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Abstract

The present thesis deals with inverse multibody dynamics problems. In particu-
lar, optimal control problems will be treated, which are governed by differential-
algebraic equations. The main goal therein is the minimization of the control
effort, which is necessary for moving a multibody system from one configuration
to another. A basic task therefore is the formulation of the underlying equations
of motion. Main focus will be on the formulation of the equations of motion with
natural coordinates, which facilitates the design of structure-preserving time-
stepping schemes. It is well known that schemes preserving basic properties
of the mechanical system algorithmically exhibit superior stability properties in
comparison to standard integrators. The application of these schemes within op-
timal control problems requires a consistent incorporation of the control torques.
A convincing way for the incorporation of the control torques will be proposed
in this contribution. In addition to the schemes based on the rotationless for-
mulation, also an energy-momentum conserving time-stepping scheme based on
quaternions will be presented. Although the quaternion-based scheme turns out
to be competitive in the forward dynamics of rigid bodies, the extension to
multibody problems is not as straightforward and easy to handle as with the
rotationless formulation in terms of natural coordinates. Therefore quaternions
will not be applied within optimal control problems in this thesis. Regarding
optimal control of multibody systems, new energy-momentum consistent direct
transcription methods in terms of natural coordinates will be presented. In a
first step, the equations of motion obtained by a reduction process via the dis-
crete null space method will be applied. The arising results will be compared
with those achieved by a formulation of the equations of motion with the widely
used minimal coordinates. In a second step, the original equations of motion
in form of differential-algebraic equations will serve as basis for the formulation
of the optimal control problem. In addition to the direct transcription methods
mentioned before, a novel optimal control method based on indirect transcrip-
tion will be presented. The newly proposed method conserves the Hamiltonian
corresponding to the optimal control problem. It is worth mentioning that this
method is directly related to previously developed energy consistent schemes in
forward dynamics.

Keywords: Multibody Systems, Differential-Algebraic Equations, Rotationless
Formulation, Quaternions, Energy-Momentum Consistency, Optimal Control,
Actuation, Direct Transcription, Indirect Transcription, Conservation of the
Hamiltonian
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Zusammenfassung

Die vorliegende Arbeit behandelt Problemstellungen der inversen Mehrkörper-
dynamik. Insbesondere werden Optimalsteuerungsprobleme untersucht, die mit-
tels differential-algebraischer Gleichungen beschrieben werden. Das Hauptziel
besteht in der Minimierung des Steuerungsaufwands, der benötigt wird, um ein
Mehrkörpersystem von einer Konfiguration in eine andere zu bewegen. Eine
wichtige Aufgabe dafür ist die Formulierung der zu Grunde liegenden Bewe-
gungsgleichungen. Hauptaugenmerk wird dabei auf die Formulierung der Be-
wegungsgleichungen mit natürlichen Koordinaten gelegt, die die Konstruktion
von Struktur erhaltenden Zeitintegratoren ermöglichen. Es ist bekannt, dass
sich Verfahren, die grundlegende mechanische Eigenschaften algorithmisch er-
halten, durch überlegene numerische Stabilitätseigenschaften im Vergleich zu
Standardintegratoren auszeichnen. Die Anwendung von diesen Verfahren inner-
halb von Optimalsteuerungsproblemen erfordert einen konsistenten Einbau von
Steuerungsmomenten. Ein überzeugender Weg für den Einbau von Steuerungsmo-
menten wird in dieser Arbeit vorgeschlagen. Zusätzlich zu den Integratoren auf-
bauend auf der rotationsfreien Formulierung wird ergänzend ein Energie-Impuls-
erhaltendes Zeitschrittverfahren basierend auf Quaternionen vorgestellt. Zwar
stellt sich das Quaternionen gestützte Verfahren als konkurrenzfähig in der Vor-
wärtsdynamik von Starrkörpern heraus, die Erweiterung auf Mehrkörperprob-
leme ist allerdings nicht so direkt und einfach zu handhaben wie bei der rota-
tionsfreien Formulierung basierend auf natürlichen Koordinaten. Daher werden
die Quaternionen innerhalb von den Optimalsteuerungsproblemen in dieser Ar-
beit nicht verwendet. In Bezug auf die optimale Steuerung von Mehrkörpersys-
temen werden neuartige Energie-Impuls-konsistente direkte Transkriptionsver-
fahren beruhend auf natürlichen Koordinaten vorgestellt. In einem ersten Schritt
werden Bewegungsgleichungen verwendet, die über eine Reduktion mittels der
diskreten Nullraum-Methode gewonnen werden. Die Resultate werden verglichen
mit denen, die man durch eine Formulierung der Bewegungsgleichungen mit den
weit verbreiteten minimalen Koordinaten erhält. In einem zweiten Schritt dienen
die ursprünglichen Bewegungsgleichungen in Form von differential-algebraischen
Gleichungen als Basis für die Formulierung von den Optimalsteuerungsproble-
men. Zusätzlich zu den bereits erwähnten direkten Transkriptionsmethoden
wird auch eine neuartige Optimalsteuerungsmethode basierend auf indirekter
Transkription eingeführt. Die besagte Methode erhält die zu dem Optimals-
teuerungsproblem zugehörige Hamiltonfunktion. Es ist erwähnenswert, das diese
Methode direkten Bezug hat zu früher entwickelten Energie-konsistenten Ver-
fahren in der Vorwärtsdynamik.
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1. Introduction

In the present thesis, numerical methods for treating optimal control of mechan-
ical multibody systems will be developed. To preserve resources, energy-optimal
movements become more and more important. Hence, the main focus will be on
the minimization of the control effort which is necessary for moving a multibody
system from a specific initial to a specific end position. Areas of application
of such problems are the simulation of optimal movements in robotics, biome-
chanics, or space flights. In the literature, also minimum-time optimal control
problems have been investigated intensely. However, those kind of problems will
not be treated in this work.

Equations of motion describing a multibody system depend strongly on the choice
of coordinates. In most of the classical works, generalized or minimal coordinates
such as Euler angles for describing the orientation of a rigid body in space have
been used. This approach leads to equations of motion in form of ordinary dif-
ferential equations (ODEs), which typically exhibit a high degree of nonlinearity.
Additionally, the well-known singularities of the 3-parameter descriptions of fi-
nite rotations have to be taken into account. An essentially different form of the
equations of motion arises if redundant coordinates are employed. In that case,
the equations of motion take the form of differential-algebraic equations (DAEs)
of index 3. The application of DAEs facilitates both the treatment of mechanical
systems with closed loops and a straightforward extension to flexible multibody
dynamics. Moreover, the simply structured form of those equations permits the
usage of consistent numerical integrators such as energy-momentum schemes.

In this work, recent developments of consistent numerical integrators for multi-
body dynamics will be extended to optimal control problems. Consistent in-
tegrators reproduce basic mechanical properties of the underlying system like
momentum, angular momentum, and energy correctly. These consistency prop-
erties lead to increased robustness and stability of the mechanical integrator.
Furthermore, consistent integrators facilitate the application of large time step
sizes, which may lead to reduced computational costs. Finally, it will be shown in
this thesis that conservation properties similar to those present in a mechanical
system also exist for optimal control problems. Similar to the forward dynam-
ics case, a special discretization of the optimality conditions can be found which
yields the corresponding algorithmic conservation property of the optimal control
problem.
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1.1. Literature review

A short survey of literature published during the last 50 years concerning the
content of this thesis will be given below.

A large number of textbooks treating optimal control theory exist, among these
are the works of Athans & Falb [5], Bryson & Ho [33], Sontag [98], and Pinch
[88]. Since continuous solutions of optimal control problems can only be calcu-
lated for special cases, practical optimal control techniques make use of compu-
tational methods. Several differing numerical approaches are available for the
solution of the boundary value problems which arise when treating optimal con-
trol problems. Surveys of the different numerical optimal control methods are
given in the works of Betts [21, 22] and Binder et al. [25]. A basic distinction
can be made concerning the way the discretization will be done. The necessary
conditions of optimality may be derived before the discretization of the equa-
tions of motion. This yields an indirect method. A main issue within an indirect
method is the explicit formulation of the involved systems of costate differential
equations, which makes the calculation of first- and second-order derivatives of
the equations of motion necessary. Alternatively, direct methods can be em-
ployed, where the discretization of the equations of motion will be done before
formulating the optimal control problem. Several direct methods have been ap-
plied in the past for the solution of optimal control problems. Among these
are direct multiple shooting methods due to Bock & Plitt [27] (see also Diehl
et al. [42]) and direct collocation methods (see, for example, von Stryk [103]
and Hargraves & Paris [60]). A hybrid approach combining direct collocation
and indirect multiple shooting can be found in von Stryk & Bulirsch [104]. Also
direct transcription methods are often referred to in the literature, but direct
transcription methods and direct collocation methods can be regarded the same
(see, for example, Hull [64]). Works regarding direct transcription are those of
Enright & Conway [45], Betts and co-workers [24, 23], and Engelsone et al. [44].
Besides the numerical optimal control approaches falling into the classes of col-
location or multiple shooting, also single shooting methods have been applied in
the past (see, for example, Hicks & Ray [63], Hannemann & Marquardt [59] and
Hartwich et al. [61]). However, for highly unstable system the application of sin-
gle shooting methods seems not to be recommended (see, for example, Ascher et
al. [4]). The mentioned direct approaches have in common that the constrained
optimal control problem will be transformed into a finite dimensional nonlinear
program which can be solved by standard ‘Sequential Quadratic Programming’
(SQP) methods (see, for example, Barclay et al. [6] and Boggs & Tolle [28]).
The underlying ‘Quadratic Programming’ (QP) problems therein can be solved,
for example, by ‘interior-point’ (IP) methods. In some cases, relations between
direct methods for optimal control and discretized costate equations arising in
indirect methods can be elaborated. In the work of Hager [58] (see also Bonnans
& Laurent-Varin [29]), it has been shown that the discretization of the neces-
sary conditions of optimality within an indirect method by use of symplectic
partitioned Runge-Kutta methods is equivalent to direct collocation.
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Starting with the pioneering works by Simo and co-workers [97, 96, 95], a lot of ef-
fort has gone into the development of energy-momentum consistent time-stepping
schemes. This is due to the well-known superior numerical stability and robust-
ness properties of the structure-preserving integrators in comparison to standard
integrators (see, for example, Goicolea & Garcia Orden [51] and Gonzalez and
co-workers [52, 54]). Energy-momentum consistent integrators have been shown
to be especially beneficial in the context of flexible multibody dynamics (see,
for example, Bauchau & Bottasso [7], Puso [89], Betsch & Steinmann [15] and
Betsch et al. [10]). It is well-known that the midpoint rule is sufficient for the
consistency of energy for maximum quadratic Hamilton functions (see, for exam-
ple, Wood [107]). However, to achieve an energy consistent scheme for general
nonlinear Hamilton functions, the discrete derivative introduced by Gonzalez
[53] is required. Various approaches applying the discrete derivative have been
introduced, see Gonzalez [53] for a specific second-order method and Groß et al.
[57] for higher-order schemes. As a special case, applicable for one-dimensional
systems with general nonlinear potential functions, the Greenspan formula in-
troduced in Greenspan [55] can be mentioned. Besides the energy-momentum
consistent schemes, also variational integrators leading to angular momentum
consistency are widely-used (see, for example, Marsden & West [80] and Lew et
al. [75]).

In many works use has been made of generalized or minimal coordinates. While
the corresponding system of equations describing the motion is of minimal size,
the equations of motion exhibit a high degree of nonlinearity. As an additional
drawback, the well-known singularities of the Euler angles or other 3-parameter
representations of finite rotations have to be considered. The mentioned draw-
backs can be circumvented by application of the so-called rotationless formulation
based on the natural coordinates introduced in Garcia de Jalon et al. [47] (see
also Garcia de Jalon [46], von Schwerin [102], Kraus et al. [66], and Cossalter
& Lot [40]). A fundamental characteristic of natural coordinates is the constant
mass matrix leading to simply structured equations of motion. The rotationless
formulation has a wide area of application, such as in rigid body dynamics (see,
for example, Betsch & Steinmann [16]), for the description of multibody systems
(see, for example, Betsch & Leyendecker [11] and Betsch & Uhlar [19]), and even
for multibody systems containing flexible components (see, for example, Betsch
& Steinmann [18], Betsch et al. [10], and Sänger [92]). A major benefit of the
rotationless formulation is the facility of discretizing the corresponding equations
of motion with consistent time-stepping schemes. To reduce the large number of
equations and unknowns present in the rotationless formulation, the discrete null
space method with nodal reparametrization can been applied (see, for example,
Betsch [9], Betsch & Leyendecker [11], Leyendecker et al. [76], and Uhlar [99]).
It is worth mentioning that the reduction process does not effect the consistency
properties of the employed integration scheme. In addition to the already men-
tioned choices of coordinates, also quaternions have been used in the past in rigid
body dynamics (see, for example, Haug [62] and Nikravesh [85]). In comparison
to the rotationless formulation, the quaternion formulation is characterized by
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less redundant coordinates. However, it exhibits a higher degree of nonlinearity
(see Betsch & Siebert [12]) due to the configuration dependent mass matrix.

Several works deal with numerical approaches for the optimal control of multi-
body systems. In Agrawal et al. [1] a multiple shooting method in combination
with a generalized coordinates formulation of the equations of motion has been
employed for the optimal control of a robot manipulator. A different indirect mul-
tiple shooting method has been presented in the recent work of Callies & Rentrop
[37]. In the works of Büskens and co-workers [35, 34] the optimal control of in-
dustrial robots described by a minimal set of coordinates has been treated. A
deeper insight into the discrete costate variables of the employed direct multiple
shooting method is given in Büskens & Maurer [36]. Also preserving integrators
have been applied in previous works concerning optimal control of multibody
systems. An energy consistent direct transcription method has been introduced
in Bottasso & Croce [31] (see also Bottasso et al. [32]). Therein, the underlying
discrete equations of motion take the form of differential-algebraic equations. A
variational integrator yielding consistency of angular momentum served as basis
for the formulation of a direct transcription optimal control method in the works
of Leyendecker et al. [77] and Ober–Blöbaum et al. [86]. The arising optimal con-
trol methods therein are referred to as ‘Discrete mechanics and optimal control’
(DMOC) for unconstrained systems and ‘Discrete mechanics and optimal control
for constrained systems’ (DMOCC) otherwise. A direct transcription method
based on an energy-momentum scheme has been developed in the recent work of
Betsch et al. [13]. The formulation with differential-algebraic equations arising
when using redundant coordinates has been avoided in [77, 86, 13] through the
use of the discrete null space method. Only few works are concerned with opti-
mal control described with equations of motion in form of differential-algebraic
equations. Notable exceptions are the works of Bottasso and co-workers [32, 31],
von Schwerin [102], and Kraus et al. [65] focussed on real multibody systems as
well as the more theoretical works of Kunkel & Mehrmann [69], Gerdts [48, 49],
Gerdts & Kunkel [50], and Müller [83, 84].

1.2. Outline

In the following, a short summary of each chapter of this thesis will be given.
Thereby the main issues of each chapter will be pointed out for the reader.

Chapter 2 provides basics for the formulation of the optimal control problems
which will be treated in this work. The continuous augmented cost function has
to be formulated. Calculating partial derivatives yields the continuous necessary
conditions of optimality. Deriving the continuous necessary conditions of opti-
mality and discretizing them results in an indirect method. Another possibility
is discretizing the equations of motion of the underlying mechanical system first
and formulating the discrete augmented cost function afterwards. The latter
proceeding yields a direct method. While direct methods will be employed in
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Chapters 6 and 7, an indirect method will be used in Chapter 8. Additionally, it
will be emphasized that transcription or collocation methods will be used in this
work. Shooting or multiple shooting methods will only be touched in this thesis.
Finally, it will be shown that fulfilment of the necessary conditions of optimality
involves conservation of the Hamiltonian. The latter can also be reached in the
discrete case within the newly derived Hamiltonian conserving indirect optimal
control method elaborated later in Chapter 8.

Chapter 3 introduces the equations of motion describing the dynamical behaviour
of the mechanical multibody systems. In a first step, the equations of motion
in the so-called rotationless formulation take the form of differential-algebraic
equations (DAEs) with index 3. A special discretization of the equations will
be applied to achieve a mechanical integrator which is algorithmically consistent
concerning basic properties of the underlying mechanical system. For this aim, a
special discretization for both the input of the controls and the incorporation of
linear viscous friction will be introduced. The arising basic energy-momentum
scheme will serve as basis for the formulation of the optimal control problems in
Chapter 7. Furthermore, a reduction process will be performed by application
of the discrete null space method with nodal reparametrization. Additionally,
a generalized coordinates formulation of the equations of motion with midpoint
evaluation will be achieved by a reduction process. Both reduced equations of
motion will be applied in Chapter 6 within optimal control problems.

Chapter 4 presents the rotationless formulation of spatial rigid body dynamics.
Therein, direction cosines will be employed for describing the orientation of the
rigid bodies. A key property of the rotationless formulation is the constant and
diagonal mass matrix. The application of the rotationless formulation necessi-
tates the incorporation of internal constraints due to the rigidity. Furthermore,
the extension to constrained multibody systems is directly suitable. For that
purpose, two of the basic kinematic joints will be treated in detail, namely the
revolute and the prismatic joint. Consequently, external constraints due to the
kinematic joints have to be added. A basic task for achieving an energy and
angular momentum consistent integrator is the adequate discretization of the in-
volved vectors and matrices in the equations of motion. In Chapter 4, the main
focus will be on the consistent incorporation of control torques and linear viscous
friction. At the end, the consistency properties will be demonstrated within an
appropriate numerical example.

Chapter 5 proposes the main ideas of Betsch & Siebert [12], where quaternions
have been used for the formulation of the equations of motion for a rigid body in
space. It is well known that unit quaternions are well-suited for the singularity-
free description of finite rotations. The quaternion formulation of the equations
of motion contains a configuration dependent mass matrix. An invertible mass
matrix is mandatory for the transition to the Hamilton equations of motion. The
latter can be achieved by a size reduction of the mass matrix in the director for-
mulation. The quaternion-based Hamilton equations of motion serve as starting
point for the design of an energy-momentum conserving time-stepping scheme.
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For this aim, the kinetic energy has to be formulated with quadratic invariants
and the discrete derivative introduced by Gonzalez in [53] has to be applied.
The conservation properties of the newly derived scheme will be demonstrated
within a numerical example. At the end, problems regarding the extension to
flexible multibody dynamics within an energy-momentum scheme will be men-
tioned. Due to these problems, the quaternions will not be applied in the optimal
control problems later on.

Chapter 6 combines the contents of Chapter 2 with those of the Chapters 3 and 4.
Equations of motion with eliminated algebraic constraints in the discrete setting
as well as equations of motion in purely differential form from the outset will be
used as basis for the formulation of the mechanical optimal control problem. In
particular, both the reduced energy-momentum scheme and a generalized coor-
dinates formulation with midpoint evaluation will be employed. Two multibody
systems will be investigated in the present chapter. In a first step, a 3-link robot
manipulator will be used as an example of a planar multibody system. Fur-
thermore, a space robot, whose change in orientation is induced by three rotors
will be examined within optimal control. This example is qualified for testing
all algorithmic consistency properties of the mechanical integrator. The effects
of limited controls and linear viscous friction will be demonstrated within these
examples. A direct transcription method will be used for the calculation of the
optimal movement. The arising nonlinear programming problem will be solved
by the SQP solver fmincon in MATLAB.

In Chapter 7 the basic energy-momentum scheme will serve as basis for the
description of the mechanical optimal control problem. Consequently, the equa-
tions of motion contain constraints, which leads to differential-algebraic equa-
tions. The present approach will be employed within two examples. Firstly, the
optimal control of an underactuated overhead crane as an example of a point
mass system will be investigated. Secondly, the 3-link robot manipulator in-
troduced earlier in Chapter 6 will be explored. Therein, the orientation of the
involved three rigid bodies will be specified using directors. As in Chapter 6, the
calculation of the optimal movement will be done by use of a direct transcription
method. Furthermore, the arising nonlinear programming problem will be solved
by the SQP solver fmincon in MATLAB. The results will be compared with those
achieved by the approaches of Chapter 6.

Chapter 8 supplies a newly derived Hamiltonian conserving indirect optimal
control method. Based on observations in the forward dynamics case, namely
the consistency of the discrete energy, similarities will be studied in the optimal
control case, leading to the conservation of the underlying discrete Hamiltonian.
It is well known that the Hamiltonian is conserved along an optimal solution
in the continuous case. For reaching the same in the discrete case, a special
midpoint evaluation of the costate equations, respectively a consistent variant
thereof, turns out to be necessary. Notice that the midpoint evaluation of the
state equations leads to a trapezoidal evaluation of the costate equations within
a direct transcription method. Finally, it will be shown that for systems with
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one degree of freedom a formula can be applied for the costate equations, which
is inspired by the Greenspan formula introduced in Greenspan [55] for the state
equations. Systems with several degrees of freedom necessitate a formula which
has similarities to the discrete derivative introduced in Gonzalez [53] for the state
equations.
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2. Basics of optimal control

In the last 50 years a large number of methods have been developed for solving
nonlinear optimal control problems. Since analytical solutions for optimal con-
trol problems only exist for special cases, the application of numerical methods
is of decisive importance. A major distinguishing feature for numerical optimal
control methods is the way in which the necessary conditions of optimality are
derived. One possibility is deriving the continuous necessary conditions of opti-
mality first and discretizing them afterwards. This approach yields an indirect
optimal control method. The basics for an indirect method will be given in this
chapter. A special indirect method, which inherits essential features from the
continuous optimal control problem, will be introduced in Chapter 8. However,
most of the recent works are based on direct optimal control methods. To derive
a direct optimal control method, the equations of motion will be discretized first
before formulating the optimal control problem. Based on fundamentals given
in this chapter, examples of direct methods will be introduced in Chapters 6 and
7.

Three different direct numerical optimal control methods are commonly utilized
in recent works. Collocation or transcription methods can be found for example
in the works of Betts and co-workers [24, 23] or Stryk & Bulirsch [104]. An
alternative approach is given by the multiple shooting method introduced in
Bock & Plitt [27]. Additionally, the single shooting method can be mentioned
which can be found in Hicks & Ray [63]. Transcription will be the method of
choice in this thesis in the later Chapters 6, 7, and 8.

While, of course, several ways for describing the dynamics of a mechanical sys-
tem exist, in this chapter no differences will be made between the possible for-
mulations. The mechanical system may be described by differential-algebraic
equations (DAEs). Optimal control of multibody systems described with equa-
tions of motion in DAE-form have been rarely investigated in the past. Notable
exceptions are the works of Bottasso et al. [32], Bottasso & Croce [31], von
Schwerin [102], and Kraus et al. [65]. In this thesis, the DAE-based optimal
control of multibody systems will be the topic of Chapter 7. In most of the
works, pure differential equations have been used for describing the mechanical
systems. Those ordinary differential equations may result from the well known
generalized coordinates formulation. Alternatively, a reduction process from a
redundant formulation based on DAEs can be applied to eliminate the alge-
braic constraints in the discrete setting. In the context of multibody systems,
the mentioned reduction process has been introduced in the work of Betsch &
Leyendecker [11] and will be illustrated in Chapter 3 in more detail. Within
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optimal control problems, this method has been applied in Leyendecker et al.
[77] and Betsch et al. [13]. In this thesis, the latter will be the topic of Chapter
6.

2.1. Continuous optimal control

First of all, a dynamical system will be considered, which, for generality, can be
described by a set of differential-algebraic equations

0 = f(x, ẋ,u) (2.1)

where x is the state vector, which may contain the configuration vector, the
velocity vector, and the vector of Lagrange-multipliers, u is the control vector
and a superposed dot denotes differentiation with respect to time. The size of
the state vector x is equal to the number of equations of motion in Eq. (2.1)
and will be specified later for the different time-stepping schemes in Chapter 3.
Additionally, suppose that the system is subjected to inequality constraints of
the form

0 ≥ c(x,u) (2.2)

Here, the differential-algebraic equations as well as the inequality constraints will
be valid for a given time interval I = [t0, tf ] with fixed final time tf . In this work,
the problem of optimal control is to determine the states x and the controls u
that minimize a cost function of the form

J =
∫ tf

t0

L(u) dt (2.3)

where the integral costs only depend on the controls u and will be specified later
in Section 6.1. To achieve proper conditions for optimality, one has to define
an augmented cost function by adjoining the equations of motion in Eq. (2.1)
as well as the inequality constraints given by Eq. (2.2) to the cost function in
Eq. (2.3) through the use of Lagrange-multipliers λf respectively λc and the final
conditions for the dynamical system

ψ(x(tf)) = 0 (2.4)

by use of the Lagrange-multipliers µ. The continuous augmented cost function
then takes the form

J̃ = µ ·ψ(x(tf)) +
∫ tf

t0

L(u) +

[

λf

λc

]

·

[

f(x, ẋ,u)
c(x,u)

]

dt (2.5)

Calculating the derivatives of J̃ with respect to all independent variables and
setting them to zero yields the necessary conditions of optimality (NCO), which
consist of the equations of motion in Eq. (2.1) together with the inequality con-
straints in Eq. (2.2) as state equations, the costate equations, the control equa-
tions and the final conditions. The NCO may serve as basis for an indirect
optimal control method.
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Conservation of the Hamiltonian The general continuous equations of motion,
which have been introduced in Eq. (2.1), can alternatively be presented in the
form

C ẋ = f̄ (x,u) (2.6)

where the constant diagonal-matrix C consists of ones and zeros on its diagonal,
depending on the number of differential respectively algebraic equations. Here,
the inequality constraints are, for the sake of simplicity, neglected. Thus, the
upper index in the Lagrange-multipliers is unnecessary at this point and will be
left out. The continuous Hamiltonian is defined by

H(x,u,λ) = −L(u) + λ · f̄ (x,u) (2.7)

and can be used for deriving the continuous necessary conditions of optimality
(NCO), which take the form

0 = C ẋ− f̄(x,u)

0 = C λ̇+ ∇xH(x,u,λ)

0 = ∇uH(x,u,λ)

(2.8)

They consist of the equations of motion as state equations in Eq. (2.8)1, the
costate equations in Eq. (2.8)2 and the control equations in Eq. (2.8)3. Fulfilment
of the NCO involves conservation of the Hamiltonian, which can be proven in
the following way:

Ḣ(x,u,λ) = ∇xH(x,u,λ) · ẋ+ ∇uH(x,u,λ) · u̇+ ∇λH(x,u,λ) · λ̇

= −C λ̇ · ẋ+ 0 · u̇+ f̄(x,u) · λ̇

= −C λ̇ · ẋ+C ẋ · λ̇

= 0

(2.9)

Here, the NCO in Eq. (2.8) and the definition of the Hamiltonian in Eq. (2.7)
have been employed.

