation u ∨ v := max{u, v} and u ∧ v := min{u, v} for any u, v ∈ �(X).

Definition A.1.1. A pair (E ,F) is called a resistance form on X if the
following properties are satisfied:

(RF1) F is a linear subspace of �(X) containing constants. E is a non-negative
symmetric bilinear form on F and for all u ∈ F , E(u, u) = 0 if and
only if u ≡ const.

(RF2) If we consider the space F/∼, where u ∼ v if and only if u− v ≡ const
for all u, v ∈ F , then (F/∼, E) is a Hilbert space.

(RF3) For any x, y ∈ X, x �= y, there exists a function u ∈ F such that
u(x) �= u(y).

(RF4) For any x, y ∈ X,

R(x, y) := sup

�
|u(x)− u(y)|2

E(u, u)

�� u ∈ F , E(u, u) > 0

�

is finite.
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(RF5) For any u ∈ F , the function ũ := 0 ∨ u ∧ 1 ∈ F and E(ũ, ũ) ≤ E(u, u).

Proposition A.1.2. Let (E ,F) be a resistance form. The supremum in
(RF4) is indeed the maximum and R : X × X → [0,+∞) defines a metric
on X.

Proof. See [26, Theorem 2.3.4]

The metric R is called the resistance metric on X associated with the resis-
tance form (E ,F) and by (RF4), the following result holds.

Proposition A.1.3. Let (E ,F) be a resistance form. Then, for any u ∈ F ,

|u(x)− u(y)|2 ≤ E(u, u)R(x, y) ∀x, y ∈ X.

Proof. See [26, Theorem 2.3.4].

This proposition says that any function in F is continuous with respect to
the resistance metric R.

One of the most important features of a resistance form is that, if we consider
the metric space (X,R) to be separable and equip it with a finite regular
measure µ, then the resistance form (E ,F) induces a Dirichlet form (E ,D)
in the following way:

Definition A.1.4. Let E1 be the symmetric bilinear form defined by

E1(u, v) := E(u.v) +

�

X

uv dµ ∀u, v ∈ F ∩ L
2(X,µ).

Then we have the following facts.

Lemma A.1.5. (F ∩ L
2(X,µ), E1/2

1
) is a Hilbert space.

Proof. See [26, Theorem 2.4.1].

Theorem A.1.6. Let C0(X) denote the set of continuous functions on X

with compact support and let (E ,F) be a resistance form. Further, let D be
the closure of F∩C0(X) with respect to E1. Then, (E ,D) is a Dirichlet form.

Proof. See [28, Theorem 9.4].
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A.2 (Brief) introduction to the theory of Dirichlet

forms

The theory of Dirichlet forms is a subject of great interest because it combines
analysis and probability by closing a circle of connections between resolvents,
semigroups, generators and coercive bilinear forms. In this paragraph we give
an outline of the most important facts. Hereby we refer mostly to [34, 14].

Although this theory works in a more general setting (on Banach spaces),
since we are dealing with Dirichlet forms induced by a resistance metric,
we will present all results in terms of a real Hilbert space L

2(X,µ), where
(X, d, µ) is a metric measurable space. We denote the associated inner prod-
uct by (·, ·)µ and its associated norm by �·�

2
:= (·, ·)1/2µ .

A pair (L,D(L)) is called a linear operator on L
2(X,µ) if D(L) is a dense

linear subspace of L2(X,µ) and L : D(L) → L
2(X,µ) is a linear map. L is

said to be continuous (or bounded) in L
2(X,µ) if

�L� := sup{�Lu�
2
| u ∈ L

2(X,µ), �u�
2
≤ 1} < ∞.

Definition A.2.1. The resolvent set of a linear operator (L,D(L)) is defined
as

ρ(L) := {λ ∈ R | (λ− L) is a bijection with bounded inverse}.

Moreover, the set σ(L) := R \ ρ(L) is called the spectrum of L and the set
{(λ− L)−1 : λ ∈ ρ(L)} is called the resolvent of L.

Definition A.2.2. A family of linear operators {Rλ : D(Rλ) → L
2(X,µ)}λ>0

with D(Rλ) = L
2(X,µ) for all λ ∈ (0,∞) is said to be a strongly continuous

resolvent if

(i) limλ→∞ λRλu = u for all u ∈ L
2(X,µ) (strong continuity),

(ii) �λRλu�2 ≤ �u�
2

for all λ > 0, u ∈ L
2(X,µ) (contraction property),

(iii) Rλ −Rκ = (κ− λ)RλRκ for all λ, κ > 0 (first resolvent equation).

