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ABSTRACT

Intelligent virtual agents provide a framework for simulating more life-like behavior and
increasing plausibility in virtual training environments. They can improve the learning pro-
cess if they portray believable behavior that can also be controlled to support the training
objectives. In the context of this thesis, cognitive agents are considered a subset of intelligent
virtual agents (IVA) with the focus on emulating cognitive processes to achieve believable
behavior. The complexity of employed algorithms, however, is often limited since multi-
ple agents need to be simulated in real-time. Available solutions focus on a subset of the
indicated aspects: plausibility, controllability, or real-time capability (scalability). Within
this thesis project, an agent architecture for attentive cognitive agents is developed that con-
siders all three aspects at once. The result is a lightweight cognitive agent architecture that is
customizable to application-specific requirements. A generic trait-based personality model
influences all cognitive processes, facilitating the generation of consistent and individual
behavior. An additional mapping process provides a formalized mechanism to transfer
results of psychological studies to the architecture. Personality profiles are combined with
an emotion model to achieve situational behavior adaptation. Which action an agent selects
in a situation also influences plausibility. An integral element of this selection process is an
agent’s knowledge about its world. Therefore, synthetic perception is modeled and inte-
grated into the architecture to provide a credible knowledge base. The developed perception
module includes a unified sensor interface, a memory hierarchy, and an attention process.
With the presented realization of the architecture (CA?RVE), it is possible for the first time to
simulate cognitive agents, whose behaviors are simultaneously computable in real-time and
controllable. The architecture’s applicability is demonstrated by integrating an agent-based
traffic simulation built with CA?RVE into a bicycle simulator for road-safety education.
The developed ideas and their realization are evaluated within this work using different
strategies and scenarios. For example, it is shown how CA2RVE agents utilize personality
profiles and emotions to plausibly resolve deadlocks in traffic simulations. Controllability
and adaptability are demonstrated in additional scenarios. Using the realization, 200 agents
can be simulated in real-time (50 FPS), illustrating scalability. The achieved results verify
that the developed architecture can generate plausible and controllable agent behavior in
real-time. The presented concepts and realizations provide sound fundamentals to everyone

interested in simulating IVA in real-time environments.



Z/.USAMMENFASSUNG

Virtuelle Umgebungen sind ein effizientes Trainingswerkzeug, besonders wenn Train-
ingsszenarien durch die Simulation von intelligenten virtuellen Agenten (IVA) unterstiitzt
werden. Dafiir muss das Agentenverhalten plausibel und steuerbar sein, um die Immer-
sion nicht zu mindern und das Trainingsziel zu unterstiitzen. Methoden, mit denen diese
Anforderungen erfiillt werden, konnen jedoch nicht beliebig komplex sein, da oft mehrere
Agenten in Echtzeit simuliert werden miissen. Im Rahmen dieser Arbeit stellt sich somit die
Aufgabe eine Losung zu entwickeln, welche die Anforderungen an Plausibilitdt, Kontrol-
lierbarkeit und Skalierbarkeit zusammen adressiert. Die Plausibilitdt wird dabei durch das
Simulieren kognitiver Prozesse erreicht. Ein Kernelement der entwickelten leichtgewichtigen
kognitiven Agentenarchitektur ist ein Personlichkeitsprofil, das sich auf alle anderen kog-
nitiven Prozesse auswirkt. Somit kann konsistentes, individualisiertes Verhalten erzeugt
werden, welches zusédtzlich mit Hilfe eines entwickelten, formalen Abbildungsprozesses
aus psychologischen Personlichkeitsstudien abgeleitet werden kann. Durch die Kopplung
des Profils mit Emotionen kann das Verhalten dynamisch an die Gegebenheiten eines Agen-
ten angepasst werden. Welche Aktion ein Agent in einer Situation auswéhlt, beeinflusst
ebenfalls die Glaubwiirdigkeit. Ein wichtiger Bestandteil dieses Auswahlprozesses ist das
Wissen, das ein Agent iiber seine Umgebung besitzt. Um eine plausible Wissensbasis bereit
zu stellen, wurde ein Perzeptionsmodul konzipiert und integriert, das eine einheitliche
Sensorschnittstelle definiert und Informationen in einem hierarchischen Gedachtnis durch
einen Aufmerksamkeitsprozess verwaltet. Die realisierte Architektur erlaubt erstmalig die
Simulation kognitiver Agenten, die gleichzeitig kontrollierbar und in Echtzeit berechen-
bar sind. Demonstriert wird dies u. a. durch die Umsetzung als Software-Architektur
(CA%RVE) und eine damit entwickelte agentenbasierte Verkehrssimulation. Die entwick-
elten Ideen und deren Realisierung wurden im Rahmen der Arbeit anhand verschiedener
Strategien evaluiert. Es wird gezeigt wie CA?RVE-Agenten, anhand ihrer Personlichkeiten
und Emotionen, verschiedene Verkehrssituationen glaubwiirdig auflosen. Die Kontrollier-
barkeit und Anpassungsfahigkeit wird ebenfalls in Evaluationsszenarien demonstriert. Die
Skalierbarkeit wird durch die Simulation von 200 Agenten in Echtzeit (50 FPS) nachgewiesen.
Die Ergebnisse zeigen, dass eine Architektur fiir das Generieren von plausiblem, kontrol-
lierbarem und echtzeitfihigem Agentenverhalten erfolgreich realisiert wurde. Damit stellt
diese Arbeit fundamentale Grundlagen fiir diejenigen bereit, die kognitive IVA in Echtzei-

tanwendungen einsetzen wollen.
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INTRODUCTION

“If a machine is expected to be infallible, it cannot also be intelligent.”

- Alan Turing

IRTUAL ENVIRONMENTS (VE) are a promising tool for teaching real-world skills to
learners. They allow training within potentially threatening environments with-
out exposing trainees to physical harm. By providing immersive and believable
experiences, learning effects can be improved even further (see, e.g., [Naj98, RJ00]).
At the same time, advances in and availability of technology enable the use of immersive
training application in more and more areas. Improving visual fidelity is often the prime
aspect to increasing immersion and presence in interactive environments. Continuous im-
provements of computer hardware result in steady improvements of rendering quality,
animation, and physics simulations. However, visual fidelity is not the only aspect of im-
mersive training experiences. In many cases, the simulated environment must also include
entities that support or hinder users in fulfilling their training tasks. These entities are typ-
ically referred to as agents. Sometimes, appropriately interacting with these agents is the
skill to be learned. In other scenarios, agents are required to create the illusion of a living
world. In all cases, agents must act according to the expectations set by the virtual world
to achieve and maintain immersion, plausibility, and educational or entertainment value.
If agents exhibit implausible behavior, a user’s sense of immersion can break even under
high fidelity visual conditions. Consequently, improving the plausibility of generated agent
behavior has gained recognition in academia and the games industry (see, e.g., [KS16]).
In training scenarios, it is also important for trainees to be able to recognize a plausible
connection between an agent’s choice of action and the situation it resulted from. Behavior
portrayed by agents can thus never be completely non-deterministic. Instead, agents should

perceive, understand, and reason about their current situation before selecting an available
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action. In contrast, this causally determined action selection does not mean that an agent’s
behavior is always predictable, but it must be comprehensible to an observer in retrospect.
The means by which this correlation between situation and reaction is achieved varies widely
depending on various factors, such as technological, temporal, or financial constraints, area
of application, target audience, pursued purpose, or others. Intelligent virtual agents (IVAs)
provide a framework for achieving the objective of simulating more human-like and more
plausible behavior. In the context of this thesis, cognitive agents are considered a subset of

IVA with a specific focus on emulating cognitive processes for behavior simulation.

1.1 Motivation for Attentive Cognitive Agents

There are many reasons for employing IVAs or cognitive agents in simulations and games.
The demand for immersive worlds with interactive inhabitants is continuously increasing,
yet creating believable characters is one of the most challenging endeavors in designing these
virtual worlds (cf. [LB19]). In game development, the main constraints for virtual characters
are typically production cost and the ability to author behavior. Consequently, behavior
of non-player characters (NPCs) is mostly being pre-defined at design time (i.e., scripted),
especially in production environments. It is important to point out that scripted behavior
does not necessarily mean that it is simple. Modern NPCs exhibit a multitude of complex
behaviors. However, this also means that authoring their behavior is an overly complex task
that is prone to errors. The more complex the NPC behavior and the virtual worlds they
inhabit become, the more beneficial are agents that autonomously choose their actions based
on their current surroundings. Another major challenge in combining autonomous agents
with games is that they must work in unison with game design to keep players engaged.
For example, NPC opponents need to provide a challenge to the player while acting within
plausible bounds to avoid breaking the player’s suspension of disbelief. Challenge and
plausibility need to be in accordance with the game design and the world created therein
[YT18]. Therefore, generated behavior must also be controllable. Similar arguments can be
made for IVA applications, although they are often more experimental in nature. However,
even in research environments, financial resources must be considered and agent behavior
serves a specific purpose, which means there must be a way of authoring it accordingly.
Cognitive agents that emulate human behavior are a promising solution to overcome
this challenge. The idea is not new, and various approaches already exist that model certain
cognitive capabilities or processes of humans to generate more human-like agent behavior
(e.g., [ALS09, BGG19, BL06, BKA*05a, CDB*02, LB19, RJSL10, RJ00, SSSS16]). Applications

can be as simple as chat bots or as complex as trying to achieve general intelligence in
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cognitive architecture research. However, as will be formulated throughout this chapter
and Chapter 2, existing methodologies do not provide enough flexibility, are not suited for
real-time, multi-agent applications, or do not offer authoring capabilities. For example, the
objective of achieving human-level intelligence resulted in cognitive architectures like Soar
[Lail2] or ACT-R [RTO19], which have become increasingly complex over time. Capabil-
ities are added to improve the system and are not meant to be switched on or off during
runtime or to be customized towards a specific application domain. As a result, it is difficult
to apply cognitive architectures to real-time environments and even more difficult to scale
solutions to multi-agent settings. Furthermore, individualizing behaviors of different agents
or controlling outcomes towards application-dependent requirements are not of concern to
cognitive architecture research. While these aspects are considered in IVA research, the focus
is on communication and social interaction, often with a human user, and less on observable
actions. Middleware solutions, e.g., CIGA [vO14] or POGAMUT [GBK*10], try to bridge
the gap between agent-specific topics and game engine technology, but as a result require
application developers to be knowledgeable in both fields. Additionally, middleware or cog-
nitive architectures are difficult to optimize for real-time environments due to their logical
and physical separation from the system used to realize the virtual environment. Thus, there
is a need for a new concept that combines cognitive components with flexible composition
and controllability. A generalized concept should also allow customization towards differ-
ent intended uses, from populating virtual training environments to simulating embodied
conversational agents to investigating human perception.

Innovative approaches, especially in game development, typically focus on the learning
and decision-making aspects of agents to improve believability (e.g., [HGH*18, JBV*18]).
Further aspects, such as personality and perception including attention mechanisms, are
rarely mentioned as part of virtual agent or NPC research. However, within this thesis, it is

argued that these are substantial components required for generating plausible behavior.

1.2 Research Context

The work presented here is related to multiple research domains. It is closely correlated
with Intelligent Virtual Agents (IVA) and Embodied Conversational Agents (ECA) research.
In both research areas, agents are typically represented as individuals including a model of
personality, emotional responses, and mood states. Agents also need to be able to perceive,
reason, and act in real-time within a dynamic simulated environment. However, the focus
is often on communication with a human user, i.e., language processing, dialog generation,

gestures, and facial expressions [vO14], which are not considered in this thesis project.
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Cognitive architecture research is concerned with developing (software) agents with
human-level intelligence and in the process gaining insights into the functionality of the
human brain. Resulting architectures are typically extraordinarily complex and compu-
tationally expensive. While this research has only little practical relevance for real-time
multi-agent systems, existing architectures provide important inspirations for the overall
design presented in this thesis project.

One aspect of this work is scalability to enable the use of a cognitive agent architecture
in real-time applications. Consequently, besides agent design, aspects of virtual reality (VR)
and virtual environment (VE) research, like rendering, simulation, display technologies,
etc., also need to be considered during the development process. Another research area
where real-time performance and optimization play critical roles is game development. The
task of generating plausible behavior for non-player characters (NPC) in digital games is
often referred to as game Al or just Al. Without further context, these terms are ambiguous,
especially since there are academic research fields denoted by the same term. Therefore,
the term game Al is used throughout this thesis to refer to techniques used in the gaming
industry related to NPCs. While this area of games technology includes many aspects, e.g.,
animation, physics simulations, and path finding, elements related to action selection are
mostly considered in this thesis. However, techniques for game AI do not only need to scale
well, but they must also allow control over generated behavior as it must support the game
design. Without control, it is impossible to have any influence on the fun and entertainment
of an application. Players want to win, but be challenged, and whenever they lose, they do
not want to feel cheated by a game’s AI[Lid04]. At the same time, game Al developers strive
towards making NPCs more autonomous to keep the authoring task manageable because
game worlds and NPC behavior continuously increase in complexity. Due to these reasons,
game Al and games technology is an important source of inspiration for the work presented
here. The connection to this work will be most apparent in the description of the realization
of the proposed architecture design in Chapter 6.

The objective of this thesis project is to explore and close the current gap regarding
cognitive agent architectures for real-time virtual environments. To achieve the objective,
four research questions are formulated and investigated. To provide answers to the RQs,
relevant approaches and results from all the mentioned research domains are utilized to
create a new cognitive agent architecture that is controllable, scalable to real-time, multi-
agent applications, and capable of generating plausible agent behavior. As a result, it will be
possible to simulate agents, which make comprehensible decisions based on their perception

of their virtual environment. Agents will show individualized behavior that is not based
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on randomization and adapts to environmental stimuli. Finally, it will be possible to adjust

behavior generation to application-specific requirements.

1.3 Research Questions

Using a combination of the considered research domains, the following research questions
are investigated. From each research question specific subtasks are derived and presented
in Chapters 3 through 6. By fulfilling these subtasks, prospective answers to the research
questions are developed and evaluated.

RQ1: What is an appropriate design of an attentive cognitive agent architecture for virtual

environments?

Existing architectures and approaches (e.g., [ALS09, BGG19, GBK*10, Lail2, LB19,
RTO19, vO14]) are not able to simultaneously address (1) plausibility of behavior, (2)
controllability of behavior, and (3) scalability. Therefore, one of the main objectives
of this thesis project is to design an agent architecture that adheres to these three
main principles. The resulting design should provide a flexible foundation for adap-
tive agent behavior configurable to specific application scenarios. The intention is
to achieve plausibility by emulating human-like behavior, which is to be realized by
simulating cognitive components, e.g., personality, perception, attention, memory, and
decision-making. Therefore, inspiration is drawn from ideas and concepts of cognitive
architectures. The fields multi-agent systems (MAS) and agent-based systems (ABS)
are also considered since multiple co-operating agents are to be simulated in a common
environment. As a result, not only is each agent’s individual behavior of interest but
also the global behavior emerging from agent interactions in a complex system. In
game Al and VR/VE, the goal is to provide an interactive experience to a user with
a specific objective, e.g., education or entertainment. Simulated agents must support
these objectives and must be embedded into a real-time system. Based on this con-
straint, both fields serve as source for tried and tested algorithms and technologies.
IVA and ECA are the domains that correspond most with the research described here,
as the objectives are closely aligned, but often focus on human-computer interaction;
specifically on speech, text output, facial and gaze expressions (cf. [tSKT*20]). Other
areas of interest are, e.g., detecting user emotion and guessing user intention as well
as trust, acceptance, and credibility of agents [CHLC18, RGA*09, VSB*20].



RQ2:

RQ3:

RQ4:

Introduction

Can the agent architecture systematically generate individual, dynamic agent be-

havior?

Focusing on the plausibility constraint, one requirement resulting from the research
gap is the generation of individualized behavior as multiple agents should be ob-
servable during one simulation. For agents to be distinguishable by their actions, an
agent’s behavior should be consistent with its past actions [Ort03]. One common way
of achieving this individualization in IVA research is by assigning a personality to
each agent. While the type and characteristics of theses personalities can be arbitrarily
defined to suit the application, another objective of this thesis project is to utilize this
mechanism to link synthetic behavior to real human behavior. Therefore, the task is
to transfer knowledge about human behavior to the architecture and map it onto in-
dividual agent behavior during simulation. Furthermore, to avoid repetitive and dull
behavior, the proposed solution should also be capable of dynamically altering gener-
ated behavior. The approach to this objective should be aligned with the individuality

constraint by connecting it to an agent’s personality.

What is the role of perception and attention in behavior generation for cognitive

agents?

According to Peters et al. [PCR*11], virtual agents require perceptual attention, and
thereby virtual perception, for aesthetic and functional reasons. The former to increase
naturalness of behavior and the latter to prevent performance issues by reducing
the amount of information to process. In accordance with these requirements, how
can perception be integrated into the proposed cognitive architecture to contribute
to plausible behavior generation and at the same time fulfill real-time constraints?
Investigating this RQ requires considering the plausibility and scalability requirements.
However, perception-based agent behavior must not only be plausible and computable
in real-time, but it must also be controllable to support the application’s intention.
Therefore, a virtual perception component must also facilitate authoring agent-centric,

goal-driven behavior without compromising the other requirements.

How well do the proposed concepts scale in terms of real-time, multi-agent appli-

cations?

Human-level cognitive capabilities are difficult to realize on conventional computer
hardware, even without focusing on efficiency [DOP08]. But is it possible to realize
a cognitive architecture approach applicable to interactive applications without com-
promising plausibility, reducing scale, or neglecting domain-specific requirements?

As the proposed concepts are meant for real-time, multi-agent scenarios, this research
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question is concerned with scalability. To achieve this objective, a realization of the
developed concepts should not be limited by the number of simultaneously simulated

agents.

1.4 Research Approach and Scientific Contributions

To answer the proposed research questions, the research is divided into two main stages: a
conceptual stage and an application stage. During the conceptual stage, the combination
of related research domains is used to define the scientific gap regarding the thesis objec-
tives. Based on the research and the gap, three designs for a cognitive agent architecture
are derived, which differ in their level of detail. First, an overall architectural design for
cognitive agents is developed. Second, specific details of the overall design are considered,
namely personality, emotion, and perception. Although the contributions in this stage are
of conceptual nature, they are implemented and evaluated on a practical level blending
theory and application. Third, the application stage is used to demonstrate how the design
developed during the conceptual stage is applied in practice. The main purpose is to verify
that application-specific needs and real-time constraints were sufficiently considered during
the first stage from a software engineering perspective.

As a result of the laid-out process and by answering the proposed research questions,
the following contributions are made by this thesis: A lightweight cognitive architecture
concept is put forth, which is intended for generalized usage in real-time applications. The
design is focused on enhancing agents with cognitive capabilities and characteristics, with
the specific intention of integrating these agents into real-time virtual environments. To
this end, the necessary requirements towards an architecture, able to simulate agents in the
desired way, are devised. Common elements of cognitive architecture and IVA/ECA research
are identified, examined, and assessed for their usefulness towards the intended design. As
a result, a blueprint for attentive cognitive agents is defined and elaborated in Chapter
3, providing a foundation for following research contributions. From the methodological
architecture concepts, the Cognitive Attentive Agents for Real-time Virtual Environments
(CA2RVE) architecture is derived and applied to a realistic evaluation scenario.

By integrating a personality at the core of the architecture, agent behavior is individ-
ualized while being consistent with an agent’s past actions. The intention is to avoid the
impression of randomized behavior, making agents more credible. In Chapter 4, a formal
model of a generic trait-based representation of personality is described. To realize the
model within an applied agent architecture, a specific personality model must be selected.

Here, the common Five Factor model [MCO08] is used as an example. Furthermore, a mapping



8 Introduction

is defined that allows transferring results from psychology studies onto the architecture
independent of the personality inventory! used within the study. The concept of task specific
parameters is introduced, which determine how an agent’s profile is utilized to influence its
behavior. In combination with the mapping algorithm, task parameters can be used to relate
agent behavior to personality both intuitively and based on findings reported in psychology
literature. The personality profile is combined with a dynamic emotional state for situational
behavior generation. By combining personality and emotion, a given decision-making ap-
proach can be enhanced, allowing an agent-individual and consistent, but dynamic action
selection process.

To verify the initial claim of providing cognitive agents for real-time virtual environments,
the proposed concepts are applied to an interactive, virtual user experience. A software ar-
chitecture is designed and implemented based on CA?RVE to realize and evaluate all the
developed concepts. Using this software architecture, agents are used as traffic participants
populating scenarios within a bicycle simulator for road-safety education of school chil-
dren. The modular and extensible design of the architecture allows adjusting simulations to
application-related constraints. Furthermore, the prototype implementation demonstrates
the realization of the theoretical concepts in a possible production environment. By realiz-
ing an interactive experience using hundreds of CA?RVE agents, the prototype also shows
the scalability of the proposed solution. In this process, adjustments are introduced to
improve scalability in the context of the utilized game engine. The reported concepts and
examples have also been published in twenty-one peer-reviewed contributions listed in the

Publications section at the end of this thesis (pp. 179).

1.5 Structure

The structure of this thesis is derived from the research approach described in the previous
section. Chapter 2 provides an overview of the fundamentals underlying the work described
in this thesis, with a specific focus on agents and related technologies, such as cognitive
architectures and intelligent virtual agents. The related work is described according to
the research domains involved in this thesis. Additionally, application related topics are
discussed, e.g., traffic simulation and game engine technology.

In Chapter 3 the underlying architecture design is introduced together with the consid-
erations that lead to specific design choices.

Following the overall design, Chapter 4 includes a more detailed view of the person-

IThe inventory refers to the way of measuring personality traits in a specific study (i.e., questionnaire types),

not the model itself. The personality model used in considered studies must be identical.
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ality aspect of the architecture. It is described how personality profiles are defined within
the architecture and how they are used in conjunction with emotional states to provide
individualized yet adaptive behavior patterns.

Concluding the conceptual part, a model for human-like perception that fits into the
overall approach is introduced in Chapter 5. The integrated components and their purpose
are explained, with a specific focus on modeling attention.