2.2. Discrete optimal control

First of all, some fundamental words have to be said about the discretization
applied in this work. The whole time interval I = [t0, tf ] will be divided into N
time intervals [tk, tk+1], which, to simplify matters, all have the time step size
h = tk+1 − tk. The discretization yields N + 1 discretization points or time nodes
for the evaluation of the state vector xk (k = 0, ..., N). The size of the discrete
state vectors is equal to the size of the corresponding continuous quantities.
This convention of notation will be used even if parts of the state vectors are not
evaluated at the time nodes in a specific time-stepping scheme, which is valid
in the case of Lagrange-multipliers arising in the equations of motion. Thus,
the discrete state vectors sometimes contain components which do not appear in
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the equations of motion and consequently do not affect the optimization process.
Furthermore, the starting states x0 will be incorporated directly in the equations
of motion, the final states xf will be enforced through final conditions

ψ(xN ) = 0 (2.10)

The time derivative of the state vector ẋ will be approximated with the difference
quotient, thus

ẋk,k+1 ≈
1

h
(xk+1 − xk) (2.11)

Lagrange-multipliers λf
k,k+1 respectively λc

k,k+1 (k = 0, ..., N −1) have to be intro-
duced for enforcing the discretized differential parts of the state equations as well
as those inequality constraints which are appropriate for the components of the
states xk,k+1 and the control forces uk,k+1. Additionally, Lagrange-multipliers
λ

f
k+1 respectively λc

k+1 (k = 0, ..., N − 1) will be introduced for those algebraic
equality and inequality constraints which are appropriate for the components of
the configuration vector at the N +1 time discretization points. Again, the size of
the discrete Lagrange-multipliers is equal to the size of the corresponding contin-
uous quantities. Obviously, only a selection of the discrete Lagrange-multipliers
are really applied later in the optimization process. If the continuous state equa-
tions contain algebraic constraints, the states xk,k+1 have to be introduced for
the Lagrange-multipliers. As before, the size of the discrete state vectors is equal
to the size of the corresponding continuous quantities. Again, only some parts of
these discrete state vectors are really needed in the equations of motion and thus
in the optimization process. If the corresponding continuous state equations do
not contain algebraic constraints, those states can be neglected. Furthermore,
the states xk,k+1, the control forces uk,k+1, and the Lagrange-multipliers λf

k,k+1

respectively λc
k,k+1 (k = 0, ..., N − 1) are assumed to be constant on each of the

N time intervals.

At this point, the discrete analogy of the procedure given in Section 2.1 will be
introduced. The general form of the discrete equations of motion and the discrete
inequality constraints is given by

0 = f (xk,xk+1,xk,k+1,uk,k+1) (2.12)

respectively
0 ≥ c(xk+1,xk,k+1,uk,k+1) (2.13)

thus depend only on the state vectors xk and xk+1 at the limits of each time
interval, and the state vector xk,k+1 as well as the control vector uk,k+1, which
are assumed to be constant on each time interval. The number of discrete states
xk+1 and xk,k+1 which are really involved as unknowns in the equations of motion
is equal to the number of discrete equations of motion in Eq. (2.12). In a discrete
optimal control problem, the states and controls have to be determined such that
the discrete cost function

Jd =
N−1
∑

k=0

L(uk,k+1) · h (2.14)
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will be minimized. This is the discrete analogon of the continuous version in
Eq. (2.3). To achieve proper discrete necessary conditions for optimality, one
has to define a discrete augmented cost function by adjoining the discrete equa-
tions of motion given in Eq. (2.12) as well as the discrete inequality constraints
given in Eq. (2.13) to the discrete cost function in Eq. (2.14). This will be

done by introduction of the abbreviations λ̄
f

and λ̄
c

which contain all of the
arising necessary components of the Lagrange-multipliers. Obviously, the num-
ber of components of those vectors has to be equal to the number of equations
in Eq. (2.12), respectively inequalities in Eq. (2.13). Additionally, Lagrange-
multipliers µ are required for the final conditions of the dynamical system in
Eq. (2.10). Finally, the discrete augmented cost function takes the form

J̃d = µ ·ψ(xN) +
N−1
∑

k=0

L(uk,k+1) · h +

[

λ̄
f

λ̄
c

]

·

[

f (xk,xk+1,xk,k+1,uk,k+1)
c(xk+1,xk,k+1,uk,k+1)

]

(2.15)

Calculating partial derivatives of J̃d and setting them to zero yield the discrete
necessary conditions of optimality (DNCO). The optimality conditions which
are calculated with this proceeding, serve as basis for direct optimal control
approaches.

Conservation of the discrete Hamiltonian The general discrete equations of
motion, which have been introduced in Eq. (2.12), can alternatively be presented
in the form

C ·
1

h
(xk+1 − xk) = f̄ (xk,xk+1,xk,k+1,uk,k+1) (2.16)

As in the continuous case, the inequality constraints are, for the sake of simplicity,
neglected. Again, the upper index in the Lagrange-multiplier is unnecessary from
now on. Furthermore, the discrete Hamiltonian is defined by

Hd
k,k+1 = −L(uk,k+1) + λ̄ · f̄ (xk,xk+1,xk,k+1,uk,k+1) (2.17)

and can be used for deriving the discrete necessary conditions of optimality
(DNCO), which take the form

0 = C ·
1

h
(xk+1 − xk) − f̄ (xk,xk+1,xk,k+1,uk,k+1)

0 = C ·
1

h
(λk,k+1 − λk−1,k) + (∇xHd)k−1,k,k+1

0 = ∇uH(xk,xk+1,uk,k+1,λk,k+1)

(2.18)

where the first term in Eq. (2.18)2 can be interpreted as an approximation of
the first term in Eq. (2.8)2 by a difference quotient. Notice that the assumed
constant time step size is mandatory for the application of the difference quotient
for this term. The second term in Eq. (2.18)2 can be obtained by differentiating
the discrete Hamiltonian of a specific time step with respect to xk+1 and xk,k+1

and the discrete Hamiltonian of the following time step with respect to xk and
xk−1,k. Consequently, the second term in Eq. (2.18)2 may depend on all of the
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discrete quantities arising within two consecutive time steps. Finally, the DNCO
consist of the discrete equations of motion as state equations in Eq. (2.18)1, the
discrete costate equations in Eq. (2.18)2 and the discrete control equations in
Eq. (2.18)3.

In the continuous case, fulfilment of the NCO involves conservation of the Hamil-
tonian. In the discrete case, fulfilment of the DNCO generally yields conservation
of the discrete Hamiltonian only in the limit case of vanishing time step sizes.
However, in some cases, a special discretization of the NCO can be found which
yields conservation of the discrete Hamiltonian even for large time step sizes,
that is

Hd
k,k+1 = Hd

k−1,k (2.19)

This desirable feature can be seen as analogy to the energy consistency in for-
ward dynamics problems, which leads to unconditional numerical stability of the
corresponding integrators. Similar benefits can be expected from the mentioned
Hamiltonian conserving discretizations of the NCO. Investigations concerning
this topic will be done later in Chapter 8.

2.3. Review of numerical optimal control methods

In the current section, pros and cons of practical optimal control problems taken
mainly from the surveys of Betts [21], Binder et al. [25], and Diehl [41] will
be outlined. Concerning this matter, main focus will be on indirect optimal
control methods based on the calculus of variations as well as the most practical
direct optimal control methods, direct collocation and direct multiple shooting.
Further methods have been investigated in the past. Dynamic programming
seems to have only little practical applicability due to the so-called ‘curse of
dimensionality’ (see, for example, Diehl et al. [42]). Furthermore, the essential
drawback of single shooting methods is the sensitivity of the method regarding to
the chosen initial guess. Small changes early in the trajectory can produce large
errors at the end of the trajectory. Consequently, the review will be restricted
on three types of practical optimal control methods.

Indirect optimal control methods Mainly three differing types of indirect op-
timal control methods based on the Pontryagin maximum principle have been
further investigated in the past. Among them are gradient methods, indirect
multiple shooting, and indirect collocation. Several practical drawbacks of in-
direct methods in comparison to direct methods can be mentioned. Analytical
expressions of all arising gradients have to be provided for an indirect method.
This makes it necessary that the user of an indirect method has knowledge and
experience in the solution of optimal control problems. Additionally, indirect
methods require suitable initial guesses for the states and the costates to start
the iterative process (see Binder et al. [25]). However, indirect optimal control
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methods provide a large freedom for the way the costate equations will be dis-
cretized. In this regard, a discretization of the costate equations can be found
which yields a numerical method with the beneficial property that the discrete
optimal control solution inherits basic properties from the corresponding con-
tinuous solution. An example of such an indirect method will be introduced
in Chapter 8 of this thesis. It is worth mentioning that within direct optimal
control methods such a special discretization of the costate equations is not feasi-
ble. In particular, the midpoint-type evaluation of the state equations automati-
cally yields a trapezoidal-type evaluation of the costate equations. An additional
midpoint-type evaluation of the costate equations, which in some cases leads to
special conservation properties, is, apart from some very simple special cases,
only feasible in indirect methods.

Direct collocation or direct transcription As a basic property of direct collo-
cation or direct transcription methods, the simultaneous treatment of simulation
and optimization can be stated. Following the process described in Section 2.2,
the corresponding methods are based on formulating the discrete augmented cost
function with discrete equations of motion as nonlinear constraints. While those
constraints can be violated during the optimization procedure, they have to be
satisfied at the solution. This is a severe difference to the shooting methods treat-
ing simulation and optimization sequentially. As an important disadvantage of
direct collocation methods, the very large number of equations and variables have
to be mentioned. However, the needed gradients exhibit a very sparse structure
which can be exploited for practical collocation methods. Initial guesses of the
states for the whole time interval are needed which can be seen as advantage,
if knowledge of the states is available. As a crucial advantage in comparison to
single shooting methods, the possibility of treating highly unstable systems as
well as inequality constraints and active set changes can be stated. Furthermore,
the discrete costates present in direct collocation are reliable estimates for the
costates of the corresponding continuous optimal control problem. Secondary,
informations about the switching structure can be obtained. Hence, those in-
formations received from the discrete optimal control problem can be exploited
for highly accurate indirect optimal control methods. In this regard, the hybrid
approach introduced in Stryk & Bulirsch [104] combines direct collocation with
indirect multiple shooting. Direct collocation will be the direct method of choice
in the Chapters 6 and 7 of this thesis.

Direct multiple shooting While a detailed description of direct multiple shoot-
ing methods can be found in the literature (see, for example, Bock & Plitt [27]
and Leineweber et al. [72, 73]), the following text restricts itself on basic proper-
ties as well as the pros and cons of direct multiple shooting in contrast to direct
collocation. Correspondingly, direct multiple shooting methods treat simulation
and optimization sequentially in each of the shooting segments and simultane-
ously on the whole time interval. Hence, direct multiple shooting can be seen
as a hybrid method combining properties of direct single shooting and direct
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collocation. In comparison to direct collocation, the arising system of equations
in direct multiple shooting is of lower dimension, but has a less sparse struc-
ture, which may yield increased computational costs. In each of the shooting
segments, direct multiple shooting methods behave like direct single shooting
methods with all of the pros and cons. As written in the works of Diehl and
co-workers [43, 42] the major advantage of direct multiple shooting compared
to direct collocation is the possibility of using adaptive, error controlled solvers
for the state equations in each of the shooting intervals. The use of adaptivity
in state-of-the-art ODE or DAE solvers typically yields an increased accuracy.
Additionally, the method is well suited for parallel computing, since the solution
of the simulation problem is decoupled from the calculation of the derivatives on
different multiple shooting segments. However, direct multiple shooting will not
be the method of choice in this work.
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3. Equations of motion

In a first step, the equations of motion in the so-called rotationless formulation
take the form of differential-algebraic equations (DAEs) with index 3. Equations
of motion specified with DAEs were rarely used in the past for the formulation
of optimal control problems in multibody dynamics. Notable exceptions are the
works of Bottasso et al. [32], Bottasso & Croce [31], von Schwerin [102], and
Kraus et al. [65]. In the present work, the DAEs will serve as basis for the
formulation of the optimal control problems in Chapter 7. The discretization of
the equations of motion will be done by application of an energy and angular
momentum consistent integrator.

In a first step, however, equations of motion obtained by a reduction process will
be applied. This leads to a formulation of the equations of motion with eliminated
algebraic constraints in the discrete setting. In particular, the discrete null space
method with nodal reparametrization (see Betsch & Leyendecker [11] and Betsch
& Uhlar [19]) will be employed. The reduced equations of motion will be applied
in Chapter 6 within optimal control problems. This has been done previously
in the work of Leyendecker et al. [77]. In contrast to the aforementioned work,
where a variational integrator leading to angular momentum consistency has been
used, in this work, an energy and angular momentum consistent time-stepping
scheme will be applied.

Finally, those optimal control formulations based on the discrete null space
method with nodal reparametrization will be compared with optimal control
problems based on the widely-used generalized coordinates. The correspond-
ing formulation of the equations of motion can also be achieved by a reduction
process from the rotationless formulation. In contrast to the discretizations men-
tioned before, the discretization of the generalized coordinates formulation will
neither be energy nor angular momentum consistent.

3.1. Dynamics of constrained mechanical systems

with size reduction

In the present work, discrete mechanical systems subject to constraints which
are holonomic and scleronomic will be considered. Due to the specific rotation-
less formulation employed in this work, the equations of motion for multibody
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systems can be written in the form of Eq. (2.1). In particular,

f(x, ẋ,u) =







q̇ − v
Mv̇ + F int + F ext

Φ(q)





 (3.1)

with the vector of internal forces

F int = G(q)Tγ +B(q)Ta(q,v) (3.2)

and the vector of external forces

F ext = ∇qV +B(q)Tu (3.3)

where q ∈ R
n is the configuration vector and v ∈ R

n the velocity vector.

As mentioned before, an essential property of the rotationless formulation, which,
beside the generalized coordinates formulation, will be applied in this work, is
the constant and symmetric mass matrix M ∈ R

n×n. Using this mass matrix,
the kinetic energy can be written as

T (q̇) =
1

2
q̇ ·Mq̇ (3.4)

Here, the gradient of the potential energy ∇qV ∈ R
n is assumed to be constant,

which is the case if it is a pure gravitational force.

Moreover, Φ(q) ∈ R
m is a vector of geometric constraint functions, G(q) =

∇qΦ(q) ∈ R
m×n the corresponding constraint Jacobian, and γ ∈ R

m the vector
of Lagrange-multipliers. The configuration space of the system is given by

Q = {q ∈ R
n | Φ(q) = 0} . (3.5)

The geometric constraints give rise to kinematic constraints, which follow from
the consistency condition Φ̇ = 0 on velocity level. Accordingly, the kinematic
constraints assume the formulation

G(q)v = 0 (3.6)

Suppose the matrix P (q) ∈ R
n×(n−m) is the null space matrix corresponding to

the Jacobian G , that is the equation

G(q)P (q) = 0 (3.7)

is valid. Admissible velocities v ∈ TqQ may be written in the form

v = P (q)ν (3.8)

with independent, generalized velocities ν ∈ R
n−m. While the null space matrix

P can be employed for calculating the redundant velocities v from the generalized
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velocities ν, there is also need for a matrix B(q) ∈ R
(n−m)×n, which can be

applied for the reverse way, that is

ν = B(q)v (3.9)

Apparently, the equation
B(q)P (q) = I (3.10)

has to be valid for such a transformation matrix B. Some examples of those
matrices will be introduced later in Chapter 4. In particular, the transformation
matrices for a single rigid body, for revolute pairs and for prismatic pairs will be
elaborated. Some further kinematic pairs have been treated in Leyendecker et
al. [77].

Next, the incorporation of friction forces as well as external control forces and
torques into the rotationless formulation of the equations of motion will be
treated. Starting point for the present consideration is the Rayleigh dissipation
function given by

D(ν) =
1

2
ν ·Kν (3.11)

In this term, K ∈ R
(n−m)×(n−m) is a matrix consisting of damping constants ki

on its diagonal. Calculating the partial derivative with respect to the generalized
velocities yields the generalized friction forces

a(ν) =
∂D

∂ν
= Kν (3.12)

While Eq. (3.12) contains generalized velocities, the equations of motion given in
Eq. (3.1) only contain redundant velocities. Hence, Eq. (3.9) has to be applied
for the reformulation of the generalized friction forces by use of the redundant
velocities. The generalized friction forces then take the form

a(q,v) = KB(q)v (3.13)

Furthermore, by inserting Eq. (3.9) into the Rayleigh dissipation function in
Eq. (3.11) and taking the partial derivative with respect to the redundant veloc-
ities, a representation of the redundant friction forces can be found. To specify,
the redundant friction forces necessary for Eq. (3.1) can be computed by premul-
tiplication of Eq. (3.13) by the transpose of the transformation matrix. In the
same way, the redundant external control forces and torques appearing in the
equations of motion given in Eq. (3.1) will be calculated from the corresponding
generalized ones u ∈ R

n−m.

At this point, all matrices and vectors appearing in the equations of motion in
Eq. (3.1) have been described. Summing up, these equations of motion specify
a general mechanical multibody system containing forces and torques acting on
the involved bodies and friction forces acting in the kinematic joints. Addition-
ally, holonomic constraints for describing the system can be added. Finally, the
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equations of motion given in Eq. (3.1) form a set of index-3 DAEs. Those equa-
tions of motion can be directly derived from the classical Lagrange equations of
motion of the first kind.

To demonstrate the last statement, the augmented Lagrange function has to be
formulated by

L(q, q̇,λ) = T (q̇) − V (q) − γ · Φ(q) (3.14)

where the kinetic energy is given by Eq. (3.4), V (q) is the potential energy,
and the constraint function Φ(q) will be incorporated through the use of the
Lagrange-multipliers γ. The Lagrange equations of motion of the first kind for a
friction-afflicted multibody system with additional external forces generally take
the form

0 =
d

dt

(

∂L

∂q̇

)

−
∂L

∂q
+

∂D

∂q̇
+B(q)Tu

0 = Φ(q)

(3.15)

where the Rayleigh dissipation function is given in Eq. (3.11) and the last term
is due to the external redundant control forces and torques. Calculating the
derivatives yields

0 = Mq̈ + ∇qV +G(q)Tγ +B(q)Ta(q,v) +B(q)Tu

0 = Φ(q)
(3.16)

By inserting the additional relation v = q̇, the final form of the Lagrange equa-
tions of motion of the first kind is given by

0 = q̇ − v

0 = Mv̇ + ∇qV +G(q)Tγ +B(q)Ta(q,v) +B(q)Tu

0 = Φ(q)

(3.17)

Obviously, the equations of motion in Eq. (3.17) coincide with those given in
Eq. (3.1).

If the function f in Eq. (3.1) will be taken for the formulation of the optimal
control problem, the state vector x consists of the configuration vector q, the
velocity vector v and the vector of Lagrange-multipliers γ. Then, the function
f has to be inserted into Eq. (2.1).

Size reduction To achieve a formulation of the equations of motion in purely
differential form without any algebraic constraints, a size reduction consisting of
two steps will be done in the following. Straightforward, by applying Eq. (3.8),
a reduced form of the kinetic energy with a reduced mass matrix can be calcu-
lated.

Specifically, premultiplication by the transpose of the null space matrix P yields
an alternative reduced formulation of the equations of motion consisting of the
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2n equations
0 = q̇ − v

0 = P (q)T {Mv̇ + F int + F ext}

0 = Φ(q)

(3.18)

with the remaining parts of the vector of internal forces

F int = B(q)Ta(q,v) (3.19)

and the vector of external forces given in Eq. (3.3).

A further size reduction can be done by expressing the redundant coordinates
q ∈ R

n in terms of local coordinates of minimal size θ ∈ R
n−m, that is q = q(θ).

Then, one of the possible null space matrices is equal to the Jacobian of the
coordinate transformation, that is P (q) = ∇θq(θ). Since the constraints are
fulfilled automatically due to the reparametrization, the system is reduced to
2n − m first-order differential equations. The function f , which then has to be
inserted into Eq. (2.1), takes the form

f (x, ẋ,u) =

[

q̇ − v
P (q)T {Mv̇ + F int + F ext}

]

(3.20)

where the internal and the external forces are given by Eq. (3.19) respectively
Eq. (3.3). Here, the state vector x consists of the local coordinates θ and the
velocities v. θ can be used for the calculation of the configuration vector q =
q(θ).

3.2. Basic and reduced energy-momentum

scheme

Concerning the direct discretization of the equations of motion, the method-
ology developed by Gonzalez [53] will be employed. Consider the state space
coordinates qk ∈ Q and vk ∈ R

n at tk, the discrete equations of motion for a
representative time interval are given by Eq. (2.12). Specifically,

f (xk,xk+1,xk,k+1,uk,k+1) =







qk+1 − qk − h vk+ 1
2

M (vk+1 − vk) + h(F d
int + F d

ext)
Φ(qk+1)





 (3.21)

with the vector of discrete internal forces

F d
int = G(qk+ 1

2
)Tγk,k+1 +B(qk+ 1

2 )Ta(qk+ 1
2 ,vk+ 1

2
) (3.22)

and the vector of discrete external forces

F d
ext = ∇qV +B(qk+ 1

2 )Tuk,k+1 (3.23)
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where the Lagrange-multipliers γk,k+1 are assumed to be constant in every time
interval and qk+ 1

2
= (qk+1 +qk)/2 as well as vk+ 1

2
= (vk+1 +vk)/2. In the sequel,

the above scheme will be called the basic energy-momentum scheme (BEM).

The advantageous algorithmic consistency properties, which are contained in the
basic energy-momentum scheme, are linked to the special evaluation of the matri-
ces in Eq. (3.21). As said before, the gradient of the potential energy is assumed
to be constant, which makes a special evaluation unnecessary. The same is valid
for the mass matrix in the rotationless formulation of multibody systems em-
ployed in this work. The constraint function Φ here is at most quadratic. In that
case, simple midpoint evaluation of the corresponding Jacobian G leads to the
consistency of energy and angular momentum. If the formulation would involve
a higher degree of nonlinearity, a formulation of the constraints Φ, the potential
energy V and the kinetic energy T with quadratic invariants and application of
the discrete gradient as introduced in Gonzalez [53] would be necessary.

The mass matrix necessary for formulating the kinetic energy is constant within
the rotationless formulation based on natural coordinates, which contains direc-
tion cosines for describing the orientation of the rigid bodies. The corresponding
rigid body formulation will be presented in Chapter 4. In contrast to this, the
kinetic energy in the quaternion-based rigid body formulation contains a config-
uration dependent mass matrix. To obtain the advantageous algorithmic consis-
tency properties in the quaternion-based rigid body formulation, a formulation
of the kinetic energy with quadratic invariants and application of the discrete
gradient introduced by Gonzalez in [53] will become necessary. Further details
on that topic can be found in Chapter 5.

Concerning the rotationless formulation, additionally, a discrete null space matrix
has to be found, which satisfies the following two properties:

• In the limit of vanishing time steps, the discrete version has to coincide
with the continuous one. That is,

P (qk+ 1
2
) → P (qk) as qk+1 → qk (3.24)

• The discrete null space matrix P (qk+ 1
2
) has full rank and satisfies the

equations
G(qk+ 1

2
)P (qk+ 1

2
) = 0 (3.25)

for qk+ 1
2

= (qk + qk+1)/2 with qk, qk+1 ∈ Q.

Analogously to the continuous case, discrete redundant velocities can be obtained
by applying the formula

vk+ 1
2

= P (qk+ 1
2
)νk,k+1 (3.26)

where the quantity νk,k+1, which does not appear explicitly in the time-stepping
scheme, can be interpreted as discrete generalized velocities. Conversely, the dis-
crete generalized velocities needed for calculating the generalized friction forces
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can be obtained by application of

νk,k+1 = B(qk+ 1
2 )vk+ 1

2
(3.27)

Obviously, the equation
B(qk+ 1

2 )P (qk+ 1
2
) = I (3.28)

has to be valid in the discrete case for the transformation matrix B. At this
point, generalized friction forces can be obtained by applying the formula

a(qk+ 1
2 ,vk+ 1

2
) = KB(qk+ 1

2 )vk+ 1
2

(3.29)

It has to be pointed out that a special evaluation of the transformation matrix
is necessary for achieving the intended algorithmic consistency properties. The
mentioned special evaluation will be designated by the upper index in the con-
figuration vector, that is qk+ 1

2 . It is worth mentioning that the upper index in
qk+ 1

2 does not denote a midpoint evaluation itself, but results from a nonlinear
function ḡ of the midpoint evaluation qk+ 1

2
, that is

qk+ 1
2 = ḡ(qk+ 1

2
) (3.30)

Further details on that topic will be given in Chapter 4 for a single rigid body
as well as for kinematic pairs.

Finally, if the function f in Eq. (3.21) will be taken for the formulation of the
optimal control problem the discrete state vector xk contains the configuration
vector qk and the velocity vector vk at the time discretization points. The
additional part due to the Lagrange-multipliers γk, which do not appear in the
BEM, can be neglected for the optimization. Furthermore, the state vector xk,k+1

contains the vector of Lagrange-multipliers γk,k+1 assumed to be constant in
every time interval. The additional parts due the configuration vector qk,k+1 and
the velocity vector vk,k+1 do not appear in the BEM, and thus can be neglected.
Then, the function f has to be inserted into Eq. (2.12).

Reduced energy-momentum scheme (REM) Similar to the continuous re-
duction process given at the end of Section 3.1, now the discrete analogy will
be devised. Premultiplication by the transpose of P (qk+ 1

2
) yields an alternative

reduced formulation of the BEM consisting of the 2n equations

0 = qk+1 − qk − h vk+ 1
2

0 = P (qk+ 1
2
)T
{

M(vk+1 − vk) + h(F d
int + F d

ext)
}

0 = Φ(qk+1)

(3.31)

with the remaining parts of the vector of discrete internal forces

F d
int = B(qk+ 1

2 )Ta(qk+ 1
2 ,vk+ 1

2
) (3.32)

and the vector of discrete external forces in Eq. (3.23).
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To achieve the favored formulation of the equations of motion without any con-
straints, a further reduction step has to be accomplished by a reparametrization
of the remaining unknowns. For open-loop multibody systems, it is generally
feasible to find a vector of local coordinates θ ∈ R

n−m which can be used for
the parametrization of the configuration vectors qk = q(θk). Additionally, the
discrete velocities can be calculated in every time step by applying the formula

vk(q0, ..., qk,v0) = (−1)k

{

2

h

[

(−1)kqk + 2
k−1
∑

i=1

(−1)iqi + q0

]

+ v0

}

(3.33)

which results from Eq. (3.31)1. Notice that the discrete velocities depend on all
configurations from t0 to tk. This has to be taken into account for the calculation
of the derivatives (see Eq. (A.12) provided in Appendix A). Finally, only n − m
equations remain for the description of the mechanical system. The function f
which then has to be inserted into Eq. (2.12) takes the form

f(xk,xk+1,uk,k+1) = P (qk+ 1
2
)T
{

M(vk+1 − vk) + h(F d
int + F d

ext)
}

(3.34)

where the discrete internal and external forces are given by Eq. (3.32) respectively
Eq. (3.23). Here, the discrete state vector xk only consists of the local coordinates
θk. θk can be used for the calculation of both the configuration qk = q(θk) and
the velocity vk(q0, ..., qk,v0).

3.3. Connection with generalized coordinates

One of the main goals of this work is the comparison between the above described
EM-schemes and the well-known generalized coordinates formulation. To estab-
lish the relation, the vector of generalized coordinates q̃, together with its relation
to the redundant coordinates

q = q(q̃) (3.35)

has to be found. Together with the null space matrix P introduced in Section
3.1, this relation can be used for the calculation of a null space matrix P (q̃). The
same is valid for the transformation matrix B(q̃). The configuration dependent
mass matrix M̃(q̃), which is necessary in the generalized coordinates formulation,
can be obtained by applying the formula

M̃(q̃) = P (q̃)TMP (q̃) (3.36)

Additionally, a matrix Ṗ (q̃, ṽ) containing the time derivatives of the compo-
nents of P (q̃) has to be found. Both the gradient of the potential energy and
the transformation matrix can be derived from the redundant formulation by
premultiplication of the transpose of P (q̃).