As its name suggests, a strongly continuous resolvent is closely related to
the resolvent set of some linear operator. This relationship is given in the
following result:

Proposition A.2.3. Let {Rλ}λ>0 be a strongly continuous resolvent on
L
2(X,µ). Then there exists a unique linear operator (L,D(L)) such that

(0,∞) ⊆ ρ(L) and Rλ = (λ− L)−1 for all λ > 0. Moreover, L is closed and
densely defined.

Proof. See [34, Proposition 1.5].
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This operator (L,D(L)) is called the generator of {Rλ}λ>0 and it can be
characterized as follows:

Definition A.2.4. Let {Rλ}λ>0 be a strongly continuous resolvent on L
2(X,µ).

The linear operator (L,D(L)) defined by
�
D(L) := Rλ(L

2(X,µ)),

Lu := (λ−Rλ)
−1

u,

for some λ > 0, is called the (infinitesimal) generator of {Rλ}λ>0.

Note that the inverse of Rλ exists for all λ > 0: suppose there exists a
function u ∈ L

2(X,µ) such that Rλu = 0. Then, it follows from the resolvent
equation that Rκu = 0 for all κ > 0 and from the strong continuity we get
that u = limλ→∞ λRλu = 0 and the existence of R−1

λ
on D(L) is assured.

Definition A.2.5. A family {Tt}t>0 of linear operators with D(Tt) = L
2(X,µ)

for all t > 0 is called a strongly continuous contraction semigroup if

(i) Tt+s = TtTs, for all t, s > 0 (semigroup property),

(ii) �Ttu�2 ≤ �u�
2

for all t > 0, u ∈ L
2(X,µ) (contraction property),

(iii) limt→0 Ttu = u for all u ∈ L
2(X,µ) (strong continuity).

Strongly continuous semigroups have also an associated generator:

Definition A.2.6. Let {Tt}t>0 be a strongly continuous contraction semi-
group. The linear operator (L,D(L)) defined by






D(L) := {u ∈ L
2(X,µ) | ∃ lim

t→0

Ttu− u

t
},

Lu := lim
t→0

Ttu− u

t
u ∈ D(L),

is called the (infinitesimal) generator of {Tt}t>0.

The following theorem, originally due to E. Hille [16] and K. Yosida [43], gives
us a necessary and sufficient condition to decide if a densely defined linear
operator is the generator of any strongly continuous contraction semigroup.

Theorem A.2.7. Let (L,D(L)) be a linear operator such that D(L) is dense
in L

2(X,µ). Then, L is the generator of a strongly continuous contraction
semigroup if and only if

(i) (Lu, u)µ ≤ 0 for all u ∈ D(L) (negative semi-definite), and
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(ii) (λ− L)(D(L)) = L
2(X,µ) for some λ > 0.

Proof. See [37, Theorem X.48].

Remark A.2.8. The above theorem holds because L
2(X,µ) is a real Hilbert

space. For the general case of Banach spaces, (i) and (ii) should be replaced
by (0,∞) ⊆ ρ(L) and

��λ(λ− L)−1
�� ≤ 1 respectively (see [34, Theorem 1.12]

for a proof).

Next proposition gives us the first relationship between strongly continuous
contraction semigroups and resolvents.

Proposition A.2.9. Let {Tt}t>0 be a strongly continuous contraction semi-
group with generator (L,D(L)). Then L is closed, D(L) is dense in L

2(X,µ),
(0,∞) ⊆ ρ(L) and {Rλ}λ>0 is a strongly continuous contraction resolvent,
where

Rλu =

� ∞

0

e
−λs

Tsu ds, f ∈ L
2(X,µ), λ > 0. (A.2.1)

Proof. See [34, Prop.1.10]

Note that (A.2.1) means that Rλ is the Laplace transform of Tt. Thus, given
a strongly continuous contraction resolvent, we can obtain its associated
strongly continuous contraction semigroup by taking the inverse Laplace
transform of each Rλ.

Finally, we introduce Dirichlet forms and their connection with resolvents
and semigroups.

Let D be a linear subspace of L2(X,µ) and E : D × D → R a bilinear map.
For β > 0 we define

Eβ(u, v) := E(u, v) + β(u, v)µ, u, v ∈ D.