A realization of the architecture design is detailed in Chapter 6 to provide a proof of
concept that the theoretical design is applicable to a practical problem. Additionally, several
approaches are presented that address inherent limitations of the provided design including
scalability and maintainability.

All concepts presented in Chapters 4 and 5 were implemented using the software ar-
chitecture described in Chapter 6. The evaluation approaches related to these concepts are
recapitulated in Chapter 7, where they are also related to the proposed research questions
evaluating the legitimacy and quality of the answers given to them. Further thoughts on
an overall evaluation strategy and work conducted towards this approach are discussed
as well. Finally, Chapter 8 includes a summary of the work and contributions mentioned

throughout this thesis and an outlook on potential future research.
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RELATED WORK

“Success depends upon previous preparation, and without such preparation there is sure to be

failure.”

- Confucius

EFORE explaining the details of the proposed approach to attentive cognitive

agents for real-time virtual environments, the required background information

and related work are discussed in this chapter. First, in Section 2.1, cognitive

architectures are discussed as they are the structural basis for the developed
agent architecture concept. After introducing selected aspects of virtual humans in Section
2.2 (regarding the fields IVA/ECA and game Al), specific focus is directed towards enhancing
virtual humans with personality and emotion in Sections 2.2.1 and 2.2.2. This enhancement
is the most relevant topic about virtual humans as these elements are the central aspect
of the proposed architecture. Besides the underlying personality concept, synthetic agent
perception is the cognitive module that is examined in most detail within this thesis project.
Therefore, Section 2.2.3 provides information on this topic. Finally, one of the objectives
of this thesis project is investigating the applicability of the proposed framework to real-
time virtual environments. As described in Chapter 6, a traffic simulation is chosen as a
proof of concept for such an application. Therefore, the last section of this chapter provides
information about traffic simulation systems as well as considerations concerning traffic

simulation systems in digital games.

2.1 Cognitive Architectures

The general goal of developing a cognitive architecture is to devise a framework that allows

autonomous (software) agents to solve diverse and unknown problems. The main intention
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is to achieve agents with human-level intelligence, but also to gain insights into the cognitive
processes of humans. The need for cognitive architectures was put forth by Allen Newell
during the 1970’s. His proposal was based on the observation that research about cognitive
processes concentrated on highly isolated theories of specific behaviors or processes (cf.
[Byr07]). From his idea of “unified theories of cognition” systems emerged that attempt to
provide a computational framework modeled after the human mind and capable of solving
universal problems. Today, numerous cognitive architectures exist and are continually being
improved and extended. Although they all share similar goals, they can be coarsely divided
into three categories: symbolic, emergent, and hybrid architectures [DOPO0S].

Symbolic architectures are most commonly associated with cognitive architecture research;
well-known examples are Soar, EPIC, and ICARUS. As the name suggests, they represent
the external environment and reason about it using symbols. Thus, the assumption of such
systems is that the internal representation is isomorphic to the external one. Perception is
the process that abstracts from the external world to the symbolic representation based on
sensory data. The symbol tokens are usually described by human designers or programmers
with the advantage that humans can directly interpret these systems. At the same time, the
human-made representations influence the system’s mode of operation and may restrict its
potential. Due to their analytical approach and the methods employed (machine learning,
probabilistic modeling, etc.), symbolic architectures have a strong connection to the field
of classic artificial intelligence. Different representations of memory are modeled as either
rules or graphs, while knowledge is inferred by either analytical or inductive learning
[Byr07, DOP0S, LLO7].

Emergent architectures take a vastly different approach with most of them trying to model
actual brain structures. Instead of symbolizing the environment of an agent, their internals
are based on a network of distributed processing elements. Self-organizing and associating
properties are achieved through interactions between these elements. Examples of emer-
gent architectures are IBCA, Cortronics, NuPIC, and NOMAD. While these systems used to
be less mature (cf., [DOP08]), symbolic architectures are being replaced by or augmented
with elements from emergent approaches due to their flexibility and simpler design [KT18].
Information is processed on a global scale in such a way that all elements in the network
influence the output or, when localist memory organization is used, only a subset of ele-
ments determine the result based on the input. Learning is achieved through training, i.e.,
the network either learns how to map certain input representations to appropriate output
representations in a supervised or reinforcement learning fashion, or it learns unsupervised

in a competitive fashion [DOP08]. However, since knowledge is represented by the entire
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network and not represented as symbolic entities, traditional logical inference in emergent
systems is difficult and and they become hard to read and understand [KT18].

Hybrid architectures combine the characteristics of symbolic and emergent architectures to
benefit from the respective advantages of both paradigms. A well-known architecture of this
kind is ACT-R, which utilizes a symbolic production system that is guided by a sub-symbolic
layer of parallel processes [RTO19]. Other examples of hybrid systems include CLArION,
LIDA, DUAL, Polyscheme, 4CAPS, and Shruti [DOPO0S].

Although different cognitive architectures were developed with a common goal, all
focus on different aspects. However, as some of them continue to grow and mature, they
add functionalities formerly exclusive to other cognitive architectures [Byr07]. Thus, it
seems apparent that certain representations better fit certain problems or tasks. For example,
semantic learning and semantic memory are central aspects of ACT-R but were also included
in Soar to store and retrieve declarative knowledge more efficiently [Lai08, Lail2].

In the context of this thesis project, the Soar cognitive architecture [Lail2] is the most
interesting of the examples mentioned above as it has been used to implement human-like
agents in real-time virtual environments [L]98, Lai01]. However, these examples require ex-
tensive rule declarations and processing resources. These requirements make it difficult to
impossible to utilize Soar in limited hardware environments or in multi-agent applications.
The traditional Soar architecture has been extended by multiple concepts. The most inter-
esting concepts are knowledge representation, reinforcement learning, emotion, clustering,
visual imagery as well as semantic and episodic memory. Long-term knowledge in Soar is
comprised of production rules which can propose, evaluate, or apply operators (i.e., actions)
providing for a flexible representation of procedural knowledge. A recursive processing of
rules even allows for meta-reasoning within the framework. Reinforcement learning is used
to fine tune the production rules and the integration of emotion, mood, and feeling enables
a speed-up of the learning process. The concept of semantic learning borrowed from the
ACT-R architecture enables encoding declarative facts facilitating the use of general knowl-
edge about the environment. Episodic memory was implemented by storing snapshots of
working memory for later retrieval of past experiences, which could be used for capabilities
like internal simulation, prediction, episodic learning, and retrospective reasoning. Visual
imagery is used as an alternative representation of the current state more suitable for tasks
requiring visual-spatial learning [LLO7]. A very intriguing addition is clustering, which
enables Soar to create new symbolic structures overcoming one of the major shortcomings
of symbolic architectures, as the encoding of symbols by a human designer is no longer
restricting the system. To achieve this feature, experiences are clustered to identify statistical

regularities, which are then mapped to new symbols [Lai08].
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ICARUS [LCO6] is another interesting symbolic architecture, because it is specifically
designed to be used in physical agents. The architecture shares several features with Soar, but
adds hierarchical representations of long-term memory, plus additional memories to support
diverse types of knowledge. Furthermore, it defines skills to achieve goals, which are stored
in prioritized fashion in separate memory. Input abstraction is handled by creating beliefs,
which are compared to the skill hierarchy to find and select associated actions that advances
the agent towards its current goal. What makes this architecture interesting to this thesis is its
successful application to video games and even an in-city driving scenario. The architecture
also deviates from the goal of providing a solution for general problems and instead focuses
on emulating human behavior as authentic as possible [CKN*07, LC06, LSC*09]. However,
ICARUS only enabled agents to learn how to perform basic driving tasks, like aligning
themselves in a lane, accelerating, or decelerating for turns.

As an emergent architecture, Cortronics [DOP08] emulates the neuronal structure of the
brain. By organizing these neurons into groups, which in turn form lexicons, the Cortronics
architecture achieves a process called confabulation that enables learning and information
retrieval. While confabulation is not suited for reasoning with complex knowledge, it does
play a role in anticipation, imagination, and creativity.

ACT-R is a hybrid architecture utilizing symbolic and sub-symbolic representations. It
combines the opportunity of allowing a human designer to describe the system’s behavior
with the self-organizing capabilities of connectionist structures, allowing autonomous fine
tuning of the system. Knowledge in ACT-R can be either declarative, describing what an
object is, or procedural, which encodes how things are done. Just as Soar and ICARUS,
ACT-R has been applied to video games and related simulations, for example, to model
tactical fighter pilots [CDB*02] or agents in the “Lemonade game” [RJSL10]. For ACT-R, the
same constraints apply as those mentioned in correlation with Soar, which means it is not

suited for the intended use cases of this thesis project.

2.2 Intelligent Virtual Humans

As indicated in the previous section, attempts have been made to utilize cognitive archi-
tectures and related technologies to create more realistic, human-like virtual characters.
However, these applications appear to be a side-effect of the focused research on general
problem solving. Others have recognized the potential of emulating human cognitive pro-
cesses in virtual agents to generate more human-like and more believable behavior. In
2000, Rickel and Johnson [R]J00] used Soar to integrate the virtual tutor Steve into a vir-

tual environment for military training exercises. For Steve’s cognition module, Soar had
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to be extended with a layer to handle collaboration capabilities and a layer containing the
domain-specific knowledge that is taught to students. In addition to these intricate exten-
sions, two modules needed to be developed for perception and motor control, all of which
are connected by a message queue system. Overall, Steve is a complex application slowed
down by several abstraction layers. To build a Military Operations in Urban Terrain (MOUT)
simulation, Best and Lebiere built cognitive agents based on ACT-R to integrate aspects of
human performance [BL06]. Agents were realized as virtual soldiers in Unreal Tournament
2004 (UT2004)! and as a robot in a physical test environment to demonstrate the use of the
same architecture in different domains. While they succeeded with both embodiments, their
system is complex and distributed across multiple machines for the Unreal Tournament sce-
nario (one for each agent and one for the environment). Furthermore, adapting the system
to a scenario requires sophisticated domain knowledge and scenario-specific extensions. To
reproduce well-defined processes (e.g., clearing an L-shaped hallway) an extensive set of
production rules is required for each behavior, which is reminiscent of complex scripting.
Arrabales et al. also acknowledged the need for a flexible cognitive architecture for agents
in a virtual environment [ALS09, AML*12]. Separating their implementation into a generic
bot control architecture and a cognitive control architecture, the idea was to provide a high-
level behavior controller that can be reused in different virtual environments. In contrast
to other approaches, Arrabales et al. based their CERA-CRANIUM cognitive architecture
on machine consciousness (MC) research, specifically on Global Workspace Theory and the
Multiple Draft Model. They demonstrated their approach in a case study by developing bots
for UT2004 using CERA-CRANIUM. However, applying the cognitive control architecture
to the UT2004 environment required two additional third-party frameworks (GameBot and
Pogamut2) and scenario-specific adaptations to almost all CERA-CRANIUM components.
In 2016, Smart et al. [SSSS16] claimed to be the first to integrate ACT-R into the commonly
used game engine Unity?. While being an admirable effort, they faced various technical
difficulties and confirmed the performance issue of running both a game engine and a
cognitive architecture on the same machine. The integration also required extending ACT-
R with a custom module, developing an ACT-R API for network communication, and a
third-party network interface, which also needed to be extended. Despite all this effort,
the final experimental setup showed only inefficient agent behavior and could not utilize
numerous ACT-R core modules as they are not meant for virtual characters. Recently, Llobera
and Boulic developed an agent architecture for the Unity game engine [LB19]. Instead of

integrating a complex cognitive architecture, they describe a user-centric design based on

1Epic Games, 2004
Zhttps://unity.com, [online: May 2, 2023] Unity Technologies
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embodied cognition theory. This approach is promising, especially since it emphasizes
modularity, scalability, and stability while being tightly integrated into a game engine.
However, the solution requires a manual and laborious process for each individual agent to
link the agents’ skills to their goals.

Another approach is providing a middleware that allows interfacing a virtual environ-
ment system with an agent architecture. Two prominent examples are POGAMUT and
CIGA. The POGAMUT framework was introduced by Gemrot et al. [GKB*09, GBK*10] as
a mediation layer between an agent’s body, situated in a virtual environment, and its mind.
The framework includes a simulator of the virtual world, a graphical IDE, a library of base
classes for agent behavior, a service handling communication between the VE and the agent
architecture, and tools for defining and running experiments. Gemrot et al. motivate their
work with the difficulty and steep learning curves of defining autonomous behavior for vir-
tual characters and the lack of commonly available software tools supporting this task. While
POGAMUT 2 was tightly coupled to UT2004 as its VE, the major improvement of the third
version of the framework was to achieve a looser coupling. However, from their description
of the required adjustments to the core systems (perception, interaction, and high-level API),
integrating a virtual environment other than UT2004 or a different agent framework remains
a complex and time-consuming task. Interesting extensions to the framework were planned
(e.g., ACT-R integration, emotion modeling, connection to other VEs), but according to the
publication record, it seems they have never been completed. Furthermore, the framework
is limited to simulating ten virtual characters simultaneously.

Van Oijen and his colleagues are also looking to make intelligent agent technology
more accessible, but with the additional intent of making it available to the games industry
[vOD11, vOVD12, vO14]. Like POGAMUT, van Oijen et al. distinguish specifically between
an agent’s embodiment (the game engine/virtual environment), its mind (the agent system
or cognitive domain), and the interface between them (the middleware). While their CIGA
platform demonstrates possible realizations of these three elements, the research objective
was to provide a theoretical overview of a middleware’s role, design issues, and guidelines
when integrating intelligent agents into virtual worlds. Therefore, they also present a
general-purpose interface to facilitate a connection between an agent system and a virtual
environment independent of specific frameworks, technologies, or application domains.

Taking a middleware approach, like van Oijen et al. or Gemrot et al., seems like an
obvious choice. If done carefully, the middleware is independent of specific systems for
an agent’s body and mind. This aspect is especially interesting since available game en-
gines and agent frameworks are usually implemented using incompatible programming

languages. In theory, this open-system approach also means any agent behavior framework
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can be connected, allowing a wide spectrum of behavioral complexity. Unfortunately, the
abstraction required to facilitate such an open system comes at the cost of reduced perfor-
mance, as information must pass through several interfaces and layers typically involving
multiple data conversions and often network connections. Especially in sectors like the
games industry, where established programming techniques are ignored in favor of micro-
optimized code bases (see, e.g., [Act14]), this fact plays a significant role. Loosely coupling
embodiment and cognitive functions also means that the middleware must manage issues
like asynchronous inter-process and network communication as well as synchronization of
internal states, data, and life cycles. One of the most prominent objectives of middleware
is to make creating human-like agents more accessible. However, it may be argued that the
contrary is true since behavior designers must be proficient in both VE/games technology
and agent technology. Both areas are complex, share little similarities, are often realized
using different technologies, and provide distinctive design tools or UL Furthermore, the
advantage of a general-purpose approach often fades away as soon as it is realized and must
efficiently interface with concrete systems on both ends. Judging from several reports (e.g.,
[ALS09, AML*12, BL06, GKB*09, GBK*10, SS5516, vO14]), a significant effort is required
to connect independent virtual environments and agent systems. A middleware may sup-
port this effort but cannot completely cover the gap between the systems [vO14], which
further diminishes the advantages of a general-purpose approach. Finally, being able to
interchangeably use different virtual environments and agent systems is a valuable charac-
teristic in fields like research and education. However, this interchangeability is an unlikely
requirement in a production environment where integrated systems are rarely replaced, es-
pecially in the games industry. Instead of striving for a middleware approach, the objective
of this thesis project is to present a blueprint for cognitive agents, in case you want to realize
your own architecture based on it, but also to provide a solution integrated into a game

engine that is one of the games industry’s standards.

2.21 Personality

All the above are potentially interesting techniques for developing more human-like virtual
characters, which are an essential element of various applications, e.g., human-computer
interaction, entertainment, education, and digital storytelling (e.g., [AKG*00, KHW*11,
LTC*01, RP12, SFC*10]). Often users interact with these entities over a prolonged period,
in some cases across multiple sessions. According to Ortony, one of the most important
aspects to making agents believable to users is by conveying consistent behavior based on
personality and emotions expressed through gestures, facial expressions, and decisions they

make [Ort03]. Defining personality profiles requires mapping an individual and complex
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aspect of human beings to a simplified and quantifiable model. It is important to note that
this aspect is temporally stable and not a momentary mental state of a human. During the
19th century, multiple models for representing personality have been developed, validated,
discussed, and sometimes disproved. One of the oldest models for dimensioning personality
are Cattell’s 16 Personality Factors (16PF) [Cat46, Cat57]. His research was based on a list
compiled by Gordon Allport, which included 4000 English words that can each be used
to describe a person. Cattell analyzed and condensed the list to 171 terms, which he then
reduced to the 16 factors using statistical means.

In contrast to this extensive model, the model introduced by Eysenck initially only
included two dimensions: Neuroticism and Extraversion/Introversion [Eys47]. These two
dimensions — sometimes referred to as the “Big Two” — are included in many models of
personality to this day. Later, Eysenck added Psychoticism as an additional dimension to his
model (cf. [Dig90, Eys70]).

From a review of Cattell’s work by Fiske, the development of the Five Factor Model (FFM)
began in 1949 [Fis49]. At this time not more than five personality dimensions could be con-
firmed. While Fiske’s work seemed to have negligible impact on the scientific community at
first, his results were verified in 1961 by a review of several conducted studies by Tupes and
Christal [TC92]. Although the validity of the FFM was reinforced by other researchers (e.g.,
[Bor64, Nor63, Smi67]); it was not until the 1980s that the model gained popularity in the
field of personality psychology through the publication of numerous reviews and studies
(cf. [MJ92]). Another reason for the model’s increased popularity is its consistency across
different observations, self-reports, interviews, and languages [SGW12]. While there are
different labels for each of the five factors, the labels from the Five-Factor-Inventory (FFI)
questionnaire and its updated version, the NEO-FFI, are most used. The FFM’s descriptive
nature and the fact that only five personality traits are sufficient to define a personality
are likely responsible for its popularity when it comes to modeling personality for virtual
humans [AKG*00, KMT08]. Table 2.1 summarizes each label including an exemplary in-
terpretation of high and low values for each dimension. Since different scales exist for
measuring each trait, even within one model, e.g., the NEO-FFI [CM92] and the Big Five
Questionnaire [CBBP93] for the FFM, the development of a generic model for computational
use of personality profiles is motivated in Chapter 4. Furthermore, it is demonstrated, how
findings from psychological studies can be utilized in the agent architecture using the FFM,
which is chosen due to its mentioned advantages.

To understand why people take certain actions and make specific decisions, several
studies were performed to find correlations between their personality and performance in
specific tasks (e.g.,, [MDWS00], [Her09], [LLO1]). Because of differences in the cognitive
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Table 2.1: Dimensions of the Five Factor Model including exemplary interpretations of high and low
scores (cf. [MDWSO00], table from [IVC13]).

Label Abbr. High Low

Openness O creative, artistic, multilayered practical, simple, superficial
Conscientiousness C methodical, efficient, thorough unorganized, lazy, incautious
Extraversion E social, optimistic, impulsive introverted, quiet, reserved
Agreeableness A nice, cooperative, likable indifferent, rough, dislikable
Neuroticism N nervous, tense, emotionally volatile calm, satisfied, relaxed

processes, the way personality influences the performance of a person is highly dependent
on the specific task [MDWS00]. However, by integrating a formalized model of personality
profiles into the decision-making processes of an agent, they can be utilized to model more
plausible and realistic behavior. For example, Rushforth et al. extended an existing virtual
human architecture with a personality model to increase the believability of virtual interro-
gatees in a tactical questioning system [RGA*09]. Their evaluation included a personality
model parameterized by ten personality traits, which are derived from the FFM. The results
showed that personality difference could be perceived by test subjects influencing potential
outcomes of the interrogation scenario. Bevacqua et al. investigated whether an agent’s
personality profile could not only generate perceivable differences in behavior, but also re-
flect the agent’s “actual” personality [BASP*10]. They extended Sensitive Artificial Listener
(SAL) agents with Eysenck’s three-factor model to determine the agent’s preferred means of
non-verbal communication. However, their agents only display backchannel behavior, i.e.,
the agents express their reaction to the user’s input, showing if they are listening, agreeing,
etc. Unfortunately, they did not deploy the system in an evaluation study. Castillo et al.
addressed this shortcoming, who used a similar setup to confirm that human personality
questionnaires can be used to measure the perception of agent personality [CHLC18]. They
also found that the perception of the exact personality depends on the availability of the
communication channel. According to their results, the perception and design of virtual
personalities requires multiple channels that are consistent among themselves. Zhou et al.
went even further and examined the role of agent personality on a user’s trust in the agent
[ZMLY19]. Using a chat-based agent, they conducted job interviews in high-stakes and
low-stakes scenarios. The agent cannot only have its own personality, based on the FFM,
it is also able to infer the interviewee’s FFM personality based on chat messages. Based on
their interview analysis, they found that the agent’s personality affects how much intervie-
wees trust that agent and how willing they share information with the agent based on that

trust. Interestingly, they noted that by inferring a user’s personality, an agent could adapt
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its own personality to maximize trust according to their findings. Zhou et al., like many
others used the FFM to model agent personality. However, Volkel et al. argue that human
personality models, like the FFM, are not suitable to describe personalities of conversational
agents [VSB*20]. Thus, they propose their own personality model based on a psycholexical
approach, consisting of ten traits that are not consistent with the FFM. However, their argu-
ment directly contradicts statements by other researchers, e.g., Castillo et al. [CHLC18], and
is specifically aimed at speech-based virtual assistants like Alexa, Siri, or Google Assistant.
Therefore, this result should be considered with care. Knob et al. presented another ap-
plication of agents with personalities, simulating heterogeneous crowds based on the FFM
[KBM18]. Personality traits are used to control behavior regarding group formation during
evacuation scenarios. Their evaluation showed that with personalities, the intended results

could be observed.

