
Attentive Cognitive Agents for

Real-time Virtual Environments

DISSERTATION

zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften

vorgelegt von M. Sc. Sven Seele

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen 2021

Betreuer und erster Gutachter

Prof. Dr. Andreas Kolb

Universität Siegen

Co-Betreuer und zweiter Gutachter

Prof. Dr.-Ing. Rainer Herpers

Hochschule Bonn-Rhein-Sieg

Dritter Gutachter

Prof. Dr.-Ing. Marcin Grzegorzek

Universität zu Lübeck

Tag der mündlichen Prüfung

04.05.2022

Acknowledgements

The long journey to the completion of my dissertation was an exciting ride! Leaving

Hochschule Bonn-Rhein-Sieg (H-BRS) and major changes in my private life, before com-

pleting the project, created some interesting detours, which were not always easy and made

for many late nights. Therefore, I would like to take this opportunity and express my grat-

itude to those that have helped and guided me throughout this journey. First, I would like

to thank my supervisors Prof. Dr. Andreas Kolb, Prof. Dr. Marcin Grzegorzek, and Prof.

Dr. Rainer Herpers. I am extremely grateful for your invaluable support, feedback, insights,

and patience. I also like to thank Prof. Dr. Christian Bauckhage for the fantastic support in

the beginning of this thesis project.

I would also like to give a big thank you to all my coworkers at the Institute of Visual

Computing (IVC) for many interesting discussions and ideas, but also for making work at

the institute such a pleasure. Thank you, Christoph, David, Ernst, Jens, Katharina, Martin,

Nadine, Olli, Rita, Sandra, Thorsten, Timur as well as Prof. Dr. Heiden and Prof. Dr.

Hinkenjann. A special thank you goes to Jonas, who has also been my coworker at the

Fraunhofer IAIS, my mentor and supervisor, and friend for many years. Your advice,

inspiration, and support, which played a significant role in completing this achievement.

I would like to acknowledge all the great students and interns I had the privileged of

supervising, for your contributions, effort, and many fruitful discussions. Thank you Björn,

Fabian, Francis, Helmut, Luisa, Marco, Norbert, Steffen, Suzannah, Tim G., Tim M., Timo,

and Xinyi. I would like to especially mention Thomas and Tobias, who have been my

students, co-workers, and friends. Thank you for your continuing support.

Completing this dissertation would not have been possible without the financial support

I received via the AVeSi project (FKZ 17028X11) funded by FHprofUnt program of the

German Federal Ministry of Education and Research (BMBF), the EPICSAVE project (FKZ

01PD15004A) funded as part of the program Digitale Medien in der Beruflichen Bildung 2

by the BMBF and by the European Social Fonds (ESF), the FIVIS project (FKZ FP307) with

additional funding by the Deutsche Gesetzliche Unfallversicherung (DGUV), the IVC PhD

scholarship, and the scholarship provided by the Graduate Institute (GI) of H-BRS. Support

in form and content was also provided by the GI of H-BRS and the DFG Research Training

Group 1564 of the University of Siegen.

Thank you also to everybody who supported me in any way, shape, or form, particularly

Sebastian, Thorsten, and Tobias for their insightful feedback and suggestions. I would also

like to thank the SICAT GmbH & Co. KG, the HICAT GmbH, and the ELISE GmbH for

giving me the opportunity and flexibility of continuing my research while being a full-time

employee.

Last, but most certainly not least, I would like to thank my family and friends, especially

my parents and my sister for always believing in me and for the love and support I received

from them throughout my life. Finally, I would like to thank the two most important people

in my live, Kathleen and my son Noah. I could not have completed this journey without

your endless encouragement, understanding, patience, and love. For this and countless

other things I will be forever grateful.

Sven Seele
Sankt Augustin, October 2022

Abstract

Intelligent virtual agents provide a framework for simulating more life-like behavior and

increasing plausibility in virtual training environments. They can improve the learning pro-

cess if they portray believable behavior that can also be controlled to support the training

objectives. In the context of this thesis, cognitive agents are considered a subset of intelligent

virtual agents (IVA) with the focus on emulating cognitive processes to achieve believable

behavior. The complexity of employed algorithms, however, is often limited since multi-

ple agents need to be simulated in real-time. Available solutions focus on a subset of the

indicated aspects: plausibility, controllability, or real-time capability (scalability). Within

this thesis project, an agent architecture for attentive cognitive agents is developed that con-

siders all three aspects at once. The result is a lightweight cognitive agent architecture that is

customizable to application-specific requirements. A generic trait-based personality model

influences all cognitive processes, facilitating the generation of consistent and individual

behavior. An additional mapping process provides a formalized mechanism to transfer

results of psychological studies to the architecture. Personality profiles are combined with

an emotion model to achieve situational behavior adaptation. Which action an agent selects

in a situation also influences plausibility. An integral element of this selection process is an

agent’s knowledge about its world. Therefore, synthetic perception is modeled and inte-

grated into the architecture to provide a credible knowledge base. The developed perception

module includes a unified sensor interface, a memory hierarchy, and an attention process.

With the presented realization of the architecture (CA2RVE), it is possible for the first time to

simulate cognitive agents, whose behaviors are simultaneously computable in real-time and

controllable. The architecture’s applicability is demonstrated by integrating an agent-based

traffic simulation built with CA2RVE into a bicycle simulator for road-safety education.

The developed ideas and their realization are evaluated within this work using different

strategies and scenarios. For example, it is shown how CA2RVE agents utilize personality

profiles and emotions to plausibly resolve deadlocks in traffic simulations. Controllability

and adaptability are demonstrated in additional scenarios. Using the realization, 200 agents

can be simulated in real-time (50 FPS), illustrating scalability. The achieved results verify

that the developed architecture can generate plausible and controllable agent behavior in

real-time. The presented concepts and realizations provide sound fundamentals to everyone

interested in simulating IVA in real-time environments.

Zusammenfassung

Virtuelle Umgebungen sind ein effizientes Trainingswerkzeug, besonders wenn Train-

ingsszenarien durch die Simulation von intelligenten virtuellen Agenten (IVA) unterstützt

werden. Dafür muss das Agentenverhalten plausibel und steuerbar sein, um die Immer-

sion nicht zu mindern und das Trainingsziel zu unterstützen. Methoden, mit denen diese

Anforderungen erfüllt werden, können jedoch nicht beliebig komplex sein, da oft mehrere

Agenten in Echtzeit simuliert werden müssen. Im Rahmen dieser Arbeit stellt sich somit die

Aufgabe eine Lösung zu entwickeln, welche die Anforderungen an Plausibilität, Kontrol-

lierbarkeit und Skalierbarkeit zusammen adressiert. Die Plausibilität wird dabei durch das

Simulieren kognitiver Prozesse erreicht. Ein Kernelement der entwickelten leichtgewichtigen
kognitiven Agentenarchitektur ist ein Persönlichkeitsprofil, das sich auf alle anderen kog-

nitiven Prozesse auswirkt. Somit kann konsistentes, individualisiertes Verhalten erzeugt

werden, welches zusätzlich mit Hilfe eines entwickelten, formalen Abbildungsprozesses

aus psychologischen Persönlichkeitsstudien abgeleitet werden kann. Durch die Kopplung

des Profils mit Emotionen kann das Verhalten dynamisch an die Gegebenheiten eines Agen-

ten angepasst werden. Welche Aktion ein Agent in einer Situation auswählt, beeinflusst

ebenfalls die Glaubwürdigkeit. Ein wichtiger Bestandteil dieses Auswahlprozesses ist das

Wissen, das ein Agent über seine Umgebung besitzt. Um eine plausible Wissensbasis bereit

zu stellen, wurde ein Perzeptionsmodul konzipiert und integriert, das eine einheitliche

Sensorschnittstelle definiert und Informationen in einem hierarchischen Gedächtnis durch

einen Aufmerksamkeitsprozess verwaltet. Die realisierte Architektur erlaubt erstmalig die

Simulation kognitiver Agenten, die gleichzeitig kontrollierbar und in Echtzeit berechen-

bar sind. Demonstriert wird dies u. a. durch die Umsetzung als Software-Architektur

(CA2RVE) und eine damit entwickelte agentenbasierte Verkehrssimulation. Die entwick-

elten Ideen und deren Realisierung wurden im Rahmen der Arbeit anhand verschiedener

Strategien evaluiert. Es wird gezeigt wie CA2RVE-Agenten, anhand ihrer Persönlichkeiten

und Emotionen, verschiedene Verkehrssituationen glaubwürdig auflösen. Die Kontrollier-

barkeit und Anpassungsfähigkeit wird ebenfalls in Evaluationsszenarien demonstriert. Die

Skalierbarkeit wird durch die Simulation von 200 Agenten in Echtzeit (50 FPS) nachgewiesen.

Die Ergebnisse zeigen, dass eine Architektur für das Generieren von plausiblem, kontrol-

lierbarem und echtzeitfähigem Agentenverhalten erfolgreich realisiert wurde. Damit stellt

diese Arbeit fundamentale Grundlagen für diejenigen bereit, die kognitive IVA in Echtzei-

tanwendungen einsetzen wollen.

Contents

Abstract v

Zusammenfassung vi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation for Attentive Cognitive Agents . 2

1.2 Research Context . 3

1.3 Research Questions . 5

1.4 Research Approach and Scientific Contributions 7

1.5 Structure . 8

2 Related Work 11

2.1 Cognitive Architectures . 11

2.2 Intelligent Virtual Humans . 14

2.2.1 Personality . 17

2.2.2 Emotion . 20

2.2.3 Synthetic Perception . 22

2.3 Traffic Simulation . 25

3 Architecture Concept for Attentive Real-Time Cognitive Agents 31

3.1 Prerequisites . 34

3.2 Theoretical Concept . 36

3.2.1 Perception . 36

3.2.2 Memory . 37

3.2.3 Internal Simulation . 38

3.2.4 Alternative Behavior . 38

3.2.5 Individual and Emotional Decision-Making 39

3.2.6 Miscellaneous Factors . 39

viii CONTENTS

3.3 Architecture Design . 40

3.4 CA²RVE - Cognitive Attentive Agents for Real-time Virtual Environments . . 43

3.5 Conclusion . 45

4 Personalized and Emotional Agents 47

4.1 Psychological Personality Profiles . 50

4.1.1 Representing Personality . 51

4.1.2 Utilizing Personality in Cognitive Agents 53

4.2 Emotion Model . 54

4.2.1 Representing Emotions . 55

4.2.2 Experiencing Emotions . 56

4.2.3 Fading Emotions . 58

4.2.4 Utilizing Emotions in Cognitive Agents 59

4.3 Conclusion . 60

5 Perceptual Agents 63

5.1 Synthetic Perception for Cognitive Agents . 66

5.2 Perception Cycles . 67

5.3 Sensing . 69

5.4 Memory Hierarchy . 70

5.5 Attention . 71

5.6 Personality and Emotion . 75

5.7 Semantic Modeling . 75

5.8 Conclusion of Integrating Perception into IVA 75

6 Application of the Agent Architecture Design 79

6.1 Cognitive Traffic Agents . 83

6.2 Semantics as Extension of Long-term Memory 89

6.3 Scaling Simulations by Level of Detail . 92

6.3.1 Level of Detail Simulation of Traffic Agents 93

6.3.2 Mesoscopic Simulation of Traffic Agents 96

6.3.3 Road Network Representation for Mesoscopic Simulation 98

6.4 Conclusion . 98

7 Evaluation and Results 101

7.1 Evaluating the Agent Architecture Design . 102

7.2 Evaluating Personality and Emotions . 103

7.2.1 Personality-based Traffic Behavior in a Deadlock Scenario 105

CONTENTS ix

7.2.2 Evaluating Personality-based Traffic Decisions in a Blocked-lane Scenario110

7.2.3 Summary . 115

7.3 Evaluating the Synthetic Perception Framework 117

7.3.1 Evaluation Sensor Accuracy Against Precision 117

7.3.2 Proof-of-Concept Evaluation of the Attention Module 127

7.3.3 Evaluating the Application of the Synthetic Perception Approach to

Traffic Scenarios . 137

7.3.4 Summary . 141

7.4 Evaluating Scalability . 142

7.4.1 Evaluating the Scalability of the Mesoscopic Simulation System 142

7.4.2 Evaluating the Combination of Microscopic and Mesoscopic Systems . 145

7.4.3 Evaluating the Level-of-detail Approach to Simulation 148

7.4.4 Summary . 151

8 Conclusions and Discussion 155

Bibliography 161

Author’s Publications 179

Theses and Projects Supervised by the Author 183

A Beyond Traffic Agents 185

B Level of Detail Evaluation Scenario Results 189

C Evaluating the Generation of Road Network Semantics for Cognitive Traffic Agents191

C.1 Applicability of Generated Road Network Semantics 192

C.2 Time Savings of Automatic Road Network Semantics Generation 193

C.3 Manual Inspection of Road Network Semantics Created by Different Means . 194

C.4 Summary . 196

x CONTENTS

List of Figures

3.1 Depiction of a simple reflexive agent. 35

3.2 A methodological concept of an architecture for cognitive agents in virtual

environments. 41

3.3 Depiction of the CA2RVE architecture design. 43

4.1 Curve shapes of fading emotions. 59

4.2 Exemplary progression of an agent’s dynamic FFM personality profile. 61

5.1 Proposed agent perception framework . 67

5.2 Abstract overview of the virtual perception process. 68

5.3 Proposed perception process . 73

6.1 FIVSI bicycle simulator setup. 80

6.2 Class diagram for CA2RVE traffic agents . 84

6.3 Lane change decision parameters . 86

6.4 Component layout and game object hierarchy of traffic agents 88

6.5 Behavior tree for traffic agents . 89

6.6 Semantic road network layer . 90

6.7 Schematic view of semantic road network elements 92

6.8 Depiction of the level of detail traffic simulation. 93

6.9 Proxy geometry used to determine visibility of road network elements 95

6.10 Schematic representation of a road for mesoscopic traffic simulation 96

7.1 Cognitive agent evaluation framework concept. 104

7.2 “Crossroads” evaluation scenario. 105

7.3 Progression of the politeness factor value over time. 107

7.4 Waiting times for EB and PB agents in the crossroads evaluation scenario. . . 108

7.5 Total number of yields within one representative test run of each configuration

in the crossroads evaluation scenario. 109

7.6 “Narrowed Road” evaluation scenario. 111

7.7 Outgoing traffic flows for all lanes in the “narrowed road” evaluation scenario.113

xii LIST OF FIGURES

7.8 Mass points of a cube object can be used to improve simple geometric visibility

checks. 118

7.9 Example of false coloring. 120

7.10 Setup of the sensor evaluation from an agent’s point of view. 121

7.11 Sensor evaluation results . 123

7.12 Average geometric sensor execution times in sensor evaluation 124

7.13 Average false-color sensor execution times in sensor evaluation 125

7.14 Visualization of a saliency probe. 129

7.15 An overview of scenarios 1 and 2 used to evaluate the proposed attention

approach. 133

7.16 An overview of the third sample scenario used to evaluate the proposed

approach. 134

7.17 A screenshot of the first and second attention evaluation scenarios. 134

7.18 Screenshots of the third evaluation scene. 135

7.19 Depiction of the crosswalk evaluation scenario. 137

7.20 Illustration of the agent’s decision process in the crosswalk evaluation scenario.138

7.21 Visualization of fog in the crosswalk evaluation scenario. 140

7.22 Depiction of a generated n×n traffic network for evaluating scalability. 143

7.23 Median frame calculation times for the mesoscopic agent evaluation. 144

7.24 Screenshot of one intersection in the Siegburg city scene used within the

FIVIS bicycle simulator including microscopic and mesoscopic traffic network

elements. 146

7.25 Calculation times for individual frames in milliseconds from different test

scenarios of the micro-meso evaluation. 148

7.26 Calculation times for the level of detail evaluation. 149

7.27 Frame time distribution for the level of detail evaluation. 150

7.28 Frame time distribution for the level of detail evaluation at less frequented

intersection. 151

A.1 Experimental setup of gaze behavior study . 185

A.2 Results of gaze behavior study . 186

B.1 Average frame calculation times for increasing traffic network size and the

number of simulated mesoscopic agents. 190

C.1 OpenStreetMap data and road network for scenario 3 of the road network

evaluation. 192

LIST OF FIGURES xiii

C.2 Sample elements demonstrating the fit between generated road network and

3D geometry. 193

C.3 Fit between 3D model generated using Esri CityEngine and road network

generated using Trian3D Builder. 194

C.4 A section of the city of Sankt Augustin, Germany, selected for manual inspec-

tion in the road network evaluation. 195

xiv LIST OF FIGURES

List of Tables

2.1 Dimensions of the Five Factor Model including exemplary interpretations of

high and low scores. 19

7.1 Sensor configurations used in the accuracy evaluation of visual sensors. . . . 122

C.1 Characteristics for the three road network evaluation scenarios. 192

xvi LIST OF TABLES

1
Introduction

“If a machine is expected to be infallible, it cannot also be intelligent.”

- Alan Turing

Virtual environments (VE) are a promising tool for teaching real-world skills to

learners. They allow training within potentially threatening environments with-

out exposing trainees to physical harm. By providing immersive and believable

experiences, learning effects can be improved even further (see, e.g., [Naj98, RJ00]).

At the same time, advances in and availability of technology enable the use of immersive

training application in more and more areas. Improving visual fidelity is often the prime

aspect to increasing immersion and presence in interactive environments. Continuous im-

provements of computer hardware result in steady improvements of rendering quality,

animation, and physics simulations. However, visual fidelity is not the only aspect of im-

mersive training experiences. In many cases, the simulated environment must also include

entities that support or hinder users in fulfilling their training tasks. These entities are typ-

ically referred to as agents. Sometimes, appropriately interacting with these agents is the

skill to be learned. In other scenarios, agents are required to create the illusion of a living

world. In all cases, agents must act according to the expectations set by the virtual world

to achieve and maintain immersion, plausibility, and educational or entertainment value.

If agents exhibit implausible behavior, a user’s sense of immersion can break even under

high fidelity visual conditions. Consequently, improving the plausibility of generated agent

behavior has gained recognition in academia and the games industry (see, e.g., [KS16]).

In training scenarios, it is also important for trainees to be able to recognize a plausible

connection between an agent’s choice of action and the situation it resulted from. Behavior

portrayed by agents can thus never be completely non-deterministic. Instead, agents should

perceive, understand, and reason about their current situation before selecting an available

2 Introduction

action. In contrast, this causally determined action selection does not mean that an agent’s

behavior is always predictable, but it must be comprehensible to an observer in retrospect.

The means by which this correlation between situation and reaction is achieved varies widely

depending on various factors, such as technological, temporal, or financial constraints, area

of application, target audience, pursued purpose, or others. Intelligent virtual agents (IVAs)

provide a framework for achieving the objective of simulating more human-like and more

plausible behavior. In the context of this thesis, cognitive agents are considered a subset of

IVA with a specific focus on emulating cognitive processes for behavior simulation.

1.1 Motivation for Attentive Cognitive Agents

There are many reasons for employing IVAs or cognitive agents in simulations and games.

The demand for immersive worlds with interactive inhabitants is continuously increasing,

yet creating believable characters is one of the most challenging endeavors in designing these

virtual worlds (cf. [LB19]). In game development, the main constraints for virtual characters

are typically production cost and the ability to author behavior. Consequently, behavior

of non-player characters (NPCs) is mostly being pre-defined at design time (i.e., scripted),

especially in production environments. It is important to point out that scripted behavior

does not necessarily mean that it is simple. Modern NPCs exhibit a multitude of complex

behaviors. However, this also means that authoring their behavior is an overly complex task

that is prone to errors. The more complex the NPC behavior and the virtual worlds they

inhabit become, the more beneficial are agents that autonomously choose their actions based

on their current surroundings. Another major challenge in combining autonomous agents

with games is that they must work in unison with game design to keep players engaged.

For example, NPC opponents need to provide a challenge to the player while acting within

plausible bounds to avoid breaking the player’s suspension of disbelief. Challenge and

plausibility need to be in accordance with the game design and the world created therein

[YT18]. Therefore, generated behavior must also be controllable. Similar arguments can be

made for IVA applications, although they are often more experimental in nature. However,

even in research environments, financial resources must be considered and agent behavior

serves a specific purpose, which means there must be a way of authoring it accordingly.

Cognitive agents that emulate human behavior are a promising solution to overcome

this challenge. The idea is not new, and various approaches already exist that model certain

cognitive capabilities or processes of humans to generate more human-like agent behavior

(e.g., [ALS09, BGG19, BL06, BKA+05a, CDB+02, LB19, RJSL10, RJ00, SSSS16]). Applications

can be as simple as chat bots or as complex as trying to achieve general intelligence in

1.2 Research Context 3

cognitive architecture research. However, as will be formulated throughout this chapter

and Chapter 2, existing methodologies do not provide enough flexibility, are not suited for

real-time, multi-agent applications, or do not offer authoring capabilities. For example, the

objective of achieving human-level intelligence resulted in cognitive architectures like Soar

[Lai12] or ACT-R [RTO19], which have become increasingly complex over time. Capabil-

ities are added to improve the system and are not meant to be switched on or off during

runtime or to be customized towards a specific application domain. As a result, it is difficult

to apply cognitive architectures to real-time environments and even more difficult to scale

solutions to multi-agent settings. Furthermore, individualizing behaviors of different agents

or controlling outcomes towards application-dependent requirements are not of concern to

cognitive architecture research. While these aspects are considered in IVA research, the focus

is on communication and social interaction, often with a human user, and less on observable

actions. Middleware solutions, e.g., CIGA [vO14] or POGAMUT [GBK+10], try to bridge

the gap between agent-specific topics and game engine technology, but as a result require

application developers to be knowledgeable in both fields. Additionally, middleware or cog-

nitive architectures are difficult to optimize for real-time environments due to their logical

and physical separation from the system used to realize the virtual environment. Thus, there

is a need for a new concept that combines cognitive components with flexible composition

and controllability. A generalized concept should also allow customization towards differ-

ent intended uses, from populating virtual training environments to simulating embodied

conversational agents to investigating human perception.

Innovative approaches, especially in game development, typically focus on the learning

and decision-making aspects of agents to improve believability (e.g., [HGH+18, JBV+18]).

Further aspects, such as personality and perception including attention mechanisms, are

rarely mentioned as part of virtual agent or NPC research. However, within this thesis, it is

argued that these are substantial components required for generating plausible behavior.

1.2 Research Context

The work presented here is related to multiple research domains. It is closely correlated

with Intelligent Virtual Agents (IVA) and Embodied Conversational Agents (ECA) research.

In both research areas, agents are typically represented as individuals including a model of

personality, emotional responses, and mood states. Agents also need to be able to perceive,

reason, and act in real-time within a dynamic simulated environment. However, the focus

is often on communication with a human user, i.e., language processing, dialog generation,

gestures, and facial expressions [vO14], which are not considered in this thesis project.

4 Introduction

Cognitive architecture research is concerned with developing (software) agents with

human-level intelligence and in the process gaining insights into the functionality of the

human brain. Resulting architectures are typically extraordinarily complex and compu-

tationally expensive. While this research has only little practical relevance for real-time

multi-agent systems, existing architectures provide important inspirations for the overall

design presented in this thesis project.

One aspect of this work is scalability to enable the use of a cognitive agent architecture

in real-time applications. Consequently, besides agent design, aspects of virtual reality (VR)

and virtual environment (VE) research, like rendering, simulation, display technologies,

etc., also need to be considered during the development process. Another research area

where real-time performance and optimization play critical roles is game development. The

task of generating plausible behavior for non-player characters (NPC) in digital games is

often referred to as game AI or just AI. Without further context, these terms are ambiguous,

especially since there are academic research fields denoted by the same term. Therefore,

the term game AI is used throughout this thesis to refer to techniques used in the gaming

industry related to NPCs. While this area of games technology includes many aspects, e.g.,

animation, physics simulations, and path finding, elements related to action selection are

mostly considered in this thesis. However, techniques for game AI do not only need to scale

well, but they must also allow control over generated behavior as it must support the game

design. Without control, it is impossible to have any influence on the fun and entertainment

of an application. Players want to win, but be challenged, and whenever they lose, they do

not want to feel cheated by a game’s AI [Lid04]. At the same time, game AI developers strive

towards making NPCs more autonomous to keep the authoring task manageable because

game worlds and NPC behavior continuously increase in complexity. Due to these reasons,

game AI and games technology is an important source of inspiration for the work presented

here. The connection to this work will be most apparent in the description of the realization

of the proposed architecture design in Chapter 6.

The objective of this thesis project is to explore and close the current gap regarding

cognitive agent architectures for real-time virtual environments. To achieve the objective,

four research questions are formulated and investigated. To provide answers to the RQs,

relevant approaches and results from all the mentioned research domains are utilized to

create a new cognitive agent architecture that is controllable, scalable to real-time, multi-

agent applications, and capable of generating plausible agent behavior. As a result, it will be

possible to simulate agents, which make comprehensible decisions based on their perception

of their virtual environment. Agents will show individualized behavior that is not based

1.3 Research Questions 5

on randomization and adapts to environmental stimuli. Finally, it will be possible to adjust

behavior generation to application-specific requirements.

1.3 Research Questions

Using a combination of the considered research domains, the following research questions

are investigated. From each research question specific subtasks are derived and presented

in Chapters 3 through 6. By fulfilling these subtasks, prospective answers to the research

questions are developed and evaluated.

RQ1: What is an appropriate design of an attentive cognitive agent architecture for virtual

environments?

Existing architectures and approaches (e.g., [ALS09, BGG19, GBK+10, Lai12, LB19,

RTO19, vO14]) are not able to simultaneously address (1) plausibility of behavior, (2)

controllability of behavior, and (3) scalability. Therefore, one of the main objectives

of this thesis project is to design an agent architecture that adheres to these three

main principles. The resulting design should provide a flexible foundation for adap-

tive agent behavior configurable to specific application scenarios. The intention is

to achieve plausibility by emulating human-like behavior, which is to be realized by

simulating cognitive components, e.g., personality, perception, attention, memory, and

decision-making. Therefore, inspiration is drawn from ideas and concepts of cognitive

architectures. The fields multi-agent systems (MAS) and agent-based systems (ABS)

are also considered since multiple co-operating agents are to be simulated in a common

environment. As a result, not only is each agent’s individual behavior of interest but

also the global behavior emerging from agent interactions in a complex system. In

game AI and VR/VE, the goal is to provide an interactive experience to a user with

a specific objective, e.g., education or entertainment. Simulated agents must support

these objectives and must be embedded into a real-time system. Based on this con-

straint, both fields serve as source for tried and tested algorithms and technologies.

IVA and ECA are the domains that correspond most with the research described here,

as the objectives are closely aligned, but often focus on human-computer interaction;

specifically on speech, text output, facial and gaze expressions (cf. [tSKT+20]). Other

areas of interest are, e.g., detecting user emotion and guessing user intention as well

as trust, acceptance, and credibility of agents [CHLC18, RGA+09, VSB+20].

6 Introduction

RQ2: Can the agent architecture systematically generate individual, dynamic agent be-

havior?

Focusing on the plausibility constraint, one requirement resulting from the research

gap is the generation of individualized behavior as multiple agents should be ob-

servable during one simulation. For agents to be distinguishable by their actions, an

agent’s behavior should be consistent with its past actions [Ort03]. One common way

of achieving this individualization in IVA research is by assigning a personality to

each agent. While the type and characteristics of theses personalities can be arbitrarily

defined to suit the application, another objective of this thesis project is to utilize this

mechanism to link synthetic behavior to real human behavior. Therefore, the task is

to transfer knowledge about human behavior to the architecture and map it onto in-

dividual agent behavior during simulation. Furthermore, to avoid repetitive and dull

behavior, the proposed solution should also be capable of dynamically altering gener-

ated behavior. The approach to this objective should be aligned with the individuality

constraint by connecting it to an agent’s personality.

RQ3: What is the role of perception and attention in behavior generation for cognitive

agents?

According to Peters et al. [PCR+11], virtual agents require perceptual attention, and

thereby virtual perception, for aesthetic and functional reasons. The former to increase

naturalness of behavior and the latter to prevent performance issues by reducing

the amount of information to process. In accordance with these requirements, how

can perception be integrated into the proposed cognitive architecture to contribute

to plausible behavior generation and at the same time fulfill real-time constraints?

Investigating this RQ requires considering the plausibility and scalability requirements.

However, perception-based agent behavior must not only be plausible and computable

in real-time, but it must also be controllable to support the application’s intention.

Therefore, a virtual perception component must also facilitate authoring agent-centric,

goal-driven behavior without compromising the other requirements.

RQ4: How well do the proposed concepts scale in terms of real-time, multi-agent appli-

cations?

Human-level cognitive capabilities are difficult to realize on conventional computer

hardware, even without focusing on efficiency [DOP08]. But is it possible to realize

a cognitive architecture approach applicable to interactive applications without com-

promising plausibility, reducing scale, or neglecting domain-specific requirements?

As the proposed concepts are meant for real-time, multi-agent scenarios, this research

1.4 Research Approach and Scientific Contributions 7

question is concerned with scalability. To achieve this objective, a realization of the

developed concepts should not be limited by the number of simultaneously simulated

agents.

1.4 Research Approach and Scientific Contributions

To answer the proposed research questions, the research is divided into two main stages: a

conceptual stage and an application stage. During the conceptual stage, the combination

of related research domains is used to define the scientific gap regarding the thesis objec-

tives. Based on the research and the gap, three designs for a cognitive agent architecture

are derived, which differ in their level of detail. First, an overall architectural design for

cognitive agents is developed. Second, specific details of the overall design are considered,

namely personality, emotion, and perception. Although the contributions in this stage are

of conceptual nature, they are implemented and evaluated on a practical level blending

theory and application. Third, the application stage is used to demonstrate how the design

developed during the conceptual stage is applied in practice. The main purpose is to verify

that application-specific needs and real-time constraints were sufficiently considered during

the first stage from a software engineering perspective.

As a result of the laid-out process and by answering the proposed research questions,

the following contributions are made by this thesis: A lightweight cognitive architecture

concept is put forth, which is intended for generalized usage in real-time applications. The

design is focused on enhancing agents with cognitive capabilities and characteristics, with

the specific intention of integrating these agents into real-time virtual environments. To

this end, the necessary requirements towards an architecture, able to simulate agents in the

desired way, are devised. Common elements of cognitive architecture and IVA/ECA research

are identified, examined, and assessed for their usefulness towards the intended design. As

a result, a blueprint for attentive cognitive agents is defined and elaborated in Chapter

3, providing a foundation for following research contributions. From the methodological

architecture concepts, the Cognitive Attentive Agents for Real-time Virtual Environments

(CA2RVE) architecture is derived and applied to a realistic evaluation scenario.

By integrating a personality at the core of the architecture, agent behavior is individ-

ualized while being consistent with an agent’s past actions. The intention is to avoid the

impression of randomized behavior, making agents more credible. In Chapter 4, a formal

model of a generic trait-based representation of personality is described. To realize the

model within an applied agent architecture, a specific personality model must be selected.

Here, the common Five Factor model [MC08] is used as an example. Furthermore, a mapping

8 Introduction

is defined that allows transferring results from psychology studies onto the architecture

independent of the personality inventory1 used within the study. The concept of task specific

parameters is introduced, which determine how an agent’s profile is utilized to influence its

behavior. In combination with the mapping algorithm, task parameters can be used to relate

agent behavior to personality both intuitively and based on findings reported in psychology

literature. The personality profile is combined with a dynamic emotional state for situational

behavior generation. By combining personality and emotion, a given decision-making ap-

proach can be enhanced, allowing an agent-individual and consistent, but dynamic action

selection process.

To verify the initial claim of providing cognitive agents for real-time virtual environments,

the proposed concepts are applied to an interactive, virtual user experience. A software ar-

chitecture is designed and implemented based on CA2RVE to realize and evaluate all the

developed concepts. Using this software architecture, agents are used as traffic participants

populating scenarios within a bicycle simulator for road-safety education of school chil-

dren. The modular and extensible design of the architecture allows adjusting simulations to

application-related constraints. Furthermore, the prototype implementation demonstrates

the realization of the theoretical concepts in a possible production environment. By realiz-

ing an interactive experience using hundreds of CA2RVE agents, the prototype also shows

the scalability of the proposed solution. In this process, adjustments are introduced to

improve scalability in the context of the utilized game engine. The reported concepts and

examples have also been published in twenty-one peer-reviewed contributions listed in the

Publications section at the end of this thesis (pp. 179).

1.5 Structure

The structure of this thesis is derived from the research approach described in the previous

section. Chapter 2 provides an overview of the fundamentals underlying the work described

in this thesis, with a specific focus on agents and related technologies, such as cognitive

architectures and intelligent virtual agents. The related work is described according to

the research domains involved in this thesis. Additionally, application related topics are

discussed, e.g., traffic simulation and game engine technology.

In Chapter 3 the underlying architecture design is introduced together with the consid-

erations that lead to specific design choices.

Following the overall design, Chapter 4 includes a more detailed view of the person-

1The inventory refers to the way of measuring personality traits in a specific study (i.e., questionnaire types),
not the model itself. The personality model used in considered studies must be identical.

1.5 Structure 9

ality aspect of the architecture. It is described how personality profiles are defined within

the architecture and how they are used in conjunction with emotional states to provide

individualized yet adaptive behavior patterns.

Concluding the conceptual part, a model for human-like perception that fits into the

overall approach is introduced in Chapter 5. The integrated components and their purpose

are explained, with a specific focus on modeling attention.

A realization of the architecture design is detailed in Chapter 6 to provide a proof of

concept that the theoretical design is applicable to a practical problem. Additionally, several

approaches are presented that address inherent limitations of the provided design including

scalability and maintainability.

All concepts presented in Chapters 4 and 5 were implemented using the software ar-

chitecture described in Chapter 6. The evaluation approaches related to these concepts are

recapitulated in Chapter 7, where they are also related to the proposed research questions

evaluating the legitimacy and quality of the answers given to them. Further thoughts on

an overall evaluation strategy and work conducted towards this approach are discussed

as well. Finally, Chapter 8 includes a summary of the work and contributions mentioned

throughout this thesis and an outlook on potential future research.

10 Introduction

2
RelatedWork

“Success depends upon previous preparation, and without such preparation there is sure to be
failure.”

- Confucius

Before explaining the details of the proposed approach to attentive cognitive

agents for real-time virtual environments, the required background information

and related work are discussed in this chapter. First, in Section 2.1, cognitive

architectures are discussed as they are the structural basis for the developed

agent architecture concept. After introducing selected aspects of virtual humans in Section

2.2 (regarding the fields IVA/ECA and game AI), specific focus is directed towards enhancing

virtual humans with personality and emotion in Sections 2.2.1 and 2.2.2. This enhancement

is the most relevant topic about virtual humans as these elements are the central aspect

of the proposed architecture. Besides the underlying personality concept, synthetic agent

perception is the cognitive module that is examined in most detail within this thesis project.

Therefore, Section 2.2.3 provides information on this topic. Finally, one of the objectives

of this thesis project is investigating the applicability of the proposed framework to real-

time virtual environments. As described in Chapter 6, a traffic simulation is chosen as a

proof of concept for such an application. Therefore, the last section of this chapter provides

information about traffic simulation systems as well as considerations concerning traffic

simulation systems in digital games.

2.1 Cognitive Architectures

The general goal of developing a cognitive architecture is to devise a framework that allows

autonomous (software) agents to solve diverse and unknown problems. The main intention

12 Related Work

is to achieve agents with human-level intelligence, but also to gain insights into the cognitive

processes of humans. The need for cognitive architectures was put forth by Allen Newell

during the 1970’s. His proposal was based on the observation that research about cognitive

processes concentrated on highly isolated theories of specific behaviors or processes (cf.

[Byr07]). From his idea of “unified theories of cognition” systems emerged that attempt to

provide a computational framework modeled after the human mind and capable of solving

universal problems. Today, numerous cognitive architectures exist and are continually being

improved and extended. Although they all share similar goals, they can be coarsely divided

into three categories: symbolic, emergent, and hybrid architectures [DOP08].

Symbolic architectures are most commonly associated with cognitive architecture research;

well-known examples are Soar, EPIC, and ICARUS. As the name suggests, they represent

the external environment and reason about it using symbols. Thus, the assumption of such

systems is that the internal representation is isomorphic to the external one. Perception is

the process that abstracts from the external world to the symbolic representation based on

sensory data. The symbol tokens are usually described by human designers or programmers

with the advantage that humans can directly interpret these systems. At the same time, the

human-made representations influence the system’s mode of operation and may restrict its

potential. Due to their analytical approach and the methods employed (machine learning,

probabilistic modeling, etc.), symbolic architectures have a strong connection to the field

of classic artificial intelligence. Different representations of memory are modeled as either

rules or graphs, while knowledge is inferred by either analytical or inductive learning

[Byr07, DOP08, LL07].

Emergent architectures take a vastly different approach with most of them trying to model

actual brain structures. Instead of symbolizing the environment of an agent, their internals

are based on a network of distributed processing elements. Self-organizing and associating

properties are achieved through interactions between these elements. Examples of emer-

gent architectures are IBCA, Cortronics, NuPIC, and NOMAD. While these systems used to

be less mature (cf., [DOP08]), symbolic architectures are being replaced by or augmented

with elements from emergent approaches due to their flexibility and simpler design [KT18].

Information is processed on a global scale in such a way that all elements in the network

influence the output or, when localist memory organization is used, only a subset of ele-

ments determine the result based on the input. Learning is achieved through training, i.e.,

the network either learns how to map certain input representations to appropriate output

representations in a supervised or reinforcement learning fashion, or it learns unsupervised

in a competitive fashion [DOP08]. However, since knowledge is represented by the entire

2.1 Cognitive Architectures 13

network and not represented as symbolic entities, traditional logical inference in emergent

systems is difficult and and they become hard to read and understand [KT18].

Hybrid architectures combine the characteristics of symbolic and emergent architectures to

benefit from the respective advantages of both paradigms. A well-known architecture of this

kind is ACT-R, which utilizes a symbolic production system that is guided by a sub-symbolic

layer of parallel processes [RTO19]. Other examples of hybrid systems include CLArION,

LIDA, DUAL, Polyscheme, 4CAPS, and Shruti [DOP08].

Although different cognitive architectures were developed with a common goal, all

focus on different aspects. However, as some of them continue to grow and mature, they

add functionalities formerly exclusive to other cognitive architectures [Byr07]. Thus, it

seems apparent that certain representations better fit certain problems or tasks. For example,

semantic learning and semantic memory are central aspects of ACT-R but were also included

in Soar to store and retrieve declarative knowledge more efficiently [Lai08, Lai12].

In the context of this thesis project, the Soar cognitive architecture [Lai12] is the most

interesting of the examples mentioned above as it has been used to implement human-like

agents in real-time virtual environments [LJ98, Lai01]. However, these examples require ex-

tensive rule declarations and processing resources. These requirements make it difficult to

impossible to utilize Soar in limited hardware environments or in multi-agent applications.

The traditional Soar architecture has been extended by multiple concepts. The most inter-

esting concepts are knowledge representation, reinforcement learning, emotion, clustering,

visual imagery as well as semantic and episodic memory. Long-term knowledge in Soar is

comprised of production rules which can propose, evaluate, or apply operators (i.e., actions)

providing for a flexible representation of procedural knowledge. A recursive processing of

rules even allows for meta-reasoning within the framework. Reinforcement learning is used

to fine tune the production rules and the integration of emotion, mood, and feeling enables

a speed-up of the learning process. The concept of semantic learning borrowed from the

ACT-R architecture enables encoding declarative facts facilitating the use of general knowl-

edge about the environment. Episodic memory was implemented by storing snapshots of

working memory for later retrieval of past experiences, which could be used for capabilities

like internal simulation, prediction, episodic learning, and retrospective reasoning. Visual

imagery is used as an alternative representation of the current state more suitable for tasks

requiring visual-spatial learning [LL07]. A very intriguing addition is clustering, which

enables Soar to create new symbolic structures overcoming one of the major shortcomings

of symbolic architectures, as the encoding of symbols by a human designer is no longer

restricting the system. To achieve this feature, experiences are clustered to identify statistical

regularities, which are then mapped to new symbols [Lai08].

14 Related Work

ICARUS [LC06] is another interesting symbolic architecture, because it is specifically

designed to be used in physical agents. The architecture shares several features with Soar, but

adds hierarchical representations of long-term memory, plus additional memories to support

diverse types of knowledge. Furthermore, it defines skills to achieve goals, which are stored

in prioritized fashion in separate memory. Input abstraction is handled by creating beliefs,

which are compared to the skill hierarchy to find and select associated actions that advances

the agent towards its current goal. What makes this architecture interesting to this thesis is its

successful application to video games and even an in-city driving scenario. The architecture

also deviates from the goal of providing a solution for general problems and instead focuses

on emulating human behavior as authentic as possible [CKN+07, LC06, LSC+09]. However,

ICARUS only enabled agents to learn how to perform basic driving tasks, like aligning

themselves in a lane, accelerating, or decelerating for turns.

As an emergent architecture, Cortronics [DOP08] emulates the neuronal structure of the

brain. By organizing these neurons into groups, which in turn form lexicons, the Cortronics

architecture achieves a process called confabulation that enables learning and information

retrieval. While confabulation is not suited for reasoning with complex knowledge, it does

play a role in anticipation, imagination, and creativity.

ACT-R is a hybrid architecture utilizing symbolic and sub-symbolic representations. It

combines the opportunity of allowing a human designer to describe the system’s behavior

with the self-organizing capabilities of connectionist structures, allowing autonomous fine

tuning of the system. Knowledge in ACT-R can be either declarative, describing what an

object is, or procedural, which encodes how things are done. Just as Soar and ICARUS,

ACT-R has been applied to video games and related simulations, for example, to model

tactical fighter pilots [CDB+02] or agents in the “Lemonade game” [RJSL10]. For ACT-R, the

same constraints apply as those mentioned in correlation with Soar, which means it is not

suited for the intended use cases of this thesis project.

2.2 Intelligent Virtual Humans

As indicated in the previous section, attempts have been made to utilize cognitive archi-

tectures and related technologies to create more realistic, human-like virtual characters.

However, these applications appear to be a side-effect of the focused research on general

problem solving. Others have recognized the potential of emulating human cognitive pro-

cesses in virtual agents to generate more human-like and more believable behavior. In

2000, Rickel and Johnson [RJ00] used Soar to integrate the virtual tutor Steve into a vir-

tual environment for military training exercises. For Steve’s cognition module, Soar had

2.2 Intelligent Virtual Humans 15

to be extended with a layer to handle collaboration capabilities and a layer containing the

domain-specific knowledge that is taught to students. In addition to these intricate exten-

sions, two modules needed to be developed for perception and motor control, all of which

are connected by a message queue system. Overall, Steve is a complex application slowed

down by several abstraction layers. To build a Military Operations in Urban Terrain (MOUT)

simulation, Best and Lebiere built cognitive agents based on ACT-R to integrate aspects of

human performance [BL06]. Agents were realized as virtual soldiers in Unreal Tournament

2004 (UT2004)1 and as a robot in a physical test environment to demonstrate the use of the

same architecture in different domains. While they succeeded with both embodiments, their

system is complex and distributed across multiple machines for the Unreal Tournament sce-

nario (one for each agent and one for the environment). Furthermore, adapting the system

to a scenario requires sophisticated domain knowledge and scenario-specific extensions. To

reproduce well-defined processes (e.g., clearing an L-shaped hallway) an extensive set of

production rules is required for each behavior, which is reminiscent of complex scripting.

Arrabales et al. also acknowledged the need for a flexible cognitive architecture for agents

in a virtual environment [ALS09, AML+12]. Separating their implementation into a generic

bot control architecture and a cognitive control architecture, the idea was to provide a high-

level behavior controller that can be reused in different virtual environments. In contrast

to other approaches, Arrabales et al. based their CERA-CRANIUM cognitive architecture

on machine consciousness (MC) research, specifically on Global Workspace Theory and the

Multiple Draft Model. They demonstrated their approach in a case study by developing bots

for UT2004 using CERA-CRANIUM. However, applying the cognitive control architecture

to the UT2004 environment required two additional third-party frameworks (GameBot and

Pogamut2) and scenario-specific adaptations to almost all CERA-CRANIUM components.

In 2016, Smart et al. [SSSS16] claimed to be the first to integrate ACT-R into the commonly

used game engine Unity2. While being an admirable effort, they faced various technical

difficulties and confirmed the performance issue of running both a game engine and a

cognitive architecture on the same machine. The integration also required extending ACT-

R with a custom module, developing an ACT-R API for network communication, and a

third-party network interface, which also needed to be extended. Despite all this effort,

the final experimental setup showed only inefficient agent behavior and could not utilize

numerous ACT-R core modules as they are not meant for virtual characters. Recently, Llobera

and Boulic developed an agent architecture for the Unity game engine [LB19]. Instead of

integrating a complex cognitive architecture, they describe a user-centric design based on

1Epic Games, 2004
2https://unity.com, [online: May 2, 2023] Unity Technologies

https://unity.com

16 Related Work

embodied cognition theory. This approach is promising, especially since it emphasizes

modularity, scalability, and stability while being tightly integrated into a game engine.

However, the solution requires a manual and laborious process for each individual agent to

link the agents’ skills to their goals.

Another approach is providing a middleware that allows interfacing a virtual environ-

ment system with an agent architecture. Two prominent examples are POGAMUT and

CIGA. The POGAMUT framework was introduced by Gemrot et al. [GKB+09, GBK+10] as

a mediation layer between an agent’s body, situated in a virtual environment, and its mind.

The framework includes a simulator of the virtual world, a graphical IDE, a library of base

classes for agent behavior, a service handling communication between the VE and the agent

architecture, and tools for defining and running experiments. Gemrot et al. motivate their

work with the difficulty and steep learning curves of defining autonomous behavior for vir-

tual characters and the lack of commonly available software tools supporting this task. While

POGAMUT 2 was tightly coupled to UT2004 as its VE, the major improvement of the third

version of the framework was to achieve a looser coupling. However, from their description

of the required adjustments to the core systems (perception, interaction, and high-level API),

integrating a virtual environment other than UT2004 or a different agent framework remains

a complex and time-consuming task. Interesting extensions to the framework were planned

(e.g., ACT-R integration, emotion modeling, connection to other VEs), but according to the

publication record, it seems they have never been completed. Furthermore, the framework

is limited to simulating ten virtual characters simultaneously.

Van Oijen and his colleagues are also looking to make intelligent agent technology

more accessible, but with the additional intent of making it available to the games industry

[vOD11, vOVD12, vO14]. Like POGAMUT, van Oijen et al. distinguish specifically between

an agent’s embodiment (the game engine/virtual environment), its mind (the agent system

or cognitive domain), and the interface between them (the middleware). While their CIGA

platform demonstrates possible realizations of these three elements, the research objective

was to provide a theoretical overview of a middleware’s role, design issues, and guidelines

when integrating intelligent agents into virtual worlds. Therefore, they also present a

general-purpose interface to facilitate a connection between an agent system and a virtual

environment independent of specific frameworks, technologies, or application domains.

Taking a middleware approach, like van Oijen et al. or Gemrot et al., seems like an

obvious choice. If done carefully, the middleware is independent of specific systems for

an agent’s body and mind. This aspect is especially interesting since available game en-

gines and agent frameworks are usually implemented using incompatible programming

languages. In theory, this open-system approach also means any agent behavior framework

2.2 Intelligent Virtual Humans 17

can be connected, allowing a wide spectrum of behavioral complexity. Unfortunately, the

abstraction required to facilitate such an open system comes at the cost of reduced perfor-

mance, as information must pass through several interfaces and layers typically involving

multiple data conversions and often network connections. Especially in sectors like the

games industry, where established programming techniques are ignored in favor of micro-

optimized code bases (see, e.g., [Act14]), this fact plays a significant role. Loosely coupling

embodiment and cognitive functions also means that the middleware must manage issues

like asynchronous inter-process and network communication as well as synchronization of

internal states, data, and life cycles. One of the most prominent objectives of middleware

is to make creating human-like agents more accessible. However, it may be argued that the

contrary is true since behavior designers must be proficient in both VE/games technology

and agent technology. Both areas are complex, share little similarities, are often realized

using different technologies, and provide distinctive design tools or UI. Furthermore, the

advantage of a general-purpose approach often fades away as soon as it is realized and must

efficiently interface with concrete systems on both ends. Judging from several reports (e.g.,

[ALS09, AML+12, BL06, GKB+09, GBK+10, SSSS16, vO14]), a significant effort is required

to connect independent virtual environments and agent systems. A middleware may sup-

port this effort but cannot completely cover the gap between the systems [vO14], which

further diminishes the advantages of a general-purpose approach. Finally, being able to

interchangeably use different virtual environments and agent systems is a valuable charac-

teristic in fields like research and education. However, this interchangeability is an unlikely

requirement in a production environment where integrated systems are rarely replaced, es-

pecially in the games industry. Instead of striving for a middleware approach, the objective

of this thesis project is to present a blueprint for cognitive agents, in case you want to realize

your own architecture based on it, but also to provide a solution integrated into a game

engine that is one of the games industry’s standards.

2.2.1 Personality

All the above are potentially interesting techniques for developing more human-like virtual

characters, which are an essential element of various applications, e.g., human-computer

interaction, entertainment, education, and digital storytelling (e.g., [AKG+00, KHW+11,

LTC+01, RP12, SFC+10]). Often users interact with these entities over a prolonged period,

in some cases across multiple sessions. According to Ortony, one of the most important

aspects to making agents believable to users is by conveying consistent behavior based on

personality and emotions expressed through gestures, facial expressions, and decisions they

make [Ort03]. Defining personality profiles requires mapping an individual and complex

18 Related Work

aspect of human beings to a simplified and quantifiable model. It is important to note that

this aspect is temporally stable and not a momentary mental state of a human. During the

19th century, multiple models for representing personality have been developed, validated,

discussed, and sometimes disproved. One of the oldest models for dimensioning personality

are Cattell’s 16 Personality Factors (16PF) [Cat46, Cat57]. His research was based on a list

compiled by Gordon Allport, which included 4000 English words that can each be used

to describe a person. Cattell analyzed and condensed the list to 171 terms, which he then

reduced to the 16 factors using statistical means.

In contrast to this extensive model, the model introduced by Eysenck initially only

included two dimensions: Neuroticism and Extraversion/Introversion [Eys47]. These two

dimensions – sometimes referred to as the “Big Two” – are included in many models of

personality to this day. Later, Eysenck added Psychoticism as an additional dimension to his

model (cf. [Dig90, Eys70]).

From a review of Cattell’s work by Fiske, the development of the Five Factor Model (FFM)

began in 1949 [Fis49]. At this time not more than five personality dimensions could be con-

firmed. While Fiske’s work seemed to have negligible impact on the scientific community at

first, his results were verified in 1961 by a review of several conducted studies by Tupes and

Christal [TC92]. Although the validity of the FFM was reinforced by other researchers (e.g.,

[Bor64, Nor63, Smi67]); it was not until the 1980s that the model gained popularity in the

field of personality psychology through the publication of numerous reviews and studies

(cf. [MJ92]). Another reason for the model’s increased popularity is its consistency across

different observations, self-reports, interviews, and languages [SGW12]. While there are

different labels for each of the five factors, the labels from the Five-Factor-Inventory (FFI)

questionnaire and its updated version, the NEO-FFI, are most used. The FFM’s descriptive

nature and the fact that only five personality traits are sufficient to define a personality

are likely responsible for its popularity when it comes to modeling personality for virtual

humans [AKG+00, KMT08]. Table 2.1 summarizes each label including an exemplary in-

terpretation of high and low values for each dimension. Since different scales exist for

measuring each trait, even within one model, e.g., the NEO-FFI [CM92] and the Big Five

Questionnaire [CBBP93] for the FFM, the development of a generic model for computational

use of personality profiles is motivated in Chapter 4. Furthermore, it is demonstrated, how

findings from psychological studies can be utilized in the agent architecture using the FFM,

which is chosen due to its mentioned advantages.