Finally, the function f to be inserted into the continuous augmented cost function
given in Eq. (2.5) takes the form

f(x, ẋ,u) =

[

˙̃q − ṽ
M̃(q̃) ˙̃v + P (q̃)T (F̃ int + F̃ ext)

]

(3.37)
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with the vector of internal forces

F̃ int = B(q̃)TKṽ (3.38)

and the vector of external forces

F̃ ext = MṖ (q̃, ṽ)ṽ + ∇qV +B(q̃)Tu (3.39)

Eventually, the transition to the discrete setting will be done by applying the
midpoint rule for the configuration vector q̃ and the velocity ṽ.

The function f , which then has to be inserted into Eq. (2.12), takes the form

f(xk,xk+1,uk,k+1) =





q̃k+1 − q̃k − h ṽk+ 1
2

M̃(q̃k+ 1
2
)(ṽk+1 − ṽk) + hP (q̃k+ 1

2
)T (F̃

d

int + F̃
d

ext)





(3.40)
with the vector of discrete internal forces

F̃
d

int = B(q̃k+ 1
2
)TKṽk+ 1

2
(3.41)

and the vector of discrete external forces

F̃
d

ext = MṖ (q̃k+ 1
2
, ṽk+ 1

2
)ṽk+ 1

2
+ ∇qV +B(q̃k+ 1

2
)Tuk,k+1 (3.42)

In principle, the elimination of the velocities could be achieved similarly to the
procedure illustrated in Section 3.2. However, the use of generalized coordinates
complicates this size reduction significantly. Furthermore, the higher degree of
nonlinearity in the generalized coordinates formulation complicates the calcula-
tion of the derivatives.
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4. Rigid body dynamics

In the following, a short account of the rotationless formulation of spatial rigid
body dynamics will be given. This approach is directly suitable for the extension
to constrained multibody systems specified by the DAEs in Eq. (3.1). The rota-
tionless formulation of rigid bodies is based on direction cosines. A key property
is the constant and diagonal mass matrix, which is an important advantage of
the rotationless formulation in comparison to the widely used classical Euler’s
equations for rigid bodies, where generalized coordinates are employed. Also
quaternions where used often in the past (Haug [62], Nikravesh [85]). Although
the quaternion formulation relies on less redundant coordinates, it exhibits a
higher degree of nonlinearity (Betsch & Siebert [12]). Properties of the men-
tioned quaternion formulation of rigid body dynamics as well as the problematic
extension to multibody systems will be described in Chapter 5 in detail. Further
details on the rotationless formulation for multibody systems consisting of rigid
components, which are investigated in this work, can be found in Betsch & Stein-
mann [16], Betsch & Leyendecker [11], Betsch & Uhlar [19] and Leyendecker et
al. [77].

The present constrained formulation of rigid bodies as well as multibody systems
relies on redundant coordinates. Both the internal constraints due to the rigidity
of the bodies and the external constraints due to kinematic pairs turn out to be
at most quadratic. This property has advantages for the advocated energy and
momentum consistent integration (see Section 3.2).

Basically, the rotationless formulation does not contain rotational or transla-
tional degrees of freedom along with associated joint torques or forces. While in
previous work an augmentation technique has been applied for the incorporation
of such degrees of freedom (see, for example, Betsch & Uhlar [19] and Uhlar &
Betsch [100]), this will not be preferred here. One of the disadvantages is the
necessary additional components for the constraint function and the resultant
more complicated gradients, which are known to be a crucial part of optimal
control problems. Additionally, it has been shown that the augmentation tech-
nique used in Betsch & Uhlar [19] suffers from singularities (see Sänger et al.
[93]). An alternative augmentation technique illustrated in Bottasso & Croce
[31] seems not to be afflicted by singularities. However, the energy and angular
momentum consistent discretization for this augmentation technique is a chal-
lenging task. In this work, a transformation matrix is used for the incorporation
of the controls as previously done in Leyendecker et al. [77]. Additionally, this
matrix is employed for the inclusion of linear viscous friction. To achieve the con-
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sistency properties, a special evaluation of this matrix turns out to be required
(see Betsch et al. [13]).

4.1. Spatial rigid body

In the present work, use will be made of twelve redundant coordinates for the
description of the position and the orientation of the spatial rigid body depicted
in Fig. 4.1. For one single rigid body, the vector of redundant coordinates is
given by

q =











ϕ

d1

d2

d3











(4.1)

where ϕ ∈ R
3 is the position vector of the center of mass and d1,d2,d3 are the

directors, which constitute the columns of the rotation tensor R ∈ SO(3) and
thus specify the orientation of the rigid body.

e1

e2

e3

d1

d2

d3

ϕ

g

Figure 4.1.: Spatial rigid body

In the sequel, all of the coordinates are referred to a right-handed orthogonal basis
{e1, e2, e3}, which plays the role of an inertial frame. The directors are assumed
to constitute a right-handed body frame which coincides with the principal axes
of the rigid body. Since the directors are fixed in the body and moving with it,
they have to stay orthonormal for all times. This gives rise to six independent
geometric (or holonomic) constraints Φi

int(q) = 0. The functions Φi
int : R12 → R

may be arranged in the vector of internal constraint functions

Φint(q) =





















1
2
(d1 · d1 − 1)

1
2
(d2 · d2 − 1)

1
2
(d3 · d3 − 1)
d1 · d2

d1 · d3

d2 · d3





















(4.2)
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With regard to the internal constraints, the configuration space of the free rigid
body may now be written in the form

Qfree =
{

q ∈ R
12 | Φint(q) = 0, (d1 × d2) · d3 = +1

}

(4.3)

The motion of the free rigid body can now be specified by means of the DAEs.
In the following, it is for simplicity assumed that the axes of the body frame
are aligned with the principal axes of the body. Accordingly, the mass matrix
M ∈ R

12×12 is given by

M =











mI3 03 03 03

03 E1I3 03 03

03 03 E2I3 03

03 03 03 E3I3











(4.4)

where m is the total mass of the rigid body and E1, E2, E3 are the principal
values of the Euler tensor relative to the center of mass, which can be related
to the classical polar momentum of inertia about the center of mass, J , via the
relationship

J = (trE)I3 − E (4.5)

If gravity is acting on the body, the potential energy reads

V (q) = mg ϕ · e2 (4.6)

where g is the gravitational acceleration. Furthermore, the constraint Jacobian
corresponding to the free rigid body Gint = ∇qΦint(q) is given by

Gint(q) =























0
T dT

1 0
T

0
T

0
T

0
T dT

2 0
T

0
T

0
T

0
T dT

3

0
T dT

2 dT
1 0

T

0
T dT

3 0
T dT

1

0
T

0
T dT

3 dT
2























(4.7)

Additionally, the angular momentum of the rigid body with respect to the origin
of the inertial frame is given by

J = mϕ× ϕ̇+
3
∑

i=1

Ei di × ḋi (4.8)

Similar to the procedure described in Section 3.1, a matrix with full column
rank fulfilling Eq. (3.7) has to be found for the size reduction by the null space
method. The matrix

P int(q) =













I3 03

03 −d̂1

03 −d̂2

03 −d̂3













(4.9)
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perfectly qualifies as null space matrix. Here, the hat-vector matrix in the spatial
case, which is needed for describing the null space matrix, is given by

ˆ





a
b
c





 =







0 −c b
c 0 −a

−b a 0





 (4.10)

and serves as alternative notation for the cross-product, that is â b = a× b.

Following the proceeding described at the end of Section 3.2, the first reduction
step can be accomplished by premultiplication of the transpose of the null space
matrix introduced in Eq. (4.9), which will be evaluated in the midpoint. A
further reduction step has to be done by the reparametrization of the unknowns.
For this aim, the rotation matrix has to be parametrized by the rotation vector
θ ∈ R

3. This can be done by application of the Rodrigues formula given by

R(θ) = exp(θ̂) = I3 +
sin ||θ||

||θ||
θ̂ +

1

2





sin
(

||θ||
2

)

||θ||
2





2

θ̂
2

(4.11)

The latter can be interpreted as closed form expression of the exponential map
(see Marsden & Ratiu [79]). Consequently, the discrete directors can be calcu-
lated by

(di)k = R(θ)(di)0 (4.12)

Notice that the application of Eq. (4.12) leads to absolute rotations. This is in
contrast to previous work regarding the discrete null space method (Betsch &
Leyendecker [11], Betsch & Uhlar [19]), where incremental rotations have been
employed. This will be done for two reasons. Firstly, the use of absolute ro-
tations has benefits concerning the boundary conditions on configuration level.
In particular, the angles can be used directly without use of a representation
by a sum, which would be necessary, if incremental rotations are used. Sec-
ondly, the application of incremental rotations would require the calculation of
more complicated gradients, because, in that case, every configuration vector
depends on every preceding incremental angle. The arising gradients then have
a lower-diagonal structure instead of a diagonal structure, thus are much less
sparse. However, it has to be stated that the formulation with absolute rota-
tions may suffer from singularities, which is not the case for the formulation with
incremental rotations.

At this point, the rotationless formulation for the dynamics of a spatial rigid body
is completely given for the case of a conservative system. The content proposed so
far is in agreement with the one given earlier for example in Betsch & Steinmann
[16], Betsch [9], and Betsch & Leyendecker [11]. Obviously, mechanical systems
which will be investigated within optimal control are nonconservative systems,
that is, the systems are actuated by control forces and torques. Additionally,
the systems may be afflicted by friction. For approaching those nonconservative
systems, use will be made of a transformation matrix as previously done in
Leyendecker et al. [77].
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Incorporation of control torques and forces In the following, a few results
concerning the control input will be assembled. Consider the single rigid body
depicted in Fig. 4.2, which is actuated by control forces uϕ ∈ R

3 directed towards
the center of mass and control torques uθ ∈ R

3. Notice that external control
forces are not excluded, because the resulting forces can be split into those control
forces uϕ ∈ R

3 acting on the center of mass and control torques uθ ∈ R
3.

Assuming u = (uϕ,uθ) as control vector andB = Bint as transformation matrix
suitable for the control input, the work of the control forces for this fully actuated
rigid body is given by

W =
∫ t

t0

u · ν dt =
∫ t

t0

u ·B(q) v dt =
∫ t

t0

(B(q)Tu) · v dt (4.13)

where Eq. (3.9) has been applied. Notice that the generalized control forces and
torques u ∈ R

6 and the generalized velocities ν ∈ R
6 are work-conjugated. The

same is valid for the corresponding redundant quantities, that is the redundant
control forces and torquesB(q)Tu ∈ R

12 and the redundant velocities v ∈ R
12.

e1

e2

e3

d1

d2

d3

ϕ

uθ

uϕ

g

Figure 4.2.: Spatial rigid body: Control input

In the next step, a suitable transformation matrix necessary for the incorporation
of control forces and torques will be calculated. Remember that such a transfor-
mation matrix has to fulfil the defining condition between the null space matrix
and the transformation matrix given in Eq. (3.10). For the present actuation of
the single rigid body, the mentioned transformation matrix takes the form

Bint(q)T = P int(q)

[

I3 03

03
1
2
I3

]

(4.14)

with the null space matrix introduced in Eq. (4.9). To proove the defining con-
dition given in Eq. (3.10), the product of the transformation and the null space
matrix has to be calculated, that is

Bint(q)P int(q) =

[

I3 03

03 X(q)

]

(4.15)
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with the orthogonality property for the directors given by

X(q) = −
1

2

3
∑

i=1

d̂i d̂i

= −
1

2

3
∑

i=1

(di ⊗ di − {di · di} I3)

= −
1

2
(I3 − 3 I3)

= I3

(4.16)

Hence, the defining condition is fulfilled. In particular, the transpose of the
transformation matrix introduced in Eq. (4.14) maps the generalized control
forces and torques u ∈ R

6 to the corresponding redundant ones B(q)Tu ∈ R
12,

which then can be incorporated directly in the underlying equations of motion
given by Eq. (3.1).

Incorporation of linear viscous friction Below, results concerning the incor-
poration of linear viscous friction will be illustrated. Again, a single rigid body
will be considered. Assuming

K = diag(kϕ,kθ) (4.17)

as matrix consisting of the damping constants which belong to the translational
friction forces aϕ and the rotational friction forces aθ, on its diagonal. Addition-
ally, B = Bint plays the role of a transformation matrix. Then, the dissipation
for the rigid body is given by

D =
∫ t

t0

(Kν) · ν dt =
∫ t

t0

(KB(q) v) ·B(q) v dt (4.18)

where Eq. (3.9) as well as the Rayleigh dissipation function in Eq. (3.11) have
been employed.

As shown in the last paragraph, the relation between the null space matrix and
the transformation matrix given in Eq. (3.10) is fulfilled. As mentioned in Sec-
tion 3.1, the transformation matrix maps the redundant velocity vectors to the
corresponding generalized ones, which then can be used for the formulation of
the generalized friction forces a(q,v). Inversely, the transpose of the transforma-
tion matrix maps the generalized friction forces to the corresponding redundant
ones. Finally, the arising vectors can be incorporated directly in the underlying
equations of motion given by Eq. (3.1).

Balance of linear momentum, angular momentum and energy Next, the
fundamental mechanical balance laws for the rigid body will be elaborated. In
a first step, generalized forces ũ = (ũϕ, ũθ) consisting of the generalized control
forces u and the generalized friction forces a(q,v) will be introduced by

ũ = u+ a(q,v) = u+KB(q) v (4.19)
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where use has been made of Eq. (3.13).

As a first mechanical balance law, the balance of linear momentum can be men-
tioned, which states that the time derivative of the linear momentum is equal to
the sum of the resulting forces given by ũϕ and the gravitational forces mg e2.
Additionally, the balance law of angular momentum for a spatial rigid body will
be treated. The balance law for angular momentum states that the time deriva-
tive of the angular momentum is equal to the sum of the torques, which result
from both the resulting forces ũϕ as well as the gravitational forces mg e2 and
the resulting torques ũθ, thus

d

dt
J = ϕ× (ũϕ + mg e2) +X(q)T ũθ (4.20)

The total angular momentum of the rigid body therein has been introduced in
Eq. (4.8), the matrix X(q) in Eq. (4.15). Obviously, the matrix X(q) should
not change the resulting generalized torques ũθ, which are incorporated into the
equations of motion. In the continuous case, the latter is fulfilled due to the
orthogonality property of the directors accounted for in Eq. (4.16). Additionally,
the mentioned orthogonality property is mandatory for achieving the balance of
angular momentum. Furthermore, the balance of energy can be written as

d

dt
(T + V + W + D) = 0 (4.21)

By application of q̇ = v = (vϕ,v1,v2,v3), the time derivative of the kinetic
energy for the rigid body is given by

d

dt
T = mvϕ · v̇ϕ +

3
∑

i=1

Ei vi · v̇i (4.22)

where use has been made of Eq. (3.4), Eq. (4.1) and Eq. (4.4). Taking into
account Eq. (4.6), the time derivative of the potential energy reads

d

dt
V = mg ϕ̇ · e2 (4.23)

Finally, the time derivative of the work of the control forces and the dissipation
can be written as

d

dt
(W + D) = ũ · ν = ũ ·B(q) v (4.24)

where use has been made of Eq. (4.13), Eq. (4.18) and Eq. (4.19).

Consistent incorporation of control torques and forces While Bint has to be
applied in the BEM, the control input in the REM only makes necessary the use
of the constant identity matrix I6. However, the calculation of the discrete work
of the control forces requires such a transformation matrix. By application of
Eq. (3.27), the discrete analogon of Eq. (4.13) is given by

Wk = h ·
k−1
∑

i=0

ui,i+1 · ν i,i+1 = h ·
k−1
∑

i=0

ui,i+1 ·B(qi+ 1
2 ) vi+ 1

2
(4.25)
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The evaluation of the transformation matrix has basic implications on the con-
sistency properties of the energy-momentum scheme, which is used in this work.
The error, which arises through the control input, is equal to zero when directly
using the identity matrix I6. Also the consistency properties are not affected by
the discretization. If the BEM is used, the midpoint evaluation makes necessary
a special evaluation of the control input matrix B to fulfil the discrete analogon
of Eq. (3.10). Details of this special evaluation, which has been introduced in
Betsch et al. [13], will be specified in the following.

Remember that the directors are the columns of the rotation matrix. A suitable
rotation matrix has to fulfil the orthogonality condition given by

RRT = I (4.26)

Due to the midpoint evaluation of the directors, the orthogonality condition for
the corresponding rotation matrix is generally not fulfilled in the midpoint of
each time interval, that is

Rk+ 1
2
RT

k+ 1
2

6= I (4.27)

To avoid this error in the discrete setting, the discrete counterpart Rk+ 1
2 of the

discrete rotation matrix Rk+ 1
2
, consisting of contravariant directors, has to be

calculated. As mentioned earlier in Section 3.2, the upper index in Rk+ 1
2 does

not denote a midpoint evaluation itself, but results from a nonlinear function of
the midpoint evaluation Rk+ 1

2
. The necessary proceeding is as follows: In a first

step, a discrete rotation matrix will be calculated from the covariant directors
by application of the relation

Rk+ 1
2

=
[

(d1)k+ 1
2

(d2)k+ 1
2

(d3)k+ 1
2

]

(4.28)

Afterwards, a discrete rotation matrix consisting of contravariant directors can
be obtained by application of the formula

Rk+ 1
2 = R−T

k+ 1
2

(4.29)

Notice that the above discrete rotation matrix fulfils the defining orthogonality
condition, that is

Rk+ 1
2 RT

k+ 1
2

= I (4.30)

Finally, the contravariant directors are the columns of the discrete rotation ma-
trix, that is

[

(d1)k+ 1
2 (d2)k+ 1

2 (d3)k+ 1
2

]

= Rk+ 1
2 (4.31)

In the following, the orientation of the spatial rigid body will be reformulated
with directors.

Using the recently introduced contravariant configuration vectors qk+ 1
2 , consist-

ing of the original position vector ϕk+ 1
2

and the contravariant directors (di)k+ 1
2

for i = 1, 2, 3, the discrete transformation matrix takes the form

Bint(q
k+ 1

2 )T = P int(q
k+ 1

2 )

[

I3 03

03
1
2
I3

]

(4.32)
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Now calculate

Bint(q
k+ 1

2 )P int(qk+ 1
2
) =

[

I3 03

03 X(qk+ 1
2
, qk+ 1

2 )

]

(4.33)

where

X(qk+ 1
2
, qk+ 1

2 ) = −
1

2

3
∑

i=1

(d̂
i
)k+ 1

2 (d̂i)k+ 1
2

= −
1

2

3
∑

i=1

((di)k+ 1
2

⊗ (di)k+ 1
2 − {(di)k+ 1

2 · (di)k+ 1
2
} I3)

= −
1

2
(I3 − 3 I3)

= I3

(4.34)

Consequently, the defining condition for the transformation matrix given in
Eq. (3.28) is fulfilled in the discrete case.

Consistent incorporation of linear viscous friction By use of Eq. (3.27), the
discrete analogon of Eq. (4.18) is given by

Dk = h ·
k−1
∑

i=0

(Kνi,i+1) · ν i,i+1 = h ·
k−1
∑

i=0

(KB(qi+ 1
2 ) vi+ 1

2
) ·B(qi+ 1

2 ) vi+ 1
2

(4.35)

where the transformation matrixB, evaluated in the midpoint, has been applied.
Here again, the midpoint evaluation makes necessary a special evaluation of the
control input matrix B to fulfil the discrete analogon of Eq. (3.10). As for
the case of the control input, the use of the recently introduced contravariant
configuration vectors leads to the fulfilment of the defining condition for the
transformation matrix given in Eq. (3.28).

Discrete balance of linear momentum, angular momentum and energy Next,
the discrete analogies of the continuous fundamental mechanical balance laws
for the rigid body will be treated. For this aim, discrete generalized forces
ũk,k+1 = (ũϕk,k+1

, ũθk,k+1
) will be introduced by

ũk,k+1 = uk,k+1 + a(qk+ 1
2 ,vk+ 1

2
) = uk,k+1 +KB(qk+ 1

2 )vk+ 1
2

(4.36)

where use has been made of Eq. (3.29).

The discrete balance of linear momentum states that the time derivative of the
linear momentum approximated by the difference quotient is equal to the sum of
the resulting discrete forces ũϕk,k+1

and the constant gravitational forces mg e2.
Additionally, the discrete balance law of angular momentum for a spatial rigid
body given by

1

h
(Jk+1 − Jk) = ϕk+ 1

2
× (ũϕk,k+1

+ mg e2) +X(qk+ 1
2
, qk+ 1

2 )T ũθk,k+1
(4.37)
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will be treated. To obtain the discrete balance law of angular momentum, the
time derivative of the angular momentum in the corresponding continuous bal-
ance law in Eq. (4.20) has been approximated by application of the difference
quotient. By use of vk = (vϕk

,v1k
,v2k

,v3k
), the discrete total angular momen-

tum of the rigid body therein is defined by

Jk = mϕk × vϕk
+

3
∑

i=1

Ei dik
× vik

(4.38)

Furthermore, the matrix X(qk+ 1
2
, qk+ 1

2 ) introduced in Eq. (4.33) should not
change the discrete resulting generalized torques ũθk,k+1

, which are incorporated
into the discrete equations of motion. Notice that the recently described eval-
uation of this matrix given in Eq. (4.34) is mandatory for that property. In
particular, the latter is necessary for achieving the discrete balance of angular
momentum. Furthermore, to obtain the discrete balance of energy, the time
derivatives of the kinetic energy, the potential energy, the work of the control
forces, and the dissipation in Eq. (4.21) will be approximated by application of
the difference quotient. Hence, the discrete balance of energy reads

1

h
{(Tk+1 + Vk+1 + Wk+1 + Dk+1) − (Tk + Vk + Wk + Dk)} = 0 (4.39)

The time derivative of the velocity in Eq. (4.22) will also be approximated by
the difference quotient, thus

Tk+1 − Tk = mvϕ
k+ 1

2

· (vϕk+1
− vϕk

) +
3
∑

i=1

Ei vi
k+ 1

2

· (vik+1
− vik

)

= m (||vϕk+1
||2 − ||vϕk

||2) +
3
∑

i=1

Ei (||vik+1
||2 − ||vik

||2)

(4.40)

Additionally, the change of the potential energy from time tk to tk+1 is given
by

Vk+1 − Vk = mg (ϕk+1 − ϕk) · e2 (4.41)

Finally, the change of the work of the control forces and the dissipation from
time tk to tk+1 can be written as

(Wk+1 +Dk+1)−(Wk +Dk) = h ·ũk,k+1 ·νk,k+1 = h ·ũk,k+1 ·B(qk+ 1
2 ) vk+ 1

2
(4.42)

where use has been made of Eq. (4.25), Eq. (4.35) and Eq. (4.36). Notice that the
discrete generalized velocity νk,k+1 consists of the translational velocity vϕ

k+ 1
2

,

which is evaluated in the midpoint, and ωk,k+1, which can be interpreted as the
discrete angular velocity of the rigid body.

Application to optimal control In the case of a fully actuated rigid body,
the function f , which then has to be inserted into Eq. (2.1), takes the form of
Eq. (3.20). Function f can be used as basis for the optimal control of a single
rigid body.
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4.2. Kinematic pairs

This section illustrates the present approach by considering two rigid bodies in-
terconnected by a kinematic joint, which has been investigated earlier for example
in Betsch & Leyendecker [11] for the case of conservative mechanical systems.
In this thesis the extension to nonconservative system will be approached. For
this aim, use will be made of a transformation matrix as previously done in
Leyendecker et al. [77].

A multibody system will be described as an assembly of individual rigid bodies.
For two spatial rigid bodies, interconnected by one kinematic joint, the procedure
consists of the following two steps.

In a first step, the contributions of each individual body are collected in appro-
priate system vectors and matrices. Hence, the configuration vector q ∈ R

24 for
two linked spatial rigid bodies is given by

q =

[

q1

q2

]

(4.43)

along with the constant and diagonal 24 × 24 mass matrix

M =

[

M 1
012

012 M 2

]

(4.44)

Moreover the constraints of rigidity are outlined in the vector

Φint(q) =

[

Φ
1
int(q

1)
Φ

2
int(q

2)

]

(4.45)

with the corresponding constraint Jacobian

Gint(q) =

[

G1
int(q

1) 0

0 G2
int(q

2)

]

(4.46)

In a second step, the interconnection between the rigid bodies in a multibody
system is specified by a number of external constraints summed up in the vec-
tor Φext(q). Accordingly, the kinematic pair is characterized by the constraints
summarized in

Φ(q) =

[

Φint(q)
Φext(q)

]

(4.47)

with the corresponding constraint Jacobian

G(q) =

[

Gint(q)
Gext(q)

]

(4.48)

Similar to the case of a single rigid body described in Section 4.1, a matrix P
with full column rank fulfilling Eq. (3.7) has to be found to accomplish the size
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reduction by the null space method. One of the possible null space matrices can
be calculated by

P (q) = P int(q) P ext(q) (4.49)

where the 24 × 12 matrix P int assumes the form

P int(q) =

[

P 1
int(q

1) 0

0 P 2
int(q

2)

]

(4.50)

Moreover, the external null space matrix P ext has to be found for all of the
different kinematic pairs. In the following sections, the procedure will be specified
for two primitive kinematic pairs, namely revolute and prismatic pairs.

Application to optimal control In the case of a fully actuated kinematic pair,
the function f , which then has to be inserted into Eq. (2.1), takes the form of
Eq. (3.20). Function f can be used as basis for the optimal control of a kinematic
pair.

Revolute pair

Most of the multibody systems employed in this work contain revolute joints.
Hence, the necessary background for the revolute pair depicted in Fig. 4.3 will
be given below.
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Figure 4.3.: Revolute pair

For the introduction of revolute joints, 5 additional constraint functions of the
form

Φext (q) =







ϕ2 − ϕ1 + ρ2 − ρ1

n1 · d2
1 − µ1

n1 · d2
2 − µ2





 (4.51)
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are required, where the unit vector

n1 =
3
∑

i=1

n1
i d

1
i (4.52)

is fixed at the first body and specifies the rotation axis. The location of the joint
on each body is characterized by

ρα =
3
∑

i=1

ρα
i d

α
i , α = 1, 2 (4.53)

Additionally, the constants µ1 and µ2 need to be consistent. The corresponding
5 × 24 constraint Jacobian

Gext(q) =







−I3 −ρ1
1I3 −ρ1

2I3 −ρ1
3I3 I3 ρ2

1I3 ρ2
2I3 ρ2

3I3

0
T n1

1(d2
1)

T n1
2(d2

1)T n1
3(d2

1)T
0

T (n1)T
0

T
0

T

0
T n1

1(d2
2)

T n1
2(d2

2)T n1
3(d2

2)T
0

T
0

T (n1)T
0

T







(4.54)
depends linearly on the configuration vector. Accordingly, the revolute pair
is characterized by the 17 constraints summarized in the vector of constraints
given in Eq. (4.47) with the corresponding 17 × 24 constraint Jacobian given in
Eq. (4.48). According to Betsch & Leyendecker [11], the 12 × 7 external null
space matrix, which is necessary for the calculation of the null space matrix P
via the formula in Eq. (4.49), can be written as

P ext(q) =













I3 03 0

03 I3 0

I3
ˆρ2 − ρ1 ρ2 × n1

03 I3 n1













(4.55)

At this point, all vectors and matrices needed for the formulation of a revolute
pair are given. Similar to the spatial rigid body, a discrete reduction process can
be applied also to the revolute pair as an example of a lower kinematic pair. The
discrete reduction process consists of the premultiplication by the discrete null
space matrix and the reparametrization of the unknowns. A detailed elaboration
of the discrete reduction process for lower kinematic pairs can be found in Betsch
& Leyendecker [11].