2.2.2 Emotion

In contrast to the temporally stable personality, emotions are dynamic mental states, which
can change over short periods of time. Colloquially, the term emotion is often used inter-
changeably with the term feelings. In the context of this thesis project, emotions are defined
as the sensation and perception of feelings resulting in a short-lived change in mental state.
Within this model, the change in state is always linked to a direct cause, which separates the
nature of emotion from mood. Among other things, mood can often not be clearly linked to
a cause. Instead, it is the result of complex cognitive processes, influenced by various factors
and often not completely comprehensible. A further distinction between emotion and mood
is their temporal effect. A mood can last for a prolonged period of time, while emotions are
typically immediate and short-lived. However, despite the separation of both states, their
linguistic concepts are not independent of each other (cf. [Tha89]).

Like personality, many approaches for modeling, categorizing, and dimensioning human
emotion exist. A method for objectively and accurately measuring human emotion has yet
to be discovered. Therefore, models of emotion are typically identified by the name of
the method used to survey them. One of the core discussions is the question whether
the dimensions identified as part of a model are interdependent [Tha89]. Some studies
suggest a mutual dependency, others indicate positive correlations between dimensions of
the model, and yet others state that dimensions are independent. Further studies show that
weak emotions are independent or positively influence each other, while strong emotions
negatively influence each other. The number of dimensions is also a subject of debate. For
example, the Eight State Questionnaire (85Q) samples eight dimensions [CC76], while for
other models, like the Activation-Deactivation Adjective Check List (AD ACL) [Tha86], two
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dimensions are sufficient. Thayer points to the different ways of data acquisition as the
cause for these different results. Especially the combination of subjects’ self-reporting, non-
standardized questionnaires that are tailored toward an individual model, and changing
analysis methods are problematic. Thayer mentions one example where an analysis of the
AD ACL confirmed two dimensions, however, by adding further items to the questionnaire,
a third dimension could be extracted from the reported answers [Tha89].

For modeling emotions of virtual characters, the OCC Model of Emotion [OCC88, Meh96]
is popular among researchers in this field [KMT08, NFdSS10]. The model includes 22 types of
emotions that can be either positive or negative. However, its scale makes the model complex
for integrating them into embodied characters [Bar02]. Depending on the application,
alternatives for representing emotions can be used. For example, Curran’s 8SQ requires
only eight dimensions [CC76] and the PANAS model reduces this number further by only
considering positive and negative affect [WCT88]. The agent architecture proposed in this
thesis specifies neither the type of emotion model nor the number of emotion dimensions.
However, an integral aspect of this new architecture is the combination of the emotion
model with an agent’s personality. Therefore, for the application-driven architecture, a two-
dimensional model based on AD ACL and PANAS is suggested to keep the combinatorics
of dimension interactions maintainable.

Few examples in the literature consider both personality and emotion. One of them
is Gebhard’s layered model of affect (ALMA) that defines mood states in PAD (Pleasure,
Arousal, Dominance) space [Geb05]. Each octant of PAD space is a discrete mood description,
which is further categorized by its strength depending on the distance of the current mood
state from the origin. An agent’s default mood is defined by a FFM trait configuration.
The emotion model generates emotions according to the OCC and each type of emotion is
mapped to PAD space. The intensities of the emotions are controlled by an agent’s FFM
personality. From all active emotions, an emotion center in PAD space is calculated that
is used to gradually change the agent’s current mood. While the agent’s action selection
is scripted, different variations of the action can be provided for each discrete mood state.
Consequently, the mood state determines an agent’s displayed behavior, e.g., by affecting
the selection of dialog options and strategies, idle gestures, or facial expressions.

Johansson and Dell’Acqua criticize that Al behavior in commercial games is predictable
and invariant [JD12]. They also argue that random action selection does not solve the
problem, because the resulting behavior is inexplicable to an observer. Therefore, they extend
behavior trees, which are a common tool for authoring character Al in the games industry,
with a new priority selector node. This node type considers a combination of a character’s

emotional state and a set of correlated factors (time, risk, planning) to decide which child
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node to select. Due to the difficulty of measuring emotion, they define correlations based
on intuition and advise users of their system to choose emotions that are consistent with the
modeled character. Belle et al. extend the idea by Johansson and Dell’Acqua and combine it
with Gebhard’s ALMA to develop a lightweight cognitive architecture [BGG19]. Similar to
the work presented here, their objective is to address the amount of computational resources
required by conventional cognitive architectures while being able to simulate affect with
psychological accuracy. Their emotion adder node can be integrated into behavior trees and
induces the specified emotion in an NPC. The NPCs current emotional state affects its mood
state (a position in PAD-space). An e-selector node uses the current mood state to choose
between its child nodes. Although there are eight different mood states, an e-selector node
can only have two children which represent either a positive or negative action. Furthermore,
emotional responses can also be triggered by events stored in memory. Unfortunately, they
applied their system only to dialog selection and there seems to be no direct connection
between a character’s personality, emotional state, or mood state, and the action selection.
Another positive example is the game Watch Dogs 23, where the developers equipped
agents with an emotional state and personality traits to diversify their behavior [BP17].
Decision-making is mostly reaction-based using fuzzy rules to choose between multiple
behavior options based on emotion and personality. An additional mood state machine
avoids erratic changes in emotion. While the deployed system is not complex and not based
on psychological models, it emphasizes the role of personality and emotions in plausible

behavior generation for virtual characters.

2.2.3 Synthetic Perception

Perception can be regarded as the input stage to an agent’s action selection processes
[PCR*11] and as such represents the foundation of plausible behavior (cf. [Blu97, POS03,
Rey87]). Therefore, perception processes for agents have been addressed in various research
fields. The most relevant fields for the work presented here are computer vision, intelli-
gent virtual agents (IVA), embodied conversational agents (ECA), and game development.
Within these fields, perception processes are often mentioned, but rarely are they the focus.

Modeling perception, specifically attention, in a biologically plausible way has been an
important subject of computer vision research for decades. Suitable models can aid in de-
tecting interesting image regions as well as in segmenting and tracking relevant objects. For
example, Tsotsos et al. presented an approach for feature selection in images by activating
specific units within an image processing pyramid [BT09, TCW*95]. Units are activated by

a process called selective tuning, which requires several traversals of the pyramid. The result

3Ubisoft, 2016
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is an attentional beam through the pyramid. Feature selection is simulated by including a
winner-take-all (WTA) process on each level of the pyramid, as is the case in many com-
putational models of biologically plausible cortical selection processes, like visual attention
[KT18]. Asanexample, the work of Bruce and Tsotsos was strongly influenced by the models
presented by Koch and Ullman [KU87] and Olshausen et al. [OAVE93]. Other examples are
those reported by Bruce [BT09] and Pomplun [Pom06]. Some research has also been per-
formed to apply these concepts to more practical applications (e.g., [Fri06, HKRS95]). The
foundation of most computer vision approaches are intricate image processing algorithms,
which are often not applicable to real-time virtual environments due to their complexity (cf.
[BA13, RPA*15]). Additionally, theses algorithms require images to process, which need to
be synthesized in such scenarios, which increases computational costs even further.

In virtual reality and agent research, perception and attention models have also gained
significance [PCR*11]. In this field, plausibility takes precedence over accuracy in a neuro-
biological sense. Although, agents generally do not need to differentiate between the virtual
environment and their model of the environment, perception capabilities of simulated enti-
ties are often limited, mimicking their real-life counterparts, to generate believable behavior
[LAOO]. While any input received by an agent could be defined as a percept [RN10], it makes
sense to distinguish between stimuli and percepts. Stimuli are information collected by
virtual sensors from the agent’s environment. Percepts are stimuli that an agent has become
aware of, i.e., the agent must have focused its attention on the stimulus (cf. [POS03]). This
distinction will be revisited in Chapter 5.

Additionally, solutions within the area of virtual human research must fulfill real-time
requirements to allow for interactive experiences, limiting the complexity of applied ap-
proaches (e.g., [KW15]). Most research in this area focuses on simulating eye gaze as it
represents a suitable external indication of attention (cf. [APMG12, BA13, PAGM15]). For
example, Kim models attention for virtual humans to decide when to change gaze direc-
tion alongside its attention to another object [Kim06]. A model by Andrist et al. considers
physiological characteristics of gaze shifts to convey the presence of attention in a virtual
character to improve users’ affiliation with the character and learning. While simulating eye
gaze is an interesting aspect requiring virtual perception, it remains only a specific subtopic.

Like human perception, virtual attention models can also be used to reduce or filter the
complexity of a scene saving computational and memory resources within the perception
process. At the same time, such an approach can create the impression of an overlooking
or unobservant agent, creating a more realistic representation [BA13]. Typically, solutions
generate saliency maps to identify regions or objects that attract an agent’s attention [IDP03].

In virtual environment applications, these techniques require rendering a virtual camera
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image, usually in reduced resolution, for every simulated agent (e.g., [BSFL*12, POS03]).
Many approaches even require several feature maps of the rendered image. Itti et al., for
example, generate 72 feature maps from pre-processed video frames in combination with
a task-relevance map for top-down attention and a winner-take-all approach to guide a
virtual agent’s gaze [IDP03]. While abiding to neurobiological models of visual attention,
such an approach does not scale for real-time multi-agent scenarios. Furthermore, the
applied attention models are not considered on a cognitive level in most cases [CKH*15].
However, the amount, relevance, and type of available information is an integral part of
an agent’s action selection process [PCR*11]. Among others, agents can choose physical
actions within their environment (e.g., moving to a position from which more appropriate
information can be obtained) or “internal” actions like attention direction or primary sense
orientation. On a technical level, several approaches address attention processes within
larger agent frameworks, e.g., filters [BBT99] or subscriptions [vOD11]. In these examples,
versatile middleware approaches are presented, but the actual implementation of specific
attention algorithms or strategies are not addressed. Instead, they are left to a designer.
The idea of limiting sensor capabilities of agents to simulate perception is a more common
approach than considering actual attention models. In game development, it is mostly
concerned with detecting and reacting to players (e.g., [Leo03]). However, while game Al
programmers try to create plausible behavior, the most important aspect is always to provide
a fun game experience. Players must never feel cheated by their in-game opponents; thus,
agent behavior must always be obvious to the players. The agent’s perception processes
need to be designed accordingly. As a result, behavior generation is typically solved with
diverging approaches in game Al and virtual humans. One objective of this thesis project is
to bring both areas closer together by providing a controllable yet versatile solution.
Virtual human researchers are not constrained by the goal of providing fun experiences
and are able to explore more realistic perception models within their work. In general, IVAs
are equipped with a set of virtual sensors often representing actual sensory organs of living
beings. Due to the importance of the visual channel in human perception processes, simulat-
ing visual sensation is the most frequent approach to generate more authentic behavior for
simulated entities. However, a few examples exist that deal with the perception of stimuli
from multiple sensor modalities, e.g., [BA13, KW13, KvVHO05]. The simulation of the visual
sense is most commonly implemented in one of two approaches: geometric algorithms or
synthetic vision [PCR*11]. Geometric approaches utilize techniques such as ray-casts or
intersection tests to check objects for visibility. A common technique is to evaluate whether
objects are placed within one or more view cones (e.g., [KW11, Leo03]). Synthetic vision ap-

proaches render a low-resolution image of the environment from each agent’s point of view
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to determine which object is visible to an agent. The advantage of rendering the scene is that
object occlusion is provided without additional effort. However, the challenge is extracting
relevant information from the rendered scene view. Noser et al. [NRTMT95] simplified
the image analysis by rendering objects with a unique color while neglecting textures and
lighting. As a result of this false coloring, an object is visible if at least one pixel of the rendered
image contains the object’s unique color. Later, other researchers extended this approach
to encode more information or improve performance (e.g., [CT06, PO02, SL05, OPOD10]).
Sample implementations of both approaches are used to realize the concepts developed
within this thesis project (see Chapter 6).

A sensor interface is often designed to provide a unified entry point to access and aggre-
gate data provided by different sensors. The resulting object representations are typically
stored in a hierarchical memory structure (cf. [CT06, KW13]). Peters and O’Sullivan [PO02]
provided a now well-known memory hierarchy based on a psychological model proposed
by Atkinson and Shiffrin. Within the model, entries are swapped between a short-term
sensory storage, short-term memory, and long-term memory. The more attention an object
receives, the higher they are placed in the hierarchy. An interpretation of the model by Peters
and O’Sullivan is integrated into the perception framework presented in this thesis.

A common approach to improve efficiency of virtual perception processes is to include
semantic information about virtual objects. By attaching semantics to objects in the en-
vironment, agents do not have to interpret sensor data to gain relevant knowledge, e.g.,
about object affordances. For an overview of semantic modeling see [TBSK08] or [vOVD12].
Within this thesis project, specific semantics are also defined in an application context to

make perception and knowledge retrieval more efficient.

2.3 Traffic Simulation

Within this thesis project, the developed cognitive agent architecture concept is realized to
simulate road traffic for a virtual bicycle simulator. Traffic simulations are employed in
a variety of applications, e.g., road planning, traffic jam prediction, virtual environments,
and digital games. Behavior of the simulated traffic participants differs in complexity and
type, depending on the application. For example, in digital games that provide an open
world for a player to explore, the traffic participants serve only as a backdrop to allow the
player to experience a living environment. In such cases sufficient realism can be achieved
through comparatively simple means, e.g., using finite state machines or scripts. These
approaches are sufficient because agents, which are not relevant to the game’s objectives,

are not observed in detail over a prolonged period of time. In traffic simulations used for
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road planning and similar tasks, only the emergent traffic behavior of the entire system is of
interest, e.g., to reveal deficiencies of a given road network. Human traits, like reaction time
or imprecision, are expressed in a mathematical form, which defines behavior. Especially car
following models provide numerous approaches to plausibly convey tasks like acceleration,
approaching an obstacle, or keeping the distance to a lead car (see [Bar10] and [TK10] for
an overview). Nevertheless, these approaches usually do not try to replicate the cognitive
processes involved while participating in traffic, and making individual, observable behavior
believable to a user is not a requirement. Aspects, such as personality and emotion, are
typically only implicit parts of different driving behavior achieved by varying parameters
in microscopic traffic models. One prominent example is Wiedemann’s psycho-physical
car-following model (see, e.g., [FV10]). Eventually, the multitude of proven traffic models
provides important starting points and inspirations for enhancing them with more human-
like behavior on the agent level.

Traffic simulations are typically categorized into microscopic, macroscopic, and meso-
scopic simulations [Bar10, HHST02]. Macroscopic traffic models do not consider individual
vehicles, but rather model aggregated parameters (e.g., average velocity, traffic density). In-
volving a user as an active participant in traffic is not possible in macroscopic models, which
means they are unfit for interactive virtual environments. Microscopic traffic models model
each individual vehicle with its individual parameters (e.g., current velocity, desired veloc-
ity), especially its current position in traffic and its behavior regarding traffic rules. Since
users can represent one of many individual vehicles, integrating them into a microscopic
system is straightforward, but not a simple task.

Mesoscopic traffic models bridge the gap between the individual approach of microscopic
modeling and the aggregated approach of macroscopic modeling. This results in select
aspects, such as traffic flow, being modeled at the macroscopic level to decrease overall
computational effort and to achieve good scalability. However, mesoscopic models also
include microscopic concepts, which can be used to keep track of associated information,
such as individual route choices or vehicle types [BKAO5Db].

Hybrid approaches combine microscopic and mesoscopic models to simulate specific
areas of interest in a traffic network using microscopic modeling, while everything else
is simulated using less detail using a mesoscopic model (cf. [BKAO05b]). Such a hybrid
approach is also discussed in Section 6.3 to handle real-time constraints of the realized
cognitive agent application. Another example of a mesoscopic simulation is the traffic
flow model for the POLARIS transportation systems simulator developed by de Souza et
al. [dSVA19]. It successfully combines the level of detail and accuracy of microscopic

models with the computational benefits of macroscopic models. Saprykin et al. developed
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a simulation for generic large-scale networks that achieve high computational performance
by taking advantage of parallel GPU computing [SCA19]. They based their simulation on
MATSim*, an open-source framework for large-scale agent-based transport simulations.

MATSim is based on queuing theory, which lends a different approach to traffic simu-
lation. In queuing theory, packets travel through a network of service stations and queues.
The packets stay in a queue until a service station serves them at certain rates. This approach
can also be applied to vehicle traffic. Vehicles are modeled as packets, roads as queues, and
intersections as serving stations [BZBP09, CBNO03]. Vandaele et al. [VvWV00] simulated a
highway using several queuing models. They used their simulation for traffic management,
congestion control, and to determine the environmental impact of road traffic. Van Woensel
et al. [vVWVO07] gave an overview of how queuing theory is used for traffic simulations.
Furthermore, they suggest combining agent-based simulation and queuing theory to benefit
from both approaches. One interesting model they refer to is the FastLane model by Gawron,
which limits the number of agents that can reside on the same edge of a traffic graph at the
same time [Gaw98b]. FastLane is the basis for MATSim [CBNO03, SEN99].

Cetinetal. [CBNO3]introduced a parallel implementation of FastLane. By parallelization
and execution on a 64 CPU cluster, they can simulate 24 hours of traffic in less than two
minutes. Additionally, they introduce a “fair” intersection, which divides the limited space
of an outgoing road proportionally to the capacity of the incoming roads. Their research
considers large scale transportation scenarios and not urban scenarios, which are of interest
to the work presented in Section 6.3. Furthermore, the system realized within this thesis
project cannot run on massively parallel systems but on consumer hardware. Grether et al.
[GNN12] presented a combination of FastLane and the model by Cremer and Langenfeld
[CL97]. This led to a more realistic representation of turning lanes at intersections, since the
FastLane model neglects that lanes at intersections often branch into multiple lanes. Their
focus was on interactions between agents and intersections and how they can be simulated
efficiently. One of their main objectives was to simulate spillbacks with queuing models to
realistically represent real-world traffic. In an interactive, virtual training scenario, it is more
important to ensure a continuing traffic flow in the background.

Simulating traffic in virtual environments, like the FIVIS bicycle simulator, is mainly con-
cerned with the user’s immediate surroundings. Therefore, microscopic traffic models are
the most relevant to the work presented here. Most microscopic traffic simulations are based
on a combination of car-following and lane-changing models (cf. [Bar10, TK10]). During
each step of the simulation, the model is updated by updating each entity representing a traf-

fic participant based on parameters like gap distance to and velocity of the leading vehicle,

“https://www.matsim.org/, [online: May 2, 2023] Multi-Agent Transport Simulation


https://www.matsim.org/

28 Related Work

acceleration/deceleration capabilities, or response time delay. Due to the increased difficulty
of calibration, few car-following models include additional parameters to individualize be-
havior, such as age, gender, risk-aversity, vehicle size, time of day, weather, hurrying, and
fatigue (cf. [PDO05]). Most available microscopic models were developed to predict essential
traffic parameters for generic vehicle classes (cars and trucks). However, in training sce-
narios, like those intended for the FIVIS bicycle simulator, special traffic participants (e.g.,
public transport, delivery vehicles, pedestrians, garbage trucks) are especially interesting.
Their individual behavior can disrupt regular traffic and lead to interesting situations that
need to be handled by a learner and other simulated traffic participants.

The foundation for the traffic simulation, presented in this thesis, is the work by Kutz
et al. [KHO8, Kut09]. They conceptualized basic building blocks of a traffic simulation
for virtual environments and games. Their description includes a graph structure, which
represents the road network and provides perceptual information to the simulated agents.
The use of individual personalities for each agent, based on the FFM, is also mentioned but
the correlation between an agent’s personality and its respective behavior in traffic had not
been provided.

Performing traffic simulations is impossible without an underlying representation of the
road network. Like traffic simulation approaches, models for road network representations
can be divided into models for macroscopic, microscopic, and mesoscopic simulation. In
general, the semantic representations are defined in a graph-like manner. While road net-
work representations for macroscopic simulations are often represented by simple graphs
without detail, road network representations for microscopic simulations must be very de-
tailed, and the graphs are enhanced by many features such as relations to signs and signals
or detailed descriptions of junction areas.

Although road network representation is essential for simulating traffic, the topic is
rarely focused on in the literature. The main reason being that the representation is often
strongly linked to the simulation system and type. Notable examples range from simple
solutions used in digital racing games [Bia02] to memory optimized networks for open world
games [Kral0, Kral2] to intricate definitions used in commercial traffic simulations [FV10].
Concepts from these examples are adapted for the semantic road network introduced in
Section 6.2, with specific focus on realistic urban roads.

To efficiently generate road networks for traffic simulation, automatic or semi-automatic
processes are preferable to manual setup. Three approaches for the setup of road networks
can be distinguished. The first is to take existing data (e.g., from public databases), which

ideally represent real road network structures, and automatically generate entire networks
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taking standardized data as input. While there are many such standards (e.g., by ESRI Inc.”,
Thales®, or [CTHG10]), the OpenDRIVE® standard [DSG10] was identified as the most ver-
satile and flexible within the scope of this thesis project. Reasons for choosing OpenDRIVE®
include, but are not limited to, being open, XML-based, well-documented, well-established,
and actively developed. Furthermore, the standard is maintained by driving simulation ex-
perts as well as being easily transferable and extensible to custom systems [ASA21, DSG10].
The second approach is to create fictitious but realistic road networks using procedural tech-
niques (e.g., [GPMG10, PM01, CEW*08]). The third approach is to deliver a set of tools for
the intuitive manual setup of road networks. This approach can also be used to refine or
improve networks generated by (semi-) automatic approaches. Gerdelan [Ger(09] described
a set of point-and-click editing tools for integrating road network representations into exist-
ing virtual environments. Approaches like [ALD11] or [MS09] provide environments where
a user can draw lines, which are adapted by the system such that they are shaped like real
world roads (i.e., shapes based on lines, arcs, and clothoid curves because straights and
curves of real roads are connected by clothoids to avoid abrupt steering maneuvers).