If E is positive semi-definite (i.e., E(u, u) ≥ 0 for all u ∈ D) and symmetric
(i.e. E(u, v) = E(v, u) for all u, v ∈ D), then the norms Eβ(·, ·)1/2 on D for
any β > 0 are equivalent.

Definition A.2.10. A symmetric bilinear form E : D × D → R is said
to be closed on L

2(X,µ) if D is a dense linear subspace of L
2(X,µ) and

(D(E), E1/2

1
) is a complete space.

Definition A.2.11. A symmetric closed bilinear form (E ,D(E)) on L
2(X,µ)

such that for all u ∈ D, 0 ∨ u ∧ 1 ∈ D, and E(0 ∨ u ∧ 1, 0 ∨ u ∧ 1) ≤ E(u, u)
(Markov property), is called a symmetric Dirichlet form.
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Thus, if we are given a pair (E ,D) and we want to check if it is a symmetric
Dirichlet form, we have to prove this three properties:

(DF1) D is dense in L
2(X,µ) with respect to the norm �·�

2
.

(DF2) (D, E1(·, ·)1/2) is a complete space.

(DF3) (E ,D) satisfies the Markov property.

The next results show how strongly continuous contraction resolvents and
semigroups are related to Dirichlet forms. Note that they hold even more
generally for any coercive closed symmetric form.

Theorem A.2.12. Let (E ,D) be a Dirichlet form on L
2(X,µ). Then there

exists a unique strongly continuous contraction resolvent {Rλ}λ>0 on L
2(X,µ)

such that D ⊆ L
2(X,µ) and

Eλ(Rλu, v) = (u, v)µ = Eλ(u,Rλv), (A.2.2)

for all u ∈ L
2(X,µ), v ∈ D and λ > 0. In particular, Rλ is self-adjoint for

all λ > 0.

Proof. See [34, Theorem 2.8].

Theorem A.2.13. Let (L,D(L)) be the generator of the strongly continuous
contraction resolvent on L

2(X,µ), {Rλ}λ>0, with the property that for each
λ > 0 there exists Cλ > 0 such that

|(Rλu, v)| ≤ CλEλ(u, u)
1/2

Eλ(v, v)
1/2

∀u, v ∈ L
2(X,µ).

Define
E(u, v) := (−Lu, v)µ, u, v ∈ D(L)

and let D be the completion of D(L) with respect to the norm E
1/2

1
. If we

denote again by E the unique bilinear extension of E to D which is continuous
with respect to E

1/2

1
, then (E ,D) is a Dirichlet form and for each u ∈ D,

E(u, v) = (−Lu, v)µ, ∀ v ∈ D.

Furthermore, {Rλ}λ>0 and (E ,D) are related by (A.2.2).

Proof. See [34, Theorem 2.15].

We finish this paragraph with two more important definitions concerning
Dirichlet forms and a diagram resuming all the connections shown between
Dirichlet forms, self-adjoint operators, strongly continuous resolvents and
strongly continuous contraction semigroups.
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Definition A.2.14. Let (E ,D) be a Dirichlet form.

(1) (E ,D) is called regular if D ∩ C0(X) is dense in D with respect to
the norm E

1/2

1
and D ∩ C0(X) is dense in C0(X) with respect to the

uniform norm.

(2) (E ,D) is called local if for all u, v ∈ D such that supp(u)∩ supp(v) = ∅

we have that E(u, v) = 0.

E : D ×D → R Dirichlet form:

D ⊆ L2(K,µ) dense,

(E ,D) closed,

E Markov.

{Rλ}λ>0 strongly continuous

resolvent,

D(Rλ) = L2(X,µ)

(L,D(L)) self-adjoint

operator in L2(X,µ).

D(L) ⊆ L2(X,µ) dense.

{Tt}t>0 strongly continuous

contraction semigroup,

D(Tt) = L2(X,µ)

E(u, v) = (−Lu, v) ∀u, v ∈ D

Eλ(Rλu, v) = (u, v)
E(u, v) =

limλ→∞ λ(u− λRλu, v)

Ttu = limλ→∞ etλ(λRλ−1)u

“Hille - Yosida”

Rλu =
�∞
0

e−tλTtu dt

Lu =

limt↓0
Ttu−u

t

“Hille - Yosida”

(via resolvent)
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