Incorporation of control torques and forces In the following, a few results
regarding the control input for the revolute pair depicted in Fig. 4.4 will be as-
sembled. In the case of the revolute pair treated in this section, the control vector
consists of forces uϕ ∈ R

3 and torques uθ ∈ R
3 acting on the first body of the

revolute pair. Additionally, a torque uα is acting between the two bodies in the
revolute joint about the rotation axis specified by the unit vector n1. Assuming
u = (uϕ,uθ, uα) as control vector, the work of the control forces for this fully
actuated revolute pair is given by Eq. (4.13). To obtain the redundant control
forces B(q)Tu ∈ R

24, which are work-conjugated to the redundant velocities
v ∈ R

24, a suitable transformation matrix B ∈ R
24×7 has to be calculated.
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n1

uα

Figure 4.4.: Revolute pair: Control input

As in the case of a single rigid body, a transformation matrix has to fulfil the
defining condition between the null space matrix and the transformation matrix
given in Eq. (3.10). For the present actuation of the revolute pair, the mentioned
transformation matrix takes the form

B(q)T = P int(q)











I3 03 03 03

03
1
2
I3 03 03

03 03 I3 03

03 03 03
1
2
I3





















I3 03 0

03 I3 −n1

03 03 0

03 03 n1











(4.56)

Notice that the first two matrices on the right-hand side of Eq. (4.56) already
arise for two spatial rigid bodies which are nonconnected. Furthermore, the third
matrix in Eq. (4.56) does not yield differences in comparison to the case of single
rigid bodies in space for the input of those forces uϕ ∈ R

3 and torques uθ ∈ R
3,

which are acting solely on the first body. A difference arises through the last
column of the third matrix. Particularly, the control torque uα acting between the
two bodies in the revolute joint will be incorporated by use of the unit vector n1

specifying the rotation axis of the revolute joint. To check the defining condition
for the transformation matrix given in Eq. (3.10), first the arising relation for
the corresponding internal null space matrices will be calculated, that is











I3 03 03 03

03
1
2
I3 03 03

03 03 I3 03

03 03 03
1
2
I3











P int(q)T P int(q) = I12 (4.57)

Therein, the orthogonality property for the directors given in Eq. (4.16) has been
employed. At this point, the relation between the external components of the null
space matrix and the transformation matrix has still to be checked. Therefore,











I3 03 0

03 I3 −n1

03 03 0

03 03 n1











T












I3 03 0

03 I3 0

I3
ˆρ2 − ρ1 ρ2 × n1

03 I3 n1













=







I3 03 0

03 I3 0

0
T

0
T n1 · n1





 (4.58)

where the basic unit length property of the unit vector given by

n1 · n1 = 1 (4.59)

will be applied. Thus, the defining condition given in Eq. (3.10) is fulfilled in the
continuous case. Again, the transformation matrix maps the generalized control
forces and torques u ∈ R

7 to the corresponding redundant ones B(q)Tu ∈ R
24,

which are needed for the formulation of the equations of motion in Eq. (3.1).
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Incorporation of linear viscous friction Below, results concerning the incorpo-
ration of linear viscous friction for a revolute pair will be illustrated. Assuming

K = diag(kϕ,kθ, kα) (4.60)

as matrix consisting of the damping constants, which belong to the translational
friction forces aϕ, the rotational friction forces aθ and the friction force in the
revolute joint aα, on its diagonal. Then, the dissipation for the revolute pair is
given by Eq. (4.18), where Eq. (3.9) has been employed. For that purpose, the
necessary transformation matrix has been introduced in Eq. (4.56). As shown
in the last paragraph, the relation between the null space matrix and the trans-
formation matrix given in Eq. (3.10) is fulfilled. Finally, similar observations as
those of the rigid body can be stated for the revolute pair.

Consistent incorporation of the controls and linear viscous friction Con-
cerning the transition to the discrete setting, observations similar to those given
at the end of Section 4.1 can be stated. Here again, a special evaluation of the
transformation matrix is necessary.

Remember that the unit vector property given in Eq. (4.59) is to be valid. Using a
direct midpoint evaluation of the transformation matrix, the mentioned relation
does not hold, that is

(n1)k+ 1
2

· (n1)k+ 1
2

6= 1 (4.61)

Hence, a contravariant evaluation of the transformation matrix will again be
applied. Therewith, the relation given by

(n1)k+ 1
2 · (n1)k+ 1

2
= 1 (4.62)

is valid. Consequently, the defining condition for the transformation matrix given
in Eq. (3.28) is fulfilled in the discrete case.

Continuous and discrete balance laws Next, the fundamental mechanical bal-
ance laws for the revolute pair will be elaborated. As a first mechanical balance
law, the balance of linear momentum can be mentioned, which states that the
time derivative of the linear momentum is equal to the sum of the resulting forces
ũϕ and the constant gravitational forces (m1 + m2) g e2. The generalized forces
ũ ∈ R

7 therefore have to be calculated by Eq. (4.19) with the present quantities.
The corresponding discrete balance law for linear momentum can be achieved
in a straightforward way as for the rigid body by application of the resulting
discrete forces ũϕk,k+1

calculated by Eq. (4.36). Additionally, the balance law for
angular momentum will be treated for the revolute pair. The latter is given by

d

dt
J = ϕ1 × (ũϕ + m1g e2) +ϕ2 × (m2g e2) +X(q1)T ũθ + ũαn

1 − ũαn
1 (4.63)

with the total angular momentum of the kinematic pair J given as sum of the
individual angular momenta of the involved rigid bodies. While the constant
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gravitational forces cause torques for both involved rigid bodies, the resulting
force ũϕ causes only a torque for the first body. The resulting torque ũα, which
is acting between the two bodies in the revolute joint, causes torques about
the axis n1 on both rigid bodies with opposite sign. Notice that the change
in angular momentum is zero, if only the resulting joint torque ũα acts on the
system. As in the case of the spatial rigid body, the orthogonality of the directors
is mandatory for achieving the balance of angular momentum. Furthermore, the
discrete balance law of angular momentum for the present revolute pair takes
the form

1

h
(Jk+1 − Jk) = ϕ1

k+ 1
2

× (ũϕk,k+1
+ m1g e2) +ϕ2

k+ 1
2

× (m2g e2)

+X((q1)k+ 1
2
, (q1)k+ 1

2 )T ũθk,k+1
+ ũαk,k+1

(n1)k+ 1
2 − ũαk,k+1

(n1)k+ 1
2

(4.64)
with the difference quotient as approximation of the time derivative and the
discrete resulting controls ũk,k+1 = (ũϕk,k+1

, ũθk,k+1
, ũαk,k+1

). Notice again that
the special evaluation of the matrix given in Eq. (4.34) is mandatory for achieving
the discrete balance of angular momentum. Concerning the balance of energy,
Eq. (4.21) for the continuous case and Eq. (4.39) for the discrete case are crucial
also for the revolute pair. Of course, both involved rigid bodies have to be taken
into account in the kinetic and the potential energy. For the work of the control
forces and the dissipation the transformation matrix introduced in Eq. (4.56) has
to be employed for the present revolute pair.

Prismatic pair

Multibody systems may also contain prismatic joints. Consequently, the basics
for the prismatic pair depicted in Fig. 4.5 will be given below.
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Figure 4.5.: Prismatic pair
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For the introduction of prismatic joints, 5 additional constraint functions of the
form

Φext (q) =

















m1
1 · (ϕ2 −ϕ1 + ρ2 − ρ1)

m1
2 · (ϕ2 −ϕ1 + ρ2 − ρ1)

d1
1 · d2

2 − µ1

d1
2 · d2

3 − µ2

d1
3 · d2

1 − µ3

















(4.65)

are necessary, where the unit vector n1 in Eq. (4.52) is fixed at the first body
and specifies the translation axis. Additionally, the vectors

m1
α =

3
∑

i=1

(m1
α)i d

1
i , α = 1, 2 (4.66)

will be introduced, such that {m1
1,m

1
2,n

1} constitute a right-handed orthogonal
frame. The location of the joint on each body is again characterized by the
vectors ρα given in Eq. (4.53). Additionally, the constants µ1, µ2, and µ3 need to
be consistent. Furthermore, the corresponding 5 × 24 linear constraint Jacobian
reads

Gext(q) =

















−(m1
1)T GT

11 GT
12 GT

13 (m1
1)

T ρ2
1(m1

1)
T ρ2

2(m1
1)

T ρ2
3(m1

1)
T

−(m1
2)T GT

21 GT
22 GT

23 (m1
2)

T ρ2
1(m1

2)
T ρ2

2(m1
2)

T ρ2
3(m1

2)
T

0
T (d2

2)T
0

T
0

T
0

T
0

T (d1
1)

T
0

T

0
T

0
T (d2

3)T
0

T
0

T
0

T
0

T (d1
2)

T

0
T

0
T

0
T (d2

1)T
0

T (d1
3)

T
0

T
0

T

















(4.67)
where

Gαi(q) = (m1
α)i (ϕ2 − ϕ1 + ρ2 − ρ1) − ρ1

im
1
α (4.68)

Accordingly, the prismatic pair is characterized by the 17 constraints summarized
in the vector of constraints given in Eq. (4.47) with the corresponding 17 × 24
constraint Jacobian given in Eq. (4.48). According to Betsch & Leyendecker [11],
the 12 × 7 external null space matrix, which is necessary for the calculation of
the null space matrix P via the formula in Eq. (4.49), can be written as

P ext(q) =













I3 03 0

03 I3 0

I3
ˆϕ1 − ϕ2 n1

03 I3 0













(4.69)

At this point, all vectors and matrices needed for the formulation of a prismatic
pair are introduced. Again, a discrete reduction process can be employed by the
premultiplication of the discrete null space matrix and the reparametrization of
the unknowns. Further details on the discrete reduction process can be found in
Betsch & Leyendecker [11].

Incorporation of control torques and forces Below, some results regarding
the control input for the prismatic pair depicted in Fig. 4.6 will be assembled. In
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the case of a fully actuated prismatic pair, the control vector consists of forces
uϕ ∈ R

3 and torques uθ ∈ R
3 acting on the first body and a force ur acting

between the two bodies along the translation axis specified by the unit vector
n1. Assuming u = (uϕ,uθ, ur) as control vector, the work of the control forces
for this fully actuated prismatic pair is given by Eq. (4.13). As in the case of the
revolute pair, to obtain the redundant control forces B(q)Tu ∈ R

24, which are
work-conjugated to the redundant velocities v ∈ R

24, a suitable transformation
matrix B ∈ R

24×7 has to be calculated.

n1

m1
1

m1
2ur

Figure 4.6.: Prismatic pair: Control input

A transformation matrix has to fulfil the defining condition between the null
space matrix and the transformation matrix given in Eq. (3.10). In the present
case of a fully actuated prismatic pair, a suitable transformation matrix is given
by

B(q)T = P int(q)











I3 03 03 03

03
1
2
I3 03 03

03 03 I3 03

03 03 03
1
2
I3





















I3 03 −n1

03 I3 (ϕ1 − ϕ2) × n1

03 03 n1

03 03 0











(4.70)

The decisive difference in comparison to the revolute pair arises through the last
column of the third matrix on the right-hand side of Eq. (4.70). Remember that
in the revolute pair, the last column of the third matrix in Eq. (4.56) contains the
unit vector n1 specifying the rotation axis of the revolute joint. In the present
prismatic pair, the mentioned column is necessary for the incorporation of the
force ur acting between the two bodies along the translation axis specified by
the unit vector n1. Notice that a resulting torque acting on the prismatic pair
is induced by the component (ϕ1 − ϕ2) × n1, if the actuated prismatic joint is
located away from the centers of mass of the two bodies. To check the defining
condition for the transformation matrix given in Eq. (3.10), firstly a relation
for the internal null space matrices given in Eq. (4.57) has to be checked. This
has been done already for the revolute pair. Secondly, the relation between the
external components of the null space matrix and the transformation matrix has
to be checked, that is










I3 03 −n1

03 I3 (ϕ1 −ϕ2) × n1

03 03 n1

03 03 0











T












I3 03 0

03 I3 0

I3
ˆϕ1 −ϕ2 n1

03 I3 0













=







I3 03 0

03 I3 0

0
T

0
T n1 · n1





 (4.71)
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where the basic unit length property of the unit vector given by Eq. (4.59) will
be employed. Thus, the defining condition given in Eq. (3.10) is fulfilled in
the continuous case. Once again, the transformation matrix maps the gener-
alized control forces and torques u ∈ R

7 to the corresponding redundant ones
B(q)Tu ∈ R

24, which are needed for the formulation of the equations of motion
in Eq. (3.1).

Incorporation of linear viscous friction In the following, the incorporation of
linear viscous friction will also be elaborated for a prismatic pair. Assuming

K = diag(kϕ,kθ, kr) (4.72)

as matrix consisting of the damping constants belonging to the already intro-
duced translational and rotational friction forces aϕ respectively aθ, as well as
the friction force in the prismatic joint ar, on its diagonal. Then, the dissipation
for the prismatic pair is given by Eq. (4.18), where Eq. (3.9) has been applied.
In the end, similar observations as those of the revolute pair can be stated.

Consistent incorporation of the controls and linear viscous friction Obser-
vations, totally similar to those for the revolute pair given in Section 4.2, can be
stated concerning the consistent incorporation of control forces and torques, as
well as linear viscous friction.

Continuous and discrete balance laws Regarding the fundamental mechanical
balance laws for the prismatic pair, mainly the differences to the revolute pair will
be mentioned. The balance law of linear momentum for the prismatic pair takes
completely the same form as for the revolute pair. Furthermore, the balance law
of angular momentum for the prismatic pair is given by

d

dt
J = ϕ1 × (ũϕ + m1g e2) +ϕ2 × (m2g e2) +X(q1)T ũθ

+ ũr(ϕ
1 −ϕ2) × n1 − ũr(ϕ

1 −ϕ2) × n1
(4.73)

The resulting force ũr, which arises in the last two terms of Eq. (4.73) and acts
between the two bodies in the prismatic joint, causes torques about the axis
given by (ϕ1 − ϕ2) × n1 on both rigid bodies with opposite sign. As for the
revolute pair, the change in angular momentum is zero, if only the joint force ũr

acts on the system. Once again, the orthogonality property of the directors has
to be fulfilled for obtaining the balance of angular momentum. Additionally, the
discrete balance law of angular momentum for the present prismatic pair takes
the form

1

h
(Jk+1 − Jk) = ϕ1

k+ 1
2

× (ũϕk,k+1
+ m1g e2) +ϕ2

k+ 1
2

× (m2g e2)

+X((q1)k+ 1
2
, (q1)k+ 1

2 )T ũθk,k+1

+ ũrk,k+1
(ϕ1

k+ 1
2

−ϕ2
k+ 1

2
) × (n1)k+ 1

2 − ũrk,k+1
(ϕ1

k+ 1
2

− ϕ2
k+ 1

2
) × (n1)k+ 1

2

(4.74)



46 4.3. Consistent incorporation of control torques

with the difference quotient as approximation of the time derivative and the
discrete resulting controls ũk,k+1 = (ũϕk,k+1

, ũθk,k+1
, ũrk,k+1

). Notice again that
the special evaluation of the matrix given in Eq. (4.34) is required for achieving
the discrete balance of angular momentum. Concerning the balance of energy,
the transformation matrix for the prismatic pair given in Eq. (4.70) has to be
used instead of the one given in Eq. (4.56) necessary for the revolute pair.

4.3. Consistent incorporation of control torques

Inspired by space telescopes such as the Hubble telescope, whose change in ori-
entation is induced by spinning rotors, a multibody system consisting of a main
body and three rotors will be analyzed. In this section, the algorithmic consis-
tency of angular momentum of the introduced incorporation of control torques
and forces will be demonstrated. Additionally, it will be demonstrated that the
newly devised method yields good approximations for the kinetic energy, even
for large time step sizes. Later in Section 6.3, this example, which has been
introduced in Leyendecker et al. [77] in the context of optimal control, will here
also be employed within optimal control. In contrast to Leyendecker et al. [77],
where a variational integrator has been applied, here, the present EM-scheme
will be employed.

Rotationless formulation The rigid body with rotors depicted in Fig. 4.7 con-
sists of a main body, which is connected to three rotors by revolute joints. For
clarity reasons, the inertial frame {e1, e2, e3} and the position vectors ϕi for
i = 0, ..., 3 have been neglected in Fig. 4.7. The vectors ρ2

i denoting the location
of the revolute joints on the rotors are equal to zero for i = 1, 2, 3. Furthermore,
the necessary vectors and matrices can be obtained by following the procedure
specified earlier in this chapter. Those are the configuration vector q ∈ R

48,
the velocity vector v ∈ R

48 and the mass matrix M ∈ R
48×48. The vector of

constraints for the nine degree of freedom system Φ ∈ R
39 consists of 24 internal

constraints due to the rigidity and 15 external ones due to the three revolute
pairs. Consequently, a corresponding constraint Jacobian G ∈ R

39×48 is neces-
sary. Due to the revolute joints, the rotation of one rotor relative to the main
body is feasible around an axis which is fixed in the main body and goes through
its center. Only the rotors can be actuated by control torques, that is

u =
[

01×6 u1 u2 u3

]T
(4.75)

Additionally, linear viscous friction can only act in the three revolute joints, thus
the matrix K consisting of the damping constants reads

K = diag(06×1, k1, k2, k3) (4.76)

The control input as well as the incorporation of linear viscous friction will be
done by the transformation matrix B ∈ R

9×48. Finally, a null space matrix
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Figure 4.7.: Satellite

P ∈ R
48×9 can be used for calculating valid redundant initial velocities v0 ∈ R

48

from the corresponding generalized ones ν0 ∈ R
9. The consistent evaluation is

primarily important for the BEM, hence only the BEM without any reduction
process will be employed.

Numerical example: Satellite In the following, the importance of the consis-
tent incorporation of control torques will be shown within the example of the
satellite. The mass and geometric properties of the spacecraft are summarized
in Table 4.1. Therein, li is the distance between the center of mass of rotor i to

body m E1 E2 E3 l
0 1005.3096 89.3609 201.0619 357.4434
1 424.1150 8.8357 106.0288 106.0288 0.9167
2 424.1150 106.0288 8.8357 106.0288 1.25
3 424.1150 106.0288 106.0288 8.8357 1.5833

Table 4.1.: Inertia and geometric data for the Rigid body with rotors.

the center of mass of the main body. Furthermore, it is assumed that there is no
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friction acting in the revolute joints between the base body and the three reac-
tion wheels, thus ki = 0 for i = 1, 2, 3. To show the importance of the consistent
incorporation of the controls, a simulation or forward dynamics problem of the
satellite with constant joint-torques ui = 200 for i = 1, 2, 3 will be investigated.

In the numerical simulation, the 3-component of the total angular momentum
and the total kinetic energy of the multibody system will be observed. The cor-
responding results for the case of consistent incorporation of control torques will
be denoted by Jkontra

3 for the 3-component of the total angular momentum and
T kontra for the total kinetic energy. For comparison, a straightforward midpoint
evaluation of the transformation matrix will be applied. In this case, the related
results will be denoted by Jkov

3 respectively T kov.

A number of N time steps is used to resolve the time interval with t0 = 0 and
tf = 5. The arising subintervals all have the size h = tf

N
. As visible in the right

diagram of Fig. 4.8, the 3-component of the total angular momentum Jkontra
3 stays

constant all time, even for large time step sizes. Hence, algorithmic consistency
of the total angular momentum is valid. The case of simple midpoint evaluation
yields a totally different behaviour, to state more precisely, Jkov

3 does not stay
constant. Thus, the balance law for angular momentum is violated. As expected,
the discretization error can be decreased by decreasing the time step size h.
Analogous observations can be done concerning the total kinetic energy depicted
in the left diagram of Fig. 4.8. While T kontra does hardly change, if the time steps
are refined, this is in severe contrast to T kov. In particular, using only N = 5
time steps in the consistent case already leads to a very good approximation of
the kinetic energy.
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Figure 4.8.: Nonconsistent (top) and consistent (bottom) incorporation of control
torques: 1. Resulting kinetic energy (Left). 2. Resulting angular
momentum (Right).
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4.4. Consistent incorporation of linear viscous

friction

In this section, the algorithmic consistency of angular momentum of the present
incorporation of linear viscous friction will be demonstrated. Additionally, it will
be demonstrated that the newly devised approach yields good approximations for
the kinetic energy, even for large time step sizes. Again, the satellite introduced
in Section 4.3 will be employed as an example.

Numerical example: Satellite In the following, the importance of the con-
sistent incorporation of linear viscous friction will be demonstrated within the
example of the satellite. The mass and geometric properties of the spacecraft are
again those of Table 4.1. It is assumed that there is friction acting in the revolute
joints between the base body and the three reaction wheels. The corresponding
damping constants are given by ki = 100 for i = 1, 2, 3. In contrast to the case of
incorporation of control torques, the consistent evaluation is important for both
the BEM and the REM. However, only the BEM without any reduction process
will be employed. To show the importance of the consistency, a simulation or
forward dynamics problem of the satellite with an initial velocity described by
generalized velocity

ν0 =
[

0 0 0 0.2 0.3 0.4 1 2 3
]T

(4.77)

and zero joint-torques ui = 0 for i = 1, 2, 3 will be investigated. Finally, the
redundant initial velocity v0, corresponding to the generalized one ν0, will be
calculated using the null space matrix P .

Similar investigations as those of Section 4.3 will be performed. The arising
results are depicted in Fig. 4.9. Identical comments as those of Section 4.3 can
be stated.
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Figure 4.9.: Nonconsistent (top) and consistent (bottom) incorporation of linear
viscous friction: 1. Resulting kinetic energy (Left). 2. Resulting
angular momentum (Right).
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5. Alternative rigid body
formulation: Quaternions

Unit quaternions (or Euler parameters) are known to be well-suited for the
singularity-free description of finite rotations. Previously, unit quaternions have
been used for the formulation of the equations of motion in the pioneering works
by Nikravesh [85], Haug [62] and the references cited therein. In these works (see
also Wendlandt & Marsden [106], O’Reilly & Varadi [87] and Rabier & Rhein-
boldt [90]) the orientation of a single rigid body is specified by a quaternion,
which is subjected to the unit length constraint.

In the aforementioned works the Lagrange equations of motion have been used.
In this connection, the quaternion form of the kinetic energy is commonly ob-
tained from the standard expression in terms of the angular velocity vector and
the classical inertia tensor. Consequently, the 4×4 mass matrix of the quaternion
formulation is singular in general. In the present work, the approach originally
introduced in Betsch & Siebert [12] will be employed for the derivation of a
nonsingular mass matrix. Therein, a size reduction from the formulation of the
equations of motion with directors introduced in Section 4.1 (see also Vallee et
al. [101], Betsch & Steinmann [16] and Leimkuhler & Reich [71]) will be per-
formed. The present approach makes possible the straightforward transition to
the Hamilton equations of motion in terms of quaternions. This is in contrast to
previous works by Maciejewski [78] and Morton [82] (see also Arribas et al. [3]
and Borri et al. [30]), where undetermined inertia terms have been introduced
in order to set up the quaternion-based Hamilton equations of motion.

In the present work, the quaternion-based Hamilton equations of motion serve as
starting point for the design of an energy-momentum conserving time-stepping
scheme, which has been recently derived in Betsch & Siebert [12]. Energy-
momentum schemes are well-known for their advantageous numerical stability
properties (see, for example, Gonzalez & Simo [54]). It is worth mentioning that
the majority of previous works aiming at the design of conserving schemes for
rigid body dynamics relies on the discretization of the classical Euler equations
(see, e.g., Simo & Wong [97], Lens et al. [74], Krysl [67] and Romero [91]).

The present energy-momentum conserving time-stepping scheme based on the
Hamilton equations of motion described with quaternions will be tested within
a steady precession of a gyro top as numerical example. Finally, concluding
remarks regarding the application of quaternions for the formulation of rigid body
dynamics and the problematic extension to flexible multibody dynamics within
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an energy-momentum scheme will be given. Furthermore, it will be stated that
the quaternion formulation will not serve as basis for the formulation of optimal
control problems in Chapters 6, 7 and 8 due to the mentioned problems.

5.1. Basics of quaternions

Below, the essential properties of quaternions needed for the rest of this chapter
will be given. More background on this topic can be found in Altmann [2] and
Kuipers [68].

A quaternion qq ∈ R
4 consists of a scalar part q0 ∈ R and a vector part q ∈ R

3,
thus

qq =

[

q0

q

]

(5.1)

The orientation of rigid bodies in space can be specified by a subgroup of the
quaternions, which is the group of quaternions with unit length given by

S3 = {qq ∈ R
4 | |qq| = 1} (5.2)

As previously done in Chou [39] and Kuipers [68] a matrix representation of
quaternions will be chosen in the following. Accordingly, the product of two
quaternions is defined by

qq ◦ pp = Ql(qq) pp = Qr(pp) qq (5.3)

where the 4 × 4 matrices Ql and Qr are given by

Ql(qq) =
[

qq E2(qq)T
]

= q0 I4+
+
q

Qr(qq) =
[

qq E1(qq)T
]

= q0 I4+
−
q

(5.4)

In this connection, the 3 × 4 matrices

E1(qq) =
[

−q q0I3 + q̂
]

E2(qq) =
[

−q q0I3 − q̂
] (5.5)

as well as the 4 × 4 skew-symmetric matrices

+
q =

[

0 −qT

q q̂

]

−
q =

[

0 −qT

q −q̂

] (5.6)

have to be introduced.

Introducing rotations described with unit quaternions, one may start with the
Euler-Theorem, which states that a rotation can be specified by a rotation axis
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given by an unit vector n ∈ R
3 and a rotation angle θ ∈ R. Furthermore, the

corresponding rotation vector θ ∈ R
3 is given by θ = θn. The related unit

quaternion qq ∈ S3 can be calculated by application of the exponential map
expS3 : R3 → S3 via the formula

qq = expS3

[

0
1
2
θ

]

=





cos
(

θ
2

)

sin
(

θ
2

)

n



 (5.7)

The exponential map can also be written in matrix form, that is

Ql(qq) = expO(4)

(

1

2

+

θ

)

= cos

(

θ

2

)

I4 + sin

(

θ

2

)

+
n (5.8)

Additionally, the rotation matrix can be obtained by use of

R(qq) = E1(qq)E2(qq)T (5.9)

where the map R : S3 → SO(3) is often called the Euler-Rodrigues parametriza-
tion (see, for example, Marsden & Ratiu [79]). Differentiating Eq. (5.9) with
respect to time yields the spatial and the convective angular velocity given by

Ω = 2E2(qq)q̇q

ω = 2E1(qq)q̇q
(5.10)

The verification of the above given formulas in Eq. (5.7), Eq. (5.9) and Eq. (5.10)
can be found in Betsch & Siebert [12].

5.2. Rigid body dynamics

In the following, a rigid body formulation in terms of quaternions will be intro-
duced. This can be achieved by performing a size reduction of the rigid body for-
mulation specified in Chapter 4. To this end, the connection between the quater-
nions qq ∈ S3 ⊂ R

4 and the directors summed up in the vector q ∈ Qfree ⊂ R
9

will be given. Thereby, only the rotational part of the configuration vector will
be considered. Following the procedure elaborated in Betsch & Siebert [12], a
mapping f : S3 → Qfree can be introduced, such that

q = f (qq) =
1

2
P (qq) qq (5.11)

where the 9 × 4 matrix P (qq) is given by

P (qq) =









2E1(qq)
−
e1

2E1(qq)
−
e2

2E1(qq)
−
e3









(5.12)
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Differentiating Eq. (5.11) with respect to time yields the relation between the
director-velocity and the quaternion-velocity given by

q̇ = Df (qq) q̇q = P (qq) q̇q (5.13)

hence the matrix P can be seen as null space matrix for the connection between
directors and quaternions.