To understand why people take certain actions and make specific decisions, several

studies were performed to find correlations between their personality and performance in

specific tasks (e.g., [MDWS00], [Her09], [LL01]). Because of differences in the cognitive

2.2 Intelligent Virtual Humans 19

Table 2.1: Dimensions of the Five Factor Model including exemplary interpretations of high and low
scores (cf. [MDWS00], table from [IVC13]).

Label Abbr. High Low

Openness O creative, artistic, multilayered practical, simple, superficial

Conscientiousness C methodical, efficient, thorough unorganized, lazy, incautious

Extraversion E social, optimistic, impulsive introverted, quiet, reserved

Agreeableness A nice, cooperative, likable indifferent, rough, dislikable

Neuroticism N nervous, tense, emotionally volatile calm, satisfied, relaxed

processes, the way personality influences the performance of a person is highly dependent

on the specific task [MDWS00]. However, by integrating a formalized model of personality

profiles into the decision-making processes of an agent, they can be utilized to model more

plausible and realistic behavior. For example, Rushforth et al. extended an existing virtual

human architecture with a personality model to increase the believability of virtual interro-

gatees in a tactical questioning system [RGA+09]. Their evaluation included a personality

model parameterized by ten personality traits, which are derived from the FFM. The results

showed that personality difference could be perceived by test subjects influencing potential

outcomes of the interrogation scenario. Bevacqua et al. investigated whether an agent’s

personality profile could not only generate perceivable differences in behavior, but also re-

flect the agent’s “actual” personality [BdSP+10]. They extended Sensitive Artificial Listener

(SAL) agents with Eysenck’s three-factor model to determine the agent’s preferred means of

non-verbal communication. However, their agents only display backchannel behavior, i.e.,

the agents express their reaction to the user’s input, showing if they are listening, agreeing,

etc. Unfortunately, they did not deploy the system in an evaluation study. Castillo et al.

addressed this shortcoming, who used a similar setup to confirm that human personality

questionnaires can be used to measure the perception of agent personality [CHLC18]. They

also found that the perception of the exact personality depends on the availability of the

communication channel. According to their results, the perception and design of virtual

personalities requires multiple channels that are consistent among themselves. Zhou et al.

went even further and examined the role of agent personality on a user’s trust in the agent

[ZMLY19]. Using a chat-based agent, they conducted job interviews in high-stakes and

low-stakes scenarios. The agent cannot only have its own personality, based on the FFM,

it is also able to infer the interviewee’s FFM personality based on chat messages. Based on

their interview analysis, they found that the agent’s personality affects how much intervie-

wees trust that agent and how willing they share information with the agent based on that

trust. Interestingly, they noted that by inferring a user’s personality, an agent could adapt

20 Related Work

its own personality to maximize trust according to their findings. Zhou et al., like many

others used the FFM to model agent personality. However, Völkel et al. argue that human

personality models, like the FFM, are not suitable to describe personalities of conversational

agents [VSB+20]. Thus, they propose their own personality model based on a psycholexical

approach, consisting of ten traits that are not consistent with the FFM. However, their argu-

ment directly contradicts statements by other researchers, e.g., Castillo et al. [CHLC18], and

is specifically aimed at speech-based virtual assistants like Alexa, Siri, or Google Assistant.

Therefore, this result should be considered with care. Knob et al. presented another ap-

plication of agents with personalities, simulating heterogeneous crowds based on the FFM

[KBM18]. Personality traits are used to control behavior regarding group formation during

evacuation scenarios. Their evaluation showed that with personalities, the intended results

could be observed.

2.2.2 Emotion

In contrast to the temporally stable personality, emotions are dynamic mental states, which

can change over short periods of time. Colloquially, the term emotion is often used inter-

changeably with the term feelings. In the context of this thesis project, emotions are defined

as the sensation and perception of feelings resulting in a short-lived change in mental state.

Within this model, the change in state is always linked to a direct cause, which separates the

nature of emotion from mood. Among other things, mood can often not be clearly linked to

a cause. Instead, it is the result of complex cognitive processes, influenced by various factors

and often not completely comprehensible. A further distinction between emotion and mood

is their temporal effect. A mood can last for a prolonged period of time, while emotions are

typically immediate and short-lived. However, despite the separation of both states, their

linguistic concepts are not independent of each other (cf. [Tha89]).

Like personality, many approaches for modeling, categorizing, and dimensioning human

emotion exist. A method for objectively and accurately measuring human emotion has yet

to be discovered. Therefore, models of emotion are typically identified by the name of

the method used to survey them. One of the core discussions is the question whether

the dimensions identified as part of a model are interdependent [Tha89]. Some studies

suggest a mutual dependency, others indicate positive correlations between dimensions of

the model, and yet others state that dimensions are independent. Further studies show that

weak emotions are independent or positively influence each other, while strong emotions

negatively influence each other. The number of dimensions is also a subject of debate. For

example, the Eight State Questionnaire (8SQ) samples eight dimensions [CC76], while for

other models, like the Activation-Deactivation Adjective Check List (AD ACL) [Tha86], two

2.2 Intelligent Virtual Humans 21

dimensions are sufficient. Thayer points to the different ways of data acquisition as the

cause for these different results. Especially the combination of subjects’ self-reporting, non-

standardized questionnaires that are tailored toward an individual model, and changing

analysis methods are problematic. Thayer mentions one example where an analysis of the

AD ACL confirmed two dimensions, however, by adding further items to the questionnaire,

a third dimension could be extracted from the reported answers [Tha89].

For modeling emotions of virtual characters, the OCC Model of Emotion [OCC88, Meh96]

is popular among researchers in this field [KMT08, NFdSS10]. The model includes 22 types of

emotions that can be either positive or negative. However, its scale makes the model complex

for integrating them into embodied characters [Bar02]. Depending on the application,

alternatives for representing emotions can be used. For example, Curran’s 8SQ requires

only eight dimensions [CC76] and the PANAS model reduces this number further by only

considering positive and negative affect [WCT88]. The agent architecture proposed in this

thesis specifies neither the type of emotion model nor the number of emotion dimensions.

However, an integral aspect of this new architecture is the combination of the emotion

model with an agent’s personality. Therefore, for the application-driven architecture, a two-

dimensional model based on AD ACL and PANAS is suggested to keep the combinatorics

of dimension interactions maintainable.

Few examples in the literature consider both personality and emotion. One of them

is Gebhard’s layered model of affect (ALMA) that defines mood states in PAD (Pleasure,

Arousal, Dominance) space [Geb05]. Each octant of PAD space is a discrete mood description,

which is further categorized by its strength depending on the distance of the current mood

state from the origin. An agent’s default mood is defined by a FFM trait configuration.

The emotion model generates emotions according to the OCC and each type of emotion is

mapped to PAD space. The intensities of the emotions are controlled by an agent’s FFM

personality. From all active emotions, an emotion center in PAD space is calculated that

is used to gradually change the agent’s current mood. While the agent’s action selection

is scripted, different variations of the action can be provided for each discrete mood state.

Consequently, the mood state determines an agent’s displayed behavior, e.g., by affecting

the selection of dialog options and strategies, idle gestures, or facial expressions.

Johansson and Dell’Acqua criticize that AI behavior in commercial games is predictable

and invariant [JD12]. They also argue that random action selection does not solve the

problem, because the resulting behavior is inexplicable to an observer. Therefore, they extend

behavior trees, which are a common tool for authoring character AI in the games industry,

with a new priority selector node. This node type considers a combination of a character’s

emotional state and a set of correlated factors (time, risk, planning) to decide which child

22 Related Work

node to select. Due to the difficulty of measuring emotion, they define correlations based

on intuition and advise users of their system to choose emotions that are consistent with the

modeled character. Belle et al. extend the idea by Johansson and Dell’Acqua and combine it

with Gebhard’s ALMA to develop a lightweight cognitive architecture [BGG19]. Similar to

the work presented here, their objective is to address the amount of computational resources

required by conventional cognitive architectures while being able to simulate affect with

psychological accuracy. Their emotion adder node can be integrated into behavior trees and

induces the specified emotion in an NPC. The NPCs current emotional state affects its mood

state (a position in PAD-space). An e-selector node uses the current mood state to choose

between its child nodes. Although there are eight different mood states, an e-selector node

can only have two children which represent either a positive or negative action. Furthermore,

emotional responses can also be triggered by events stored in memory. Unfortunately, they

applied their system only to dialog selection and there seems to be no direct connection

between a character’s personality, emotional state, or mood state, and the action selection.

Another positive example is the game Watch Dogs 23, where the developers equipped

agents with an emotional state and personality traits to diversify their behavior [BP17].

Decision-making is mostly reaction-based using fuzzy rules to choose between multiple

behavior options based on emotion and personality. An additional mood state machine

avoids erratic changes in emotion. While the deployed system is not complex and not based

on psychological models, it emphasizes the role of personality and emotions in plausible

behavior generation for virtual characters.

2.2.3 Synthetic Perception

Perception can be regarded as the input stage to an agent’s action selection processes

[PCR+11] and as such represents the foundation of plausible behavior (cf. [Blu97, POS03,

Rey87]). Therefore, perception processes for agents have been addressed in various research

fields. The most relevant fields for the work presented here are computer vision, intelli-

gent virtual agents (IVA), embodied conversational agents (ECA), and game development.

Within these fields, perception processes are often mentioned, but rarely are they the focus.

Modeling perception, specifically attention, in a biologically plausible way has been an

important subject of computer vision research for decades. Suitable models can aid in de-

tecting interesting image regions as well as in segmenting and tracking relevant objects. For

example, Tsotsos et al. presented an approach for feature selection in images by activating

specific units within an image processing pyramid [BT09, TCW+95]. Units are activated by

a process called selective tuning, which requires several traversals of the pyramid. The result

3Ubisoft, 2016

2.2 Intelligent Virtual Humans 23

is an attentional beam through the pyramid. Feature selection is simulated by including a

winner-take-all (WTA) process on each level of the pyramid, as is the case in many com-

putational models of biologically plausible cortical selection processes, like visual attention

[KT18]. As an example, the work of Bruce and Tsotsos was strongly influenced by the models

presented by Koch and Ullman [KU87] and Olshausen et al. [OAVE93]. Other examples are

those reported by Bruce [BT09] and Pomplun [Pom06]. Some research has also been per-

formed to apply these concepts to more practical applications (e.g., [Fri06, HKRS95]). The

foundation of most computer vision approaches are intricate image processing algorithms,

which are often not applicable to real-time virtual environments due to their complexity (cf.

[BA13, RPA+15]). Additionally, theses algorithms require images to process, which need to

be synthesized in such scenarios, which increases computational costs even further.

In virtual reality and agent research, perception and attention models have also gained

significance [PCR+11]. In this field, plausibility takes precedence over accuracy in a neuro-

biological sense. Although, agents generally do not need to differentiate between the virtual

environment and their model of the environment, perception capabilities of simulated enti-

ties are often limited, mimicking their real-life counterparts, to generate believable behavior

[LA00]. While any input received by an agent could be defined as a percept [RN10], it makes

sense to distinguish between stimuli and percepts. Stimuli are information collected by

virtual sensors from the agent’s environment. Percepts are stimuli that an agent has become

aware of, i.e., the agent must have focused its attention on the stimulus (cf. [POS03]). This

distinction will be revisited in Chapter 5.

Additionally, solutions within the area of virtual human research must fulfill real-time

requirements to allow for interactive experiences, limiting the complexity of applied ap-

proaches (e.g., [KW15]). Most research in this area focuses on simulating eye gaze as it

represents a suitable external indication of attention (cf. [APMG12, BA13, PAGM15]). For

example, Kim models attention for virtual humans to decide when to change gaze direc-

tion alongside its attention to another object [Kim06]. A model by Andrist et al. considers

physiological characteristics of gaze shifts to convey the presence of attention in a virtual

character to improve users’ affiliation with the character and learning. While simulating eye

gaze is an interesting aspect requiring virtual perception, it remains only a specific subtopic.

Like human perception, virtual attention models can also be used to reduce or filter the

complexity of a scene saving computational and memory resources within the perception

process. At the same time, such an approach can create the impression of an overlooking

or unobservant agent, creating a more realistic representation [BA13]. Typically, solutions

generate saliency maps to identify regions or objects that attract an agent’s attention [IDP03].

In virtual environment applications, these techniques require rendering a virtual camera

24 Related Work

image, usually in reduced resolution, for every simulated agent (e.g., [BSFL+12, POS03]).

Many approaches even require several feature maps of the rendered image. Itti et al., for

example, generate 72 feature maps from pre-processed video frames in combination with

a task-relevance map for top-down attention and a winner-take-all approach to guide a

virtual agent’s gaze [IDP03]. While abiding to neurobiological models of visual attention,

such an approach does not scale for real-time multi-agent scenarios. Furthermore, the

applied attention models are not considered on a cognitive level in most cases [CKH+15].

However, the amount, relevance, and type of available information is an integral part of

an agent’s action selection process [PCR+11]. Among others, agents can choose physical

actions within their environment (e.g., moving to a position from which more appropriate

information can be obtained) or “internal” actions like attention direction or primary sense

orientation. On a technical level, several approaches address attention processes within

larger agent frameworks, e.g., filters [BBT99] or subscriptions [vOD11]. In these examples,

versatile middleware approaches are presented, but the actual implementation of specific

attention algorithms or strategies are not addressed. Instead, they are left to a designer.

The idea of limiting sensor capabilities of agents to simulate perception is a more common

approach than considering actual attention models. In game development, it is mostly

concerned with detecting and reacting to players (e.g., [Leo03]). However, while game AI

programmers try to create plausible behavior, the most important aspect is always to provide

a fun game experience. Players must never feel cheated by their in-game opponents; thus,

agent behavior must always be obvious to the players. The agent’s perception processes

need to be designed accordingly. As a result, behavior generation is typically solved with

diverging approaches in game AI and virtual humans. One objective of this thesis project is

to bring both areas closer together by providing a controllable yet versatile solution.

Virtual human researchers are not constrained by the goal of providing fun experiences

and are able to explore more realistic perception models within their work. In general, IVAs

are equipped with a set of virtual sensors often representing actual sensory organs of living

beings. Due to the importance of the visual channel in human perception processes, simulat-

ing visual sensation is the most frequent approach to generate more authentic behavior for

simulated entities. However, a few examples exist that deal with the perception of stimuli

from multiple sensor modalities, e.g., [BA13, KW13, KvVH05]. The simulation of the visual

sense is most commonly implemented in one of two approaches: geometric algorithms or

synthetic vision [PCR+11]. Geometric approaches utilize techniques such as ray-casts or

intersection tests to check objects for visibility. A common technique is to evaluate whether

objects are placed within one or more view cones (e.g., [KW11, Leo03]). Synthetic vision ap-

proaches render a low-resolution image of the environment from each agent’s point of view

2.3 Traffic Simulation 25

to determine which object is visible to an agent. The advantage of rendering the scene is that

object occlusion is provided without additional effort. However, the challenge is extracting

relevant information from the rendered scene view. Noser et al. [NRTMT95] simplified

the image analysis by rendering objects with a unique color while neglecting textures and

lighting. As a result of this false coloring, an object is visible if at least one pixel of the rendered

image contains the object’s unique color. Later, other researchers extended this approach

to encode more information or improve performance (e.g., [CT06, PO02, SL05, OPOD10]).

Sample implementations of both approaches are used to realize the concepts developed

within this thesis project (see Chapter 6).

A sensor interface is often designed to provide a unified entry point to access and aggre-

gate data provided by different sensors. The resulting object representations are typically

stored in a hierarchical memory structure (cf. [CT06, KW13]). Peters and O’Sullivan [PO02]

provided a now well-known memory hierarchy based on a psychological model proposed

by Atkinson and Shiffrin. Within the model, entries are swapped between a short-term

sensory storage, short-term memory, and long-term memory. The more attention an object

receives, the higher they are placed in the hierarchy. An interpretation of the model by Peters

and O’Sullivan is integrated into the perception framework presented in this thesis.

A common approach to improve efficiency of virtual perception processes is to include

semantic information about virtual objects. By attaching semantics to objects in the en-

vironment, agents do not have to interpret sensor data to gain relevant knowledge, e.g.,

about object affordances. For an overview of semantic modeling see [TBSK08] or [vOVD12].

Within this thesis project, specific semantics are also defined in an application context to

make perception and knowledge retrieval more efficient.

2.3 Traffic Simulation

Within this thesis project, the developed cognitive agent architecture concept is realized to

simulate road traffic for a virtual bicycle simulator. Traffic simulations are employed in

a variety of applications, e.g., road planning, traffic jam prediction, virtual environments,

and digital games. Behavior of the simulated traffic participants differs in complexity and

type, depending on the application. For example, in digital games that provide an open

world for a player to explore, the traffic participants serve only as a backdrop to allow the

player to experience a living environment. In such cases sufficient realism can be achieved

through comparatively simple means, e.g., using finite state machines or scripts. These

approaches are sufficient because agents, which are not relevant to the game’s objectives,

are not observed in detail over a prolonged period of time. In traffic simulations used for

26 Related Work

road planning and similar tasks, only the emergent traffic behavior of the entire system is of

interest, e.g., to reveal deficiencies of a given road network. Human traits, like reaction time

or imprecision, are expressed in a mathematical form, which defines behavior. Especially car

following models provide numerous approaches to plausibly convey tasks like acceleration,

approaching an obstacle, or keeping the distance to a lead car (see [Bar10] and [TK10] for

an overview). Nevertheless, these approaches usually do not try to replicate the cognitive

processes involved while participating in traffic, and making individual, observable behavior

believable to a user is not a requirement. Aspects, such as personality and emotion, are

typically only implicit parts of different driving behavior achieved by varying parameters

in microscopic traffic models. One prominent example is Wiedemann’s psycho-physical

car-following model (see, e.g., [FV10]). Eventually, the multitude of proven traffic models

provides important starting points and inspirations for enhancing them with more human-

like behavior on the agent level.

Traffic simulations are typically categorized into microscopic, macroscopic, and meso-

scopic simulations [Bar10, HHST02]. Macroscopic traffic models do not consider individual

vehicles, but rather model aggregated parameters (e.g., average velocity, traffic density). In-

volving a user as an active participant in traffic is not possible in macroscopic models, which

means they are unfit for interactive virtual environments. Microscopic traffic models model

each individual vehicle with its individual parameters (e.g., current velocity, desired veloc-

ity), especially its current position in traffic and its behavior regarding traffic rules. Since

users can represent one of many individual vehicles, integrating them into a microscopic

system is straightforward, but not a simple task.

Mesoscopic traffic models bridge the gap between the individual approach of microscopic

modeling and the aggregated approach of macroscopic modeling. This results in select

aspects, such as traffic flow, being modeled at the macroscopic level to decrease overall

computational effort and to achieve good scalability. However, mesoscopic models also

include microscopic concepts, which can be used to keep track of associated information,

such as individual route choices or vehicle types [BKA05b].

Hybrid approaches combine microscopic and mesoscopic models to simulate specific

areas of interest in a traffic network using microscopic modeling, while everything else

is simulated using less detail using a mesoscopic model (cf. [BKA05b]). Such a hybrid

approach is also discussed in Section 6.3 to handle real-time constraints of the realized

cognitive agent application. Another example of a mesoscopic simulation is the traffic

flow model for the POLARIS transportation systems simulator developed by de Souza et

al. [dSVA19]. It successfully combines the level of detail and accuracy of microscopic

models with the computational benefits of macroscopic models. Saprykin et al. developed

2.3 Traffic Simulation 27

a simulation for generic large-scale networks that achieve high computational performance

by taking advantage of parallel GPU computing [SCA19]. They based their simulation on

MATSim4, an open-source framework for large-scale agent-based transport simulations.

MATSim is based on queuing theory, which lends a different approach to traffic simu-

lation. In queuing theory, packets travel through a network of service stations and queues.

The packets stay in a queue until a service station serves them at certain rates. This approach

can also be applied to vehicle traffic. Vehicles are modeled as packets, roads as queues, and

intersections as serving stations [BZBP09, CBN03]. Vandaele et al. [VvWV00] simulated a

highway using several queuing models. They used their simulation for traffic management,

congestion control, and to determine the environmental impact of road traffic. Van Woensel

et al. [vWV07] gave an overview of how queuing theory is used for traffic simulations.

Furthermore, they suggest combining agent-based simulation and queuing theory to benefit

from both approaches. One interesting model they refer to is the FastLane model by Gawron,

which limits the number of agents that can reside on the same edge of a traffic graph at the

same time [Gaw98b]. FastLane is the basis for MATSim [CBN03, SEN99].

Cetin et al. [CBN03] introduced a parallel implementation of FastLane. By parallelization

and execution on a 64 CPU cluster, they can simulate 24 hours of traffic in less than two

minutes. Additionally, they introduce a “fair” intersection, which divides the limited space

of an outgoing road proportionally to the capacity of the incoming roads. Their research

considers large scale transportation scenarios and not urban scenarios, which are of interest

to the work presented in Section 6.3. Furthermore, the system realized within this thesis

project cannot run on massively parallel systems but on consumer hardware. Grether et al.

[GNN12] presented a combination of FastLane and the model by Cremer and Langenfeld

[CL97]. This led to a more realistic representation of turning lanes at intersections, since the

FastLane model neglects that lanes at intersections often branch into multiple lanes. Their

focus was on interactions between agents and intersections and how they can be simulated

efficiently. One of their main objectives was to simulate spillbacks with queuing models to

realistically represent real-world traffic. In an interactive, virtual training scenario, it is more

important to ensure a continuing traffic flow in the background.

Simulating traffic in virtual environments, like the FIVIS bicycle simulator, is mainly con-

cerned with the user’s immediate surroundings. Therefore, microscopic traffic models are

the most relevant to the work presented here. Most microscopic traffic simulations are based

on a combination of car-following and lane-changing models (cf. [Bar10, TK10]). During

each step of the simulation, the model is updated by updating each entity representing a traf-

fic participant based on parameters like gap distance to and velocity of the leading vehicle,

4https://www.matsim.org/, [online: May 2, 2023] Multi-Agent Transport Simulation

https://www.matsim.org/

28 Related Work

acceleration/deceleration capabilities, or response time delay. Due to the increased difficulty

of calibration, few car-following models include additional parameters to individualize be-

havior, such as age, gender, risk-aversity, vehicle size, time of day, weather, hurrying, and

fatigue (cf. [PD05]). Most available microscopic models were developed to predict essential

traffic parameters for generic vehicle classes (cars and trucks). However, in training sce-

narios, like those intended for the FIVIS bicycle simulator, special traffic participants (e.g.,

public transport, delivery vehicles, pedestrians, garbage trucks) are especially interesting.

Their individual behavior can disrupt regular traffic and lead to interesting situations that

need to be handled by a learner and other simulated traffic participants.

The foundation for the traffic simulation, presented in this thesis, is the work by Kutz

et al. [KH08, Kut09]. They conceptualized basic building blocks of a traffic simulation

for virtual environments and games. Their description includes a graph structure, which

represents the road network and provides perceptual information to the simulated agents.

The use of individual personalities for each agent, based on the FFM, is also mentioned but

the correlation between an agent’s personality and its respective behavior in traffic had not

been provided.

Performing traffic simulations is impossible without an underlying representation of the

road network. Like traffic simulation approaches, models for road network representations

can be divided into models for macroscopic, microscopic, and mesoscopic simulation. In

general, the semantic representations are defined in a graph-like manner. While road net-

work representations for macroscopic simulations are often represented by simple graphs

without detail, road network representations for microscopic simulations must be very de-

tailed, and the graphs are enhanced by many features such as relations to signs and signals

or detailed descriptions of junction areas.

Although road network representation is essential for simulating traffic, the topic is

rarely focused on in the literature. The main reason being that the representation is often

strongly linked to the simulation system and type. Notable examples range from simple

solutions used in digital racing games [Bia02] to memory optimized networks for open world

games [Kra10, Kra12] to intricate definitions used in commercial traffic simulations [FV10].

Concepts from these examples are adapted for the semantic road network introduced in

Section 6.2, with specific focus on realistic urban roads.

To efficiently generate road networks for traffic simulation, automatic or semi-automatic

processes are preferable to manual setup. Three approaches for the setup of road networks

can be distinguished. The first is to take existing data (e.g., from public databases), which

ideally represent real road network structures, and automatically generate entire networks

2.3 Traffic Simulation 29

taking standardized data as input. While there are many such standards (e.g., by ESRI Inc.5,

Thales6, or [CTHG10]), the OpenDRIVE® standard [DSG10] was identified as the most ver-

satile and flexible within the scope of this thesis project. Reasons for choosing OpenDRIVE®

include, but are not limited to, being open, XML-based, well-documented, well-established,

and actively developed. Furthermore, the standard is maintained by driving simulation ex-

perts as well as being easily transferable and extensible to custom systems [ASA21, DSG10].

The second approach is to create fictitious but realistic road networks using procedural tech-

niques (e.g., [GPMG10, PM01, CEW+08]). The third approach is to deliver a set of tools for

the intuitive manual setup of road networks. This approach can also be used to refine or

improve networks generated by (semi-) automatic approaches. Gerdelan [Ger09] described

a set of point-and-click editing tools for integrating road network representations into exist-

ing virtual environments. Approaches like [ALD11] or [MS09] provide environments where

a user can draw lines, which are adapted by the system such that they are shaped like real

world roads (i.e., shapes based on lines, arcs, and clothoid curves because straights and

curves of real roads are connected by clothoids to avoid abrupt steering maneuvers).

A subset of requirements for a traffic simulation within the scope of this thesis project

includes efficiently representing a road network, providing agents with knowledge about

said network, and having agents interact with each other to provide an interesting environ-

ment for users. Additionally, all these requirements must be realized within an interactive

system, like a bicycle simulator. Digital games, especially open world games, have similar

requirements. In current examples, e.g., Marvel’s Spider-Man7 or the GTA series8, impres-

sive results are achieved considering the significant limitations of available processing and

memory resources. Unfortunately, detailed information about existing game systems is

difficult to impossible to acquire outside of the industry. Some developers share insights

about their games, but traffic simulation is rarely a topic. The few existing examples, e.g.,

[Bia02, Kra10, Kra12], usually do not provide enough detail for re-implementation. Never-

theless, these and similar systems are looked to for inspiration throughout the realization of

the traffic simulation described in this thesis.

5https://www.esri.com/en-us/home, [online: May 2, 2023]
6https://www.thalesgroup.com/en, [online: May 2, 2023]
7Sony Interactive Entertainment, 2018
8Rockstar Games/Take 2 Interactive, 1997 – 2015

https://www.esri.com/en-us/home
https://www.thalesgroup.com/en

30 Related Work

3
Architecture Concept for Attentive

Real-Time Cognitive Agents

“You can’t build a great building on a weak foundation. You must have a solid foundation if you’re
going to have a strong superstructure.”

- Gordon B. Hinckley

One of the major objectives of this thesis project is to provide means of author-

ing and simulating intelligent agents for real-time virtual environments, e.g.,

training simulators. To achieve this objective, the developed solution should

fulfill the following requirements:

(1) The generated agent behavior is believable to an observer to preserve the effect of

immersion.

(2) The generated agent behavior can be controlled by a domain expert or application

designer to support the design goal of the application.

(3) The solution is scalable to enable multi-agent simulations in real-time.

The hypothesis underlying this work is that emulating human cognitive processes in

agents generates more human-like and thus more believable behavior. In cognitive architec-

ture research the same approach is taken to achieve agents with human-level intelligence.

Thus, the obvious solution seems to be applying a cognitive architecture to virtual characters.

In fact, multiple other researchers have investigated this approach with the same rationale

(e.g., [ALS09, BGG19, BL06, BKA+05a, CDB+02, LB19, RJSL10, RJ00, SSSS16]). However,

the number of examples found in the literature is moderate and the proposed solutions are

neither coherent nor consecutive, suggesting that this approach remains difficult and does

32 Architecture Concept for Attentive Real-Time Cognitive Agents

not represent an established solution. Reported examples of cognitive architectures applied

to real-time applications also typically employ network solutions with each cognitive agent

running on a separate machine connected to a common virtual environment. This is due

to the fact that cognitive architectures require substantial computational resources, making

it difficult to run both the architecture and the virtual environment on the same machine

[SSSS16, BGG19]. Other reasons for choosing a network integration are the lack of sup-

port for direct integration into external systems and the technological gap to tools used for

creating and running virtual environments, e.g., game engines [SSSS16].

While a loose network integration is not a desired solution within the context of this thesis,

the benefits of using an existing architecture could outweigh this constraint. However, by

studying examples in the literature, it becomes apparent that authoring agent behavior using

cognitive architectures is cumbersome and difficult for non-experts, due to their complexity,

required production rules, and the level of expertise and experience required. Additionally,

even a loose integration usually requires substantial effort. E.g., Smart et al. [SSSS16] report

that integrating ACT-R into the Unity1 game engine required developing a separate API,

another research team’s network module, and an ACT-R module consisting of 110 production

rules and an unspecified number of ancillary functions to realize a straightforward scenario.

Since modeling the human thought process to achieve human-like behavior remains a

promising approach, it is desirable to design an architecture that is based on the same prin-

ciples as cognitive architectures, but in a less resource-demanding fashion: a constrained or

lightweight cognitive architecture. In such an architecture, modeled processes are abstracted

to a degree at which they are applicable to real-time solutions. The major challenge is find-

ing a suitable balance between the level of abstraction, plausibility of generated behavior,

and required effort for authoring behavior. Since agents built from the developed design

should support application-specific goals, such as training a user, challenging a player, or

entertaining a consumer, the resulting architecture must be flexible, allowing developers to

steer behavior generation in the appropriate directions. Summarizing, the resulting design

should provide a lightweight cognitive architecture serving as a basis for building software

agents while focusing on plausibility of behavior, real-time capability, and controllability.

An aspect typically ignored by cognitive architecture approaches is personality. How-

ever, endowing agents with a consistent personality is a requirement for believable behavior

and reportedly affects outcomes like acceptance, credibility, and trust [MDWS00, Ort03,

RGA+09, VSB+20, ZMLY19]. In contrast, modeling personality for agents is a standard

procedure in IVA research; often combined with a representation of emotion and mood

[AKG+00, KMT08, NFdSS10]. More recently, game developers have also started integrat-

1https://unity.com/, [online: May 2, 2023] Unity Technologies

https://unity.com/

33

ing personality models, recognizing the benefits for diversifying behavior of NPCs [BP17].

Personality in humans is a driving factor for their behavior, contributing to an individual’s

uniqueness [BTD14, CM09, Her09, Mat18]. It is reasonable, that the same observations hold

for virtual humans. Therefore, integrating personality as a core aspect of a lightweight

cognitive architecture is one of the major objectives of this thesis project. Especially the

aspect of linking personality to task-specific behavior is considered psychologically (how to

determine a link) and technologically (how to generate behavior from it).

The fact remains that many agent architectures already exist, some are even specif-

ically aimed at virtual environments (e.g., CIGA [vOD11, vOVD12, vO14] or Pogamut

[GKB+09, GBK+10]). Why is it necessary then to propose yet another architecture design to

answer RQ1 – What is an appropriate design for an attentive cognitive agent architecture

in virtual environments? The answer is, none of the researched approaches fulfill all

three requirements of this thesis project: plausibility, controllability, and scalability. Other

solutions either focus on a subset of the specified aspects or provide generalized middleware

approaches. Therefore, based on RQ1 and the current research gap regarding a personality-

based, lightweight cognitive architecture, the following research task is formulated:

RT1: A lightweight cognitive architecture for virtual environments.

The main motivation of the work presented in this thesis project is to provide means

for simulating autonomous software agents within a virtual world. These agents should

blend into the environment in such a way that their presence improves the experience of

a user interacting with the virtual world while simultaneously supporting a design goal

(e.g., training). Inspiration towards achieving this task is taken from cognitive architec-

ture research by identifying common components and assessing their utility towards the

intended solution. The identified components should be arranged in a modular manner to

maximize flexibility and adaptability to specific application scenarios. Due to the general

application domain of real-time virtual environments, the scalability of solutions should be

considered during all stages of the project. Generating consistent, individualized behavior

is achieved by integrating personality as a core aspect of the architecture. Furthermore, since

controllability is important, the architecture must be customizable through configuration.

The result should be a theoretical agent architecture as part of the concept stage as well as a

version of the architecture suitable for the application stage.

To outline the development of the cognitive agent architecture presented in this thesis,

this chapter is structured as follows. In Section 3.1, the initial situation is described alongside

a recap of cognitive architectures, which provide the main inspiration for the concept. This

34 Architecture Concept for Attentive Real-Time Cognitive Agents

basic discussion is followed by a theoretical concept in Section 3.2, presenting a method-

ological definition. A cognitive agent architecture design, which is based on the theoretical

concept, is described in Section 3.3. In Section 3.4, the methodological design is reduced to

a version that can be realized under the constraints of this thesis.

3.1 Prerequisites

The literal meaning of agent comes from the Latin word agere, which means “to act.” An

agent needs to be part of an environment to act, which can be a very abstract definition (e.g.,

[RN10]), a virtual environment (e.g., [CSPC00, RVP13, HL15]), or the physical world (e.g.,

[PLI07]). The role of the environment will be discussed when describing the environmental

stimulus (see Section 5.2). Being situated in the environment is usually referred to as

embodiment, which means giving a “physical” presence to an agent within its surroundings

(cf. [Li15]). Physicality does not necessarily imply that the body of an agent is made of

real-world material or that it exists in the real world. The body can also be rendered and

animated using computer graphics. The important aspect is that the agent’s body interacts

with the environment including the associated limitations.

Traditionally, the body of an agent has been investigated separately from its mind, i.e.,

the agent’s cognitive capabilities are isolated from its ability to perform actions in the envi-

ronment [HL15]. Whether or not the strict separation of body and mind is useful in general

can be debated from several points of view (e.g., see [RVP13]). In the context of this thesis,

and from a technological standpoint, the classical separation is certainly beneficial. First, the

two layers can be investigated almost independently, which allows focusing on the cognitive

aspect while avoiding further complexity from techniques required to perform the actions,

e.g., animation, physics simulation, inverse kinematics, etc. Second, if considered suffi-

ciently, the separation can be leveraged to interchange bodies across or within simulations.

The separation is not always well-defined and may blur occasionally. For example, sensors

should obviously be a part of an agent’s body, but in the design introduced in Section 3.4

they are part of the mind due to their close connection to the overall perception process.

In cases where the agent’s body should determine its sensory capabilities, a mechanism

selecting sensors could be based on the current form of embodiment.

Based on the loose definition of an agent as a combination of body, mind, and environ-

ment, a closed perception-decision-action loop is defined (cf. [HR95, RN10]). The body

provides information from the environment to the mind. The mind then acts upon this

information by selecting an available action and tasking the body to perform that action.

Once the body has completed the action, the environment has changed, which is in turn

3.1 Prerequisites 35

Actions

Percepts

?
Sensors

Figure 3.1: The definition of an agent requires a combination of body, mind, and environment.
Based on these components, a simple reflexive perception-decision-action loop can be defined. The
agent perceives the state of the environment using sensors. Based on this information a decision is
made, which changes the environment state by performing an action using the body’s actuators. The
image is based on [RN10].

perceived by the agent. Figure 3.1 illustrates the separation of body, mind, and environment

including a depiction of this simple loop, which defines a reflexive agent [RN10].

Reflexive agents may be sufficient for simple task domains, requiring little to no further

components other than the ones indicated in the perception-decision-action loop. Russel

and Norvig discuss a simplistic example of a vacuum cleaner agent whose perception is just

a tuple of the location it is in and the information whether that location is clean or dirty.

The agent’s only actions are moving to one of two locations or cleaning and its decision

process is one simple if-else rule. However, as the application domain and the desired

agent behavior become more complex, the architectural design generating the behavior

must become more sophisticated [HR95]. Especially, when attempting to imitate humans in

a virtual world, additional structures become necessary, e.g., to keep track of past percepts,

learn from experiences, or act towards achieving a goal. Due to their objectives of achieving

artificial general intelligence, cognitive architectures (such as Soar [Lai08, Lai12]) seem a

logical choice for realizing human-like, cognitive agents. However, designing models of the

human mind, capable of solving general problems, naturally results in complex architectures.

36 Architecture Concept for Attentive Real-Time Cognitive Agents

These architectures are typically difficult to understand, maintain, and apply. Additionally,

they require extensive computational resources making them cumbersome for real-time

multi-agent scenarios. Yet, cognitive architecture research is rich in history, examples, and

insights that provide useful inspirations for a lightweight cognitive agent architecture design

(see Chapter 2). Besides cognitive architectures aimed at contributing towards artificial

general intelligence, there are examples that focus on isolated aspects of human cognitive

processes. The architecture design proposed in this chapter features the elements that are

most common in cognitive architecture research, most notably short-term and long-term

memory, decision making, learning, and perception [DOP08, KT18, MS11].

3.2 Theoretical Concept

As mentioned at the beginning of this chapter, the requirements for an envisioned solution

of authoring and simulating agents in virtual environments are believability, controllability,

and scalability. Based on these requirements and the associated scientific gap, a review of

existing cognitive architectures and virtual human architectures was conducted to identify

essential cognitive skills. From the wide variety of identified skills, a set of necessary

cognitive skills and functionality is compiled. This set is described in the following and is

subsequently used to put forth the concepts introduced in Sections 3.3 and 3.4.

3.2.1 Perception

The first interesting aspect is to model what an agent should be able to perceive from its

environment. To fully simulate an environment, all information about said environment are

known and can thus be provided to every agent (cf. [GLBV08]). This, however, is not a

realistic reproduction of human behavior. For example, a human cannot know for certain

whether other beings are around if they are not perceived by at least one sensory organ.

Therefore, a “perception filter” needs to be applied to control which information reaches the

agent in a reasonable manner. A typical “filter” designed after their biological examples are

sensors. The number and types of sensors available in an architecture determine the amount,

type, and complexity of input into the system. Often sensors correspond to human senses

(i.e., vision, hearing, touch, smell, taste, proprioception), but they can also include modalities

not available to humans (i.e., symbolic via keyboard or GUI, ultrasonic, laser, infrared, GPS,

and others) [KT18]. Depending on the application, some modalities make more sense than

others, some sensors may function as shortcut to avoid intensive calculations or intricate

algorithms (e.g., using speech-to-text instead of modeling the perception of sound), and

some may be unnecessary [KT18]. For example, for agents in a traffic simulation, the visual

3.2 Theoretical Concept 37

and auditory senses are the most important. In contrast, simulating smell or touch is a waste

of recources during development and during simulation.

In this thesis, attention is considered as part of the perception process, which is sometimes

called perceptual attention or external attention. One biological reason for attention is to

decrease the amount of information provided by the senses. In cognitive architectures this

relates to selecting and modulating information coming from different sensors with visual

sensors being the most common. Tasks covered by this type of attention are typically region

of interest selection, gaze control, task-driven attention, and data-driven attention [KT18].

Generally, attention in agent systems serves both aesthetic and functional purposes. One

aspect of the functional purpose is reducing information load as mentioned above. Another

aspect is to orient the agent’s sensors, ensuring that the relevant information is provided to

its depending processes (e.g., action selection). The aesthetic purpose is to communicate the

agent’s internal attention processes overtly to an observer, increasing the naturalness of the

entity by emulating what we, as humans, are used to observe in other beings [PCR+11].

3.2.2 Memory

According to Atkinson and Shiffrin, memory is the component that distinguishes human

beings from each other; that determines who we are [AS16]. What the human brain has

stored about the world dictates what we perceive and how we perceive it [GB16], who

we talk to, what we eat, what we read, and so forth. The knowledge stored in memory

basically determines almost all human interactions and decisions [AS16]. Therefore, it

seems obvious that all cognitive architectures contain some sort of memory model serving

similar purposes, i.e., storing intermediate results [DOP08, KT18]. Ideally, a realistic memory

module would be an effigy of the human original including its abilities and disabilities. One

of the major problems with this ideal is the fact that, due to its complexity, the human brain

has yet to be entirely understood (cf. [GB16, PO02]). Consequently, memory models can

only be simplifications that emulate observed functionality. The main task of memory is

storing results, but actual implementations differ widely depending on the task domain.

Most memory modules are structurally organized into a hierarchy of sub-modules. While

research suggests that a multitude of “memories” exist in the human brain (e.g., iconic,

echoic, episodic, face, and voice memories [Bad03]), many examples distinguish between a

short-term (or working) memory and long-term memory (e.g., [Lai12, LC06, KT18, PO02]).

The exact purposes and naming of the two may differ, but usually their general purpose is

implied by the names given above. The long-term memory is used to store information that

is meant to reside within the system for extended periods of time. The short-term memory

represents information currently needed by the system to operate, e.g., the content of a

38 Architecture Concept for Attentive Real-Time Cognitive Agents

goal stack in planners [KT18]. How, when, and where information is stored is defined in

accompanying processes. These memory processes include, e.g., rehearsal, memory search

and retrieval, or discard in accordance with memory capacity. Together with the structural

component, they define the memory model (cf. [AS16, KT18]).

3.2.3 Internal Simulation

Another important skill learned by humans is to anticipate what consequences will result

from their actions. Such anticipation requires an internal representation to estimate a possible

outcome of the environment’s state after an action has been performed. This could, for

example, involve spatial reasoning in the form of visual imagery as proposed by Lathrop

and Laird [LL07]. In any case, it will require a form of internal simulation. A closely related

issue is that of predicting behavior of other agents to plan or act accordingly. To model this

ability, an agent must be given the tools to perceive other agents and to anticipate their future

actions. In other words, an agent must be able to project its ability to foresee the results of its

own actions as well as its reasoning processes onto other agents. During this process, agents

should not be able to acquire more information about other agents than humans can derive

from observing other humans. For example, agents should not be able to access another

agent’s memory, although this could be achieved for virtual agents without difficulty.

3.2.4 Alternative Behavior

A major shortcoming of state-of-the-art simulations in virtual environments is the inability

to produce alternative behavior to otherwise irresolvable situations. To clarify this issue,

consider the following classic example: Either by design or through an action of the player,

a dead end is created in a level of a digital game, resulting in NPCs getting stuck due to

their programmed behavior. According to [YT18], this result is a problem of level design or

AI testing in game development. A simple heuristic to resolve the issue is often to remove

the agent from the environment if it cannot advance. However, this solution will certainly

break the suspension of disbelief and reduce the player’s immersion; the very thing that

it is supposed to avoid. Instead, it would be much more interesting if the agents would

start to “think” of an alternative plan to resolve the situation that lies outside the scope of

the programmed rules. For example, agents could “re-purpose” existing structures to pass

around the blockage, such as a car temporarily using the sidewalk or a character climbing

through a window. Although, these usages are not part of the agent’s regular behavior,

they seem appropriate to an observer if the circumstance justifies it. Of course, one or

more alternative solution could be added to the regular action-selection process after being

discovered and would then have to be covered by a testing or level design process. However,

3.2 Theoretical Concept 39

it is impossible to think of, design, and test every possible scenario. Ideally, agents would

be able to derive alternative affordances of structures or objects themselves and utilize them

if necessary. However, if agents are allowed to break existing rules for navigation, social

protocol, or object usage, they must do so only if it makes sense to an observer.

3.2.5 Individual and Emotional Decision-Making

The need for having individualized behavior is typically not a topic of AI research. In IVA

research, however, it is a common theme (e.g., see [KMT08, HR15]). The agent architecture

developed in this thesis is meant to be a basis for multi-agent simulations in virtual envi-

ronments. Consequently, users will be able to observe multiple agents in similar situations.

To keep the user’s sense of presence, agents should not all behave in the same way. Instead,

similar to reality, behavior should be individual to increase believability [KMT08]. In addi-

tion to memory (see Section 3.2.2), personality is one further aspect that defines humans as

individuals. A person’s personality is a relatively stable characteristic that influences that

person’s responses and decisions, and thus the observable behavior [BTD14, CM09, Mat18].

Therefore, IVA researchers have been investigating the use of personality, typically for

driving decision-making processes. However, personality does not only influence decision-

making but the entire cognitive system [SFC+10]. This observation should be reflected in

the architecture concept accordingly.

Yet another important aspect of everyday life are emotions, moods, and feelings. Al-

though these are non-cognitive factors, the current emotional state can influence memory

and perception and thus the decisions someone makes [Bad03, PCR+11]. Therefore, they are

considered here as one of multiple cognitive processes. Simulation of these factors ties in

closely with the previous goal of dynamic behavior as a specific emotion might increase the

probability to break given rules and to behave irrationally; maybe even dangerously. Deci-

sions are influenced by both the current situation and the current emotional state. Therefore,

since emotions, mood, and feelings influence perception and decision-making, the entire

cognitive process is affected (e.g., see [SFC+10, SFC+11]).

3.2.6 Miscellaneous Factors

In addition to the items listed above, the behavior of agents may also depend on additional

factors. For example, an agent’s current role can have an influence on its action selection.

Depending on whether the agent impersonates a soldier, a tourist, a sidekick of the player,

or a trainer in a training exercise, it will be more or less likely to make certain decisions.

Other factors could be the time of day, weather conditions, the agent’s current objective, its

age or gender, and more; too many to be listed or considered here.

40 Architecture Concept for Attentive Real-Time Cognitive Agents

3.3 Architecture Design

From the desired characteristics detailed in the previous section, the methodological cogni-

tive architecture concept shown in Figure 3.2 is derived. One important aspect of generating

plausible behavior is making sure that agents do not all act the same. To achieve individ-

ualized behavior, a psychological personality profile is part of each agent. As a result, the

architecture design consists of two layers: a foundational layer including the personality

profile and on top of this layer, cognitive process modules determine an agent’s capabilities.

The structure of the cognitive layer is inspired by cognitive architectures as mentioned above.

All the cognitive processes in the second layer are influenced by the underlying personality

profile. Through this influence, the personality layer diversifies generated behavior between

individual embodiments of agents. At the same time, the personality ensures that an indi-

vidual agent’s action selection process is consistent with its past behavior patterns, which

avoids the impression of non-deterministic decision making. The general design allows for

interchangeable implementations of personality profiles, and it incorporates a model able

to transition results of psychological studies to agents. When generating profiles from real

studies, it is possible to link personality prototypes to domain-specific behavior patterns that

represent real-life behavior (e.g., driving [Her09]). In some instances, it may be sufficient

to achieve archetype behavior not specifically linked to real-life behavior. In these cases,

a similar approach can be used by assigning personality prototypes to appropriate agent

types. More details about this topic can be found in Chapter 4.

Information from an agent’s environment (symbolized by the top arrow in Figure 3.2) en-

ters its mind by passing through a perception module (see Section 3.2.1). The module filters

information coming from the environment; its complexity depends on the level of realism

that is to be achieved as well as on the available sensors and sensor modalities. Additionally,

a module representing emotion, mood, and feelings is coupled to the perception module,

because what an agent perceives2 should influence its emotional state and its emotional state

should influence what it currently perceives.

At the center of the cognitive processes is the short-term memory, representing the

agent’s current knowledge about itself and the world it inhabits. The short-term memory is

the agent’s working memory; the basis for every subsequent process, which must be filled

with information from either perceiving the world around the agent or from long-term

memory. Depicting the long-term memory as one module may be too optimistic as it can

include multiple types of information, e.g., episodic memories, social protocols, semantic or

2Note that there is a difference between perceiving and sensing information involving where information is
stored in memory. However, to keep the description simple at this point, the two are not differentiated in this
chapter. Details about the differences can be found in Chapter 5.

3.3 Architecture Design 41

Generic

Psychological

Personality

Profile

Action

Emotion
/Mood/
Feelings

Perception

Short-term
Memory

Internal

Simulation

Learning

Decision
Process

Long-term
Memory

Cognitive Layer

Outgoing

manipulation

of VE

Information

incoming from VE

Figure 3.2: A methodological concept of an architecture for cognitive agents in virtual environments.
A layer of cognitive process modules is situated on top of a personality profile layer. Interaction with
the agent’s body and environment are indicated by the incoming and outgoing arrows (above and
below the cognitive layer). The cognitive processes define the agent’s capabilities, which are all
influenced by the underlying personality profile. Image based on [SvS20].

42 Architecture Concept for Attentive Real-Time Cognitive Agents

global knowledge, strategies, etc. [KT18, PO02]. Each of these types of long-term information

could be stored in different ways and in different modules. At this level of abstraction, it is

sufficient to group this information in one module.

If information residing in short-term memory is useful for future situations, e.g., observa-

tions of action results, a learning module encodes this knowledge into long-term memory.

This connection may be more complicated when implemented as it may have to retrieve

information from other modules. However, every information available in other modules

can be made accessible by encoding it in short-term memory.

A decision process module retrieves knowledge from working memory to select the

appropriate action from an action module. The agent’s current emotional state may also

influence this selection process, depending on the type and strength of the emotions, the

mood, or feelings. The emotional state can be one factor that triggers the decision process

to adapt action selection to the current situation over time. In contrast to the description in

Section 3.2.5, memory is influenced by the emotional state only indirectly through emotion-

ally altered perception and decision making, as an additional direct influence on memory

is redundant. Alternative behavior generation, as discussed in Section 3.2.4, is considered

part of the decision module here. The functionality of this module can be provided, e.g., by

straightforward if-then rules, elaborate machine-learning algorithms, or other intricate deci-

sion processes. In most cases, application-specific needs will dictate the actual realization of

the decision module, especially regarding the trade-off between autonomous behavior and

control over generated behavior, which was discussed in Section 1.2. In this thesis project,

the decision process is not further elaborated and a behavior tree implementation is used in

the realization of the architecture concept.

The action module may store all actions available to an agent and provide them for

retrieval. The module may also be responsible for executing the actions (including processes

like navigation or animation playback). Actions that influence the environment are per-

formed by an agent’s body. However, actions should not only be performed in the agent’s

environment (indicated by the bottom arrow in Figure 3.2). It should also be possible to

perform the action within an internal simulation whose outcome can influence which action

is selected for performing externally. This mechanism can be used to realize the anticipation

of results from the agent’s own actions or from those of other agents (see Section 3.2.3). The

distinction between internal and external action is the reason for having the action module

reside within the agent’s mind. The arrow pointing to the agent’s environment represents

environmental actions, i.e., actions that use the agent’s body to change the state of the envi-

ronment. The other arrow represents internal actions, i.e., actions whose consequences are

simulated within the agent’s mind.

3.4 CA²RVE - Cognitive Attentive Agents for Real-time Virtual Environments 43

Conscientiousness

Agreeableness

Openness

Extraversion

Neuroticism

Conscientiousness’

Agreeableness’

Openness’

Extraversion’

Neuroticism’

Action

Decision
Making

Emotion

Perception

Attention

Sensing

Memory

Cognitive Layer

Emotion Layer

Personality Layer
Outgoing

manipulation

of VE

Information

incoming from VE

Figure 3.3: Depiction of the CA2RVE architecture design. An underlying personality profile is influ-
enced by the current emotional state, resulting in a dynamic intermediate personality layer. On top, a
cognitive layer includes the agent’s cognitive processes, which are influenced by its personality and
indirectly by its emotional state. Perception “filters” information coming in from the environment.
The module includes sensation, memory, and attention because the processes are closely related. A
decision-making module represents several high-level processes used for action selection. An action
module serves as output interface to the environment.