A subset of requirements for a traffic simulation within the scope of this thesis project
includes efficiently representing a road network, providing agents with knowledge about
said network, and having agents interact with each other to provide an interesting environ-
ment for users. Additionally, all these requirements must be realized within an interactive
system, like a bicycle simulator. Digital games, especially open world games, have similar

requirements. In current examples, e.g., Marvel’s Spider-Man” or the GTA series®

, impres-
sive results are achieved considering the significant limitations of available processing and
memory resources. Unfortunately, detailed information about existing game systems is
difficult to impossible to acquire outside of the industry. Some developers share insights
about their games, but traffic simulation is rarely a topic. The few existing examples, e.g.,
[Bia02, Kral0, Kral2], usually do not provide enough detail for re-implementation. Never-
theless, these and similar systems are looked to for inspiration throughout the realization of

the traffic simulation described in this thesis.

Shttps://www.esri.com/en-us/home, [online: May 2, 2023]
Shttps://www.thalesgroup.com/en, [online: May 2, 2023]
7Sony Interactive Entertainment, 2018

8Rockstar Games/Take 2 Interactive, 1997 — 2015
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ARCHITECTURE CONCEPT FOR ATTENTIVE

ReAaL-TiME COGNITIVE AGENTS

“You can’t build a great building on a weak foundation. You must have a solid foundation if you're

going to have a strong superstructure.”

- Gordon B. Hinckley

NE of the major objectives of this thesis project is to provide means of author-
ing and simulating intelligent agents for real-time virtual environments, e.g.,
training simulators. To achieve this objective, the developed solution should

fulfill the following requirements:

(1) The generated agent behavior is believable to an observer to preserve the effect of

immersion.

(2) The generated agent behavior can be controlled by a domain expert or application

designer to support the design goal of the application.
(38) The solution is scalable to enable multi-agent simulations in real-time.

The hypothesis underlying this work is that emulating human cognitive processes in
agents generates more human-like and thus more believable behavior. In cognitive architec-
ture research the same approach is taken to achieve agents with human-level intelligence.
Thus, the obvious solution seems to be applying a cognitive architecture to virtual characters.
In fact, multiple other researchers have investigated this approach with the same rationale
(e.g., [ALS09, BGG19, BL06, BKA*05a, CDB*02, LB19, RJSL10, RJ00, SS5516]). However,
the number of examples found in the literature is moderate and the proposed solutions are

neither coherent nor consecutive, suggesting that this approach remains difficult and does
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not represent an established solution. Reported examples of cognitive architectures applied
to real-time applications also typically employ network solutions with each cognitive agent
running on a separate machine connected to a common virtual environment. This is due
to the fact that cognitive architectures require substantial computational resources, making
it difficult to run both the architecture and the virtual environment on the same machine
[SSSS16, BGG19]. Other reasons for choosing a network integration are the lack of sup-
port for direct integration into external systems and the technological gap to tools used for
creating and running virtual environments, e.g., game engines [SS5516].

While aloose network integration is not a desired solution within the context of this thesis,
the benefits of using an existing architecture could outweigh this constraint. However, by
studying examples in the literature, it becomes apparent that authoring agent behavior using
cognitive architectures is cumbersome and difficult for non-experts, due to their complexity,
required production rules, and the level of expertise and experience required. Additionally,
even a loose integration usually requires substantial effort. E.g., Smart et al. [SSS516] report
that integrating ACT-R into the Unity! game engine required developing a separate AP],
another research team’s network module, and an ACT-R module consisting of 110 production
rules and an unspecified number of ancillary functions to realize a straightforward scenario.

Since modeling the human thought process to achieve human-like behavior remains a
promising approach, it is desirable to design an architecture that is based on the same prin-
ciples as cognitive architectures, but in a less resource-demanding fashion: a constrained or
lightweight cognitive architecture. In such an architecture, modeled processes are abstracted
to a degree at which they are applicable to real-time solutions. The major challenge is find-
ing a suitable balance between the level of abstraction, plausibility of generated behavior,
and required effort for authoring behavior. Since agents built from the developed design
should support application-specific goals, such as training a user, challenging a player, or
entertaining a consumer, the resulting architecture must be flexible, allowing developers to
steer behavior generation in the appropriate directions. Summarizing, the resulting design
should provide a lightweight cognitive architecture serving as a basis for building software
agents while focusing on plausibility of behavior, real-time capability, and controllability.

An aspect typically ignored by cognitive architecture approaches is personality. How-
ever, endowing agents with a consistent personality is a requirement for believable behavior
and reportedly affects outcomes like acceptance, credibility, and trust [MDWS00, Ort03,
RGA*(09, VSB*20, ZMLY19]. In contrast, modeling personality for agents is a standard
procedure in IVA research; often combined with a representation of emotion and mood
[AKG*00, KMTO08, NFdSS10]. More recently, game developers have also started integrat-

Ihttps://unity.com/, [online: May 2, 2023] Unity Technologies
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ing personality models, recognizing the benefits for diversifying behavior of NPCs [BP17].
Personality in humans is a driving factor for their behavior, contributing to an individual’s
uniqueness [BTD14, CM09, Her(09, Mat18]. It is reasonable, that the same observations hold
for virtual humans. Therefore, integrating personality as a core aspect of a lightweight
cognitive architecture is one of the major objectives of this thesis project. Especially the
aspect of linking personality to task-specific behavior is considered psychologically (how to
determine a link) and technologically (how to generate behavior from it).

The fact remains that many agent architectures already exist, some are even specif-
ically aimed at virtual environments (e.g., CIGA [vOD11, vOVD12, vO14] or Pogamut
[GKB*09, GBK*10]). Why is it necessary then to propose yet another architecture design to
answer RQ1 - What is an appropriate design for an attentive cognitive agent architecture
in virtual environments? The answer is, none of the researched approaches fulfill all
three requirements of this thesis project: plausibility, controllability, and scalability. Other
solutions either focus on a subset of the specified aspects or provide generalized middleware
approaches. Therefore, based on RQ1 and the current research gap regarding a personality-

based, lightweight cognitive architecture, the following research task is formulated:

RT1: A lightweight cognitive architecture for virtual environments.

The main motivation of the work presented in this thesis project is to provide means
for simulating autonomous software agents within a virtual world. These agents should
blend into the environment in such a way that their presence improves the experience of
a user interacting with the virtual world while simultaneously supporting a design goal
(e.g., training). Inspiration towards achieving this task is taken from cognitive architec-
ture research by identifying common components and assessing their utility towards the
intended solution. The identified components should be arranged in a modular manner to
maximize flexibility and adaptability to specific application scenarios. Due to the general
application domain of real-time virtual environments, the scalability of solutions should be
considered during all stages of the project. Generating consistent, individualized behavior
is achieved by integrating personality as a core aspect of the architecture. Furthermore, since
controllability is important, the architecture must be customizable through configuration.
The result should be a theoretical agent architecture as part of the concept stage as well as a

version of the architecture suitable for the application stage.

To outline the development of the cognitive agent architecture presented in this thesis,
this chapter is structured as follows. In Section 3.1, the initial situation is described alongside

a recap of cognitive architectures, which provide the main inspiration for the concept. This
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basic discussion is followed by a theoretical concept in Section 3.2, presenting a method-
ological definition. A cognitive agent architecture design, which is based on the theoretical
concept, is described in Section 3.3. In Section 3.4, the methodological design is reduced to

a version that can be realized under the constraints of this thesis.

3.1 Prerequisites

The literal meaning of agent comes from the Latin word agere, which means “to act.” An
agent needs to be part of an environment to act, which can be a very abstract definition (e.g.,
[RN10]), a virtual environment (e.g., [CSPC00, RVP13, HL15]), or the physical world (e.g.,
[PLIO7]). The role of the environment will be discussed when describing the environmental
stimulus (see Section 5.2). Being situated in the environment is usually referred to as
embodiment, which means giving a “physical” presence to an agent within its surroundings
(cf. [Lil15]). Physicality does not necessarily imply that the body of an agent is made of
real-world material or that it exists in the real world. The body can also be rendered and
animated using computer graphics. The important aspect is that the agent’s body interacts
with the environment including the associated limitations.

Traditionally, the body of an agent has been investigated separately from its mind, i.e.,
the agent’s cognitive capabilities are isolated from its ability to perform actions in the envi-
ronment [HL15]. Whether or not the strict separation of body and mind is useful in general
can be debated from several points of view (e.g., see [RVP13]). In the context of this thesis,
and from a technological standpoint, the classical separation is certainly beneficial. First, the
two layers can be investigated almost independently, which allows focusing on the cognitive
aspect while avoiding further complexity from techniques required to perform the actions,
e.g., animation, physics simulation, inverse kinematics, etc. Second, if considered suffi-
ciently, the separation can be leveraged to interchange bodies across or within simulations.
The separation is not always well-defined and may blur occasionally. For example, sensors
should obviously be a part of an agent’s body, but in the design introduced in Section 3.4
they are part of the mind due to their close connection to the overall perception process.
In cases where the agent’s body should determine its sensory capabilities, a mechanism
selecting sensors could be based on the current form of embodiment.

Based on the loose definition of an agent as a combination of body, mind, and environ-
ment, a closed perception-decision-action loop is defined (cf. [HR95, RN10]). The body
provides information from the environment to the mind. The mind then acts upon this
information by selecting an available action and tasking the body to perform that action.

Once the body has completed the action, the environment has changed, which is in turn
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Figure 3.1: The definition of an agent requires a combination of body, mind, and environment.
Based on these components, a simple reflexive perception-decision-action loop can be defined. The
agent perceives the state of the environment using sensors. Based on this information a decision is
made, which changes the environment state by performing an action using the body’s actuators. The
image is based on [RN10].

perceived by the agent. Figure 3.1 illustrates the separation of body, mind, and environment
including a depiction of this simple loop, which defines a reflexive agent [RN10].

Reflexive agents may be sufficient for simple task domains, requiring little to no further
components other than the ones indicated in the perception-decision-action loop. Russel
and Norvig discuss a simplistic example of a vacuum cleaner agent whose perception is just
a tuple of the location it is in and the information whether that location is clean or dirty.
The agent’s only actions are moving to one of two locations or cleaning and its decision
process is one simple if-else rule. However, as the application domain and the desired
agent behavior become more complex, the architectural design generating the behavior
must become more sophisticated [HR95]. Especially, when attempting to imitate humans in
a virtual world, additional structures become necessary, e.g., to keep track of past percepts,
learn from experiences, or act towards achieving a goal. Due to their objectives of achieving
artificial general intelligence, cognitive architectures (such as Soar [Lai08, Lail2]) seem a
logical choice for realizing human-like, cognitive agents. However, designing models of the

human mind, capable of solving general problems, naturally results in complex architectures.
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These architectures are typically difficult to understand, maintain, and apply. Additionally,
they require extensive computational resources making them cumbersome for real-time
multi-agent scenarios. Yet, cognitive architecture research is rich in history, examples, and
insights that provide useful inspirations for a lightweight cognitive agent architecture design
(see Chapter 2). Besides cognitive architectures aimed at contributing towards artificial
general intelligence, there are examples that focus on isolated aspects of human cognitive
processes. The architecture design proposed in this chapter features the elements that are
most common in cognitive architecture research, most notably short-term and long-term

memory, decision making, learning, and perception [DOP08, KT18, MS11].

3.2 Theoretical Concept

As mentioned at the beginning of this chapter, the requirements for an envisioned solution
of authoring and simulating agents in virtual environments are believability, controllability,
and scalability. Based on these requirements and the associated scientific gap, a review of
existing cognitive architectures and virtual human architectures was conducted to identify
essential cognitive skills. From the wide variety of identified skills, a set of necessary
cognitive skills and functionality is compiled. This set is described in the following and is

subsequently used to put forth the concepts introduced in Sections 3.3 and 3.4.

3.2.1 Perception

The first interesting aspect is to model what an agent should be able to perceive from its
environment. To fully simulate an environment, all information about said environment are
known and can thus be provided to every agent (cf. [GLBVO08]). This, however, is not a
realistic reproduction of human behavior. For example, a human cannot know for certain
whether other beings are around if they are not perceived by at least one sensory organ.
Therefore, a “perception filter” needs to be applied to control which information reaches the
agent in a reasonable manner. A typical “filter” designed after their biological examples are
sensors. The number and types of sensors available in an architecture determine the amount,
type, and complexity of input into the system. Often sensors correspond to human senses
(i.e., vision, hearing, touch, smell, taste, proprioception), but they can also include modalities
not available to humans (i.e., symbolic via keyboard or GUI, ultrasonic, laser, infrared, GPS,
and others) [KT18]. Depending on the application, some modalities make more sense than
others, some sensors may function as shortcut to avoid intensive calculations or intricate
algorithms (e.g., using speech-to-text instead of modeling the perception of sound), and

some may be unnecessary [KT18]. For example, for agents in a traffic simulation, the visual
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and auditory senses are the most important. In contrast, simulating smell or touch is a waste
of recources during development and during simulation.

In this thesis, attention is considered as part of the perception process, which is sometimes
called perceptual attention or external attention. One biological reason for attention is to
decrease the amount of information provided by the senses. In cognitive architectures this
relates to selecting and modulating information coming from different sensors with visual
sensors being the most common. Tasks covered by this type of attention are typically region
of interest selection, gaze control, task-driven attention, and data-driven attention [KT18].
Generally, attention in agent systems serves both aesthetic and functional purposes. One
aspect of the functional purpose is reducing information load as mentioned above. Another
aspect is to orient the agent’s sensors, ensuring that the relevant information is provided to
its depending processes (e.g., action selection). The aesthetic purpose is to communicate the
agent’s internal attention processes overtly to an observer, increasing the naturalness of the

entity by emulating what we, as humans, are used to observe in other beings [PCR*11].

3.2.2 Memory

According to Atkinson and Shiffrin, memory is the component that distinguishes human
beings from each other; that determines who we are [AS16]. What the human brain has
stored about the world dictates what we perceive and how we perceive it [GB16], who
we talk to, what we eat, what we read, and so forth. The knowledge stored in memory
basically determines almost all human interactions and decisions [AS16]. Therefore, it
seems obvious that all cognitive architectures contain some sort of memory model serving
similar purposes, i.e., storing intermediate results [DOP08, KT18]. Ideally, a realistic memory
module would be an effigy of the human original including its abilities and disabilities. One
of the major problems with this ideal is the fact that, due to its complexity, the human brain
has yet to be entirely understood (cf. [GB16, PO02]). Consequently, memory models can
only be simplifications that emulate observed functionality. The main task of memory is
storing results, but actual implementations differ widely depending on the task domain.
Most memory modules are structurally organized into a hierarchy of sub-modules. While
research suggests that a multitude of “memories” exist in the human brain (e.g., iconic,
echoic, episodic, face, and voice memories [Bad03]), many examples distinguish between a
short-term (or working) memory and long-term memory (e.g., [Lail2, LC06, KT18, PO02]).
The exact purposes and naming of the two may differ, but usually their general purpose is
implied by the names given above. The long-term memory is used to store information that
is meant to reside within the system for extended periods of time. The short-term memory

represents information currently needed by the system to operate, e.g., the content of a
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goal stack in planners [KT18]. How, when, and where information is stored is defined in
accompanying processes. These memory processes include, e.g., rehearsal, memory search
and retrieval, or discard in accordance with memory capacity. Together with the structural

component, they define the memory model (cf. [AS16, KT18]).

3.2.3 Internal Simulation

Another important skill learned by humans is to anticipate what consequences will result
from their actions. Such anticipation requires an internal representation to estimate a possible
outcome of the environment’s state after an action has been performed. This could, for
example, involve spatial reasoning in the form of visual imagery as proposed by Lathrop
and Laird [LLO7]. In any case, it will require a form of internal simulation. A closely related
issue is that of predicting behavior of other agents to plan or act accordingly. To model this
ability, an agent must be given the tools to perceive other agents and to anticipate their future
actions. In other words, an agent must be able to project its ability to foresee the results of its
own actions as well as its reasoning processes onto other agents. During this process, agents
should not be able to acquire more information about other agents than humans can derive
from observing other humans. For example, agents should not be able to access another

agent’s memory, although this could be achieved for virtual agents without difficulty.

3.2.4 Alternative Behavior

A major shortcoming of state-of-the-art simulations in virtual environments is the inability
to produce alternative behavior to otherwise irresolvable situations. To clarify this issue,
consider the following classic example: Either by design or through an action of the player,
a dead end is created in a level of a digital game, resulting in NPCs getting stuck due to
their programmed behavior. According to [YT18], this result is a problem of level design or
Al testing in game development. A simple heuristic to resolve the issue is often to remove
the agent from the environment if it cannot advance. However, this solution will certainly
break the suspension of disbelief and reduce the player’s immersion; the very thing that
it is supposed to avoid. Instead, it would be much more interesting if the agents would
start to “think” of an alternative plan to resolve the situation that lies outside the scope of
the programmed rules. For example, agents could “re-purpose” existing structures to pass
around the blockage, such as a car temporarily using the sidewalk or a character climbing
through a window. Although, these usages are not part of the agent’s regular behavior,
they seem appropriate to an observer if the circumstance justifies it. Of course, one or
more alternative solution could be added to the regular action-selection process after being

discovered and would then have to be covered by a testing or level design process. However,
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it is impossible to think of, design, and test every possible scenario. Ideally, agents would
be able to derive alternative affordances of structures or objects themselves and utilize them
if necessary. However, if agents are allowed to break existing rules for navigation, social

protocol, or object usage, they must do so only if it makes sense to an observer.

3.2.5 Individual and Emotional Decision-Making

The need for having individualized behavior is typically not a topic of Al research. In IVA
research, however, it is a common theme (e.g., see [KMT08, HR15]). The agent architecture
developed in this thesis is meant to be a basis for multi-agent simulations in virtual envi-
ronments. Consequently, users will be able to observe multiple agents in similar situations.
To keep the user’s sense of presence, agents should not all behave in the same way. Instead,
similar to reality, behavior should be individual to increase believability [KMTO08]. In addi-
tion to memory (see Section 3.2.2), personality is one further aspect that defines humans as
individuals. A person’s personality is a relatively stable characteristic that influences that
person’s responses and decisions, and thus the observable behavior [BTD14, CM09, Mat18].
Therefore, IVA researchers have been investigating the use of personality, typically for
driving decision-making processes. However, personality does not only influence decision-
making but the entire cognitive system [SFC*10]. This observation should be reflected in
the architecture concept accordingly.

Yet another important aspect of everyday life are emotions, moods, and feelings. Al-
though these are non-cognitive factors, the current emotional state can influence memory
and perception and thus the decisions someone makes [Bad03, PCR*11]. Therefore, they are
considered here as one of multiple cognitive processes. Simulation of these factors ties in
closely with the previous goal of dynamic behavior as a specific emotion might increase the
probability to break given rules and to behave irrationally; maybe even dangerously. Deci-
sions are influenced by both the current situation and the current emotional state. Therefore,
since emotions, mood, and feelings influence perception and decision-making, the entire
cognitive process is affected (e.g., see [SFC*10, SFC*11]).

3.2.6 Miscellaneous Factors

In addition to the items listed above, the behavior of agents may also depend on additional
factors. For example, an agent’s current role can have an influence on its action selection.
Depending on whether the agent impersonates a soldier, a tourist, a sidekick of the player,
or a trainer in a training exercise, it will be more or less likely to make certain decisions.
Other factors could be the time of day, weather conditions, the agent’s current objective, its

age or gender, and more; too many to be listed or considered here.
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3.3 Architecture Design

From the desired characteristics detailed in the previous section, the methodological cogni-
tive architecture concept shown in Figure 3.2 is derived. One important aspect of generating
plausible behavior is making sure that agents do not all act the same. To achieve individ-
ualized behavior, a psychological personality profile is part of each agent. As a result, the
architecture design consists of two layers: a foundational layer including the personality
profile and on top of this layer, cognitive process modules determine an agent’s capabilities.
The structure of the cognitive layer is inspired by cognitive architectures as mentioned above.
All the cognitive processes in the second layer are influenced by the underlying personality
profile. Through this influence, the personality layer diversifies generated behavior between
individual embodiments of agents. At the same time, the personality ensures that an indi-
vidual agent’s action selection process is consistent with its past behavior patterns, which
avoids the impression of non-deterministic decision making. The general design allows for
interchangeable implementations of personality profiles, and it incorporates a model able
to transition results of psychological studies to agents. When generating profiles from real
studies, it is possible to link personality prototypes to domain-specific behavior patterns that
represent real-life behavior (e.g., driving [Her(09]). In some instances, it may be sufficient
to achieve archetype behavior not specifically linked to real-life behavior. In these cases,
a similar approach can be used by assigning personality prototypes to appropriate agent
types. More details about this topic can be found in Chapter 4.

Information from an agent’s environment (symbolized by the top arrow in Figure 3.2) en-
ters its mind by passing through a perception module (see Section 3.2.1). The module filters
information coming from the environment; its complexity depends on the level of realism
that is to be achieved as well as on the available sensors and sensor modalities. Additionally,
a module representing emotion, mood, and feelings is coupled to the perception module,
because what an agent perceives? should influence its emotional state and its emotional state
should influence what it currently perceives.

At the center of the cognitive processes is the short-term memory, representing the
agent’s current knowledge about itself and the world it inhabits. The short-term memory is
the agent’s working memory; the basis for every subsequent process, which must be filled
with information from either perceiving the world around the agent or from long-term
memory. Depicting the long-term memory as one module may be too optimistic as it can

include multiple types of information, e.g., episodic memories, social protocols, semantic or

ZNote that there is a difference between perceiving and sensing information involving where information is
stored in memory. However, to keep the description simple at this point, the two are not differentiated in this

chapter. Details about the differences can be found in Chapter 5.
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Figure 3.2: A methodological concept of an architecture for cognitive agents in virtual environments.
Alayer of cognitive process modules is situated on top of a personality profile layer. Interaction with
the agent’s body and environment are indicated by the incoming and outgoing arrows (above and
below the cognitive layer). The cognitive processes define the agent’s capabilities, which are all

influenced by the underlying personality profile. Image based on [SvS20].
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global knowledge, strategies, etc. [KT18,PO02]. Each of these types of long-term information
could be stored in different ways and in different modules. At this level of abstraction, it is
sufficient to group this information in one module.