Now the kinetic energy of the rigid body can be written in terms of quaternions.
Inserting Eq. (5.13) into Eq. (3.4) yields

T (qq, q̇q) =
1

2
q̇q ·M 4(qq) q̇q (5.14)

where the reduced, configuration-dependent 4 × 4 mass matrix is given by

M 4(qq) = P (qq)T M 9P (qq) (5.15)

By application of Eq. (4.5), in the following the convective inertia tensor will
be employed instead of the convective Euler tensor. Following the procedure
illustrated in Betsch & Siebert [12], another representation of the mass matrix
M 4 can be achieved by introducing the extended convective inertia matrix

J 4 =

[

J0 0
T

0 J

]

(5.16)

where J0 = 1
2
trJ . Then the mass matrix M 4 can be written in the alternative

form

M 4(qq) = 4Ql(qq) J 4Ql(qq)T (5.17)

The last representation ofM 4 is especially useful for calculating the inverse given
by

M 4(qq)−1 =
1

4
Ql(qq) J

−1
4 Ql(qq)T (5.18)

The inverse is necessary later for the transition to the Hamiltonian formulation
of the equations of motion.

In the next step, the angular momentum of the rigid body introduced in Eq. (4.8)
will be provided in terms of quaternions. In the present case of a pure rotational
motion, the angular momentum assumes the form

J =
1

2
E1(qq)M4(qq) q̇q (5.19)

Again, the details of the derivation can be found in Betsch & Siebert [12].
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5.3. Hamilton equations of motion

The next aim is a Hamiltonian formulation of rigid body dynamics in terms
of quaternions. To perform the transition to the Hamiltonian framework, the
quaternion momentum will be introduced through

pp = ∇q̇qT (qq, q̇q) = M 4(qq) q̇q (5.20)

Inserting
q̇q = M 4(qq)−1 pp (5.21)

into Eq. (5.14) for the kinetic energy yields

T (qq, pp) =
1

2
pp ·M 4(qq)−1 pp (5.22)

For later use, alternative representations of the kinetic energy will be supplied.
After a short calculation, the relation

T (qq, pp) =
1

8
qq ·Ql(pp) J

−1
4 Ql(pp)T qq (5.23)

can be achieved (see Betsch & Siebert [12]). Next, the augmented Hamilton
function will be introduced by the equation

Hγ(qq, pp) = T (qq, pp) + V (qq) + γ Φ(qq) (5.24)

Here, it has been tacitly assumed that the external loads can be derived from a
potential function V (qq). Moreover, Φ : R4 → R denotes a constraint function
given by

Φ(qq) =
1

2
(qq · qq − 1) (5.25)

Now the Hamiltonian form of the equations governing the rotational motion of
a rigid body can be written as

q̇q = ∇ppHγ(qq, pp)

ṗp = − ∇qqHγ(qq, pp)

0 = Φ(qq)

(5.26)

Accordingly, the equations of motion assume the form of differential-algebraic
equations (DAEs). Note that the algebraic constraint equation given in Eq. (5.26)3

ensures that qq ∈ S3 ⊂ R
4. With regard to Eqs. (5.22) and (5.23) the differential

part of the DAEs can also be written as

q̇q =
1

4
Ql(qq) J

−1
4 Ql(qq)T pp

ṗp = −
1

4
Ql(pp) J

−1
4 Ql(pp)T qq − ∇V (qq) − γ qq

(5.27)

It can be shown easily that the configuration-level constraint in Eq. (5.25) implies
a hidden constraint on the momentum level. Correspondingly, the phase space
coordinates (qq, pp) are constrained to lie on the manifold

P = {(qq, pp) ∈ R
4 × R

4 | qq · qq = 1 , qq · pp = 0} (5.28)

see Betsch & Siebert [12] for a verification.
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Rotational invariance and conservation of angular momentum It can be
verified that the augmented Hamilton function of the free rigid body is invariant
under rotations (see Betsch & Siebert [12] for the details). In particular, the
constraint Φ(qq) and the kinetic energy T (qq, pp) are invariant under the group S3

acting by rotations on (qq, pp). Rotational invariance implies that

Φ(qq♯) = Φ(qq)

T (qq♯, pp♯) = T (qq, pp)
(5.29)

where
qq♯ = Ql(rr) qq

pp♯ =
(

Ql(rr)
T
)−1

pp = Ql(rr) pp
(5.30)

for rr ∈ S3. To verify the invariance of the kinetic energy, the proof of the
invariance property of the quaternion product given by

Ql(qq
♯)T pp♯ = Ql(qq)T pp (5.31)

is required. For the free rigid body, the above invariance properties imply rota-
tional invariance of the augmented Hamilton function, that is

Hγ

(

expO(4)

(

ǫ

2

+

ξ

)

qq , expO(4)

(

ǫ

2

+

ξ

)

pp
)

= Hγ(qq, pp) (5.32)

for ǫ ∈ R and ξ ∈ R
3. Here, the exponential map expO(4) : R3 → O(4) is given

by Eq. (5.8). The last equation leads to

d

dǫ

∣

∣

∣

∣

∣

ǫ=0

Hγ

(

expO(4)

(

ǫ

2

+

ξ

)

qq , expO(4)

(

ǫ

2

+

ξ

)

pp
)

=0

1

2
∇qqHγ(qq, pp)·

+

ξ qq +
1

2
∇ppHγ(qq, pp)·

+

ξ pp =0

(5.33)

Rotational invariance of the augmented Hamilton function can be linked to the
conservation of a momentum map J ∈ R

3. To see this, consider Jξ(qq, pp) =
J(qq, pp) · ξ and

d

dt
Jξ(qq, pp) = −∇ppJξ(qq, pp) · ∇qqHγ(qq, pp) + ∇qqJξ(qq, pp) · ∇ppHγ(qq, pp) (5.34)

Comparison of the last equation with Eq. (5.33)2 leads to the conclusion that
Jξ(qq, pp) is a first integral, if the following conditions are satisfied:

∇ppJξ(qq, pp) =
1

2

+

ξ qq

∇qqJξ(qq, pp) = −
1

2

+

ξ pp
(5.35)

The above equations can be solved by choosing

Jξ(qq, pp) =
1

2
pp·

+

ξ qq =
1

2
pp ·E1(qq)Tξ (5.36)



5. Alternative rigid body formulation: Quaternions 57

Consequently, the momentum map associated with rotational invariance of the
system under consideration is given by

J(qq, pp) =
1

2
E1(qq) pp (5.37)

and thus is identical to the spatial angular momentum in Eq. (5.19).

A similar procedure has been applied in Marsden & Ratiu [79] for the derivation
the common spatial angular momentum for particles.

Introduction of invariants Due to the rotational invariance of the kinetic en-
ergy T (qq, pp), it is possible to reparametrize the kinetic energy in terms of appro-
priate invariants. The formulation with invariants is necessary for the conserving
numerical discretization of the equations of motion. With regard to Eq. (5.31),
invariants are given by

π(qq, pp) = Ql(qq)T pp (5.38)

By application of those invariants, the kinetic energy can be written as

T (qq, pp) = T̃ (π(qq, pp)) =
1

8
π(qq, pp) · J

−1
4 π(qq, pp) (5.39)

In anticipation of the conserving time discretization it is required to recast the
differential part of the DAEs in Eq. (5.26) in terms of the invariants in Eq. (5.38).
Accordingly, by application of Eq. (5.24), the Hamilton equations of motion in
Eq. (5.26) can be written in the form

q̇q =

(

∂π

∂pp

)T

∇T̃ (π)

ṗp = −

(

∂π

∂qq

)T

∇T̃ (π) − ∇V (qq) − γ ∇Φ(qq)

(5.40)

or alternatively

q̇q =
1

4
Ql(qq) J

−1
4 π(qq, pp)

ṗp = −
1

4
Ql(pp) J

−1
4 π(qq, pp) − ∇V (qq) − γ qq

(5.41)

Of course, the above equations are equivalent to those in Eq. (5.27).

5.4. Conserving discretization

Below, the time discretization of the DAEs given in Eq. (5.26) will be performed.
To this end, the conserving one-step method due to Gonzalez [53], which fits into
the framework of the mixed Galerkin method (specifically the mG(1) method)
developed by Betsch & Steinmann [17], will be applied. Let the phase space
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coordinates (qqk, ppk) ∈ P at time tk along with the step size h be given. Then
approximations of the quantities (qqk+1, ppk+1) ∈ R

4 × R
4 and γk,k+1 ∈ R at time

tk+1 follow from the scheme

qqk+1 − qqk = h ∇ppHγ

(

qqk, ppk, qqk+1, ppk+1

)

ppk+1 − ppk = − h ∇qqHγ

(

qqk, ppk, qqk+1, ppk+1

)

0 = Φ(qqk+1)

(5.42)

Here, ∇qq and ∇pp denote discrete derivatives in the sense of Gonzalez [52]. In
particular, the scheme in Eq. (5.42) assumes the form

qqk+1 − qqk =
h

8
Ql(qqk+ 1

2
) J

−1
4 [πk + πk+1]

ppk+1 − ppk = −
h

8
Ql(ppk+ 1

2
) J

−1
4 [πk + πk+1] − h ∇V

(

qqk, qqk+1

)

− h γk,k+1 qqk+ 1
2

0 =
1

2

(

qqk+1 · qqk+1 − 1
)

(5.43)

where the abbreviations

πk = π (qqk, ppk) and πk+1 = π
(

qqk+1, ppk+1

)

(5.44)

have been employed. Moreover, for the present purposes it suffices to choose
∇V

(

qqk, qqk+1

)

= ∇V
(

qqk+ 1
2

)

. Note that the first two equations in Eq. (5.43)

can be viewed as discrete counterparts of those in Eq. (5.41).

By design, the scheme given in Eq. (5.43) conserves both angular momentum
and energy. In addition to that, the configuration-level constraint as well as
the momentum-level constraint are satisfied also in the discrete case, that is
(qqk+1, ppk+1) ∈ P (see Betsch & Siebert [12] for a verification of both state-
ments).

Implementation The scheme in Eq. (5.43) constitutes a system of nine nonlin-
ear algebraic equations for the determination of qqk+1, ppk+1 ∈ R

4 and γk,k+1 ∈ R.
Application of Newton’s method leads to a generalized saddle point system,
which has to be solved in each iteration. The solution of saddle point systems can
be circumvented by eliminating the Lagrange-multiplier γk,k+1 from Eq. (5.43)2.
This task can be accomplished by applying the discrete null space method orig-
inally developed in Betsch [9] and Betsch & Leyendecker [11]. To achieve a first
size reduction of the algebraic system in Eq. (5.43), use will be made of the 4 ×3
discrete null space matrix

P
(

qqk+ 1
2

)

= E2

(

qqk+ 1
2

)T
(5.45)
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Premultiplication of Eq. (5.43)2 by the transpose of the discrete null space matrix
given in Eq. (5.45) yields

P
(

qqk+ 1
2

)T {

ppk+1 − ppk

}

= −
h

8
P
(

qqk+ 1
2

)T {

Ql(ppk+ 1
2
) J

−1
4 [πk + πk+1]

}

− hP
(

qqk+ 1
2

)T
∇V

(

qqk+ 1
2

)

(5.46)
Thus, the discrete constraint force is annihilated. Secondary, the reparametriza-
tion of the unknowns will be performed, that is

qqk+1(θ) = expS3

[

0
1
2
θ

]

◦ qqk (5.47)

where the exponential map has been introduced in Eq. (5.7). Accordingly, the
four original unknowns qqk+1 ∈ R

4 are replaced by θ ∈ R
3, which plays the role

of an incremental rotation vector. Note that the unit length constraint is iden-
tically satisfied by employing the reparametrization. To summarize, application
of the discrete null space method leads to the reduced system of seven nonlinear
algebraic equations consisting of Eq. (5.43)1 and Eq. (5.46). In these equations
qqk+1 is expressed in terms of θ ∈ R

3 via the reparametrization in Eq. (5.47).
The system of seven equations can be solved iteratively by applying Newton’s
method. Further details of the implementation can be found in Betsch & Siebert
[12].

5.5. Steady precession of a gyro top

The numerical example deals with a heavy symmetrical top (see Fig. 5.1), which
has originally been applied in Betsch & Leyendecker [11] within a director-based
EM-scheme. In Betsch & Siebert [12], the results of the director-based EM-
scheme have been compared with the newly developed EM-scheme based on
quaternions. The corresponding results will be given in the following. Addition-
ally, in the aforementioned work, the two EM-schemes have been compared with
a quaternion-based variational integrator specified in Betsch & Siebert [12] and
a momentum conserving scheme due to Simo & Wong [97]. With regard to the
accuracy, the results of the two last-mentioned integrators lie between those of
the two EM-schemes and thus will be neglected in the following.

Numerical experiments One point on the symmetry axis of the top is fixed
to the origin of the inertial frame {e1, e2, e3}. The shape of the top is assumed
to be a cone with height H = 0.1 and radius r = 0.05. The total mass of
the top is given by m = 1

3
ρ π r2 H , where the mass density is assumed to be

ρ = 2700. The principal moments of inertia relative to the center of mass are
given by J̄1 = J̄2 = 3 m

80
(4 r2 + H2) and J̄3 = 3 m

10
r2. The principal values of the

convective inertia tensor relative to the point of attachment follow from

J1 = J̄1 + m l2 and J3 = J̄3 (5.48)
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e1

e2

e3
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Figure 5.1.: Symmetrical top

where l = 3
4

H denotes the distance between the center of mass and the origin.
Gravity is acting on the top such that the potential energy function is given by

V (qq) = m g l d3(qq) · e3 (5.49)

where d3(qq) = R(qq) e3 and g = 9.81 denotes the gravitational acceleration.
A straightforward calculation applying the formulas given in Betsch & Siebert
[12] yields the corresponding gradient. The initial configuration of the top qq0

is specified by the unit vector n0 = e1 and the rotation angle θ0 = π
3

via the
formula in Eq. (5.7). In order to provide an analytical reference solution, the case
of precession with no nutation will be considered. Let θ be the angle of nutation,
ωp the precession rate and ωs the spin rate. Specifically, the initial values will be
chosen as

θ = θ0 and ωp = 10 (5.50)

The condition for steady precession is given by (see, for example, Moon [81,
Section 5.3])

ωs =
m g l

J3 ωp

+
J1 − J3

J3

ωp cos θ (5.51)

Accordingly, application of the formula

ω0 = ωpe3 + ωsd3 (5.52)

yields the initial angular velocity vector.

In the present example both the total energy and the 3-component of the an-
gular momentum vector are first integrals of the motion. The newly developed
quaternion-based energy-momentum scheme does indeed conserve these quan-
tities, independent of the step size. This is illustrated in the first diagram of
Fig. 5.2 for a time step size of h = 0.01.

To evaluate the accuracy of the two EM-schemes, next the numerical results will
be compared with the analytical reference solution. To this end, the position
vector of the center of mass given by

ϕ = l d3 = x e1 + y e2 + z e3 (5.53)
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In the case of steady precession, the center of mass of the top has to move on a
circular trajectory in the plane z = z(0) = l cos(θ0). Accordingly, the analytical
reference solution is given by

ϕref = l sin(θ0) sin(ωpt) e1 − l sin(θ0) cos(ωpt) e2 + l cos(θ0) e3 (5.54)

In the third and the forth diagrams of Fig. 5.2 the numerical results are compared
with the analytical solutions. In particular, the results of both the quaternion-
based and the director-based (see Betsch & Steinmann [16]) energy-momentum
integrators are depicted for h = 0.01. While both integrators converge to the
analytical solution, the director-based integrator yields a higher accuracy for a
prescribed step size. This can also be seen from the log-log plot of the configu-
ration error depicted in the second diagram of Fig. 5.2. Here, the relative error
has been calculated via the formula

e =
|ϕref −ϕ|

|ϕref |
(5.55)

at t = 1.
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Figure 5.2.: Steady precession of a gyro top: 1. Conservation of the total en-
ergy and the 3-component of the angular momentum (h = 0.01). 2.
Relative error at t = 1s for the motion of the center of mass. 3.+4.
Comparison between the numerical and the analytical solutions for
the coordinates x and z of the center of mass (h = 0.01).
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5.6. Concluding remarks on quaternions

In the past, quaternions have been preferred by virtue of their lower degree
of redundancy (see Nikravesh [85], Haug [62]). However, it has been demon-
strated that the quaternion formulation exhibits a higher degree of nonlinearity
in comparison to the one with directors. This is basically due to the configura-
tion dependent mass matrix. Furthermore, it has been experienced numerically
that the quaternion formulation of rigid body dynamics is not faster than the
formulation with the directors, despite its lower degree of redundancy. Concern-
ing the accuracy, the EM-scheme based on quaternions can compete with other
time-stepping schemes (see Betsch & Siebert [12]). Finally, quaternions may be
applied for rigid body dynamics, but do not seem to be advantageous in compar-
ison to directors, which lead to a strikingly simple formulation of the equations
of motion.

Concerning the assembly of several rigid bodies in a multibody system, some
constitutive words have to be said. First of all, the number of constraints needed
for describing the kinematic joints do not depend on the choice of rotational
parameters. Secondly, the formulation of external constraints exhibits a higher
degree of nonlinearity in the quaternion formulation. Hence, the quaternion
formulation does not have advantages in comparison to the director formulation
within the extension of rigid body dynamics to multibody dynamics consisting of
rigid components. Additionally, problems arise regarding the energy-momentum
conserving discretization. The external constraints due to the lower kinematic
pairs described in Betsch & Leyendecker [11] are partially specified with scalar
products. The constraints that are not quadratic can be described with quadratic
invariants. Hence, those constraints can be discretized in an energy and angular
momentum conserving way. Other external constraints are specified as composi-
tion of linear and quadratic terms. The discretization of those constraints within
the quaternion-based energy-momentum scheme turns out to be cumbersome.

Finally, apart from the issue of algorithmic energy-momentum conservation, the
quaternions may have some benefits in flexible multibody dynamics. Works
concerning the formulation of flexible multibody components like geometrically
exact Cosserat rods were recently published (see, for example, Lang et al. [70]
and Celledoni & Säfström [38]). Anyhow, the striking simplicity of the director
formulation enables its wide applicability in flexible multibody dynamics (see,
for example, Betsch & Steinmann [18], Leyendecker et al. [76] and Betsch et
al. [10]). In this work, the quaternions will not be the redundant coordinates of
choice in the following Chapters 6 and 7.
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6. Optimal control with equations
of motion in ODE-form

In the current chapter the topics of Chapters 2, 3, and 4 will be combined for the
development of an energy and angular momentum consistent direct transcription
method for the solution of optimal control problems in multibody dynamics. As
described in Chapter 2, a direct transcription (or collocation) method is based
on discretizing the underlying equations of motion and incorporating them into
the cost function with Lagrange-multipliers to get the corresponding augmented
cost function. To calculate the discrete necessary conditions of optimality, the
derivatives of the discrete augmented cost function have to be provided either
analytically or, at least, numerically. In direct transcription the arising system
of equations is of huge size, but has a sparse structure. The procedure necessary
for direct transcription is illustrated in detail for example in Betts [22].

The dynamics of the mechanical system will be described by use of the rotation-
less formulation, which facilitates the application of an energy-momentum con-
sistent integration scheme. As described in Chapters 3 and 4, the corresponding
equations of motion in a first step take the form of differential-algebraic equa-
tions of index 3. Subsequently, the equations will be reduced by application
of the discrete null space method with nodal reparametrization (see Betsch &
Leyendecker [11] for further details). Additionally, equations of motion based
on generalized (or minimal) coordinates will be employed in connection with a
midpoint scheme. While in the first case, the algebraic constraints arising in the
continuous setting will be eliminated in the discrete setting, in the second case,
the equations of motion are in purely differential form from the outset.

Different kinds of consistent integrators have been applied within optimal control
problems in multibody dynamics in recent works. In Bottasso & Croce [31] an
energy consistent direct transcription method has been elaborated for the solu-
tion of optimal control problems. In contrast to this, a variational integrator has
been employed for the formulation of the forward dynamics in Leyendecker et al.
[77] and Ober–Blöbaum et al. [86]. The arising methods, referred to as DMOC
for unconstrained mechanical systems and DMOCC for constrained mechanical
systems, are angular momentum consistent, but not energy consistent. An op-
timal control method which is based on direct transcription and an energy and
angular momentum consistent discretization of the equations of motion can be
found in the recent work of Betsch et al. [13] (see also Siebert & Betsch [94]).



64 6.1. Optimal control formulation: Direct transcription

6.1. Optimal control formulation: Direct

transcription

The task that will be treated in this chapter, is minimizing the control effort
which is necessary for moving a multibody system from a specific initial con-
figuration into a specific final one. To solve such an optimal control problem,
formulations of the cost function, the state vectors, boundary conditions for the
configuration and the velocity, and a description of the solution procedure are
required. For that purpose, some general informations which are independent
from the differing numerical examples introduced later, will be given below.

Cost function For the aforementioned problem the integral costs needed for
Eq. (2.3) are equal to the control effort which is to be minimized. This control
effort will be specified by the quadratic function

L(u) =
1

2
u · u (6.1)

to be inserted into the cost function in Eq. (2.3) with the control vector u con-
sisting of all generalized control forces and torques. While the formulation of
the corresponding discrete cost function can be done in a straightforward way as
described in Section 2.2, the extension to the discrete augmented cost function is
much more challenging and will be detailed later within the different numerical
examples.

Composition of the state vectors To achieve proper formulations of the aug-
mented cost function in Eq. (2.5) and the discrete analogon in Eq. (2.15), some
words have to be said about the composition of the state vectors x. In the
generalized coordinates formulation the state vector will be built up with the
generalized configuration q̃ and the generalized velocity ṽ, thus x = (q̃, ṽ). In
contrast to that, only the vector of local coordinates θ is used in the REM (see
Chapter 3). The velocity will be obtained by the update process described in
Eq. (3.33). Accordingly, the corresponding formula for the state vector reads
x = θ. While incremental rotations are widely-used in forward dynamics, which
is due to the involved prevention of arising singularities, absolute rotations will be
preferred for the optimal control problems treated in this work. This will be done
for two reasons. Firstly, the use of absolute rotations has benefits concerning the
boundary conditions on configuration level outlined in the next paragraph. In
particular, the angles can be used directly without use of a representation by
a sum, which would be necessary if incremental rotations are used. Secondly,
the application of incremental rotations would require the calculation of more
complicated gradients, because, in that case, every configuration vector depends
on every preceding incremental angle. The arising gradients then have a lower-
diagonal structure instead of a diagonal structure, thus are much less sparse.
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Boundary conditions on configuration and velocity level As mentioned in the
last paragraph, absolute rotations will be applied in the REM. This enables a
direct formulation of the final conditions on configuration level. The application
of incremental rotations would require final conditions on configuration level
exhibiting an additive structure. While the final conditions on configuration
level differ in the varying examples in this chapter, the ones on velocity level are
each time equal to zero. In particular, rest-to-rest maneuvers will be considered
in this chapter. In the generalized coordinates formulation, the latter gives rise
to final conditions of the form

ψ(xN) =

[

q̃N − q̃f

ṽN − ṽf

]

(6.2)

On the other hand, the final conditions in the REM take the form

ψ(xN) =

[

θN − θf

B(qN )vN −B(qf )vf

]

(6.3)

where, according to Eq. (3.9), B maps the redundant velocity v to the cor-
responding generalized one ν. It is worth mentioning that the second part of
Eq. (6.3) yields final conditions of the form νN = νf , which are not equivalent
to the ones given by vN = vf . In particular, the zero final conditions on velocity
level νN = 0 necessary for the rest-to-rest maneuvers treated in this chapter,
do not automatically yield zero redundant velocities at the end, that is vN = 0.
This is due to the fact that the redundant velocities do not lie on the correct
manifold in the time discretization points. The reduced final conditions on ve-
locity level given by the second part of Eq. (6.3) will be applied due to some
benefits. Firstly, the reduced velocity boundary conditions yield better results
than the redundant velocity boundary conditions. This is due to the fact that
the reduced velocities do lie on the correct manifold in the time discretization
points. Secondly, more important, the reduced final conditions on velocity level
do not form a redundant set of equations, which sometimes produce a bad nu-
merical convergence behaviour. In other words, the final conditions on velocity
level fulfil the so-called ‘linear independence constraint qualification’ (see, for
example, Diehl [41]). Obviously, the kinetic energy, which will be calculated
with Eq. (3.4), is equal to zero at the beginning of the motion due to the chosen
starting velocity v0 = 0, but typically not exactly equal to zero at the end of
the motion. However, the kinetic energy at the final time obtained by Eq. (3.4)
converges to zero for vanishing time step sizes.

Solution procedure Following the procedure described in Chapter 2, the dis-
crete cost function, the boundary conditions on configuration and velocity level
as well as the discrete equations of motion, which will be detailed subsequently
within the differing numerical examples, are required for the discrete augmented
cost function in Eq. (2.15). The discrete augmented cost function serves as
basis for the direct transcription methods used in this chapter. While the neces-
sary derivatives for the solution process may be calculated by use of numerical
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difference methods, a fast solution procedure strongly depends on analytically
calculated derivatives. If all first- and second-order derivatives of the discrete
augmented cost function can be calculated analytically, the discrete necessary
conditions of optimality can be calculated completely and, additionally, solved
with a fast and efficient solution procedure. In the 3-link manipulator example,
the first-order derivatives will be provided for both schemes. Details of the cor-
responding implementation will be given in Appendix A. The solution of the
optimal control problem will be calculated by use of the SQP solver fmincon in
MATLAB with provided gradients. It is worth mentioning that the calculation
of the discrete necessary conditions of optimality by application of the proce-
dure described in Appendix A yields similar results. Concerning the satellite
as three-dimensional example, all derivatives will be calculated by use of the
SQP solver fmincon in MATLAB, i.e. the corresponding gradients will not be
provided. Consequently, the necessary calculation time for the solution of the
optimal control problem is of huge size.

6.2. 3-link manipulator

The first example is the three degree of freedom planar robotic manipulator
depicted in Fig. 6.1. While an underactuated version of the 3-link manipulator
was previously applied as example for trajectory tracking problems (Betsch et al.
[20]), here, the manipulator is fully actuated. In particular, an optimal movement
of the manipulator for a rest-to-rest maneuver with given boundary conditions
for the configuration will be calculated.