3.4 CA²RVE - Cognitive Attentive Agents for Real-time Virtual En-

vironments

The cognitive agent architecture concept proposed in the previous sections is directed to-

wards meeting the characteristics discussed in Section 3.2. The concept’s main purpose is to

provide a theoretical agent architecture for solving the research questions considered in this

thesis and is the result of the conceptual research stage. During the application stage, the

theoretical design is refined, condensed, and re-ordered to focus on lightweight and robust

real-time application without compromising the overall design. Since the intended use for

this architecture are virtual trainings, simulations, and (serious) games, computational per-

formance must always be considered. Additionally, depending on the application domain,

the definition of plausible behavior may vary. The architecture should reflect that ambiguity

by allowing the necessary flexibility by enabling configuration towards specific application

scenarios. For that purpose, several control mechanisms are integrated, and components

are defined in more detail (see Chapters 4 and 5). Additionally, elements are grouped in

specific ways, e.g., to enable interchangeability or efficiently swapping components in or

44 Architecture Concept for Attentive Real-Time Cognitive Agents

out. Figure 3.3 demonstrates the changed concept of the Cognitive Attentive Agents for

Real-time Virtual Environments (CA2RVE) architecture.

As in the methodological concept, the foundation layer consists of a personality pro-

file. The generic model is replaced by the Five-Factor Model (FFM). The model is a pop-

ular choice in virtual agent research, due to its intuitive and descriptive characteristics

[AKG+00, KMT08]. Additional reasons for the model’s validity were mentioned in Chapter

2. Additionally, a second personality layer is introduced to capture the aspect of dynamic

behavior generation influenced by the current emotional state. The static personality profile

of an agent is altered by its current emotional state, resulting in a dynamic personality profile.

This approach is not psychologically correct, but has two advantages: (1) The influence of

the emotional state can be activated or deactivated without having to alter any other process.

This flexibility is useful for customizing the architecture to specific scenarios but can also be

utilized for evaluations comparing emotional to non-emotional agents. (2) The influences of

the emotional state and the personality profile do not have to be encoded in every cognitive

module. Instead, emotion indirectly influences all modules via the altered personality.

Due to the intended use of the CA2RVE architecture, the aspects mood and feelings

were removed from the application stage design. The main reason is that the effect, which

is observable by users, will only last for short periods of time. Mood and feelings are

characteristics that persist or develop over longer periods of time, which users would not

be able to perceive. If modeling one or both effects should become necessary, it would be

possible to encode them either in the personality model or in memory.

Information reaching the agent from the environment still passes through a perception

module, but because perception is closely related to memory storage and processes, the

memory module is integrated into the perception module. One example of this connection

is that perceiving information – in contrast to simply sensing it – means that the agent

needs to become aware of the information (cf. [Enn04]), which occurs once the information

resides in short-term memory. The objective for refining the memory module was to keep

the structural hierarchy defined in the theoretical concept, but focus on the processes for

storage, decay, and information retrieval. Furthermore, attention is also defined as part of

the perception module for similar reasons. Perception still directly influences emotion, but

due to the changes regarding personality, the emotional state influences perception indirectly

through the dynamic personality layer.

During this thesis project, the focus was on designing the foundation consisting of

personality and emotion models as well as the perception module. Consequently, two

aspects included in the theoretical concept had to be set aside. Learning is omitted from the

architecture, because making a significant contribution to this topic would have required

3.5 Conclusion 45

focusing on this aspect alone. Internal simulation is not an explicit part of the cognitive

layer and is not discussed further in this thesis, although it could be defined as a part

of the decision module if necessary. Selecting certain actions, like turning the head to

direct attention towards specific objects or events in the environment, will automatically

result in different input to the perception module. This influence is only implied in the

methodological concept. Due to the focus on perception, a direct connection between the

action and perception modules is included in the CA2RVE architecture.

3.5 Conclusion

In this chapter, the results of RT1 were presented. First, a selection of required characteristics

of a cognitive agent architecture for virtual environments was described. The characteristics

were derived from cognitive architecture research, IVA research, and general considerations

regarding the intended usage. Second, based on these characteristics, a theoretical agent ar-

chitecture was designed to fulfill the discussed requirements of believability, controllability,

and scalability. The foundation is a personality model to satisfy the intent of providing in-

dividualized behavior in a multi-agent setting. On top of this foundational layer, a modular

collection of cognitive processes is used to define an agent’s set of capabilities. Besides the

basic components for perception, decision-making, and actions, further cognitive compo-

nents were integrated into the design. A hierarchical memory system provides agents with

a model of the environment in its current state and the opportunity to draw from global

knowledge and experiences. Internal simulation is used to model anticipation of an agent’s

own actions as well as actions of other agents. A decision module in combination with

learning capabilities can enable the ability to find alternative behaviors to resolve situations

that the default behavior cannot handle. A module modeling emotion, mood, and feelings

is a short-term to medium-term extension of the temporally stable personality profile that

facilitates individualized behavior that can also reflect an agent’s current situation.

Third, the theoretical architecture was adjusted to focus on specific sub-areas of the

design and to consider customization toward the targeted domain, real-time constraints, and

controllability aspects. In the resulting CA2RVE architecture design, sensing and memory

were integrated into the perception module due to their close interrelation and attention

was added as a separate module. High-level processes like learning, internal simulation,

and planning were subsumed within the decision-making module. This decision was made

to be able to focus on personality, emotion, and perception, while maintaining the option of

defining a more detailed design of the module in future work. Due to the limited ability of

observing changes based on mood and feeling, these factors were discarded from the design.

46 Architecture Concept for Attentive Real-Time Cognitive Agents

Instead, emotion remained as the dynamic factor that can alter an agent’s typical behavior, as

its effect is short-lived, i.e., observable during a single simulation. An underlying personality

profile still defines an agent’s typical behavior, but a dynamic version of the profile is inserted

between the bottom layer and the cognitive layer. This intermediate layer is a combination

of the original profile and the current emotional state. This design is not psychologically

sound but was chosen to allow the effect to be switched on or offwhenever required and to

transfer the current emotional state to any of the cognitive modules.

With the results of the first research task (RT1), the intention was to provide a possi-

ble solution to RQ1. Judging the quality of the results in isolation, i.e., solely based on the

provided descriptions, is difficult as it would be a subjective discussion. Therefore, the archi-

tecture must be realized and integrated into a real-time application to evaluate it regarding

the identified requirements of believability, controllability, and scalability. An exemplary

realization of the architecture is presented in Chapter 6 and several evaluation scenarios are

described in Chapter 7. However, before the realization and evaluation, an in-depth look at

three essential architecture components is provided in the following two chapters. The static

personality profile is described in Chapter 4 and expanded by explaining the role of emo-

tion in the dynamic personality layer. Chapter 5 provides a detailed look at the perception

module and the included components and processes.

4
Personalized and Emotional Agents

“A person cannot change his personality. The only thing he can change is ’habit’. He can play
around with behaviors though.”

- Andrea L’Artiste

Themotivation for this thesis project is to define an architecture capable of generat-

ing more believable agent behavior for real-time virtual environments. To achieve

this objective, a lightweight cognitive agent architecture is devised and described

in Chapter 3. The methodological concept of the architecture includes modules

for emulating perception, memory, emotion, decision-making, action, internal simulation,

and learning. To consider customization toward the targeted domain, real-time constraints,

and controllability aspects, the number of components is further reduced to perception,

emotion, decision-making, and action as described in Section 3.4. Expanding the notion of

believability of IVA behavior to multi-agent scenarios additionally requires individualized

behaviors. Otherwise, all agents act the same, likely hindering immersion or even breaking

a user’s suspension of disbelief. One approach of achieving individualization is to endow

each agent with its own personality. Personality is one characteristic that makes a human

unique (cf. [BTD14, CM09, Mat18]). It determines a human’s performance in specific tasks

(e.g., [MDWS00]), it influences how susceptible someone is to emotions (e.g., [WC92b]),

and it is a driving factor for behavior (e.g., [Her09]). Similarly, according to Matthews et

al. [MDWS00] and Ortony [Ort03], a consistent personality is a requirement for believable

agent behavior with the additional benefit of increasing acceptance, credibility, and trust in

virtual characters (e.g., [RGA+09, VSB+20, ZMLY19]).

Cognitive architecture research, which is the main reference for the agent architecture

presented in the previous chapter, generally does not consider personality for agents. There-

fore, this field cannot be used as reference in this matter. Furthermore, there are opinions

48 Personalized and Emotional Agents

stating that human-derived personality models may not be applicable to virtual humans at

all (e.g., [VSB+20]). In contrast, there is evidence that utilizing human personality models

in agents is possible (e.g., [CVB+12, CHLC18]) and it is a standard tool in IVA and ECA

research [AKG+00, KMT08, NFdSS10, VSB+20]. For example, Rushforth et al. [RGA+09]

extended virtual humans with a personality model based on the NEO-PI-R, a variant of the

Five Factor Model (FFM) [MC08]. The personality parameterization determined the choice

of dialog options for a virtual character in a military tactical questioning scenario. They

found that different personalities produced discernible behavior that could be observed by

test subjects. Bevacqua et al. [BdSP+10] used Eysenck’s three-factor model to control so

called backchannel preferences of agents when reacting to user input. They anticipated that

this extension would improve user perception of virtual characters. Castillo et al. [CHLC18]

used similar methods and found that standard personality questionnaires can be applied to

measure the personality of virtual humans. However, they also reported that the precision

of the perceived personality depends on the available communication channels (e.g., voice

only, visual only, multimodal). Zhou et al. [ZMLY19] did not only equip a chat-based in-

terviewer agent with a FFM personality, but also had the agent deduce personality profiles

of users to investigate how similar personalities affect user perception of and their trust in

the agent. Völkel et al. [VSB+20] even developed their own personality model dedicated to

speech-based conversational agents, such as digital assistants. Knob et al. [KBM18] used

the FFM to diversify group behavior in crowd simulations. Gebhard described ALMA, a

layered affect model that integrates personality, mood, and emotion into virtual humans to

increase their believability. The employed personality model was the FFM, emotions were

represented using the OCC model, and the pleasure, arousal, dominance (PAD) model was

used to formalize mood. In ALMA, mood is affected by emotion and personality in PAD

space and influences agent behavior.

Despite its common usage, the derivation of behavior from personality representation

is often anecdotal, based on personal experience, or determined by trial and error (e.g.,

[RGA+09, BdSP+10]). Additionally, several human personality models exist and are em-

ployed within IVA/ECA research. The most common are the Five Factor Model (FFM)

or Big Five [MJ92, MC08], Eysenck’s personality model [Eys47, Eys70], and Cattell’s 16

Personality Factors [Cat46, Cat57]. But what makes one model more “correct” or more

suitable for virtual agents than another? Even if one model is chosen, different reporting

techniques and measuring scales can exist. For example, the FFM can be measured using

the NEO FFI [CM92] or the Big Five Questionnaire [CBBP93], among others. The situation is

complicated by the fact that there can be model variations, such as the NEO-PI-R inventory

that further divides each personality trait of the FFM into six facets. One of the research

49

questions asked in this thesis is: Can the proposed agent architecture systematically gener-

ate individual, dynamic agent behavior (RQ2)? More specifically, the question is whether

personality profiles can be integrated into a lightweight cognitive architecture to achieve

this objective. The investigation of this question is part of the research tasks RT2.1 and RT2.2:

RT2.1: Generating individual, consistent behavior patterns using a lightweight cognitive

agent architecture.

To integrate individualized behavior, an agent’s personality should be the core layer

for all further functionalities. Consequently, agents select possible actions not only based

on their current surroundings and situation, but also according to their personality. This

selection process will create variety in an otherwise deterministic process. Since actions are

chosen based on personality, individual behavior patterns vary from agent to agent, but do

not seem random as they are consistent with each agent’s previous actions. As a result, the

architecture is able to generate individual, consistent behavior patterns.

Furthermore, instead of having to select a specific personality model, a generic model

for computational use of personality profiles in autonomous agents is developed. Such a

generic model would be independent of employed reporting techniques or measurement

scales allowing different personality models to be related to each other. The additional pur-

pose of using a general personality model within the architecture is mapping psychological

personality-based studies to a realization of the formulated concept. These mappings can

be used to reproduce realistic domain behavior reported by such studies. To demonstrate

the utility of the approach, a typical realization of the general model is provided using the

commonly used FFM. Based on the personality definitions, task parameters are used to

utilize the model in other cognitive processes, like decision-making.

RT2.2: Adapting personality-based behavior to an agent’s current situation.

An agent’s underlying personality model defines its individual behavior. This mech-

anism by itself will result in identical action selection when an agent is presented with

identical situations (as presented by its own perception capabilities). Consequently, if a se-

lected action does not change an agent’s situation, the agent will repeatedly select the same

action, which may also degrade the plausibility of observed behavior.

To overcome this issue, agents can be provided with enough alternative actions and

a mechanism to choose between them. An obvious realization of such a mechanism is

probabilistic selection. However, without any further adjustments, this approach would

disconnect the action selection from the situation resulting in a less comprehensible process

for an observer. While the effects can be mitigated, e.g., by introducing a utility function, the

50 Personalized and Emotional Agents

most realistic solution would be providing agents with the ability to become aware of and

understand their situation and find solutions that are not pre-defined by a system designer.

Unfortunately, these approaches are too complex to be considered within the constraints of

this thesis project regarding computational requirements and available resources. Instead,

the desired alteration mechanism is provided by combining the personality model with

an emotional state that dynamically changes based on an agent’s circumstances. Other

affective agent architectures often also model mood, a lasting state of feeling created by

complex cognitive processes [Tha89]. However, since users are not able to observe changes

of such lasting states during a simulation in the intended domain, a mood model has not

been included in the agent architecture. The proposed architecture includes only emotions

– short-lived feelings caused by experienced events [Tha89]. These predefined events

influence the behavior for a limited time and fade until normal behavior, as defined by

the personality, is restored. This approach avoids the aforementioned disconnect and is

consistent with the chosen personality-based approach.

The remainder of this chapter contains the results of RT2.1 and RT2.2 realized as two

layers: (1) A static personality layer that generates consistent behavior patterns (see Section

4.1) and (2) a dynamic personality layer influenced by an emotional state enabling an agent

to adapt to events in its environment (see Section 4.2).

4.1 Psychological Personality Profiles

Within the lightweight cognitive architecture concept, personality is used to individualize

agent behavior. Before personality can be used to generate behavior, it needs to be repre-

sented in a useful way. Additionally, the intent is to incorporate psychology studies that

link task behavior to personality to emulate realistic behavior patterns1 (e.g., the correlation

of personality and driving behavior [Her09]).

For both purposes, trait theory is useful as it views human personality as a combination of

mostly independent trait factors. Based on such a combination, a computational model can

be defined that is easy to understand, configure, and adapt. Each factor can be represented

as a real number, allowing the definition of trait vectors that form a personality. Trait

theory is also the most common approach to psychology research [Mat18], which means a

large collection of studies that relate a trait model to other cognitive aspects (e.g., emotions,

task performance, perception) is available. The results of these studies can then be used to

1Note that realistic does not automatically mean plausible. The perception of plausibility depends on the
circumstances and the rules of the virtual world that is experienced by an observer.

4.1 Psychological Personality Profiles 51

configure the generation of agent behavior. In the following, a general trait-based personality

model is defined that does not restrict the number or type of traits as different applications

may require different profiles or numbers of trait dimensions. Furthermore, it is shown how

the model is substantiated for its integration into the proposed agent architecture including

its connection to the processes in the cognitive layer.

4.1.1 Representing Personality

Although, trait theory is very common among psychologists, there are various models

utilizing different numbers and different types of traits. Even within the same model, scales

and values differ depending on the means deployed to map personality to traits of the model.

For example, NEO-PI-R, NEO-FFI [CM92], or TIPI [GRS03] are different questionnaires that

measure FFM personalities. In the following, a general trait-based personality model is

defined to avoid committing to a specific set of traits and to provide a generic solution:

p = ⟨p1, . . . ,pn⟩ ∈R
n

D = {d1, . . . ,dn},∀di ∈ D : di(p) = pi,1 ≤ i ≤ n,di :Rn
→R

(4.1)

A personality profile p is defined by an n-tuple of traits, also referred to as dimensions.

The number of dimensions may be derived from an existing personality model or depend

on the intended application. Each function of the set D maps a profile to a single value

representing one particular dimension. In the context of this thesis project, the projections

are restricted to di = pi.

One of the motivations is to be able to use psychological studies about human behavior

and apply them to the CA2RVE architecture. This requires a mechanism to utilize the

dimensions of a personality profile for decision-making and a mapping from a study to the

chosen personality model. The former will be discussed in Section 4.1.2. To achieve the

latter, a study is defined based on the generic profile from Definition 4.1 as follows:

S = ⟨P,C, l,h⟩ with

P = {p0, . . .pq},

C = {C0, . . . ,Cm},m ≤ q

l,h ∈R,∀d ∈ D∧∀p ∈ P : l ≤ d(p) ≤ h

(4.2)

According to this definition, a study S consists of a set of personality profiles P, a set

of profile classifications C, and the theoretical minimum l and maximum h of the study.

The set P contains all profiles that were found in the study, i.e., each profile represents

one test subject. These profiles are divided into classes C0 through Cm, which should not

52 Personalized and Emotional Agents

only represent the measured profiles using a much smaller set C but are typically used to

differentiate behaviors. Depending on the study and the measurement techniques used

therein, ranges and distributions of values may vary between studies. Thus, it is useful to

define classes in a standardized manner by using a z-score profile:

z = {z1, . . . ,zn} with zi =
pi −µi

σi
, (4.3)

where µµµ and σσσ are average and standard deviation profiles with respect to a set of profiles P:

µµµ = {µ1, . . . ,µn} with µi =

∑︂
p∈P

di(p)

|P|

σσσ = {σ1, . . . ,σn} with σi =

⌜⃓⎷∑︂
p∈P

(︁
di(p)−µi

)︁2

|P|

(4.4)

Using the equations from 4.3 and 4.4, a class of a study C is defined by:

C = ⟨Q, ṗ,z⟩ with Q ⊆ P,∀di ∈ D : l ≤ di(ṗ) ≤ h, (4.5)

where ṗ is a prototype personality profile representing class C and z is the z-score profile of

ṗ regarding the set of personality profiles P of the study. The prototype profile ṗ does not

have to be contained in P and therefore not in any set Q, because it is typically a statistical

representation. Q is a subset of profiles from P, which are associated with class C . Note

that not every profile determined in study S must be associated with a class identified in

or applied to the study. However, every profile from the study can only be associated with

one class, i.e., for the set of classes C = {C1, . . . ,Cm} the following holds:

∀Ci,C j ∈ C : Qi ∩Q j = ∅, i ≠ j (4.6)

These definitions provide a theoretical tool to realize personality profiles for agents that

can be derived from different psychological studies. However, to be able to utilize studies

in a meaningful way, it is necessary to choose one model for the realization that is also used

in all referenced studies. One model commonly used in psychology and also IVA research

is the FFM [HR15]. The model has also proven to be consistent across observations, self-

reports, and interviews in different languages [SGW12]. Additionally, the FFM has been

used in studies to link human personality to behavior (e.g., [MDWS00], [Her09], [LL01]).

Together with the provided definitions, these links can be used as indication of how to use

trait values of an agent’s profile to drive action selection and therefore behavior. Due to these

reasons, the FFM was chosen as the specific personality model in the CA2RVE architecture.

4.1 Psychological Personality Profiles 53

According to the definitions above, a FFM profile is defined as follows:
pFFM = ⟨p1,p2,p3,p4,p5⟩ ∈R

5

DFFM = {o,c,e,a,n} with

o :R5
→R, (p) ↦→ p1

c :R5
→R, (p) ↦→ p2

e :R5
→R, (p) ↦→ p3

a :R5
→R, (p) ↦→ p4

n :R5
→R, (p) ↦→ p5

(4.7)

where the dimensions correspond with the model’s five traits: openness to experience,

conscientiousness, extraversion, agreeableness, and neuroticism.

4.1.2 Utilizing Personality in Cognitive Agents

Personality is one attribute that determines a human’s performance in specific tasks (cf.

[MDWS00]). With the defined model and the ability to map psychological studies to it, the

same approach can be used for virtual humans. Therefore, task parameters are introduced

in the CA2RVE architecture. These parameters consolidate high-dimensional personality

profiles into a single continuous parameter used by cognitive processes, such as perception

or decision-making. With the help of personality profiles and task parameters, it is possible

to define an agent’s individualized behavior for specific tasks or task domains. How a

profile’s dimensions are transformed into a task parameter depends on the study or theory

used to correlate behavior and personality. Alternatively, transformations can be defined

without any underlying evidence, but could instead be used to define intended behavior

patterns or prototypes, e.g., for specific agent types. A straightforward mapping from a FFM

profile p of an agent a to a task parameter α is shown in the following:
c = ⟨c1,c2,c3,c4,c5⟩ ∈R

5

α(a) = c•p
(4.8)

where c is a 5-tuple of coefficients, which can be derived from a personality study using

appropriate range limits for coefficients and the task parameter and • denotes the dot

product. A similar mapping is used in a sample realization of the CA2RVE architecture to

define a politeness parameter, which influences the decisions of traffic agents (see Chapters 6

and 7). This parameter weighs an agent’s own advantage against other agents’ disadvantages

that would result from its actions in lane changing and right-of-way scenarios. Coefficients

were determined using a study by Herzberg, which investigated the correlation between

personality and driving behavior using the FFM [Her09]. He identified three personality

54 Personalized and Emotional Agents

prototypes that predict accident proneness and driving behavior. These prototypes and

their associated driving behavior were the basis for choosing coefficients for the politeness

parameter. To design and assign personality profiles that are consistent with the prototypes

reported by Herzberg, the study was mapped to the definition introduced above. Herzberg

provided only relative descriptions of trait scores within the three prototype classes, but

references another of his studies that provides more details [HR06]. This second study was

used for the mapping, but it included only the z-scores for each prototype profile. To be

utilized within a realization of the concept, a fully defined study S is derived from the

z-scores using normalization, scaling, and assumptions about the underlying trait value

ranges. For details about the transformation process, please refer to [IVC13]. Using these

transformations, the following theoretical study SFFM is one example that can be used to

generate personality profiles for an implementation:
SFFM = ⟨P,C, l,h⟩ with

P = {z1,z2,z3,z4,z5},

z1 = ⟨0.15,0.66,0.6,0.48,−0.84⟩,z2 = ⟨−0.09,−0.24,−0.75,−0.06,0.9⟩,

z3 = ⟨−0.06,−0.6,−0.12,−0.54,0.3⟩,z4 = ⟨0.48,0.18,0.36,0.12,−0.03⟩,

z5 = ⟨−0.39,0.15,−0.18,0.15,−0.21⟩,

C = {C1,C2,C3,C4,C5},

∀Ci ∈ C : Ci = ⟨{zi},zi,zi⟩,

l = −1,h = 1,

µ = ⟨0,0,0,0,0⟩,σ = ⟨1,1,1,1,1⟩

(4.9)

Note that each class Ci includes only one profile, which is at the same time the prototype

profile and the associated z-score profile of that class. This circumstance is due to the

performed transformations. In the context of an application, this is all that is required as

agent profiles are generated using the prototype profiles. In other words, all sets Qi for each

class are filled during a simulation, every time a new agent is created.

4.2 Emotion Model

Integrating a personality model including task parameters into the proposed architecture

provides a way of generating individual but consistent behavior patterns for agents, which

answers RT2.1. However, when provided with the same task in an unchanging situation,

a personality-based agent will continue to exhibit the same behavior. For example, a polite

agent may continue waiting behind a parked vehicle to not interfere with oncoming traffic.

4.2 Emotion Model 55

While the decision may be consistent with the agent’s previous behavior at first, it will

eventually become implausible to an observer if the agent’s situation is not resolved. This

consideration leads to RT2.2: Adapting personality-based behavior to an agent’s current

situation. Emotions – short-lived responses to events in the environment – are introduced as

one possible solution to this task. They provide a dynamic component that allows the agent to

change its typical behavior if a situation calls for it. An agent’s current emotions temporarily

influence its personality profile, which changes the derived task parameters and lastly the

generated behavior. This allows agents to adjust to encountered situations that they would

not be able to solve with their static behavior. While there are many models for representing

emotion in virtual humans (e.g., see [KMT08, NFdSS10]), a model is selected for this thesis,

whose correlation to the chosen personality model has been confirmed. Since the CA2RVE

architecture uses the FFM and Watson and Clark [WC92b], Rusting and Larsen [RL97], and

Yik and Russell [YR01] are examples that correlated FFM profiles with a two-dimensional

emotion model, the same number of dimensions is considered here to distinguish negative

and positive emotions. An additional advantage of a two-dimensional model is its moderate

complexity compared to other common models, like the OCC [KMT08]. At the same time, it

provides sufficient utility to intuitively map events to changes in the emotional state while

remaining accessible and comprehensible. If more complexity or comparability to other

approaches is required, the model could easily be extended to more than two dimensions. In

the following, a formal representation of the emotion model is introduced before describing

how emotions are experienced, how they fade over time, and how they influence behavior

within the architecture.

4.2.1 Representing Emotions

Like the representation of personality profiles, an emotional state is defined as a tuple, but

with only two elements:

E = ⟨e1,e2⟩ ∈R
4
×R4 (4.10)

Unlike personality profiles, each dimension of an emotional state E is itself a 4-tuple:

e = ⟨e1,e2,e3,e4⟩ ∈R
4 (4.11)

The element e1 defines the current emotion by a numerical value. Values e2, e3, and e4 are

required to describe how emotion is faded back to a neutral state, which is described in

Sections 4.2.2 and 4.2.3. In a realization, all values should be within ranges in accordance

with the chosen personality dimension and task parameter ranges. Since the proposed

model differentiates between positive and negative emotions, the following set of functions

56 Personalized and Emotional Agents

is defined to provide access to both dimensions of the emotional state:
E = {e−,e+} with

e− :R4
×R4

→R4,E ↦→ e1,

e+ :R4
×R4

→R4,E ↦→ e2

(4.12)

Since the model was defined such that positive and negative emotions are independent, it is

possible to model each dimension’s influence on behavior separately. For example, in a case

where personality is modeled using the FFM, negative emotions could be used to increase

an agent’s neuroticism, but positive emotions would not decrease neuroticism. Instead,

positive emotions could increase an agent’s agreeableness. Note that the influence of each

dimension on a personality profile can be considered independently, but since both negative

and positive emotions are applied to a profile, their effects are not independent.

4.2.2 Experiencing Emotions

In a simulation, an agent would perceive information from the environment that induces

an emotional response. To model this process, experiences that are emotionally relevant

to an agent are modeled as incidents i. An incident controls how the current emotional

state of an agent is modified whenever the event occurs. Thus, an incident is of the same

dimensionality as the emotional state. For the current example, this translates to:
i = ⟨i1, i2⟩ ∈R2,

i− :R2
→R, (i) ↦→ i1,

i+ :R2
→R, (i) ↦→ i2

(4.13)

It is the designer’s responsibility to define meaningful incidents. For example, incidents that

induce the same amount of positive and negative emotion make little sense.

As indicated before, personality influences the entire cognitive apparatus, including the

perception of emotions. This intuitive relationship has been confirmed by studies, such as

that by Watson and Clark [WC92a], which showed that tendencies of perceiving specific

emotions is correlated to a subject’s personality. To model this tendency, the following

n-tuples of coefficients are defined; one tuple for each dimension of the emotional state.

s− = ⟨s−1 , · · · ,s
−

n ⟩ ∈R
n, s+ = ⟨s+1 , · · · ,s

+
n ⟩ ∈R

n (4.14)

The dimensionality n of both tuples must correspond with the personality model that is used.

To provide a definition for perceiving emotions, a function s is required, which determines

how each emotion dimension e is updated. It updates the current emotion value e1, as well

as the first fading value e2, but does not alter the other fading values, e3 and e4. The reason

4.2 Emotion Model 57

for not changing e3 and e4 and the role of all fading values is explained later in Section 4.2.3.

s :R4
×R→R4, (e,x) ↦→ ⟨x,x,e3,e4⟩ (4.15)

Using the above definitions, a perception function w(a, i) transforms the emotional state E t
a

of an agent a from the set of all agents A at time t to a new emotional state E t′
a at time t′.

w : A×R2
→R4

×R4, (a, i) = E t′
a with

e−
(︂
E t′

a

)︂
= s

(︂
e−

(︂
E t

a

)︂
,v

(︂
e−

(︂
E t

a

)︂)︂
+max{l−,c−}

)︂
l− = li · i− (i)

c− = ci · i− (i) ·
(︁
s− •pa

)︁
e+

(︂
E t′

a

)︂
= s

(︂
e+

(︂
E t

a

)︂
,v

(︂
e+

(︂
E t

a

)︂)︂
+max{l+,c+}

)︂
l+ = li · i+ (i)

c+ = ci · i+ (i) ·
(︁
s+ •pa

)︁
li,ci ∈R,0 < li ≤ 1,ci > 0

(4.16)

The parameters li and ci prevent combinations of correlation coefficients (s−,s+) and the

current personality profile configuration to cause negative experiences. A negative experience

is defined as an incident causing the opposite of its declared effect. For example, if the

effect of an incident on the positive dimension of the emotional state is positive (i.e., i+(i) >

0), perceiving the incident with certain combinations of coefficients and personality could

decrease positive emotion instead of increasing it. The parameter li defines the minimum

effect of any incident that is experienced, regardless of the current profile or the configuration

of the correlation coefficients. With ci an additional tool is provided for calibrating the model.

Consequently, l+ and l− are the minimal effect of the current incident and c+ and c− are the

calibrated incident values multiplied by the personality influence, which is the dot product

of the personality profile and the correlation coefficients. The function v(e) identifies the

current emotional value of an emotion dimension tuple:

v :R4
→R, (e) ↦→ e1 (4.17)

Using all the above, an emotional state can be assigned to each agent and the state

can be changed by experiencing incidents that bear a predefined emotional meaning. The

incident’s effect can be adjusted using calibration values and is further influenced by an

agent’s personality. For example, a neurotic agent may experience negative emotions more

intensely than others, while extroverts may influence more by positive emotions.

58 Personalized and Emotional Agents

4.2.3 Fading Emotions

Emotions are short-term, immediate reactions to experienced events (cf. [Tha89]). Thus,

their effect on the cognitive processes of an agent should vanish over time. For this purpose,

the emotional state is returned to a neutral state by modeling a fade function f that transforms

an emotion dimension et at time t to a new tuple et′ at time t′:
f :R4

×R4, (et) ↦→ et′ , where

et′
1 =max{0,g(et),h(et)}

et′
2 = et

2

et′
3 = et

3

et′
4 = et

4

(4.18)

The curve of the fading is controlled by a set of parameters encoded within the emotion

dimension as indicated in Section 4.2.1 (e3 and e4) and a pair of functions (g and h).
g :R4

→R, (e) ↦→ e1 − e3

h :R4
→R, (e) ↦→

e2
1

e2+10−e4

0 ≤ e1,e2 ≤ 1,e3,e4 ∈R
+
\{0}

(4.19)

Only the first element of an emotion dimension tuple is changed by the fading function.

However, the other elements are also part of the tuple because it may be desirable to control

the fading for each dimension separately. For example, the model may be configured in

such a way that negative emotions fade slower than positive emotions. The first element

e1 represents the current emotion value as stated before. This element can be set together

with e2 using the function defined in Equation 4.15. While e1 will change with the fading

function 4.18, e2 is not altered as it represents the base value of the emotion, i.e., the value

where the fading started. The additional elements of the emotion dimension tuple (e3 and

e4) are required to control functions g and h. No scientific evidence for the dissipation of

emotional experiences could be found during this thesis project. Therefore, g and h were

defined empirically with the intention of providing a plausible model. Due to the short-term

nature of emotions, it is reasonable to assume that a human is influenced strongly by an

emotion immediately after experiencing an event that caused it. After some time passes,

the effect of the emotion will start to fade. Thus, function g models a straightforward linear

decrease with e3 (linear parameter) controlling how fast this process progresses. Function

h models how long the emotional effect is sustained as the resulting value will stay nearly

constant before rapidly decreasing to zero. The duration of this effect is controlled by e4

(sustain parameter) in combination with the result of g, because as soon as the decrease

4.2 Emotion Model 59

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.2
0.4
0.6
0.8

1

time step

v(
f i

)

f1 = ⟨1.0,1.0,0.01,10⟩
f2 = ⟨1.0,1.0,0.01,5⟩
f3 = ⟨0.5,0.5,0.01,10⟩
f4 = ⟨0.5,0.5,0.05,10⟩

Figure 4.1: Curve shapes of the fading process for examples of emotion tuples f1 to f4. All examples
except f4 have the same linear fading value (0.01). Thus, f4 illustrates the steepest decline, because of
its larger value. Due to their identical sustain parameters, values start decreasing linearly at the same
time. The exception is f2, which is the first to decrease linearly because of a smaller sustain value (5).
Figure based on [SvS12].

calculated by h surpasses the decrease calculated by g, the linear decrease defines how the

emotion is faded going forward (s. Equation 4.18). To generate meaningful fading processes,

it is necessary to choose e3 and e4 according to defined ranges for personality profiles and

emotion dimensions. In the proof-of-concept realization described in Chapter 6, e1, e2, and

e3 are within the range [0;1] and e4 is defined to be greater than 0. Figure 4.1 shows four

examples of fading an emotional value over time.

4.2.4 Utilizing Emotions in Cognitive Agents

The intention of modeling emotions is to introduce a dynamic aspect to behavior generation.

As mentioned in the previous chapter, it is beneficial to introduce an intermediate personality

layer that is generated from the original static profile of an agent. The entire layer can be

omitted, if necessary, without altering anything else within the architecture. Additionally,

the concept of task parameters as introduced in Section 4.1.2 already defines a means to

influence behavior. Using a profile altered by an emotional state leverages the existing

concept, existing decision processes, and potentially existing parameters without having to

define individual parameters for each cognitive module or even each emotional event.

To generate a dynamic profile b from the agent’s original profile p, additional n-tuples

are required for each dimension of the emotional state. In the considered case this means

one tuple for positive and one tuple for negative emotions:
t− = ⟨t−1 , · · · , t

−

n ⟩ ∈R
n,

t+ = ⟨t+1 , · · · , t
+
n ⟩ ∈R

n
(4.20)

Using these coefficients an agent a’s personality profile pa can be transformed to its dynamic

60 Personalized and Emotional Agents

profile ba based on the current emotional state Ea:
∀d ∈ D : d(ba) = d

(︁
pa
)︁
+n(Ea,d)+p(Ea,d) ,

n :R4
×R4

×D →R, (E ,d) ↦→ v
(︁
e− (E)

)︁
·d

(︁
t−
)︁

p :R4
×R4

×D →R, (E ,d) ↦→ v
(︁
e+ (E)

)︁
·d

(︁
t+
)︁ (4.21)

Depending on the value ranges of the static personality profile and the study S , the trans-

formed dynamic profile ba may have to be adjusted to fit theses ranges. A straightforward

solution is to clamp transformed values at the original range limits (l and h) of the study S .

As a result, the dynamic profile ba can be used in any of the cognitive processes without

adjustments as it is structurally identical to the original profile pa.

Using the definitions above, the personality of an agent influences how it perceives

emotional incidents, i.e., how its emotional state changes by experiencing defined incidents.

The current emotional state is used to transform the agent’s original static personality profile

into a dynamic profile. This correlation produces the desired interdependency between

personality and emotion as the dynamic profile will change how emotions are perceived by

the agent. Figure 4.2 shows an exemplary progression of all traits of a dynamic personality

profile when invoking an emotional incident of i = ⟨0.1,0⟩ at each time step. All values were

chosen for demonstration purposes only and values for positive emotions are omitted since

the incident only includes negative emotions.
pa = ⟨−0.25,−0.6,0.12,−0.54,0.3⟩

t− = ⟨−0.1,−0.3,0,−0.75,1⟩

s− = ⟨0,0,0,0,0.341⟩

li = 0.35

ci = 2

(4.22)

4.3 Conclusion

In this chapter, two research tasks were examined that were derived from the second research

question: Can the agent architecture systematically generate individual, dynamic agent

behavior? It was considered how behavior can be individualized to each agent (RT2.1) and

how a dynamic component can be added to adapt this behavior (RT2.2). The proposed solu-

tion contained two aspects: a static trait-based personality profile and a dynamic emotional

state influencing the profile. The static profile was defined, first in a generalized manner

allowing an arbitrary number of traits and second, specified to the common Five Factor

Model (FFM). The formal description of a study was provided, which allows the integration

4.3 Conclusion 61

2 4 6 8 10 12 14 16 18 20 22 24

−1

−0.5

0

0.5

1

1.5

time step

Negative Emotion
Openness
Conscientiousness
Extraversion
Agreeableness
Neuroticism

Figure 4.2: Exemplary progression of an agent’s dynamic FFM personality profile. At each time
step an emotional incident i = ⟨0.1,0⟩ is perceived, resulting in an increase of negative emotion and
neuroticism according to their defined correlation. When the range limit of the personality profile is
reached at time step 16, neuroticism no longer increases and the negative emotion increases linearly.
All other traits except extraversion decrease according to the defined correlations. Figure based on
[IVC13].

of personality profiles into realizations of the architecture concept. Additionally, it provides

the opportunity to use psychological studies as input for behavior generation, e.g., to emu-

late real-life behavior patterns. Task parameters were introduced to define the influence of

personality on other cognitive processes such as perception or decision-making.

Using task parameters, different personality prototypes can be used to generate dis-

tinguishable behavior. However, the generation of behavior from these prototype profiles

depends on multiple factors. Task specific or situational behavior is linked to a personal-

ity prototype, which means the more prototypes are defined, the more differences can be

expressed. The number of choices (i.e., the actions to choose from) in a certain situation

directly affects how well behavioral differences can be expressed. Furthermore, the agents’

capabilities influence the observability of behavioral differences, i.e., the possible parameter-

ization of available actions. For instance, assume the chosen action is to accelerate a vehicle.

Based on personality, one agent chooses a higher acceleration than another agent would,

but because they drive the same type of car the final acceleration may be identical. In this

case, the difference generated by the profile cannot be observed. Due to the complexity and

effort required for providing a diverse set of options for the mentioned factors, only a limited

range of behavior can be realized within the scope of this thesis. Nevertheless, the presented

definition of personality profiles and their integration within a cognitive agent architecture

62 Personalized and Emotional Agents

provides a general tool for individualizing behavior. The contribution of this claim towards

answering research question 2 will be demonstrated in Chapters 6 and 7.

A two-dimensional emotion model adds a dynamic component to static profiles. An

agent’s emotional state consists of negative and positive emotion dimensions, which are

independent of each other. This independence is useful to model their effects separately.

Formal descriptions were provided that define how emotions are perceived and faded.

Perception of emotions depends on incidents, that describe an event’s effect on an agent’s

emotional state. N-Tuples of coefficients relate an agent’s personality to its perception of

these incidents. While personality is a stable component, emotions are temporal reactions

to experiences whose effects will fade with time until the neutral emotional state is reached.

Other emotion models, e.g., the OCC model of emotion, can represent a wider spectrum of

emotions (cf. [KMT08]). However, the objective of enabling agents to adapt their personality-

based behavior to their current situation was achieved with the presented model (RT2.2).

A dynamic personality profile is used to incorporate an agent’s emotional state into its

other cognitive processes. The emotional state modulates an agent’s static personality traits,

forming an intermediate, dynamic profile, which influences subsequent processes identical

to the static case. This technique circumvents the need for encoding influences of personality

and emotion separately for each cognitive module. Additionally, it is straightforward to

exclude emotional states if an application requires it, without having to adjust other process.

Since perception of emotions depends on personality and the emotional state creates a new

personality, an interdependency between emotion and personality is achieved.

An ideal solution to adaptive behavior involves advanced inference and decision-making

processes. The ability to improvise when faced with unknown situations, i.e., to deviate from

pre-programmed behavior, would be a significant step towards human-like behavior. Due

to the complexity of this endeavor, it is currently unclear whether this level of autonomy can

be achieved at all. The proposed approach may not generate true “alternative behavior”, in

the sense indicated above, but the intended objective is achieved as the emotional state of an

agent changes its typical, i.e., “default” behavior if the agent’s selected actions do not resolve

a problematic situation. This capability of the agent architecture is evaluated in Chapter 7.

5
Perceptual Agents

“We must look at the lens through which we see the world, as well as the world we see, and that the
lens itself shapes how we interpret the world.”

- Stephen R. Covey

Making decisions within an environment and predictions about the future

state of an environment requires gathering knowledge about the environ-

ment’s current state (cf. [KT18]). Humans must accumulate knowledge

about their environment and its current state via perception. Deliberation

processes additionally augment this information using, e.g., previous knowledge. In con-

trast, virtual agents generally have access to their entire environment, which may further

be augmented by semantic information (cf. [GLBV08]). Thus, it may seem unnecessary

to model human-like processes that gather perceptual information about the agent’s world.

However, creating, simulating, and maintaining all-knowing agents quickly becomes a prob-

lem if combinatorial consequences and more importantly the quality of depicted behavior

are considered [PT97]. Furthermore, it is generally agreed upon that using perception to

form a plausible world model for agents is the foundation for believable agent behavior

[Blu97, POS03, PCR+11, Rey87, vO14]. This process includes organization, identification,

and interpretation of sensory information as well as finding an appropriate representation

[SGW12]. It is therefore not surprising that modeling perception is a standard in developing

agents and virtual characters across different research domains, such as cognitive architec-

tures (e.g., [Lai08, Lai12, RTO19]), virtual humans (e.g., [LA00, PCR+11, vO14]), and digital

games technology (e.g., [Leo03, LB19, Pal18]).

Despite the common consideration of perception, it is often only utilized to collect data

with limited sensor capabilities to increase believability, especially in interactive applica-

tions. One important component of human perception that is often neglected in agent

64 Perceptual Agents

perception is attention. A virtual attention process allows agents to identify objects of im-

portance regarding both reactive behavior and cognitive processes. Furthermore, synthetic

attention can improve computational efficiency by reducing the amount of sensory data that

is processed by an agent – comparable to human attention. However, attention is often

only used to simulate external indicators like eye gaze to improve a user’s impression of a

virtual character [APMG12, BA13, Kim06, PAGM15]. Consequently, available approaches

for virtual humans are mostly focused on bottom-up attention (i.e., reflexive attention) and

are not considered on a cognitive level [CKH+15, YT15]. To convey plausible and applica-

tion specific behavior, agents must appear target oriented. Models operating on a cognitive

level could guide task-oriented attention mechanisms (i.e., top-down attention) to create

that impression. Neurobiological models provide important, realistic clues about how and

why attention is directed towards specific parts of a scene, but exceed the requirements of

real-time, multi-agent environments (c.f. [KW15]). Solutions for interactive environments

typically trade precision for efficiency often resulting in less realistic results or focus on

certain aspect, like simulating eye gaze (e.g., [PAGM15]).

Perception and attention are important aspects of modeling agent behavior for aesthetic

and/or functional reasons [PCR+11]. These two reasons are also requirements in this thesis

project (i.e., believability and scalability). In addition to these two reasons, a third aspect is

added within the context of the work presented here. Agents in virtual environments usually

fulfill a specific purpose like emulating a living virtual world or supporting a training goal.

Consequently, the agents’ behavior must not only be plausible and computable in real-time,

but it must also be controllable. Therefore, the perception module must facilitate authoring

user-centric, goal-driven agent behavior. Furthermore, existing approaches usually do not

consider an agent’s current state of mind as part of the perception process. However,

these aspects influence human perception and attention processes [Bad03, PCR+11, BSGS13,

Han89] suggesting an integration into synthetic perception for agents as well.

Based on the described situation, the third research question – What is the role of per-

ception and attention in behavior generation for cognitive agents? – should be answered

by considering the two following research tasks. The main objectives are to clarify how and

where perception and attention fit into the developed cognitive architecture and how they

can be utilized to support the three requirements: believability, controllability, and scalability.

65

RT3.1: A flexible framework for synthetic perception in a cognitive agent architecture.

Starting from the large quantity of available approaches to agent perception, it should be

determined what the core characteristics of synthetic agent perception are and how they can

be assembled and extended to build a flexible framework. Furthermore, to integrate well

with the proposed cognitive agent architecture, the perception framework must support

the architecture’s main principles. The most important principle being that all cognitive

processes are based on an agent’s personality and emotional state. The influence of per-

sonality and emotion on cognitive processes was described in Section 4.2 and an example

was provided that utilized the influence for decision-making. A similar approach should

be applied to perception. At the same time, a resulting perception module should follow

the same modular structure as the architecture, i.e., it should integrate well with the other

cognitive modules, and it should be modular itself for maximum flexibility.

RT3.2: Perception and attention for virtual agents considering plausibility, controllability,

and real-time performance.

Simply combining existing agent perception approaches is not sufficient due to the

discussed shortcomings. Addressing these shortcomings, it should be possible to design a

synthetic perception framework that contributes to believability, but supports controllabil-

ity, e.g., by facilitating customization and extension, without compromising scalability. An

open sensor interface should allow an agent to perceive multiple stimuli emanating from

a single object. These stimuli could be received either through different sensor modalities

or by multiple sensors of the same modality. The approach should also not exclude the

integration of additional “supernatural” information sources, like world semantics. Such

cues can be modeled to provide simplifications where appropriate or necessary, e.g., to

increase computational performance. Sensors should also be parameterizable to allow

balancing performance against accuracy, supporting believability while regarding real-time

constraints. However, parameterization especially facilitates application-specific solutions.

The same applies to attention, where customizable dwell-time, inhibition, and memory

capacities could be used to individualize the perception process for each agent and provide

control over the process to designers. The customization on various levels of the framework

should also scale well to different application scenarios providing an efficient and control-

lable approach. The framework should further combine bottom-up and top-down attention

independent of utilized decision processes or sensor implementations to generate believ-

able and controllable behavior. In summary, the provided perception mechanisms should

support the objectives without restricting them to a specific approach or a certain complexity.

66 Perceptual Agents

5.1 Synthetic Perception for Cognitive Agents

To provide a synthetic perception module that integrates well with the developed cogni-

tive agent architecture and fulfills the associated requirements, the following aspects of

perception should be addressed:

I. A unified interface to allow for the implementation and attachment of arbitrary virtual

sensors.

II. A mechanism to accumulate and process environmental stimuli, i.e., virtual sensors.

III. A mechanism to filter aggregated stimuli, e.g., attention.

IV. A structure to store stimuli and percepts on various levels of abstraction, i.e., a memory

hierarchy.

V. A procedure to influence perception and attention based on an agent’s personality and

current emotional state.

VI. An interface for high-level processes to acquire and process information.

Based on several publications from cognitive architecture, cognitive science, and IVA/ECA

research, a perceptual framework for cognitive agents should address at least sensing (II.), at-

tention (III.), and memory (IV.). These three aspects are the focus of the presented perception

framework for cognitive agents, but all six aspects are realized.

A generalized perception framework must support a variety of sensor modalities. These

should ideally include the five main human senses (sight, hearing, touch, smell, and taste)

and perhaps even more to perceive application-specific stimuli (e.g., semantic information).

Since sight is the most important and most studied human sense [Enn04, Fri11, KT18], the

focus of this work is on the integration of visual information into the synthetic perception

process. However, the integration of multiple sensor modalities is also discussed. Addition-

ally, a model of attention is considered; an important component of human perception that

is often neglected in other perception approaches for agents.

The main purpose of the perception framework discussed in this chapter is to support

the cognitive agent architecture in plausibly recreating human behavior regarding various

aspects of perception. To generate plausible behavior in a complex virtual environment, ad-

ditional high-level concepts are required, such as decision-making, planning, and navigation.

The presented framework is part of the cognitive agent architecture described in Chapter

3. Examples of high-level processes are given in Chapters 6 and 7. This section describes

how the proposed perception framework fits into the overall agent architecture. An isolated

view of the perception aspect is presented in Figure 5.1.

Details of the presented perception framework are described throughout this chapter.

The focus is on the three identified major perceptual components: virtual sensing via a

5.2 Perception Cycles 67

Personality Profile

Virtual Sensor 1

Virtual Sensor 2

Virtual Sensor n

…

Short-term

Sensory

Storage (STSS)

Short-term

Memory (STM)

Long-term

Memory (LTM)

Attention

Emotion

High-level
Processes

…

S
e
n

so
r

In
te

rf
a
ce

Figure 5.1: Virtual sensors gather stimuli from an environment which are delivered to a short-term
sensory storage (STSS). From the unfiltered information, objects of interest are selected and inhibited
by an attention process. Attended objects become percepts residing in short-term memory (STM).
From there, percepts can be retrieved by high-level processes, e.g., decision-making. The attention
mechanism can request orientation of sensors and high-level processes can bias attention for top-
down perception. An underlying personality profile, which is affected by an emotion component, can
influence all perceptual processes and elements. A long-term memory (LTM) can store information
that need to persist across multiple simulation sessions. Image based on [SvS22].

unified sensor interface, attention modeling, and memory layout. At the same time, the three

agent architecture requirements – plausibility, controllability, and scalability – are constantly

considered in the design. Furthermore, the integration of a personality profile, combined

with an emotion model, is discussed and how these aspects can be used to further customize

the generation of behavioral patterns. Considerations of efficient information retrieval from

the virtual environment are included in the framework at an abstract level. In Chapter

7, sample implementations are presented to evaluate and demonstrate the framework’s

capabilities in real-time game engine scenarios.

5.2 Perception Cycles

The perception framework proposed in this thesis is designed to coarsely resemble the

process of human perception. Therefore, it is based on the perceptual cycle as described

by Goldstein and Brockmole [GB16]. A distal stimulus, originating from the environment

and reaching a sensory organ, can be considered the starting point of the cycle. Since it is

caused by something in the environment, the stimulus is referred to as environmental stimulus.

Sensory organs process these stimuli until they reach their according primary receiving areas

in the brain. Up to this point, the processed information still represents the environmental

stimulus. This complex process is simplified and modeled as the environmental stimulus
cycle (ESC) within the proposed perception framework. The ESC describes the extraction

68 Perceptual Agents

Semantic Description

Virtual
Sensors

Virtual Environment

Virtual Object

Attention STM

Sense

Stimulus

Interest
Registry

High Level

Processes
Task
Bias

Asynchronous
Request

Synchronous
Request

Information

Environmental Stimulus Cycle (ESC)

Information Attention Cycle (IAC)

STSS

Figure 5.2: Abstract overview of the perception process. The left side represents the agent’s con-
nection to its environment (the environmental stimulus cycle). The right side describes the agent’s
internal information retrieval process (the information attention cycle).

of stimuli from the environment via virtual sensors. From their primary receiving areas,

signals are transmitted to various brain areas resulting in conscious experiences where

the perceiver becomes aware of the stimulus’ origin and recognizes it. This process is

categorized here as perception and modeled by the information attention cycle (IAC) as an

internal information retrieval process. In human perception, knowledge is another important

factor that influences many steps in the perceptual cycle, e.g., to label objects or fill in missing

information. This type of knowledge-based processing is also known as top-down processing.

The counterpart is bottom-up processing or data-based processing which is solely based on

stimuli reaching a sensor. Both directions and their importance to behavior generation will

be revisited later. An overview of the ESC and IAC is provided in Figure 5.2. The structural

components of theses cycles are described throughout the course of this chapter.