If information residing in short-term memory is useful for future situations, e.g., observa-
tions of action results, a learning module encodes this knowledge into long-term memory.
This connection may be more complicated when implemented as it may have to retrieve
information from other modules. However, every information available in other modules
can be made accessible by encoding it in short-term memory.

A decision process module retrieves knowledge from working memory to select the
appropriate action from an action module. The agent’s current emotional state may also
influence this selection process, depending on the type and strength of the emotions, the
mood, or feelings. The emotional state can be one factor that triggers the decision process
to adapt action selection to the current situation over time. In contrast to the description in
Section 3.2.5, memory is influenced by the emotional state only indirectly through emotion-
ally altered perception and decision making, as an additional direct influence on memory
is redundant. Alternative behavior generation, as discussed in Section 3.2.4, is considered
part of the decision module here. The functionality of this module can be provided, e.g., by
straightforward if-then rules, elaborate machine-learning algorithms, or other intricate deci-
sion processes. In most cases, application-specific needs will dictate the actual realization of
the decision module, especially regarding the trade-off between autonomous behavior and
control over generated behavior, which was discussed in Section 1.2. In this thesis project,
the decision process is not further elaborated and a behavior tree implementation is used in
the realization of the architecture concept.

The action module may store all actions available to an agent and provide them for
retrieval. The module may also be responsible for executing the actions (including processes
like navigation or animation playback). Actions that influence the environment are per-
formed by an agent’s body. However, actions should not only be performed in the agent’s
environment (indicated by the bottom arrow in Figure 3.2). It should also be possible to
perform the action within an internal simulation whose outcome can influence which action
is selected for performing externally. This mechanism can be used to realize the anticipation
of results from the agent’s own actions or from those of other agents (see Section 3.2.3). The
distinction between internal and external action is the reason for having the action module
reside within the agent’s mind. The arrow pointing to the agent’s environment represents
environmental actions, i.e., actions that use the agent’s body to change the state of the envi-
ronment. The other arrow represents internal actions, i.e., actions whose consequences are

simulated within the agent’s mind.
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Figure 3.3: Depiction of the CA?RVE architecture design. An underlying personality profile is influ-
enced by the current emotional state, resulting in a dynamic intermediate personality layer. On top, a
cognitive layer includes the agent’s cognitive processes, which are influenced by its personality and
indirectly by its emotional state. Perception “filters” information coming in from the environment.
The module includes sensation, memory, and attention because the processes are closely related. A
decision-making module represents several high-level processes used for action selection. An action
module serves as output interface to the environment.

3.4 CAZRVE - Cognitive Attentive Agents for Real-time Virtual En-

vironments

The cognitive agent architecture concept proposed in the previous sections is directed to-
wards meeting the characteristics discussed in Section 3.2. The concept’s main purpose is to
provide a theoretical agent architecture for solving the research questions considered in this
thesis and is the result of the conceptual research stage. During the application stage, the
theoretical design is refined, condensed, and re-ordered to focus on lightweight and robust
real-time application without compromising the overall design. Since the intended use for
this architecture are virtual trainings, simulations, and (serious) games, computational per-
formance must always be considered. Additionally, depending on the application domain,
the definition of plausible behavior may vary. The architecture should reflect that ambiguity
by allowing the necessary flexibility by enabling configuration towards specific application
scenarios. For that purpose, several control mechanisms are integrated, and components
are defined in more detail (see Chapters 4 and 5). Additionally, elements are grouped in

specific ways, e.g., to enable interchangeability or efficiently swapping components in or
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out. Figure 3.3 demonstrates the changed concept of the Cognitive Attentive Agents for
Real-time Virtual Environments (CA2RVE) architecture.

As in the methodological concept, the foundation layer consists of a personality pro-
file. The generic model is replaced by the Five-Factor Model (FFM). The model is a pop-
ular choice in virtual agent research, due to its intuitive and descriptive characteristics
[AKG*00, KMTO08]. Additional reasons for the model’s validity were mentioned in Chapter
2. Additionally, a second personality layer is introduced to capture the aspect of dynamic
behavior generation influenced by the current emotional state. The static personality profile
of an agent is altered by its current emotional state, resulting in a dynamic personality profile.
This approach is not psychologically correct, but has two advantages: (1) The influence of
the emotional state can be activated or deactivated without having to alter any other process.
This flexibility is useful for customizing the architecture to specific scenarios but can also be
utilized for evaluations comparing emotional to non-emotional agents. (2) The influences of
the emotional state and the personality profile do not have to be encoded in every cognitive
module. Instead, emotion indirectly influences all modules via the altered personality.

Due to the intended use of the CAZRVE architecture, the aspects mood and feelings
were removed from the application stage design. The main reason is that the effect, which
is observable by users, will only last for short periods of time. Mood and feelings are
characteristics that persist or develop over longer periods of time, which users would not
be able to perceive. If modeling one or both effects should become necessary, it would be
possible to encode them either in the personality model or in memory.

Information reaching the agent from the environment still passes through a perception
module, but because perception is closely related to memory storage and processes, the
memory module is integrated into the perception module. One example of this connection
is that perceiving information — in contrast to simply sensing it — means that the agent
needs to become aware of the information (cf. [Enn04]), which occurs once the information
resides in short-term memory. The objective for refining the memory module was to keep
the structural hierarchy defined in the theoretical concept, but focus on the processes for
storage, decay, and information retrieval. Furthermore, attention is also defined as part of
the perception module for similar reasons. Perception still directly influences emotion, but
due to the changes regarding personality, the emotional state influences perception indirectly
through the dynamic personality layer.

During this thesis project, the focus was on designing the foundation consisting of
personality and emotion models as well as the perception module. Consequently, two
aspects included in the theoretical concept had to be set aside. Learning is omitted from the

architecture, because making a significant contribution to this topic would have required
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focusing on this aspect alone. Internal simulation is not an explicit part of the cognitive
layer and is not discussed further in this thesis, although it could be defined as a part
of the decision module if necessary. Selecting certain actions, like turning the head to
direct attention towards specific objects or events in the environment, will automatically
result in different input to the perception module. This influence is only implied in the
methodological concept. Due to the focus on perception, a direct connection between the

action and perception modules is included in the CA?RVE architecture.

3.5 Conclusion

In this chapter, the results of RT1 were presented. First, a selection of required characteristics
of a cognitive agent architecture for virtual environments was described. The characteristics
were derived from cognitive architecture research, IVA research, and general considerations
regarding the intended usage. Second, based on these characteristics, a theoretical agent ar-
chitecture was designed to fulfill the discussed requirements of believability, controllability,
and scalability. The foundation is a personality model to satisfy the intent of providing in-
dividualized behavior in a multi-agent setting. On top of this foundational layer, a modular
collection of cognitive processes is used to define an agent’s set of capabilities. Besides the
basic components for perception, decision-making, and actions, further cognitive compo-
nents were integrated into the design. A hierarchical memory system provides agents with
a model of the environment in its current state and the opportunity to draw from global
knowledge and experiences. Internal simulation is used to model anticipation of an agent’s
own actions as well as actions of other agents. A decision module in combination with
learning capabilities can enable the ability to find alternative behaviors to resolve situations
that the default behavior cannot handle. A module modeling emotion, mood, and feelings
is a short-term to medium-term extension of the temporally stable personality profile that
facilitates individualized behavior that can also reflect an agent’s current situation.

Third, the theoretical architecture was adjusted to focus on specific sub-areas of the
design and to consider customization toward the targeted domain, real-time constraints, and
controllability aspects. In the resulting CA?RVE architecture design, sensing and memory
were integrated into the perception module due to their close interrelation and attention
was added as a separate module. High-level processes like learning, internal simulation,
and planning were subsumed within the decision-making module. This decision was made
to be able to focus on personality, emotion, and perception, while maintaining the option of
defining a more detailed design of the module in future work. Due to the limited ability of

observing changes based on mood and feeling, these factors were discarded from the design.
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Instead, emotion remained as the dynamic factor that can alter an agent’s typical behavior, as
its effect is short-lived, i.e., observable during a single simulation. An underlying personality
profile still defines an agent’s typical behavior, but a dynamic version of the profile is inserted
between the bottom layer and the cognitive layer. This intermediate layer is a combination
of the original profile and the current emotional state. This design is not psychologically
sound but was chosen to allow the effect to be switched on or off whenever required and to
transfer the current emotional state to any of the cognitive modules.

With the results of the first research task (RT1), the intention was to provide a possi-
ble solution to RQ1. Judging the quality of the results in isolation, i.e., solely based on the
provided descriptions, is difficult as it would be a subjective discussion. Therefore, the archi-
tecture must be realized and integrated into a real-time application to evaluate it regarding
the identified requirements of believability, controllability, and scalability. An exemplary
realization of the architecture is presented in Chapter 6 and several evaluation scenarios are
described in Chapter 7. However, before the realization and evaluation, an in-depth look at
three essential architecture components is provided in the following two chapters. The static
personality profile is described in Chapter 4 and expanded by explaining the role of emo-
tion in the dynamic personality layer. Chapter 5 provides a detailed look at the perception
module and the included components and processes.



PERSONALIZED AND EMOTIONAL AGENTS

“A person cannot change his personality. The only thing he can change is "habit’. He can play
around with behaviors though.”

- Andrea L’ Artiste

HE motivation for this thesis project is to define an architecture capable of generat-
ing more believable agent behavior for real-time virtual environments. To achieve
this objective, a lightweight cognitive agent architecture is devised and described
in Chapter 3. The methodological concept of the architecture includes modules
for emulating perception, memory, emotion, decision-making, action, internal simulation,
and learning. To consider customization toward the targeted domain, real-time constraints,
and controllability aspects, the number of components is further reduced to perception,
emotion, decision-making, and action as described in Section 3.4. Expanding the notion of
believability of IVA behavior to multi-agent scenarios additionally requires individualized
behaviors. Otherwise, all agents act the same, likely hindering immersion or even breaking
a user’s suspension of disbelief. One approach of achieving individualization is to endow
each agent with its own personality. Personality is one characteristic that makes a human
unique (cf. [BTD14, CM09, Mat18]). It determines a human’s performance in specific tasks
(e.g., [IMDWSO00]), it influences how susceptible someone is to emotions (e.g., [WC92b]),
and it is a driving factor for behavior (e.g., [Her09]). Similarly, according to Matthews et
al. [MDWS00] and Ortony [Ort03], a consistent personality is a requirement for believable
agent behavior with the additional benefit of increasing acceptance, credibility, and trust in
virtual characters (e.g., [RGA*09, VSB*20, ZMLY19]).
Cognitive architecture research, which is the main reference for the agent architecture
presented in the previous chapter, generally does not consider personality for agents. There-

fore, this field cannot be used as reference in this matter. Furthermore, there are opinions
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stating that human-derived personality models may not be applicable to virtual humans at
all (e.g., [VSB*20]). In contrast, there is evidence that utilizing human personality models
in agents is possible (e.g., [CVB*12, CHLC18]) and it is a standard tool in IVA and ECA
research [AKG*00, KMT08, NFASS10, VSB*20]. For example, Rushforth et al. [RGA*09]
extended virtual humans with a personality model based on the NEO-PI-R, a variant of the
Five Factor Model (FFM) [MCO8]. The personality parameterization determined the choice
of dialog options for a virtual character in a military tactical questioning scenario. They
found that different personalities produced discernible behavior that could be observed by
test subjects. Bevacqua et al. [BASP*10] used Eysenck’s three-factor model to control so
called backchannel preferences of agents when reacting to user input. They anticipated that
this extension would improve user perception of virtual characters. Castillo et al. [CHLC18]
used similar methods and found that standard personality questionnaires can be applied to
measure the personality of virtual humans. However, they also reported that the precision
of the perceived personality depends on the available communication channels (e.g., voice
only, visual only, multimodal). Zhou et al. [ZMLY19] did not only equip a chat-based in-
terviewer agent with a FFM personality, but also had the agent deduce personality profiles
of users to investigate how similar personalities affect user perception of and their trust in
the agent. Volkel et al. [VSB*20] even developed their own personality model dedicated to
speech-based conversational agents, such as digital assistants. Knob et al. [KBM18] used
the FFM to diversify group behavior in crowd simulations. Gebhard described ALMA, a
layered affect model that integrates personality, mood, and emotion into virtual humans to
increase their believability. The employed personality model was the FFM, emotions were
represented using the OCC model, and the pleasure, arousal, dominance (PAD) model was
used to formalize mood. In ALMA, mood is affected by emotion and personality in PAD
space and influences agent behavior.

Despite its common usage, the derivation of behavior from personality representation
is often anecdotal, based on personal experience, or determined by trial and error (e.g.,
[RGA*09, BdSP*10]). Additionally, several human personality models exist and are em-
ployed within IVA/ECA research. The most common are the Five Factor Model (FFM)
or Big Five [MJ92, MCO08], Eysenck’s personality model [Eys47, Eys70], and Cattell’s 16
Personality Factors [Cat46, Cat57]. But what makes one model more “correct” or more
suitable for virtual agents than another? Even if one model is chosen, different reporting
techniques and measuring scales can exist. For example, the FFM can be measured using
the NEO FFI [CM92] or the Big Five Questionnaire [CBBP93], among others. The situation is
complicated by the fact that there can be model variations, such as the NEO-PI-R inventory
that further divides each personality trait of the FFM into six facets. One of the research
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questions asked in this thesis is: Can the proposed agent architecture systematically gener-
ate individual, dynamic agent behavior (RQ2)? More specifically, the question is whether
personality profiles can be integrated into a lightweight cognitive architecture to achieve

this objective. The investigation of this question is part of the research tasks RT2.1 and RT2.2:

RT2.1: Generating individual, consistent behavior patterns using a lightweight cognitive
agent architecture.

To integrate individualized behavior, an agent’s personality should be the core layer
for all further functionalities. Consequently, agents select possible actions not only based
on their current surroundings and situation, but also according to their personality. This
selection process will create variety in an otherwise deterministic process. Since actions are
chosen based on personality, individual behavior patterns vary from agent to agent, but do
not seem random as they are consistent with each agent’s previous actions. As a result, the
architecture is able to generate individual, consistent behavior patterns.

Furthermore, instead of having to select a specific personality model, a generic model
for computational use of personality profiles in autonomous agents is developed. Such a
generic model would be independent of employed reporting techniques or measurement
scales allowing different personality models to be related to each other. The additional pur-
pose of using a general personality model within the architecture is mapping psychological
personality-based studies to a realization of the formulated concept. These mappings can
be used to reproduce realistic domain behavior reported by such studies. To demonstrate
the utility of the approach, a typical realization of the general model is provided using the
commonly used FFM. Based on the personality definitions, task parameters are used to

utilize the model in other cognitive processes, like decision-making.

RT2.2: Adapting personality-based behavior to an agent’s current situation.

An agent’s underlying personality model defines its individual behavior. This mech-
anism by itself will result in identical action selection when an agent is presented with
identical situations (as presented by its own perception capabilities). Consequently, if a se-
lected action does not change an agent’s situation, the agent will repeatedly select the same
action, which may also degrade the plausibility of observed behavior.

To overcome this issue, agents can be provided with enough alternative actions and
a mechanism to choose between them. An obvious realization of such a mechanism is
probabilistic selection. However, without any further adjustments, this approach would
disconnect the action selection from the situation resulting in a less comprehensible process

for an observer. While the effects can be mitigated, e.g., by introducing a utility function, the



50 Personalized and Emotional Agents

most realistic solution would be providing agents with the ability to become aware of and
understand their situation and find solutions that are not pre-defined by a system designer.
Unfortunately, these approaches are too complex to be considered within the constraints of
this thesis project regarding computational requirements and available resources. Instead,
the desired alteration mechanism is provided by combining the personality model with
an emotional state that dynamically changes based on an agent’s circumstances. Other
affective agent architectures often also model mood, a lasting state of feeling created by
complex cognitive processes [Tha89]. However, since users are not able to observe changes
of such lasting states during a simulation in the intended domain, a mood model has not
been included in the agent architecture. The proposed architecture includes only emotions
— short-lived feelings caused by experienced events [Tha89]. These predefined events
influence the behavior for a limited time and fade until normal behavior, as defined by
the personality, is restored. This approach avoids the aforementioned disconnect and is

consistent with the chosen personality-based approach.

The remainder of this chapter contains the results of RT2.1 and RT2.2 realized as two
layers: (1) A static personality layer that generates consistent behavior patterns (see Section
4.1) and (2) a dynamic personality layer influenced by an emotional state enabling an agent

to adapt to events in its environment (see Section 4.2).

4.1 Psychological Personality Profiles

Within the lightweight cognitive architecture concept, personality is used to individualize
agent behavior. Before personality can be used to generate behavior, it needs to be repre-
sented in a useful way. Additionally, the intent is to incorporate psychology studies that
link task behavior to personality to emulate realistic behavior patterns! (e.g., the correlation
of personality and driving behavior [Her(09]).

For both purposes, trait theory is useful as it views human personality as a combination of
mostly independent trait factors. Based on such a combination, a computational model can
be defined that is easy to understand, configure, and adapt. Each factor can be represented
as a real number, allowing the definition of trait vectors that form a personality. Trait
theory is also the most common approach to psychology research [Mat18], which means a
large collection of studies that relate a trait model to other cognitive aspects (e.g., emotions,

task performance, perception) is available. The results of these studies can then be used to

INote that realistic does not automatically mean plausible. The perception of plausibility depends on the

circumstances and the rules of the virtual world that is experienced by an observer.
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configure the generation of agent behavior. In the following, a general trait-based personality
model is defined that does not restrict the number or type of traits as different applications
may require different profiles or numbers of trait dimensions. Furthermore, it is shown how
the model is substantiated for its integration into the proposed agent architecture including

its connection to the processes in the cognitive layer.

4.1.1 Representing Personality

Although, trait theory is very common among psychologists, there are various models
utilizing different numbers and different types of traits. Even within the same model, scales
and values differ depending on the means deployed to map personality to traits of the model.
For example, NEO-PI-R, NEO-FFI [CM92], or TIPI [GRS03] are different questionnaires that
measure FFM personalities. In the following, a general trait-based personality model is

defined to avoid committing to a specific set of traits and to provide a generic solution:

p=p1,...,.pn) €R"

(4.1)
D=1{dy,...,da},Vdi€D:di(p) =p;, 1 <i<nd;: R" >R

A personality profile p is defined by an n-tuple of traits, also referred to as dimensions.
The number of dimensions may be derived from an existing personality model or depend
on the intended application. Each function of the set D maps a profile to a single value
representing one particular dimension. In the context of this thesis project, the projections
are restricted to d; = p;.

One of the motivations is to be able to use psychological studies about human behavior
and apply them to the CA?RVE architecture. This requires a mechanism to utilize the
dimensions of a personality profile for decision-making and a mapping from a study to the
chosen personality model. The former will be discussed in Section 4.1.2. To achieve the

latter, a study is defined based on the generic profile from Definition 4.1 as follows:

7 =(P,C,1,h)y with

P ={po,...pq},
C={%,...,6n},m<gq
LheR,YdeDAVpeP:I<d(p)<h

(4.2)

According to this definition, a study . consists of a set of personality profiles P, a set
of profile classifications C, and the theoretical minimum / and maximum / of the study.
The set P contains all profiles that were found in the study, i.e., each profile represents

one test subject. These profiles are divided into classes %p through %;,, which should not
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only represent the measured profiles using a much smaller set C but are typically used to
differentiate behaviors. Depending on the study and the measurement techniques used
therein, ranges and distributions of values may vary between studies. Thus, it is useful to

define classes in a standardized manner by using a z-score profile:

pi— Ui

1

z={z1,...,2,} with z; = (4.3)

where p and o are average and standard deviation profiles with respect to a set of profiles P:

E,. 0

= {Hl/"'/‘l’[ﬂ} with Wi =

IP|
> (4.4)
D e (AiP) = 11)
o ={0q,...,04} with o; =
Pl
Using the equations from 4.3 and 4.4, a class of a study ¢ is defined by:
¢ =(Q,p,zywithQCPVYd;eD:I<di(p)<h, (4.5)

where p is a prototype personality profile representing class ¢ and z is the z-score profile of
p regarding the set of personality profiles P of the study. The prototype profile p does not
have to be contained in P and therefore not in any set Q, because it is typically a statistical
representation. Q is a subset of profiles from P, which are associated with class 4. Note
that not every profile determined in study . must be associated with a class identified in
or applied to the study. However, every profile from the study can only be associated with
one class, i.e., for the set of classes C = {%7,..., %} the following holds:

V6,6 €C:QiNQ;=0,i# ] (4.6)

These definitions provide a theoretical tool to realize personality profiles for agents that
can be derived from different psychological studies. However, to be able to utilize studies
in a meaningful way;, it is necessary to choose one model for the realization that is also used
in all referenced studies. One model commonly used in psychology and also IVA research
is the FFM [HR15]. The model has also proven to be consistent across observations, self-
reports, and interviews in different languages [SGW12]. Additionally, the FFM has been
used in studies to link human personality to behavior (e.g., [MDWS00], [Her09], [LLO1]).
Together with the provided definitions, these links can be used as indication of how to use
trait values of an agent’s profile to drive action selection and therefore behavior. Due to these

reasons, the FFM was chosen as the specific personality model in the CA2RVE architecture.
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According to the definitions above, a FEM profile is defined as follows:
Prem = (p1,p2,P3,Pa,p5) € R
Drrm = {o,¢,e,a,n} with
0:R’> > R,(p) — p1
¢:R° =R, (p) - p2 (4.7)
e:R° > R,(p) — p3
a:R° > R,(p)— ps
n:R° > R,(p) - ps

where the dimensions correspond with the model’s five traits: openness to experience,

conscientiousness, extraversion, agreeableness, and neuroticism.