Rotationless formulation with reduction Each of the three robot arms will
be modeled as planar rigid bodies, which makes possible the use of a simplified
version of the rigid body kinematics given in Chapter 4. The vector of redundant
coordinates q ∈ R

18 is built up by

qi =







ϕi

di
1

di
2





 (6.4)

for each of the three rigid bodies i = 1, 2, 3. Furthermore, the mass matrix
M ∈ R

18×18 consists of the matrices pertaining to the planar rigid bodies

M i =







miI2 02 02

02 E i
1I2 02

02 02 E i
2I2





 (6.5)

Since the potential energy is given by

V (q) =
3
∑

i=1

mig ϕi · e2 (6.6)
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Figure 6.1.: 3-link manipulator

the corresponding gradient ∇qV ∈ R
18 is constant. Here, the vector of con-

straints Φ ∈ R
15 consists of the internal ones due to rigidity

Φint(q
i) =







1
2
(di

1 · di
1 − 1)

1
2
(di

2 · di
2 − 1)

di
1 · di

2





 (6.7)

and the external ones due to the three revolute joints

Φext(q) =



















−ϕ1 +
l1
2
d1

1

−ϕ2 + l1d
1
1 +

l2
2
d2

1

−ϕ3 + l1d
1
1 + l2d

2
1 +

l3
2
d3

1



















(6.8)

The present 3-link manipulator can be regarded as open kinematic chain. A
way for calculating null space matrices for kinematic chains has been proposed
in Betsch & Leyendecker [11]. Following the procedure described in that work,
one of the possible null space matrices for the elimination of the corresponding
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constraint Jacobian G = ∇qΦ is given by

P (q) =





































l1
2
d1

2 0 0

d1
2 0 0

−d1
1 0 0

(l1d
1
2 + l2

2
d2

2) l2
2
d2

2 0

d2
2 d2

2 0

−d2
1 −d2

1 0

(l1d
1
2 + l2d

2
2 + l3

2
d3

2) (l2d
2
2 + l3

2
d3

2) l3
2
d3

2

d3
2 d3

2 d3
2

−d3
1 −d3

1 −d3
1





































(6.9)

Control torques u = (u1, u2, u3) are employed at the base of the first link and
the joints between the links one and two and the links two and three. The joint
angles α = (α1, α2, α3) are used as relative coordinates in the REM. The work of
the control forces can be calculated by Eq. (4.13) with the transformation matrix
B fulfilling the equation

B(q)P (q) = I3 (6.10)

The formulation of the REM does not make necessary a control input with the
transformation matrix B, due to similar observations as the ones at the end of
Chapter 4. Nevertheless, the calculation of the work of the control forces with
Eq. (4.13) requires B. Additionally, the transformation matrix is necessary for
the incorporation of joint-friction. Taking into account the rotation axes ni = e3

for i = 1, 2, 3, the transformation matrix for the 3-link manipulator takes the
form

B(q)T =
1

2
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(6.11)

where the last components of the vectors resulting from the cross-products are
automatically zero and thus will be neglected in the given planar multibody
system.

For the transition to the energy and angular momentum consistent discrete set-
ting, the contravariant evaluated transformation matrix B is necessary. While
the proceeding for the calculation has been given in Section 4.1 for a single rigid
body in space, now the same will be presented for the planar manipulator with its
three revolute joints. In a first step, discrete rotation matrices will be calculated
from the covariant directors for each of the three rigid bodies, that is

Rk+ 1
2

=
[

(d1)k+ 1
2

(d2)k+ 1
2

]

(6.12)



6. Optimal control with equations of motion in ODE-form 69

In a second step, discrete rotation matrices consisting of contravariant directors
will be calculated by application of the formula

Rk+ 1
2 = R−T

k+ 1
2

(6.13)

Finally, for each of the three rigid bodies, the contravariant directors can be
obtained by

[

(d1)k+ 1
2 (d2)k+ 1

2

]

= Rk+ 1
2 (6.14)

Notice that the upper index, at this point, denotes the contravariance of the
directors, not the number of the rigid body. A total number of six contravariant
directors have to be calculated that way and inserted into Eq. (6.11) to obtain
the contravariant evaluated transformation matrix B(qk+ 1

2 ).

In the case of the 3-link manipulator, the function f , which has to be inserted
into Eq. (2.1), takes the form of Eq. (3.20) with the matrices given in this section.
Finally, the transition to the discrete setting can be done straightforwardly as
described in Section 3.2.

Generalized coordinates formulation Alternatively to the redundant coordi-
nates described before, the 3-link manipulator can also be specified by the three
generalized coordinates

q̃ =
[

α1 α2 α3

]T
(6.15)

where α1, α2, α3 are the joint angles. As described in Section 3.3, the necessary
matrices can be derived by reduction from the redundant formulation by use of
the null space matrix P . For that purpose, the relation between the generalized
and the redundant coordinates is given by

q = q(q̃) =
[

F 1 F 2 F 3
]T

(6.16)

with

F 1 =
[

l1
2

c1
l1
2

s1 c1 s1 −s1 c1

]

F 2 =
[

(l1c1 + l2
2

c12) (l1s1 + l2
2
s12) c12 s12 −s12 c12

]

F 3 =
[

(l1c1 + l2c12 + l3
2
c123) (l1s1 + l2s12 + l3

2
s123) c123 s123 −s123 c123

]

(6.17)
In Eq. (6.17), the abbreviations ci = cos (αi), cij = cos (αi + αj), and cijk =
cos (αi + αj + αk) are used. Analogous ones are used for the sinus function.
Eq. (6.9), together with Eq. (6.16) can be used for the derivation of a null space
matrix P (q̃), which then takes the form

P (q̃) =







F 1
,α1

F 2
,α1

F 3
,α1

F 1
,α2

F 2
,α2

F 3
,α2

F 1
,α3

F 2
,α3

F 3
,α3







T

(6.18)



70 6.2. 3-link manipulator

with

F 1
,α1

=
[

− l1
2
s1

l1
2
c1 −s1 c1 −c1 −s1

]

F 2
,α1

=
[

(−l1s1 − l2
2

s12) (l1c1 + l2
2
c12) −s12 c12 −c12 −s12

]

F 2
,α2

=
[

− l2
2
s12

l2
2

c12 −s12 c12 −c12 −s12

]

F 3
,α1

=
[

(−l1s1 − l2s12 − l3
2

s123) (l1c1 + l2c12 + l3
2

c123) −s123 c123 −c123 −s123

]

F 3
,α2

=
[

(−l2s12 − l3
2
s123) (l2c12 + l3

2
c123) −s123 c123 −c123 −s123

]

F 3
,α3

=
[

− l3
2
s123

l3
2

c123 −s123 c123 −c123 −s123

]

(6.19)
and the vanishing components F 1

,α2
= F 1

,α3
= F 2

,α3
= 0. Furthermore, the

matrix Ṗ (q̃, ṽ) containing the time derivatives of the components of P (q̃) takes
the form

Ṗ (q̃, ṽ) =









Ḟ
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,α1
Ḟ

2

,α1
Ḟ

3
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Ḟ
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Ḟ
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Ḟ

3

,α3









T

(6.20)

with

Ḟ
1

,α1
=
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and the vanishing components Ḟ
1

,α2
= Ḟ

1

,α3
= Ḟ

2

,α3
= 0. The three velocities

v1, v2, and v3 therein are the components of the generalized velocity vector
ṽ = (α̇1, α̇2, α̇3). Finally, the transformation matrix B(q̃) can be calculated by
use of Eq. (6.11) together with Eq. (6.16). Alternatively, the relation in Eq. (6.10)
can be employed directly. At this point, all matrices are provided for the function
given in Eq. (3.37) to be inserted into the continuous augmented cost function
given in Eq. (2.5). Here again, the transition to the discrete setting has been
done by applying the midpoint rule, which yields the Eq. (3.40).

Numerical experiments The mass and geometric properties of the 3-link ma-
nipulator are summarized in Table 6.1. The total time of the movement is tf = 3.

body m E1 E2 l α0 αf

1 30 1.225 143.3027 7 π
2

π
2

2 25 1.0208 88.0208 6 −π
2

0
3 10 0.4083 60.2083 8 π

2
0

Table 6.1.: Inertia and geometric data for the 3-link manipulator.

The system starts and ends at rest. For both formulations the starting point q0

was taken as initial guess for the configuration for all times qk, k = 1, ..., N . Both
the generalized coordinates formulation with midpoint evaluation and the REM
work for large time step sizes. In this example, the chosen time step size was
h = tf

N
with N = 20.

Two different problems for the optimal control of the 3-link manipulator will be
treated. In the first version, the third component of the control vector is enforced
to be nonnegative. This makes necessary the incorporation of the inequality
constraint u3 ≥ 0. In the second version it is assumed that linear viscous damping
is acting in the three revolute joints of the manipulator. The corresponding
damping constants are given by ki = 300 for i = 1, 2, 3.

Finally, snapshots for the optimal movement are given in Fig. 6.2 for the 3-
link manipulator with limited control and in Fig. 6.3 for the 3-link manipulator
with linear viscous friction. Further numerical results for both cases are given in
Fig. 6.4 and Fig. 6.5. Furthermore, the basic conservation property of the system
is given as sum of the total energy T + V and the work of the control forces W
in the first case (see Fig. 6.4) and as sum of the total energy T + V , the work of
the control forces W and the dissipation D due to the linear viscous friction in
the second case (see Fig. 6.5).

6.3. Satellite

Here again, the spacecraft which has been introduced in Section 4.3, will be
investigated. In contrast to Section 4.3, where a forward dynamics problem of
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Figure 6.2.: Optimal control of a 3-link manipulator with limited control (N =
20): Snapshots for the optimal movement at t ∈ {0, 0.75, 1.5, 2.25, 3}
for REM.

Figure 6.3.: Optimal control of a 3-link manipulator with linear viscous fric-
tion (N = 20): Snapshots for the optimal movement at t ∈
{0, 0.75, 1.5, 2.25, 3} for REM.

the satellite has been studied with application of the BEM, here, an optimal
control problem will be analyzed. For that purpose, the REM will serve as
basis for the formulation of the equations of motion. Formerly, this example
was used in Leyendecker et al. [77] within optimal control. In contrast to the
aforementioned work, where a variational scheme was applied for the numerical
integration, here, the EM-scheme will be employed. Additionally, the results will
be compared with those of a formulation of the equations of motion in terms of
Euler angles. Special attention will be concentrated on the consistency properties
of the EM-scheme, that is the consistency of total angular momentum and the
consistency of total energy.

Rotationless formulation with reduction Based on the rotationless formu-
lation of the rigid body with rotors described in Section 4.3, the subsequent
reduction process has to be specified. The constraint Jacobian G ∈ R

39×48 can
be eliminated by the null space matrix P ∈ R

48×9. In addition to the six relative
coordinates for the description of the movement of the main body, the three ad-
ditional coordinates α = (α1, α2, α3) are necessary for specifying the orientation
of the rotors relative to the main body. Thus, the total vector of relative coordi-
nates θ consists of nine components. Furthermore, the work of the control forces
can be calculated by Eq. (4.13) with the transformation matrix B fulfilling the
equation

B(q)P (q) = I9 (6.22)

Notice that in the REM, the constant identity matrix I9 can be used directly for
the control input. In the case of the satellite, the function f , which has to be
inserted into Eq. (2.1), takes the form of Eq. (3.20) with zero potential energy
and the matrices mentioned before.
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Figure 6.4.: Optimal control of a 3-link manipulator with limited control (N =
20): 1. Resulting torques for REM. 2. Resulting angles for REM. 3.
Resulting kinetic energy for REM and energy consistency for both
schemes. 4. Convergence of the total costs for both schemes.

Generalized coordinates formulation The rigid body with rotors can also be
described by the vector of generalized coordinates

q̃ =
[

ϕT Φ Θ Ψ αT
]T

(6.23)

where ϕ is the position vector for the center of mass of the main body. The
Euler angles Φ, Θ, and Ψ together with a 3-1-3 rotation convention are used for
describing the orientation of the main body. Additionally the angles αi, i = 1, 2, 3
are again used to specify the orientation of the rotors relative to the main body.
Concerning the main body, the relation between generalized coordinates and
redundant coordinates is given by

q0 = q0(q̃) =











ϕ

d0
1

d0
2

d0
3


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


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














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


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
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





ϕ

cos Ψ cos Φ − sin Ψ cos Θ sin Φ
sin Ψ cos Φ + cos Ψ cos Θ sin Φ

sin Θ sin Φ
− cos Ψ sin Φ − sin Ψ cos Θ cos Φ
− sin Ψ sin Φ + cos Ψ cos Θ cos Φ
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(6.24)
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Figure 6.5.: Optimal control of a 3-link manipulator with linear viscous friction
(N = 20): 1. Resulting torques for REM. 2. Resulting angles for
REM. 3. Resulting kinetic energy for REM and energy consistency
for both schemes. 4. Convergence of the total costs for both schemes.

For the three rotors, the relations are given by

q1 = q1(q̃) =











ϕ+ l1 d
0
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1
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3 sin α1

−d0
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3 cos α1
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





(6.25)

q2 = q2(q̃) =











ϕ+ l2 d
0
2

d0
1 cos α2 − d0
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(6.26)

and

q3 = q3(q̃) =











ϕ+ l3 d
0
3

d0
1 cos α3 + d0

2 sin α3

−d0
1 sin α3 + d0

2 cos α3

d0
3











(6.27)

Eqs. (6.24), (6.25), (6.26), (6.27), together with the null space matrix P , de-
scribed by redundant coordinates, are necessary for the derivation of the null
space matrix P (q̃). At this point, an explicit representation of the null space
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matrix P (q̃), the matrix Ṗ (q̃) as well as the transformation matrix B(q̃) will
be renounced. While the null space matrix already takes a large shape, the
corresponding time derivatives yield a much larger shape for Ṗ (q̃). Hence, the
analytical calculation of Ṗ (q̃) necessitates the use of a computer algebra system
such as Maple or the Symbolic Math Toolbox in MATLAB. Finally, the function
f to be inserted into the continuous augmented cost function in Eq. (2.5) takes
the form of Eq. (3.37) with zero gravity. Again, the midpoint rule will be applied
for the transition to the discrete setting given in Eq. (3.40).

Numerical experiments The mass and geometric properties of the satellite
are again those of Table 4.1. When applying the REM, the reorientation ma-
neuver of the main body is enforced through the boundary conditions for the
configuration (ϕ0

0, θ
0
0,α0) = (0, 0, 0) at t0 = 0 and θ0

f = π√
14

(1, 2, 3) at tf = 5.
The orientation of the rotors and the position of the main body at the final
time will not be enforced through the boundary conditions. When applying
the Euler angles as generalized coordinates, the well-known problem of singu-
larities has to be taken into account. A value of zero for the second Euler
angle Θ has to be avoided. Using (Φ0, Θ0, Ψ0) = (2, 2, 2) as starting orienta-
tion and (Φf , Θf , Ψf) = (4.7543, 1.6598, 0.7074) as final orientation for the main
body leads to a singularity-free movement, which is equivalent the one achieved
with the REM. Here again, a rest-to-rest maneuver will be investigated, thus
v0 = vf = 0.

Two different versions of the satellite will be treated. While in the first one it
is assumed that there is neither damping nor any limitation for the controls, in
the second one it is assumed that there is linear viscous damping in the revolute
joints between the base body and the three rotors. The corresponding damping
constants are assumed to be ki = 100 for i = 1, 2, 3.

Snapshots for the optimal movement of the rigid body with rotors are given
in Fig. 6.6 for the frictionless case and in Fig. 6.7 for the friction-afflicted case.
Further numerical results for both cases are given in Fig. 6.8 and Fig. 6.9. Due to
the absence of gravity in the space craft maneuver, a basic conservation property
is the sum of the kinetic energy T and the work of the control forces W for the
frictionless satellite (see Fig. 6.8) and the sum of the kinetic energy T , the work
of the control forces W and the dissipation D for the friction-afflicted satellite
(see Fig. 6.9). An additional consistency property for this multibody system is
the conservation of total angular momentum. Notice that the application of the
REM leads to the desired consistency properties, the same is not valid for the
formulation with Euler angles. Finally, the total costs in the REM are always
higher than those in the Euler angles formulation. The latter seems to result from
the errors in the REM arising from the midpoint evaluation of the comprised
directors. As mentioned earlier in this thesis, the orthogonality constraints for
the directors are fulfilled in the time nodes, but not in the midpoints of each
time interval. The error is particularly high, if the multibody system contains
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fast rotating components, which is the case in the present example. A way for
circumventing this problem has been approached in the recent work Becker [8].

Figure 6.6.: Optimal control of a Satellite (N = 20): Snapshots for the optimal
movement at t ∈ {0, 1.25, 2.5, 3.75, 5} for REM.

Figure 6.7.: Optimal control of a Satellite with linear viscous friction (N = 20):
Snapshots for the optimal movement at t ∈ {0, 1.25, 2.5, 3.75, 5} for
REM.
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Figure 6.8.: Optimal control of a Satellite (N = 20): 1. Orientation of the main
body for REM (left) and GC (right). 2. Resulting energies and
angular momentum for REM (left) and GC (right). 3. Resulting
torques for REM (Results for the generalized coordinates formulation
are similar). 4. Convergence of the total costs for both schemes.
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Figure 6.9.: Optimal control of a Satellite with linear viscous friction (N = 20):
1. Orientation of the main body for REM (left) and GC (right). 2.
Resulting energies and angular momentum for REM (left) and GC
(right). 3. Resulting torques for REM (Results for the generalized
coordinates formulation are similar). 4. Convergence of the total
costs for both schemes.
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7. Optimal control with equations
of motion in DAE-form

Equations of motions in form of differential-algebraic equations (DAEs) are
widely-used, especially in flexible multibody dynamics. Particularly, the rota-
tionless formulation based on natural coordinates (see, for example, Garcia de
Jalon [46]) is closely linked to DAEs. However, only few works are concerned
with optimal control of multibody systems described that way. Notable excep-
tions are the works of Bottasso and co-workers [32, 31], von Schwerin [102], and
Kraus et el. [65] focussed on real multibody systems as well as the more theo-
retical ones of Kunkel & Mehrmann [69], Gerdts [48, 49], Gerdts & Kunkel [50],
and Müller [83, 84].

In the current chapter the nonreduced equations of motion, which basically con-
tain constraints, will serve as basis for the formulation of the optimal control
problem. Consequently, the optimal control method is based on equations of
motion in form of DAEs of index 3. The equations of motion will be discretized
by use of the basic energy-momentum scheme introduced earlier in Chapter 3.
In direct transcription methods based on the mentioned scheme the arising gra-
dients needed for building up the discrete necessary conditions of optimality are
of enormous size, but have a very sparse structure. Hence, a fast solution of the
corresponding equations requires the utilization of efficient solvers for sparse ma-
trices. Additionally, a meaningful choice of an initial guess to start the iteration
process for solving the nonlinear equations turns out to be mandatory.

Below, the recently developed DAE-based approach will be employed within two
representative examples. On the one hand, the optimal control of an underactu-
ated overhead crane as an example of a point mass system will be investigated.
In addition to that, the 3-link robot manipulator introduced earlier in Chapter 6
will be explored. Therein, the orientation of the involved three rigid bodies will
be specified using directors, which necessitates the rotationless rigid body for-
mulation including kinematic pairs introduced in Chapter 4. Finally, the results
of the DAE-based numerical examples will be compared with those achieved by
the ODE-based approaches illustrated in Chapter 6.
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7.1. Optimal control formulation: Direct

transcription

As in the last chapter, the control effort which is necessary for moving a multi-
body system from a specific initial configuration into a specific final one, will be
minimized. While the quadratic function to be inserted into the cost function is
of identical form as in Eq. (6.1), the formulation of the state vectors and the de-
scription of the solution procedure have to be treated in this chapter once again.
Additionally, variable forms of the boundary conditions for the configuration and
the velocity are needed in the differing examples of the current chapter.

Composition of the state vector To achieve proper formulations of the aug-
mented cost function in Eq. (2.5) and the discrete analogon in Eq. (2.15), the
composition of the state vector x is of decisive importance. In the BEM the state
vector x may be built up with the configuration vector q, the velocity vector v,
and the vector of Lagrange-multipliers γ, thus x = (q,v,γ). This version will be
applied in Section 7.3 within the 3-link manipulator as example. Alternatively, a
reduced version of the state vector x only consisting of the configuration vector q
and the vector of Lagrange-multipliers γ may be applied. The corresponding ve-
locity vector can be obtained by the update process described in Eq. (3.33). The
reduced state vector x = (q,γ) will be used in Section 7.2 within the overhead
crane as example.

Solution procedure Following the procedure described in Chapter 2, the dis-
crete cost function, the boundary conditions as well as the discrete equations
of motion are required for the discrete augmented cost function in Eq. (2.15).
Furthermore, a direct transcription method based on the discrete augmented
cost function will be applied for the solution of the mechanical optimal control
problems. Again, the calculation of the derivatives is of essential importance. It
is worth mentioning that the derivatives of the discrete equations of motion in
DAE-form can be calculated more easily than the ones in ODE-form. First-order
derivatives can be provided without any difficulty even for three-dimensional
multibody systems consisting of kinematic chains. Due to the simply structured
discrete equations of motion, also second-order derivatives might be calculated
and provided for the solution procedure. However, this will not be done in the
numerical examples in the present chapter. Notice that for three-dimensional
multibody systems consisting of kinematic chains described with the discrete
equations of motion in ODE-form treated in Chapter 6, the calculation of the
derivatives is much more challenging. The latter is valid already for the first-
order derivatives. Details of the implementation for the 3-link manipulator as
example will be given in Appendix B. As a general problem for the DAE-based
optimal control formulation, the provision of a good initial guess has to be stated.
A good initial guess is not only necessary to avoid finding local minima instead of
global ones, but also for finding a trajectory that is feasible. The latter emerges
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as one of the major problems for the DAE-based optimal control treated in this
chapter. Finally, as in Chapter 6, the solution of the optimal control problem
will be calculated by use of the SQP solver fmincon in MATLAB.

7.2. Overhead crane

Below, the underactuated overhead crane depicted in Fig. 7.1 as prototypical ex-
ample of a mechanical point mass system will be considered. In previous works,
this example was used within the framework of trajectory tracking for underac-
tuated multibody systems (see, for example, Blajer & Kolodziejczyk [26]). In
examples dealing with trajectory tracking, the point mass is required to follow a
prescribed trajectory. In contrast to the examples in Chapter 6, the underactu-
ated overhead crane does not make necessary the rigid body kinematics that has
been introduced in Chapter 4. In the following, both the BEM and the REM
will be compared with the commonly used generalized coordinates formulation
within optimal control.

z

x

s

l
α

β, M

F

Figure 7.1.: Overhead Crane

Rotationless formulation with reduction Here, use will be made of four re-
dundant coordinates for the three degree of freedom system, so that the problem
will basically be specified by DAEs. The configuration vector then is given by

q =
[

s β x z
]T

(7.1)

A basic property of the rotationless formulation is the constant and diagonal
mass matrix. Here, the corresponding 4 × 4 mass matrix reads

M = diag(mt, J , m, m) (7.2)
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where mt is the mass of the trolley, J the moment of inertia of the winch and m
the mass of the load. Gravity is acting on the bodies, which yields the potential
energy

V (q) = −mg z (7.3)

where g denotes the gravitational acceleration. In order to incorporate the effect
of the rope properly, the holonomic constraint function

Φ(q) = (x − s)2 + z2 − r2β2 (7.4)

has to be fulfilled. The formulation of the overhead crane within the BEM will
be employed in this section and, additionally, will be compared with the REM
as well as the generalized coordinates formulation.

Since the control forces u = (F, M) belong to the coordinates s and β, the work
of the control forces can be calculated by Eq. (4.13) with the transformation
matrix

B =
[

−I2 02

]

(7.5)

The work-conjugated coordinates s and β serve as redundant coordinates. Hence,
the transformation matrix is constant, which is in difference to all other examples
in this work. Furthermore, the null space matrix, which is necessary for the REM,
reads

P (q) =











1 0 0
0 z 0
1 0 −z
0 r2β x − s











(7.6)

Now that all matrices needed for Eqs. (3.1) respectively (3.20) are derived the two
formulations of the augmented cost function in Eq. (2.5) are complete. Finally,
the transition to the discrete setting can be done straightforwardly as described
in Section 3.2.

Generalized coordinates formulation One of the main goals of this work is
the comparison between the above described EM-scheme and the well-known
generalized coordinates formulation. For that purpose, the vector of generalized
coordinates for the overhead crane

q̃ =
[

s l α
]T

(7.7)

will be introduced. The relation between the generalized coordinates and the
redundant coordinates is given by

q = q(q̃) =
[

s l
r

s + l sin α l cos α
]T

(7.8)

Following the procedure specified in Section 3.3, a generalized coordinates for-
mulation applicable for optimal control can be derived.
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Boundary conditions on configuration and velocity level While in the nu-
merical examples in Chapter 6 corresponding generalized velocities have been
calculated by application of the transformation matrix B with Eq. (3.9), the
same is not directly possible with the transformation matrix in the present ex-
ample. In the present example, a possible reduction of the final conditions on
velocity level would make necessary a different proceeding, which will not be
carried out in this work. Within the rest-to-rest maneuver of the overhead crane
as example the final conditions for the BEM will be chosen as

ψ(xN) =

[

qN − qf

vN − vf

]

(7.9)

hence nonreduced boundary conditions both on configuration and on velocity
level will be used. Consequently, the so-called ‘linear independence constraint
qualification’ (see, for example, Diehl [41]) is not fulfilled for the final condi-
tions. Nevertheless, no numerical problems have been experienced in the present
three degree of freedom system. Finally, the nonreduced boundary conditions on
velocity level will be applied also for the REM.

Numerical experiments The mass properties of the different bodies are given
by (mt, J , m) = (10, 0.1, 100), the radius of the winch is r = 0.1. Gravity is
acting on the system with gravitational constant g = 9.81. While the boundary
conditions on velocity level ṽ0 and ṽf for this rest-to-rest maneuver are zero, the
ones on configuration level can be given by the vector of generalized coordinates
q̃0 = (0, 4, 0) at t0 = 0 and q̃f = (5, 1, 0) at tf = 3. The corresponding redundant
ones follow from Eq. (7.8).

Snapshots for the optimal movement of the overhead crane are given in Fig. 7.2.
Furthermore, the consistency property, which will be checked within this exam-
ple, is the sum of the total energy T + V and the work of the control forces W .
The total energy is consistent, if the BEM is applied (see Fig. 7.3). The curve
of the coordinates, the controls and the kinetic energy are quite similar in the
generalized coordinates formulation and in the BEM. Finally, the convergence
of the total costs for the optimal movements are plotted in the last diagram of
Fig. 7.3. Notice that the results for the BEM and the REM are equal.

Figure 7.2.: Optimal control of an overhead crane (N = 40): Snapshots for the
optimal movement at t ∈ {0, 0.75, 1.5, 2.25, 3} for BEM.
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Figure 7.3.: Optimal control of an overhead crane (N = 40): 1. Resulting force
and torque for BEM. 2. Resulting redundant coordinates for BEM.
3. Resulting kinetic energy for BEM and energy consistency for BEM
and GC. 4. Convergence of the total costs for the three schemes.

7.3. 3-link manipulator

As previously in Section 6.2, the three degree of freedom planar robotic manip-
ulator depicted in Fig. 6.1 will be applied as example for optimal control. An
optimal movement of the manipulator for a rest-to-rest maneuver with given
boundary conditions for the configuration will be calculated. In contrast to Sec-
tion 6.2, here, the BEM will serve as basis for the formulation of the equations
of motion. Additionally, the arising results will be compared with those of the
REM and the generalized coordinates formulation. The required ingredients for
the different formulations of the equations of motion have been provided in Sec-
tion 6.2.

Boundary conditions on configuration and velocity level In the present ex-
ample, the configuration vector q, consisting of position vectors for the center of
mass of each rigid body and the directors for describing the orientation, will be
used in the BEM for the boundary conditions on configuration level. This has
basic implications for the scope of these boundary conditions. While the enforce-
ment of complete rotations is generally feasible if angles as relative coordinates
are used as done in Chapter 6, the same is not valid for the present rotationless
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formulation of the 3-link manipulator, whose orientation is described solely with
directors. Nevertheless, the range of movement from the 3-link manipulator ex-
ample of Section 6.2 can also be enforced in the numerical example of the present
section. As a direct consequence of the use of the complete configuration vector
for the boundary conditions, the vector of constraint functions Φ(qN) at the
final time tN can be neglected in the present direct transcription method. Those
constraints are automatically fulfilled due to the boundary conditions. Details
of the implementation concerning that topic will be provided in Appendix B. As
an alternative to the chosen proceeding, reduced boundary conditions on config-
uration level might be used in the present example. Corresponding angles, which
are not directly available in the BEM, can be calculated by application of

α1 = +arccos(d1
1 · e1)

α2 = −arccos(d2
1 · d1

1)

α3 = +arccos(d3
1 · d2

1)

(7.10)

Obviously, the calculation of the gradients becomes more elaborated in that case.
Additionally, the enforcement of complete rotations is still not possible due to
the limited range of the angles calculated by Eq. (7.10). If the reduced boundary
conditions on configuration level are used in the present direct transcription
method, the constraints at the final time tN have to be incorporated additionally.
Furthermore, the reduced boundary condition on velocity level will be applied
for the BEM in the current example. This is similar to the optimal control of
the 3-link manipulator formulated with equations of motion in ODE-form from
Chapter 6. Consequently, the whole set of final conditions in the BEM take the
form

ψ(xN) =

[

qN − qf

B(qN )vN −B(qf )vf

]

(7.11)

Hence, the ‘linear independence constraint qualification’ is not fulfilled for the
final conditions on configuration level. Nevertheless, no numerical problems have
been experienced in the present example.