The ESC connects the agent to the world it inhabits. In reality, information from objects

reaches the sensors in the form of stimuli. To faithfully represent this effect, stimuli would

have to be sent from every object to every possible direction. Even if discretized, only a

small fraction of generated stimuli would reach a sensor. Therefore, the process is typically

inverted: Sensors determine sensible objects in the environment by sending signals, which

determine if an object emits stimuli that match the sensor’s modality and ability. From the

response, corresponding stimuli are extracted and stored in a short-term sensory storage.

The IAC acquires information, obtained via the ESC, that the agent is currently interested

in. The main component of this process is the short-term memory (STM) representing the

agent’s current knowledge. High-level processes can actively query the STM for information

they require as a synchronous request. Alternatively, these processes can register their

interest for specific types of objects with an interest registry and receive a notification when

objects of that type are perceived. An advantage of this passive approach is that the registry

5.3 Sensing 69

can be used to bias an agent’s attention module to raise the importance of registered object

types (see also Section 5.5).

Goldstein and Brockmole’s perceptual cycle [GB16] is called a cycle because the outcome

of the process influences the input. The ESC and IAC represent continuous processes

defining how information about virtual objects are handled. They do not represent processes

that exert influence on themselves like the perceptual cycle. This cycle is only implicitly

included in this view since the consequences of an agent’s action selection process are not

explicitly considered. For example, based on the attention module’s stimulus selection, the

agent may choose to orient its primary sensors towards the associated virtual object. This

action likely causes the sensors to sense different information, which in turn might affect

following modules and processes. As indicated before, the ESC and IAC also represent a

separation between low-level processes of the sensory system (sensation) from high-level

brain functions used to interpret sensed information (perception). While this distinction can

still be found in the literature, a clear separation is often not possible. Consequently, modern

perception research does not differentiate between those terms (cf. [GB16]) or argues that

they cannot be separated at all (e.g., see [Enn04]). However, in the context of this thesis it

is beneficial to uphold these separate views to define strict responsibilities and interfaces

between components and modules as illustrated by the ESC an IAC.

5.3 Sensing

Sensing is part of the ESC and must occur before an agent is able to utilize any information

provided by its sensors. Many techniques are possible and available to provide virtual

sensing capabilities for an IVA. However, instead of choosing one specific sensor set, a

unified sensor interface represents a solution that is open to customization and extension.

Similar approaches can be found in the work of Conde and Thalmann [CT04, CT06] as well as

Kuiper et al. [KW13, SKW10a, SKW10b]. From an architectural point of view, the common

interface represents a single entry point where stimuli enter an agent’s mind. Therefore,

the number and type of sensors is unspecified and open to an application developer’s

interpretation or adjustable to requirements of a specific use case. For example, depending

on the specifications of an application, sensors can provide complementary information

for maximum coverage, or they can provide redundant information for increased reliability.

Sensors may also vary in complexity. Some situations may demand realistic results, requiring

sensor implementations to mimic existing biological sensory system as closely as possible.

However, the more complex such a set of sensors becomes, the more computational resources

are required to simulate perception. Especially in the realm of virtual environments, where

70 Perceptual Agents

interactivity is a key requirement, the cost of emulating neuro-biologically correct perception

often outweighs its benefits. Consequently, interactive applications typically require more

efficient, less complex solutions. A sensor in its most simple form would only provide

the information whether an object is within the agent’s vicinity or environment. Adding

additional information to a sensor, such as spatial position, saliency, or perception clarity

of an object, increases the accuracy of information at the cost of additional resources. As

discussed in [SvS5], the realization of a sensor should ideally allow an application designer

to parametrize the sensor to balance accuracy against performance.

Further performance related considerations are the direction of processing and semantic

information. In nature, environmental stimuli will reach a sensor triggering a correspond-

ing reaction. In the context of a real-time virtual environment, it makes sense to reverse

the processing direction to save computational resources as discussed above. Additionally,

by enriching perceivable objects with semantics, agents can be provided with additional

information that would otherwise be difficult or impossible to calculate by the agent it-

self [vOD11]. A typical example is associating objects with affordances or even concrete

interaction procedures (e.g., [KT99]).

To demonstrate the described sensor concept, examples of visual sensors are presented

in Section 7.3. In this section, it is also discussed how sensors can be combined to balance

performance, controllability, and correctness in a neuro-biological sense.

5.4 Memory Hierarchy

For processing, humans organize sensed and perceived information hierarchically. Thus,

Atkinson and Shiffrin [AS68] formulated a psychological memory model called stage theory.

According to a more recent review of the authors [AS16], their stage theory model has

remained one of the most influential since its inception in 1968, to this date. The agent

memory module of the CA2RVE architecture is based on Peters and O’Sullivan’s memory

model, who adapted the stage theory model to virtual humans [PO02]. During sensing,

sensors generate stimuli from sensed objects, which contain semantic properties. All stimuli

from all sensors attached to an agent are gathered within a short-term sensory storage (STSS).

At the end of each sensing step, the STSS contains a specific subset of all environmental

stimuli. This subset represents all information that an agent could theoretically perceive in

a given simulation state. Note that the state does not only include the relationships between

objects in the virtual environment, but also the agent’s internal state, specifically its sensor

capabilities and sensor orientations. It is also important to point out that while it is possible

5.5 Attention 71

for an agent to perceive every information stored in the STSS, it only becomes aware of the

information that it focuses on. Stimuli in the STSS are only stored for a brief period of time.

Once an agent becomes aware of an object, the stimulus turns into a percept and will reside

in short-term memory (STM). Percepts represent a status change from unattended to attended

stimuli, but in addition, they only store copies of dynamic object properties contained in

the source stimuli. This approach ensures that agents are only aware of information that it

perceived. If a property changes, the agent can only become aware of the current information

by sensing it again, i.e., there must be a corresponding stimulus within the STSS. To become

aware of an object, an agent needs to focus its attention on the object (see Section 5.5) and

the STSS must contain stimuli related to that object. Once in STM, high-level processes,

like decision-making, can retrieve percepts. Therefore, the content of the STM describes

an agent’s model of its virtual surroundings and its current working knowledge. Percepts

stored in STM are removed if they are not attended to repeatedly, like stimuli in the STSS.

However, percepts are retained longer than stimuli.

General concepts about a virtual world or inferred correlations (see, e.g., [PO02]) are

typically stored in long-term memory (LTM). Examples of such information could be traffic

rules, social interaction protocols, or optimal navigation paths. The LTM structure can

also hold information that needs to persist across multiple simulation sessions, e.g., when

a conversational agent is supposed to remember a particular user. To retrieve long-term

knowledge, it is usually decoded and loaded into STM instead of being retrieved from LTM

directly. In multi-agent systems, long-term knowledge is often identical for all simulated

agents. Therefore, it is often beneficial to provide it using a structure outside of the agents,

e.g., using global semantics (cf. [vOD11]).

5.5 Attention

Humans receive an incredible amount of information via their available sensors (see, e.g.,

[AEO05, BI13]). Unfiltered, the quantity of information would be impossible to process.

Attention is a filter mechanism that allows living beings to focus on the subset of information

that is currently relevant. What is relevant and what can be filtered out is determined by

bottom-up and top-down attention processes.

Bottom-up attention is a reactive process that subconsciously directs attention towards

salient objects in an environment by causing reflexive eye movements that are almost impos-

sible to suppress ([Fri11, KT18, PCR+11]). These objects stand out from its surroundings due

to one or multiple contrasting features, e.g., color, movement, or shape [KT18]. Top-down

attention allows humans to consciously influence what is perceived and what is filtered. This

72 Perceptual Agents

type of attention is important if a current goal needs to be achieved, like finding a specific

object (see, e.g., [Fri11, KT18]). Similarly, the ability to control the perception process using

top-down attention is also an important aspect for simulating human-like perception in IVA

[vO14]. Bottom-up stimuli are often stronger than top-down influence due to the relevance

for survival. If a viscous predator is rushing towards you, it is certainly more important

to perceive it than finding the best fruit on the shrub in front of you. Despite the general

prevalence of bottom-up attention, it is important to suppress bottom-up stimuli to a certain

degree, to maintain a level of focus in a current task (cf. [Fri11]). Both directions of attention

serve specific purposes that should be included in a synthetic model of human attention to

generate believable agent behavior (cf. [vOD11, KvVH05, Fri06, PCR+11]).

Furthermore, as is the case with human attention, a similar synthetic process can reduce

the amount of important information at a given time to a manageable size – effectively

reducing computational cost. The main purpose of synthetic perception is typically to

emulate the abilities as well as disabilities of a real-world counterpart. Given a certain

situation, an IVA should ideally perceive the same objects as a human in the same scenario.

It is likely impossible to match the precision and performance of the human perception

system in a real-time application, which means abstraction of the process is inevitable. The

amount of abstraction from the human system generally depends on a variety of factors,

e.g., application domain, purpose of the system, and available resources, among others.

According to these considerations, the proposed framework is based on the main ideas

of Treisman’s Feature Integration Theory (FIT) and Wolfe’s Guided Search Model. A summary

of these models can be found in [Fri11] and [Kim06]. A structural overview was presented

in Figure 5.1, but Figure 5.3 demonstrates the process of perception within the framework

with specific focus on attention. Early in the process, features are registered in parallel by

the available sensors. Here, parallel refers to the occurrence of events regarding the sense

cycles, meaning that all stimuli reaching an agent’s sensors are available in the STSS after a

single sense step. The importance of a stimulus Si is described by a saliency value si, which is

assigned by each sensor during the acquisition process. Saliency describes how conspicuous

an object or feature is within a given surrounding (cf. [IDP03]), which can be treated as a

kind of utility for selecting one stimulus over others. Each stimulus Si is associated with

exactly one virtual object o j from a set of virtual objects O = {o1, . . . ,om}, but multiple stimuli

with independent saliency values can be sensed from a single object (see Figure 5.3). Due to

the open design of the sensor interface, stimuli can be of different modalities (e.g., visual and

auditory), but also of the same modality (e.g., visual ray-casting and visual false-coloring).

After sensing, the actual perception of a stimulus’ source object can only be retrieved

sequentially, i.e., an agent must direct its attention to each object of interest one after the

5.5 Attention 73

Figure 5.3: Depiction of the proposed perception process. Sensors create stimuli Si for each object
that is sensed, which are associated with a saliency value si and stored in STSS. Stimuli are then
integrated across all sensor modalities to create one multi-sensory stimulus Mk(ok,msk) for each
sensed object ok with a combined saliency msk. The stimuli are sorted according to their associated
multi-sensory saliency. Top-down attention is emulated using a task bias, which can increase the
saliency of a multi-sensory stimulus. A percept is created from the stimulus with the highest biased
saliency and moved to STM making the agent aware of the associated virtual object. An additional
inhibition process decreases the saliencies for objects that have been attended to recently.

other (cf. [Enn04]). To simulate the focus effort, an attention process will select the most

salient object from the STSS as the stimulus of interest and the agent aligns its main sensors

towards the source of the stimulus. To realize the sequential selection, the stimuli in the STSS

are first integrated across all sensors to find a multi-sensory saliency msk for each virtual

object ok, which is represented by at least one stimuli in the STSS, generating a multi-sensory

stimulus Mk.

The multi-sensory saliency msk is a weighted sum of the individual sensor saliencies,

similar to the approach presented by Balint and Allbeck [BA13], but here a linear combination

is used:

msk =
∑︂
t∈T

wt
ς(ok, t)∑︁m
j=1 ς(o j, t)

(5.1)

where T is the set of available sensor types (visual, auditory, olfactory, etc.) and ς(o j, t) is

the sum of stimulus saliencies for an object o j and a sensor of type t. The weights for each

sensor type (wt) can be specified by either using educated guesses, deriving them from the

current context, or extracting them from test data. Weights can also be adjusted based on a

modality’s reliability. For example, in a dark room, visual sensors do not function to their full

capacity and may therefore become less significant than other sensors, like audio sensors.

The set of multi-sensory stimuli is then sorted according to their saliency, such that

74 Perceptual Agents

msk ≥ msk+1. The attention process selects the combined stimulus with the highest saliency

value and makes the associated object the current object of interest. After focusing on the

object, the according stimulus is moved to STM as a percept. Only after this percept is passed

to STM, is the agent aware of the corresponding object, i.e., high-level processes can query

information about the object.

With this approach, the most recent object remains in the center of attention, making it

highly unlikely that other stimuli will capture the agent’s attention. Therefore, the stimulus

may be inhibited for the upcoming cycles, which means the associated multi-sensory saliency

is decreased. The moment and level of inhibition as well as the number of objects that can

be inhibited simultaneously are customizable within the framework at runtime. By altering

these parameters, various search behaviors and degrees of attention can be modeled and

simulated. For example, if only a few objects can be inhibited, the agent will repeatedly

focus a set of similar objects appearing forgetful or nervous. Another aspect influencing the

inhibition of an object are object properties. Some objects may be complex requiring more

attention or certain properties may change continuously (e.g., position), which means they

may remain salient and should not be inhibited after being perceived for the first time.

Implementing the definitions above represents a flexible and adaptable approach to

modeling bottom-up attention. However, attention based solely on bottom-up mechanisms

would not allow other processes to influence attention allocation (cf. [Kim06, PCR+11]).

Therefore, to simulate plausible agent behavior, the ability to direct attention based on

current knowledge or goals must also be integrated into the perception framework. To

simulate this controlled behavior, bottom-up saliency determined by the virtual sensors

is biased within the attention step based on the agent’s current priorities or preferences.

This process is based on the Dynamic Perceptual Attention (DPA) model developed by Kim

[Kim06]. Here, the process is adapted to apply a bias function b to multi-sensory saliency

values associated with certain objects as depicted in Figure 5.3. The bias function elevates the

saliency1, giving the stimulus a higher importance than that assigned to it by the bottom-up

saliency. In Figure 5.3, the biased saliency is high enough for the stimulus to be selected over

other stimuli that have higher priority. The amount of deviation from the original saliency

can either be pre-determined at design-time or generated in an agent-centric way at runtime,

e.g., by evaluating object ontologies (cf. [vOVD12]). This allows prioritizing stimuli related

to an agent’s current goals. At the same time, highly salient bottom-up stimuli will still be

perceived if they are larger than the biased saliency value.

1Currently, the bias function only increases saliency, because it makes sense in the context of the application.
However, the realization does not prevent a designer from providing negative biases to decrease saliency.

5.6 Personality and Emotion 75

5.6 Personality and Emotion

In a multi-agent scenario, even plausible behavior becomes implausible if all agents behave

in the same way. In Chapter 4 the benefits of including personality and emotions into an

agent’s cognitive processes were modeled. These arguments also apply to agent perception,

which is a part of the cognitive apparatus and arguably the foundation for agent behavior.

Therefore, personality and emotion should also influence perception and vice versa. Task
parameters are used to control how personality affects agent behavior in specific tasks or task

areas. One such parameter could be “focus” describing how rapidly memory entries decay

or how many objects an agent can attend to. Using this approach, agent perception can be

individualized and help create more diverse and dynamic behavior patterns. Furthermore,

personality and emotion could modulate stimuli or saliency shifting attention and perception

towards specific objects (see [PCR+11]). Perceived objects could also influence an agent’s

emotional state similarly to emotional incidents defined in Section 4.2.2.

5.7 Semantic Modeling

One benefit of virtual worlds and virtual objects is that information that cannot be sensed

directly must not be learned or derived by an agent using complex high-level processes.

Instead, such information – often referred to as semantics – can simply be “attached” to

objects and retrieved whenever required. Semantics are commonly integrated into a virtual

world at the object level, i.e., virtual objects are augmented with additional information like

appearance, physical properties, roles, behavior, services they provide, or affordances (see,

e.g., [BA13, TBSK08, vO14]). In the CA2RVE architecture, semantic information provides the

characteristics of a perceivable virtual object or determines how it is perceived. In the context

of VE, dimensions, color, loudness, or saliency are some examples of object semantics that

are used in the perception process (cf., [TBSK08]). World semantics can add information on

a larger scale, e.g., weather conditions in an area of the virtual world. This type of semantics

can be used by sensors during the sensing process to model effects like limited range of

sight due to darkness or fog. For more details about semantics in the proposed perceptual

framework see [IVC8].

5.8 Conclusion of Integrating Perception into IVA

In this chapter synthetic perception has been introduced and it was explained how it can

be used to improve the behavioral realism of intelligent agents in real-time virtual environ-

ments. For this purpose, a generic model for synthetic virtual perception was proposed

76 Perceptual Agents

to solve RT3.1. The focus of the model are a virtual sensor interface, a hierarchic memory

module, and an attention model to limit an agent’s knowledge about its environment in a

believable, yet controllable way. Since sight is the most important sense for humans, visual

perception was primarily addressed, although it was explained how multi-sensory informa-

tion is integrated into the process. Regarding RT3.2, the proposed perception framework

offers a flexible and customizable solution for modeling virtual perception. When designing

sensors, the focus can be either on accuracy, scalability, or controllability. Virtual sensors can

be straightforward for efficient processing or provide redundant information for increased

fault tolerance. However, sensors can also be designed to be an elaborate emulation of bio-

logical sensors to realize realistic sensing. Although these focus areas may not be mutually

exclusive, it is usually difficult to model sensors that excel in all of them. The strength of

the presented model is the flexible, dynamic combination of multiple sensors to mitigate the

drawbacks of individual sensors. As a result, the model facilitates solutions that are accu-

rate, scalable, and controllable, allowing for a wide range of potential applications. Possible

examples are interactive games, perception research, education, and simulation.

An integrated memory module stores both stimuli and percepts generated from stimuli

that have been attended to. Although high-level processes, like decision-making, have not

been addressed in this chapter, the memory module also acts as interface from and to these

subsequent processes. The included attention model combines bottom-up reactive attention

through object-based saliency values and top-down task-oriented processing by biasing

sensed object saliency values. Memory and attention are configurable to fit application

specific needs, achieving the desired controllability.

The configuration of each perception module can also be used to reflect an agent’s

personality or emotional state. This option has not be explored in depth, but an approach

for including this influence was indicated. The concept of task parameters (see Chapter 4)

can be readily applied to the discussed perception modules.

One limitation of the perception framework regarding plausibility is the object-based

design. Stimuli and percepts are always linked to virtual objects, which means perceiving

parts of an object is equivalent to perceiving the entire object. Similarly, while stimuli

saliencies are compared, there is no inherent context to the comparison. Relationships, like

proximity, must be explicitly included in stimuli acquisition. Due to this design, it is difficult

to model certain perceptual effects such as figure-ground relationships, camouflaging, or

grouping. Considering these principles within the confines of the devised framework is

not impossible but would, in many cases, require a non-negligible effort. Additionally, the

design does not prevent a user from defining a sensor that perceives every information within

the virtual world, creating all-knowing agents. Such a sensor would defeat the intention of

5.8 Conclusion of Integrating Perception into IVA 77

emulating human perception, but it would be a conscious decision made by the designer.

It is also the sensor designer’s responsibility to balance believability with scalability and to

consider controllability.

Real-time capability was considered during the design process of the perception frame-

work as stated in RT3.2. The next chapter demonstrates that the overall cognitive agent

architecture, including perception, is suitable for real-time application.

78 Perceptual Agents

6
Application of the Agent

Architecture Design

“Knowing is not enough; we must apply. Willing is not enough; we must do.”

- Johann Wolfgang von Goethe

In the previous chapters, motivations and foundations for a real-time attentive cogni-

tive agent architecture were discussed. Based on these considerations, a concept was

put forth with the intent of providing a flexible architecture to facilitate the generation

of plausible agent behavior based on personality, emotion, and perception. Through-

out this thesis, it was emphasized, that besides plausibility and controllability of behavior,

real-time constraints of the target domain must be considered. In the context of interactive

experiences in virtual environments, a minimum framerate of 30 frames per second (FPS) is

typically considered real-time. To achieve these framerates, calculating each new frame must

be generated in 33.33 ms/frame or less. To answer whether the proposed concepts scale

well enough for real time, multi-agent applications (RQ4), the validity of the proposed

concept is demonstrated by implementing it in a real-time traffic simulation scenario. The

steps and consideration required for this realization are discussed throughout this chapter.

FIVIS1 is a bicycle simulator developed at the Institute of Visual Computing of

Hochschule Bonn-Rhein-Sieg [HSK+10, HSK+12] (see Figure 6.1). Used as a tool for road

safety education of elementary school children, simulating challenging and instructional

traffic situations has always been an integral part of the FIVIS system. The original scenarios

developed for FIVIS lacked variety as agent behavior was trigger-based and purely scripted.

1Fahrradfahrsimulator in der Immersiven Visualisierungsumgebung Immersion Square (Engl.: Bicycle driv-
ing simulation in the immersive visualization environment Immersion Square), vc.h-brs.de/fivis

80 Application of the Agent Architecture Design

Figure 6.1: Three-display setup of the FIVIS bicycle simulator including bicycle input at the Institute
of Visual Computing of Hochschule Bonn-Rhein-Sieg in Sankt Augustin.*
*3D assets by IVC.

The implemented scripting interface only allowed designing static behaviors in a tedious

and time-consuming process. The AVeSi2 project provided an opportunity to continuously

apply the concepts developed within this thesis with the goal of simulating more life-like

traffic within FIVIS scenarios.

A traffic simulation for road safety education is an interesting area of application for

cognitive agents as it requires a mixture of game-like agents and traffic simulation. Traffic

agents in games are typically used as a backdrop to the game experience, conveying the

illusion of a living world. They usually do not serve any educational purpose and may even

try to clear space for players to avoid hindering them.

Traffic simulations are used in a wide array of tasks. Consequently, the field of traffic

simulation research is advanced, but applications typically focus on analytical investigations

of traffic phenomena. While incorporating aspects of human behavior in traffic, these aspects

are usually modeled as randomization of normal behavior or modeled at an abstract level.

For example, in the original Nagel-Schreckenberg model, the velocity of cars is reduced with

a certain probability to emulate dawdling (cf. [TK10]). This may sufficiently re-create human

behavior to analyze certain traffic characteristics, but it is usually independent of the actual

situation that would lead to driver-dependent adaptation of behavior. The latter is what

leads to interesting and perhaps dangerous situations when observed up close. Human

drivers make mistakes, violate or bend traffic rules, or take risky choices; the same should

be true for traffic agents if trainees are to learn from observed and experienced behavior.

2Agentenbasierte Verkehrssimulation mit psychologischen Persönlichkeitsprofilen (Engl.: Agent-based traf-
fic simulation with psychological personality profiles), vc.h-brs.de/avesi

81

Applying the presented cognitive agent architecture to FIVIS’ traffic simulation ide-

ally achieves this level of believable driver behavior. Due to their approaches and the

general intended domains, cognitive architectures require substantial computational re-

sources [SSSS16, BGG19]. Approaches in IVA/ECA research are often also limited to

only a few individual agents, in most cases only one or two agents are considered (e.g.,

[CHLC18, Geb05, GBK+10, tSKT+20, ZMLY19]). Based on these observations, the developed

cognitive agent architecture and especially CA2RVE was designed as a modular, lightweight

cognitive architecture. The intention of these design choices was to provide a scalable

solution that is applicable to scenarios with larger agent populations. At the same time, the

plausibility and controllability constraints should not be compromised. Finding solutions

to this problem is subject of RQ4. In this context, a perception related solution is to be

investigated first, before considering a more general answer.

RT4.1: Efficient acquisition of knowledge about an agent’s environment.

It is not clear whether human-level cognitive capabilities can be realized on conventional

computer hardware even without focus on efficiency [DOP08]. Therefore, realizing the

developed concepts for interactive applications generally means finding ways of simplifying

processes without compromising plausibility and controllability or reducing scale, e.g., by

focusing on a single virtual agent.

Despite the variety of available solutions, a common approach is to simplify the

decision-making and perception processes. When dealing with virtual worlds and objects,

information about them can be associated at any time, preferably at design time. This

information is often referred to as semantics and is a major advantage of synthetic perception

in virtual worlds, since semantics can simply be looked up at runtime instead of having

to intricately extract them from sensor information, which is typically the case in robotics.

Semantics are commonly integrated into a virtual world at the object level, i.e., virtual ob-

jects are augmented with additional information like appearance, physical properties, roles,

behavior, services they provide, or affordances (see, e.g., [BA13, TBSK08, vO14]). Extending

virtual objects with sensible semantics is one approach taken in this work towards answer-

ing this research task. Examples should include measures, color, loudness, and saliency.

Additionally, world semantics can add information beyond the object level, e.g., to model

effects like limited range of sight due to weather conditions. Sample realizations should

showcase the efficient acquisition of knowledge about an agent’s virtual world utilizing the

perception framework. Using the integrated sensor interface, it should be possible to realize

sensors that reduce task complexity for agents while maintaining plausibility.

82 Application of the Agent Architecture Design

RT4.2: Realizing the cognitive agent architecture concept as real-time application.

To verify that the proposed design is applicable to interactive, virtual user experiences,

the design should be realized as part of the FIVIS bicycle driving simulator or more specif-

ically applied to its embedded traffic simulation. By means of this application, the initial

claim of providing cognitive agents for real-time virtual environments should be verified.

While parts of this task are addressed in Chapter 5, applying the proposed concepts to

an interactive, virtual user experience should be the result of this task. Agents realized

using the proposed architecture concept are to be used as traffic participants populating

scenarios within the FIVIS bicycle simulator. The modular and extensible design should

allow adjusting simulations to application-related constraints. Furthermore, a prototype

implementation demonstrates the realization of the architecture design in a possible pro-

duction environment. This includes handling additional constraints imposed by the utilized

tool set, like a game engine. Using exemplified techniques, it should be possible to meet

real-time and project-specific requirements.

The following sections describe how the presented concepts are implemented to realize

several traffic scenarios regarding plausibility of generated behavior. First, the application of

the cognitive agent concept to traffic simulation is described, followed by several application-

specific extensions and a look at another possible application domain. At the beginning of

the project, the most common 3D game engines were surveyed to find the best fit for the

traffic simulation as well as FIVIS. At that time, the Unity game engine3 was selected as it

was the most promising. Unity offered an affordable license system and an easy to learn

workflow. Especially the latter turned out to be useful, as students joining the project did

not need previous experience using the engine. Unity has evolved substantially over the

course of this thesis, and it seems to have become one of the most popular game engines,

especially for small studios, independent developers, and in education. Choosing Unity at

the beginning of the project also allowed tightly integrating a sample realization with the

game engine. This integration, as opposed to middleware approaches (e.g., [GBK+10, vO14]),

avoids performance issues caused by communication latency, unnecessary abstractions, and

costly conversions. Furthermore, it simplifies efforts for newcomers and potential users of

the system, as they do not have to familiarize themselves with multiple platforms.

3https://unity.com/, [online: May 2, 2023] Unity Technologies

https://unity.com/

6.1 Cognitive Traffic Agents 83

6.1 Cognitive Traffic Agents

Based on the intended application, traffic agents realized using the CA2RVE architecture

should possess the following properties:

• Psychological personality profile for individualized, consistent behavior according to

RQ2.

• Generally following traffic rules, since human traffic participants generally follow

these rules.

• Ability to handle specific traffic scenarios to facilitate the creation of learning scenarios

for trainees.

• Separation of body and mind to allow exchangeability and extensibility.

• Plausible driving behavior to support immersion and the suspension of disbelief.

• Plausible perception of other traffic participants to create give agents a believable

knowledge of their environment, which improves the plausibility of their behavior (cf.

Section 5).

To achieve these requirements, the modular design depicted in Figure 6.2 was developed.

Incorporating users is achieved by representing them as player agents, allowing other

agents to interact and communicate with users similarly to how they interact amongst

each other. For artificial agents, behavior is strictly determined by their decision strategies

and associated behavior models, but extensions can include a static personality profile (see

Section 4.1), or a dynamic profile based on an emotional state (see Section 4.2).

Static and dynamic personality profiles were realized in accordance with the concepts

presented in Chapter 4. Five dimensions are used to represent the FFM traits (openness,

conscientiousness, extraversion, agreeableness, neuroticism). ArtificialAgents do not pos-

sess a personality profile, their decisions are based on default behavior models. A derived

PersonalityAgent class is extended with a personality module, which is composed of a FFM

profile. To include an emotional state and exert influence on the static profile, an Emotion-
PersonalityModule is derived, which is a component of an EmotionalAgent. The perception of

emotional incidents is realized using an ImpressionModule. Coefficients for relating the per-

ception of emotions to personality, emotional state to dynamic profiles, or personality to task

parameters are contained in a global configuration module (not depicted in the diagram).

Most elements of an agent are realized as components to maximize versatility. Every

agent includes a mind component, which consists of cognitive modules for navigation,

decision-making, and traffic memory4. Traffic rules are followed by the implemented nav-

4The module is deliberately called traffic memory to distinguish it from perceptual memory. It contains
information about the current driving state, e.g., current lead agent or obstacle or the previous acceleration.

84 Application of the Agent Architecture Design

Mind

Personality BodyAgent

Agent
<<interface>>

IBody

Vehicle
MobileAgent StationaryAgent

ArtificialAgent

PersonalityAgent EmotionalAgent

<<interface>>
IIntercom

+ Velocity

+ WaitingFor

+ EstimateHeadway()

+ EstimateVelocity()

SimplifiedVehicle MicroVehicle

Car Bike
<<interface>>
IVehiclePhysics

DirectedGeometry

+ Front

+ Back

+ Left

+ Right

Geometry

+ Length

+ Height

+ Width

PlayerAgent

<<interface>>
IMind

<<interface>>
IDriver

Driver

ArtificialDriver

<<interface>>
IEventReceiver

PersonalityBasedAgent

PersonalityModule

+ Openness

+ Conscientiousness

+ Extraversion

+ Agreeableness

+ Neuroticism

EmotionPersonalityModule

+ NegativeEmotion

+ PositiveEmotion

+ Openness override

+ Conscientiousness override

+ Extraversion override

+ Agreeableness override

+ Neuroticism override

Profile

+ Openness

+ Conscientiousness

+ Extraversion

+ Agreeableness

+ Neuroticism

ImpressionModule

<<interface>>
IDecisionModule

<<interface>>
ISteeringModel

<<interface>>
IDrivingModel

<<interface>>
ILaneChangingModel

<<interface>>
ICrossroadModel

<<interface>>
IVelocityModel

<<interface>>
IVotingModel

<<interface>>
ITrafficMemoryModule

<<interface>>
ILocationModule

<<interface>>
IYieldingModule

<<interface>>
INavigationModule

ArtificialCarDriver ArtificialBikeDriverInstantiates

InstantiatesInstantiates

VehiclePhysics

CarPhysics BikePhysics

PlayerDriver

<<Interface>>
IBehaviorProfile

<<Specific
Behavior Profile>>

ProfileCorrelation

Optional

DecisionModule

ArtificialDecisionModule

ArtificialBikeDecisionModule

SimplifiedDriver

ArtificialCarDecisionModule

Instantiates

Figure 6.2: Simplified view of the realized CA2RVE architecture for cognitive traffic agents. The
separation of thought processes (mind) from an agent’s physical representation (body) in combination
with the modular design allows flexible usage of agents. Users are considered as player agents.

6.1 Cognitive Traffic Agents 85

igation module and driving strategies, e.g., freeflow, following, or lane changing. Strategies

are implemented using behavior trees, which are explained at the end of this section. The

number of strategies can be extended if necessary, and they are configured using appropriate

models for steering, acceleration, lane changing, etc. Each module interface must be realized

for the according agent and mind type. The diagram in Figure 6.2 shows an example of this

process for the IDecisionModule interface. The decision-making module also uses models

to configure actions. In turn, each model requires a behavior profile that is attached to an

agent (IBehaviorProfile). For example, an acceleration model may calculate an agent’s desired

velocity while following another agent based on an agent’s minimum headway to its lead, an

acceleration coefficient, or comfortable deceleration. All these behavior profile parameters

may be associated with an agent’s personality profile.

Politeness ϕ is one behavior profile parameter that is used as configuration parameter

for the lane change model. The parameter’s value can be globally set for all lane change

decisions, or it can depend on the agent’s personality profile. The realization of lane changing

is based on MOBIL (“Minimizing Overall Braking Induced by Lane Changes”) by Kesting

et al. [KTH07], which includes a politeness parameter and integrates well with the realized

car following model (see below). Using this model, an agent ac decides to change to a

neighboring lane with the same driving direction if the following holds:

ẍc − ẍ′c+ϕ ·
(︂
ẍg − ẍ′g+ ẍ f − ẍ′f

)︂
> ∆ẍth,0 ≤ ẍth,0 ≤ ϕ ≤ 1, (6.1)

or if the neighboring lane’s driving direction is the opposite of the agent’s driving direction,

the model is adapted as follows:

(1−ϕ) · (ẍc − ẍ′c)+ϕ · (ẍo − ẍ′o) > ∆ẍth,0 ≤ ẍth,0 ≤ ϕ ≤ 1, (6.2)

where ẍi denotes the current acceleration of agent ai and ẍ′i the predicted acceleration of

agent ai after the considered lane change was performed. Figure 6.3 provides an overview

of agents c, f, g, l, m, and o5 involved in the lane changing decision and the according

parameters. Agent ac is the agent currently considering a lane change, al is the agent that ac

is currently following, and a f is the agent following ac. Agent ag would become ac’s follower

after the lane change and am would become ac’s lead. In a scenario with opposite driving

directions, ao is the agent driving in the opposite direction to ac. The parameter ∆ẍth is a

threshold, which is a part of the MOBIL model preventing lane changes that result only

in marginal advantages. The politeness factor ϕ determines how much the acceleration

5The indices indicate the role of each agent in the current decision: c – currently considered agent, f –
following agent, l – lead agent for agent c, g and m are the indices following f and l, respectively, since they
would be follower and lead in the event of a lane change. Agent o is the one driving in opposite direction to
agent c.

86 Application of the Agent Architecture Design

(a)

(b)

Figure 6.3: Overview of parameters used in lane change decision for agent ac. The MOBIL model
by Kesting et al. is used for equal driving directions (a). For opposing driving directions, the
MOBIL model was adapted (b). Arrows indicate accelerations before the lane change (ẍ) and after
a lane change (ẍ′) for all agents relevant to the decision. For the opposing lane scenario, additional
parameters are required to calculate the latest possible stopping point for ao. Images from [SvS14].

change of other agents is considered by ac. For maximum politeness (ϕa = 1), the agent

considers the acceleration change of ag and a f by 100% in equal driving direction scenarios

and completely disregards its own advantage when waiting behind an obstacle for opposite

driving direction lanes. The latter fully acknowledges that ac does not have priority in this

situation. For the minimum politeness, ac only cares about its own advantage, but it does

consider safety criteria (e.g., minimum gap distances to prevent accidents). The politeness

factor can be derived from an agent’s personality profile using a tuple of coefficients cϕ (cf.

Section 4.1.2):

ϕa =
(cϕ •ba)+1

2
(6.3)

Using this equation, a medium politeness (ϕa = 0.5) is calculated if personality does not have

any influence on the parameter (c = ⟨0,0,0,0,0⟩) or if an agent has an average profile (i.e., the

z-scores for all traits are zero). Since profile traits and coefficients are within the [-1;1] range,

the result of Eq. 6.3 must additionally be constrained to the [0;1] range.

An agent’s embodiment in traffic is determined by an implementation of the body mod-

ule. Due to this component-based realization, several classes and subclasses of traffic partic-

ipants can be set up for simulation (e.g., car, bicycle, bus, etc.). By defining a separate agent

6.1 Cognitive Traffic Agents 87

body, including the according properties, agents can even change their means of travel at

runtime. Since an agent is aware of its body component, it would be possible to associate

different behaviors and task parameters with specific components. For example, an agent

could act more cautiously while driving a bus, because it is responsible for all its passengers.

For the prototype, four different agent types were realized: car, bus, bicycle, and pedestrian.

Note that in Figure 6.2, sample implementations are only depicted for Car and Bike.

Every vehicle is represented in two simulation layers to improve scalability (see Sec-

tion 6.3). In a simplified representation, bodies are mainly differentiated by their visual

representation, i.e., the 3D model of an agent. For increased realism, physical properties

and processes are integrated into a microscopic representation and simulated using Unity’s

physics engine. Examples of these physical aspects are collision geometry, weights, and

torque curves for acceleration and deceleration.

According to Chapter 5, the perception module consists of virtual sensors and a memory

hierarchy. To take advantage of the loose coupling of Unity’s component mechanism, the

perceptual components were attached to agent objects. This approach is orthogonal to the

class structure introduced above for maximum decoupling. Virtual sensors are attached as

child objects to a perception object. When the simulation is started, the sensors are attached

to the perceptual systems and stimuli are sensed periodically based on a specified time

interval. All sensed stimuli are kept in STSS until requested or until they are forgotten.

A MemoryHierarchyModule, which contains the STM, handles STM decay, maintains an

interest registry, and relays synchronous information requests from other processes to the

perceptual module. If the STSS contains a stimulus that matches a requested predicate

(e.g., a certain type of object), a percept is generated from the stimulus and the percept is

stored in STM. Additionally, an attention process as described in Sections 5.5 and 7.3.2.1

was implemented to control which stimuli are moved to STM. For this traffic simulation

prototype, observer components are attached to agents, which request task-based objects

regularly and then feed them to the traffic memory or navigation modules. Figure 6.4

demonstrates this approach and its relationship to the agent class structure.

To realize the action selection process for traffic agents, behavior trees, which are a com-

mon tool for game AI [LB19], were chosen as they present a balanced compromise between

development effort and complexity of generated behavior. Behavior trees are straightfor-

ward to implement, maintain, and extend, while at the same time being sufficient at gener-

ating complex behavior. The overall hierarchic structure, typically a directed acyclic graph,

reveals behaviors in an intuitive way. At the same time, they are highly customizable as logic

can be added at any node within a tree. Thus, using simple control nodes and modular ac-

tions, complex behaviors can be achieved with manageable effort (cf. [CS09, Cha07, Isl05]).

88 Application of the Agent Architecture Design

GO: Agent

GO: PerceptionSystem

GO: AuditiveSensors

GO: VisualSensors

GO: …

GO: GenericVisionSensor

GO: FalseColorVisionSensor

U EmotionalAgent

PedestrianObserver

SpeedLimitObserver

…

U PerceptionModule

MemoryHierarchyModule

U GenericVisionSensor

GO: …

Request(), RegisterInterest(…)

Request()

Sense()

Figure 6.4: Component layout and game object hierarchy of traffic agent. Unity game objects are
indicated using a “GO” prefix and Unity components are indicated by an aggregation symbol with
an embedded “U”. Components are gathered along the game object hierarchy at the beginning of the
simulation. Interactions between perception modules are depicted using blue arrows.

Note that the latter does not exclude the fact that a behavior tree itself can become very

complex if many behaviors are included. For the presented traffic simulation, the decision

module includes a behavior tree, which is used to select between the aforementioned driv-

ing strategies. Just as the body of an agent can be exchanged to a specific embodiment,

the behavior tree can be exchanged as well to express the according traffic behavior. Figure

6.5 shows an example of a behavior tree used in the realized traffic simulation. Examples

of strategies present in the realized vehicle tree can be single actions, like determining the

current desired velocity when following a lead vehicle using the Intelligent Driver Model

(IDM) [THH00]. However, strategies could also be combinations of selections, sequences,

conditions, and actions. For example, the lane change implemented in the prototype is a

sequence of a condition, an evaluation action, and a selector based on lane direction. If

the lane to change to is of the opposite driving direction, the lane change strategy becomes

a sequence of checking the direction of the lane, then waiting to initialize the lane change

based on safety and politeness criteria, then changing over to the opposite lane, then possibly

staying on the other lane if multiple obstacles must be passed, and finally, changing back

to the original lane. Other strategies may consist of only one action but might still be more

complex than entire sequences. For example, the yielding strategy realized in the simulation

is an action that requires agent negotiation based on a voting mechanism and may induce

emotional incidents, which can affect strategy selection.

6.2 Semantics as Extension of Long-term Memory 89

Ped. crossing
ahead

Obstacle
ahead

Lane change
considering or

in progress

Drawing

Lane change

Lane end
ahead

Ped. crossing

Lane change
decided or in

progress

Obstacle
stationary

Obstacle
moving

Traffic lights
ahead

Crossroads
ahead

Dead end
ahead

Approach
end

Cross roadsTraffic lightsWait for
obstacle

Lane
change

Considering
lane change

Figure 6.5: A behavior tree used for decision-making in traffic agents. Colored nodes are conditions
and white nodes are behaviors or strategies. Note that behaviors can be re-used. Each leaf node
represents another sub-tree that is omitted for brevity.

6.2 Semantics as Extension of Long-term Memory

In the current version of the presented CA2RVE architecture, long-term memory is not

explicitly considered. However, traffic agents need to understand general driving behavior

and concepts that humans learn in driving school, e.g., the concept of a lane or right-of-way

priorities, knowing what the allowed speed limit is, how to drive when following another

traffic participant, or how to perform a lane change. Realistically, this knowledge is stored in

every driver’s long-term memory and accessed while participating in traffic. In the context

of a simulation, this knowledge can also be considered global knowledge that applies to

all agents within the virtual world. Both approaches are used in the presented traffic

simulation. Driving strategies represent behaviors or knowledge common to all agents, e.g.,

vehicle following or lane changing. However, agents can apply the general behavior to their

own situation, personality, and emotional state. These agent-centric deviations can include

maintained distance to a leading vehicle, when to initiate a lane change, or how to handle

speed limits.

While it is useful to modulate driving strategies, the same does not necessarily apply to

other global knowledge. What actual speed limit applies to a given road, how wide a lane

is, which state a traffic light is in, or on which side to drive on are examples of facts that

90 Application of the Agent Architecture Design

(a) (b)

Figure 6.6: (a): A semantic road network added to a virtual world as additional layer. Information
from that layer can be accessed via object semantics using an agent’s perceptual system. Image from
[SvS8].* © 2014 IEEE (b): A closeup of the road network representation showing lanes (red) and
connectors (green) on three roads and a connecting intersection. Boundaries of lanes and connectors
are indicated in blue.**

*Terrain assets generated using Trian3DBuilder [Tri].
**Vehicle assets based on designs by Dosch Design (pink car) [Dos], “Underground Lab” (blue car) [Und], and
“kilastaras” (black car) [kila]. Terrain assets and yellow car by IVC.

describe the current state of the world and the rules of traffic. Agents may interpret and use

this knowledge differently, but that does not change it for other agents. So instead of storing

this information in LTM and having agents decide what to make of it, it is represented

globally as an additional semantic layer in the virtual world (see Figure 6.6). This layer is

not visible to a user of the system, but agents are able to perceive elements of this layer using

an application-specific sensor (cf. Section 7.3.2.1). Although the information in this layer is

global, the semantics are object-based as each object of that layer contains the information.

Providing such an approach avoids holding this information redundantly and provides

it to each agent efficiently. Regarding the latter, agents do not have to employ complex

processes that deduce lane topologies, right-of-way priorities, or what path to take across

an intersection. Agents can sense this information and integrate it into their model of the

world to utilize it for navigation and decision making. The provided information is exact

and correct, but agents are free to ignore or modulate it internally. For example, while the

exact course of lanes is encoded in the network, agents are not restricted to it; they can choose
to drive elsewhere.

The semantic road network layer is based on the OpenDRIVE® standard [DSG10] and

the road network representation used in VISSIM [FV10]. The network G is defined by a

set of lanes L, a set of connectors C, a set of roads R, a set of paths P, a set of information

6.2 Semantics as Extension of Long-term Memory 91

elements I, a set of nodes N, and a set of junctions J resulting in a graph-like structure given

by

G = (L,C,R,P, I,N, J) . (6.4)

The fundamental elements are nodes n= (−→ppp ,I), whose most important intrinsic information

are their positions in 3D space −→ppp . Additionally, each node is associated with a set of

information elements I ⊆ I made available to an agent that perceives the node, e.g., speed

limits, associated traffic signs or traffic lights, lane width, etc. A sequence of nodes defines

a segment S, which connects the semantic representation to the 3D geometry of the virtual

world. The order of nodes in S defines the direction and course of the segment represented

by a polygonal chain. Formally, each segment is a partitioning set of N, i.e., for a set of all

segments S the following holds:
N = ∪S∈S S

∅ = Si ∩S j,∀Si,S j ∈ S , i ≠ j
(6.5)

Segments represent either lanes l ∈ L or connectors c = (S, lp, ls). Connectors have the special

property that they have exactly one preceding lane lp and exactly one succeeding lane ls.
Consequently, although lanes can have multiple incoming and outgoing connectors, the

connector property provides a one-to-one correspondence between connectors and lanes.

Lanes and connectors are further grouped to roads and paths, respectively. The main intent

is to provide an additional structure on which relationships like neighborhoods or other

properties can be defined. Roads are connected by junctions j= (C ,F), which are associated

with a set of connectors C that describe all possible paths across the junction. Features F

associated with a junction are, e.g., right-of-way priorities for its connectors and therefore

its connected lanes. An example of several road network elements is depicted in Figure 6.7.

Since the semantic road network representation is utilized for simulating traffic, it needs

to be aligned with the virtual world to be meaningful. This alignment can be achieved by a

manual workflow, e.g., using an appropriate editing tool. However, manually creating the

semantic network becomes a tedious and error-prone process when larger road networks are

realized. To increase efficiency and accuracy, the semantic information can be generated in

combination with the 3D geometry of the road network automatically. To realize the traffic

simulation prototype, both approaches have been implemented with the latter transforming

OpenDRIVE® data to the format described above. More details about the model and the

automatic generation process can be found in [SvS7, SvS6, SvS8].

92 Application of the Agent Architecture Design

l1

l2

l-1

road3

road2 road4
ro

a
d

1
 ro

a
d

5

n6 n7

n8 n9

n10

junction1 junction2

c1 c2 c3

c5

c6 c4

Figure 6.7: A schematic view of road network representation. Lanes are combined to roads, where
the sign of the lane describes the driving direction with respect to the direction of description. Road3

consists of one right lane (l−1) connecting both junctions and two left lanes (l1 and l2) with the turning
lane l2 beginning in the middle of the road. Connectors ci are assigned to junctions, describing all
possible paths across a junction (exemplified for the junction on the left). Direction and geometry of
each segment (lane or connector) is determined by a sequence of nodes n. Image based on [SvS9].

6.3 Scaling Simulations by Level of Detail

Traffic simulations in virtual environments often only simulate the visible surroundings of

the user with a microscopic traffic simulation. However, it is undeniable that the level of

detail required for microscopic, behavior-driven simulation requires significant computa-

tional resources even if efficiency is considered throughout the design and development

phase. Especially in multi-agent simulations, a system will cease to be interactive once a

certain number of entities is simulated. The more complex the simulation, the faster this

threshold is reached. A standard approach for dealing with this issue, is to remove agents

from the simulation once they exit a user’s visual field, i.e., they are no longer visible on

screen. One requirement for the FIVIS traffic simulation was to continuously simulate all

traffic participants in an urban area to maintain realistic traffic densities and avoid incon-

sistent situations. Especially, agent-specific characteristics and states should be maintained

throughout the simulation. Similar requirements have been adapted recently by open world

video games, emphasizing their role in simulating a believable virtual world. For example,

the game Assassin’s Creed Origins6 included a system that avoids deleting specific agents

from a large open world [Lef18].

6Ubisoft, 2017

6.3 Scaling Simulations by Level of Detail 93

Mesoscopic Agents (MA)

Cognitive Agents (CA)

Simplified Agents (SA)

Microscopic Agents

(a)

MA

SA

CA

User

(b)

Figure 6.8: Depiction of the level of detail approach to traffic simulation realizing a hybrid simula-
tion. A microscopic simulation of cognitive agents (CA) and simplified agents (SA) and a simulation
of mesoscopic agents (MA). In (a) the boundaries and transitions between the three layers are illus-
trated. Transitions are triggered based on distance to a user and visibility criteria, visualized in (b).
Images based on [SvS9].

For the implemented virtual world used in FIVIS – a recreation of an area of the city of

Siegburg – it was estimated that about 500 traffic participants must be simulated to represent

rush hour conditions and 200 agents for regular traffic. Using agents described in Section 6.1

to populate the road network, an interactive simulation is achievable until about 40 agents

are simulated. Simply removing agents from the simulation when the threshold is reached

would contradict the requirements stated above. Therefore, to fulfill the requirement and

preserve an interactive application, the simulation is divided into three layers as shown

in Figure 6.8. The result is a hybrid traffic simulation, which combines microscopic and

mesoscopic simulation (cf. [BKA05b]) with the microscopically simulated area centered

around and moving with the user.

6.3.1 Level of Detail Simulation of Traffic Agents

Cognitive agents (CA) take full advantage of the CA2RVE architecture and the techniques

and properties included therein. Additionally, to provide a realistic visual representation,

vehicle physics are simulated, e.g., to achieve the typical pitching motion of a vehicle when

braking. This layer is the most resource intensive to simulate, but since behavior of other

drivers can only be observed in detail for a few agents at a time and in close proximity to a

user, only a limited number of cognitive agents is required. While this number depends on

94 Application of the Agent Architecture Design

the application, the layout of the road network, and the structure of the world, it should be

below the mentioned system limit for most situations.

Once agents leave the vicinity of a user, they will still be visible and thus cannot be

removed or hidden. However, since their behavior is not observed as closely, they need

not be simulated in such detail as agents in the CA layer. Specifically, a simplified vehicle

representation without realistic physics can be used, driving dynamics can be simplified to

following the nodes of the road network as described by the semantic road network layer, and

perception can use simplified sensors designed toward efficiency, or the perception process

can be simplified. The purpose of these simplified agents (SA) is to reduce computationally

intensive components, while keeping a rudimentary visual representation that should be

indistinguishable from CA when observed from a distance.

Finally, after agents become occluded by world geometry, it does not make sense to keep

a visual representation of an agent. Furthermore, without a body many additional functions

become obsolete as well, e.g., lane changing, car following, perception, etc. However, due

to the required persistence, agents cannot be removed from the simulation. Using a macro-

scopic traffic simulation for occluded agents did not suffice as all individual characteristics

of an agent are lost when transitioning to a macroscopic simulation (cf. [SvS2, IVC4]). In-

stead, agents are tracked throughout the road network using a mesoscopic traffic simulation.

A mesoscopic approach was chosen as it preserves enough microscopic detail to maintain

individual information (e.g., an agent’s personality) as well as evolving parameters (i.e.,

emotional state), but reduce enough detail to provide an efficient low-overhead simulation.

Mesoscopic agents (MA) are separated from the CA2RVE architecture as their simulation is

based on a different approach. While both CA and SA are used for microscopic simulations,

where they actively decide what to do and where to go, MA are moved passively through

the road network like packets by corresponding components.

The most critical aspect in combining the microscopic and the mesoscopic simulation

layers is determining when transitions should occur between the two. Straightforward

heuristics can be used to determine transition points that are connected to user proximity.

For example, all roads ahead of a user’s current travel direction could be simulated micro-

scopically up to a certain distance along the network. It could be argued that if the distance is

large enough, users would not be able to notice appearing or disappearing agents. However,

such a heuristic would not explicitly include visibility between a user’s location and road

network elements. As a result, road sections that are beyond the specified distance away,

could still be visible, e.g., through gaps in buildings or across open terrain. Additionally,

user may not even be constrained to the road network itself but could navigate to any area

of the world. Visibility information must be available in these areas as well.