4.1.2 Utilizing Personality in Cognitive Agents

Personality is one attribute that determines a human’s performance in specific tasks (cf.
[MDWSO00]). With the defined model and the ability to map psychological studies to it, the
same approach can be used for virtual humans. Therefore, task parameters are introduced
in the CAZRVE architecture. These parameters consolidate high-dimensional personality
profiles into a single continuous parameter used by cognitive processes, such as perception
or decision-making. With the help of personality profiles and task parameters, it is possible
to define an agent’s individualized behavior for specific tasks or task domains. How a
profile’s dimensions are transformed into a task parameter depends on the study or theory
used to correlate behavior and personality. Alternatively, transformations can be defined
without any underlying evidence, but could instead be used to define intended behavior
patterns or prototypes, e.g., for specific agent types. A straightforward mapping from a FFM
profile p of an agent a to a task parameter « is shown in the following:

¢ ={c1,02,c3,¢4,C5) € R (4.8)
a(@) =cep

where c is a 5-tuple of coefficients, which can be derived from a personality study using
appropriate range limits for coefficients and the task parameter and e denotes the dot
product. A similar mapping is used in a sample realization of the CA’RVE architecture to
define a politeness parameter, which influences the decisions of traffic agents (see Chapters 6
and 7). This parameter weighs an agent’s own advantage against other agents” disadvantages
that would result from its actions in lane changing and right-of-way scenarios. Coefficients
were determined using a study by Herzberg, which investigated the correlation between
personality and driving behavior using the FFM [Her09]. He identified three personality



54 Personalized and Emotional Agents

prototypes that predict accident proneness and driving behavior. These prototypes and
their associated driving behavior were the basis for choosing coefficients for the politeness
parameter. To design and assign personality profiles that are consistent with the prototypes
reported by Herzberg, the study was mapped to the definition introduced above. Herzberg
provided only relative descriptions of trait scores within the three prototype classes, but
references another of his studies that provides more details [HR06]. This second study was
used for the mapping, but it included only the z-scores for each prototype profile. To be
utilized within a realization of the concept, a fully defined study .7 is derived from the
z-scores using normalization, scaling, and assumptions about the underlying trait value
ranges. For details about the transformation process, please refer to [[VC13]. Using these
transformations, the following theoretical study .#rry is one example that can be used to
generate personality profiles for an implementation:
rrm = (P,C,1,h) with

P ={zy,25,23,24,25},

z1 =(0.15,0.66,0.6,0.48,-0.84),z> = (—0.09,-0.24,-0.75,-0.06,0.9),

z3 = (-0.06,-0.6,-0.12,-0.54,0.3), z4 = (0.48,0.18,0.36,0.12,-0.03),

z5 = (-0.39,0.15,-0.18,0.15,-0.21), (4.9)

C={€1,%2,63,64,¢5},

Ve € C: % =z}, zi,zp),
I=-1,h=1,
u=<0,0,0,0,0),0=¢1,1,1,1,1)

Note that each class ¢; includes only one profile, which is at the same time the prototype
profile and the associated z-score profile of that class. This circumstance is due to the
performed transformations. In the context of an application, this is all that is required as
agent profiles are generated using the prototype profiles. In other words, all sets Q; for each

class are filled during a simulation, every time a new agent is created.

4.2 Emotion Model

Integrating a personality model including task parameters into the proposed architecture
provides a way of generating individual but consistent behavior patterns for agents, which
answers RT2.1. However, when provided with the same task in an unchanging situation,
a personality-based agent will continue to exhibit the same behavior. For example, a polite

agent may continue waiting behind a parked vehicle to not interfere with oncoming traffic.
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While the decision may be consistent with the agent’s previous behavior at first, it will
eventually become implausible to an observer if the agent’s situation is not resolved. This
consideration leads to RT2.2: Adapting personality-based behavior to an agent’s current
situation. Emotions — short-lived responses to events in the environment — are introduced as
one possible solution to this task. They provide a dynamic component that allows the agent to
change its typical behavior if a situation calls for it. An agent’s current emotions temporarily
influence its personality profile, which changes the derived task parameters and lastly the
generated behavior. This allows agents to adjust to encountered situations that they would
not be able to solve with their static behavior. While there are many models for representing
emotion in virtual humans (e.g., see [KMTO08, NFdSS10]), a model is selected for this thesis,
whose correlation to the chosen personality model has been confirmed. Since the CA2RVE
architecture uses the FFM and Watson and Clark [WC92b], Rusting and Larsen [RL97], and
Yik and Russell [YRO01] are examples that correlated FFM profiles with a two-dimensional
emotion model, the same number of dimensions is considered here to distinguish negative
and positive emotions. An additional advantage of a two-dimensional model is its moderate
complexity compared to other common models, like the OCC [KMTO08]. At the same time, it
provides sufficient utility to intuitively map events to changes in the emotional state while
remaining accessible and comprehensible. If more complexity or comparability to other
approaches is required, the model could easily be extended to more than two dimensions. In
the following, a formal representation of the emotion model is introduced before describing
how emotions are experienced, how they fade over time, and how they influence behavior

within the architecture.

4.2.1 Representing Emotions

Like the representation of personality profiles, an emotional state is defined as a tuple, but
with only two elements:
& =(e1,e) e R*xR* (4.10)

Unlike personality profiles, each dimension of an emotional state & is itself a 4-tuple:
e=(e1,er,03,5) €R? (4.11)

The element e; defines the current emotion by a numerical value. Values e, e3, and e4 are
required to describe how emotion is faded back to a neutral state, which is described in
Sections 4.2.2 and 4.2.3. In a realization, all values should be within ranges in accordance
with the chosen personality dimension and task parameter ranges. Since the proposed

model differentiates between positive and negative emotions, the following set of functions
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is defined to provide access to both dimensions of the emotional state:
E ={e,e*} with
e REXR* 5 RYE,E - e, (4.12)

e REXRY SRS > e

Since the model was defined such that positive and negative emotions are independent, it is
possible to model each dimension’s influence on behavior separately. For example, in a case
where personality is modeled using the FFM, negative emotions could be used to increase
an agent’s neuroticism, but positive emotions would not decrease neuroticism. Instead,
positive emotions could increase an agent’s agreeableness. Note that the influence of each
dimension on a personality profile can be considered independently, but since both negative

and positive emotions are applied to a profile, their effects are not independent.

4.2.2 Experiencing Emotions

In a simulation, an agent would perceive information from the environment that induces
an emotional response. To model this process, experiences that are emotionally relevant
to an agent are modeled as incidents i. An incident controls how the current emotional
state of an agent is modified whenever the event occurs. Thus, an incident is of the same
dimensionality as the emotional state. For the current example, this translates to:
i=(i1,i) €R?,
iT:R> > R,(31) iy, (4.13)

iR R3G) i

It is the designer’s responsibility to define meaningful incidents. For example, incidents that
induce the same amount of positive and negative emotion make little sense.

As indicated before, personality influences the entire cognitive apparatus, including the
perception of emotions. This intuitive relationship has been confirmed by studies, such as
that by Watson and Clark [WC92a], which showed that tendencies of perceiving specific
emotions is correlated to a subject’s personality. To model this tendency, the following
n-tuples of coefficients are defined; one tuple for each dimension of the emotional state.

s =(s;, 5 €R", s"=(s],--,55)eR" (4.14)

The dimensionality 7 of both tuples must correspond with the personality model thatis used.
To provide a definition for perceiving emotions, a function s is required, which determines
how each emotion dimension e is updated. It updates the current emotion value e;, as well

as the first fading value e, but does not alter the other fading values, ez and e;. The reason
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for not changing ez and e4 and the role of all fading values is explained later in Section 4.2.3.
s:R*xR — R* (e,x) — (x,x,e3,e4) (4.15)

Using the above definitions, a perception function w(a,i) transforms the emotional state &
of an agent a from the set of all agents A at time ¢ to a new emotional state & at time #'.
w:AXR? - R*XR?, (a,i) = & with

e ) =sfe () (e () mat )
Im=1-i" (i)
¢ =¢i-i (i)-(s” epy)

et (éjf) =s (e+ (@‘if),v (e+ (éjf)) + max{l+,c+})
I* = -0 (i)

(4.16)

¢t =it (i) (sT e py)

li,c;eR,0<I;<1,¢;,>0

The parameters /; and ¢; prevent combinations of correlation coefficients (s7,s*) and the
current personality profile configuration to cause negative experiences. A negative experience
is defined as an incident causing the opposite of its declared effect. For example, if the
effect of an incident on the positive dimension of the emotional state is positive (i.e., i* (i) >
0), perceiving the incident with certain combinations of coefficients and personality could
decrease positive emotion instead of increasing it. The parameter /; defines the minimum
effect of any incident that is experienced, regardless of the current profile or the configuration
of the correlation coefficients. With ¢; an additional tool is provided for calibrating the model.
Consequently, I" and I” are the minimal effect of the current incident and ¢* and ¢~ are the
calibrated incident values multiplied by the personality influence, which is the dot product
of the personality profile and the correlation coefficients. The function v(e) identifies the
current emotional value of an emotion dimension tuple:

v:R* SR, (e) e (4.17)

Using all the above, an emotional state can be assigned to each agent and the state
can be changed by experiencing incidents that bear a predefined emotional meaning. The
incident’s effect can be adjusted using calibration values and is further influenced by an
agent’s personality. For example, a neurotic agent may experience negative emotions more

intensely than others, while extroverts may influence more by positive emotions.
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4.2.3 Fading Emotions

Emotions are short-term, immediate reactions to experienced events (cf. [Tha89]). Thus,
their effect on the cognitive processes of an agent should vanish over time. For this purpose,
the emotional state is returned to a neutral state by modeling a fade function f that transforms
an emotion dimension e’ at time ¢ to a new tuple e’ at time #':

f: R*xRR?, (ef) - e, where

eﬁ' = max{O,g(et),h(et)}

vo_ i
e = e (4.18)
vo_ i
€3 =63
vo_
€y =€y

The curve of the fading is controlled by a set of parameters encoded within the emotion
dimension as indicated in Section 4.2.1 (e3 and e4) and a pair of functions (g and h).
g: R* - R,(e)—e1—e3

2

h:R* > R, (e) — (4.19)

1
er+107¢4

0< ey, < 1,63,64 € ]R+\{O}

Only the first element of an emotion dimension tuple is changed by the fading function.
However, the other elements are also part of the tuple because it may be desirable to control
the fading for each dimension separately. For example, the model may be configured in
such a way that negative emotions fade slower than positive emotions. The first element
e1 represents the current emotion value as stated before. This element can be set together
with e, using the function defined in Equation 4.15. While e; will change with the fading
function 4.18, e; is not altered as it represents the base value of the emotion, i.e., the value
where the fading started. The additional elements of the emotion dimension tuple (e3 and
ey) are required to control functions g and h. No scientific evidence for the dissipation of
emotional experiences could be found during this thesis project. Therefore, ¢ and h were
defined empirically with the intention of providing a plausible model. Due to the short-term
nature of emotions, it is reasonable to assume that a human is influenced strongly by an
emotion immediately after experiencing an event that caused it. After some time passes,
the effect of the emotion will start to fade. Thus, function ¢ models a straightforward linear
decrease with e3 (linear parameter) controlling how fast this process progresses. Function
h models how long the emotional effect is sustained as the resulting value will stay nearly
constant before rapidly decreasing to zero. The duration of this effect is controlled by e4

(sustain parameter) in combination with the result of g, because as soon as the decrease
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Figure 4.1: Curve shapes of the fading process for examples of emotion tuples f; to f4. All examples
except f4 have the same linear fading value (0.01). Thus, f4 illustrates the steepest decline, because of
its larger value. Due to their identical sustain parameters, values start decreasing linearly at the same
time. The exception is f,, which is the first to decrease linearly because of a smaller sustain value (5).
Figure based on [SvS12].

calculated by & surpasses the decrease calculated by g, the linear decrease defines how the
emotion is faded going forward (s. Equation 4.18). To generate meaningful fading processes,
it is necessary to choose e3 and e4 according to defined ranges for personality profiles and
emotion dimensions. In the proof-of-concept realization described in Chapter 6, ey, e, and
e3 are within the range [0;1] and ey is defined to be greater than 0. Figure 4.1 shows four

examples of fading an emotional value over time.

4.2.4 Utilizing Emotions in Cognitive Agents

The intention of modeling emotions is to introduce a dynamic aspect to behavior generation.
Asmentioned in the previous chapter, it is beneficial to introduce an intermediate personality
layer that is generated from the original static profile of an agent. The entire layer can be
omitted, if necessary, without altering anything else within the architecture. Additionally,
the concept of task parameters as introduced in Section 4.1.2 already defines a means to
influence behavior. Using a profile altered by an emotional state leverages the existing
concept, existing decision processes, and potentially existing parameters without having to
define individual parameters for each cognitive module or even each emotional event.

To generate a dynamic profile b from the agent’s original profile p, additional n-tuples
are required for each dimension of the emotional state. In the considered case this means
one tuple for positive and one tuple for negative emotions:

t=(, -, £)eR",

+ + + n (4.20)
t =7, ) eER

Using these coefficients an agent a’s personality profile p, can be transformed to its dynamic
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profile b, based on the current emotional state &;:
VdeD:d(by) = d(pa)+n(&,d) +p(&,d),
n:R*XRI*XD - R,(&,d) = v(e™ (&))-d(t) (4.21)
p:RIXRYXD - R, (&,d) - v(et (£))-d(t")

Depending on the value ranges of the static personality profile and the study ., the trans-
formed dynamic profile b, may have to be adjusted to fit theses ranges. A straightforward
solution is to clamp transformed values at the original range limits (! and /) of the study ..
As a result, the dynamic profile b, can be used in any of the cognitive processes without
adjustments as it is structurally identical to the original profile p,.

Using the definitions above, the personality of an agent influences how it perceives
emotional incidents, i.e., how its emotional state changes by experiencing defined incidents.
The current emotional state is used to transform the agent’s original static personality profile
into a dynamic profile. This correlation produces the desired interdependency between
personality and emotion as the dynamic profile will change how emotions are perceived by
the agent. Figure 4.2 shows an exemplary progression of all traits of a dynamic personality
profile when invoking an emotional incident of i = (0.1,0) at each time step. All values were
chosen for demonstration purposes only and values for positive emotions are omitted since
the incident only includes negative emotions.

pa =(-0.25,-0.6,0.12,—-0.54,0.3)
t =(-0.1,-0.3,0,-0.75,1)

s~ =(0,0,0,0,0.341) (4.22)
1;=0.35
ci = 2

4.3 Conclusion

In this chapter, two research tasks were examined that were derived from the second research
question: Can the agent architecture systematically generate individual, dynamic agent
behavior? It was considered how behavior can be individualized to each agent (RT2.1) and
how a dynamic component can be added to adapt this behavior (RT2.2). The proposed solu-
tion contained two aspects: a static trait-based personality profile and a dynamic emotional
state influencing the profile. The static profile was defined, first in a generalized manner
allowing an arbitrary number of traits and second, specified to the common Five Factor

Model (FFM). The formal description of a study was provided, which allows the integration
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Figure 4.2: Exemplary progression of an agent’s dynamic FFM personality profile. At each time
step an emotional incident i = (0.1,0) is perceived, resulting in an increase of negative emotion and
neuroticism according to their defined correlation. When the range limit of the personality profile is
reached at time step 16, neuroticism no longer increases and the negative emotion increases linearly.
All other traits except extraversion decrease according to the defined correlations. Figure based on
[IVC13].

of personality profiles into realizations of the architecture concept. Additionally, it provides
the opportunity to use psychological studies as input for behavior generation, e.g., to emu-
late real-life behavior patterns. Task parameters were introduced to define the influence of
personality on other cognitive processes such as perception or decision-making.

Using task parameters, different personality prototypes can be used to generate dis-
tinguishable behavior. However, the generation of behavior from these prototype profiles
depends on multiple factors. Task specific or situational behavior is linked to a personal-
ity prototype, which means the more prototypes are defined, the more differences can be
expressed. The number of choices (i.e., the actions to choose from) in a certain situation
directly affects how well behavioral differences can be expressed. Furthermore, the agents’
capabilities influence the observability of behavioral differences, i.e., the possible parameter-
ization of available actions. For instance, assume the chosen action is to accelerate a vehicle.
Based on personality, one agent chooses a higher acceleration than another agent would,
but because they drive the same type of car the final acceleration may be identical. In this
case, the difference generated by the profile cannot be observed. Due to the complexity and
effort required for providing a diverse set of options for the mentioned factors, only a limited
range of behavior can be realized within the scope of this thesis. Nevertheless, the presented

definition of personality profiles and their integration within a cognitive agent architecture
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provides a general tool for individualizing behavior. The contribution of this claim towards
answering research question 2 will be demonstrated in Chapters 6 and 7.

A two-dimensional emotion model adds a dynamic component to static profiles. An
agent’s emotional state consists of negative and positive emotion dimensions, which are
independent of each other. This independence is useful to model their effects separately.
Formal descriptions were provided that define how emotions are perceived and faded.
Perception of emotions depends on incidents, that describe an event’s effect on an agent’s
emotional state. N-Tuples of coefficients relate an agent’s personality to its perception of
these incidents. While personality is a stable component, emotions are temporal reactions
to experiences whose effects will fade with time until the neutral emotional state is reached.

Other emotion models, e.g., the OCC model of emotion, can represent a wider spectrum of
emotions (cf. [KMTO08]). However, the objective of enabling agents to adapt their personality-
based behavior to their current situation was achieved with the presented model (RT2.2).
A dynamic personality profile is used to incorporate an agent’s emotional state into its
other cognitive processes. The emotional state modulates an agent’s static personality traits,
forming an intermediate, dynamic profile, which influences subsequent processes identical
to the static case. This technique circumvents the need for encoding influences of personality
and emotion separately for each cognitive module. Additionally, it is straightforward to
exclude emotional states if an application requires it, without having to adjust other process.
Since perception of emotions depends on personality and the emotional state creates a new
personality, an interdependency between emotion and personality is achieved.

Anideal solution to adaptive behavior involves advanced inference and decision-making
processes. The ability to improvise when faced with unknown situations, i.e., to deviate from
pre-programmed behavior, would be a significant step towards human-like behavior. Due
to the complexity of this endeavor, it is currently unclear whether this level of autonomy can
be achieved at all. The proposed approach may not generate true “alternative behavior”, in
the sense indicated above, but the intended objective is achieved as the emotional state of an
agent changes its typical, i.e., “default” behavior if the agent’s selected actions do not resolve

a problematic situation. This capability of the agent architecture is evaluated in Chapter 7.
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“We must look at the lens through which we see the world, as well as the world we see, and that the

lens itself shapes how we interpret the world.”

- Stephen R. Covey

AKING decisions within an environment and predictions about the future
state of an environment requires gathering knowledge about the environ-
ment’s current state (cf. [KT18]). Humans must accumulate knowledge
about their environment and its current state via perception. Deliberation
processes additionally augment this information using, e.g., previous knowledge. In con-
trast, virtual agents generally have access to their entire environment, which may further
be augmented by semantic information (cf. [GLBV08]). Thus, it may seem unnecessary
to model human-like processes that gather perceptual information about the agent’s world.
However, creating, simulating, and maintaining all-knowing agents quickly becomes a prob-
lem if combinatorial consequences and more importantly the quality of depicted behavior
are considered [PT97]. Furthermore, it is generally agreed upon that using perception to
form a plausible world model for agents is the foundation for believable agent behavior
[Blu97, POS03, PCR*11, Rey87, vO14]. This process includes organization, identification,
and interpretation of sensory information as well as finding an appropriate representation
[SGW12]. Tt is therefore not surprising that modeling perception is a standard in developing
agents and virtual characters across different research domains, such as cognitive architec-
tures (e.g., [Lai08, Lail2, RTO19]), virtual humans (e.g., [LA00, PCR*11, vO14]), and digital
games technology (e.g., [Leo03, LB19, Pal18]).
Despite the common consideration of perception, it is often only utilized to collect data
with limited sensor capabilities to increase believability, especially in interactive applica-

tions. One important component of human perception that is often neglected in agent
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perception is attention. A virtual attention process allows agents to identify objects of im-
portance regarding both reactive behavior and cognitive processes. Furthermore, synthetic
attention can improve computational efficiency by reducing the amount of sensory data that
is processed by an agent — comparable to human attention. However, attention is often
only used to simulate external indicators like eye gaze to improve a user’s impression of a
virtual character [APMG12, BA13, Kim06, PAGM15]. Consequently, available approaches
for virtual humans are mostly focused on bottom-up attention (i.e., reflexive attention) and
are not considered on a cognitive level [CKH*15, YT15]. To convey plausible and applica-
tion specific behavior, agents must appear target oriented. Models operating on a cognitive
level could guide task-oriented attention mechanisms (i.e., top-down attention) to create
that impression. Neurobiological models provide important, realistic clues about how and
why attention is directed towards specific parts of a scene, but exceed the requirements of
real-time, multi-agent environments (c.f. [KW15]). Solutions for interactive environments
typically trade precision for efficiency often resulting in less realistic results or focus on
certain aspect, like simulating eye gaze (e.g., [PAGM15]).

Perception and attention are important aspects of modeling agent behavior for aesthetic
and/or functional reasons [PCR*11]. These two reasons are also requirements in this thesis
project (i.e., believability and scalability). In addition to these two reasons, a third aspect is
added within the context of the work presented here. Agents in virtual environments usually
fulfill a specific purpose like emulating a living virtual world or supporting a training goal.
Consequently, the agents” behavior must not only be plausible and computable in real-time,
but it must also be controllable. Therefore, the perception module must facilitate authoring
user-centric, goal-driven agent behavior. Furthermore, existing approaches usually do not
consider an agent’s current state of mind as part of the perception process. However,
these aspects influence human perception and attention processes [Bad03, PCR*11, BSGS13,
Han89] suggesting an integration into synthetic perception for agents as well.