Evolution of the discrete Hamiltonian In the present example, the evolution
of the discrete Hamiltonian for the employed direct transcription method will be
investigated. For this aim, the results of three different integrators, the BEM,
the REM, and the generalized coordinates formulation with midpoint evaluation
will be compared. In all cases, the discrete Hamiltonian can be calculated by
Eq. (2.17), where the discrete Lagrange-multiplier λ̄ generally consists of the
components λqk,k+1, λ

p
k,k+1, and λΦ

k+1. For ease of calculation, the function f̄ will
be represented by use of the left hand sides of the discrete equations of motion
in Eq. (2.16) in this paragraph. In the BEM the function f̄ ∈ R

18+18+15 is given
by

f̄ (xk,xk+1,xk,k+1,uk,k+1) =







1
h

(qk+1 − qk)
1
h
M(vk+1 − vk)

0





 (7.12)
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where the discrete Lagrange-multiplier in Eq. (2.17) is of the size λ̄ ∈ R
18+18+15.

Furthermore, in the REM the function f̄ ∈ R
18+3+0 is of the form

f̄(xk,xk+1,uk,k+1) =

[

1
h

(qk+1 − qk)
1
h
P (qk+ 1

2
)T M(vk+1 − vk)

]

(7.13)

where the discrete Lagrange-multiplier in Eq. (2.17) is of the size λ̄ ∈ R
18+3+0. Fi-

nally, in the generalized coordinates formulation the function f̄ ∈ R
3+3+0 reads

f̄ (xk,xk+1,uk,k+1) =

[

1
h

(q̃k+1 − q̃k)
1
h
M̃ (q̃k+ 1

2
) (ṽk+1 − ṽk)

]

(7.14)

where the discrete Lagrange-multiplier in Eq. (2.17) is of the size λ̄ ∈ R
3+3+0.

Notice that for the calculation of the discrete Hamiltonian in all of the three
formulations, the velocity will not be eliminated in the equations of motion.
Numerical experiments concerning the evolution of the discrete Hamiltonian for
the direct transcription methods applied in this chapter and Chapter 6, will be
done at the end of this section.

Evolution of the discrete Lagrange-multipliers Similar to the case of the ve-
locities, a relation between the continuous Lagrange-multipliers in the BEM, con-
tained in the vector λp,BEM , and the corresponding ones in the REM, contained
in λp,REM , can be found for the present 3-link manipulator example. Starting
point for the considerations are the continuous control equations as part of the
necessary conditions of optimality introduced in Eq. (2.8). In contrast to the last
paragraph, the required Hamiltonian will be represented by use of the right hand
sides of the equations of motion in Eq. (2.6). Taking into account Eq. (2.8)3, the
continuous control equations in the REM take the form

0 = −u− λp,REM (7.15)

By application of Eq. (2.8)3, the corresponding equations in the BEM read

0 = −u−B(q)λp,BEM (7.16)

Combining Eq. (7.15) and Eq. (7.16) yields a relation between the continuous
Lagrange-multipliers of the form

λp,REM = B(q)λp,BEM (7.17)

With regard to the content of the Chapters 3 and 4, the inverse calculation can be
done by premultiplication of the continuous null space matrix P and application
of Eq. (6.10). The latter yields

λp,BEM = P (q)λp,REM (7.18)

The above introduced relation between the continuous Lagrange-multipliers can
be devolved to the corresponding discrete quantities. In the discrete case, starting
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point for the considerations are the discrete control equations given in Eq. (2.18)3

as third part of the discrete necessary conditions of optimality. While the discrete
control equations in the REM take the form

0 = −uk,k+1 − λp,REM
k,k+1 (7.19)

the corresponding equations in the BEM read

0 = −uk,k+1 −B(qk+ 1
2 )λp,BEM

k,k+1 (7.20)

Notice that the contravariant evaluated transformation matrix appears in the
last equation. Combining Eq. (7.19) and Eq. (7.20) yield a relation between the
discrete Lagrange-multipliers, which is given by

λ
p,REM
k,k+1 = B(qk+ 1

2 )λp,BEM
k,k+1 (7.21)

Following the procedure presented in the Chapters 3 and 4, the inverse calculation
can be done by application of the discrete null space matrix, that is

λ
p,BEM
k,k+1 = P (qk+ 1

2
)λp,REM

k,k+1 (7.22)

Adequate numerical experiments will be performed at the end of the present
section to demonstrate the validity of the given relations.

Finally, two additional statements will be given. Firstly, a transfer of the pre-
sented considerations to similarly formulated multibody systems seems to be
possible. Secondly, the control equations in the generalized coordinates formula-
tion take a similar form than those of the REM given in Eq. (7.15). In particular,
the vector of Lagrange-multipliers λp,REM therein has simply to be replaced by
λp,GC .

Numerical experiments Again, the total time of the movement for the 3-link
manipulator is tf = 3. The system starts and ends at rest. For the BEM, the
starting point q0 was taken as initial guess for the configuration for all times
qk, k = 1, ..., N . This poor initial guess is sufficient for getting a solution for
the optimal control problem. Again, the chosen time step size was h = tf

N
with

N = 20. It is assumed that there is neither damping in the joints of the multibody
system, nor any limitations of the controls.

Snapshots for the optimal movement of the 3-link manipulator are given in
Fig. 7.4. The numerical results for the optimal movement of the 3-link ma-
nipulator are presented in Fig. 7.5. Two different ways for the calculation of
the control torques can be applied. Obviously, the control vector u can be used
directly. As an alternative, the controls can be calculated by use of the contravari-
ant evaluated transformation matrix and the Lagrange-multipliers by application
of Eq. (7.20). As one can see in the first diagram, both versions yield the same
results. The curves of the angles calculated by Eq. (7.10) coincide with those
obtained by the REM or the generalized coordinates formulation. Furthermore,
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the basic conservation property of the system is given as sum of the total energy
T + V and the work of the control forces W . In the last diagram of Fig. 7.5, the
convergence of the total costs are plotted for all of the three formulations of the
equations of motion, that is the BEM, the REM and the generalized coordinates
formulation. Notice that the results for the BEM and the REM are exactly the
same.

Finally, the curves of the discrete Hamiltonian for the applied direct transcription
methods based on the BEM and the generalized coordinates formulation with
employed midpoint rule have been depicted in Fig. 7.6. It can be recognized that
conservation of the discrete Hamiltonian is only valid in the limit case of vanishing
time step sizes. Furthermore, the BEM and the REM yield the same results for
the discrete Hamiltonian. This can be seen in the left diagram of Fig. 7.6, where
the discrete Hamiltonian for the REM has been added for N = 10.

Figure 7.4.: Optimal control of a 3-link manipulator (N = 20): Snapshots for
the optimal movement at t ∈ {0, 0.75, 1.5, 2.25, 3} for BEM.
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Figure 7.5.: Optimal control of a 3-link manipulator (N = 20): 1. Resulting
torques for BEM. 2. Resulting angles for BEM. 3. Resulting ki-
netic energy for BEM and energy consistency for BEM and GC. 4.
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8. Hamiltonian conserving indirect
optimal control method

In the past, a lot of effort has gone into the development of structure-preserving
time-stepping schemes for forward dynamics problems. This is due to the su-
perior numerical stability of these integrators. The complexity of these schemes
strongly depends on the nonlinearity of the underlying equations of motion. If
the kinetic energy of the system contains a constant mass matrix, then the La-
grangian and the Hamiltonian formalisms are equivalent. In general, the tran-
sition to the Hamilton equations of motion is required for the development of
energy consistent schemes. It is well known that for maximally quadratic Hamil-
ton functions, the midpoint rule is sufficient for the consistency of energy (see, for
example, Wood [107]). For general nonlinear Hamilton functions, the midpoint
rule looses energy consistency. In that case, a discrete derivative introduced in
Gonzalez [53] is necessary. The discrete derivative can be seen as a consistent
variant of the midpoint rule. Different approaches applying the discrete deriva-
tive have been introduced, see Gonzalez [53] for a specific second-order method
and Groß et al. [57] for higher-order schemes. As a special case, the Greenspan
formula introduced in Greenspan [55] can be mentioned, which can be applied
for one-dimensional systems with general nonlinear potential functions.

Guided by previous developments in the design of energy-momentum integra-
tors for forward dynamics problems, a Hamiltonian conserving indirect optimal
control method will be introduced. For the state equations, a midpoint evalu-
ation or a consistent variant thereof will be employed. Based on this specific
discretization of the state equations, a discretization of the costate equations
will be introduced which is based on the discrete derivative and which leads to
the algorithmic conservation of the discrete Hamiltonian. As in the forward dy-
namics case, it can be expected that a Hamiltonian conserving method will yield
superior numerical stability properties.

In the following sections, three mechanical multibody systems will be investi-
gated within the newly developed Hamiltonian conserving indirect optimal con-
trol method. These are on the one hand a mathematical pendulum as an example
for a system with one degree of freedom. Additionally, a particle in a three-
dimensional gravitational field and the 3-link manipulator, introduced earlier in
Section 6.2, will be treated as examples for systems with several degrees of free-
dom. Furthermore, a Hamiltonian formulation of the equations of motion will
be used as basis. The discrete derivative will first be introduced for the forward
dynamics problem for achieving energy consistency, as it has been done earlier
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for example in Betsch & Steinmann [14]. Additionally, the discrete derivative will
be applied for the discretization of the costate equations to achieve conservation
of the discrete Hamiltonian. For simplicity it is assumed that the mechanical
systems do not contain friction and that the controls as well as the angles are
not limited.

8.1. Systems with one degree of freedom

In this section, the mathematical pendulum depicted in Fig. 8.1 will be investi-
gated within the framework of optimal control. The pendulum serves as prototyp-
ical example of a mechanical system with one degree of freedom. As generalized
coordinate, the angle q ∈ R will be used. The pendulum will be actuated by the
control torque u ∈ R.

q

u

l
m

g

Figure 8.1.: Mathematical pendulum

Due to the constant mass matrix, there is no difference between the Lagrange
equations of motion and the Hamilton equations of motion. However, the Hamil-
tonian formalism will be preferred in view of Section 8.2. An energy consistent
time-stepping scheme based on the Greenspan formula introduced in Greenspan
[55] will be applied for the formulation of the forward dynamics. Additionally, an
indirect optimal control method, which conserves the underlying discrete Hamil-
tonian of the optimal control problem, will be introduced. For that purpose,
a special discretization of the costate equations has to be employed, which is
similar to the Greenspan formula applied for forward dynamics problems.

Consistent discretization of the equations of motion In the following, a
discretization of the equations of motion for the mathematical pendulum which
yields energy consistency will be illustrated. For that purpose, the kinetic and
the potential energy has to be formulated using the generalized coordinate q ∈ R

together with the momentum p ∈ R. The kinetic and the potential energy for
the one degree of freedom system are given by

T (p) =
1

2
( m l2)−1 · p2 (8.1)
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respectively
V (q) = −m g l · sin q (8.2)

Furthermore, the work of the control forces for the mathematical pendulum is
given by

W =
∫ t

t0

u · ( m l2)−1p dt (8.3)

For the description of the dynamic behaviour, the Hamiltonian formulation of
the equations of motion given by

q̇ = ( m l2)−1 p

ṗ = −∇qV (q) − u
(8.4)

will be preferred. The gradient of the potential energy for the mathematical
pendulum is given by

∇qV (q) = −m g l · cos q (8.5)

Accordingly, the motion is described by a system of two first-order differential
equations instead of one second-order differential equation, which would be the
case for the Lagrange equations of motion. The discrete equations of motion take
the form

1

h
(qk+1 − qk) = ( m l2)−1 · pk+ 1

2

1

h
(pk+1 − pk) = −∇̄qV (qk, qk+1) − uk,k+1

(8.6)

where the time derivative has been approximated with the difference quotient
and a simple midpoint evaluation has been applied for the momentum in the first
equation of the system. Furthermore, to achieve total energy consistency for a
mechanical system described with one generalized coordinate, the discretization
of the gradient of the potential has to be of the form

∇̄qV (qk, qk+1) =
V (qk+1) − V (qk)

qk+1 − qk

(8.7)

that is for the present example

∇̄qV (qk, qk+1) = −m g l ·
sin qk+1 − sin qk

qk+1 − qk

(8.8)

The formula in Eq. (8.7) yields the well-known method of Greenspan introduced
in Greenspan [55]. Two properties have to be fulfilled to obtain a discrete gradient
which yields total energy consistency. On the one hand, the discrete gradient of
the potential function has to satisfy the directionality property given by

∇̄qV (qk, qk+1) · (qk+1 − qk) = V (qk+1) − V (qk) (8.9)

which is fulfilled for the formula in Eq. (8.7) by construction. On the other hand,
the discrete gradient has to satisfy the consistency property, which means that
the discrete gradient has to converge locally against the gradient of the potential
function evaluated at the midpoint. Notice that total energy consistency is not
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valid, if a simple midpoint evaluation of the gradient of the potential energy
given by

∇̄qV (qk, qk+1) = ∇qV (qk+ 1
2
) (8.10)

is employed. Finally, the discrete work of the control forces for the mathematical
pendulum takes the form

Wk = h ·
k−1
∑

i=0

ui,i+1 · ( m l2)−1pi+ 1
2

(8.11)

Necessary conditions of optimality The task is minimizing the control effort
which is necessary for moving the mathematical pendulum from an initial con-
figuration into a final one. This control effort can be specified by the continuous
quadratic function

L(u) =
1

2
u · u (8.12)

to be inserted into the cost function in Eq. (2.3) with the control torque u. If
the Hamilton equations of motion for the mathematical pendulum, introduced
in Eq. (8.4), will be applied, the continuous Hamiltonian is given by

H = −L(u) +

[

λq

λp

]

·

[

( m l2)−1 p
−∇qV (q) − u

]

(8.13)

The Hamiltonian can be used for the derivation of the NCO, which, for this
example, take the form

q̇ = ( m l2)−1 p

ṗ = −∇qV (q) − u

λ̇q = ∇qqV (q) · λp

λ̇p = −( m l2)−1 λq

0 = u + λp

(8.14)

where the second derivative of the potential energy for the present example is
given by

∇qqV (q) = m g l · sin q (8.15)

Fulfilment of the NCO in Eq. (8.14) involves conservation of the Hamiltonian
(see Section 2.1 for the proof).

Direct transcription approach The discrete counterpart of the continuous
function introduced in Eq. (8.12), which has to be inserted into the discrete
cost function in Eq. (2.14), is given by

L(uk,k+1) =
1

2
uk,k+1 · uk,k+1 (8.16)
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where the discrete controls uk,k+1 are assumed to be constant on every time
interval. The discrete Hamiltonian for the present example reads

Hd
k,k+1 = −L(uk,k+1) +

[

λq
k,k+1

λp
k,k+1

]

·

[

( m l2)−1 · pk+ 1
2

−∇̄qV (qk, qk+1) − uk,k+1

]

(8.17)

and can be used for deriving the discrete necessary conditions of optimality
(DNCO). This approach yields a direct transcription method. If the gradient
of the potential energy will be evaluated in the midpoint using Eq. (8.10), the
discrete necessary conditions of optimality take the form

1

h
(qk+1 − qk) = ( m l2)−1 · pk+ 1

2

1

h
(pk+1 − pk) = −∇̄qV (qk, qk+1) − uk,k+1

1

h
(λq

k,k+1 − λq
k−1,k) =

1

2
(∇̄qqV (qk, qk+1) · λp

k,k+1 + ∇̄qqV (qk−1, qk) · λp
k−1,k)

1

h
(λp

k,k+1 − λp
k−1,k) = −( m l2)−1 ·

1

2
(λq

k,k+1 + λq
k−1,k)

0 = uk,k+1 + λp
k,k+1

(8.18)

where the discrete second derivative of the potential energy is given by

∇̄qqV (qk, qk+1) = ∇qqV (qk+ 1
2
) (8.19)

Notice that midpoint evaluation of the state equations leads to a trapezoidal
evaluation of the costate equations. The application of the formula of Greenspan
for the state equations within a direct transcription approach yields a more in-
volved form of the costate equations, that will not be given here. However, the
corresponding results can be calculated by the SQP solver fmincon in MATLAB.
It will be demonstrated later that the direct transcription approach given above
does not lead to a conserved discrete Hamiltonian.

Consistent discretization of the necessary conditions of optimality Alterna-
tively, an indirect transcription approach leading to a conserved discrete Hamil-
tonian can be employed. For that purpose, the costate equations for this example
will be discretized in the form

1

h
(λq

k,k+1 − λq
k−1,k) = ∇̄qqV (qk−1, qk, qk+1) ·

1

2
(λp

k,k+1 + λp
k−1,k)

1

h
(λp

k,k+1 − λp
k−1,k) = −( m l2)−1 ·

1

2
(λq

k,k+1 + λq
k−1,k)

(8.20)

To achieve conservation of the discrete Hamiltonian Hd
k,k+1 for a mechanical

system described with one generalized coordinate, the discrete second derivative
of the potential energy has to be of the form

∇̄qqV (qk−1, qk, qk+1) =
∇̄qV (qk, qk+1) − ∇̄qV (qk−1, qk)

qk+ 1
2

− qk− 1
2

(8.21)
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that means for the energy consistent discretization of the Hamilton equations of
motion, introduced in Eqs. (8.6) and (8.7),

∇̄qqV (qk−1, qk, qk+1) = −m g l ·

sin qk+1−sin qk

qk+1−qk
− sin qk−sin qk−1

qk−qk−1

qk+ 1
2

− qk− 1
2

(8.22)

Two properties have to be fulfilled to obtain a discrete gradient of the Hamil-
tonian which yields conservation of the discrete Hamiltonian, that is validity of
Eq. (2.19). On the one hand, the discrete second derivative of the potential
function has to satisfy the directionality property given by

1

2
(λp

k,k+1 + λp
k−1,k) · ∇̄qqV (qk−1, qk, qk+1) · (qk+ 1

2
− qk− 1

2
)

+
1

2
(∇̄qV (qk, qk+1) + ∇̄qV (qk−1, qk)) · (λp

k,k+1 − λp
k−1,k)

= λp
k,k+1 · ∇̄qV (qk, qk+1) − λp

k−1,k · ∇̄qV (qk−1, qk)

(8.23)

which can be recast in the form

1

2
(λp

k,k+1 + λp
k−1,k) · ∇̄qqV (qk−1, qk, qk+1) · (qk+ 1

2
− qk− 1

2
)

=
1

2
(λp

k,k+1 + λp
k−1,k) · (∇̄qV (qk, qk+1) − ∇̄qV (qk−1, qk))

(8.24)

or alternatively

∇̄qqV (qk−1, qk, qk+1) · (qk+ 1
2

− qk− 1
2
) = ∇̄qV (qk, qk+1) − ∇̄qV (qk−1, qk) (8.25)

The condition in Eq. (8.25) is fulfilled for the formula in Eq. (8.21) by construc-
tion. By application of a similar proceeding for the first part of the discrete
equations of motion given in Eq. (8.18)1 and taking into account the discrete
control equation given in Eq. (8.18)5 for the remaining parts of the discrete
Hamiltonian, the conservation of the discrete Hamiltonian has been proven. On
the other hand, the discrete second derivative has to satisfy the consistency prop-
erty, which means that the discrete gradient has to converge locally against the
second derivative of the potential function evaluated at the midpoint of the two
involved time steps. It is worth mentioning that the application of a constant
time step size is mandatory for the validity of the above given proceeding. Notice
that Eq. (8.21) yields a formula, which has similarities to the Greenspan formula
in Eq. (8.7), necessary for achieving energy consistency. Remember that total
energy consistency is not valid, if a simple midpoint evaluation of the gradient
of the potential energy will be applied. However, conservation of the discrete
Hamiltonian given in Eq. (8.17) can be achieved in the present case by use of
equation

∇̄qqV (qk−1, qk, qk+1) = −m g l ·
cos qk+ 1

2
− cos qk− 1

2

qk+ 1
2

− qk− 1
2

(8.26)

thus only the special approximation of the second derivative generally given in
Eq. (8.21) is of decisive importance.
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Numerical experiments In the following, a mathematical pendulum with val-
ues taken from Gerdts [49] will be investigated within optimal control. The mass
is given by m = 1, the length is l = 1 and a gravitational force is acting on the
pendulum with gravitational constant g = 9.81. Boundary conditions for the
configuration are given by q0 = 0 and qf = π

2
. The system starts and ends at

rest, thus p0 = pf = 0. Additionally, the total time of the movement is tf = 3.
The time step size in this example is h = tf

N
, where N = 20 is the number of

time steps.

As results, the curves of the control torque and the angle for the optimal move-
ment of the mathematical pendulum are given in Fig. 8.2. Furthermore, the
kinetic energies and the sum of the total energy T + V and the work of the con-
trol forces W are plotted in Fig. 8.3. Notice that application of the Greenspan
Scheme leads to energy consistency, while the same is not valid for the Midpoint
Scheme.

Additionally, the convergence behaviour of the Hamiltonian has been plotted in
Fig. 8.4. If the optimal solution is calculated by a direct method, in this case,
with the SQP solver fmincon in MATLAB without provided gradients, then the
discrete Hamiltonian is not conserved. If the optimal solution is calculated by
use of the DNCO with the discrete costate equations given in Eq. (8.20) together
with the special approximation given in Eq. (8.21), then the discrete Hamiltonian
is conserved. As a crucial difference to the consistency properties in the forward
dynamics case, it has to be noted that the value of the Hamiltonian differs for
different time step sizes.
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Figure 8.2.: Optimal control of a Mathematical Pendulum for Greenspan Scheme
(N = 20): 1. Resulting torque (Left). 2. Resulting angle (Right).

8.2. Systems with several degrees of freedom

In this section, a particle of unit mass in a three-dimensional gravitational field
and the 3-link manipulator depicted in Fig. 6.1 will be investigated within the
framework of optimal control. Both mechanical systems serve as prototypical



98 8.2. Systems with several degrees of freedom

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

 

 

T

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

 

 

T+V+W

time

time
0 0.5 1 1.5 2 2.5 3

0

2

4

6

8

 

 

T

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1
x 10

−10

 

 

T+V+W

time

time

Figure 8.3.: Optimal control of a Mathematical Pendulum (N=20): 1. Result-
ing energies for Midpoint Scheme (Left). 2. Resulting energies for
Greenspan Scheme (Right).

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

 

 

 
(direct) N=10

 
(direct) N=20

 
(direct) N=40

 
(direct) N=80

time

H

H

H

H

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

 

 

 
(consistent) N=10

 
(consistent) N=20

 
(consistent) N=40

 
(consistent) N=80

time

H

H

H

H

Figure 8.4.: Optimal control of a Mathematical Pendulum for Greenspan Scheme:
1. Convergence of the Hamiltonian for a direct method (Left). 2.
Convergence of the Hamiltonian for a consistent discretization of the
necessary conditions of optimality (Right).

examples of systems with several degrees of freedom. While Cartesian coordi-
nates will be employed for the central force problem, angles will be applied for
the description of the 3-link manipulator. The equations of motion will be dis-
cretized by application of an energy consistent time-stepping scheme based on
the discrete derivative of Gonzalez introduced in Gonzalez [53]. For that pur-
pose, the transition to the Hamiltonian formulation of the equations of motion
is necessary. Additionally, an indirect optimal control method which conserves
the underlying discrete Hamiltonian of the optimal control problem will be intro-
duced. As in the forward dynamics case, the latter necessitates the application
of the Hamilton equations of motion. To achieve conservation of the discrete
Hamiltonian, a discretization of the costate equations is necessary which is in-
spired by the discrete derivative of Gonzalez used for the discretization of the
state equations.
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Consistent discretization of the equations of motion In the following, a
discretization of the equations of motion for a multi degree of freedom system,
which yields energy consistency will be described. For this aim, the kinetic
and the potential energy has to be formulated using the generalized coordinates
arranged in the vector q ∈ R

n together with the momenta arranged in the vector
p ∈ R

n. The kinetic energy for the multi degree of freedom system can be written
in the form

T (q,p) =
1

2
p ·M(q)−1 p (8.27)

The potential energy V (q) is, at this point, a general nonlinear function. Both
energies will be combined in the Hamilton function given by

H(q,p) = T (q,p) + V (q) (8.28)

Furthermore, the work of the control forces for the multi degree of freedom system
is given by

W =
∫ t

t0

u ·M(q)−1 p dt (8.29)

For the description of the dynamic behaviour, the Hamiltonian formulation of
the equations of motion given by

q̇ = ∇pH(q,p)

ṗ = −∇qH(q,p) − u
(8.30)

will be employed. By application of a more compact form, the Hamilton equa-
tions of motion take the form

ẋ = JJ ∇xH(x) − (0,u) (8.31)

where x = (q,p) ∈ R
2n is the state vector and

JJ =

[

0 I

−I 0

]

(8.32)

the symplectic matrix. Accordingly, the motion is specified by a system of 2n
first-order differential equations instead of n second-order differential equations,
which would be the case for the Lagrange equations of motion. Using the compact
form of Eq. (8.31), the discrete equations of motion take the form

1

h
(xk+1 − xk) = JJ ∇̄xH(xk,xk+1) − (0,uk,k+1) (8.33)

where the time derivative has been approximated with the difference quotient.
Furthermore, to achieve total energy consistency for a mechanical system de-
scribed with several generalized coordinates, the discretization of the gradient of
the Hamilton function has to be of the form

∇̄xH(xk,xk+1) = Hα +
H(xk+1) − H(xk) −Hα · ∆x

∆x · ∆x
∆x (8.34)
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where
∆x = xk+1 − xk (8.35)

The component Hα can be chosen as

H1 = ∇xH(xk+ 1
2
) (8.36)

or alternatively

H2 =
1

2
(∇xH(xk+1) + ∇xH(xk)) (8.37)

The option given in Eq. (8.36) will be chosen in the numerical examples at the
end of this section. The formula in Eq. (8.34) yields the well-known method
of Gonzalez introduced in Gonzalez [53]. Two properties have to be fulfilled to
obtain a discrete gradient which yields total energy consistency for mechanical
systems with several degrees of freedom. On the one hand, the discrete gradient
of the Hamilton function has to satisfy the directionality property given by

∇̄xH(xk,xk+1) · (xk+1 − xk) = H(xk+1) − H(xk) (8.38)

which is fulfilled for the formula in Eq. (8.34) by construction. On the other
hand, the discrete gradient has to satisfy the consistency property, which means
that the discrete gradient has to converge locally against the gradient of the
Hamilton function evaluated at the midpoint. Finally, the discrete work of the
control forces for the multi degree of freedom system takes the form

Wk = h ·
k−1
∑

i=0

ui,i+1 ·M(qi+ 1
2
)−1 pi+ 1

2
(8.39)

Necessary conditions of optimality Again, the task is minimizing the control
effort which is necessary for moving the mechanical system from an initial con-
figuration into a final one. This control effort can be described by the continuous
quadratic function

L(u) =
1

2
u · u (8.40)

to be inserted into the cost function in Eq. (2.3) with the control torques arranged
in the vector u. The Hamilton equations of motion for the multi degree of
freedom system will be applied, hence the continuous Hamiltonian is given by

H = −L(u) +

[

λq

λp

]

·

[

∇pH(q,p)
−∇qH(q,p) − u

]

(8.41)

The Hamiltonian can be used for the derivation of the NCO, which take the
form

q̇ = ∇pH(q,p)

ṗ = −∇qH(q,p) − u

λ̇q = ∇qqH(q,p) · λp − ∇pqH(q,p) · λq

λ̇p = ∇qpH(q,p) · λp − ∇ppH(q,p) · λq

0 = u+ λp

(8.42)
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By application of a more compact form, the continuous Hamiltonian takes the
form

H = −L(u) + λ ·
[

JJ ∇xH(x) − (0,u)
]

(8.43)

A compact form of the continuous necessary conditions of optimality then is
given by

ẋ = JJ ∇xH(x) − (0,u)

λ̇ = −(λT JJ ∇xxH(x))T

0 = ∇uH(x,u,λ)

(8.44)

As in the one-dimensional case, fulfilment of the NCO in Eq. (8.44) involves
conservation of the Hamiltonian.