6.3 Scaling Simulations by Level of Detail 95

(a) (b)

Figure 6.9: View of a junction area in a virtual environment. In (a)* a visualization of the road network
elements used by agents for navigation and decision making is shown. To determine visibility of
these elements, proxy geometries are generated that can be used for hit testing using raycasting in
(b)*. Images from [SvS9].
*Vehicle assets based on designs by Dosch Design (pink car) [Dos] and “3DJunior” (green car) [3DJ]. Terrain
assets by IVC.

To determine all visible network elements for a given position in the world would be

a very resource demanding task at run-time, especially since it would require constant

visibility checks to all directions. Spending substantial resources to perform these checks

would defeat the purpose of reducing simulation complexity. Therefore, a visibility set VA

is determined for a specified area A during an offline process, which includes all network

elements that are visible from area A. Given a function r :R3
×R×R→ 2E, which describes

a subset of all network elements E that are visible from a position x viewed in the direction

of the polar angle θ and the azimuthal angle φ, the visibility set is defined as:

VA =
⋃︂

x∈A,0≤θ<π,0≤φ<2π

r(x,θ,φ) (6.6)

For the traffic simulation prototype, r is realized using a raycast approach that tests

intersections between rays and bounding boxes of scene geometry. Since road network

elements are not physically represented in the virtual world, temporal proxy geometries

are used for determining visibility (see Figure 6.9). The continuous parameters x, θ, and φ

are stochastically sampled, and the road network geometry can be used to further restrict

parameter ranges. For example, if the network is defined within a plane, x becomes two-

dimensional and directions outside of the plane do not have to be sampled, i.e.,θ is neglected.

Areas are defined by dividing the virtual scene using a uniform grid of adjustable cell sizes.

Knowing the visibility sets for all grid cells, a user’s current and adjacent cells are

used to determine which agents are currently visible to a user and need to be simulated

96 Application of the Agent Architecture Design

FIFO Queue

FIFO Queue

FIFO Queue

Priority Queue

ttd = 1 s

ttd = 36 s

ttd = 120 sMaximum Capacity

Figure 6.10: Schematic representation of a road for mesoscopic traffic simulation using a priority
queue and following FIFO queues. The size of priority queues is limited by the maximum capacity
of the road segment ϱmax. The sort key for the priority queue is each agent’s time to destination (tdd).
FIFO Queues exist for each connected road element and agents are queued based on their routing
decision. Illustration based on [SvS3].

microscopically. From this information, it is deduced where agents must transfer between

the microscopic and the mesoscopic layer, without the user noticing it.

Even with the addition of the MA and SA simulation layers, the number of simulated

CA remains the limiting factor of the simulation. The current realization uses a fixed size

ellipsoid around a user to simulate CA. In Chapter 7, it is shown that this approach may still

lead to situations where the number of CA becomes too large to simulate in real-time. To

mitigate this issue, instead of using a fixed size vicinity, the CA region could be defined to

include a maximum number of CA, i.e., as soon as the number of CA passes this number, the

size of the vicinity is reduced to match the specified maximum number. Other alternatives

could be to keep the size fixed but use a scheduling algorithm to distribute the calculation of

all CA across several frames, or similar agents could be grouped, and simulations could be

performed on an aggregated representation. Both optimization options were not integrated

into the described realization, but are interesting approaches for future improvements.

6.3.2 Mesoscopic Simulation of Traffic Agents

The mesoscopic simulation realized for this traffic simulation prototype is an adapted ver-

sion of the FastLane model, which is based on queuing theory [Gaw98a, Gaw98b]. Roads

are represented by directed edges E, with the direction indicating the driving direction. Each

edge connects two vertices V, which are intersections. The resulting road network descrip-

tion is a directed graph G = (V,E). The travel time a vehicle spends on a road is simulated

using a combination of priority queues and First In, First Out (FIFO) queues (see Figure 6.10).

Furthermore, each road is described by its length L, a maximum vehicle capacity ϱmax, the

current number of vehicles ϱ, and the number of lanes n. While the maximum number of

vehicles that can travel on a road is calculated from a traffic density parameter in FastLane,

6.3 Scaling Simulations by Level of Detail 97

the value is derived from an average vehicle length l in the realization presented here:

ϱmax =
L
l
·n (6.7)

The average vehicle length can be based on information found in the literature (e.g., [CBN03,

Gaw98b]) or be derived from vehicle types deployed within the traffic simulation. Once

the maximum number of vehicles is reached for a road, agents cannot transfer to it from

connected roads. Instead, they must stay on their current road until a transfer is possible,

resulting in spill-back effects. At the same time, the number of vehicles leaving a road is

limited by a capacity parameter to simulate queuing effects. The capacity can additionally

be randomized between simulation steps to emulate flow fluctuations of real traffic.

An agent’s time to destination ttd (where “destination” is the end of the current road) is

calculated once the agent enters a road based on the road’s length and the agent’s desired

velocity v0:

ttd =
L
v0
. (6.8)

In the original FastLane implementation, the current number of vehicles on a link is con-

sidered in addition to road length and desired velocity when determining ttd. However,

Gawron also mentions that the number of vehicles can be neglected to sufficiently reproduce

other traffic models [Gaw98b]. The ttd values are the priority parameter of the road’s queue,

being reduced until they reach zero. In the presented simulation, agents can have different

desired velocities, e.g., based on personality, vehicle type, or simply randomization. For the

presented context, this means the order of vehicles in the priority queue may change, which

simulates vehicles passing each other, which is not unreasonable. In some cases, this may

not be possible (e.g., overtaking may be prohibited or there is only one lane), but the effect

is tolerated here. If overtaking needs to be restricted, desired velocities must be adjusted to

agents present on the road or set to be equal for all vehicles entering a road.

As soon as the ttd has expired, agents are queued for leaving the road using FIFO queues.

In the presented prototype, one FIFO queue is used for every connection to another road and

capacities are shared according to road layout. For this reason, junction elements control the

transfer processes between roads. Which FIFO queue an agent is added to can depend on

various criteria. A probability distribution can be used for selection, but choices can also be

based on route plans. Distributions can also be adjusted dynamically to provoke or prevent

certain phenomena. For example, traffic jams are uninteresting situations for a road safety

education simulator. Therefore, traffic can be distributed more evenly across the network to

keep traffic flowing (cf. [SvS3]). When agents are transferred to the microscopic simulation

98 Application of the Agent Architecture Design

layer, their position in a FIFO queue and their current ttd are used to calculate their exact

spatial position on a lane by iterating over all nodes of a lane.

The current number of vehicles in FIFO queues must be included in the maximum

number of vehicles for the entire road. Turn pockets may increase the maximum number

for short sections of a road, but this is effect is ignored for the sake of simplicity. If vehicles

cannot exit a road, FIFO queues might fill up such that the sum of vehicles across all FIFO

queues equals the maximum number of vehicles on that road, i.e., none of the vehicles on

the road are currently moving. Further details on the mesoscopic traffic model can be found

in [SvS2, IVC4, SvS3], and [SvS9].

6.3.3 Road Network Representation for Mesoscopic Simulation

To facilitate MA simulation, an additional road network layer is required. This layer can

be generated automatically from the existing semantic road network (see Section 6.2) as

all necessary information is available, such as lane-connector relationships, junctions, and

segment lengths. An additional advantage gained from generating one network from the

other is that mismatches during the transfer process between the two layers are avoided.

Details about the generation process can be found in [SvS7, IVC7, SvS6, SvS8].

The geometric representation of lanes is encoded implicitly by the length L of a road.

Since the employed queues support only one driving direction, roads with lanes in opposite

driving directions are represented using two directed edges.

To simulate traffic, control is transferred from agents to the network elements (edges and

vertices). Vertices representing junctions store distribution probabilities used for routing

decisions. Consequently, agents behave like packets that are being passively transported

across the network by the controllers. Since the tasks performed by the network elements

have little complexity and agents do not perform any calculations, large networks containing

large numbers of agents can be simulated efficiently, which will be shown in Section 7.4.

6.4 Conclusion

This chapter discussed a realization of the cognitive agent architecture concept and its inte-

gration into a traffic simulation. The motivation was provided by the FIVIS bicycle simulator

developed at the Institute of Visual Computing of Hochschule Bonn-Rhein-Sieg. The simula-

tor provides a tool for road safety education, which should include other traffic participants

that emulate human traffic behavior as closely as possible. To this end, the architecture

described in Chapter 3, including the concepts for static and dynamic personalities (Chapter

4) as well as perception (Chapter 5), was implemented using the Unity game engine. The

6.4 Conclusion 99

main focus was on real-time capability and a loose coupling of modules. Driving decisions

are implemented using a behavior tree containing general and situation specific driving

strategies. The influence of politeness on lane changing is described as one example for con-

necting driving decisions to an agent’s personality and emotional state. Additional world

knowledge is encoded using a semantic road network layer that can be perceived by agents

using an application-specific sensor. The idea is to augment information gathering without

accurately modeling the according combination of perception and reasoning. Designing

such “super-human” sensors help maintain performance by reducing the complexity of a

task for an agent. If the sensor is defined carefully, the plausibility of the perception process

is not compromised.

To further consider real-time and consistency requirements in multi-agent simulations,

a three-layered model is proposed that realizes a level of detail approach. Fully detailed

cognitive agents are simulated only in the vicinity of a user. Agents outside the vicinity are

reduced to a visual representation and simplified traffic behavior. An offline process is used

to determine the visibility of road structures for every discretized position in the virtual

world. This visibility information is used to transfer simplified agents to a mesoscopic sim-

ulation layer. In this layer, agents are no longer visualized but their individual information

is preserved and restored once they transition back to the visible layer. A queuing model

based on Gawron’s FastLane model is used to perform the mesoscopic simulation.

By providing the described implementation using a game engine, it is argued that the

proposed architecture concept is suitable for use in real-time applications, indicating an

answer to RQ4. By developing a modular and extensible agent design, simulations can be

adjusted to application-related constraints, especially real-time capability. While multiple

cognitive traffic agents can be simulated simultaneously, it was impossible to simulate the

required number of 200 agents and achieve more than 30 frames per second. It could

therefore be argued that RQ4 could not be answered successfully, as the agent simulation

does not scale to the required population size. To increase performance, several steps could

have been taken towards improving integration of the agent architecture into the game

engine. Optimizations could have been more GPU utilization, simulating groups of agents

together, or scheduling and balancing update cycles for each agent (see, e.g., [Cou15]). Other

systems that are intricately connected to the game engine but not the agent architecture, e.g.,

rendering, physics, and animation, could have been optimized as well. However, within

the scope of this thesis project addressing these optimizations was infeasible. Instead,

the modular design of the architecture allowed meeting target framerates by successively

disabling certain systems and modules, including resource intensive modules of the agent

architecture, such as action selection and communication. Additional requirements, like

100 Application of the Agent Architecture Design

not discarding agents after they leave the user’s field of view, were met by introducing

additional systems, e.g., the presented mesoscopic simulation. Using these techniques, it is

possible to meet the requirements. In addition to the answer to RQ4 given in this chapter,

the next chapter provides quantitative measures supporting the claim.

7
Evaluation and Results

“Without proper self-evaluation, failure is inevitable.”

- John Wooden

The objective of this thesis project was to design an architecture for attentive cog-

nitive agents that answers the research questions stated in Chapter 1. The main

concern was to provide consistent but individualized behavior with additional

focus on perception and attention, which can be applied to real-time virtual en-

vironments. In this chapter, the strategies used for evaluating the proposed solutions are

presented. A thorough evaluation of an IVA architecture is a difficult endeavor. Primarily,

evaluating believability of simulated agent behavior is always subjective and situational,

which introduces bias. Evaluations are therefore based on surveys and questionnaires that

also depend on user expectations and experience, the evaluated application, and what the

agent is trying to imitate (cf. [Liv06]). Besides the issue of subjectivity, judging how human-

like an agent behaves is another difficult challenge [ALS09]. One possible solution to this

problem is a version of the Turing test. In the test’s original form, a computer program must

win the “imitation game” against a human, judged by a human interrogator. A variation of

the test that had often been used by researchers to judge the humanness of virtual characters

was the 2K BotPrize1 [ALS09, AML+12, GKB+09, Hin09, Liv06]. The contest had a mix of

human players and artificial players (bots) compete against each other in the first-person

shooter game UT 20042. During play, a panel of expert judges decided for each player

whether they were a human or a bot. As elaborated by Livingstone [Liv06], this type of

Turing test is only suitable to evaluate whether agents can play a game like a human would.

However, in situations where it is known that agents are not controlled by other users or

1http://botprize.org, [online: May 2, 2023]
2Epic Games, 2004

http://botprize.org

102 Evaluation and Results

players, judging believability is a separate challenge; one where research has been even more

limited [Liv06]. Defining objective measures for believable agent behavior is difficult and

measures must be re-defined with each new application.

Furthermore, behavior is only one aspect that influences IVA believability. Other factors

are, e.g., animation, visual fidelity, variability, physics, environmental design, and more. A

study that asks whether observed behavior is believable would have to eliminate all other

factors, which requires extensive resources and expertise. One solution would be a compar-

ative study that overcomes this complication by providing equal conditions. However, what

would the proposed architecture be compared against? There is no off-the-shelve solution

that addresses the same aspects. While there are other academic approaches that could be

chosen for a comparison, e.g., CIGA [vO14] or SOAR [Lai12], these architectures would have

to be adapted to the same virtual environment using the same technological means. Such

an adaptation is not possible within the scope of this thesis project. However, even if un-

limited resources were available, it would be difficult to define objective evaluation criteria.

Additionally, as discussed in Section 1.2, multiple research domains are considered within

this thesis. Connecting these domains is in itself a complex task, further complicated by the

fact that all are areas of ongoing research. Designing appropriate evaluation strategies for

the overall approach is even more complex.

Instead, the approaches detailed in the following sections focus on the evaluation of spe-

cific architecture components connected to certain research tasks. To generate and evaluate

behavior for multiple agents in non-trivial scenarios, a realization of the architecture concept

is required. Therefore, most of the discussed evaluation strategies are based on the traffic

agent application described in Chapter 6. The realization of the traffic simulation inherently

represents a proof-of-concept evaluation of the presented architecture concept as it shows

that the required components are available and work as intended, and that the concept can

be applied to a real-time environment. Two evaluations are not specifically based on traffic

agents but were realized using the same technological components (see Sections 7.3.1 and

7.3.2). Further evaluations performed within the context of this thesis projected that are not

directly related to evaluating behavior generation can be found in Appendices A and C.

7.1 Evaluating the Agent Architecture Design

The foundation of the work presented in this thesis, is the blueprint of an architecture for

attentive cognitive agents in real-time virtual environments presented in Chapter 3. The

developed concepts represent an appropriate design for such an architecture, providing

7.2 Evaluating Personality and Emotions 103

an answer to the first research question. As discussed in the introduction of this chapter,

evaluating this solution is a difficult task.

To address some of the mentioned issues, steps were taken toward an evaluation frame-

work for cognitive virtual agents. A preliminary draft for a framework was devised that

allows gathering behavior-related data in virtual scenarios from both autonomous agents

and human subjects (cf. [IVC12, SvS27]). Examples for collected data are navigation, head

movement, gaze direction, and performed actions. Data produced by human subjects can

be used for requirement analysis and improving the realization of cognitive agents within

the according reference scenarios. However, more importantly, gathered data can be used

to perform quantitative comparisons between CA2RVE agents, agents realized using other

architectures, and human subjects. Furthermore, the data can be used to play back recorded

data to a human observer for qualitative comparison studies. The latter allows evaluating

the plausibility of generated agent behavior when compared against data from human-

controlled entities. Figure 7.1 summarizes the evaluation framework concept. In [SvS11],

a similar approach was assessed using human data acquired from a driving simulator. In

this approach, detailed comparisons between artificial agents and human subjects were

performed by mapping observed human behavior to parameters of the agents’ personality

profiles using evolutionary strategies. While promising results were achieved by this and

other initial attempts, the framework’s potential needs to be investigated further in future

work.

Instead, the application of the concept, which is described in Chapter 6, corresponds to

an empirical evaluation in the form of a proof-of-concept. The underlying objective was

to simulate traffic agents beyond typical statistical approaches, but to generate emergent

behavior based on the individual actions of the agents. In this context, multiple evaluations

were conducted ranging from observing the influence of personality and emotion on pre-

defined behavior to investigating scalability of the approach to assessing the applicability to

specific traffic scenarios. Details about these evaluations will be presented in the following

sections. These evaluations and the successful realization of the concept show that the

proposed architecture is a versatile and flexible foundation for creating real-time cognitive

agents within a specific virtual setting. Therefore, the concept fulfills the requirements

expressed in the first research question.

7.2 Evaluating Personality and Emotions

In Chapter 4, viable solutions to research tasks 2.1 and 2.2 are provided. A personality

profile assigned to each agent ensures behavioral consistency on an individual level. An

104 Evaluation and Results

Scenario 1

Scenario n

Agent 1 Agent m

Subject 1 Subject i

Actor data

Human
behavior

Quantitative
comparison

Qualitative
comparison*

VE

…

…

…

*e.g., human observer studies

Figure 7.1: Depiction of a concept for a cognitive agent evaluation framework. Autonomous and/or
human-controlled agents interact within a virtual environment in scenarios relevant to an intended
application. The different autonomous versions could be varying configurations of CA2RVE agents
or agents realized using other available agent architectures. Data from all agents is stored as actor data,
which includes, e.g., navigational data, head movements, and gaze directions. This data can be used
to analyze human behavior within application scenarios, perform quantitative comparisons between
the different types of actors, or for human observer studies to perform qualitative comparisons.

emotion model dynamically adjusts the underlying personality to be able to react to changing

circumstances. To evaluate the addition of personality and emotion to agents, two road traffic

scenarios are defined and presented here.

Adding additional characteristics to agents, like personality and emotion, enables the

augmentation of standard behavior with alternative mechanisms. To investigate whether

this augmentation improves plausibility, a communication mechanism was based on the

agents’ personality profiles for a typical crossroads scenario. In this scenario, four roads

meet at an intersection and right-of-way priorities are not regulated by traffic signs. The

results show that plausible behavior can only be achieved if agents coordinate their actions.

By adapting decision-making, agent behavior can be improved even further.

A second scenario was designed to apply and extend the implemented mechanisms to

another traffic situation. The scenario is similar, but slightly more complex. A two-lane road

is blocked by an obstacle either on one or on both lanes. Typical road traffic examples for

this scenario are vehicles parked on a lane, a double-parked delivery vehicle, or construction

sites. Similar to the crossroads scenario, the evaluation should investigate whether agent

behavior is improved by the utilization of personality and emotion. As a result, it was not

only possible to observe improved behavior, but also plausible emergent behavior that was

not anticipated or intended. Both scenarios are described in the following sections.

7.2 Evaluating Personality and Emotions 105

(a) (b)

Figure 7.2: Depiction of the “Crossroads” evaluation scenario. (a) Strictly following traffic rules
in priority-to-the-right systems frequently results in deadlock situations at an unregulated four-way
intersection. (b) The scenario is laid out as a closed loop. Images based on [SvS12].

7.2.1 Personality-based Traffic Behavior in a Deadlock Scenario

A crossroads scenario consisting of a four-way intersection and a priority to the right-system

is interesting for evaluation because it frequently creates a deadlock situation if traffic rules

are followed unconditionally. If agents approach the intersection from all four sides at

approximately the same time, according to German road traffic regulations StVO § 8, each

agent needs to yield to the agent approaching from the right.3 Figure 7.2 (a) illustrates the

deadlock situation. The deadlock can only be resolved if one of the four agents yields its

right-of-way, or if one of the four agents breaks the traffic rule and starts crossing anyway.

The network created for this scenario consists of two loops of 500 m of bi-directional

driving lanes connected by the crossroads creating a closed system, which is equivalent

to 2 km of total length (see Figure 7.2 (b)) (cf. [SvS12, SvS13, SvS20, SvS23, IVC13]). At

the start of each simulation, vehicles are randomly distributed throughout the network

and the desired velocity is set to 30 km/h. Each agent is assigned a personality profile

associated with one of three personality classes that were correlated with certain driving

behavior and accident involvement in studies by Herzberg and Roth [HR06, Her09]. The

studied personality prototypes were overcontrollers, undercontrollers, and resilients, which

3Note that the deadlock does not occur if all agents want to turn right. However, it may occur with only
three agents if one agent wants to turn left and the other two want to go straight. The described deadlock
resolving mechanism works identically for the latter case.

106 Evaluation and Results

have often been identified as a sufficient minimal set of personality types in psychology

research (cf. [DR10]). Overcontrollers tend to exhibit overly precautious behavior, whereas

undercontrollers lack self-control and tend to externalize problems, which often leads to

more anti-social behavior. People from these two groups have difficulty with regulating

emotion. In contrast, resilients are emotionally stable and easily adjust to all domains

[DR10, Her09].

Using the results provided by Herzberg and Roth [HR06], the following proto-

type profile tuples were derived for the simulation: ṗu = ⟨−0.06,−0.6,−0.12,−0.54,0.3⟩

for undercontrolled, ṗo = ⟨−0.09,−0.24,−0.75,−0.06,0.9⟩ for overcontrolled, and ṗr =

⟨0.15,0.66,0.6,0.48,−0.84⟩ for resilient agents. Each value represents one personality di-

mension as detailed in Chapter 4 as follows: ⟨Openness, Conscientiousness, Extraversion,

Agreeableness, Neuroticism⟩. Further details about the definition and generation of person-

ality profiles can be found in Chapter 4 and in [IVC13, SvS12, SvS13]. At the beginning of

each simulation, each agent’s personality traits are randomized based on one of the three

prototype personalities, resulting in individual profiles that are still associated with their

prototype. Herzberg showed that the general behavior of the three prototypes relates to

traffic behavior [Her09]. According to their results, overcontrolled drivers closely follow

traffic rules resulting in more cautious driving and fewer accidents. In contrast, undercon-

trollers are the most risk-averse and aggressive drivers. The ability of resilients to adjust also

translates to their behavior in traffic. Within the scope of this evaluation, resilient driving

was interpreted in such a way that resilient drivers disregard certain traffic rules if it helps

to resolve conflicting situations, like deadlocks. To incorporate these findings, an agent’s

politeness factor φ (see Sections 4.1.2 and 6.1) is derived from its personality profile using

the following correlation tuple:

cϕ = ⟨0,0.2,0,0.8,0⟩ (7.1)

The idea is that agreeableness inherently describes someone’s tendency of helping others and

should have substantial influence on polite behavior. At the same time, conscientiousness

was also included, because politeness in traffic is interpreted as abiding to traffic rules.

Choosing the coefficients in accordance with Herzberg and Roth’s study and the above

interpretation yields the lowest politeness for undercontrolled (0.22), a medium politeness

for overcontrolled (0.45), and the highest politeness for resilient prototypes (0.76).4

An agent’s politeness is not fixed, it is influenced by emotion. The CA2RVE architecture

provides the ability to define emotion incidents that alter an agent’s emotional state, which

in turn alters the agent’s personality profile and lastly its politeness factor. In a deadlock

4Politeness values are normalized to a range between 0 and 1.

7.2 Evaluating Personality and Emotions 107

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time Step

Po
lit

en
es

s
φ

Resilient
Overcontrolled

Undercontrolled

Figure 7.3: While waiting at the crossroads, the politeness φ decreases because negative emotion
incidents are perceived. The graph indicates the progression for each of the three personality proto-
types as an example. Image based on [SvS12].

situation, positive emotions may be induced if an agent receives its right-of-way from

the agent on its left. However, since the effect of this emotional incident would fade away

before completing its loop and arriving at the intersection, positive emotions are disregarded

in this scenario. However, negative emotions are considered for agents waiting at the

intersection, simulating impatience. The negative emotion perception tuple is defined as

s− = ⟨0,0,0,0,0.341⟩ since Watson and Clark [WC92a] showed that only the neuroticism trait

of the FMM affects the perception of negative emotions. The calibration parameters are

defined as li = 0.1 and ci = 0.5 for this evaluation scenario and the emotional state is updated

every second. The correlation between an agent’s personality profile and its emotional state

was chosen based on further studies by Watson and Clark [WC91, WC92a, WC92b], who

correlated the FFM and PANAS (Positive and Negative Affect Schedule):

t− = ⟨−0.1,−0.3,0,−0.75,1⟩. (7.2)

For this proof-of-concept evaluation, three agent types were compared: rule-based (RB),

static personality-based (PB) and dynamic emotion-based (EB) agents. While rule-based

agents strictly follow traffic rules, PB and EB agents utilize their politeness factorφ connected

to their personality profile to make decisions in deadlock situations. In this evaluation, agents

can resolve the situation only by yielding their own right-of-way to another agent. Other

possibilities like agents taking the right-of-way are not considered. EB agents perceive an

emotion event while waiting at the crossroads, which induces negative emotions: i= ⟨0.2,0⟩.

The politeness factor’s change over time is depicted for each prototype in Figure 7.3.

Simulations were separately run for each agent type (RB, PB, EB). Each simulation lasted

60 minutes and included either 30 or 60 agents, which means an average density of 0.015 or

108 Evaluation and Results

PB30 PB60 EB30 EB60
0

100

200

300

400

500
Ti

m
e

(i
n

se
co

nd
s)

(a)

PB30 PB60 EB30 EB60
0

50

100

150

200

Ti
m

e
(i

n
se

co
nd

s)

(b)

Figure 7.4: (a) The maximum waiting times (at the front of a line) that occurred during each of the
10 simulations for 30 PB agents (PB30), 60 PB agents (PB60), 30 EB agents (EB30), and 60 EB agents
(EB60). (b) Instead of the maximum waiting time, the average waiting time of all agents across every
test run and configuration is depicted. Images based on [SvS13].

0.03 vehicles/m, respectively. Ten simulations were performed for each of these 6 combina-

tions of agent type and number of agents. According to Herzberg’s study, the prototypes

were distributed evenly among the population [Her09].

As expected, traffic always stopped completely for the entire system when simulating RB

agents. The reason being a deadlock that occurred every time within the first few minutes

of the simulation, which cannot be resolved if traffic rules are followed without exceptions.

Therefore, results for this agent type are omitted here, because their discussion would not be

interesting in this context. For more details, please refer to [SvS23]. For the other agent types,

it is interesting to compare waiting times at the intersection as an indicator for plausibility

of the simulated behavior. When comparing the maximum time, an agent had to wait as

first in line at the crossroads, EB agents spent less time waiting than PB agents. The longest

period of waiting time for an PB agent was around 8 minutes when simulating 60 agents.

The fact that an agent, after such an extended period of time, would still be yielding its right-

of-way to another agent would seem highly implausible to an observer. Even in the case

where 30 agents were simulated, at least one PB agent waited for ca. 2.5 minutes. For both

traffic densities, maximum waiting times for EB agents were considerably lower at about

1.5 minutes resulting in much more plausible behavior. The maximum waiting times at the

front of a line across all simulations are shown in Figure 7.4 (a). In Figure 7.4 (b), the average

waiting times for all agents across all simulations are shown. For the latter figure, similar

conclusions can be made. PB agents generally wait longer than EB agents. Interestingly,

the variance of waiting times is much larger for PB agents than for EB agents. Considering

both graphs, this variance is not only due to the agents’ initial static personality profile, but

also depend on their distribution within the road network and their routing decisions at the

7.2 Evaluating Personality and Emotions 109

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35
N

um
be

r
of

yi
el

ds
PB30
EB30
PB60
EB60

Resilient Undercontrolled Overcontrolled
Agent Index / Type

Figure 7.5: For each scenario (30 PB agents (PB30), 30 EB agents (EB30), 60 PB agents (PB60), 60 EB
agents (EB60)), one representative sample test run is chosen. The plot shows the absolute number
of yields each agent performed during the chosen test run, sorted by number of yields within each
prototype group, in descending order. Each group consists of one third of the total population size,
i.e., either 10 or 20 agents. Image based on [SvS12].

intersection. The box plot for the EB agent simulations also demonstrate the adaptability

of EB agents as the number of agents in the simulation does not influence the maximum

waiting times. Consequently, it can be argued that the slight increase of average waiting

times is expected as the lines forming at the intersection will be longer.

Since agents that are not waiting at the front of a line cannot make a decision, waiting

times are not the only indicator for plausibility of behavior. Another interesting aspect is the

difference in number of yields performed by individual agents. Figure 7.5 shows how often

each agent yielded its right-of-way during one test run, which was chosen as a representative

example. For clarification, each time a deadlock occurs at the intersection, one agent waives

its right-of-way to another agent resolving the deadlock. However, due to the definition of

the scenario and the chosen traffic densities, the next agent in line will immediately cause

the next deadlock, requiring a new yield decision. For each agent type scenario (PB30, EB30,

PB60, and EB60) one representative run was chosen for this discussion.

The plot shows that overcontrolled and undercontrolled agents rarely yield to other

drivers. Most yields are performed by resilient agents in all scenarios and test runs. These

observations meet expectations from the interpretation of the chosen behavior study by

Herzberg [Her09]. In the depicted sample test run, one resilient PB agent yields exceptionally

often compared to all other agents within the same run. This difference is most obvious in

110 Evaluation and Results

the PB60 scenario, where one agent performed 40% of all yields during the test run. The

ratio is lower for the PB30 scenario, but one agent still performed 25% of all yields, which

is significantly more than all other agents. In contrast, yields were better distributed among

resilient agents in the EB scenarios. The agent that performed most of the yields, waived its

right-of-way about 11% of the time in EB30 and 6% of the time in EB60. These results are close

to a uniform distribution of yields among all resilient agents, which would be 10% and 6%

for 30 and 60 EB agents, respectively. A uniform distribution represents an optimum result

since all resilient agents perform the same number of yields. Considering the distribution

of yields as a measure for plausibility, PB agents perform poorly despite the added benefit

of showing individual behavior and being able to resolve the deadlock situation. Adding

emotion to an agent’s personality improves plausibility in these scenarios.

In addition to the total number of yields during a simulation, the number of consecutive

yields of an agent is an intuitive factor to assess plausibility of behavior. Considering human

drivers, one would expect them to yield their right-of-way in this situation only a few times

in a row as they voluntarily increase their own waiting time with each yield. At some

point, drivers will lack the patience to willingly wait any longer. For all test runs of both EB

configurations, the highest number of consecutive yields was either 2 or 3. This number was

implausibly high for the PB scenarios, where the highest number per run was between 5 and

7 for PB30 and between 8 and 19 for PB60. Depending on the situation, even 8 consecutive

yields may still be plausible, but will likely be unusual to an observer. At the same time,

consecutive yields are an additional cause for the longer waiting times of PB agents. The

number of total and consecutive yields, and waiting times are improved by adding emotion

leading to more plausible behavior overall.

7.2.2 Evaluating Personality-based Traffic Decisions in a Blocked-lane Scenario

In a second evaluation of the personality and emotion model realizations, agents must deal

with a blocked road, which results in the two following, interesting scenarios. Both scenarios

are shown in Figure 7.6 (a) and (b).

(1) Blocking one driving lane while keeping the other clear, German road traffic regu-

lations StVO § 6 requires drivers who are blocked by the obstacle to allow traffic on the

opposing lane to pass the obstacle before passing it themselves. Thus, agents waiting on the

blocked road must wait for an appropriate gap to clear the obstacle or hope for an agent on

the opposing lane to slow down, allowing the blocked agent to continue. Alternatively, an

agent could start passing the obstacle and force oncoming agents to slow down for them. If

the gap is large enough, a waiting agent can pass the obstacle without interfering or inter-

acting with other agents. To provide a more interesting scenario, gap sizes are chosen such

7.2 Evaluating Personality and Emotions 111

obstacle

(a)

obstacle

obstacle

(b) (c)

Figure 7.6: Depiction of the “Narrowed Road” evaluation scenario showing an obstacle blocking
one lane (a) or both lanes (b). A realization of (a) within the game engine is shown in (c) where the
delivery truck is the obstacle. Images (a) and (b) based on [IVC13], image (c)* based on [SvS14].
*Vehicle assets based on designs by “kilastaras” (waiting purple car, red, and gray cars) [kila, kilb], “Underground
Lab” (yellow cars) [Und], Dosch Design (cyan cars at end of queue) [Dos]. Dark blue and white cars and light
blue delivery truck by IVC.

that interaction is always required. A behavior that can often be observed in human drivers

is a decrease of the accepted gap size during prolonged periods of waiting.

(2) Narrowing the road from both sides, an agent needs to use both lanes (the middle

of the road) to pass the narrowing, requiring agents that drive into opposing directions to

decide who passes first and who must wait. In this scenario, a deadlock situation can occur

if waiting agents cannot reach a decision. This situation is similar to the scenario described

in the previous section (7.2.1).

These scenarios were simulated using varying configurations regarding agent type, run

time, traffic density and distribution, and different parameterizations of the personality

and emotion models [SvS14, IVC13]. Since all simulations resulted in similar findings, one

configuration for each scenario is reported to represent the results.

Within the selected configurations, the specified gap length between agents on the free

lane in scenario (1) allow waiting agents to pass the obstacle only if they force agents on the

free lane to decelerate. Thus, it is possible to utilize the generated gaps to pass the obstacle,

but only overly aggressive agents do so. The road is a segment of 500 m in length. Agents

are created at the start of both lanes of the road segment with a specified flow (input flow)

and are deleted at the end of both lanes; measured as outgoing flow. The flow is measured

to investigate emergent traffic behavior. The input flow on the free lane was 20 agents per

minute, creating gaps of about 3 seconds between cars. To avoid congestion, only 12 agents

per minute were generated on the blocked lane. In scenario (2), the input flow was 20 agents

112 Evaluation and Results

per minute on both lanes, forcing agents to cope with heavy traffic by utilizing the deadlock

solving mechanism described in the previous section. The test scenarios were set up such

that only one agent can pass the narrowed part of the road at one time.

Three agent types were implemented and compared. Strictly rule-based (RB) agents

make decisions based on predefined rules (applied traffic law) and can utilize the lane

change model adapted from [KTH07] as described in Section 6.1. RB agents are given a

static politeness of 0, i.e., they do not consider the disadvantages a lane change would cause

for the oncoming agents and show the most aggressive behavior. Identically to the crossroads

scenario, personality-based (PB) agents are assigned a static prototypical profile according to

studies presented in [Her09] and the prototypes are connected to specific driving behavior.

Each profile is generated randomly to fit one of the prototypes. The third agent type is

emotion-based (EB), which incorporates all models described in Chapter 4. The following

observations were expected when simulating both scenarios:

• In scenario (1), the free lane has priority and should have more output flow than the

blocked lane.

• In scenario (2), both lanes are equal, and the observed output flow should reflect that.

• EB agents should exhibit the most plausible behavior in both scenarios.

As a straightforward implementation of agents, the behavior of RB agents forms a bench-

mark for the other two agent types. Figure 7.7 (a) shows the distribution of the outgoing flow

values recorded for time intervals of one minute when simulating RB agents in scenario (1).

The distribution for the narrowed lane, the free lane, and their combination are displayed.

The flow was measured as the number of agents that left the defined road segment in one

minute time spans. Flow on the blocked lane (lane 1) was less than on the free lane (lane 2).

The median values of both lanes approximately correspond to their respective input flows

(12 for lane 1, 20 for lane 2). The combined flow (sum) shows little deviation during the

experiment, while the flows of both individual lanes vary noticeably. This effect is due to the

fact that the traffic on both lanes alternates in passing the narrowed part. The alternation is

a result of the agents’ aggressive behavior and the gap sizes resulting from the input flow.

While one lane is blocked and building up a queue of waiting agents, the other lane dissolves

its queue completely. As soon as the congestion is cleared on the currently flowing lane, the

gaps will grow to the size given by the input flow, allowing the waiting lane to start driving

and blocking the other lane. The roles of the lanes switch even though one lane has priority

over the other. Higher input flow on the free lane causes the queue to grow faster than on

the blocked lane, blocking it longer and resulting in temporarily increased output flow.

7.2 Evaluating Personality and Emotions 113

1 2 Sum
0

10

20

30

40

Lane

Fl
ow

(a) Scenario (1), RB

1 2 Sum
0

10

20

30

40

Lane

(b) Scenario (1), PB

1 2 Sum
0

10

20

30

40

Lane

(c) Scenario (1), EB

1 2 Sum
0

10

20

30

40

Lane

Fl
ow

(d) Scenario (2), RB

1 2 Sum
0

10

20

30

40

Lane

(e) Scenario (2), PB

1 2 Sum
0

10

20

30

40

Lane

(f) Scenario (2), EB

Figure 7.7: Outgoing traffic flow (agents/minute) for the narrowed road scenario measured during
a 60-minute simulation. The figures show results for scenario (1) (a-c) and scenario (2) (d-f) for rule
based (RB) agents, personality based (PB) agents, and emotion based (EB) agents.

114 Evaluation and Results

In scenario (2) RB agents show the least interesting behavior. As shown in Figure 7.7 (d),

one lane has a constant flow equal to its input, while the other has a constant flow of 0. This

is the result of one agent getting to the narrowed part sooner, entering the bottleneck first

and blocking the other lane. Due to a gap size of 3 seconds resulting from the input flow, the

next agent enters the bottleneck before the previous one clears it. With the constant flow of

the test scenario, this leads to one lane being blocked for the entire simulation. In scenario

(1), traffic will not be blocked infinitely despite the same gap sizes on the free lane for the

following reason: When passing the narrowed part in scenario (2), agents must decelerate

to pass the obstacle decreasing the gap to the following agents. Without an obstacle in

scenario (1), agents on the free lane can keep driving at the maximum allowed velocity,

keeping the gap size at 3 seconds. This gap size is large enough for the extremely aggressive

agents on the blocked lane to start driving. Although, RB agents show efficient behavior

regarding output flow (i.e., output flow approximately matches input flow), they do so only

by showing overly aggressive behavior. This behavior would not be expected of real-life

traffic participants. In scenario (2), RB agents show implausible behavior and inefficient

output flows, making this combination uninteresting for further investigations.

Figures 7.7 (b) and (e) show the same scenarios for PB agents. Figure 7.7 (b) shows a

smaller median output flow for PB agents than for RB agents on the blocked lane. The

median for the sum of both lanes is also lower for PB agents than for RB agents. While

the variance is smaller for both lanes individually when compared to RB agents, it is much

higher for the sum. The overall smaller output flow on lane 1 results from the fact that,

due to their higher politeness, agents consider the gaps on the free lane as too small to pass

the obstacle without interfering with oncoming traffic. Although there are also aggressive

PB agents, they are not as aggressive as RB agents. Thus, PB agents must wait until an

agent on the free lane allows the one waiting at the obstacle to pass. Once PB agents start

passing the obstacle, they do not block the free lane until the congestion on the blocked lane

is cleared. A polite driver in the queue will wait at the obstacle, allowing agents on the free

lane to continue until another agent gives way again. This behavior is the reason for lower

variance on the individual lanes: The lanes do not alternate; agents on the free lane always

drive and only occasionally give agents on the blocked lane the chance to partly dissolve the

congestion. Since the output flow on the narrowed lane is less than its input, the lane fills

up until no more agents can be added and only dissolves as much as agents on the free lane

allow. PB agents display a more plausible behavior, although it is less efficient regarding

traffic flow. In scenario (2), PB agents show improved behavior compared to RB agents. An

outgoing flow greater than 0 is observable for both lanes. Although both lanes have the same

priority, one lane has a considerably larger output flow than the other. Over the course of the

7.2 Evaluating Personality and Emotions 115

simulation, the outgoing flow of one lane always dominates the other for extended periods

of time (up to 10 minutes) and subsequently the roles of the lanes are reversed. Although PB

agents in scenario (2) show more efficient behavior than RB agents, it still seems implausible.

Considering Figures 7.7 (c), the outgoing flow of EB agents combines the median value

of RB agents with the variance of PB agents. EB agents start with behavior equal to PB

agents, because of an initially neutral emotional state. Due to the modeled dynamics, the

following occurs: First, agents will not always wait until being allowed to pass the obstacle

by an agent on the opposing lane. Depending on their initial profile, agents might get

impatient and force their way past the obstacle like RB agents. This behavior partially

explains the almost identical median flow observed for RB agents and effectively models

limited patience of human drivers. The resulting shorter waiting times are more plausible to

an observer. Second, because agents waiting in the queue also get more impolite over time,

those having waited for extended periods of time will more likely follow the first agent of

the queue when passing the obstacle on the narrowed lane. However, not all queued agents

will follow like in the case of the RB agents. Initially, polite agents with short waiting time

will stop at the obstacle and let the free lane resume like PB agents do. Interestingly, this

“tailgating” behavior, which can be observed frequently in real traffic, was not explicitly

modeled. The behavior emerged from the application of the personality profile and emotion

model concepts to this specific traffic scenario. EB agents combine behaviors of PB agents

and RB agents resulting in efficient flow and more plausible behavior overall.

The behavior of EB agents in scenario (2) is comparable to the behavior of PB agents in

the same scenario. However, by adapting their behavior, the time one lane continuously

dominates the other is shorter. While agents on the currently submissive lane wait and

become more impolite, agents that are currently driving keep their politeness. The overall

effect of adaptation within this scenario can be seen in Figure 7.7 (f): Compared to PB agents

in Figure 7.7 (e), the outgoing flows of both lanes are more balanced.

Adding a tool for deterministic decision-making based on an agents’ attributes with per-

sonality profiles has shown that agents are able to cope with difficult situations that strictly

rule-based agents are not able to handle satisfactorily. Making this additional attribute

adaptive through emotions, improved plausibility even further. Figures 7.7 (a)-(f) show that

personality profiles improve emergent traffic behavior (regarding output flow) compared to

rule-based agents, which is improved further by adding emotions.

7.2.3 Summary

In this section, two traffic scenarios were designed to evaluate the addition of static trait-

based personality profiles and dynamic emotional states. One scenario consists of a four-way

116 Evaluation and Results

crossroads in which agents must frequently solve a deadlock situation. In another scenario,

agents are prevented from driving by one or more obstacles on their lane creating a narrowed

lane. To continue, agents must force their way around the obstacle by making traffic on the

opposing lane slow down or stop, or by waiting for an agent on the opposing lane to allow

the waiting agent to continue. Three agent types were simulated to compare their behavior:

agents with added personality profiles, agents with personality profiles and an additional

emotion model, and agents without personality or emotion. The personality is used to derive

a politeness factor as a mechanism to resolve the problems arising within the scenarios. A

psychology study by Herzberg and Roth was used to assign agents to either overcontrolled,

undercontrolled, or resilient personality prototypes and to associate each prototype with

certain driving behavior. Further, studies by Watson and Clark were used to define emotion

incidents and correlate them with personality profiles. Negative emotion incidents were

used to simulate impatience, which increases proportionally to waiting time.

Within the crossroads scenario, the time spent waiting at the intersection and the number

of yields were used to judge plausibility of agent behavior. Since rule-based agents were not

equipped with a deadlock solving mechanism, they are not able to show plausible behavior

and will remain waiting for the entire simulation once the deadlock occurs. While agents

with static personality profiles generally improve generated behavior, single “polite” agents

will remain waiting at the intersection because they continuously yield their right-of-way to

other agents. An observer experiencing this behavior would likely consider it implausible.

Adding impatience by the means of an emotion model, waiting times are reduced overall and

yields are evenly distributed across resilient agents, improving believability. Furthermore,

emotional agents yielded at most three times in succession, which is more believable than

up to 19 consecutive yields performed by a small subgroup of static personality agents.

Additionally, looking at the emergent traffic behavior, emotional agents show that they can

adapt to different traffic densities. Waiting times, the total number of yields per agents, and

consecutive yields remained stable between the different trials.

In the narrowed road scenario, emergent behavior was measured using traffic flow as it

indicates how well agents can deal with the situation. Gap sizes were chosen such that they

are initially too small for most agents to pass the obstacle. Agents without personality or

emotion were configured to only consider their own advantage while passing the obstacle,

making them overly “aggressive”. Only these agents utilize available gaps in oncoming

traffic to pass the obstacle. While this aggressive behavior creates efficient traffic flows

(outgoing flow is approximately equal to input flow on both lanes), the displayed behavior

is implausible when observed in detail. When blocking the lane from both sides, agents

on one of the two lanes never get to pass the obstacle, creating inefficient macroscopic

7.3 Evaluating the Synthetic Perception Framework 117

and implausible microscopic behavior. Agents with static personality profiles show more

plausible microscopic traffic behavior for the scenario with only one obstacle. However, their

behavior is less efficient than that shown by agents without personality. Personality-based

agents also improve observable behavior when two obstacles are present, but individual

agents wait up to 10 minutes at the obstacles, which still seems implausible. As is the case

with the crossroads scenario, agents with personality and emotion generate the best behavior

of the three agent types. When one lane is blocked, waiting times are shorter for all agents,

due to the “impatience” modeled by emotion. Traffic flow is improved, and microscopic

behavior is more plausible than that of agents without an emotion model for both narrowed

road scenarios. Emotion-based agents also display behavior where agents, which had been

waiting, pass the obstacle in small groups. This behavior, which can be observed frequently

in real road traffic, was not modeled, but emerged from the interaction between agents.

For all considered scenarios and configurations, adding a personality-based commu-

nication mechanism improves behavior. Dynamically altering the personality profiles by

emotions further improves plausibility at both macroscopic and microscopic scale.

7.3 Evaluating the Synthetic Perception Framework

The perception framework integrated into the CA2RVE architecture consists of sensing,

attention, and memory (see Chapter 5). To evaluate the utility of the framework, these

components were realized as prototypes in three real-time game engine scenarios. First,

the sensor interface is evaluated by providing different visual sensors and comparing accu-

racy against performance measurements. From the comparison results, consequences for

application and sensor development are derived and discussed. Second, a proof-of-concept

evaluation demonstrates whether the attention and memory components fulfill their in-

tended usage. The integrated attention process, handling both bottom-up processing and

task-oriented top-down factors, is investigated in specific scenarios. Additionally, different

options regarding the combination of different sensor modalities and types are investigated

to further evaluate the sensor interface. Third, the framework’s applicability and its con-

nection to decision-making processes is evaluated by realizing a traffic-related scenario. By

successfully providing sample implementations of the perception components, the three

evaluation approaches demonstrate possible solutions to RT3.1, RT3.2, and RT4.1.

7.3.1 Evaluation Sensor Accuracy Against Precision

While designing the synthetic perception framework, a key consideration was the balance

between accuracy and computational performance. To investigate the feasibility of the

118 Evaluation and Results

Figure 7.8: Mass points of a cube object can be used to improve simple geometric visibility checks.
Image from [IVC8].

approach, a preliminary evaluation compares both aspects with each other. For this purpose,

two visual sensors were realized and integrated into the framework and utilized within a

defined evaluation scenario. Both sensors are described below, but more details are available

in [SvS4, SvS5, IVC8].

7.3.1.1 Sample Implementations of Synthetic Sensors

Geometric Vision Sensor. This sensor realization is based on the geometry of 3D objects in

the virtual environment. The overall process is aligned in a visual sensing pipeline. First,

preselectors identify separate sets of interesting objects out of the set of all objects in a scene.

Applying physical filters, the union of these sets is reduced to a subset representing the

sensor’s capabilities regarding the environmental stimulus. The exemplary implementation

applies an elliptic field-of-view filter (cf. [RD08]). Every virtual object outside the ellipsoid

around an agent is filtered from its visual perception. The ellipsoid, which is parameterized

using view range and view angle, approximates the visual field of view of a human more

closely than view cones, which are commonly used. The second filter is a raycast-based

line-of-sight filter. All objects not filtered by the previous operation are checked for visibility

by casting a ray from the agent’s sensor origin to the tested object. If an intersection between

the ray and another object exists, the tested object is occluded, and it is discarded. To

counteract the effect of underrepresentation by checking only a single point for each object,

multiple mass points are used to test visibility [TR95] (see Figure 7.8). During a sensing step

only one ray is cast to one randomly chosen mass point, but objects are kept in short-term

7.3 Evaluating the Synthetic Perception Framework 119

sensory storage longer to benefit from random sampling.

False-colored Vision Sensor. The other sensor used for the sensor evaluation is based on the

false-coloring approach described by Noser et al. [NRTMT95, NT95]. Using a rasterization

approach, each object is assigned a unique color and each agent’s view is rendered into a

low-resolution off-screen buffer using these unique colors without any lighting effects. An

example is shown in Figure 7.9. Since this approach utilizes the regular rendering process, it

automatically determines occlusions. In the resulting image, the unique colors can be used

to identify the objects visible to an agent. As soon as a pixel is colored with a certain color, the

object associated with the color-ID must be visible in the agent’s current field of view. Once

the visible objects are known, every additional information can be retrieved from the object

itself or using appropriate semantics. In this sample implementation used for evaluation, the

single occurrence of one color-ID is sufficient to perceive the associated object. If required,

the number of all pixels of the same color could be used to apply additional heuristics, like

a threshold. For example, a stimulus could be created only for objects that cover a certain

number of pixels. This approach provides an intuitive way of emulating human vision

without the need for complex object detection algorithms. It can be configured to be highly

precise and could even utilize two cameras for stereo vision. However, the approaches’

biggest advantage is also a disadvantage. Rendering separate views for each individual

agent during each sensing step is a computationally expensive operation which does not

scale well. Reducing the resolution for the image buffer improves performance but decreases

accuracy. Using a stereo camera setup to counteract the loss of accuracy while using low

resolution buffers would defeat the purpose of lowering resolution. Instead, a camera tremor

– commonly called jittering – can be applied to the sensor’s camera, which will add a small

yaw angle α to the camera. During each sensing step, the rotation is altered between 0◦,−α,

or +α, i.e., only one image is generated per step and agent. If visible parts of an object cover

less than one pixel, only slight differences in viewing direction will change the resulting color

of that pixel in most cases. Thus, by keeping stimuli in STSS for more than one sensing step,

the tremor can provide a more accurate description of the scene. However, using a tremor,

slightly occluded objects can become visible. At the same time, slightly visible objects may

become occluded resulting in false positive and false negative results, respectively. If a small

tremor is used, both effects are negligible.

7.3.1.2 Sensor Scenario Setup

The hypothesis is that the realized sensors can be used as base-line implementations: the

geometric sensor for performance and the false-color sensor for accuracy. In the evaluation,

120 Evaluation and Results

(a)

(b)

Figure 7.9: Example of an agent’s view using normal rendering (a) and using the false-color
approach (b). Images based on [SvS5].*

*Scene assets based on designs by Unity Technologies [Uni].

7.3 Evaluating the Synthetic Perception Framework 121

Figure 7.10: Setup of the sensor evaluation from an agent’s point of view. 16 of 137 cubes are fully
occluded, i.e., not visible to the agent. Image based on [SvS5].

both sensors are compared to each other in these two categories. An artificial evaluation

scenario was generated that includes simple cube-shaped objects randomly distributed on a

3D grid for the accuracy evaluation. The distribution shown in Figure 7.10 was determined

once and did not change between trial runs. During each trial, a stationary agent used one

of the sensor configurations from Table 7.1 to sense the objects. The true number of visible

cubes was determined manually, by providing discernible colors to each cube and counting

the objects in a high-resolution render of the agent’s view. More details about the scenario

setup can be found in [SvS5] and [IVC8].

The geometric vision sensor was used in configurations A and B. In A, only the origin

of the object (midpoint of the cube) was considered for the ray cast-based visibility check.

In contrast, one of nine mass points (see Figure 7.10 (b)) was randomly chosen during each

sensing step and checked for visibility in configuration B. In configurations C through K, the

false-color-based sensor was used for sensing. Each pair of configurations (C and D, E and F,

G and H, I and J, K and L) utilized textures of the same size, but either kept the sensor camera

stationary or applied a tremor of 0.3◦ (see Section 7.3.1.1). To obtain stable results, every

sensor configuration from Table 7.1 was simulated for 60 s during the accuracy evaluation.