Based on the described situation, the third research question — What is the role of per-
ception and attention in behavior generation for cognitive agents? — should be answered
by considering the two following research tasks. The main objectives are to clarify how and
where perception and attention fit into the developed cognitive architecture and how they

canbe utilized to support the three requirements: believability, controllability, and scalability.
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RT3.1: A flexible framework for synthetic perception in a cognitive agent architecture.
Starting from the large quantity of available approaches to agent perception, it should be
determined what the core characteristics of synthetic agent perception are and how they can
be assembled and extended to build a flexible framework. Furthermore, to integrate well
with the proposed cognitive agent architecture, the perception framework must support
the architecture’s main principles. The most important principle being that all cognitive
processes are based on an agent’s personality and emotional state. The influence of per-
sonality and emotion on cognitive processes was described in Section 4.2 and an example
was provided that utilized the influence for decision-making. A similar approach should
be applied to perception. At the same time, a resulting perception module should follow
the same modular structure as the architecture, i.e., it should integrate well with the other

cognitive modules, and it should be modular itself for maximum flexibility.

RT3.2: Perception and attention for virtual agents considering plausibility, controllability,
and real-time performance.

Simply combining existing agent perception approaches is not sufficient due to the
discussed shortcomings. Addressing these shortcomings, it should be possible to design a
synthetic perception framework that contributes to believability, but supports controllabil-
ity, e.g., by facilitating customization and extension, without compromising scalability. An
open sensor interface should allow an agent to perceive multiple stimuli emanating from
a single object. These stimuli could be received either through different sensor modalities
or by multiple sensors of the same modality. The approach should also not exclude the
integration of additional “supernatural” information sources, like world semantics. Such
cues can be modeled to provide simplifications where appropriate or necessary, e.g., to
increase computational performance. Sensors should also be parameterizable to allow
balancing performance against accuracy, supporting believability while regarding real-time
constraints. However, parameterization especially facilitates application-specific solutions.
The same applies to attention, where customizable dwell-time, inhibition, and memory
capacities could be used to individualize the perception process for each agent and provide
control over the process to designers. The customization on various levels of the framework
should also scale well to different application scenarios providing an efficient and control-
lable approach. The framework should further combine bottom-up and top-down attention
independent of utilized decision processes or sensor implementations to generate believ-
able and controllable behavior. In summary, the provided perception mechanisms should

support the objectives without restricting them to a specific approach or a certain complexity.
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5.1 Synthetic Perception for Cognitive Agents

To provide a synthetic perception module that integrates well with the developed cogni-
tive agent architecture and fulfills the associated requirements, the following aspects of

perception should be addressed:

I. A unified interface to allow for the implementation and attachment of arbitrary virtual
Sensors.
II. A mechanism to accumulate and process environmental stimuli, i.e., virtual sensors.
III. A mechanism to filter aggregated stimuli, e.g., attention.
IV. A structure to store stimuli and percepts on various levels of abstraction, i.e., a memory
hierarchy.
V. A procedure to influence perception and attention based on an agent’s personality and
current emotional state.

VI. An interface for high-level processes to acquire and process information.

Based on several publications from cognitive architecture, cognitive science, and IVA/ECA
research, a perceptual framework for cognitive agents should address at least sensing (IL.), at-
tention (III.), and memory (IV.). These three aspects are the focus of the presented perception
framework for cognitive agents, but all six aspects are realized.

A generalized perception framework must support a variety of sensor modalities. These
should ideally include the five main human senses (sight, hearing, touch, smell, and taste)
and perhaps even more to perceive application-specific stimuli (e.g., semantic information).
Since sight is the most important and most studied human sense [Enn04, Frill, KT18], the
focus of this work is on the integration of visual information into the synthetic perception
process. However, the integration of multiple sensor modalities is also discussed. Addition-
ally, a model of attention is considered; an important component of human perception that
is often neglected in other perception approaches for agents.

The main purpose of the perception framework discussed in this chapter is to support
the cognitive agent architecture in plausibly recreating human behavior regarding various
aspects of perception. To generate plausible behavior in a complex virtual environment, ad-
ditional high-level concepts are required, such as decision-making, planning, and navigation.
The presented framework is part of the cognitive agent architecture described in Chapter
3. Examples of high-level processes are given in Chapters 6 and 7. This section describes
how the proposed perception framework fits into the overall agent architecture. An isolated
view of the perception aspect is presented in Figure 5.1.

Details of the presented perception framework are described throughout this chapter.

The focus is on the three identified major perceptual components: virtual sensing via a
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Figure 5.1: Virtual sensors gather stimuli from an environment which are delivered to a short-term
sensory storage (STSS). From the unfiltered information, objects of interest are selected and inhibited
by an attention process. Attended objects become percepts residing in short-term memory (STM).
From there, percepts can be retrieved by high-level processes, e.g., decision-making. The attention
mechanism can request orientation of sensors and high-level processes can bias attention for top-
down perception. An underlying personality profile, which is affected by an emotion component, can
influence all perceptual processes and elements. A long-term memory (LTM) can store information
that need to persist across multiple simulation sessions. Image based on [Sv522].

unified sensor interface, attention modeling, and memory layout. At the same time, the three
agent architecture requirements — plausibility, controllability, and scalability — are constantly
considered in the design. Furthermore, the integration of a personality profile, combined
with an emotion model, is discussed and how these aspects can be used to further customize
the generation of behavioral patterns. Considerations of efficient information retrieval from
the virtual environment are included in the framework at an abstract level. In Chapter
7, sample implementations are presented to evaluate and demonstrate the framework’s

capabilities in real-time game engine scenarios.

5.2 Perception Cycles

The perception framework proposed in this thesis is designed to coarsely resemble the
process of human perception. Therefore, it is based on the perceptual cycle as described
by Goldstein and Brockmole [GB16]. A distal stimulus, originating from the environment
and reaching a sensory organ, can be considered the starting point of the cycle. Since it is
caused by something in the environment, the stimulus is referred to as environmental stimulus.
Sensory organs process these stimuli until they reach their according primary receiving areas
in the brain. Up to this point, the processed information still represents the environmental
stimulus. This complex process is simplified and modeled as the environmental stimulus

cycle (ESC) within the proposed perception framework. The ESC describes the extraction
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Figure 5.2: Abstract overview of the perception process. The left side represents the agent’s con-
nection to its environment (the environmental stimulus cycle). The right side describes the agent’s
internal information retrieval process (the information attention cycle).

of stimuli from the environment via virtual sensors. From their primary receiving areas,
signals are transmitted to various brain areas resulting in conscious experiences where
the perceiver becomes aware of the stimulus’ origin and recognizes it. This process is
categorized here as perception and modeled by the information attention cycle (IAC) as an
internal information retrieval process. In human perception, knowledge is another important
factor that influences many steps in the perceptual cycle, e.g., to label objects or fill in missing
information. This type of knowledge-based processing is also known as top-down processing.
The counterpart is bottom-up processing or data-based processing which is solely based on
stimuli reaching a sensor. Both directions and their importance to behavior generation will
be revisited later. An overview of the ESC and IAC is provided in Figure 5.2. The structural
components of theses cycles are described throughout the course of this chapter.

The ESC connects the agent to the world it inhabits. In reality, information from objects
reaches the sensors in the form of stimuli. To faithfully represent this effect, stimuli would
have to be sent from every object to every possible direction. Even if discretized, only a
small fraction of generated stimuli would reach a sensor. Therefore, the process is typically
inverted: Sensors determine sensible objects in the environment by sending signals, which
determine if an object emits stimuli that match the sensor’s modality and ability. From the
response, corresponding stimuli are extracted and stored in a short-term sensory storage.

The IAC acquires information, obtained via the ESC, that the agent is currently interested
in. The main component of this process is the short-term memory (STM) representing the
agent’s current knowledge. High-level processes can actively query the STM for information
they require as a synchronous request. Alternatively, these processes can register their
interest for specific types of objects with an interest registry and receive a notification when

objects of that type are perceived. An advantage of this passive approach is that the registry
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can be used to bias an agent’s attention module to raise the importance of registered object
types (see also Section 5.5).

Goldstein and Brockmole’s perceptual cycle [GB16] is called a cycle because the outcome
of the process influences the input. The ESC and IAC represent continuous processes
defining how information about virtual objects are handled. They do not represent processes
that exert influence on themselves like the perceptual cycle. This cycle is only implicitly
included in this view since the consequences of an agent’s action selection process are not
explicitly considered. For example, based on the attention module’s stimulus selection, the
agent may choose to orient its primary sensors towards the associated virtual object. This
action likely causes the sensors to sense different information, which in turn might affect
following modules and processes. As indicated before, the ESC and IAC also represent a
separation between low-level processes of the sensory system (sensation) from high-level
brain functions used to interpret sensed information (perception). While this distinction can
still be found in the literature, a clear separation is often not possible. Consequently, modern
perception research does not differentiate between those terms (cf. [GB16]) or argues that
they cannot be separated at all (e.g., see [Enn04]). However, in the context of this thesis it
is beneficial to uphold these separate views to define strict responsibilities and interfaces

between components and modules as illustrated by the ESC an IAC.

5.3 Sensing

Sensing is part of the ESC and must occur before an agent is able to utilize any information
provided by its sensors. Many techniques are possible and available to provide virtual
sensing capabilities for an IVA. However, instead of choosing one specific sensor set, a
unified sensor interface represents a solution that is open to customization and extension.
Similar approaches can be found in the work of Conde and Thalmann [CT04, CT06] as well as
Kuiper et al. [KW13, SKW10a, SKW10b]. From an architectural point of view, the common
interface represents a single entry point where stimuli enter an agent’s mind. Therefore,
the number and type of sensors is unspecified and open to an application developer’s
interpretation or adjustable to requirements of a specific use case. For example, depending
on the specifications of an application, sensors can provide complementary information
for maximum coverage, or they can provide redundant information for increased reliability.
Sensors may also vary in complexity. Some situations may demand realistic results, requiring
sensor implementations to mimic existing biological sensory system as closely as possible.
However, the more complex such a set of sensors becomes, the more computational resources

are required to simulate perception. Especially in the realm of virtual environments, where
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interactivity is a key requirement, the cost of emulating neuro-biologically correct perception
often outweighs its benefits. Consequently, interactive applications typically require more
efficient, less complex solutions. A sensor in its most simple form would only provide
the information whether an object is within the agent’s vicinity or environment. Adding
additional information to a sensor, such as spatial position, saliency, or perception clarity
of an object, increases the accuracy of information at the cost of additional resources. As
discussed in [SvS5], the realization of a sensor should ideally allow an application designer
to parametrize the sensor to balance accuracy against performance.

Further performance related considerations are the direction of processing and semantic
information. In nature, environmental stimuli will reach a sensor triggering a correspond-
ing reaction. In the context of a real-time virtual environment, it makes sense to reverse
the processing direction to save computational resources as discussed above. Additionally,
by enriching perceivable objects with semantics, agents can be provided with additional
information that would otherwise be difficult or impossible to calculate by the agent it-
self [vOD11]. A typical example is associating objects with affordances or even concrete
interaction procedures (e.g., [KT99]).

To demonstrate the described sensor concept, examples of visual sensors are presented
in Section 7.3. In this section, it is also discussed how sensors can be combined to balance

performance, controllability, and correctness in a neuro-biological sense.

5.4 Memory Hierarchy

For processing, humans organize sensed and perceived information hierarchically. Thus,
Atkinson and Shiffrin [AS68] formulated a psychological memory model called stage theory.
According to a more recent review of the authors [AS16], their stage theory model has
remained one of the most influential since its inception in 1968, to this date. The agent
memory module of the CA?RVE architecture is based on Peters and O’Sullivan’s memory
model, who adapted the stage theory model to virtual humans [PO02]. During sensing,
sensors generate stimuli from sensed objects, which contain semantic properties. All stimuli
from all sensors attached to an agent are gathered within a short-term sensory storage (STSS).
At the end of each sensing step, the STSS contains a specific subset of all environmental
stimuli. This subset represents all information that an agent could theoretically perceive in
a given simulation state. Note that the state does not only include the relationships between
objects in the virtual environment, but also the agent’s internal state, specifically its sensor

capabilities and sensor orientations. It is also important to point out that while it is possible
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for an agent to perceive every information stored in the STSS, it only becomes aware of the
information that it focuses on. Stimuli in the STSS are only stored for a brief period of time.

Once an agent becomes aware of an object, the stimulus turns into a percept and will reside
in short-term memory (STM). Percepts represent a status change from unattended to attended
stimuli, but in addition, they only store copies of dynamic object properties contained in
the source stimuli. This approach ensures that agents are only aware of information that it
perceived. If a property changes, the agent can only become aware of the current information
by sensing it again, i.e., there must be a corresponding stimulus within the STSS. To become
aware of an object, an agent needs to focus its attention on the object (see Section 5.5) and
the STSS must contain stimuli related to that object. Once in STM, high-level processes,
like decision-making, can retrieve percepts. Therefore, the content of the STM describes
an agent’s model of its virtual surroundings and its current working knowledge. Percepts
stored in STM are removed if they are not attended to repeatedly, like stimuli in the STSS.
However, percepts are retained longer than stimuli.

General concepts about a virtual world or inferred correlations (see, e.g., [PO02]) are
typically stored in long-term memory (LTM). Examples of such information could be traffic
rules, social interaction protocols, or optimal navigation paths. The LTM structure can
also hold information that needs to persist across multiple simulation sessions, e.g., when
a conversational agent is supposed to remember a particular user. To retrieve long-term
knowledge, it is usually decoded and loaded into STM instead of being retrieved from LTM
directly. In multi-agent systems, long-term knowledge is often identical for all simulated
agents. Therefore, it is often beneficial to provide it using a structure outside of the agents,

e.g., using global semantics (cf. [vOD11]).

5.5 Attention

Humans receive an incredible amount of information via their available sensors (see, e.g.,
[AEOO5, BI13]). Unfiltered, the quantity of information would be impossible to process.
Attention is a filter mechanism that allows living beings to focus on the subset of information
that is currently relevant. What is relevant and what can be filtered out is determined by
bottom-up and top-down attention processes.

Bottom-up attention is a reactive process that subconsciously directs attention towards
salient objects in an environment by causing reflexive eye movements that are almost impos-
sible to suppress ([Frill, KT18, PCR*11]). These objects stand out from its surroundings due
to one or multiple contrasting features, e.g., color, movement, or shape [KT18]. Top-down

attention allows humans to consciously influence what is perceived and what is filtered. This
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type of attention is important if a current goal needs to be achieved, like finding a specific
object (see, e.g., [Frill, KT18]). Similarly, the ability to control the perception process using
top-down attention is also an important aspect for simulating human-like perception in IVA
[vO14]. Bottom-up stimuli are often stronger than top-down influence due to the relevance
for survival. If a viscous predator is rushing towards you, it is certainly more important
to perceive it than finding the best fruit on the shrub in front of you. Despite the general
prevalence of bottom-up attention, it is important to suppress bottom-up stimuli to a certain
degree, to maintain a level of focus in a current task (cf. [Fril1]). Both directions of attention
serve specific purposes that should be included in a synthetic model of human attention to
generate believable agent behavior (cf. [vOD11, KvVHO05, Fri06, PCR*11]).

Furthermore, as is the case with human attention, a similar synthetic process can reduce
the amount of important information at a given time to a manageable size — effectively
reducing computational cost. The main purpose of synthetic perception is typically to
emulate the abilities as well as disabilities of a real-world counterpart. Given a certain
situation, an IVA should ideally perceive the same objects as a human in the same scenario.
It is likely impossible to match the precision and performance of the human perception
system in a real-time application, which means abstraction of the process is inevitable. The
amount of abstraction from the human system generally depends on a variety of factors,
e.g., application domain, purpose of the system, and available resources, among others.

According to these considerations, the proposed framework is based on the main ideas
of Treisman’s Feature Integration Theory (FIT) and Wolfe’s Guided Search Model. A summary
of these models can be found in [Frill] and [Kim06]. A structural overview was presented
in Figure 5.1, but Figure 5.3 demonstrates the process of perception within the framework
with specific focus on attention. Early in the process, features are registered in parallel by
the available sensors. Here, parallel refers to the occurrence of events regarding the sense
cycles, meaning that all stimuli reaching an agent’s sensors are available in the STSS after a
single sense step. The importance of a stimulus S; is described by a saliency value s;, which is
assigned by each sensor during the acquisition process. Saliency describes how conspicuous
an object or feature is within a given surrounding (cf. [IDP03]), which can be treated as a
kind of utility for selecting one stimulus over others. Each stimulus S; is associated with
exactly one virtual object 0; from a set of virtual objects O = {0y, ...,0,,}, but multiple stimuli
with independent saliency values can be sensed from a single object (see Figure 5.3). Due to
the open design of the sensor interface, stimuli can be of different modalities (e.g., visual and
auditory), but also of the same modality (e.g., visual ray-casting and visual false-coloring).

After sensing, the actual perception of a stimulus’ source object can only be retrieved

sequentially, i.e., an agent must direct its attention to each object of interest one after the
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Figure 5.3: Depiction of the proposed perception process. Sensors create stimuli S; for each object
that is sensed, which are associated with a saliency value s; and stored in STSS. Stimuli are then
integrated across all sensor modalities to create one multi-sensory stimulus My(o, msi) for each
sensed object o with a combined saliency msy. The stimuli are sorted according to their associated
multi-sensory saliency. Top-down attention is emulated using a task bias, which can increase the
saliency of a multi-sensory stimulus. A percept is created from the stimulus with the highest biased
saliency and moved to STM making the agent aware of the associated virtual object. An additional
inhibition process decreases the saliencies for objects that have been attended to recently.

other (cf. [Enn04]). To simulate the focus effort, an attention process will select the most
salient object from the STSS as the stimulus of interest and the agent aligns its main sensors
towards the source of the stimulus. To realize the sequential selection, the stimuli in the STSS
are first integrated across all sensors to find a multi-sensory saliency msy for each virtual
object o, which is represented by at least one stimuli in the STSS, generating a multi-sensory
stimulus M.

The multi-sensory saliency msy is a weighted sum of the individual sensor saliencies,
similar to the approach presented by Balint and Allbeck [BA13], but here alinear combination

is used:

o, t
msk:Zwt (o, t)

_ (5.1)
T ;‘nzl C(Oj/t)

where T is the set of available sensor types (visual, auditory, olfactory, etc.) and ¢(oj,t) is
the sum of stimulus saliencies for an object 0; and a sensor of type t. The weights for each
sensor type (w;) can be specified by either using educated guesses, deriving them from the
current context, or extracting them from test data. Weights can also be adjusted based on a
modality’s reliability. For example, in a dark room, visual sensors do not function to their full
capacity and may therefore become less significant than other sensors, like audio sensors.

The set of multi-sensory stimuli is then sorted according to their saliency, such that
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msy > msy41. The attention process selects the combined stimulus with the highest saliency
value and makes the associated object the current object of interest. After focusing on the
object, the according stimulus is moved to STM as a percept. Only after this percept is passed
to STM, is the agent aware of the corresponding object, i.e., high-level processes can query
information about the object.

With this approach, the most recent object remains in the center of attention, making it
highly unlikely that other stimuli will capture the agent’s attention. Therefore, the stimulus
may be inhibited for the upcoming cycles, which means the associated multi-sensory saliency
is decreased. The moment and level of inhibition as well as the number of objects that can
be inhibited simultaneously are customizable within the framework at runtime. By altering
these parameters, various search behaviors and degrees of attention can be modeled and
simulated. For example, if only a few objects can be inhibited, the agent will repeatedly
focus a set of similar objects appearing forgetful or nervous. Another aspect influencing the
inhibition of an object are object properties. Some objects may be complex requiring more
attention or certain properties may change continuously (e.g., position), which means they
may remain salient and should not be inhibited after being perceived for the first time.

Implementing the definitions above represents a flexible and adaptable approach to
modeling bottom-up attention. However, attention based solely on bottom-up mechanisms
would not allow other processes to influence attention allocation (cf. [Kim06, PCR*11]).
Therefore, to simulate plausible agent behavior, the ability to direct attention based on
current knowledge or goals must also be integrated into the perception framework. To
simulate this controlled behavior, bottom-up saliency determined by the virtual sensors
is biased within the attention step based on the agent’s current priorities or preferences.
This process is based on the Dynamic Perceptual Attention (DPA) model developed by Kim
[Kim06]. Here, the process is adapted to apply a bias function b to multi-sensory saliency
values associated with certain objects as depicted in Figure 5.3. The bias function elevates the
saliencyl, giving the stimulus a higher importance than that assigned to it by the bottom-up
saliency. In Figure 5.3, the biased saliency is high enough for the stimulus to be selected over
other stimuli that have higher priority. The amount of deviation from the original saliency
can either be pre-determined at design-time or generated in an agent-centric way at runtime,
e.g., by evaluating object ontologies (cf. [vOVD12]). This allows prioritizing stimuli related
to an agent’s current goals. At the same time, highly salient bottom-up stimuli will still be

perceived if they are larger than the biased saliency value.

ICurrently, the bias function only increases saliency, because it makes sense in the context of the application.

However, the realization does not prevent a designer from providing negative biases to decrease saliency.
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5.6 Personality and Emotion

In a multi-agent scenario, even plausible behavior becomes implausible if all agents behave
in the same way. In Chapter 4 the benefits of including personality and emotions into an
agent’s cognitive processes were modeled. These arguments also apply to agent perception,
which is a part of the cognitive apparatus and arguably the foundation for agent behavior.
Therefore, personality and emotion should also influence perception and vice versa. Task
parameters are used to control how personality affects agent behavior in specific tasks or task
areas. One such parameter could be “focus” describing how rapidly memory entries decay
or how many objects an agent can attend to. Using this approach, agent perception can be
individualized and help create more diverse and dynamic behavior patterns. Furthermore,
personality and emotion could modulate stimuli or saliency shifting attention and perception
towards specific objects (see [PCR*11]). Perceived objects could also influence an agent’s

emotional state similarly to emotional incidents defined in Section 4.2.2.

5.7 Semantic Modeling

One benefit of virtual worlds and virtual objects is that information that cannot be sensed
directly must not be learned or derived by an agent using complex high-level processes.
Instead, such information — often referred to as semantics — can simply be “attached” to
objects and retrieved whenever required. Semantics are commonly integrated into a virtual
world at the object level, i.e., virtual objects are augmented with additional information like
appearance, physical properties, roles, behavior, services they provide, or affordances (see,
e.g., [BA13, TBSKO08, vO14]). In the CAZRVE architecture, semantic information provides the
characteristics of a perceivable virtual object or determines how it is perceived. In the context
of VE, dimensions, color, loudness, or saliency are some examples of object semantics that
are used in the perception process (cf., [TBSK08]). World semantics can add information on
a larger scale, e.g., weather conditions in an area of the virtual world. This type of semantics
can be used by sensors during the sensing process to model effects like limited range of
sight due to darkness or fog. For more details about semantics in the proposed perceptual
framework see [IVCS].