Direct transcription approach The discrete version of the continuous function
introduced in Eq. (8.40), which has to be inserted into the discrete cost function
in Eq. (2.14), reads

L(uk,k+1) =
1

2
uk,k+1 · uk,k+1 (8.45)

where the discrete controls are arranged in the vector uk,k+1. Furthermore, the
compact form of the discrete Hamiltonian for systems with several degrees of
freedom is given by

Hd
k,k+1 = −L(uk,k+1) + λk,k+1 ·

[

JJ ∇̄xH(xk,xk+1) − (0,uk,k+1)
]

(8.46)

and can be used for deriving the discrete necessary conditions of optimality
(DNCO) within a direct transcription method. If the gradient of the Hamilton
function in the state equations will be evaluated in the midpoint, the discrete
necessary conditions of optimality take the form

1

h
(xk+1 − xk) = JJ ∇̄xH(xk,xk+1) − (0,uk,k+1)

1

h
(λk,k+1 − λk−1,k) = −

1

2
{λT

k,k+1 JJ ∇̄xxH(xk,xk+1)

+ λT
k−1,k JJ ∇̄xxH(xk−1,xk)}T

0 = uk,k+1 + λp
k,k+1

(8.47)

where the discrete second derivative of the Hamilton function is given by

∇̄xxH(xk,xk+1) = ∇xxH(xk+ 1
2
) (8.48)

Comments similar to those for the one-dimensional case given in Section 8.1 can
be stated for systems with several degrees of freedom.
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Consistent discretization of the necessary conditions of optimality Alterna-
tively, an indirect transcription approach leading to a conserved discrete Hamilto-
nian can be employed. For that purpose, the costate equations will be discretized
in the form

1

h
(λk,k+1 − λk−1,k) = −

1

2

{

(λk,k+1 + λk−1,k)T JJ ∇̄xxH(xk−1,xk,xk+1)
}T

(8.49)
To achieve conservation of the discrete Hamiltonian Hd

k,k+1 for a mechanical sys-
tem described with several generalized coordinates, the discrete second derivative
of the Hamilton function has to be of the form

∇̄xxH(xk−1,xk,xk+1) = Hβ +
∇̄xH(xk,xk+1) − ∇̄xH(xk−1,xk) −Hβ∆x

∆x · ∆x
∆xT

(8.50)
with

∆x = xk+ 1
2

− xk− 1
2

=
1

2
(xk+1 − xk−1) (8.51)

The component Hβ can be chosen as

H1 = ∇xxH(xk) (8.52)

or alternatively

H2 =
1

2
(∇xxH(xk+ 1

2
) + ∇xxH(xk− 1

2
)) (8.53)

As in the forward dynamics case, the option given in Eq. (8.52) will be chosen
in the numerical examples at the end of this section. Two properties have to
be fulfilled to obtain a discrete gradient of the Hamiltonian which yields con-
servation of the discrete Hamiltonian, that is validity of Eq. (2.19). On the one
hand, the discrete second derivative of the Hamilton function has to satisfy the
directionality property given by

1

2
(λk,k+1 + λk−1,k)T JJ ∇̄xxH(xk−1,xk,xk+1) · (xk+ 1

2
− xk− 1

2
)

+
1

2
(JJ ∇̄xH(xk,xk+1) + JJ ∇̄xH(xk−1,xk)) · (λk,k+1 − λk−1,k)

= λT
k,k+1 JJ ∇̄xH(xk,xk+1) − λT

k−1,k JJ ∇̄xH(xk−1,xk)

(8.54)

which can be recast in the form

1

2
(λk,k+1 + λk−1,k)T JJ ∇̄xxH(xk−1,xk,xk+1) · (xk+ 1

2
− xk− 1

2
)

=
1

2
(λk,k+1 + λk−1,k)T JJ (∇̄xH(xk,xk+1) − ∇̄xH(xk−1,xk))

(8.55)

or alternatively

∇̄xxH(xk−1,xk,xk+1)·(xk+ 1
2
−xk− 1

2
) = ∇̄xH(xk,xk+1)−∇̄xH(xk−1,xk) (8.56)

The condition in Eq. (8.56) is fulfilled for the formula in Eq. (8.50) by construc-
tion. By taking into account the discrete control equation given in Eq. (8.47)3
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for the remaining parts of the discrete Hamiltonian, the conservation of the dis-
crete Hamiltonian has been proven. On the other hand, the discrete second
derivative has to satisfy the consistency property, which means that the discrete
gradient has to converge locally against the second derivative of the Hamilton
function evaluated at the midpoint of the two involved time steps. As in the one-
dimensional case, the application of a constant time step size is mandatory for
the validity of the above given proceeding. Notice that Eq. (8.50) yields a discrete
derivative similar to Eq. (8.34), necessary for achieving energy consistency.

Numerical experiments: Central force problem In the following, a particle
of unit mass in a three-dimensional gravitational field will be investigated within
optimal control. A two-dimensional version of this example has been treated
in Grizzle & Marcus [56]. Let q = (q1, q2, q3) be the position vector and p =
(p1, p2, p3) the corresponding momentum. The particle will be controlled by
thrusters acting in the q1, q2 and q3 directions, hence u = (u1, u2, u3). The
potential energy for this example is given by

V (q) = −(q2
1 + q2

2 + q2
3)− 1

2 (8.57)

The constant mass matrix in this example is equal to the 3 × 3 identity ma-
trix. Consequently, the transition to the Hamilton formalism can be done in
a straightforward way. Furthermore, the boundary conditions on configuration
level are chosen as q0 = (1, 0, 0) and qf = (0, 0, 1.5), the boundary conditions
on momentum level as p0 = (0, 1, 0) and pf = (0, −1, 0). Additionally, the total
time of the movement is given by tf = π. The time step size in this example is
h = tf

N
, where N = 20 is the number of time steps.

The numerical results for the given example are depicted in Fig. 8.5. The en-
ergy consistency plotted in the first diagram has been achieved by application
of the discrete derivative of Gonzalez for the discretization of the state equa-
tions. Similarly, the consistency of the Hamiltonian has been obtained by the
additional application of the newly proposed discretization of the costate equa-
tions given in Eq. (8.49) together with Eq. (8.50). Furthermore, the resulting
controls are depicted in the second diagram of Fig. 8.5. The trajectory of the
particle is represented in the third diagram. Therein, a reference trajectory has
been added, which has been achieved by a forward dynamics simulation with the
given initial conditions and vanishing controls. Notice that the particle moves on
a semi circle with radius one, if the total time is chosen as tf = π. Finally, the
last diagram shows the convergence behaviour of the third components of the
Lagrange-multipliers as well as the Hamiltonian. Averaged values of the discrete
quantities have been calculated by application of the formula

(·)av =
1

N

N−1
∑

k=0

(·)k,k+1 (8.58)

Obviously, the averaged value for the Hamiltonian is equal to its value on every
time step within the present Hamiltonian conserving method. Furthermore, the
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Lagrange-multipliers and the Hamiltonian have been calculated for N = 10 · 2i,
i = 0, ..., 6 and compared with reference solutions calculated for N = 1280.
Notice that all of the three quantities converge quadratically. In particular, the
newly proposed discretization of the costate equations is second-order accurate.
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Figure 8.5.: Optimal control of a particle in a gravitational field with consistent
discretization of the state and the costate equations (N = 20): 1.
Resulting energies and Hamiltonian. 2. Resulting forces. 3. Result-
ing trajectory and reference trajectory. 4. Quadratic convergence of
the averaged third components of the Lagrange-multipliers and the
Hamiltonian.

Numerical experiments: 3-link manipulator Below, the 3-link manipulator
introduced in Section 6.2 will be investigated within optimal control. Mass and
geometric properties, boundary conditions for the configuration and the total
time are given in Section 6.2. The boundary conditions on velocity level lead to
similar ones on momentum level, that is p0 = pf = 0. The time step size in this

example is h = tf

N
, where N = 40 is the number of time steps.

As results, the control torques and the angles for the optimal movement of the
manipulator are given in Fig. 8.6. As expected, the curves are similar to those
of the 3-link manipulator treated with the BEM in Section 7.3. Furthermore,
the kinetic energy and the sum of the total energy T + V and the work of the
control forces W are plotted in Fig. 8.7. Notice that application of the discrete
derivative of Gonzalez leads to energy consistency, while the same is not valid
for the midpoint evaluation.
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Additionally, the convergence behaviour of the Hamiltonian has been plotted in
Fig. 8.8. If the optimal solution is calculated by a direct method, in this case,
with the SQP solver fmincon in MATLAB without provided gradients, then the
discrete Hamiltonian is not conserved. If the optimal solution is calculated by
use of the DNCO with the newly proposed discretization of the costate equations
given in Eq. (8.49) and Eq. (8.50) together with the Gonzalez-type discretization
of the state equations, then the discrete Hamiltonian is conserved.
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Figure 8.6.: Optimal control of a 3-link manipulator with energy consistent dis-
cretization (N = 40): 1. Resulting torques (Left). 2. Resulting
angles (Right).
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9. Summary and outlook

The main goal of the present work was the numerical treatment of optimal con-
trol problems in multibody dynamics. In a first step, a survey of different existing
formulations of the underlying equations of motion for the mechanical system has
been presented. Special attention has been given to the rotationless formulation,
which is characterized by a constant mass matrix. The rotationless formulation
is especially suitable for the development of mechanical integrators, which are
algorithmically consistent regarding basic mechanical properties, namely the en-
ergy, the linear and the angular momentum. Energy-momentum schemes are
well-known to possess superior numerical stability and robustness properties.

The applicability of the mentioned scheme for optimal control problems requires
a consistent incorporation of control torques. A direct incorporation of the gen-
eralized torques using transformation matrices has been preferred to alternative
methods like the coordinate augmentation technique. To achieve the consistency
properties, a special evaluation of these transformation matrices turned out to
be mandatory. In addition to the consistent incorporation of the control torques,
a way for the consistent incorporation of the generalized velocities needed for the
formulation of linear viscous friction has been demonstrated.

Beside the direction cosines leading to the rotationless formulation, also quater-
nions have been investigated in Chapter 5 of this work. The corresponding
equations of motion exhibit a lower redundancy, but contain a configuration de-
pendent mass matrix. For the transition to the Hamilton formalism, an invertible
mass matrix has been derived by a reduction process from the mass matrix in the
director formulation. A formulation of the kinetic energy with quadratic invari-
ants together with a special discretization has been applied for deriving a new
quaternion-based energy-momentum scheme. While the consistency properties
have been demonstrated within a numerical example, benefits concerning the cal-
culation time due to the lower redundancy could not be observed. Additionally,
the extension to multibody systems turned out to be cumbersome within the
quaternion-based energy-momentum scheme. Consequently, quaternions have
not been employed in the optimal control problems later on.

Optimal control problems in multibody dynamics have been treated in Chapters
6 and 7. In a first step, direct transcription methods provided with equations
of motion in ODE-form have been derived. By application of the REM, a nu-
merical optimal control method has been introduced which is algorithmically
consistent concerning the discrete energy, the discrete linear momentum, and
the discrete angular momentum as basic properties of the mechanical system.
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The widely used generalized coordinates formulation has been employed for the
verification of the numerical results. For that purpose, representative numerical
examples have been investigated. It is worth mentioning that the resulting ODE-
formulation yields a minimal set of equations, but a high degree of nonlinearity.
In a second step, a direct transcription method based on equations of motion
in DAE-form has been derived. The corresponding equations of motion therein
have been discretized by the BEM. In contrast to the ODE-based optimal control
approaches, the DAE-based approach exhibits a large set of equations due to the
redundancy of the rotationless formulation. However, the arising computational
costs can be reduced significantly by exploiting sparsity of the simply structured
equations, which has been investigated only rudimentary in this thesis. The nu-
merical results have been compared to those achieved by the ODE-based optimal
control methods. Finally, it should be remarked that a good initial guess seems
to be more important for the DAE-based direct transcription method than for
the ODE-based one.

In Chapter 8 of this thesis, it has been shown that conservation properties sim-
ilar to the energy consistency in forward dynamics exist also in optimal control
problems. Though the conservation of the Hamiltonian has to be valid along an
optimal movement in the continuous setting, the corresponding discrete property
is not fulfilled for the direct transcription methods applied previously. Accord-
ingly, a special discretization of the costate equations has been performed to
achieve an indirect optimal control method which conserves the Hamiltonian of
the optimal control problem algorithmically. As a first step, this indirect tran-
scription scheme has been employed for a formulation of the equations of motion
with generalized coordinates. The extension to other formulations seems to be
promising.

A lot of interesting research work is still open concerning the computational
treatment of optimal control problems in multibody dynamics. A short survey
of potential future directions will be given below.

• More research work has to be done regarding conservation properties in the
optimal control of multibody dynamics. While in this work a Hamiltonian
conserving method has been derived for the generalized coordinates for-
mulation of the equations of motion, a similar approach may be developed
for other choices of coordinates. Especially, the simple form of the basic
energy-momentum scheme seems to be appropriate for deriving methods
with similar properties. Furthermore, Hamiltonian conserving methods
should be derived for other kind of optimal control problems than the me-
chanical ones treated in this thesis. The applicability does not seem to be
limited to mechanical optimal control problems. In addition to the Hamil-
tonian of the optimal control problem, other kind of conservation proper-
ties may be derived for a mechanical system. While the conservation of the
Hamiltonian has similarities to the energy consistency, further conserva-
tion properties similar to momentum and angular momentum conservation
might be found. Furthermore, schemes satisfying these properties algorith-
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mically should be applied for other optimal control methods like shooting
or multiple shooting. An improved stability might be especially benefitting
to methods with consecutively treated time steps.

• A challenging task is the optimal control of multibody systems specified
with equations of motion in DAE-form. The determination of a good initial
guess turns out to be especially important for mechanical systems described
that way. Additionally, the redundancy of the DAE-formulation may lead
to increasing computational costs within the transcription methods ap-
plied in this work. However, the computational costs can be reduced by
exploiting the sparsity of the simply structured DAE-formulation. In this
connection, the application of the widely used open source code IPOPT
(see, for example, Wächter & Biegler [105]) should be considered. Further-
more, it should be tested if the mixed redundant formulation described in
Becker [8] is a suitable compromise between the redundant formulation and
the reduced one within optimal control problems.

• Assuming further developments of optimal control with equations of mo-
tion in DAE-form will be made, the incorporation of flexible components
into the multibody systems can be approached. It is worth mentioning
that schemes satisfying basic mechanical conservation properties are espe-
cially superior for forward dynamics problems of flexible multibody sys-
tems. Similar benefits can be expected for the optimal control of such
systems. Additionally, an efficient DAE-formulation enables the treatment
of closed kinematic chains within optimal control.

• Although the coordinate augmentation technique for the incorporation of
rotational variables into the rotationless formulation has been avoided in
this work, this method seems to be still necessary for multibody systems
with torsional springs and winches. While this technique has been success-
fully applied for forward dynamics problems of such multibody systems
(see Uhlar [99]), this procedure should also be employable for the more
complex optimal control problems.
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A. Details of the implementation
of the REM

Below, some informations concerning the implementation of the direct transcrip-
tion method used for the optimal control of the 3-link manipulator treated in
Chapter 6 will be given. At this point, the dynamics of the mechanical system
will be described by use of the reduced energy-momentum scheme (REM) with
eliminated velocities. For simplicity both the incorporation of inequality con-
straints and the incorporation of dissipation will be neglected. The basic task
for the solution of an optimal control problem with a direct transcription method
is the formulation of the discrete augmented cost function given in Eq. (2.15).
For this aim, the discrete quadratic function to be inserted into the discrete cost
function in Eq. (2.14), takes the form

L(uk,k+1) =
1

2
uk,k+1 · uk,k+1 (A.1)

In addition to that, the constraints consisting of both the discrete equations of
motion f (xk,xk+1,uk,k+1) and the final conditions on configuration and veloc-
ity level summarized in Ψ(xN) have to be incorporated by use of the discrete
Lagrange-multipliers λk,k+1 respectively µ. Correspondingly, the discrete equa-
tions of motion for the present REM take the form

f (xk,xk+1,uk,k+1) = P (qk+ 1
2
)T a1

k+1 + huk,k+1 (A.2)

for k = 0, ..., N −1, where abbreviations necessary for the subsequent formulation
of the gradients of the form

a1
k+1 = M(vk+1 − vk) + h ∇qV (A.3)

have been applied. Notice that the form of the discrete equations of motion has
been already adapted to the 3-link manipulator as example. Consequently, the
defining relation for the transformation matrix B of the 3-link manipulator given
in Eq. (6.10) has been inserted. Furthermore, in the present REM, the discrete
state vector xk+1 is equal to the vector of local coordinates of minimal size θk+1,
that is

xk+1 = θk+1 (A.4)

for k = 0, ..., N − 1. Hence, θk+1 will be used in the following for describing the
gradients. Additionally, the mentioned constraints will be summarized in the
vector of constraint functions denoted by C.
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In the next step, the necessary gradients for the direct transcription method used
for the optimal control of the 3-link manipulator will be provided. Firstly, the
gradient of the discrete cost function takes the form

∇(θ,u)L =
[

01×N(n−m) u
]

(A.5)

with the global vector of discrete controls and the global vector of local coordi-
nates of minimal size defined by

u =
[

u0,1 · · · uN−1,N

]

θ =
[

θ1 · · · θN

] (A.6)

Secondly, the gradient of the vector of constraint functions is given by

∇(θ,u)C =

[

{

A1 ∇q (q◦) +A2 ∇q(v∆)
}

A3 A4

∇θΨ 02(n−m)×N(n−m)

]

(A.7)

by use of the global matrices

Ai =









Ai
1

. . .
Ai

N









(A.8)

with the locally defined abbreviations

A1
k+1 = ∇qk+1

(P (qk+ 1
2
)Ta1

k+1)

A2
k+1 = P (qk+ 1

2
)TM

A3
k+1 = ∇θk+1

qk+1

A4
k+1 = h In−m

(A.9)

for k = 0, ..., N − 1 and i = 1, 2, 3, 4. The remaining parts of the block-diagonal
matrices in Eq. (A.8) are zero matrices of adequate size. Similar as the global
vector of discrete controls and the global vector of local coordinates of minimal
size introduced in Eq. (A.6), the global discrete configuration vector arising in
Eq. (A.7) is defined by

q =
[

q1 · · · qN

]

(A.10)

Furthermore, the midpoint evaluation of the configuration vector in the null
space matrix in Eq. (A.2) for the N time steps yields a gradient in the vector of
constraint functions in Eq. (A.7) of the form

∇q (q◦) =





















In 0n · · · · · · 0n

In
. . . . . .

...

0n
. . . . . . . . .

...
...

. . . . . . . . . 0n

0n · · · 0n In In





















(A.11)
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where In are n × n identity matrices and 0n zero matrices of the same size.
Additionally, differentiating v∆ = vk+1 − vk with respect to the configuration
vector qk+1 for k = 0, ..., N − 1 and taking into account Eq. (3.33) yields a
gradient in the vector of constraint functions in Eq. (A.7) given by

∇q(v∆) =
2

h



































In 0n · · · · · · · · · · · · 0n

−3In
. . . . . .

...

+4In
. . . . . . . . .

...

−4In
. . . . . . . . . . . .

...

+4In
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0n

±4In · · · +4In −4In +4In −3In In



































(A.12)

In the present 3-link manipulator example, the resulting matrixA1
k+1 ∈ R

(n−m)×n

in Eq. (A.9)1 solely consists of the components of a1
k+1. Furthermore, the matrix

A3
k+1 in Eq. (A.9)3 is equal to the already available null space matrix P , that is,

the relation
A3

k+1 = ∇θk+1
qk+1 = P (qk+1) (A.13)

is valid. Finally, the gradient of the final conditions for both the configuration
and the velocity level given in Eq. (6.3) has to be calculated. The gradient takes
the form

∇θΨ =

[

∇θ(θN )
{

∇qN
(B(qN )vN) ∇q(qN) +B(qN) ∇q(vN)

}

A3
N

]

(A.14)

by use of the components

∇θ(θN ) =
[

0(n−m)×(N−1)·(n−m) In−m

]

∇q(qN ) =
[

0n×(N−1)·n In

]

∇q(vN ) =
2

h

[

±2In · · · −2In +2In −2In In

]

(A.15)

At this point, all gradients needed for the direct transcription method have been
provided.

The above gradients can be used for the solution of the optimal control prob-
lem with the SQP solver fmincon. Alternatively, they can be employed for the
derivation of discrete necessary conditions for optimality (DNCO). For that pur-
pose, the discrete costate equations and the discrete control equations have to
be calculated by application of the formula

∇(θ,u)L + λ · ∇(θ,u)C = AT (A.16)

In addition to the discrete equations of motion and the final conditions summed
up in the vector of constraints C, the discrete costate and control equations in
A serve as DNCO. Finally, the DNCO can be solved using Newton’s method.
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B. Details of the implementation
of the BEM

In the present chapter, details of the implementation for the direct transcrip-
tion method used for the optimal control of the 3-link manipulator treated in
Chapter 7 will be provided. The basic energy-momentum scheme (BEM) with-
out eliminated velocities serves as basis for the formulation of the mechanical
multibody system. As in Appendix A, both the incorporation of inequality con-
straints and the incorporation of dissipation will be neglected. To formulate
the essential discrete augmented cost function given in Eq. (2.15), the discrete
quadratic function introduced in Eq. (A.1) has to be inserted into the discrete
cost function in Eq. (2.14). Additionally, the constraints consisting of both the
discrete equations of motion f(xk,xk+1,xk,k+1,uk,k+1) and the final conditions
summarized in Ψ(xN) have to be incorporated by use of the discrete Lagrange-
multipliers λk,k+1 respectively µ. In the present BEM, the discrete equations of
motion reads

f(xk,xk+1,xk,k+1,uk,k+1) =







qk+1 − qk − h vk+ 1
2

M(vk+1 − vk) + h(∇qV + a2
k+1)

Φ(qk+1)





 (B.1)

for k = 0, ..., N − 1 for the first two parts of the equations of motion and k =
0, ..., N −2 for the constraints. Notice that the constraints at the final time tN are
enforced through the boundary conditions on configuration level. Furthermore,
the abbreviations

a2
k+1 = G(qk+ 1

2
)Tγk,k+1 +B(qk+ 1

2 )Tuk,k+1 (B.2)

have been employed in Eq. (B.1). Again, the mentioned constraints will be
summarized in the vector of constraint functions denoted by C.

In the next step, the required gradients for the direct transcription optimal con-
trol method based on the BEM will be provided. Firstly, the gradient of the
discrete cost function takes the form

∇(q,v,γ,u)L =
[

01×N(2n+m) u
]

(B.3)

with the global vectors of discrete configurations, velocities, Lagrange-multipliers,
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and controls defined by

q =
[

q1 · · · xN

]

v =
[

v1 · · · vN

]

γ =
[

γ0,1 · · · γN−1,N

]

u =
[

u0,1 · · · uN−1,N

]

(B.4)

Secondly, the gradient of the vector of constraint functions is given by

∇(q,v,γ,u)C =













∇q(q∆) −h
2
∇q (q◦) 0 0

h(A5 +A6) ∇q (q◦) ∇v(v∆) hA7 hA8
[

A9
0

]

0 0 0

∇qΨ ∇vΨ 0 0













(B.5)

by use of the global matrices given in Eq. (A.8) with the local defined abbrevia-
tions

A5
k+1 = ∇qk+1

(G(qk+ 1
2
)Tγk,k+1)

A6
k+1 = ∇qk+1

(B(qk+ 1
2 )Tuk,k+1)

A7
k+1 = hG(qk+ 1

2
)T

A8
k+1 = hB(qk+ 1

2 )T

A9
k+1 = G(qk+1)

(B.6)

and zero matrices of adequate size. Notice that N matrices are located on the
diagonal for i = 5, 6, 7, 8 due to k = 0, ..., N − 1 and N − 1 matrices are located
on the diagonal for i = 9 due to k = 0, ..., N − 2. The midpoint evaluation of the
configuration vectors in Eq. (B.1) for the N time steps yields a gradient in the
vector of constraint functions in Eq. (B.5) given by Eq. (A.11). Furthermore,
differentiating q∆ = qk+1 − qk with respect to the configuration vector qk+1 for
k = 0, ..., N −1 yields a gradient in the vector of constraint functions in Eq. (B.5)
given by

∇q(q∆) =





















In 0n · · · · · · 0n

−In
. . . . . .

...

0n
. . . . . . . . .

...
...

. . . . . . . . . 0n

0n · · · 0n −In In





















(B.7)

Apparently, replacing the configuration by the velocity yields similar gradients.
Concerning the matrices A6

k+1 in Eq. (B.6)2, the contravariant evaluation of
the transformation matrix has to be taken into account for the calculation of
the derivatives. In particular, the contravariant evaluated directors have to be
derivated with respect to the corresponding covariant ones. Consequently, for
each of the three rigid bodies and i, j = 1, 2 the formula

∂(dj)k+ 1
2

∂(di)k+ 1
2

= −Rk+ 1
2

∂(dj)k+ 1
2

∂(di)k+ 1
2

Rk+ 1
2 (B.8)



B. Details of the implementation of the BEM 117

has to be employed. The arising vectors and matrices therein have been in-
troduced in Eqs. (6.12), (6.13), and (6.14). Finally, the gradients of the final
conditions for both the configuration and the velocity level given in Eq. (7.11)
have to be calculated. The derivative of the final conditions with respect to the
configuration vector reads

∇qΨ =

[

∇q(qN )
∇qN

(B(qN)vN) ∇q(qN)

]

(B.9)

by use of the components given in Eq. (A.15)2. Furthermore, the derivative of
the final conditions with respect to the velocity takes the form

∇vΨ =

[

0

B(qN ) ∇v(vN)

]

(B.10)

where the component ∇v(vN) is equal to the one given in Eq. (A.15)2. At
this point, all gradients needed for the direct transcription method have been
provided.

Similar as in the case of the REM elaborated in Appendix A, the provided
gradients can be used for the solution of the optimal control problem with the
SQP solver fmincon. As an alternative, they can be used for the formulation of
discrete necessary conditions for optimality (DNCO). For this aim, the discrete
costate equations and the discrete control equations have to be calculated by
application of the formula

∇(q,v,γ,u)L + λ · ∇(q,v,γ,u)C = AT (B.11)

In addition to the discrete equations of motion and the final conditions summed
up in the vector of constraints C, the discrete costate and control equations in
A serve as DNCO. Finally, the DNCO can be solved using Newton’s method.
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