STSS retention was set to 0.5 s and sensing intervals were 0.1 s. The number of STSS entries

was recorded after each sensing step, representing the number of sensed objects.

For the separate performance evaluation, the cubes were not randomly distributed across

the scene but placed on a 2D grid (i.e., objects were never occluded). The number of cubes

in the scene was gradually increased during each trial run. STSS retention rate and sensing

step intervals were identical to the accuracy evaluation. The number of stimuli contained in

the STSS was recorded after each sensing step. Configurations C through J were simulated

122 Evaluation and Results

Table 7.1: Evaluated sensor configurations (view angle: 120◦, view range: 100 m). Table based on
[IVC8].

Type ID Configuration ID Configuration

Geometric A without mass points
Geometric B with mass points
False coloring C 162 = 256 px, no tremor D 162 = 256 px, tremor 0.3◦

False coloring E 322 = 1024 px, no tremor F 322 = 1024 px, tremor 0.3◦

False coloring G 642 = 4096 px, no tremor H 642 = 4096 px, tremor 0.3◦

False coloring I 1282 = 16384 px, no tremor J 1282 = 16384 px, tremor 0.3◦

False coloring K 2562 = 65536 px, no tremor L 2562 = 65536 px, tremor 0.3◦

twice. In the second simulation, analysis of the texture colors was performed in parallel with

support of the graphics hardware. For configurations K and L, only the parallel variant was

simulated since a sequential analysis on the CPU was no longer feasible. The trials were run

using an Intel Core i7-2600K consumer-level PC with 8GB RAM and a NVIDIA GeForce®

GTX560.

7.3.1.3 Results and Analysis

Considering accuracy, no sensor type was “better” than the other because results depend

on the sensor configuration, as indicated by Figure 7.11. Using configurations K and L,

the false-coloring sensor was able to sense the scene at 100% accuracy, i.e., all 121 visible

cubes were sensed. For configuration J, results were up to 100% accurate at times as well.

Regarding configurations C and D, the false-coloring approach was outperformed by the

geometric sensor in both configurations. Using configuration A, the geometric sensor was

able to sense 91 objects. While simulating configuration B, between 108 and 119 objects

resided in STSS at any given time.

As shown by the results, accuracy for the geometric sensor depends on the distribution

of mass points. Testing only the center of the cube for visibility increases the probability of

identifying visible objects as occluded in cluttered scenes. The probability of detecting an

object can be improved by increasing the number of checked points per object (i.e., increasing

the number of mass points), but still depends on scene layout and point distribution within

the object itself. With the given layout, the geometric sensor never kept all 121 visible cubes

in STSS at the same time. Since only one mass point was chosen randomly at each sensing

step, configuration B showed better, but unstable results. Stability could be improved by

checking more points per sense step or by increasing STSS retention rates.

While the geometric sensor was unable to achieve 100% accuracy using the tested con-

7.3 Evaluating the Synthetic Perception Framework 123

A B C D E F G H I J K L
Sensor configuration

30

40

50

60

70

80

90

100

110

120

N
um

be
r

of
 e

nt
rie

s
in

 S
TS

S

Figure 7.11: Results of the sensor accuracy evaluation. 121 of 137 cubes were not fully occluded
(horizontal line). The sensor configurations from Table 7.1 (A–L) were applied. The number of entries
in the STSS for each configuration is shown. Image based on [IVC8].

124 Evaluation and Results

Figure 7.12: Average sensor execution times in ms for the geometric sensor in configuration B.
Cubes were added every 5 s from 0 to 200. Cubes never occluded each other.

figurations, it produced predictable results at a level of accuracy that is likely acceptable for

many applications. In contrast, the false-coloring sensor strongly varied in accuracy depend-

ing on the resolution of the used image buffer. Using a resolution of 64x64 or larger (G-L)

the false-coloring sensor outperformed the geometric sensor regarding accuracy. Given a

resolution of 128x128 (I, J) almost all 121 visible objects could be sensed. A resolution of

256x256 (K, L) was already enough to correctly identify all visible objects in this setup. If

the image resolution for the color buffer is too small, the rasterization process performed by

the render pipeline can cause pixels of visible objects to be overwritten by other colors. In

this case, the trade-off for increased performance is decreased accuracy, such as in config-

urations C–F. Adding a tremor to the camera generally improves accuracies as it mitigates

the rasterization problem. Consequently, if image resolution is sufficiently large, the tremor

effect becomes unnecessary.

Execution times for the geometric sensor depend on the number of rays cast during

each sense step. This number is influenced by the number of tested objects and how many

mass points are checked per object. During the evaluation, only one mass point was chosen

randomly per sense step. Therefore, the only influencing factor was the number of objects.

Results are shown in Figure 7.12.

7.3 Evaluating the Synthetic Perception Framework 125

(a) False-coloring (serial)

(b) False-coloring (parallel)

Figure 7.13: Average sensor execution times in ms for the false-color sensors in relation to the
number of perceivable cubes. In (a), the execution times for configurations C, E, G, and I are shown
for the serial calculations, and in (b) for parallel calculations. Configuration K was only recorded in
parallel execution. Cubes were added every 5 s from 0 to 200. Cubes never occluded each other.

126 Evaluation and Results

Execution of the false-color sensor is theoretically influenced by two factors: the number

of objects being rendered by one camera and the resolution of the image buffer. Figure 7.13 (a)

and (b) show the results regarding the number of visible objects for all sensor configurations.

Increasing the number of objects increases the number of triangles to be rendered by the

graphics hardware, which increases render times. However, for modern graphics hardware

this effect is negligible in this evaluation scenario. The number of triangles in the chosen

setup is not enough to challenge the utilized hardware. The results reflect this observation.

In contrast, increased image resolution does increase execution times significantly. Ob-

vious parts of this increase are longer render times as more pixels need to be filled and more

data is transferred between GPU and CPU for the subsequent analysis step. Additionally,

when the resulting false-colored image is analyzed sequentially, a hash set structure is used

to eliminate duplicate color-IDs. This reduction operation is of O(n) complexity providing

another explanation of the observed increase in execution times. For the GPU-based image

analysis, a compute shader is realized and dispatched, which performs the ID reduction

concurrently on the GPU writing the results to a 1D output buffer. As a result, the paral-

lelized variant outperforms the serial implementation. The improved performance enables

the utilization of the false-coloring approach for texture resolutions that are infeasible for

the serial approach, e.g., 256× 256 px (K and L). The increase in execution times between

configurations is mostly explained by data transfers between the CPU and GPU. This expla-

nation is consistent with the fact that the serial version is marginally faster for low resolution

images (configurations C and E).

7.3.1.4 Comparison

As indicated by the results, both approaches are configurable such that any accuracy can be

achieved. Either the number and distribution of mass points must be large enough for the

geometric sensor, or the texture size must be sufficiently large in case of the false-color sensor.

The maximum accuracy is only achievable in theory, as simulation should remain possible

in real-time, i.e., with at least 30 frames per second. For a small number of objects (≤ 100),

the geometric sensor provided better performance (see Figure 7.11) than the false-color

sensor with the given configurations. With these numbers, checking each object separately

outweighs the cost of rendering a separate image. Having to process a larger number of

objects favors the false-color sensor as it profits from highly optimized graphics hardware.

In conclusion, developing an application using the provided ideas, a designer can control

accuracy and performance by configuring the sensors to the application’s needs. At the

same time, sensors can be combined or used situation dependent. For example, geometric

7.3 Evaluating the Synthetic Perception Framework 127

sensors could be used per default and swapped with a false-colored sensor if higher quality

results are required, and performance permits it.

7.3.2 Proof-of-Concept Evaluation of the Attention Module

To evaluate the capabilities of the proposed attention approach, three different scenarios

were defined. The objective was to recreate human behavior in typical every-day situations

regarding attention. All scenarios explore the abilities and disabilities of virtual perception

including physical and cognitive limitations. The focus was to show that the concept of the

perception framework can be used as a proof of concept. First, a description of exemplary

implementations of the framework’s main elements (namely sensors, memory, and attention)

is provided, followed by an explanation of the chosen scenarios including their intention and

setup. Results have partially been presented in [SvS21] and [SvS22], but will be analyzed

and discussed here in detail. Finally, the results are analyzed and discussed.

7.3.2.1 Sample Implementations of Perception and Attention Components

GPU-based Vision Sensor. A sensor based on the idea of false coloring as described in

7.3.1.1 provides visual information to an agent. Due to performance considerations, a

parallel analysis of the result buffer is performed on graphics hardware (cf. Section 7.3.1.2).

Nevertheless, simulating larger numbers of agents in a scenario will result in performance

issues. As discussed Section 7.3.1, rendering individual views for each agent is a costly

operation, especially for high resolution buffers.

Pre-computed Visual Importance. Precomputed radiance transfers or image-based lighting

(IBL) is a technique used to achieve real-time global illumination in game engines. Light

probes, which are distributed across a virtual scene, store light transport information, which

is pre-computed using an offline process, i.e., before the game starts. At runtime, these

probes can be sampled to efficiently retrieve global lighting information (e.g., see [ARM15]).

The idea of IBL is adapted to further improve scalability of the GPU-based vision sensor.

Saliency probes store cubemaps that encode visibility information and saliency values of static

virtual objects for a given scene. Both cubemaps are generated from the position of the probe.

One cubemap is constructed using false-color rendering (see 7.3.1.1) and the other cubemap

consists of saliency maps. Figure 7.14 demonstrates the generation process.

The complexity of the process that generates saliency maps depends on the application.

One approach is presented by Itti et al. [IDP03], who strive to provide a solution that is

biologically accurate. For demonstration purposes, the realization described here uses a

straightforward approach where a pixel’s color intensity describes the saliency of an object

128 Evaluation and Results

at that pixel position. During construction, the false-colored cubemap and the saliency

cubemap are sorted according to saliency values. By sorting both cubemaps in conjunction,

the mapping from saliency to virtual object is preserved. During the simulation, probing the

closest saliency probe provides approximated information about the most salient objects that

are visible from the query position in descending order. Since cubemaps are pre-computed,

the complexity of saliency calculations is irrelevant at run-time allowing application de-

velopers to focus on accuracy of the calculations. Additionally, all agents can query this

information without an impact on performance. Obviously, as is the case with all offline

computations, the approach only works for static information. Changing a scene invalidates

all encoded information. To circumvent this problem, saliency probes store information

only for static objects. Agents can still query the probes but must combine retrieved re-

sults with those of other sensor instances or types to include dynamic objects in their process.

Auditive Sensors. To provide a second sensor modality in the evaluation scenarios, an

auditive sensor is attached to the agent. Similar to vision sensors, the complexity of sensors

receiving audio signals depends on the application and what is to be achieved. For the

proof-of-concept prototype a straightforward realization is chosen. All agents can poten-

tially sense all objects with an attached audio property, but only signals above a specified

volume threshold pass a pre-selection test. A proximity filter excludes all objects that are

not within a certain distance to the agent. Obviously, the interaction between sound waves

and auditive receptors as well as the physics of sound propagation are much more complex

than the process described here, but a more detailed realization is not required for the

proof-of-concept implementation. Currently, auditive stimuli are generated from all sound

emitting objects that pass pre-selection and distance filtering. Volume and saliency are

encoded within the stimulus using object semantics.

Application-Specific Sensors. While the prevalent motivation is to generate plausible be-

havior for virtual humans, run-time performance often surpasses the importance of accuracy.

Due to the design of the proposed framework, sensor types and complexities can be tailored

toward an application’s specific needs. For example, a sensor can emulate a human sen-

sory organ, but it could also work completely different to provide the same or a subset of

information provided by the original. In the third of the evaluation scenarios described in

the following section, indirect visual cues, i.e., reflections, are integrated into the sensing

process using such an application-specific sensor.

To include reflections, the described GPU-based vision sensor could be extended in such

a way that reflective surfaces in a camera view are not only represented by object IDs, but

7.3 Evaluating the Synthetic Perception Framework 129

(a) (b)

(c)

Figure 7.14: Visualization of a saliency probe, which is a combination of a saliency cubemap (a)
and an according false-color cubemap visualizing object IDs (b). Saliency values are derived from
pixel intensities in a rendered scene view at the probe’s position. Each side of the cubemap textures
is sorted according to saliency, exemplified for one side in (c): original saliency values (upper left),
original object IDs (lower left), sorted saliency values (upper middle), object IDs sorted according to
saliency values (lower middle). Images on the far-right show versions of the sorted maps zoomed in
on the upper left corner. Images from [SvS22].*
*Building assets by IVC.

130 Evaluation and Results

additionally reveal object IDs of all objects reflected by the surface. To avoid the additional

complexity in design and run-time performance, a geometric vision sensor (cf. [PCR+11]) is

used to provide additional visual information to the agent. The sensor uses proxy geometry

within a scene to cast rays towards perceivable objects in the scene. If an emitted ray is

not blocked by other scene geometry, the target object of the ray is considered visible as a

reflection on the surface of the reflective object.

Other application-specific sensors could extract semantic information from a scene

providing efficient access to predetermined knowledge. One example of a semantic sensor is

discussed in Chapter 6. The sensor senses elements of a semantic road network layer, which

encode traffic rules and other traffic related information.

Memory. Memory layout and information encoding is realized in accordance with the

concept defined in Chapter 5. A short-term sensory storage (STSS) is used to store stimuli

provided by all sensors. After being attended to, a stimulus is turned into a percept and

moved to short-term memory (STM). Stimuli and percepts are stored in flat lists providing

access to the associated virtual object and its perceivable properties. While not nearly repre-

senting human memory, the representation suffices within the given evaluation scenarios. If

objects are not sensed again or moved to STM, they are removed from STSS after a memory

decay time of 0.5 s. Percepts are retained in STM for 5 s from the last time they were

queried by other processes. The decay times where chosen empirically for the test setups,

but can be freely configured by users of the architecture. Since STM represents an agent’s

working memory, a LTM that encodes persistent and global information is not required in

this evaluation and therefore omitted.

Attention. In accordance with the perception framework design, attention is used for

selecting stimuli, simulating object recognition and information retrieval processes, and

realizing inhibition of return. The selection process is based on saliency values assigned by

sensors to stimuli during sensing. Possible sources for these values are object semantics,

internal calculations by a sensor, or other sensors. For example, the described saliency

probes can be used by a sensor to assign a pre-computed saliency value to a stimulus. At

the same time, the probes can be queried by a sensor to retrieve only the object color-IDs,

which are then used to look up visual saliency of the objects via semantics.

Saliency values for a single object are linearly integrated across all sensors to determine

the object’s multi-sensory value. The current object of interest is selected based on the sorting

of saliency values as described in Section 5.5. The agent’s actuators are requested to orient

the primary visual sensor towards that object. Once aligned, agents will fixate the object for

7.3 Evaluating the Synthetic Perception Framework 131

a dwell-time period simulating object recognition and information retrieval. The duration

of dwelling can be set according to the current application and could vary with object type to

consider its complexity or with an object’s saliency. In this sample realization, typical value

ranges for dwell time as reported by Petersen et al. [PKB12] are used to randomly select

dwell time duration between 0.2 and 0.5 seconds for the current stimulus. The stimulus

is considered as attended to and stored as percept in STM after the agent has fixated the

stimulus’ source for the specified duration. After being attended to, the stimulus is inhibited

in the subsequent sense step(s).

In the current realization, the saliency value of an attended stimulus is reduced to zero

if the associated object’s saliency has not increased since the last sense step. The latter is

used to keep an object “interesting”, e.g., due to constantly changing properties like color

or position. Alternatively, instead of immediately setting saliency to zero, a function can be

used to attenuate saliency values of attended objects over time. This will preserve the object

of attention across multiple sense cycles if saliency remains higher than the saliency of other

sensed stimuli. Additionally, the number of inhibited objects is determined by a parameter.

If set to one, agents would switch between the two most salient objects in an unchanging

scene. If the value is equal or larger than the total number of objects in the scene, agents will

look at each object in their field of view in the order of their saliency values.

The purpose of top-down attention is to provide an agent with information that it

is interested in, e.g., objects that are related to the agent’s current task or goal. Agent

architectures often realize this concept using subscription or filter interfaces. Agents can use

these mechanisms to register their interest in specific objects, object classes, or events (e.g.,

see [BBT99, vOD11]). Using this approach, information of interest will always reach the

agent’s conscious, regardless of other stimuli that are present at that time. In the proposed

realization described here, top-down attention is emulated by using an agent-centric bias to

an object’s saliency to simulate more realistic attention selection (see Section 5.5). Providing

a task-based bias will guide attention towards specific objects or object types, but the

approach ensures that highly salient objects will not be ignored in favor of task-relevant

objects within the proposed attention mechanism.

Personality and Emotion. The aspects personality and emotion in perception and other

cognitive processes were addressed throughout this thesis. However, their effect was not

included in the proof-of-concept realization as it did not provide a benefit within the context

of the evaluation scenarios that are described in the following section. For other scenarios

task parameters could be defined that influence, e.g., memory decay, attention inhibition,

sensor accuracy, or the number of objects that can be attended to. A task parameter’s value

132 Evaluation and Results

during a sense step is derived as a combination of traits from the current dynamic personality

as exemplified in Chapter 4.

7.3.2.2 Attention Scenario Setup

To assess the proposed perception framework, the sample implementations described in the

previous section were applied to three evaluation scenarios. The scenarios demonstrate that

behavior generation can be driven by the realized attention process.

Scenario 1: Imagine yourself leaving an apartment, house, or office. At the door you try

to remember whether you noticed your wallet on the way to the door. The wallet is placed

in plain view and easily observable. However, if you were to be distracted by a blinking cell

phone display while walking past the wallet, would you have perceived the wallet?

Scenario 2: This scenario is identical to scenario 1, but the distraction is caused by an

auditive stimulus to investigate the interrelation of sensor modalities.

Scenario 3: For the third scenario imagine walking along a sidewalk. Shortly before

reaching a corner, another pedestrian suddenly appears in front of you. Fortunately, you

quickly notice the other person and you can evade them. But in another case, you may not

look where you are going because you are distracted by a salient visual cue. As a result, you

are unable to perceive the other pedestrian and you cannot prevent the inevitable collision.

Because you are walking alongside a house, you can only gather information about the other

pedestrian once it becomes available, i.e., as soon as you can see or hear them. However,

this does not necessarily require a direct line of sight. Looking for reflective surfaces, e.g.,

could be a strategy to acquire additional information. The distraction could come from a

bottom-up stimulus or be based on a top-down goal.

In all scenarios, a virtual human should show the behavior that is generally expected form

a real human. Of course, this cannot be a universal statement, but needs to be viewed within

the constraints of the current realization. To investigate whether the defined agent perception

framework can be used to generate the described behavior, framework components were

implemented alongside the evaluation scenarios using the Unity game engine5. An overview

of the scenario realizations can be found in Figures 7.15 and 7.16.

In scenarios 1 and 2, an agent must navigate a small apartment structure. The agent’s

walking path towards the exit is depicted in Figure 7.15 by a red, dashed line. Two salient

objects are placed on opposite sides of the path to the exit. The first is an object of interest

(“target”) and the second is a distraction. In both scenarios a cell phone is used as the

distractor. In scenario 1 it produces a visual stimulus and in scenario 2 an auditive stimulus.

In addition to these objects of interest, the virtual apartment includes multiple other objects

5Unity Technologies, https://unity.com/

https://unity.com/

7.3 Evaluating the Synthetic Perception Framework 133

Figure 7.15: An overview of scenarios 1 and 2 used to evaluate the proposed attention approach.
The agent walks along the indicated path to reach its target destination (the door). The salient target
object (blue) is located on the back of the small sofa. The distractor object (yellow) is located on a
structure on the opposite side of the walking path. In scenario 1 a visual cue distracts the agent and
in scenario 2 an auditive cue is used.*
*Scene assets based on designs by Unity Technologies [Uni].

that are all perceivable. Both scenarios are simulated twice using two different specifications.

The first specification includes only one object that produces a constant, highly salient

stimulus s0, which is the target object. The saliency here is due to a top-down prioritization,

simulating that the object holds a certain value to the agent. For the second simulation,

a visual (scenario 1) or auditive (scenario 2) stimulus with high saliency values (s1,s2) are

generated at a specific point in time. The generated stimuli both have a higher saliency

than the baseline saliency, i.e., s1,s2 > s0. The results of running the simulations using both

specifications are shown in Figure 7.17.

The third scenario includes agents A and B, both of which are following a specific path

on the sidewalk. The buildings in the scenario prevent both agents from establishing a line

of sight. However, across the street from agent A, a large store front allows the agent to

gather additional knowledge by using an indirect line of sight. In this scenario, a moving

car is used as a distractor and a traffic sign is used as the target object (which is always

visible). To prevent any crossover effects, Agent B does not react to agent A, nor does it alter

its actions. The paths of the agents are indicated by dashed lines in Figure 7.16. The path

of the distractor is represented by the solid line. The reflective store front, agent A’s target

object, and the point of collision are also marked in the image.

The intention of defining the third scenario was to demonstrate several capabilities of

134 Evaluation and Results

Figure 7.16: An overview of the third sample scenario used to evaluate the proposed approach. Two
agents (A and B) follow predefined paths as indicated in the image. A situation of interest is created
by intersecting both paths at the indicated position. A target is provided to Agent A for navigational
and attention purposes. A passing car acts as distractor and a reflective surface (window) can provide
additional visual information. Image from [SvS22].*
*Vehicle asset based on a design by “storque12” [sto], scene assets by IVC.

(a) (b)

Figure 7.17: A screenshot of the evaluation scenarios including the target object (on the back of the
sofa) and a distractor object (on the wall at the top right). (a) While traversing the scene, the agent
focuses and perceives the target object. (b) The scene is identical to the scene in (a), but at a certain
point in time a distractor is activated, which captures the agent’s attention. As a result, the agent
cannot perceive the target object.*
*Scene assets based on designs by Unity Technologies [Uni].

7.3 Evaluating the Synthetic Perception Framework 135

(a) (b) (c)

Figure 7.18: Screenshots of the evaluation scene in scenario 3 including both agents and a distractor
object (car). In (a) agent A traverses the scene and will have sufficient time to evade agent B coming
around the corner. In (b) the scene is identical, except a visual distraction (passing car) will capture
agent A’s attention. Since the agent attends to the distractor, it is unable to avoid a collision with
agent B. Parts of the image are enlarged to show agent A’s gaze direction. In (c) the distractor is
present again but using the reflective window agent A can perceive agent B in time to avoid the
collision. The image part showing agent B’s reflection is enlarged for clarity. Images from [SvS22].*
*Assets based on designs by Unity Technologies (agent) [Uni] and “storque12” (car) [sto]. Terrain by IVC.

the proposed perception framework. The most important aspect was to show how an

attention model can contribute to changing the outcome of a scenario. For this purpose, the

scenario was simulated once with a distractor and once without one. Another fundamental

element is occlusion. An agent should only be able to perceive an object if line of sight

can be established between the two. Additionally, knowing about occluding objects (and

possibly the objects that are behind it) could also be turned into knowledge that higher-level

processes can integrate. For example, an agent could decide to change its position to get

a better view, it could select actions like peeking around corners, or it could slow down

giving it more time to perceive additional information. Demonstrating the combination

of different sensor types was another motivation. Here a computationally efficient false-

color sensor was combined with a sensor that stored pre-computed saliency information

of static virtual objects. Finally, the versatility of the sensing approach was to be shown

by including an application-specific sensor that provides an additional source for acquiring

stimuli. Therefore, in a third configuration of the scenario, agent A can gain additional

information via reflections off a window across the street. Making information from the

reflection sensor available to the agent also changed the scenario’s outcome. The results

from running all three configurations are presented in Figure 7.18.

In the default configuration, enough time is available for agent A to focus on, attend

to, and evade agent B. The outcome changes once agent A focused on the passing vehicle,

which is used as a distractor to pull attention away from agent B (see 7.18 (b)). With its

136 Evaluation and Results

visual sensors pointed at the vehicle, the agent cannot perceive agent B in time resulting in

a collision. By making reflected stimuli available to agent A in the third configuration, the

agent becomes aware of agent B before it is distracted by the passing vehicle. This allows

the agent to adjust its path to avoid a collision.

7.3.2.3 Results and Discussion

With the presented sample realizations for several components of the described synthetic

perception framework, it is possible to recreate the behavior included with each scenario

definition. An agent senses its environment using multiple sensors, combines and extracts

information from collected stimuli to build its current working memory, and uses additional

information and rules to select appropriate actions. In addition to providing stimuli that

can be sensed by an agent, the framework also considers the limitations of human sensors.

For example, in scenario 3, agent A cannot perceive agent B if there is no line of sight,

either due to occlusion or distraction. The latter is demonstrated in scenarios 1, 2, and 3 by

introducing a salient object that draws attention away from the current target object. The

saliency of the distracting stimulus can either originate from an object (bottom-up attention)

or from an agent’s higher-level processes (top-down attention). The exemplified stimulus

selection based on saliency is combined with dwell time and stimuli inhibition to provide

an attention mechanism. Parameters like dwell time or the number of inhibited objects can

be adjusted to fit an application’s specific needs. In scenario 3 it was also demonstrated how

to use the sensor framework to provide a shortcut for higher-level reasoning. By providing

a sensor that creates stimuli from reflective surfaces, the process of connecting the effigy on

that surface with an object of interest can be efficiently simulated.

The additional cubemap approach is designed to accelerate the perception process, but

they could potentially be used to provide multiple saliency values per object on a pixel-based

level instead of just object-based saliency. An interesting problem remains the division of

static and dynamic objects in the presented approach. Due to this separation it not easily

possible to model center-surround features between both object groups. As these features

are a central aspect of computational visual attention, the approach may not be sufficient for

some applications. However, if performance is a negligible factor, these or similar features

could be easily integrated into the presented framework. A further interesting aspect is that

saliency probes can be used to encode other information that provides a utility to an agent.

For example, in computer games or military simulations, probes could assign saliency based

on how well an object is suited as cover. Using sensors in such ways allows tailoring agent

behavior to an application.

7.3 Evaluating the Synthetic Perception Framework 137

(a) (b)

Figure 7.19: Perception evaluation scenario including a pedestrian crosswalk. (a): The rays cast
from the vehicle (agent) indicate which objects were perceived. Image from [SvS4].* (b): Pedestrians
follow the path indicated by the black lines. Waypoints do not only define said path, but also encode
how pedestrians are perceived. Pedestrians are perceived as crossing the road whenever they are
between red waypoints or as approaching the crosswalk when they are between a yellow and a red
waypoint. Image from [IVC8].*
*Assets based on designs by Unity Technologies (pedestrians) [Uni] and “storque12” (car) [sto]. Terrain and bus
assets by IVC.

7.3.3 Evaluating the Application of the Synthetic Perception Approach to Traffic
Scenarios

The final evaluation demonstrates the application of the perception framework to the in-

tended target domain by defining a typical traffic situation. A further objective was to

investigate the limitations of the realized system. The result are presented in this section,

but more details can be found in [SvS4, SvS9], and [IVC8].

7.3.3.1 Crosswalk Scenario Setup

The evaluation scenario includes a cognitive agent driving a car down a specified road section

with a speed limit of 50 km/h. After a certain distance, a traffic sign reduces the speed limit

to 30 km/h. Shortly thereafter, the agent encounters a crosswalk that is sporadically used by

pedestrians to cross the road. Figure 7.19 shows the section of the scenario that includes the

crosswalk. To properly pass the scenario, the agent must perceive and react to the traffic

sign, subsequently reducing its velocity. After perceiving the crosswalk, the agent must

decide whether it can pass it without endangering any of the pedestrians. To achieve these

behaviors, two mechanisms were realized for this evaluation scenario that allow the agent

to react to perceived information and select appropriate actions. These mechanisms pull

information from the agent’s STM in regular intervals. In Chapter 5 this is defined as a

138 Evaluation and Results

Figure 7.20: Visualization of the decision process for the driving agent. The agent approaches the
crosswalk from above (indicated by black arrows). Pedestrian (A) is critical because it is currently
navigating the part of the crosswalk that is passed by the agent in its vehicle. Pedestrian (B) is
also critical because it is approaching and soon entering the crosswalk. Pedestrian (C) is not critical
even though it is navigating the crosswalk. However, the pedestrian has already crossed the agent’s
driving lane and is continuing to cross the road on the other lane. Image from [IVC8].*
*Pedestrian assets based on designs by Unity Technologies [Uni]. Terrain assets by IVC.

synchronous request by a high-level process. One mechanism observes the memory module

for speed limit signs and whenever a new sign is detected, the agent adapts its desired

velocity to the speed limit associated with the sign. The other mechanism checks the STM

for crosswalks, after perceiving one, all nearby pedestrians are queried from STM. If one of

the perceived pedestrians is approaching the crosswalk or currently crossing the road, the

agent stops at the crosswalk. Figure 7.20 demonstrates the processing of pedestrians and

their significance towards the agent’s decision.

7.3.3.2 Limitations of the Applied Perception System

To evaluate the limits of the perception system, the scenario was modified by various factors,

which are described in the following sections.

Velocity Variation

The first modification was the variation of velocities for all involved entities, i.e., the agent

and the pedestrians. The default velocity for pedestrians was between 0.7 m/s and 1.1 m/s.

At velocities greater or equal to 3 m/s, the agent regularly collides with a pedestrian. The

reason is how the perception of critical pedestrians is set up in this sample scenario. The agent

perceives pedestrians as approaching the crosswalk only after they reach a certain waypoint.

If the pedestrians are moving too fast, the time span they need to start crossing the road

after switching to the approaching state is too short for the agent to stop in time resulting

in a collision. Decreasing the pedestrians’ velocities results in increased waiting times for

7.3 Evaluating the Synthetic Perception Framework 139

the agent for the same reason. Pedestrians change their state to approaching, but because

they move so slowly, the agent spends more time waiting at the crosswalk, although it may

have had the opportunity to pass the crosswalk before a pedestrian entered it. To avoid both

collisions and increased waiting times, the time of changing the state to approaching would

have to be based on a pedestrian’s velocity at the time. Since all pedestrians walk at different

velocities, this state change would have to be within the agent’s memory and performed

for each perceived pedestrian. A mechanism for predictive coding could be a solution for the

agent to make an a priori estimation of the point in time at which a pedestrian requires the

agent to stop.

To change the velocity of the agent, the speed limit sign was changed to a different

velocity. Despite high velocities of more than 100 km/h, the agent can perceive pedestrians

early enough to decelerate in time to stop in front of the crosswalk.

Visual Occlusion by an Obstacle

An additional modification is an object that occludes certain areas of the scenario to inves-

tigate the resulting agent behavior. Since occlusion is already part of the realized concept,

no further modifications are necessary other than placing additional objects. At first, a tree

was placed to occlude the traffic sign. As expected, the occlusion resulted in the sign being

perceived late or not at all, causing a delayed or absent adaption of the velocity. However,

even at high velocities the agent can stop in front of the crosswalk if pedestrians are cross-

ing the road because the pedestrians are not occluded and are perceived by the agent with

enough time to stop.

A second alteration is a bus, which is stopped at the side of the road occluding the ap-

proach to the crosswalk. Additionally, a stationary pedestrian is placed within this approach

area. As soon as the pedestrian is perceived, it is classified as critical, which prompts the

agent to stop. Due to the setup, the pedestrian is perceived shortly before the agent reaches

the crosswalk. Expectedly, whether the agent can stop in time depends on its velocity and

when a line of sight can be established to the pedestrian.

While the observed results were expected, one particular aspect is not considered. A

human driver would realize that the bus possibly occludes pedestrians that want to cross

the road. In response, a careful driver would reduce its speed to have more time to react to

emerging pedestrians. Consequently, an agent should also perceive that the approach to the

crosswalk is occluded and reduce its velocity. To achieve this behavior, agents would have

to be able to realize that certain areas are not perceivable. So far, the perception concept does

not consider this case. A possible solution within the current concept could be to model

the crosswalk approach areas as perceivable objects. If there is no line of sight to these

140 Evaluation and Results

Figure 7.21: Visualization of the crosswalk evaluation scenario with visual range reduced to 50 m
by fog. The crosswalk and pedestrians are visible in the background. Image from [IVC8].*
*Assets based on designs by Unity Technologies (pedestrians) [Uni] and “storque12” (car) [sto]. Terrain and bus
assets by IVC.

objects, the agent could react accordingly. However, in this case, the mass point approach

for raycast-based sensors, described in Chapter 5, would have to be altered. Instead of

one mass point, all mass points must not be visible to ensure that the area is indeed not visible.

Limiting Visual Range

The range of the human visual system can be altered by many factors. One aspect are en-

vironmental influences, which can be introduced by changing visual representations within

the virtual scene or by altering world semantics (see Section 5.7). For visual perception, these

changes concern mostly visibility and lighting conditions, e.g., rain, snow, fog, or darkness.

In the evaluation scenario, a parameter to simulate fog was added to the scene’s world

semantics. The parameter was used to reduce the visual range to a certain distance around

an agent based on the thickness of the fog. Objects beyond this range are not sensed by

an agent. Once the distance to an object is below this range, the object is regularly sensed,

perceived, and considered for action selection by an agent. Reducing visual range by fog,

the perception of relevant situations within the crosswalk scenario is delayed, which can

cause sudden deceleration or the agent to miss an object. Figure 7.21 depicts a section of the

evaluation scenario in which visual range is reduced by fog to 50 m. The representation in

world semantics was combined with a rendering effect to visualize the limitation.

Using the realized perception system, limitation of the visual range can be simulated by

7.3 Evaluating the Synthetic Perception Framework 141

environmental and individual effects. By adjusting the appropriate parameters, the outcome

of the scenario can be influenced. The agent either stopped in time for crossing pedestrians

or it collided with pedestrians if perception occurred too late or not at all.

7.3.4 Summary

During the evaluation of the perception framework, the aspects of plausibility, real-time

capability, and controllability were considered, which are the content of RT3.2. Specifically,

run time performance of example sensor implementations was measured to evaluate the

relationship between accuracy and performance. In multiple evaluation scenarios several

functionalities of the framework were demonstrated and a set of implementation examples

for sensors, memory, and attention was provided. Furthermore, it was shown how sensors

can be used to provide additional information to an agent using semantics and scene knowl-

edge. Since the sample implementations were performed using a real-time game engine,

one possible solution to RT4.1 is implied.

A crosswalk scenario was used as an additional evaluation to show that the system can

simulate several perception processes in a real-time road traffic application (RT4.2). An agent

driving a car can perceive and react to a traffic sign, a crosswalk, and pedestrians crossing

the street using the crosswalk. To observe different outcomes of the defined scenario, only

the perception process was modified while the decision process remained unaltered. While

modifying the scenario, observed outcomes matched expectations. The range of possible

velocity variations mainly depends on the realization of decision processes. Occlusion can

be simulated, but the precision depends on the accuracy of provided sensors. While it was

also shown that visual range can be limited within the proposed system, the range of possible

limitations could be explored in more depth.

Assuming a preconfigured set of sensors, application developers do not have to be con-

cerned with the process of acquiring information from the virtual environment. The percep-

tion module accumulates the “correct” data and makes it available to high-level processes.

If and when an agent perceives certain objects is based on the abilities and limitations of its

sensors. Developers can focus on realizing decision mechanisms appropriate to a given ap-

plication, which simplifies the development process. Due to a defined interface, additional

sensors can be integrated to cover specific needs.

In general, the evaluations also showed how knowledge about the environment can be

efficiently provided to agents (see RT3.2). For example, visual range limitations by world

semantics or relevance of perceived pedestrians to the decision process. In these cases,

efficiently refers to the fact that information can be perceived and must not be deduced from

available sensor information by each agent. However, at the same time, efficiency can refer to

142 Evaluation and Results

the development process, as setting up a scenario and changing its outcome can be achieved

by simple decision processes and without any additions to the perception process.

7.4 Evaluating Scalability

The intention of the mesoscopic queuing model is to allow the implementation of interactive

experiences while keeping invisible agents in the system (see Section 6.3.1). To verify that

the concept fulfills this intention, also as valid solution to RT4.2, three separate performance

evaluations are conducted. First, the mesoscopic system is investigated in isolation to

evaluate how well the system scales (cf. [SvS3, SvS26], and [IVC5]). However, since a

mesoscopic simulation layer is only meant as a support for the microscopic simulation, three

combinations of both cognitive agents and mesoscopic agents are simulated within the same

virtual environment (cf. [SvS9]). Finally, the level-of-detail approach explained in Section

6.3 is evaluated by combining cognitive agents, simplified agents, and mesoscopic agents in

a single scenario (cf. [SvS9]). As mentioned in Chapter 6, the FIVIS bicycle simulator is used

to facilitate a realization of the concept. Therefore, the scenario implemented within the

FIVIS project is utilized for the evaluations explained here. The following sections provide

more detail about the three evaluations.

7.4.1 Evaluating the Scalability of the Mesoscopic Simulation System

To investigate the performance of the realization of the mesoscopic simulation concept, a

test scenario is created, which is based on a scalable traffic network. The targeted framerate

for the simulations was 30 frames per second (FPS), which is a typical benchmark for

interactive experiences. To match this target frame rate, calculating a frame can take no

more than 33.33 ms/ f . Besides the framerate benchmark, the time required to calculate

one frame of the simulation is expected to increase linearly for both network size and

agent count. Additionally, to allow a more generalized usage, e.g., in open world virtual

environments, the system should be able to handle reasonable network sizes. For example,

the game Marvel’s Spider-Man6 included the entire road traffic network of Manhattan, NYC

containing ca. 4500 intersections.

The traffic network inside the simulation can have any form, but for the evaluation,

it was limited to a n× n grid layout (see Figure 7.22). Each node is connected by a road

with its four immediate neighbors with the exceptions of the intersections at the fringes and

corners, which have three or two neighbors, respectively. Since each road consists of two

6Sony Interactive Entertainment, 2018

7.4 Evaluating Scalability 143

Figure 7.22: Depiction of a generated n×n traffic network of 9 nodes and 24 edges for evaluating

scalability of the mesoscopic traffic simulation. Image based on [SvS3].

lanes (edges), the number of edges in each evaluation network is given by:

2n(n−1)+2n(n−1) = 4(n2
−n) (7.3)

All edges are assigned a speed limit of 50 km/h and defined to be 500 m in length. Assuming

an average vehicle length of 7.5 m, to account for different vehicle types, each edge has

a maximum capacity of 66 vehicles. In the mesoscopic queuing model, calculations are

performed for each network element and each simulated agent. Therefore, varying numbers

of mesoscopic agents are simulated within increasingly large networks. Starting at a network

grid of size n = 2 (4 nodes), the agent population is systematically increased from 10 to

100000 agents. The maximum number of agents that can be simulated for a given network

is thereby determined by the capacity and number of edges. If an agent population does not

fit a network size, the configuration is not simulated and no data is acquired. For example,

for the 2× 2 grid, the included 4 · (22
− 2) = 8 edges can be populated by a maximum of

8 · 66 = 528 agents and all larger populations are skipped for this network. To simulate,

e.g., 20000 agents, a network must have at least 360 edges (n = 12). After simulating the

maximum agent population, n is increased in increments of 5 and the sequence of agent

counts is repeated until n = 92 (8464 nodes, 33488 edges). Each simulation is run for 120

seconds to collect a sufficient amount of performance data, which is logged every second. All

simulations were run on a standard PC (Intel® i7-4790 3.6GHz CPU, 16GB RAM, NVIDIA

GeForce GTX 780 Ti).

Each graph in Figure 7.23 (a) shows the effect of network size on the average calculation

times for a constant number of agents. After initial irregularities, all graphs show linear

growth with increasing traffic network size, as was expected when setting up the experi-

ments. However, as indicated by the graphs, increasing the agent population size dominates

144 Evaluation and Results

(a)

(b)

Figure 7.23: Median frame calculation times for the mesoscopic agent evaluation. (a): The median
calculation times for different agent counts in traffic networks of increasing size. The graphs show
that overall, the calculation times grow linearly, and all configurations can be simulated interactively.
(b): Median calculation times for 100000 agents in networks of increasing size (blue line) and an
increasing number of agents in a network of 16129 nodes (red line). The graph shows that calculation
times grow linearly, although for smaller agent counts the slope is steeper. Images from [SvS26].

7.4 Evaluating Scalability 145

the increase in calculation times until a threshold is reached. After reaching the threshold

the calculation times increase linearly. This effect can also be observed for the node graph in

Figure 7.23 (b) and would have to be considered when designing a specific scenario.

To observe the growth behavior for traffic networks of even larger sizes, simulations were

run with 100000 agents and a traffic network size of 30276 nodes, 45369 nodes, and 60025

nodes, respectively (n = 174, 213, and 245). As demonstrated in Fig. 7.23 (b), even for very

large traffic networks, the calculation time increases linearly. To investigate the development

of the calculation time with increasing numbers of agents, additional simulations were

performed using a network size of 16129 nodes (n = 127) and larger agent counts. Again,

after a certain initial agent count, a linear growth of the calculation time can be observed

(see Figure 7.23 (b)).

As shown in Figure 7.23 (a), all configurations up to 8000 nodes and up to 100000 agents

can be simulated below the targeted calculation times. These results are sufficient for the

system’s original application within FIVIS. However, for larger networks and agent counts

the target framerates cannot be achieved at certain points depending on the configuration.

In the case of 100000 simulated agents, that threshold is reached at about 15000 nodes (see

Figure 7.23 (b)). Thus, a city the size of Cologne, Germany (13206 nodes) could be simulated,

but a metropolis like New York City, USA (51506 nodes) would be too large for interactive

experiences when simulating persistent agents using the described system7. Additional

results regarding the mesoscopic simulation can be found in Appendix B.

7.4.2 Evaluating the Combination of Microscopic and Mesoscopic Systems

In the previous section, it was shown that 100000 mesoscopic agents can be simulated at

interactive framerates in a traffic network of more than 8000 intersections. However, the

queuing model is meant only as a support for applying cognitive agents to interactive

experiences. Therefore, a second evaluation combines cognitive agents in a microscopic

simulation with the mesoscopic queuing model. The environment used for the evaluation is

the same as the main scene within the FIVIS bicycle simulator project. The scene represents

a section of the city of Siegburg, Germany, with an area of approximately 0.32 km2. The total

length of the road network within the scene is about 10 km, consisting of mostly secondary

roads and one main road, which are connected by 24 intersections. The entire road network

consists of about 500 waypoints, which are used by the microscopic simulation (cf. Section

6.2). In comparison, the mesoscopic simulation graph consists of 24 nodes connected by 64

edges. A screen capture of the scene as well as a representation of the simulation elements

7Road network sizes were determined using the OSMnx [Boe17] by extracting the number of intersections
from OpenStreetMap data (https://www.openstreetmap.org/).

https://www.openstreetmap.org/

146 Evaluation and Results

(a)

(b) (c)

Figure 7.24: Screenshot of one intersection in the Siegburg city scene used within the FIVIS bicycle
simulator (a)* and its road network elements for the microscopic (b)** and the mesoscopic simulations
(c)**. For the microscopic simulation, 45 waypoints represent paths across the intersection. In the
mesoscopic simulation graph, the intersection is represented by one node, which is connected to its
neighbors by one edge per lane. Images based on [SvS3].
*Assets based on designs by “Underground Lab” [Und] (&), “3DJunior” [3DJ] ($), and IVC (§ and terrain).
**Terrain assets by IVC.

7.4 Evaluating Scalability 147

are shown for one of the larger intersections in Figure 7.24. Since the average vehicle length

is estimated at 7.5 m, the maximum capacity for the road network is 1333 vehicles. Due to

the lack of available traffic data for the simulated environment, data provided by the United

Kingdom’s Department of Transport8 is used as a realistic initial guess for populating the

scene. According to this data, a usage of 40% of the maximum capacity represents rush hour

traffic, which means 500 agents for the evaluation scenario. Since congested roads during a

rush hour scenario are typically not interesting for an application like FIVIS, 200 agents are

estimated as a suitable number for plausible traffic flows.

To acquire referential data, the scene is simulated without any agents (A). The resulting

measurements represent the fastest possible frame times when simulating the Siegburg scene

in Fivis. The majority of computational effort is spent on rendering but Unity’s entire engine

framework and several Fivis components, e.g., responsible for input monitoring, logging,

screen definition, and more, also require processing resources. For a direct comparison, the

scenario is simulated once with 200 microscopic agents (B) and once with 200 mesoscopic

agents (C). The fourth configuration simulates the estimated maximum of 500 agents using

the mesoscopic approach (D). Finally, a hybrid simulation using 20 microscopic agents and

either 180 (E) or 480 mesoscopic agents (F) is investigated. Twenty agents are estimated

to be visible on average to a user based on the scene population as well as the size of the

environment and the traffic network. All configurations are simulated for 10 minutes and

run fifteen times to compensate for background processes running on the same machine.

To simulate a user navigating the scene, the scene’s camera is set up to follow one of the

simulated agents. The targeted frame rate is again 30 FPS, i.e., 33.33 ms/ f .

Figure 7.25 summarizes the results for all six configurations. The reference scenario

is simulated without any agents and is equal for all configurations, i.e., frames cannot be

calculated faster than 2.9 ms on average, which is equivalent to 345 FPS. While simulating

configuration B, the average and median calculation time of 333.33 ms per frame (3 FPS) is

clearly above the targeted time of 33.33 ms. Therefore, simulating 200 microscopic agents

is not an option for interactive systems. In comparison, simulating the same number of

mesoscopic agents, average and median calculation times are equivalent to the reference

scenario (2.9 ms). This result is expected since mesoscopic agents require neither a visual

representation that must be rendered, physics components that must be simulated, nor a

simulation of cognitive functions and interactions. Calculation times also do not change

when simulating the estimated maximum of 500 mesoscopic agents within the FIVIS scene.

Considering the results reported in the previous section, these result meet expectations.

Finally, both hybrid configurations produce significantly longer calculation times than con-

8https://www.gov.uk/government/organisations/department-for-transport, [online: May 2, 2023]

https://www.gov.uk/government/organisations/department-for-transport

148 Evaluation and Results

Figure 7.25: Calculation times for individual frames in milliseconds from different test scenarios.
A: Reference scenario without agents (median: 2.9 ms). B: Simulation of 200 microscopic agents
(median: 333.33 ms). C: Simulation of 200 mesoscopic agents (median: 2.9 ms). D: Simulation of
500 mesoscopic agents (median: 2.9 ms). E: Simulation of 20 microscopic and 180 mesoscopic agents
(median: 3.69 ms). F: Simulation of 20 microscopic and 480 mesoscopic agents (median: 3.71 ms).
Image based on [SvS9].

figurations A, C, and D, which also show more fluctuation. Depending on the distribution

of the microscopic agents throughout the road network, the amount of required computa-

tional resources varies, which explains the fluctuations. However, both median values are

essentially equal (E: 3.69 ms, F: 3.71 ms), showing that the mesoscopic simulation is negligible

for the considered road network and agent population. Using a hybrid simulation and an

estimate for the number of visible microscopic agents, interactive frame rates were achieved.

7.4.3 Evaluating the Level-of-detail Approach to Simulation

After evaluating the isolated effects of mesoscopic and microscopic simulations on framer-

ates, the level-of-detail approach introduced in Section 6.3 is evaluated. For this purpose,

7.4 Evaluating Scalability 149

0

50

100

150

200

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

N
u

m
b

e
r

o
f

ag
e

n
ts

Ti
m

e
 in

 m
s

Frame

G

H

I

Anzahl persönlichkeits-
basierter Agenten

Anzahl Mesoagenten

Number of cognitive
agents

Number of mesoscopic
agents

+

x

G H I

Figure 7.26: Calculation times for individual frames in milliseconds and the number of agents
simulated in each simulation layer: Only cognitive agents (G), cognitive and simplified agents (H),
and all levels of detail, i.e., microscopic, simplified, and mesoscopic agents (I). Cognitive agents
are microscopic agents simulated at the highest level of detail. The number of simplified agents is
omitted since it can be deduced from the given values. Image from [SvS9].

three additional configurations are simulated and the calculation times of individual frames

are recorded. The Siegburg scene is used for this evaluation as well and the camera is

statically placed at a busy intersection. The total number of simulated agents is always 200.

In configuration G, 200 microscopic (cognitive) agents are simulated at the maximum level

of detail and layer transfers were disabled. In configuration H, agents are transferred to

the simplified layer as soon as they leave the vicinity around the camera. Finally, transfers

between all three layers are simulated in configuration I. Agents within the camera’s vicinity

are simulated at the maximum level of detail, agents leaving the vicinity are simulated in a

simplified manner, but visually represented, and agents not visible from the camera’s posi-

tion are simulated by the macroscopic layer. Figure 7.26 shows the calculation times and the

number of simulated cognitive and mesoscopic agents for one representative test run. The

distribution of the measured frame times for the same test run are depicted in Figure 7.27.

Equivalent to the previous evaluation, it is not possible to achieve interactive framerates

using only the microscopic layer. Frames continuously require 333.33 ms to be calculated in

configuration G. The distribution of agents at the beginning of a simulation is determined

once and used for all simulations. Due to this distribution, 17 cognitive agents are situated

within the camera’s vicinity at the beginning of the sample scenario. The remaining 183

agents are simulated in simplified form (i.e., without physics and cognitive processes).

This measure already reduces calculation time at the beginning of the simulation to 36 ms,

which almost meets the target time of 33.33 ms. In the presented test run, the camera is

placed at a large intersection regulated by traffic lights. For this reason, the number of

150 Evaluation and Results

0

50

100

150

200

250

300

350

400

G H I

Ti
m

e
 in

 m
s

Configuration

DurchschnittAverage

Figure 7.27: Distribution of calculation times for the test run from Figure 7.26. Image from [SvS9].

microscopic agents increases to 41 during the simulation. Figure 7.26 indicates how the

increase in microscopic agents directly influences calculation times. When considering the

median of 117.3 ms in configuration H, the calculation times decreases by 65% compared

to configuration G. The average time of 48.5 ms per frame could already be considered an

interactive simulation, although the targeted time is still not achieved. Again, 17 cognitive

agents are simulated at the beginning of the simulation. A total of 138 microscopic agents (17

cognitive agents, 121 simplified agents) are simulated next to 62 mesoscopic agents resulting

in an additional decrease of the calculation time to 29 ms for the first frame. The median time

is 47 ms and the average is 44 ms for the entire simulation. While the targeted times can still

not be achieved, Figure 7.26 shows that an increasing number of cognitive agents influences

calculation times less and that calculation times vary less than in previous configurations.

Finally, to investigate the performance of the realized system in a less challenging sce-

nario, all three configurations are run with the camera placed at a smaller intersection with

less traffic. For this situation, it is possible to achieve calculation times below the target

value of 33.33 ms. Figure 7.28 shows the results for this simulation. The average time for

configuration I is 19.8 ms and the median time is 20.24 ms.

7.4 Evaluating Scalability 151

0

50

100

150

200

250

300

350

400

G H I

Ti
m

e
 in

 m
s

Configuration

DurchschnittAverage

Figure 7.28: Distribution of calculation times from a test run with the scene camera situated at a less
frequented intersection. Combining all level of detail layers (I), calculation times below 33.33 ms (30
FPS) could be achieved. Image from [SvS9].

7.4.4 Summary

While realizing the cognitive traffic agent concept, it was predictable that achieving inter-

active framerates would not be possible when simulating enough agents for the designated

scenario. The main reasons being the computational demands of all cognitive processes,

the visual representation, and the physics simulation. To counteract this issue, Section 6.3

presented a level-of-detail approach consisting of multiple simulation layers, one of which

simulates traffic agents mesoscopically in a queue-based system. To investigate the effect

of the mesoscopic simulation, its overhead and scalability was evaluated using an artifi-

cial road network graph. Graph size and agent population were successively increased,

and computational costs were recorded for each frame. The simulations show that com-

putational resources increase linearly with graph size and agent population. Furthermore,

100000 agents can be simulated within an 8000-node network below the target of 33.33 ms/ f .

Both agent population and network size are far beyond what is necessary for the intended

target application The results also show that the system could theoretically be applied to

current open world environments, like the one in Marvel’s Spider-Man. The size of the road

152 Evaluation and Results

traffic network of New York City’s borough Manhattan (4493 nodes), which is the setting

for the game, is well below the 15000-node threshold for interactive framerates. However,

the navigation graph used in the open world of ancient Egypt in the game Assassin’s

Creed: Origin9 consisted of 480000 nodes10 [Lef18]. Interactively simulating a network of

this magnitude would not be possible using the described system without optimization.

Additionally, in a digital game, this mesoscopic simulation would only be one part of a

much larger system. Thus, it would have to operate within a certain frame budget to

leave enough resources for other sub-systems (rendering, physics, animation, behavior,

etc.). In this case, the maximum size of an interactive traffic network would be significantly

smaller, depending on the actual frame budget. Considering these constraints, it would be

challenging to apply the mesoscopic agent system to current open world scenarios without

additional performance improvements. However, due to the linear growth in calculation

times, it is reasonable to assume that optimizing the system could resolve this situation.

Additionally, it was shown that the presented system is not capable of simulating very

large traffic networks, like those required for a metropolis or a small country (e.g., Switzer-

land with 203742 nodes). However, since the system was not originally developed for traffic

networks of these dimensions in mind, there are many opportunities for improvement.

Further work on optimization could decrease the growth and therefore might allow larger

networks to be interactively simulated. For example, as indicated by others (e.g., [SCA19]),

the sequential realization would lend itself well to parallelization.

To further evaluate all layers of the level-of-detail system in combination, a virtual repre-

sentation of a part of the city of Siegburg was used, which is the main scenario for the FIVIS

bicycle simulator. Multiple configurations were run using this scene, including different

combinations of microscopic (cognitive and simplified agents) and mesoscopic agents. The

evaluation confirmed the anticipated drop below interactive framerates when simulating

only microscopic agents. The evaluation showed that the mesoscopic layer introduces neg-

ligible overhead and confirmed the anticipation that the simulation of microscopic agents

is the major factor for the computational requirements. Despite the utilization of the level-

of-detail approach, the targeted median time per frame of 33.33 ms (30 FPS) could not be

achieved for the application scenario. However, the recorded time of 47 ms is close to interac-

tive framerates and the maximum time as well as variance could be significantly decreased

compared to configurations without mesoscopic agents. Additional simulations for a less

demanding setup showed that it is possible to achieve interactive framerates by using the

level-of-detail approach. To ensure interactivity for a broader set of cases, additional opti-

9Ubisoft, 2017
10Note that Assassin’s Creed: Origin’s navigation graph consisted of 520000 links, which is significantly less

than the 1.9 million edges that would have been contained in a test network grid of 480000 (n = 692) nodes.

7.4 Evaluating Scalability 153

mizations would be beneficial. For example, the processing of individual cognitive agents

could be distributed across multiple frames or the user’s vicinity, in which agents are sim-

ulated at the maximum level of detail, could be dynamically resized to keep the number

of cognitive agents at a constant value. Realizing these additional optimizations was not

within the scope of this thesis project.

The intent of RQ4 was to evaluate whether the developed concepts could be realized as

an interactive application. Realizing the cognitive agent concept by itself, did not provide the

desired result within the designated application. However, by extending the concept with a

level-of-detail solution, an interactive simulation could be achieved without compromising

the intended effect of cognitive agents on a user or trainee. Note that other applications,

requiring only a small number of cognitive agents, could achieve interactive framerates

without level-of-detail adjustments. This assumption has not been evaluated but could be

the subject of a future project.

154 Evaluation and Results

8
Conclusions and Discussion

“Every accomplishment starts with the decision to try.”

- John F. Kennedy

Intelligent agents can be a valuable asset for virtual training environments. To fa-

cilitate user immersion, agents must portray believable and individualized behavior,

which must also be controllable for an application designer to support the training ob-

jectives. At the same time, a solution for generating agent behavior, must be scalable

to consider real-time constraints of virtual environments. So far, existing agent architec-

tures do not meet all requirements simultaneously, in particular regarding the use cases

envisioned within this thesis project. To address this issue, four major research contribu-

tions are provided. A general design of a lightweight cognitive agent architecture has been

developed (RQ1). Within this architecture design, two specific aspects were highlighted.

First, the combination of a trait-based personality model and an emotional state represents a

component to systematically generate individual, dynamic agent behavior (RQ2). Second,

a perception and attention module has been designed and integrated to demonstrate its role

in the behavior generation process for cognitive agents (RQ3). Finally, the scalability of

the proposed architecture has been shown by applying it to a real-time, multi-agent system

(RQ4).

The approach to achieving believable agent behavior in this thesis project was to emulate

human cognitive capabilities and characteristics constrained by real-time requirements. A

lightweight cognitive agent architecture concept has been developed, evaluated, and de-

ployed. The concept includes multiple identified key features, such as perception, decision-

making, memory, internal simulation, learning, emotion, mood, and feelings. This concept

represents a methodological framework for solving the proposed research questions, which

integrates the mentioned cognitive capabilities. Due to the complexity of every individual

156 Conclusions and Discussion

component and the constraints of the intended application domain, the refined concept

focuses on four core elements: perception (including memory and attention), personality,

emotion, and decision-making. The resulting CA2RVE architecture defines a blueprint for

applying attentive cognitive agents to real-time virtual environments (RT1).

The generation of individual behavior patterns has been realized by integrating psycho-

logical personality profiles as a foundation for all cognitive processes (RT2.1) and evaluated.

It has been shown that personality profiles can be individualized, such that every agent

in a simulation is assigned a unique profile. While it was shown that distinguishable and

consistent behavior can be generated by linking task specific behavior to personality pro-

totypes, variety and quality is limited by multiple factors, e.g., the number of prototypes

or the variety of actions available to an agent. Since providing a diverse set of actions re-

quires substantial effort and resources, the focus was on realizing actions required for the

evaluation scenarios, e.g., wait, yield, and start driving for a blocked-lane scenario.

Linking individualized personality to actions has been achieved using task parameters,

which are applied to model cognitive capabilities and filter actions. Thus, depending on an

agent’s personality, certain actions may be prioritized. It has been demonstrated how results

from a psychological study about driving behavior are transferred to the agent architecture

by means of a developed mapping process. Additionally, since the mapping process is

generalized, it is possible to transfer results of other psychological studies to agent behavior

as well. This option presents interesting opportunities for further research and applications.

For example, results of psychological studies may be validated or re-evaluated in virtual

settings using the proposed agent architecture.

Extending the concept of individualized behavior, a two-dimensional emotion model

has been realized to achieve behavior pattern alteration (RT2.2). Using this approach, it has

been shown that a problematic situation can be resolved (e.g., the exemplified deadlock at

an intersection). By enabling agents to react to their circumstances, it has been demonstrated

that emotions can improve the plausibility of observable agent behavior.

Based on human perception, a synthetic perception framework has been designed that

contains three key aspects: sensing, memory, and attention (RT3.1). The design has been

realized and evaluated using specific perception-based scenarios. In these scenarios, it has

been shown that the saliency-based interface allows a flexible combination of different sensor

modalities. Due to this flexibility, users of the architecture can prioritize either performance,

robustness, or accuracy of the perception process (RT3.2). The ability to customize the

solution allows a wide variety of potential applications, e.g., training environments, digital

games, perception research, education, and simulation. The sample realization includes

configurable memory and attention mechanisms to provide additional controllability of

157

generated behavior. The developed attention module was used to demonstrate the intended

filtering of stimuli in short-term sensory storage based on saliency. In addition, the modular

design allows integrating other attention approaches as well.

The perception module has been realized such that acquisition, storage, and availability

of information is transparent to high-level processes, like decision-making. This approach

enables the design of processes that obtain information from the perception module with-

out requiring detailed knowledge of the internals of the system. Developers using the

framework can simply query the perception module and assume that the currently available

information always complies with the agent’s perception capabilities. This frees developers

from managing the acquisition of information from the virtual environment themselves.

Due to the way sensor integration is designed, multiple modalities can be considered

for stimuli acquisition. Within this thesis project, visual sensors were investigated, and the

integration of an auditory sensor was demonstrated as well. Furthermore, two examples for

application-specific sensors were presented, in which the perception framework is used to

efficiently provide agents with knowledge about their environment (RT4.1). One example is

the integration of objects visible on reflective surfaces. The other example is the perception of

road network elements. By implementing application-specific sensors, valuable information

becomes available to agents without the need for complex computations, which improves

run-time performance. At the same time, agents can choose to utilize this information

individually, which allows managing the perception process’ plausibility.

The proof-of-concept aspect of this thesis project consisted of applying the developed con-

cepts to real-time, multi-agent systems demonstrating the architecture’s scalability (RT4.2).

Parts of this aspect have been addressed above regarding RT4.1, i.e., the ability to focus on

performance when configuring sensors. Furthermore, a solution to RT4.2 has been demon-

strated by providing a realization of the concepts as an interactive, virtual user experience.

CA2RVE agents were utilized as traffic participants within the FIVIS bicycle simulator con-

text. Using consumer hardware, up to 20 traffic agents can be simulated in real-time, i.e.,

keeping framerates above 30 FPS, without optimizations. While these numbers fulfill the

requirement of a real-time, multi-agent environment, especially the small agent population

degrades the credibility in the considered scenarios and limits the variety of imaginable

applications. To counteract this problem, a level-of-detail system has been designed and

realized to balance performance load against agent population size. The solution included

dealing with application-related issues like visibility constraints and unnoticeable transfers

between level-of-detail layers. Using these techniques, 200 agents were simulated with 50

FPS for a representative traffic scene. Further tests indicated that rendering and physics

158 Conclusions and Discussion

exert more influence on performance than the agent system as a constant number of 20

microscopic and 480 mesoscopic agents were simulated at about 270 FPS.

In conclusion, solutions to all investigated research subtasks were presented and the

contributions of this work can be summarized as follows. A methodological contribution was

put forth by devising a new lightweight cognitive agent architecture considering the scientific

gap regarding the simultaneous coverage of believability, controllability, and scalability.

The cognitive agent architecture concept from the conceptual stage has been refined to the

CA2RVE architecture, which has been applied to a realistic evaluation scenario. It was then

successfully demonstrated that the generalized concept can be realized and customized

such that the intended use case could be solved: populating a real-time traffic simulation

with cognitive agents. The generic trait-based personality profile does not constrain the

architecture to a specific personality model. Once a personality model has been selected,

the proposed mapping process allows transferring results from psychology studies to task-

specific agent behavior. It was shown how task parameters can be used to relate agent

behavior to personality. Finally, combining the personality profile with an emotional state

facilitates adaptation of generated behavior in dynamic scenes and virtual environments.

Future Work

Being able to successfully realize the developed concepts within the target domain proves

that the objectives of this thesis project are achieved by the provided architecture. To further

investigate the presented approach, it would be interesting if other researchers would utilize

the architecture to add more applications and application areas.

One aspect that could be addressed in the future is the configuration of perception com-

ponents using an agent’s personality and emotional state. It was discussed how this could be

achieved by extending the existing task parameter concept to include perception as well. The

presented efforts to improve scalability and real-time applicability of the proposed architec-

ture could be expanded by exploring additional optimizations, which are not directly related

to the architecture itself. Examples might be: Optimizing the render process, load balanc-

ing and scheduling of agent updates, batching or instantiation techniques, or source code

optimization. Regarding decision-making, another meaningful extension to the proposed

architecture could be reasoning approaches that achieve more behavioral variety. It would

be interesting to explore reasoning approaches that combine with perception, personality,

and emotion to generate “true” alternative behavior, i.e., actions that are not pre-determined

at design time. However, currently it is unclear whether this level of autonomy can be

achieved at all. Resulting high-level processes could also be more tightly integrated into the

159

developed perception framework. By these means, decision processes could be modeled

such that they are more involved in virtual perception, e.g., deciding how long an attended

object must be observed until it is perceived. Other considerations could be: How long will

the agent be able to remember having seen a particular object? How does the type of object

or interaction influence an agent’s ability to recall an object in the future? How does distrac-

tion influence the perception process? These are just a few interesting perception-related

questions that could be investigated in future work.

Lastly, during this thesis project, the field of deep learning (DL) experienced a revolution

caused by advances in processing power and the availability of a vast amount of training

data [Sej18]. Going forward, the combination of cognitive real-time agents and DL would be

an interesting research topic. For example, DL image processing techniques could be used to

realize image-based vision sensors or action-selection methods could be based on DL. These

examples indicate how cognitive agents could be improved by utilizing DL. However, it

would also be possible for DL approaches to benefit from an agent simulation. Considering

the presented application scenario of road traffic simulation, cognitive agents could be used

to generate large amounts of observable, virtual data for training DL mechanisms of self-

driving cars. This method would mitigate the need for acquiring sensor data from the real

world and having to manually annotate it.

Although multiple directions for future research exist, the presented architecture concept

as well as its realization represent a fundamentally new framework for attentive cognitive

agents in real-time virtual environments. Furthermore, the provided descriptions of back-

ground information, design choices, and examples can certainly support other researchers

or application developers in their own endeavors of trying to simulate more human-like

software agents in real-time virtual environments.

160 Conclusions and Discussion

Bibliography

[3DJ] 3DJunior. asset design: https://archive3d.net/?a=download&id=
964df051, original design retrived in 2012, last accessed 2023-01-15.

[Act14] Mike Acton. Data-Oriented Design and C++. In CppCon, 2014. https:
//youtu.be/rX0ItVEVjHc. Online, accessed: 2021-07-26.

[AEO05] Charles H. Anderson, David C. Van Essen, and Bruno A. Olshausen. Directed
Visual Attention and the Dynamic Control of Information Flow. In Laurent
Itti, Geraint Rees, and John K. Tsotsos, editors, Neurobiology of Attention,
chapter 3, pages 11–17. Academic Press, 2005.

[AKG+00] Elisabeth André, Martin Klesen, Patrick Gebhard, Steve Allen, and Thomas
Rist. Integrating Models of Personality and Emotions into Lifelike Charac-
ters. In Ana Paiva, editor, Affective Interactions: Towards a New Generation of
Computer Interfaces, pages 150–165. Springer Berlin Heidelberg, 2000.

[ALD11] Christopher Steven Applegate, Stephen David Laycock, and Andrew Day.
A Sketch-Based System for Highway Design. In Proc. 8th Eurographics Sym.
Sketch-Based Interfaces and Modeling, SBIM ’11, pages 55–62, 2011.

[ALS09] Raúl Arrabales, Agapito Ledezma, and Araceli Sanchis. Towards Conscious-
like Behavior in Computer Game Characters. In IEEE Conf. Computational
Intelligence and Games, CIG ’09, pages 217–224, 2009.

[AML+12] Raúl Arrabales, Jorge Muñoz, Agapito Ledezma, German Gutierrez, and
Araceli Sanchis. A Machine Consciousness Approach to the Design of
Human-Like Bots. In Philip Hingston, editor, Believable Bots: Can Computers
Play Like People?, pages 171–191. Springer Berlin Heidelberg, 2012.

[APMG12] Sean Andrist, Tomislav Pejsa, Bilge Mutlu, and Michael Gleicher. Designing
Effective Gaze Mechanisms for Virtual Agents. In Proc. SIGCHI Conf. Human
Factors in Computing Systems, CHI ’12, pages 705–714. ACM, 2012.

[ARM15] ARM. ARM Guide for Unity Developers: Real-Time 3D Art Best Practices:
Lighting – Light Probes. https://developer.arm.com/documentation/
102109/0100/Light-probes, 2015. Online, accessed: 2022-05-24.

[AS68] Richard C. Atkinson and Richard M. Shiffrin. Human Memory: A Proposed
System and its Control Processes. The Psychology of Learning and Motivation,
2:89–195, 1968.

https://archive3d.net/?a=download&id=964df051
https://archive3d.net/?a=download&id=964df051
https://youtu.be/rX0ItVEVjHc
https://youtu.be/rX0ItVEVjHc
https://developer.arm.com/documentation/102109/0100/Light-probes
https://developer.arm.com/documentation/102109/0100/Light-probes

162 BIBLIOGRAPHY

[AS16] Richard C. Atkinson and Richard M. Shijfrin. Human Memory: A Proposed
System and Its Control Processes. Scientists Making a Difference: One Hun-
dred Eminent Behavioral and Brain Scientists Talk About Their Most Important
Contributions, page 115, 2016.

[ASA21] ASAM e.V. ASAM OpenDRIVE®. https://www.asam.net/standards/
detail/opendrive/, 2021. Online, accessed: 2022-05-22.

[BA13] Tim Balint and Jan M. Allbeck. What’s Going on? Multi-sense Attention
for Virtual Agents. In Ruth Aylett, Brigitte Krenn, Catherine Pelachaud,
and Hiroshi Shimodaira, editors, Proc. 13th ACM Int. Conf. Intelligent Virtual
Agents, IVA ’13, pages 349–357. Springer Berlin Heidelberg, 2013.

[Bad03] Alan D. Baddeley. Human Memory: Theory and Practice. Psychology Press
Ltd., 2 edition, 2003.

[Bar02] Christoph Bartneck. Integrating the OCC Model of Emotions in Embodied
Characters. In Workshop on Virtual Conversational Characters: Applications,
Methods, and Research Challenges, VCC ’02, 2002.

[Bar10] Jaume Barceló. Fundamentals of Traffic Simulation. Springer, New York, NY,
2010.

[BBT99] Christophe Bordeux, Ronan Boulic, and Daniel Thalmann. An Efficient and
Flexible Perception Pipeline for Autonomous Agents. Computer Graphics
Forum, 18:23–30, 1999.

[BdSP+10] Elisabetta Bevacqua, Etienne de Sevin, Catherine Pelachaud, Margaret
McRorie, and Ian Sneddon. Building Credible Agents: Behaviour Influ-
enced by Personality and Emotional Traits. In Carole Bouchard, Améziane
Aoussat, Pierre Lévy, and Toshimasa Yamanaka, editors, Proc. 2nd Int. Conf.
Kansei Engineering and Emotion Research, KEER ’10, pages 1071–1080, 2010.

[BGG19] Shakir Belle, Curtis Gittens, and Nicholas Graham. Programming with Af-
fect: How Behaviour Trees and a Lightweight Cognitive Architecture Enable
the Development of Non-Player Characters with Emotions. In IEEE Games,
Entertainment, Media Conf., pages 1–8, 2019.

[BI13] Ali Borji and Laurent Itti. State-of-the-Art in Visual Attention Modeling.
IEEE Trans. Pattern Analysis and Machine Intelligence, 35(1):185–207, 1 2013.

[Bia02] Gari Biasillo. Representing a Racetrack for the AI. In Steve Rabin, editor, AI
Game Programming Wisdom, pages 439–443. Charles River Media, 2002.

[BKA+05a] Selmer Bringsjord, Sangeet Khemlani, Konstantine Arkoudas, Chris McEvoy,
Marc Destefano, and Matthew Daigle. Advanced Synthetic Characters, Evil,
and E. In Int. Conf. Intelligent Games and Simulation, Game-On ’05, 2005.

[BKA05b] Wilco Burghout, Haris Koutsopoulos, and Ingmar Andréasson. Hybrid
Mesoscopic-Microscopic Traffic Simulation. Transportation Research Record,
1934:218–255, 1 2005.

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/

BIBLIOGRAPHY 163

[BL06] Bradley J. Best and Christian Lebiere. Cognitive Agents Interacting in Real
and Virtual Worlds. In Ron Sun, editor, Cognition and Multi-Agent Interaction,
pages 186–218. Cambridge University Press, 2006.

[Blu97] Bruce Mitchell Blumberg. Old Tricks, New Dogs: Ethology and Interactive
Creatures. PhD thesis, Massachusetts Institute of Technology, 1997.

[Boe17] Geoff Boeing. OSMnx: New Methods for Acquiring, Constructing, Analyz-
ing, and Visualizing Complex Street Networks. Computers, Environment and
Urban Systems, 65:126–139, 2017.

[Bor64] Edgar F. Borgatta. The Structure of Personality Characteristics. Behavioral
Science, 9:8–17, 1964.

[BP17] Roxanne Blouin-Payer. Helping it all Emerge - Managing Crowd AI in
Watch Dogs 2. In Proc. Game Developers Conference, GDC ’17, 2017. https:
//youtu.be/LHEcpy4DjNc. Online, accessed: 2021-06-28.

[BSFL+12] Martin Brunnhuber, Helmut Schrom-Feiertag, Christian Luksch, Thomas
Matyus, and Gerd Hesina. Bridging the Gap Between Visual Exploration
and Agent-based Pedestrian Simulation in a Virtual Environment. In Proc.
18th ACM Sym. VR Software and Technology, VRST ’12, pages 9–16. ACM,
2012.

[BSGS13] Tobias Brosch, Klaus R. Scherer, Didier Grandjean, and David Sander. The
Impact of emotion on perception, attention, memory, and decision-making.
Swiss Medical Weekly, 143:w13786, 2013.

[BT09] Neil D. B. Bruce and John K. Tsotsos. Saliency, Attention, and Visual Search:
An Information Theoretic Approach. Vision, 9(3):1–24, 3 2009.

[BTD14] Daniel A. Briley and Elliot M. Tucker-Drob. Genetic and Environmental Con-
tinuity in Personality Development: A Meta-Analysis. Psychological Bulletin,
140:1303–1331, 2014.

[BYMS06] Jeremy N. Bailenson, Nick Yee, Dan Merget, and Ralph Schroeder. The Ef-
fect of Behavioral Realism and Form Realism of Real-Time Avatar Faces on
Verbal Disclosure, Nonverbal Disclosure, Emotion Recognition, and Copres-
ence in Dyadic Interaction. Presence: Teleoperators and Virtual Environments,
15(4):359–372, 2006.

[Byr07] Michael D. Byrne. Cognitive Architecture. In Andrew Sears and Julie A.
Jacko, editors, The Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications, chapter 5, pages 93–114. CRC
Press, 2 edition, 2007.

[BZBP09] Hans-Joachim Bungartz, Stefan Zimmer, Martin Buchholz, and Dirk
Pflüger. Modellbildung und Simulation: Eine anwendungsorientierte Einführung.
Springer, 2009.

https://youtu.be/LHEcpy4DjNc
https://youtu.be/LHEcpy4DjNc

164 BIBLIOGRAPHY

[Cat46] Raymond B. Cattell. Description and Measurement of Personality. Yonkers-on-
Hudson, N.Y., World Book Company, 1946.

[Cat57] Raymond B. Cattell. Personality and Motivation Structure and Measurement.
Yonkers-on-Hudson, N.Y., World Book Company, 1957.

[CBBP93] Gian Vittorio Caprara, Claudio Barbaranelli, Laura Borgogni, and Marco
Perugini. The “Big Five Questionnaire”. Personality and Individual Differences,
15(3):281 – 288, 1993.

[CBN03] Nurhan Cetin, Adrian Burri, and Kai Nagel. A Large-scale Agent-based
Traffic Microsimulation Based on Queue Model. In Proc. Swiss Transport
Research Conf., STRC ’03, 2003.

[CC76] James P. Curran and Raymond Bernard Cattell. Manual of the Eight State
Questionnaire, 1976.

[CDB+02] Karen Craig, Jeff Doyal, Bryan Brett, C. Lebiere, E. Biefeld, and E. Martin.
Development of a hybrid model of tactical fighter pilot behavior using IM-
PRINT task network model and ACT-R. In Proc 11th Conf. Computer Generated
Forces and Behavior Representation, 2002.

[CEW+08] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene
Zhang. Interactive Procedural Street Modeling. ACM Trans. Graphics,
27:103:1–103:10, 2008.

[Cha07] Alex J. Champandard. Behavior Trees for Next-gen Game AI. In Proc. Game
Developers Conference, GDC ’07, 2007.

[CHLC18] Susana Castillo, Philipp Hahn, Katharina Legde, and Douglas W. Cunning-
ham. Personality Analysis of Embodied Conversational Agents. In Proc. 18th
ACM Int. Conf. Intelligent Virtual Agents, IVA ’18, pages 227–232. Association
for Computing Machinery, 2018.

[CKH+15] Lawrence Cavedon, Christian Kroos, Damith Herath, Denis Burnham, Laura
Bishop, Yvonne Leung, and Catherine J. Stevens. “C’Mon dude!”: Users
adapt their behavior to a robotic agent with an attention model. Int. J.
Human-Computer Studies, 80(C):14–23, 8 2015.

[CKN+07] Dongkyu Choi, Tolga Könik, Negin Nejati, Chunki Park, and Pat Langley.
A Believable Agent for First-Person Shooter Games. In Proc. 3rd AAAI Conf.
Artificial Intelligence and Interactive Digital Entertainment, AIIDE’07, pages
71–73, 2007.

[CL97] Michael Cremer and M. Landenfeld. A Mesoscopic Model for Saturated
Urban Road Networks. Traffic and Granular Flow, pages 169–180, 1997.

[CM92] Paul T. Costa and Robert R. MacCrae. Revised NEO Personality Inventory
(NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI): Professional Manual.
Psychological Assessment Resources, Inc., 1992.

BIBLIOGRAPHY 165

[CM09] Philip J. Corr and Gerald Matthews. The Cambridge Handbook of Personality
Psychology. Cambridge University Press, 2009.

[Cou15] Francois Cournoyer. Massive Crowd on Assassin’s Creed Unity: AI Re-
cycling. In Proc. Game Developers Conference, GDC ’15, 2015. https:
//youtu.be/Rz2cNWVLncI. Online, accessed: 2021-06-28.

[CS09] Maria Cutumisu and Duane Szafron. An Architecture for Game Behavior
AI: Behavior Multi-queues. In Proc. 5th AAAI Conf. Artificial Intelligence and
Interactive Digital Entertainment, AIIDE’09, pages 20–27. AAAI Press, 2009.

[CSPC00] Justine Cassell, Joseph Sullivan, Scott Prevost, and Elizabeth F. Chruchill.
Embodied Conversational Agents. MIT Press, 2000.

[CT04] Toni Conde and Daniel Thalmann. An Artificial Life Environment for Au-
tonomous Virtual Agents with Multi-Sensorial and Multi-Perceptive Fea-
tures. Computer Animation and Virtual Worlds, 15:311–318, 2004.

[CT06] Toni Conde and Daniel Thalmann. An Integrated Perception for Au-
tonomous Virtual Agents: Active and Predictive Perception. Computer Ani-
mation and Virtual Worlds, 17:457–468, 2006.

[CTHG10] Julien Chaplier, Thomas Nguyen That, Marcus Hewatt, and Gilles Gallée.
Toward a Standard: RoadXML, The Road Network Database Format. Actes
INRETS, pages 211–220, 2010.

[CVB+12] Angelo Cafaro, Hannes Högni Vilhjálmsson, Timothy Bickmore, Dirk
Heylen, Kamilla Rún Jóhannsdóttir, and Gunnar Steinn Valgarðsson. First
Impressions: Users’ Judgments of Virtual Agents’ Personality and Interper-
sonal Attitude in First Encounters. In Yukiko Nakano, Michael Neff, Ana
Paiva, and Marilyn Walker, editors, Proc. 12th ACM Int. Conf. Intelligent Vir-
tual Agents, IVA ’12, pages 67–80. Springer Berlin Heidelberg, 2012.

[Dig90] John M. Digman. Personality Structure: Emergence of the Five-Factor Model.
Annual Rev. of Psychology, 41(1):417–440, 1990.

[DOP08] Włodzisław Duch, Richard J. Oentaryo, and Michel Pasquier. Cognitive
Architectures: Where Do We Go from Here? In Proc. 2008 Conf. Artificial
General Intelligence 2008, pages 122–136. IOS Press, 2008.

[Dos] Dosch Design Kommunikationsagentur GmbH. https://trian3dbuilder.
de/, original design retrieved on 2013-10-30, original no longer available.

[DR10] M. Brent Donnellan and Richard W. Robins. Resilient, Overcontrolled, and
Undercontrolled Personality Types: Issues and Controversies. Social and
Personality Psychology Compass, 4(11):1070–1083, 2010.

[DSG10] Marius Dupuis, Martin Strobl, and Hans Grezlikowski. OpenDRIVE 2010
and Beyond – Status and Future of the de facto Standard for the Description
of Road Networks. In Proc. Driving Simulaton Conf., DSC ’10, 2010.

https://youtu.be/Rz2cNWVLncI
https://youtu.be/Rz2cNWVLncI
https://trian3dbuilder.de/
https://trian3dbuilder.de/

166 BIBLIOGRAPHY

[dSVA19] Felipe de Souza, Omer Verbas, and Joshua Auld. Mesoscopic Traffic Flow
Model for Agent-based Simulation. Proc. Computer Science, 151:858–863, 1
2019.

[Enn04] James T. Enns. The Thinking Eye, the Seeing Brain. W. W. Norton & Company,
2004.

[Eys47] Hans Jürgen Eysenck. Dimensions of Personality. Kegan Paul and Trench and
Trubner & Co., Ltd., 1947.

[Eys70] Hans Jürgen Eysenck. The Structure of Human Personality. Methuen’s Manuals
of Modern Psychology. Methuen, 1970.

[Fis49] Donald W. Fiske. Consistency of the Factorial Structures of Personality
Ratings from Different Sources. Abnormal and Social Psychology, 44(3):329–
344, 1949.

[Fri06] Simone Frintrop. VOCUS: A Visual Attention System For Object Detection
And Goal-directed Search, volume 3899 of Lecture Notes in Artificial Intelligence
(LNAI). Springer Berlin Heidelberg, 2006.

[Fri11] Simone Frintrop. Computational Visual Attention. In Albert Ali Salah and
Theo Gevers, editors, Computer Analysis of Human Behavior. Springer, 2011.

[FV10] Martin Fellendorf and Peter Vortisch. Microscopic Traffic Flow Simulator
VISSIM. In Fundamentals of Traffic Simulation. Springer New York, 2010.

[Gaw98a] Christian Gawron. An Iterative Algorithm to Determine the Dynamic User
Equilibrium in a Traffic Simulation Model. Modern Physics C, 9(3):393–407,
1998.

[Gaw98b] Christian Gawron. Simulation-based Traffic Assignment. PhD thesis, University
of Cologne, 1998.

[GB16] Bruce Goldstein and James Brockmole. Sensation and Perception. Cengage
Learning, 10 edition, 2016.

[GBK+10] Jakub Gemrot, Cyril Brom, Rudolf Kadlec, Michal Bída, Ondřej Burkert,
Michal Zemčák, Radek Píbil, and Tomáš Plch. Pogamut 3 – Virtual Humans
Made Simple. In Samia Nefti-Meziani and John Gray, editors, Advances
in Cognitive Systems, pages 211–243. The Institution Of Engineering And
Technology, 2010.

[Geb05] Patrick Gebhard. ALMA: A Layered Model of Affect. In Proc. Int. Joint
Conf. Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 29–36.
Association for Computing Machinery, 2005.

[Ger09] Antony P. Gerdelan. Driving Intelligence: A New Architecture and Novel
Hybrid Algorithm for Next-Generation Urban Traffic Simulation. Technical
report, Massey University, 2009.

BIBLIOGRAPHY 167

[GKB+09] Jakub Gemrot, Rudolf Kadlec, Michal Bída, Ondřej Burkert, Radek Píbil,
Jan Havlíček, Lukáš Zemčák, Juraj Šimlovič, Radim Vansa, Michal Štolba,
Tomáš Plch, and Cyril Brom. Pogamut 3 Can Assist Developers in Building
AI (Not Only) for Their Videogame Agents. In Frank Dignum, Jeff Bradshaw,
Barry Silverman, and Willem van Doesburg, editors, Agents for Games and
Simulations: Trends in Techniques, Concepts and Design, pages 1–15. Springer
Berlin Heidelberg, 2009.

[GLBV08] Francisco Grimaldo, Miguel Lozano, Fernando Barber, and Guillermo
Vigueras. Simulating Socially Intelligent Agents in Semantic Virtual En-
vironments. The Knowledge Engineering Review, 23(4):369–388, 2008.

[GNN12] Dominik Grether, Andreas Neumann, and Kai Nagel. Simulation of Urban
Traffic Control: A Queue Model Approach. Proc. Computer Science, 10:808–
814, 2012.

[GPMG10] Eric Galin, Adrien Peytavie, Nicolas Maréchal, and Eric Guérin. Procedural
Generation of Roads. Computer Graphics Forum, 29:429–438, 2010.

[GRS03] Samuel D. Gosling, Peter J. Rentfrow, and William B. Swann. A Very
Brief Measure of the Big-Five Personality Domains. Research in Personality,
37(6):504 – 528, 2003.

[GSBS01] Maia Garau, Mel Slater, Simon Bee, and Martina Angela Sasse. The Impact
of Eye Gaze on Communication Using Humanoid Avatars. In Proc. SIGCHI
Conf. Human Factors in Computing Systems, CHI ’01, pages 309–316. ACM
New York, 2001.

[GSV+03] Maia Garau, Mel Slater, Vinoba Vinayagamoorthy, Andrea Brogni, Anthony
Steed, and Angela M. Sasse. The Impact of Avatar Realism and Eye Gaze
Control on Perceived Quality of Communication in a Shared Immersive
Virtual Environment. In Proc. SIGCHI Conf. Human Factors in Computing
Systems, CHI ’03, pages 529–536, 2003.

[Han89] Peter A. Hancock. A Dynamic Model of Stress and Sustained Attention.
Human Factors and Ergonomics Society, 31(5):519–537, 1989.

[Her09] Philipp Yorck Herzberg. Beyond “Accident-proneness”: Using Five-Factor
Model Prototypes to Predict Driving Behavior. Research in Personality,
43(6):1096 – 1100, 2009.

[HGH+18] Jack Harmer, Linus Gisslén, Henrik Holst, Joakim Bergdahl, Tom Olsson,
Kristoffer Sjöö, and Magnus Nordin. Imitation Learning with Concurrent
Actions in 3D Games. Computing Research Repository, abs/1803.05402, 2018.

[HHST02] Dirk Helbing, A. Hennecke, Vladimir Shvetsov, and Martin Treiber. Micro-
and Macro-Simulation of Freeway Traffic. Mathematical and Computer Mod-
elling, 35:517–547, 3 2002.

168 BIBLIOGRAPHY

[Hin09] Philip Hingston. The 2K BotPrize. In IEEE Conf. Computational Intelligence
and Games, CIG ’09, 2009.

[HKRS95] Rainer Herpers, Holger Kattner, Holm Rodax, and Gerald Sommer. GAZE:
An Attentive Processing Strategy to Detect and Analyze the Prominent Facial
Regions. In Martin Bichsel, editor, Proc. Int. Workshop Automatic Face- and
Gesture-Recognition, IWAFGR ’95, pages 214–220. University of Zurich, 1995.

[HL15] Kaveh Hassani and Won-Sook Lee. An Intelligent Architecture for Au-
tonomous Virtual Agents Inspired by Onboard Autonomy. In Plamen
Angelov, Krassimir T. Atanassov, Lyubka Doukovska, Mincho Hadjiski,
Vladimir Jotsov, Janusz Kacprzyk, Nikola K. Kasabov, Sotir Sotirov, Eulalia
Szmidt, and Sławomir Zadrożny, editors, Intelligent Systems, IS ’15, pages
391–402. Springer International Publishing, 2015.

[HR95] Barbara Hayes-Roth. An Architecture for Adaptive Intelligent Systems. Ar-
tificial Intelligence, 72(1):329 – 365, 1995.

[HR06] P. Y. Herzberg and M. Roth. Beyond Resilients, Undercontrollers, And Over-
controllers? An Extension of Personality Prototype Research. Personality,
20(1):5–28, 1 2006.

[HR15] Nader Hanna and Deborah Richards. The Influence of Users’ Personality
on the Perception of Intelligent Virtual Agents’ Personality and the Trust
Within a Collaborative Context. In Fernando Koch, Christian Guttmann,
and Didac Busquets, editors, Advances in Social Computing and Multiagent
Systems, MFSC ’15, pages 31–47. Springer International Publishing, 2015.

[HSK+10] Rainer Herpers, David Scherfgen, Michael Kutz, Ulrich Hartmann, Oliver
Schulzyk, Dietmar Reinert, and Holger Steiner. FIVIS – A Bicycle Simulation
System. In Olaf Dössel and Wolfgang C. Schlegel, editors, World Congress on
Medical Physics and Biomedical Engineering, pages 2132–2135. Springer Berlin
Heidelberg, 2010.

[HSK+12] Rainer Herpers, David Scherfgen, Michael Kutz, Jens Bongartz, Ulrich Hart-
mann, Oliver Schulzyk, Sandra Boronas, Timur Saitov, Holger Steiner, and
Dietmar Reinert. Multimedia Sensory Cue Processing in the FIVIS Simulation
Environment, pages 217–233. IGI Global, 2012.

[IDP03] L. Itti, N. Dhavale, and F. Pighin. Realistic Avatar Eye and Head Animation
Using a Neurobiological Model of Visual Attention. In B. Bosacchi, D. B.
Fogel, and J. C. Bezdek, editors, Proc. SPIE 48th Annual Int. Sym. Optical
Science and Technology, volume 5200, pages 64–78. SPIE Press, 8 2003.

[Isl05] Damian Isla. Handling Complexity in the Halo 2 AI. In Proc. Game Developers
Conference, GDC ’05, 2005.

[JBV+18] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry,
Marwan Mattar, and Danny Lange. Unity: A General Platform for Intelligent
Agents. arXiv e-prints, 9 2018.

BIBLIOGRAPHY 169

[JD12] Anja Johansson and Pierangelo Dell’Acqua. Emotional Behavior Trees. In
IEEE Conf. Computational Intelligence and Games, CIG ’12, pages 355–362, 2012.

[KBM18] Paulo Knob, Marcio Balotin, and Soraia Raupp Musse. Simulating Crowds
with OCEAN Personality Traits. In Proc. 18th Int. Conf. Intelligent Virtual
Agents, IVA ’18, pages 233–238. Association for Computing Machinery, 2018.

[KH08] M. Kutz and R. Herpers. Urban Traffic Simulation for Games. In Proc. Conf.
Future Play: Research, Play, Share, 2008.

[KHW+11] Andrey Kiselev, Benjamin Alexander Hacker, Thomas Wankerl, Niyaz Abdi-
keev, and Toyoaki Nishida. Toward Incorporating Emotions with Rationality
into a Communicative Virtual Agent. AI & SOCIETY, 26(3):275–289, 2011.

[kila] kilastaras. profile: https://free3d.com/user/kilastaras, asset design:
https://free3d.com/3d-model/chevrolet-impala-44468.html, original
design retrieved in 2012, last accessed 2023-01-12.

[kilb] kilastaras. profile: https://free3d.com/user/kilastaras, asset de-
sign: https://free3d.com/3d-model/alfa-romeo-159-ti-39437.html,
original desing retrieved in 2013, last accessed 2023-01-12.

[Kim06] Yougjun Kim. A Computational Model of Dynamic Perceptual Attention for
Virtual Humans. PhD thesis, University of Southern California, 2006.

[KMT08] Zerrin Kasap and Nadia Magnenat-Thalmann. Intelligent Virtual Humans
with Autonomy and Personality: State-of-the-Art. In Nadia Magnenat-
Thalmann, Lakhmi C. Jain, and Nikhil Ichalkaranje, editors, New Advances
in Virtual Humans: Artificial Intelligence Environment, pages 43–84. Springer
Berlin Heidelberg, 2008.

[Kra10] Jan Kratochvíl. Living City in Mafia II. In Proc. Game Developers Conf. Europe,
GDC Europe ’10, 2010.

[Kra12] Jan Kratochvíl. Creating Living City for Openworld Game. Vienna Game/AI
Conf., 2012.

[KS16] Hanneke Kersjes and Pieter Spronck. Modeling Believable Game Characters.
In IEEE Conf. Computational Intelligence in Games, CIG ’16, pages 193–201.
IEEE Press, 2016.

[KT99] Marcelo Kallmann and Daniel Thalmann. Modeling Objects for Interaction
Tasks. In Bruno Arnaldi and Gérard Hégron, editors, Computer Animation
and Simulation ’98: Proc. Eurographics Workshop, pages 73–86. Springer Vienna,
1999.

[KT18] Iuliia Kotseruba and John K. Tsotsos. 40 Years of Cognitive Architectures:
Core Cognitive Abilities and Practical Applications. Artificial Intelligence
Review, 7 2018.

https://free3d.com/user/kilastaras
https://free3d.com/3d-model/chevrolet-impala-44468.html
https://free3d.com/user/kilastaras
https://free3d.com/3d-model/alfa-romeo-159-ti-39437.html

170 BIBLIOGRAPHY

[KTH07] Arne Kesting, Martin Treiber, and Dirk Helbing. General Lane-Changing
Model MOBIL for Car-Following Models. Transportation Research Record,
1999(1):86–94, 2007.

[KU87] Christof Koch and Shimon Ullman. Shifts in Selective Visual Attention:
Towards the Underlying Neural Circuitry. In Lucia M. Vaina, editor, Matters
of Intelligence: Conceptual Structures in Cognitive Neuroscience, pages 115–141.
Springer Netherlands, 1987.

[Kut09] Michael Kutz. Verkehrssimulation für virtuelle Umgebungen. Master’s
thesis, Bonn-Rhein-Sieg University of Applied Sciences, 2009.

[KvVH05] Youngjun Kim, Martin van Velsen, and Randall W. Hill. Modeling Dy-
namic Perceptual Attention in Complex Virtual Environments. In Themis
Panayiotopoulos, Jonathan Gratch, Ruth Aylett, Daniel Ballin, Patrick
Olivier, and Thomas Rist, editors, Proc. 5th ACM Int. Conf. Intelligent Vir-
tual Agents, IVA ’05, pages 266–277. Springer Berlin Heidelberg, 2005.

[KW11] Dane Kuiper and Rym Z. Wenkstern. Virtual Agent Perception in Large Scale
Multi-Agent Based Simulation Systems. In Proc. 10th Int. Conf. Autonomous
Agents and Multiagent Systems, AAMAS ’11, pages 1235–1236. Int. Foundation
for Autonomous Agents and Multiagent Systems, 2011.

[KW13] Dane M. Kuiper and Rym Z. Wenkstern. Virtual Agent Perception Combina-
tion in Multi Agent Based Systems. In Proc. Int. Conf. Autonomous Agents and
Multi-agent Systems, AAMAS ’13. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[KW15] Dane M. Kuiper and Rym Z. Wenkstern. Agent Vision in Multi-agent Based
Simulation Systems. Autonomous Agents and Multi-agent Systems, 29(2):161–
191, 3 2015.

[LA00] Michael Luck and Ruth Aylett. Applying Artificial Intelligence to Virtual
Reality: Intelligent Virtual Environments. Applied Artificial Intelligence, 14:3–
32, 2000.

[Lai01] John E. Laird. It Knows What You’re Going To Do: Adding Anticipation to
a Quakebot. In Proc. 5th Int. Conf. Autonomous Agents, AGENTS ’01, pages
385–392. ACM, 2001.

[Lai08] John E. Laird. Extending the Soar Cognitive Architecture. In Proc. Conf.
Artificial General Intelligence, AGI ’08, pages 224–235. IOS Press, 2008.

[Lai12] John E. Laird. The Soar Cognitive Architecture. MIT Press, 2012.

[LB19] Joan Llobera and Ronan Boulic. A Tool to Design Interactive Characters
Based on Embodied Cognition. IEEE Trans. Games, 11(4):311–319, 2019.

[LBB02] Sooha Park Lee, Jeremy B. Badler, and Norman I. Badler. Eyes Alive. ACM
Trans. Graphics, 21(3):637–644, 2002.

BIBLIOGRAPHY 171

[LC06] Pat Langley and Dongkyu Choi. A Unified Cognitive Architecture for Phys-
ical Agents. In Proc. National Conf. Artificial Intelligence, volume 21 number 2
of AAAI ’06, pages 1469–1474, 2006.

[Lef18] Charles Lefebvre. Virtual Insanity: Meta AI on Assassin’s Creed: Origins.
In Proc. Game Developers Conference, GDC ’18, 2018. https://youtu.be/
a09vnDjmY_E. Online, accessed: 2021-06-28.

[Leo03] Tom Leonard. Building an AI Sensory System: Examining the Design
of Thief: The Dark Project. http://www.gamasutra.com/view/feature/
131297, 2003. Online, accessed: 2021-06-28.

[Li15] Jamy Li. The Benefit of Being Physically Present: A Survey of Experimental
Works Comparing Copresent Robots, Telepresent Robots and Virtual Agents.
Human-Computer Studies, 77:23–37, 2015.

[Lid04] Lars Lidén. Artificial Stupidity: The Art of Intentional Mistakes. In Steve
Rabin, editor, AI Game Programming Wisdom 2. Charles River Media, 2004.

[Liv06] Daniel Livingstone. Turing’s Test and Believable AI in Games. Computers in
Entertainment, 4(1):6–13, 1 2006.

[LJ98] John E. Laird and Randolph M. Jones. Building Advanced Autonomous AI
Systems for Large Scale Real Time Simulations. In Computer Games Develop-
ment Conference, 1998.

[LL01] Marco Lauriola and Irwin P. Levin. Personality Traits and Risky Decision-
making in a Controlled Experimental Task: An Exploratory Study. Personal-
ity and Individual Differences, 31(2):215 – 226, 2001.

[LL07] Scott D. Lathrop and John E. Laird. Towards Incorporating Visual Imagery
Into a Cognitive Architecture. In Proc 8th Int. Conf. Cognitive Modeling, ICCM
’07, page 25, 2007.

[LSC+09] Nan Li, David J. Stracuzzi, Gary Cleveland, Pat Langley, Tolga Konik, Dan
Shapiro, Kamal Ali, Matthew Molineaux, and David W. Aha. Learning Hi-
erarchical Skills for Game Agents from Video of Human Behavior. Technical
report, KNEXUS RESEARCH Corp, 2009.

[LTC+01] James C. Lester, Stuart G. Towns, Charles B. Callaway, Jennifer L. Voerman,
and Patrick J. FitzGerald. Deictic and Emotive Communication in Animated
Pedagogical Agents. In Justine Cassell, Joseph Sullivan, Scott Prevost, and
Elizabeth F. Churchill, editors, Embodied Conversational Agents, pages 123–
154. MIT Press, 2001.

[Mat18] Gerald Matthews. Cognitive-Adaptive Trait Theory: A Shift in Perspective
on Personality. Personality, 86(1):69–82, 2018.

[MB10] Rachel McDonnell and Martin Breidt. Face Reality: Investigating the Un-
canny Valley for Virtual Faces. In ACM SIGGRAPH ASIA 2010 Sketches, SA
’10, pages 41:1–41:2. ACM New York, 2010.

https://youtu.be/a09vnDjmY_E
https://youtu.be/a09vnDjmY_E
http://www.gamasutra.com/view/feature/131297
http://www.gamasutra.com/view/feature/131297

172 BIBLIOGRAPHY

[MC08] Robert R. McCrae and Paul Costa. Empirical and Theoretical Status of the Five-
Factor Model of Personality Traits, pages 273–294. SAGE Publications, Inc., 1
2008.

[MDWS00] Gerald Matthews, D. Roy Davies, Stephen J. Westerman, and Rob B. Stam-
mers. Individual Differences: Personality and Mood. In Human Performance:
Cognition, Stress, and Individual Differences, pages 265–286. Psychology Press,
2000.

[Meh96] Albert Mehrabian. Pleasure-Arousal-Dominance: A General Framework for
Describing and Measuring Individual Differences in Temperament. Current
Psychology, 14(4):261–292, 1996.

[MJ92] Robert R. McCrae and Oliver P. John. An Introduction to the Five-Factor
Model and its Applications. Personality, 60:175–215, 1992.

[MS09] James McCrae and Karan Singh. Sketch-Based Path Design. In Proc. Graphics
Interface, GI ’09, pages 95–102, 2009.

[MS11] Torsten Metzler and Kristina Shea. Taxonomy of Cognitive Functions. In
Proc. 18th Int. Conf. on Engineering Design, ICED ’11, pages 330–341, 2011.

[Naj98] Lawrence J. Najjar. Principles of Educational Multimedia User Interface
Design. Human Factors, 40(2):311–323, 1998.

[NFdSS10] Bressane Neto, Ary Fagundes, Corrêa da Silva, and Flávio Soares. On the
Construction of Synthetic Characters with Personality and Emotion. In An-
tônio Carlos da Rocha Costa, Rosa Maria Vicari, and Flavio Tonidandel,
editors, Advances in Artificial Intelligence, SBIA ’10, pages 102–111. Springer
Berlin Heidelberg, 2010.

[Nor63] Warren T. Norman. Toward an Adequate Taxonomy of Personality At-
tributes: Replicated Factor Structure in Peer Nomination Personality Rat-
ings. Abnormal and Social Psychology, 66:574–583, 1963.

[NRTMT95] Hansrudi Noser, Olivier Renault, Daniel Thalmann, and Nadia Magnenat-
Thalmann. Navigation for Digital Actors Based on Synthetic Vision, Memory,
and Learning. Computers & Graphics, 19:7–19, 1995.

[NT95] Hansrudi Noser and Daniel Thalmann. Synthetic Vision and Audition for
Digital Actors. Computer Graphics Forum, 14:325–336, 1995.

[OAVE93] Bruno A. Olshausen, Charles H. Anderson, and David C. Van Essen. A Neu-
robiological Model of Visual Attention and Invariant Pattern Recognition
Based on Dynamic Routing of Information. Neuroscience, 13(11):4700–4719,
1993.

[OCC88] Andrew Ortony, Gerald L. Clore, and Allan Collins. The Cognitive Structure
of Emotions. Cambridge University Press, 1988.

BIBLIOGRAPHY 173

[OPOD10] Jan Ondřej, Julien Pettré, Anne-Hélène Olivier, and Stéphane Donikian. A
Synthetic-vision Based Steering Approach for Crowd Simulation. In ACM
SIGGRAPH 2010 Papers, SIGGRAPH ’10, pages 123:1–123:9. ACM, 2010.

[Ort03] Anthony Ortony. On Making Believable Emotional Agents Believable. In
Robert Trappl, Paolo Petta, and Sabine Payr, editors, Emotions In Humans and
Artifacts. MIT Press, 2003.

[PAGM15] Tomislav Pejsa, Sean Andrist, Michael Gleicher, and Bilge Mutlu. Gaze and
Attention Management for Embodied Conversational Agents. ACM Trans.
Interactive Intelligent Systems, 5(1):3:1–3:34, 2015.

[Pal18] Jorge Palacios. Unity 2018 Artificial Intelligence Cookbook Second Edition. Packt
Publishing, 2 edition, 2018.

[PCR+11] Christopher Edward Peters, Ginvera Castellano, Matthias Rehm, Elisa-
beth Andre, Amaryllis Raouzaiou, Kostas Rapantzikos, Kostas Karpouzis,
Gaultiero Volpe, Antonio Camurri, and Asimina Vasalou. Fundamentals
of Agent Perception and Attention Modelling. In Emotion-Oriented Systems.
Springer, 2011.

[PD05] Sakda Panwai and Hussein Dia. Comparative Evaluation of Microscopic Car-
following Behavior. IEEE Trans. Intelligent Transportation Systems, 6(3):314–
325, 2005.

[PKB12] Anders Petersen, Søren Kyllingsbæk, and Claus Bundesen. Measuring and
Modeling Attentional Dwell Time. Psychonomic Bulletin & Review, 19(6):1029–
1046, 2012.

[PLI07] Rolf Pfeifer, Max Lungarella, and Fumiya Iida. Self-Organization, Embodi-
ment, and Biologically Inspired Robotics. Science, 318(5853):1088–1093, 2007.

[PM01] Yoav I. H. Parish and Pascal Müller. Procedural Modeling of Cities. In Proc.
28th Conf. Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages
301–308. Association for Computing Machinery, 2001.

[PO02] Christopher Edward Peters and Carol O’Sullivan. Synthetic Vision and Mem-
ory for Autonomous Virtual Humans. Computer Graphics Forum, 21:743–752,
2002.

[Pom06] Marc Pomplun. Saccadic Selectivity in Complex Visual Search Displays.
Vision Research, 46(12):1886–1900, 2006.

[POS03] Christopher Edward Peters and Carol O’ Sullivan. Bottom-Up Visual At-
tention for Virtual Human Animation. In Proc. 16th Int. Conf. on Computer
Animation and Social Agents, CASA ’03. IEEE Computer Society, 2003.

[PT97] Paolo Petta and Robert Trappl. Why to Create Personalities for Synthetic
Actors. In Paolo Petta and Robert Trappl, editors, Creating Personalities for
Synthetic Actors: Towards Autonomous Personality Agents. Springer, 1997.

174 BIBLIOGRAPHY

[RD08] Steve Rabin and Michael Delp. Designing a Realistic and Unified Agent-
Sensing Model. In Scott Jacobs, editor, Game Programming Gems 7. Course
Technology, 2008.

[Rey87] Craig W. Reynolds. Flocks, Herds and Schools: A Distributed Behavioral
Model. SIGGRAPH Computer Graphics, 21(4):25–34, 8 1987.

[RGA+09] Michael Rushforth, Sudeep Gandhe, Ron Artstein, Antonio Roque, Sarrah
Ali, Nicolle Whitman, and David Traum. Varying Personality in Spoken
Dialogue with a Virtual Human. In Zsófia Ruttkay, Michael Kipp, Anton
Nijholt, and Hannes Högni Vilhjálmsson, editors, Proc. 9th ACM Int. Conf.
Intelligent Virtual Agents, IVA ’09, pages 541–542. Springer Berlin Heidelberg,
2009.

[RJ00] Jeff Rickel and W. Lewis Johnson. Task-Oriented Collaboration with Em-
bodied Agents in Virtual Worlds. In Justine Cassell, Joseph Sullivan, Scott
Prevost, and Elizabeth F. Churchill, editors, Embodied Conversational Agents,
pages 95–122. MIT Press, 2000.

[RJSL10] David Reitter, Ion Juvina, Andrea Stocco, and Christian Lebiere. Resistance
is Futile: Winning Lemonade Market Share Through Metacognitive Rea-
soning in a Three-Agent Cooperative Game. In Proc. 19th Conf. Behavior
Representation in Modeling and Simulation 2010, BRiMS ’10, pages 120–127,
2010.

[RL97] Cheryl L. Rusting and Randy J. Larsen. Extraversion, Neuroticism, and
Susceptibility to Positive and Negative Affect: A Test of Two Theoretical
Models. Personality and Individual Differences, 22(5):607 – 612, 1997.

[RN10] Stuart Russell and Peter Norvig. Artificial Intelligence, volume 3. Pearson
Education, Inc., 2010.

[RP12] Stefan Rank and Paolo Petta. Backstory Authoring for Affective Agents. In
Interactive Storytelling, volume 7648 of LNCS ’12, pages 144–149. Springer
Berlin Heidelberg, 2012.

[RPA+15] Kerstin Ruhland, Christopher Edward Peters, Sean Andrist, Jeremy B. Badler,
Norm I. Badler, Michael Gleicher, Bilge Mutlu, and Rachel McDonnell. A Re-
view of Eye Gaze in Virtual Agents, Social Robotics and HCI: Behaviour Gen-
eration, User Interaction and Perception. Computer Graphics Forum, 34(6):299–
326, 2015.

[RTO19] Frank E. Ritter, Farnaz Tehranchi, and Jacob D. Oury. ACT-R: A cognitive
architecture for modeling cognition. WIREs Cognitive Science, 10(3):e1488,
2019.

[RVP13] Tiago Ribeiro, Marco Vala, and Ana Paiva. Censys: A Model for Distributed
Embodied Cognition. In Ruth Aylett, Brigitte Krenn, Catherine Pelachaud,
and Hiroshi Shimodaira, editors, Proc. 13th ACM Int. Conf. Intelligent Virtual
Agents, IVA ’13, pages 58–67. Springer Berlin Heidelberg, 2013.

BIBLIOGRAPHY 175

[SCA19] Aleksandr Saprykin, Ndaona Chokani, and Reza S. Abhari. Large-scale
Multi-agent Mobility Simulations on a GPU: Towards High Performance
and Scalability. Proc. Computer Science, 151:733–738, 2019.

[Sej18] Terrence J. Sejnowski. The Deep Learning Revolution. The MIT Press, 2018.

[SEN99] Patrice M. Simon, Jörg Esser, and Kai Nagel. Simple Queueing Model Ap-
plied to the City of Portland. Modern Physics C, 10(5):941–960, 1999.

[SFC+10] Alberto Signoretti, Antonio Feitosa, André M. Campos, Anne M. Canuto,
and Sergio V. Fialho. Increasing the Efficiency of NPCs Using a Focus of
Attention Based on Emotions and Personality. In 2010 Brazilian Sym. Games
and Digital Entertainment, SBGames ’10, pages 171–181, 11 2010.

[SFC+11] Alberto Signoretti, Antonino Feitosa, Andre M. Campos, Anne M. Canuto,
Joao C. Xavier-Junior, and Sergio V. Fialho. Using an Affective Attention Fo-
cus for Improving the Reasoning Process and Behavior of Intelligent Agents.
In Proc. 2011 IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent
Technology, WI-IAT ’11, pages 97–100. IEEE Computer Society, 2011.

[SGW12] Daniel L. Schacter, Daniel Todd Gilbert, and Daniel M. Wegner. Psychology.
Palgrave Macmillan, 2012.

[SKW10a] Travis Steel, Dane M. Kuiper, and Rym Z. Wenkstern. Context-Aware Vir-
tual Agents in Open Environments. In Proc. 6th Int. Conf. Autonomic and
Autonomous Systems, ICAS ’10, pages 90–96. IEEE Computer Society, 2010.

[SKW10b] Travis Steel, Dane M. Kuiper, and Rym Z. Wenkstern. Virtual Agent Per-
ception in Multi-agent Based Simulation Systems. In Proc. IEEE/WIC/ACM
Int. Conf. Web Intelligence and Intelligent Agent Technology, WI-IAT ’10, pages
453–456. IEEE Computer Society, 2010.

[SL05] Johannes Strassner and Marion Langer. Virtual Humans with Personalized
Perception and Dynamic Levels of Knowledge. Computer Animation and
Virtual Worlds, 16:331–342, 2005.

[Smi67] Gene M. Smith. Usefulness of Peer Ratings of Personality in Educational
Research. Educational and Psychological Measurement, 27:967–984, 1967.

[SOS10] William Steptoe, Oyewole Oyekoya, and Anthony Steed. Eyelid Kinematics
for Virtual Characters. Computer Animation and Virtual Worlds, 21(3-4):161–
171, 2010.

[SSSS16] Paul Richard Smart, Tom Scutt, Katia Sycara, and Nigel R. Shadbolt. Integrat-
ing ACT-R Cognitive Models with the Unity Game Engine. In Jeremy Owen
Turner, Michael Nixon, Ulysses Bernardet, and Steve DiPaola, editors, Inte-
grating Cognitive Architectures into Virtual Character Design, pages 35–64. IGI
Global, 2016.

176 BIBLIOGRAPHY

[sto] storque12. profile: https://free3d.com/user/storque12, asset de-
sign: https://free3d.com/3d-model/porsche-911-gt-43465.html, origi-
nal design retrieved in 2015, last accessed 2023-01-12.

[TBSK08] Tim Tutenel, Rafael Bidarra, Ruben M. Smelik, and Klaas Jan De Kraker. The
Role of Semantics in Games and Simulations. Computers in Entertainment,
6(4):57:1–57:35, 12 2008.

[TC92] Ernest C. Tupes and Raymond E. Christal. Recurrent Personality Factors
Based on Trait Ratings. Personality, 60:225–251, 6 1992.

[TCW+95] John K. Tsotsos, Scan M. Culhane, Winky Yan Kei Wai, Yuzhong Lai, Neal
Davis, and Fernando Nuflo. Modeling Visual Attention Via Selective Tuning.
Artificial Intelligence, 78(1-2):507–545, 1995.

[Tha86] Robert E. Thayer. Activation-Deactivation Adjective Check List: Current
Overview and Structural Analysis. Psychological Reports, 58:607–614, 1986.

[Tha89] R. E. Thayer. Modern Perspectives on Mood. Oxford University Press, 1989.

[THH00] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested Traffic States
in Empirical Observations and Microscopic Simulations. Physical Review E,
62:1805–1824, 2000.

[TK10] Martin Treiber and Arne Kesting. Verkehrsdynamik und -simulation. Springer,
Berlin, 2010.

[TR95] Demetri Terzopoulos and Tamer F. Rabie. Animat Vision: Active Vision in
Artificial Animals. In Proc. 5th Int. Conf. Computer Vision, ICCV ’95, 1995.

[Tri] TrianGraphics GmbH. Trian3DBuilder, https://trian3dbuilder.de/, ac-
cessed 2023-01-20.

[tSKT+20] Silke ter Stal, Lean Leonie Kramer, Monique Tabak, Harm op den Akker, and
Hermie Hermens. Design Features of Embodied Conversational Agents in
eHealth: a Literature Review. Human-Computer Studies, 138:102409, 2020.

[UMA] UMA Steering Group. UMA - Unity Multipurpose Avatar
https://assetstore.unity.com/packages/3d/characters/
uma-2-unity-multipurpose-avatar-35611, last accessed 2023-03-28.

[Und] Underground Lab. profile: https://sketchfab.com/
xaverius0404, asset design: https://sketchfab.com/3d-models/
lowpoly-honda-jazz-38ee278a018945538c7b34371699c3a0, original
design retrieved in 2012, last accessed 2023-01-12.

[Uni] Unity Technologies. asset design: https://unity.com/, original designs
(“Standard Asset Packages”) retrieved in 2015, original no longer available.

[vO14] Joost van Oijen. Cognitive Agents in Virtual Worlds: A Middleware Design
Approach. PhD thesis, Utrecht University, 2014.

https://free3d.com/user/storque12
https://free3d.com/3d-model/porsche-911-gt-43465.html
https://trian3dbuilder.de/
https://assetstore.unity.com/packages/3d/characters/uma-2-unity-multipurpose-avatar-35611
https://assetstore.unity.com/packages/3d/characters/uma-2-unity-multipurpose-avatar-35611
https://sketchfab.com/xaverius0404
https://sketchfab.com/xaverius0404
https://sketchfab.com/3d-models/lowpoly-honda-jazz-38ee278a018945538c7b34371699c3a0
https://sketchfab.com/3d-models/lowpoly-honda-jazz-38ee278a018945538c7b34371699c3a0
https://unity.com/

BIBLIOGRAPHY 177

[vOD11] Joost van Oijen and Frank Dignum. Scalable Perception for BDI-Agents
Embodied in Virtual Environments. In Proc. IEEE/WIC/ACM Int. Conf. Web
Intelligence and Intelligent Agent Technology, WI-IAT ’11, pages 46–53. IEEE
Computer Society, 2011.

[vOVD12] Joost van Oijen, Lois Vanhee, and Frank Dignum. CIGA: A Middleware for
Intelligent Agents in Virtual Environments. In Agents for Educational Games
and Simulations. Springer, 2012.

[VSB+20] Sarah Theres Völkel, Ramona Schödel, Daniel Buschek, Clemens Stachl, Ver-
ena Winterhalter, Markus Bühner, and Heinrich Hussmann. Developing a
Personality Model for Speech-Based Conversational Agents Using the Psy-
cholexical Approach. In Proc. 2020 CHI Conf. Human Factors in Computing
Systems, CHI ’20, pages 1–14. Association for Computing Machinery, 2020.

[VvWV00] Nico Vandaele, Tom van Woensel, and Aviel Verbruggen. A Queueing Based
Traffic Flow Model. Transportation Research Part D: Transport and Environment,
5(2):121–135, 2000.

[vWV07] Tom van Woensel and Nico Vandaele. Modeling Traffic Flows with Queueing
Models: A Review. Asia-Pacific J. Operational Research, 24(4):435–461, 2007.

[WC91] David Watson and Lee Anna Clark. Self- versus Peer Ratings of Specific Emo-
tional Traits: Evidence of Convergent and Discriminant Validity. Personality
and Social Psychology, 60(6):927–940, 1991.

[WC92a] D. Watson and L. A. Clark. Affects Separable and Inseparable: On the
Hierarchical Arrangement of the Negative Affects. Personality and Social
Psychology, 62(3):489–505, 1992.

[WC92b] David Watson and Lee Anna Clark. On Traits and Temperament: General
and Specific Factors of Emotional Experience and Their Relation to the Five-
Factor Model. Personality, 60(2):441–476, 1992.

[WCT88] David Watson, Lee Anna Clark, and Auke Tellegen. Development and Vali-
dation of Brief Measures of Positive and Negative Affect: The PANAS scales.
Personality and Social Psychology, 54(6):1063–70, 6 1988.

[YR01] Michelle S. M. Yik and James A. Russell. Predicting the Big Two of Affect
from the Big Five of Personality. Research in Personality, 35(3):247 – 277, 2001.

[YT15] Georgios N. Yannakakis and Julian Togelius. A Panorama of Artificial and
Computational Intelligence in Games. IEEE Trans. Computational Intelligence
and AI in Games, 7(4):317–335, 2015.

[YT18] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence and Games.
Springer, 2018.

[ZMLY19] Michelle X. Zhou, Gloria Mark, Jingyi Li, and Huahai Yang. Trusting Virtual
Agents: The Effect of Personality. ACM Trans. Interactive Intelligent Systems,
9(2–3):1–36, 3 2019.

178 BIBLIOGRAPHY

Author’s Publications

[SvS1] Helmut Buhler, Jonas Schild, Sven Seele, and Rainer Herpers. Integration von
Panorama-Bilddaten in eine Echtzeit-Game Engine für Virtual Reality Szenen.
In 13. Workshop Virtuelle Realität und Augmented Reality der GI-Fachgruppe VR/AR
(2016).

[SvS2] Thomas Dettmar, Sven Seele, Rainer Herpers, and Peter Becker. Multi-
Level Traffic Simulations for Virtual Environments. In Tagungsband Sommertreffen
Verkehrssimulation 2012 (2012).

[SvS3] Thomas Dettmar, Sven Seele, Rainer Herpers, Peter Becker, and Christian
Bauckhage. Efficient Mesoscopic Simulations for Persistent Agents in 3D-
Applications and Games. In Proc. 5th Int. Conf. Games and Virtual Worlds for Serious
Applications (VS-Games) (2013).

[SvS4] Tobias Haubrich, Sven Seele, Rainer Herpers, Christian Bauckhage, and Pe-
ter Becker. Synthetic Perception for Intelligent Virtual Agents. In Proc. ACM
SIGCHI Annual Sym. Computer-human Interaction in Play (2014), CHI PLAY ’14,
doi:10.1145/2658537.2661302, pp. 421–422.

[SvS5] Tobias Haubrich, Sven Seele, Rainer Herpers, Christian Bauckhage, and Peter
Becker. Modeling Sensation for an Intelligent Virtual Agent’s Perception Process. IVA
’15. Springer International Publishing, 2015, pp. 87–97.

[SvS6] Tobias Haubrich, Sven Seele, Rainer Herpers, and Peter Becker. Integration of
Road Network Logics into Virtual Environments. In Proc. IEEE Virtual Reality (3
2014), IEEE VR ’14, pp. 79–80.

[SvS7] Tobias Haubrich, Sven Seele, Rainer Herpers, Martin E. Müller, and Peter
Becker. Semantic Road Network Models for Rapid 3D Traffic Scenario Gener-
ation. In Tagungsband ASIM/GI-Fachgruppentreffen STS/GMMS, Workshop Simula-
tion technischer Systeme - Grundlagen und Methoden in Modellbildung und Simulation
(2013).

[SvS8] Tobias Haubrich, Sven Seele, Rainer Herpers, Martin E. Müller, and Peter
Becker. A Semantic Road Network Model for Traffic Simulations in Virtual Envi-
ronments: Generation and Integration. In 7th Workshop on Software Engineering and
Architectures for Realtime Interactive Systems (2014), SEARIS ’14.

[SvS9] Rainer Herpers, Peter Becker, Sven Seele, David Scherfgen, and Timur Saitov.
Agentenbasierte Verkehrssimulation mit psychologischen Persönlichkeitsprofilen.
Technical report, Bonn-Rhein-Sieg University of Applied Sciences, Department of
Computer Science, Institute of Visual Computing, 2015.

180 BIBLIOGRAPHY

[SvS10] Alina Ibbeken, Fenja Zell, Christina Hagen, Sven Seele, Ulrike Grzyska, Alex
Frydrychowicz, Armin Steffen, and ThorstenM. Buzug. Deformation Measure-
ments With a Flexible Pharyngeal Phantom. Biomedical Engineering /Biomedizinische
Technik (2021).

[SvS11] Steffen Kampmann, Sven Seele, Rainer Herpers, Christian Bauckhage, and Pe-
ter Becker. Automatic Mapping of Human Behavior to Personality Model Param-
eter for Traffic Simulations in Virtual Environments. In IEEE Conf. Computational
Intelligence and Games (2015), CIG ’15.

[SvS12] Fabian Krueger, Sven Seele, Rainer Herpers, Christian Bauckhage, and Peter
Becker. Dynamic Emotional States Based on Personality Profiles for Adaptive
Agent Behavior Patterns. In 11. Workshop Virtuelle Realität und Augmented Reality
der GI-Fachgruppe VR/AR (2014).

[SvS13] Fabian Krueger, Sven Seele, Rainer Herpers, and Peter Becker. Dynamic Emo-
tional States based on Personality Profiles for Adaptive Agent Behavior Pat-
terns. Tech. rep., Bonn-Rhein-Sieg University of Applied Sciences, Department
of Computer Science, Institute of Visual Computing, 2013. ISSN 1869-5272, online:
http://opus.bib.hochschule-bonn-rhein-sieg.de/opus-3.3/volltexte/2013/16/.

[SvS14] Fabian Krueger, Sven Seele, Rainer Herpers, Peter Becker, and Christian
Bauckhage. Adaptive Decision Making in Microsimulations of Urban Traffic in Vir-
tual Environments. In Entertainment Computing (2014), ICEC ’14, Springer Berlin,
Heidelberg.

[SvS15] Jonas Schild, Sven Seele, JonasFischer, andMaicMasuch. Multi-pass Rendering
of Stereoscopic Video on Consumer Graphics Cards. In Proc. 2011 Sym. Interactive
3D Graphics and Games (2011), i3D ’11.

[SvS16] Jonas Schild, Sven Seele, and Maic Masuch. Integrating Stereoscopic Video in
3D Games. In Entertainment Computing (2011), ICEC ’11.

[SvS17] Jonas Schild, Sven Seele, and Maic Masuch. YouDash3D – Exploring Depth-
based Game Mechanics and Stereoscopic Video in S3D Gaming. In Proc. 8th Int.
Conf. Advances in Computer Entertainment Technology (2011), ACE ’11. Poster – Best
Late Breaking Result Bronze Award.

[SvS18] Jonas Schild, Sven Seele, andMaicMasuch. YouDash3D: Exploring Stereoscopic
3D Gaming for 3D Movie Theaters. In Proc. Stereoscopic Displays and Applications
XXIII (2012), SPIE ’12.

[SvS19] Sven Seele, Thomas Dettmar, Rainer Herpers, Christian Bauckhage, and Pe-
ter Becker. Cognitive Aspects of Traffic Simulations in Virtual Environments. In
Tagungsband ASIM/GI-Fachgruppentreffen STS/GMMS, Workshop Simulation technis-
cher Systeme - Grundlagen und Methoden in Modellbildung und Simulation (2012).

BIBLIOGRAPHY 181

[SvS20] Sven Seele, Thomas Dettmar, RainerHerpers, Christian Bauckhage, and Peter
Becker. Cognitive Aspects of Traffic Simulations in Virtual Environments. Simula-
tion Notes Europe (SNE) Special Issue: Simulation of Traffic Systems – Technical Systems
22, 2 (8 2012), 83–88.

[SvS21] Sven Seele, Tobias Haubrich, Tim Metzler, Rainer Herpers, Jonas Schild, and
Marcin Grzegorzek. Integration of Multi-modal Cues in Synthetic Attention
Processes to Drive Virtual Agent Behavior. In Proc. 17th ACM Int. Conf. Intelligent
Virtual Agents (2017), IVA ’17.

[SvS22] Sven Seele, Tobias Haubrich, Jonas Schild, Rainer Herpers, andMarcin Grze-
gorzek. Augmenting Cognitive Processes and Behavior of Intelligent Virtual
Agents by Modeling Synthetic Perception. In Thematic Workshops’17 of ACM Mul-
timedia 2017 Proceedings (2017), doi:10.1145/3126686.3126752.

[SvS23] Sven Seele, RainerHerpers, andChristian Bauckhage. Cognitive Agents for Mi-
croscopic Traffic Simulations in Virtual Environments. In Entertainment Computing
(2012), ICEC ’12.

[SvS24] Sven Seele, Rainer Herpers, and Christian Bauckhage. Cognitive Agents with
Psychological Personality Profiles for Traffic Simulations in Virtual Environments.
In Tagungsband Sommertreffen Verkehrssimulation 2012 (2012).

[SvS25] Sven Seele, Sebastian Misztal, Helmut Buhler, Rainer Herpers, and Jonas
Schild. Here’s Looking At You Anyway! How Important is Realistic
Gaze Behavior in Co-located Social Virtual Reality Games? In Proc. 2nd
ACM SIGCHI Sym. Computer-human Interaction in Play (2017), CHI PLAY ’17,
doi:10.1145/3116595.3116619.

[SvS26] Sven Seele, Luisa Pätzold, and Rainer Herpers. Gone But Not Forgot-
ten: Evaluating Performance and Scalability of Real-Time Mesoscopic Agents.
In Proc. 20th ACM Int. Conf. Intelligent Virtual Agents (2020), IVA ’20,
doi:10.1145/3383652.3423891.

[SvS27] Suzannah Smith, Sven Seele, and Rainer Herpers. Modeling Synthetic Percep-
tion for Virtual Agents. In Science Atlantic Conference, Mathematics, Statistics, and
Computer Science Conf. (2017).

[SvS28] Konstantin Wegner, Sven Seele, Helmut Buhler, Sebastian Misztal, Rainer
Herpers, and Jonas Schild. Comparison of two inventory design concepts in a
collaborative virtual reality serious game. In Extended Abstracts 2nd ACM SIGCHI
Sym. on Computer-human Interaction in Play (2017), CHI PLAY ’17, pp. 323 – 329.

182 BIBLIOGRAPHY

Theses and Projects Supervised by the
Author

[IVC1] Francis Beauchemin. Realization of a Road Network Editing Tool in the Unity
Game Enginge, 2014.

[IVC2] Björn Buhr. Workflow zur Integration Realistischer Fußgängeranimationen in
das AVeSi-Projekt, 2014.

[IVC3] Xinyi Chen. Realization of Right-of-way Priorities in the Semantic Road Network
Representation SeRoNet, 2013.

[IVC4] ThomasDettmar. Macroscopic Traffic Simulations for Virtual Environments, 2012.

[IVC5] Thomas Dettmar. Queuing Models for Traffic Simulations in Virtual Environ-
ments, 2013.

[IVC6] Tim Grundmanns. Modelling Behavior for Personalized Virtual Agents, 2021.

[IVC7] Tobias Haubrich. Konzeption einer Verkehrsnetzrepräsentation für kognitive
Agenten in virtuellen Umgebungen, 2013.

[IVC8] Tobias Haubrich. Entwicklung eines synthetischen Perzeptionsprozesses für in-
telligente virtuelle Agenten, 2014.

[IVC9] Norbert Jörgensen. Entwicklung eines Physikalisch Basierten Fahrzeugmodells
für Virtuelle Umgebungen, 2014.

[IVC10] Steffen Kampmann. Machine Learning Based Driver Behavior in Traffic Simula-
tions for Virtual Environments, 2013.

[IVC11] Steffen Kampmann. Inference-based Model Analysis for Traffic Simulations in
Virtual Environments, 2014.

[IVC12] Marco Koppenol, and Timo Rothdeutsch. viPerEVAL: Framework zur Datener-
hebung und Evaluation für Perzeptionsmodelle intelligenter virtueller Agenten,
2016.

[IVC13] Fabian Krueger. Persönlichkeitsprofile für Mikrosimulationen des Straßen-
verkehrs in Virtuellen Umgebungen, 2013.

[IVC14] Luisa Pätzold. Evaluating Performance and Scalability of Real-Time Mesoscopic
Agents, 2020.

[IVC15] Suzannah Smith. Heat Map Visualization of Eye-tracking Data in VR, 2017.

184 BIBLIOGRAPHY

A
Beyond Traffic Agents

In Chapter 6, the realization of the proposed cognitive agent architecture is discussed in
the context of a traffic simulation for road safety education. One aspect that has not been
addressed explicitly is directly communicating agent perception to a user during interaction.
In the example of traffic simulators, eye gaze and head orientation are important indicators
about what an agent is focusing. However, these movements become even more important
when users interact with agents more closely (e.g., see [BYMS06, GSV+03, LBB02, RPA+15]).
The significance is further increased when engaging with conversational agents or user
avatars in VR. To investigate this claim in a social VE setting, a study was conducted that
compared off-the-shelf gaze behavior software to eye movements tracked from users using
a VR headset [SvS25].

The study was based on studies performed by Garau et al. [GSBS01, GSV+03] with
additional elements from McDonnell and Breidt [MB10], and Steptoe et al. [SOS10]. Since
the focus of this study was the effect of gaze behavior on the perception of and interaction
with virtual characters, the use of agents in the study was ruled out to avoid any side
effects caused by generated agent behavior. Instead, two human subjects engaged in a
social interaction through virtual avatars as shown in Figure A.1. Both subjects entered a
co-located virtual space using a collaborative VR framework and were seated at a table to

(a) (b)

Figure A.1: Experimental setup of the gaze behavior study with two human subjects sitting across
each other at table (a) and the same scene in VR (b)*. Images from [SvS25].
*Scene assets designed by IVC and characters generated using Unity Multipurpose Avatar [UMA].

186 Beyond Traffic Agents

1

2

3

4

5

6

7

Face-to-Face Involvement Co-presence Partner

Evaluation

Saccades Simulated Gaze Tracked Gaze

(a)

1

2

3

4

5

6

7

Gaze Quality Avatar Realism

Saccades Simulated Gaze Tracked Gaze

(b)

Figure A.2: Results of the gaze behavior study showing mean scores for (a) quality of communication
and (b) gaze quality and avatar realism. 95% confidence intervals are depicted by error bars. Images
from [SvS25].

minimize fatigue. The same scene was virtually replicated to match perceptions from the
real and virtual world. Hands were controlled using HTC Vive controllers and head motion
was driven by VR HMDs. One subject was wearing an HTC Vive headset and the other an
Oculus Rift DK2 with integrated eye tracker. 42 subjects with mean age of 27.5 years and
very low VR expertise (median of 1.0 on a scale from 1 to 7, with 7 being the highest score)
were tested in pairs. Each test subject was assigned to one of three gaze behavior conditions
that the subject could observe on its counterpart:

1. No gaze behavior: The eyes of other participants did not exhibit any gaze shifts, but
off-the-shelf software was used to generate saccades1 and blinks.

2. Simulated gaze behavior: In addition to saccades and blinks, fixations are simulated
by generating a saliency map for the current view based on depth information only.
A trained neural network predicts what a human would look at in a scene based on
human training data with specific attention to human faces.

3. Eye-tracked gaze behavior: Eye movements and blinks are recorded by the Oculus
HMD and transferred to the subject’s avatar.

Each condition was assigned 14 times. Subjects were asked to engage in an unstructured
conversation and play two co-operative word games. These pseudo tasks were meant to
encourage participants to look at each other without revealing the intent of the study.

Using questionnaires, the study measured the influence of gaze behavior on perceived
quality of communication and perceived realism of gaze behavior and avatar representation.
One of the hypotheses was that condition 3 would have a significant impact on the quality of
the experience. The implied consequence would have been that similar means are required
to improve the perception of agent-controlled virtual humans, i.e., providing an intricate
attention model for head movement and gaze shifts on top of saccadic eye movements.
However, as shown by Figure A.2 no significant difference could be found between the
three conditions. The quality of communication was reported to be high across all four

1Saccades are (mostly automatic) rapid eye movements used to scan a scene.

187

measured dimensions and across all gaze behavior conditions with mean scores ranging
between 5.27 and 5.97. Gaze quality and avatar realism were not rated as favorably, but
again no significant differences could be found between the three conditions.

Consequently, detailed gaze behavior models may not be as important for high quality
communication in co-located VR environments as initially thought. It is reasonable to assume
the same is true for interactions between a user and one or multiple agents, although this
may have to be investigated separately. Despite the results, the findings are not sufficient
to disprove the mentioned hypothesis as the subjects’ lack of VR experience may have
prevented them from noticing the subtle differences in gaze behavior. The novelty factor of
VR may have outweighed all other effects. A similar assumption was derived from another
performed VR study that compared a metaphoric with an abstract VR inventory [SvS28].
Additionally, the overall level of realism may have subverted user expectations, e.g., due to
the lack of realistic facial expressions or mouth movements, users may not have expected to
observe realistic eye movements and as a result may have not paid attention to it. Finally,
other pseudo tasks may be better fitted to investigate the impact of gaze behavior. Further
studies would have to systematically eliminate these possible interference factors, before
being able to dismiss the hypothesis.

188 Beyond Traffic Agents

B
Level of Detail Evaluation Scenario

Results

To investigate the mesoscopic simulation system (see Section 6.3), an evaluation based on
a quadratic traffic network grid is discussed in Section 7.4.1. The evaluation method is
described, and the results show that 100000 mesoscopic agents can be simulated in large
networks of 15000 nodes and about 60000 edges with interactive framerates above 30 FPS. A
similar experiment was performed previously and reported in [SvS3]. This previous evalua-
tion tested a limited number of agents and network sizes due to the intended application to
the FIVIS bicycle simulator [HSK+10, HSK+12], which required a network of 24 nodes and
a population of 200 traffic agents.

The original publication presented the evaluation results using frames per second (FPS).
With this measurement it is difficult to observe the actual changes caused by adding or
removing nodes or agents. This difficulty is due to the frame rate decreasing and asymp-
totically approaching 0 FPS. Furthermore, by measuring FPS it is difficult to evaluate the
mesoscopic system’s integration into a larger system, like a simulator or game. Thus, the
results from [SvS3] are transformed here to show how much time it takes to calculate one
frame (milliseconds per frame). This transformation prevents the mentioned issues and
simplifies drawing conclusions from the results.

Network graphs for n ∈ {10, . . . ,25} (i.e., 100 to 625 nodes) were simulated using an agent
population of 1000, 10000, 50000, and 100000. The results depicted in Figure B.1 (a) show a
more noticeable change in slope when increasing the agent population size, but otherwise
support the observations stated in Section 7.4.1. The calculation times grow linearly with
either the number of agents or the network size, and all configurations could be simulated
in less than half of the targeted frame calculation time of 33.33 ms. The highest measured
average calculation time per frame is 10.94 ms.

Figure B.1 (b) shows the effect of increasing the number of agents in a network of constant
size for 1000, 5000, 10000, 50000, and 100000 agents in a 25× 25 network (625 nodes, 2400
edges). This depiction supports the linear correlation between the number of agents and the
calculation time. Additionally, the minimum and maximum ranges for each simulation are
plotted to show that the average calculation times closely correspond with the minimum
calculation times. While most frames are calculated around the presented average times,
there are several frames in each simulation that take more time to be completed. These

190 Level of Detail Evaluation Scenario Results

100 200 300 400 500 600
0

2

4

6

8

10

12

number of nodes

ti
m

e
pe

r
fr

am
e

(m
s)

1000
10000
50000
100000

(a)

1 ·104 5 ·104 10 ·104
0

5

10

15

number of agents

ti
m

e
pe

r
fr

am
e

(m
s)

(b)

Figure B.1: Average times in milliseconds required to calculate each frame when increasing the size
of a traffic network (a) and when increasing the number of agents simulated within a queuing model
network graph of 25×25 intersections (b). Figure (b) also shows maximum and minimum calculation
times. Average and maximum calculation times were below the target value of 33.33 ms per frame
for all simulated configurations.

maxima also increase proportionally to the average calculation times with the highest single
frame time being 15.49 ms. Both the highest single frame time and the highest average frame
time (10.94 ms) were measured for the largest network (n= 25) simulating the largest number
of agents (100000). This network size and the number of agents are sufficient for the system’s
original application within the FIVIS bicycle simulator.

C
Evaluating the Generation of Road

Network Semantics for Cognitive
Traffic Agents

As an answer to RT4.1, how knowledge can be provided to agents efficiently, the concept
of road network semantics was introduced in Section 6.2. Besides efficiently providing
knowledge to agents interacting in road traffic, the road network definition can be used to
efficiently generate traffic networks, which was also mentioned in Section 6.2.

Three scenarios were used to evaluate the generation process: the Siegburg scene used
in the FIVIS bicycle simulator, a part of the city of Sankt Augustin (the location of the
Bonn-Rhein-Sieg University of Applied Sciences), and a larger area of the association of mu-
nicipalities Hachenburg. For each scenario, a virtual scene was created using the workflow
mentioned in Section 6.2 and detailed in [SvS7]. The workflow includes the generation of
3D meshes and according OpenDRIVE®1 descriptions of the road network using Trian3D
Builder2. The Unity game engine can import the generated 3D meshes. The OpenDRIVE®

data is converted into the road network representation described in Section 6.2 within Unity
using an in-house tool. Table C.1 summarizes the characteristics of the three generated
scenes. Figure C.1 shows the OpenStreetMap3 data used to create the Hachenburg scenario
and the road network generated from that data. Two visual representations of the Siegburg
scenario were additionally generated using alternative methods; one by manually creating
the scene based on satellite images and one using the Esri CityEngine [PM01].4

For all scenes, the fit between the 3D scene and the road network was assessed to verify
the correctness of the generation algorithm. Additionally, to empirically validate the road
network, it was populated with agents and traffic simulations were run. Another major
advantage of an automatic generation is the time saved over a manual creation of the
network. Therefore, the generation time for each network was recorded and compared to

1https://vires.com/, [online: May 2, 2023] VIRES Simulationstechnologie GmbH
2https://trian3dbuilder.de/, [online: May 2, 2023] TrianGraphics
3https://www.openstreetmap.org, [online: May 2, 2023] Geofabrik, OpenStreetMap
4https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview, [online: May 2, 2023]

Esri CityEngine, Advanced 3D City Design Software

https://vires.com/
https://trian3dbuilder.de/
https://www.openstreetmap.org
https://www.esri.com/en-us/arcgis/products/esri-cityengine/overview

192 Evaluating the Generation of Road Network Semantics for Cognitive Traffic Agents

Table C.1: Characteristics for the three road network evaluation scenarios. The times for generating
the road network representations and a manual setup of the same network were compared during
the evaluation. The latter is extrapolated from an average setup time of 10 minutes for a single lane
and its connections. Table from [SvS6]. © 2014 IEEE.

Scenario Region Dimensions OpenDRIVE # of # of # of # of Generation Est. manual
file size lanes connectors junctions nodes time setup time

1 Siegburg 1 km×0.65 km 1.85 MB 254 492 63 2902 1.84 s 42.33 h
2 Sankt Augustin 2 km×1.5 km 3.49 MB 573 950 154 6012 4.63 s 95.5 h
3 Hachenburg 10 km×5 km 14.18 MB 2017 3575 563 23902 62.14 s 336.17 h

Figure C.1: OpenStreetMap data for scenario 3 and the road network representation generated from
the data using the workflow discussed in Section 6.2 and detailed in [SvS7, IVC7]. Images from
[SvS8]. © 2014 IEEE

an estimated manual setup of the same network. Further, scenario 2 was used for a manual
inspection by an independent individual to document the quality of the generated network
compared to the real world.

C.1 Applicability of Generated Road Network Semantics

For all scenarios, the 3D representation generated using the Trian3D Builder perfectly fit the
generated road network. The Trian3D Builder generates both the 3D model as well as the
according OpenDRIVE® data. Since the latter is used to generate the road network, the result
was expected but also confirmed that the implemented algorithm correctly converts the data
into road networks for CA2RVE agents. Several examples from the result of scenario 3 are
depicted in Figure C.2. The composition of the roundabout Figure C.2 (a) and the refuge
island in Figure C.2 (c) seem like odd representations but are conform with the OpenDRIVE®

standard. All scenes were successfully used to simulate agents navigating the network. An
automatic validity check of the generated elements and their relationships was not realized
during this thesis project but could be an interesting topic for future work.

To evaluate the quality of a fit between network and 3D representation, the 3D mesh for
scenario 1 was also generated using the Esri CityEngine. This additional tool had not been
used during the development of the generation workflow. The input for both the CityEngine
and the road network generation workflow was a common OpenStreetMap shapefile. As a
result, the reference lines for each road exactly match the center of the road’s geometry. A
close but not perfect fit could be achieved using the mesh generated by the CityEngine and

C.2 Time Savings of Automatic Road Network Semantics Generation 193

Figure C.2: A roundabout (a), a highway including exit and entrance ramps (b), and a refuge island
(c) from scenario 3 are depicted to demonstrate the fit between the generated road network and
3D geometry. Green wireframe rectangles indicate junctions and yellow cubes represent waypoints
(nodes) of connectors and lanes. Trian3D Builder was used to generate the geometry. Images based
on [SvS8].

the generated road network as shown in Figure C.3. Only minor changes were necessary
in select areas (e.g., positional and road width adjustments) to improve the fit and to allow
simulating agents within the scenario.

The final 3D geometry was modeled manually as part of the FIVIS project. Due to different
input data and imprecisions introduced by the manual modeling process, the generated
network diverged noticeably from the created road geometry. Fitting the network to the
geometry is still possible albeit requiring several manual adjustments, such as positioning
of nodes and junctions. Manually adjusting an automatically generated network is still
advantageous compared to a complete manual setup of the road network as demonstrated
by the following section. Once adjustments were made, it was possible to populate the scene
with agents and simulate the scenario.

C.2 Time Savings of Automatic Road Network Semantics Genera-
tion

Generating a road network using the described automatic process avoids errors and impre-
cisions of a manual creation, especially for large scenes. However, another major advantage
is the time saved by an automatic process. Being able to efficiently generate networks allows
for fast iterations and generating larger road networks. To estimate how much time the
generation process saves compared to manual setups, several lanes of varying complexity
were manually created. Setting up one lane includes: defining its geometry using way-
points, adding its information, creating succeeding and preceding connectors, and correctly
connecting the lane to all adjacent connectors. The average of recorded creation times was
10 minutes, which is subsequently used to estimate the time savings for the three scenarios.
All networks were generated using an Intel Core 2 Quad Q6700 processor and 4GB system
RAM. The times required for generating the three evaluation scenarios and the estimates for
a manual setup are listed in Table C.1. The table exemplifies that even for rather large areas,
the road network can be generated in minutes while a manual setup would take weeks or

194 Evaluating the Generation of Road Network Semantics for Cognitive Traffic Agents

Figure C.3: Fit between the 3D model generated using the Esri CityEngine and the road network
generated using the Trian3D Builder workflow. Some positional deviations exist and some roads
are not represented. The latter is due to the different treatment of road annotations by the Trian3D
Builder and the Esri CityEngine. Image based on [SvS8].

even months. For example, the road network for scenario 3 was generated in about one
minute. The estimated manual setup time is 333.17 hours, which is equivalent to about 42
workdays or 8.5 work weeks. Even considering the time necessary to find or generate ap-
propriate input data (i.e., OpenStreetMap files), pre-processing the data using the referenced
workflow, and manually adjusting select areas, a significant amount of time can be saved.

Errors introduced by a manual setup were not considered in this comparison. However,
the more complex a scenario, the more likely are mistakes made by a human designer.
Finding and correcting theses mistakes requires additional time. Further, if a network needs
to be revised, the generation process can be used to regenerate the network without the need
for manual revisions.

C.3 Manual Inspection of Road Network Semantics Created by
Different Means

To gain an independent assessment of the quality of the network generation process, one
additional evaluation was performed. To this end, one more road network was generated for
a scenario that had not been considered before. The generated road network was examined
by a test person not involved in the project. The examiner was asked to generally compare
the road network to reality using a digital map and satellite images. Afterwards, selected
areas of interest were inspected and findings, documented by the examiner, were analyzed.
To guide the examiner in documenting the findings, a questionnaire was provided that
included questions such as: “In the presented section of the road network, does the course
of the road match the map data?” or “Does the presented section of the road network contain
all junctions present in the map data?” The complete list of questions can be found in [IVC7].

C.3 Manual Inspection of Road Network Semantics Created by Different Means 195

(a) (b)

Figure C.4: A section of the city of Sankt Augustin, Germany, selected for manual inspection to
evaluate the quality of the fit between a generated road network and the real traffic network. The
OpenStreetMap data shows the section used as input including 5 areas of interest selected for closer
inspection (a). Areas 1 and 2 include intersections, 2 and 3 include roundabouts, and 5 includes a
section of the Autobahn with entrance and exit ramps and a bridge crossing the Autobahn. Black
lines in (b) represent the generated road network, which is displayed on top of a Google Maps section
of the same area. Some deviations can be observed, which are due to the different base data. Images
from [IVC7].

The criteria for selecting the scenario were the following:

• The examiner had to be sufficiently familiar with the scenario to reasonably assess the
plausibility of the generated network.

• The examiner had to have easy access to the real scenario in case available geographic
map data was not sufficient for comparisons.

• For a representative selection, the scenario should include:

– Intersections of different sizes and complexities

– At least one multi-lane road or an Autobahn section

– At least one roundabout

– At least one section with two roads crossing each other on different levels (e.g.,
an underpass)

– At least one bikeway

The test subject was recruited from staff of the Bonn-Rhein-Sieg University of Applied
Sciences. Therefore, a part of the city of Sankt Augustin, Germany, was selected that fit the
listed criteria and that is situated near the campus of the university. Figure C.4 shows the
selected part including the selected areas of interest as well as an overlay of the generated
network on top of the map. Additional information about the scenario is listed in Table C.1.

The test subject documented that the course of the generated road network generally
fits the map data well, which can also be seen in Figure C.4 (b). However, by directing
the examiner’s attention to certain details, some issues were documented as well. Minor

196 Evaluating the Generation of Road Network Semantics for Cognitive Traffic Agents

issues, like missing side roads, could be fixed by providing a more detailed mapping dur-
ing the generation of the OpenDRIVE® data. Other issues were missing turning lanes at
intersections, which are often omitted in available input data to reduce complexity. To fix
this problem, the missing information needs to be added manually. The major problem,
documented by the test subject, were issues with connections between road elements, i.e.,
paths across junctions. The examiner found missing connectors, connections where none
should be allowed, and incorrect connecting paths. Most of these problems could be traced
to missing or incorrect input data and some are the result of the conversion process from
OpenStreetMap to OpenDRIVE® data by the Trian3D Builder software. Some problems can
be solved by configuring the conversion process more carefully, but others result from inter-
nal processes, which cannot be easily manipulated (e.g., implemented heuristics to complete
missing information). The latter type of problems would require manual adjustments within
the game engine editor.

Based on the recorded findings, several issues were identified and examined more closely.
It was possible to resolve some of the issues, for others the cause could be identified but they
were not fixed due to time constraints. Unfortunately, a few causes are only speculations
because they are internal to the closed-source tools used in the workflow. While traffic can
generally be simulated on generated networks with only minor adjustments, a completely
plausible setup would require various corrections or improvements to the generation work-
flow. A more detailed documentation of the test subject’s findings and the discussion thereof
can be found in [IVC7].

C.4 Summary

As a solution to efficiently providing agents with knowledge about their surrounding road
network, a graph-like representation was defined. To simulate agents in multiple networks,
a workflow was devised to quickly generate representations from input data. The workflow
was evaluated by generating networks for three scenarios and inspecting the fit of the result
to the 3D geometry generated alongside the road network representation. A close to perfect
fit could be achieved between network and geometry for all scenarios. Additionally, the fit
of one network was checked against geometry generated by applying a different generation
tool and against a manually built scene. The fit between the network and these two scenarios
was not perfect but could be corrected with only minor adjustments. All networks were
used to simulate traffic agents.

One of the biggest advantages of a network generation workflow is the ability to gener-
ate multiple and large networks in a short amount of time. This allows for quick iterations,
building several test scenarios, and acquiring realistic network layouts. During the evalua-
tion, generation times were recorded, and the time needed for manual setups were estimated
from the average setup time of a single lane. Comparing both values for each scenario, time
savings of up to months can be achieved for larger networks.

To evaluate the quality of generated networks compared to their real-world input data,
an independent examiner was acquired to inspect the network and document the findings.
Analyzing the findings showed that the generated networks generally represent reality well.
However, closer inspection reveals several shortcomings due to inaccurate input data, non-

C.4 Summary 197

transparent heuristics in external tools, or incomplete mappings between input and output.
Connections between roads are prevalently affected by these problems.

In conclusion, being able to automatically generate road networks as semantic world
knowledge for traffic agents allows efficiently providing multiple test scenarios for simu-
lations. The workflow also enables the generation of large networks within minutes and
realistic networks by processing real-world data. However, results are highly dependent on
the quality of the input data, which often contains errors or simplifications. Since the road
network is the source for the agents’ knowledge about all road related information, flawed
networks will lead to unusual behavior. Correcting these shortcomings requires intuitive
editing tools or an improved generation process. To minimize the adjustment effort, a vali-
dation process would be beneficial. However, manual inspection is generally infeasible and
realizing an automatic validation process is complex.

198 Evaluating the Generation of Road Network Semantics for Cognitive Traffic Agents

About the Author

Born and raised in Jena, Germany, Sven Seele attended IGS “Grete Unrein”, where he already
developed a strong interest in the MINT subjects and especially computers. During this time,
he also spent ten life-defining months abroad, attending Mansfield High School in Mansfield,
Arkansas, USA, and graduating in 2002. After also graduating from IGS “Grete Unrein” in
2004, Sven began his studies of Computer Science at Hochschule Bonn-Rhein-Sieg in Sankt
Augustin in 2005. Mostly due to his interest in video games, he decided early on to major
in media informatics with a focus on virtual reality, image synthesis, and image processing.
Always looking out for opportunities to apply his knowledge to new and exciting domains,
he took student jobs at the Institute of Visual Computing (IVC) of Hochschule Bonn-Rhein-
Sieg, the Fraunhofer Institute IAIS.VE, Wirtgen GmbH, and the Department of Computer
Science and Applied Cognitive Science of the University Duisburg-Essen.

During his studies, his interest in virtual environments and virtual characters grew,
and his project work enabled him to write his Bachelor’s thesis about “Gesture Control in
Virtual Environments” at the Fraunhofer Institute in Sankt Augustin and his Master’s thesis
about “Stereoscopic 3D Games for Movie Theater Audiences” at the University Duisburg-
Essen. After completing the graduate program in 2011, he continued his studies of virtual
environments in three research projects at the IVC. In the context of his project work, he
started his research for this doctoral thesis project in 2013.

In 2017, when an opportunity presented itself to apply his knowledge and skills in an
industry setting, Sven decided to seize it and start a full-time position with SICAT as a
software engineer working on 3D visualization topics and getting the technical lead role in
the I-SLEEP research project. After several adjustments caused by the onset of the Covid
pandemic, in August 2021, Sven decided to take on new challenges as a senior software
engineer with ELISE (now Synera), an ambitious startup from Bremen. While excitedly
helping to revolutionize the tools for dental surgery at SICAT and for connected engineering
at Synera, Sven always kept pushing to also finish his thesis project.

	Title
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation for Attentive Cognitive Agents
	Research Context
	Research Questions
	Research Approach and Scientific Contributions
	Structure

	Related Work
	Cognitive Architectures
	Intelligent Virtual Humans
	Personality
	Emotion
	Synthetic Perception

	Traffic Simulation

	Architecture Concept for Attentive Real-Time Cognitive Agents
	Prerequisites
	Theoretical Concept
	Perception
	Memory
	Internal Simulation
	Alternative Behavior
	Individual and Emotional Decision-Making
	Miscellaneous Factors

	Architecture Design
	CA²RVE - Cognitive Attentive Agents for Real-time Virtual Environments
	Conclusion

	Personalized and Emotional Agents
	Psychological Personality Profiles
	Representing Personality
	Utilizing Personality in Cognitive Agents

	Emotion Model
	Representing Emotions
	Experiencing Emotions
	Fading Emotions
	Utilizing Emotions in Cognitive Agents

	Conclusion

	Perceptual Agents
	Synthetic Perception for Cognitive Agents
	Perception Cycles
	Sensing
	Memory Hierarchy
	Attention
	Personality and Emotion
	Semantic Modeling
	Conclusion of Integrating Perception into IVA

	Application of the Agent Architecture Design
	Cognitive Traffic Agents
	Semantics as Extension of Long-term Memory
	Scaling Simulations by Level of Detail
	Level of Detail Simulation of Traffic Agents
	Mesoscopic Simulation of Traffic Agents
	Road Network Representation for Mesoscopic Simulation

	Conclusion

	Evaluation and Results
	Evaluating the Agent Architecture Design
	Evaluating Personality and Emotions
	Personality-based Traffic Behavior in a Deadlock Scenario
	Evaluating Personality-based Traffic Decisions in a Blocked-lane Scenario
	Summary

	Evaluating the Synthetic Perception Framework
	Evaluation Sensor Accuracy Against Precision
	Proof-of-Concept Evaluation of the Attention Module
	Evaluating the Application of the Synthetic Perception Approach to Traffic Scenarios
	Summary

	Evaluating Scalability
	Evaluating the Scalability of the Mesoscopic Simulation System
	Evaluating the Combination of Microscopic and Mesoscopic Systems
	Evaluating the Level-of-detail Approach to Simulation
	Summary

	Conclusions and Discussion
	Bibliography
	Author's Publications
	Theses and Projects Supervised by the Author
	Beyond Traffic Agents
	Level of Detail Evaluation Scenario Results
	Evaluating the Generation of Road Network Semantics for Cognitive Traffic Agents
	Applicability of Generated Road Network Semantics
	Time Savings of Automatic Road Network Semantics Generation
	Manual Inspection of Road Network Semantics Created by Different Means
	Summary