5.8 Conclusion of Integrating Perception into IVA

In this chapter synthetic perception has been introduced and it was explained how it can
be used to improve the behavioral realism of intelligent agents in real-time virtual environ-

ments. For this purpose, a generic model for synthetic virtual perception was proposed
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to solve RT3.1. The focus of the model are a virtual sensor interface, a hierarchic memory
module, and an attention model to limit an agent’s knowledge about its environment in a
believable, yet controllable way. Since sight is the most important sense for humans, visual
perception was primarily addressed, although it was explained how multi-sensory informa-
tion is integrated into the process. Regarding RT3.2, the proposed perception framework
offers a flexible and customizable solution for modeling virtual perception. When designing
sensors, the focus can be either on accuracy, scalability, or controllability. Virtual sensors can
be straightforward for efficient processing or provide redundant information for increased
fault tolerance. However, sensors can also be designed to be an elaborate emulation of bio-
logical sensors to realize realistic sensing. Although these focus areas may not be mutually
exclusive, it is usually difficult to model sensors that excel in all of them. The strength of
the presented model is the flexible, dynamic combination of multiple sensors to mitigate the
drawbacks of individual sensors. As a result, the model facilitates solutions that are accu-
rate, scalable, and controllable, allowing for a wide range of potential applications. Possible
examples are interactive games, perception research, education, and simulation.

An integrated memory module stores both stimuli and percepts generated from stimuli
that have been attended to. Although high-level processes, like decision-making, have not
been addressed in this chapter, the memory module also acts as interface from and to these
subsequent processes. The included attention model combines bottom-up reactive attention
through object-based saliency values and top-down task-oriented processing by biasing
sensed object saliency values. Memory and attention are configurable to fit application
specific needs, achieving the desired controllability.

The configuration of each perception module can also be used to reflect an agent’s
personality or emotional state. This option has not be explored in depth, but an approach
for including this influence was indicated. The concept of task parameters (see Chapter 4)
can be readily applied to the discussed perception modules.

One limitation of the perception framework regarding plausibility is the object-based
design. Stimuli and percepts are always linked to virtual objects, which means perceiving
parts of an object is equivalent to perceiving the entire object. Similarly, while stimuli
saliencies are compared, there is no inherent context to the comparison. Relationships, like
proximity, must be explicitly included in stimuli acquisition. Due to this design, it is difficult
to model certain perceptual effects such as figure-ground relationships, camouflaging, or
grouping. Considering these principles within the confines of the devised framework is
not impossible but would, in many cases, require a non-negligible effort. Additionally, the
design does not prevent a user from defining a sensor that perceives every information within

the virtual world, creating all-knowing agents. Such a sensor would defeat the intention of



5.8 Conclusion of Integrating Perception into IVA 77

emulating human perception, but it would be a conscious decision made by the designer.
It is also the sensor designer’s responsibility to balance believability with scalability and to
consider controllability.

Real-time capability was considered during the design process of the perception frame-
work as stated in RT3.2. The next chapter demonstrates that the overall cognitive agent

architecture, including perception, is suitable for real-time application.



78

Perceptual Agents



APPLICATION OF THE AGENT

ARCHITECTURE DESIGN

“Knowing is not enough; we must apply. Willing is not enough; we must do.”

- Johann Wolfgang von Goethe

N THE previous chapters, motivations and foundations for a real-time attentive cogni-

tive agent architecture were discussed. Based on these considerations, a concept was

put forth with the intent of providing a flexible architecture to facilitate the generation

of plausible agent behavior based on personality, emotion, and perception. Through-

out this thesis, it was emphasized, that besides plausibility and controllability of behavior,

real-time constraints of the target domain must be considered. In the context of interactive
experiences in virtual environments, a minimum framerate of 30 frames per second (FPS) is

typically considered real-time. To achieve these framerates, calculating each new frame must
be generated in 33.33 ms/frame or less. To answer whether the proposed concepts scale
well enough for real time, multi-agent applications (RQ4), the validity of the proposed

concept is demonstrated by implementing it in a real-time traffic simulation scenario. The
steps and consideration required for this realization are discussed throughout this chapter.

FIVIS! is a bicycle simulator developed at the Institute of Visual Computing of

Hochschule Bonn-Rhein-Sieg [HSK*10, HSK*12] (see Figure 6.1). Used as a tool for road

safety education of elementary school children, simulating challenging and instructional
traffic situations has always been an integral part of the FIVIS system. The original scenarios

developed for FIVIS lacked variety as agent behavior was trigger-based and purely scripted.

IFahrradfahrsimulator in der Immersiven Visualisierungsumgebung Immersion Square (Engl.: Bicycle driv-

ing simulation in the immersive visualization environment Immersion Square), vc.h-brs.de/fivis
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Figure 6.1: Three-display setup of the FIVIS bicycle simulator including bicycle input at the Institute
of Visual Computing of Hochschule Bonn-Rhein-Sieg in Sankt Augustin-*
*3D assets by IVC.

The implemented scripting interface only allowed designing static behaviors in a tedious
and time-consuming process. The AVeSi? project provided an opportunity to continuously
apply the concepts developed within this thesis with the goal of simulating more life-like
traffic within FIVIS scenarios.

A traffic simulation for road safety education is an interesting area of application for
cognitive agents as it requires a mixture of game-like agents and traffic simulation. Traffic
agents in games are typically used as a backdrop to the game experience, conveying the
illusion of a living world. They usually do not serve any educational purpose and may even
try to clear space for players to avoid hindering them.

Traffic simulations are used in a wide array of tasks. Consequently, the field of traffic
simulation research is advanced, but applications typically focus on analytical investigations
of traffic phenomena. While incorporating aspects of human behavior in traffic, these aspects
are usually modeled as randomization of normal behavior or modeled at an abstract level.
For example, in the original Nagel-Schreckenberg model, the velocity of cars is reduced with
a certain probability to emulate dawdling (cf. [TK10]). This may sufficiently re-create human
behavior to analyze certain traffic characteristics, but it is usually independent of the actual
situation that would lead to driver-dependent adaptation of behavior. The latter is what
leads to interesting and perhaps dangerous situations when observed up close. Human
drivers make mistakes, violate or bend traffic rules, or take risky choices; the same should

be true for traffic agents if trainees are to learn from observed and experienced behavior.

2 Agentenbasierte Verkehrssimulation mit psychologischen Personlichkeitsprofilen (Engl.: Agent-based traf-
fic simulation with psychological personality profiles), vc.h-brs.de/avesi
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Applying the presented cognitive agent architecture to FIVIS’ traffic simulation ide-
ally achieves this level of believable driver behavior. Due to their approaches and the
general intended domains, cognitive architectures require substantial computational re-
sources [SSS516, BGG19]. Approaches in IVA/ECA research are often also limited to
only a few individual agents, in most cases only one or two agents are considered (e.g.,
[CHLC18, Geb05, GBK*10, tSKT*20, ZMLY19]). Based on these observations, the developed
cognitive agent architecture and especially CA’RVE was designed as a modular, lightweight
cognitive architecture. The intention of these design choices was to provide a scalable
solution that is applicable to scenarios with larger agent populations. At the same time, the
plausibility and controllability constraints should not be compromised. Finding solutions
to this problem is subject of RQ4. In this context, a perception related solution is to be

investigated first, before considering a more general answer.

RT4.1: Efficient acquisition of knowledge about an agent’s environment.

It is not clear whether human-level cognitive capabilities can be realized on conventional
computer hardware even without focus on efficiency [DOPO08]. Therefore, realizing the
developed concepts for interactive applications generally means finding ways of simplifying
processes without compromising plausibility and controllability or reducing scale, e.g., by
focusing on a single virtual agent.

Despite the variety of available solutions, a common approach is to simplify the
decision-making and perception processes. When dealing with virtual worlds and objects,
information about them can be associated at any time, preferably at design time. This
information is often referred to as semantics and is a major advantage of synthetic perception
in virtual worlds, since semantics can simply be looked up at runtime instead of having
to intricately extract them from sensor information, which is typically the case in robotics.
Semantics are commonly integrated into a virtual world at the object level, i.e., virtual ob-
jects are augmented with additional information like appearance, physical properties, roles,
behavior, services they provide, or affordances (see, e.g., [BA13, TBSK08, vO14]). Extending
virtual objects with sensible semantics is one approach taken in this work towards answer-
ing this research task. Examples should include measures, color, loudness, and saliency.
Additionally, world semantics can add information beyond the object level, e.g., to model
effects like limited range of sight due to weather conditions. Sample realizations should
showcase the efficient acquisition of knowledge about an agent’s virtual world utilizing the
perception framework. Using the integrated sensor interface, it should be possible to realize

sensors that reduce task complexity for agents while maintaining plausibility.



82 Application of the Agent Architecture Design

RT4.2: Realizing the cognitive agent architecture concept as real-time application.

To verify that the proposed design is applicable to interactive, virtual user experiences,
the design should be realized as part of the FIVIS bicycle driving simulator or more specif-
ically applied to its embedded traffic simulation. By means of this application, the initial
claim of providing cognitive agents for real-time virtual environments should be verified.
While parts of this task are addressed in Chapter 5, applying the proposed concepts to
an interactive, virtual user experience should be the result of this task. Agents realized
using the proposed architecture concept are to be used as traffic participants populating
scenarios within the FIVIS bicycle simulator. The modular and extensible design should
allow adjusting simulations to application-related constraints. Furthermore, a prototype
implementation demonstrates the realization of the architecture design in a possible pro-
duction environment. This includes handling additional constraints imposed by the utilized
tool set, like a game engine. Using exemplified techniques, it should be possible to meet

real-time and project-specific requirements.

The following sections describe how the presented concepts are implemented to realize
several traffic scenarios regarding plausibility of generated behavior. First, the application of
the cognitive agent concept to traffic simulation is described, followed by several application-
specific extensions and a look at another possible application domain. At the beginning of
the project, the most common 3D game engines were surveyed to find the best fit for the
traffic simulation as well as FIVIS. At that time, the Unity game engine® was selected as it
was the most promising. Unity offered an affordable license system and an easy to learn
workflow. Especially the latter turned out to be useful, as students joining the project did
not need previous experience using the engine. Unity has evolved substantially over the
course of this thesis, and it seems to have become one of the most popular game engines,
especially for small studios, independent developers, and in education. Choosing Unity at
the beginning of the project also allowed tightly integrating a sample realization with the
game engine. Thisintegration, as opposed to middleware approaches (e.g., [GBK*10, vO14]),
avoids performance issues caused by communication latency, unnecessary abstractions, and
costly conversions. Furthermore, it simplifies efforts for newcomers and potential users of

the system, as they do not have to familiarize themselves with multiple platforms.

Shttps://unity.com/, [online: May 2, 2023] Unity Technologies
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6.1 Cognitive Traffic Agents

Based on the intended application, traffic agents realized using the CA2RVE architecture

should possess the following properties:

e Psychological personality profile for individualized, consistent behavior according to
RQ2.

e Generally following traffic rules, since human traffic participants generally follow
these rules.

e Ability to handle specific traffic scenarios to facilitate the creation of learning scenarios
for trainees.

e Separation of body and mind to allow exchangeability and extensibility.

e Plausible driving behavior to support immersion and the suspension of disbelief.

e Plausible perception of other traffic participants to create give agents a believable
knowledge of their environment, which improves the plausibility of their behavior (cf.
Section 5).

To achieve these requirements, the modular design depicted in Figure 6.2 was developed.

Incorporating users is achieved by representing them as player agents, allowing other
agents to interact and communicate with users similarly to how they interact amongst
each other. For artificial agents, behavior is strictly determined by their decision strategies
and associated behavior models, but extensions can include a static personality profile (see
Section 4.1), or a dynamic profile based on an emotional state (see Section 4.2).

Static and dynamic personality profiles were realized in accordance with the concepts
presented in Chapter 4. Five dimensions are used to represent the FFM traits (openness,
conscientiousness, extraversion, agreeableness, neuroticism). Artificial Agents do not pos-
sess a personality profile, their decisions are based on default behavior models. A derived
PersonalityAgent class is extended with a personality module, which is composed of a FFM
profile. To include an emotional state and exert influence on the static profile, an Emotion-
PersonalityModule is derived, which is a component of an EmotionalAgent. The perception of
emotional incidents is realized using an ImpressionModule. Coefficients for relating the per-
ception of emotions to personality, emotional state to dynamic profiles, or personality to task
parameters are contained in a global configuration module (not depicted in the diagram).

Most elements of an agent are realized as components to maximize versatility. Every
agent includes a mind component, which consists of cognitive modules for navigation,

decision-making, and traffic memory4. Traffic rules are followed by the implemented nav-

4The module is deliberately called traffic memory to distinguish it from perceptual memory. It contains

information about the current driving state, e.g., current lead agent or obstacle or the previous acceleration.
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Figure 6.2: Simplified view of the realized CA?RVE architecture for cognitive traffic agents. The
separation of thought processes (mind) from an agent’s physical representation (body) in combination
with the modular design allows flexible usage of agents. Users are considered as player agents.
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igation module and driving strategies, e.g., freeflow, following, or lane changing. Strategies
are implemented using behavior trees, which are explained at the end of this section. The
number of strategies can be extended if necessary, and they are configured using appropriate
models for steering, acceleration, lane changing, etc. Each module interface must be realized
for the according agent and mind type. The diagram in Figure 6.2 shows an example of this
process for the IDecisionModule interface. The decision-making module also uses models
to configure actions. In turn, each model requires a behavior profile that is attached to an
agent (IBehaviorProfile). For example, an acceleration model may calculate an agent’s desired
velocity while following another agent based on an agent’s minimum headway to its lead, an
acceleration coefficient, or comfortable deceleration. All these behavior profile parameters
may be associated with an agent’s personality profile.

Politeness ¢ is one behavior profile parameter that is used as configuration parameter
for the lane change model. The parameter’s value can be globally set for all lane change
decisions, or it can depend on the agent’s personality profile. The realization of lane changing
is based on MOBIL (“Minimizing Overall Braking Induced by Lane Changes”) by Kesting
et al. [KTHO7], which includes a politeness parameter and integrates well with the realized
car following model (see below). Using this model, an agent a, decides to change to a
neighboring lane with the same driving direction if the following holds:

fo— X+ - (g — X +xf—5a}) > iy, 0 <5y, 0<p <1, (6.1)

or if the neighboring lane’s driving direction is the opposite of the agent’s driving direction,
the model is adapted as follows:
(1=¢)- (=X + - (X —X;) > AXy,, 0 < Xy, 0< P <1, (6.2)

where ¥; denotes the current acceleration of agent 4; and X/ the predicted acceleration of
agent a; after the considered lane change was performed. Figure 6.3 provides an overview
of agents ¢, f, g, I, m, and 0° involved in the lane changing decision and the according
parameters. Agent a. is the agent currently considering a lane change, 4; is the agent that a.
is currently following, and 4 is the agent following a.. Agent a, would become a.’s follower
after the lane change and a,, would become a.’s lead. In a scenario with opposite driving
directions, 4, is the agent driving in the opposite direction to a,. The parameter AXy, is a
threshold, which is a part of the MOBIL model preventing lane changes that result only

in marginal advantages. The politeness factor ¢ determines how much the acceleration

5The indices indicate the role of each agent in the current decision: ¢ — currently considered agent, f —
following agent, 1 — lead agent for agent ¢, g and m are the indices following f and 1, respectively, since they
would be follower and lead in the event of a lane change. Agent o is the one driving in opposite direction to

agent c.
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"o, Obstacle

(b)

Figure 6.3: Overview of parameters used in lane change decision for agent a.. The MOBIL model
by Kesting et al. is used for equal driving directions (a). For opposing driving directions, the
MOBIL model was adapted (b). Arrows indicate accelerations before the lane change (¥) and after
a lane change (') for all agents relevant to the decision. For the opposing lane scenario, additional
parameters are required to calculate the latest possible stopping point for a,. Images from [Sv514].

change of other agents is considered by a.. For maximum politeness (¢, = 1), the agent
considers the acceleration change of a; and a¢ by 100% in equal driving direction scenarios
and completely disregards its own advantage when waiting behind an obstacle for opposite
driving direction lanes. The latter fully acknowledges that a. does not have priority in this
situation. For the minimum politeness, a, only cares about its own advantage, but it does
consider safety criteria (e.g., minimum gap distances to prevent accidents). The politeness
factor can be derived from an agent’s personality profile using a tuple of coefficients ¢y (cf.

Section 4.1.2):
(C(P eb,)+1

a > (6.3)

Using this equation, a medium politeness (¢, = 0.5) is calculated if personality does not have
any influence on the parameter (c = (0,0,0,0,0)) or if an agent has an average profile (i.e., the
z-scores for all traits are zero). Since profile traits and coefficients are within the [-1;1] range,
the result of Eq. 6.3 must additionally be constrained to the [0;1] range.

An agent’s embodiment in traffic is determined by an implementation of the body mod-
ule. Due to this component-based realization, several classes and subclasses of traffic partic-

ipants can be set up for simulation (e.g., car, bicycle, bus, etc.). By defining a separate agent
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body, including the according properties, agents can even change their means of travel at
runtime. Since an agent is aware of its body component, it would be possible to associate
different behaviors and task parameters with specific components. For example, an agent
could act more cautiously while driving a bus, because it is responsible for all its passengers.
For the prototype, four different agent types were realized: car, bus, bicycle, and pedestrian.
Note that in Figure 6.2, sample implementations are only depicted for Car and Bike.

Every vehicle is represented in two simulation layers to improve scalability (see Sec-
tion 6.3). In a simplified representation, bodies are mainly differentiated by their visual
representation, i.e., the 3D model of an agent. For increased realism, physical properties
and processes are integrated into a microscopic representation and simulated using Unity’s
physics engine. Examples of these physical aspects are collision geometry, weights, and
torque curves for acceleration and deceleration.

According to Chapter 5, the perception module consists of virtual sensors and a memory
hierarchy. To take advantage of the loose coupling of Unity’s component mechanism, the
perceptual components were attached to agent objects. This approach is orthogonal to the
class structure introduced above for maximum decoupling. Virtual sensors are attached as
child objects to a perception object. When the simulation is started, the sensors are attached
to the perceptual systems and stimuli are sensed periodically based on a specified time
interval. All sensed stimuli are kept in STSS until requested or until they are forgotten.
A MemoryHierarchyModule, which contains the STM, handles STM decay, maintains an
interest registry, and relays synchronous information requests from other processes to the
perceptual module. If the STSS contains a stimulus that matches a requested predicate
(e.g., a certain type of object), a percept is generated from the stimulus and the percept is
stored in STM. Additionally, an attention process as described in Sections 5.5 and 7.3.2.1
was implemented to control which stimuli are moved to STM. For this traffic simulation
prototype, observer components are attached to agents, which request task-based objects
regularly and then feed them to the traffic memory or navigation modules. Figure 6.4
demonstrates this approach and its relationship to the agent class structure.

To realize the action selection process for traffic agents, behavior trees, which are a com-
mon tool for game Al [LB19], were chosen as they present a balanced compromise between
development effort and complexity of generated behavior. Behavior trees are straightfor-
ward to implement, maintain, and extend, while at the same time being sufficient at gener-
ating complex behavior. The overall hierarchic structure, typically a directed acyclic graph,
reveals behaviors in an intuitive way. At the same time, they are highly customizable as logic
can be added at any node within a tree. Thus, using simple control nodes and modular ac-

tions, complex behaviors can be achieved with manageable effort (cf. [CS09, Cha(07, Isl05]).
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Figure 6.4: Component layout and game object hierarchy of traffic agent. Unity game objects are
indicated using a “GO” prefix and Unity components are indicated by an aggregation symbol with
an embedded “U”. Components are gathered along the game object hierarchy at the beginning of the
simulation. Interactions between perception modules are depicted using blue arrows.

Note that the latter does not exclude the fact that a behavior tree itself can become very
complex if many behaviors are included. For the presented traffic simulation, the decision
module includes a behavior tree, which is used to select between the aforementioned driv-
ing strategies. Just as the body of an agent can be exchanged to a specific embodiment,
the behavior tree can be exchanged as well to express the according traffic behavior. Figure
6.5 shows an example of a behavior tree used in the realized traffic simulation. Examples
of strategies present in the realized vehicle tree can be single actions, like determining the
current desired velocity when following a lead vehicle using the Intelligent Driver Model
(IDM) [THHOO0]. However, strategies could also be combinations of selections, sequences,
conditions, and actions. For example, the lane change implemented in the prototype is a
sequence of a condition, an evaluation action, and a selector based on lane direction. If
the lane to change to is of the opposite driving direction, the lane change strategy becomes
a sequence of checking the direction of the lane, then waiting to initialize the lane change
based on safety and politeness criteria, then changing over to the opposite lane, then possibly
staying on the other lane if multiple obstacles must be passed, and finally, changing back
to the original lane. Other strategies may consist of only one action but might still be more
complex than entire sequences. For example, the yielding strategy realized in the simulation
is an action that requires agent negotiation based on a voting mechanism and may induce

emotional incidents, which can affect strategy selection.
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Figure 6.5: A behavior tree used for decision-making in traffic agents. Colored nodes are conditions

and white nodes are behaviors or strategies. Note that behaviors can be re-used. Each leaf node
represents another sub-tree that is omitted for brevity.

6.2 Semantics as Extension of Long-term Memory

In the current version of the presented CA?RVE architecture, long-term memory is not
explicitly considered. However, traffic agents need to understand general driving behavior
and concepts that humans learn in driving school, e.g., the concept of a lane or right-of-way
priorities, knowing what the allowed speed limit is, how to drive when following another
traffic participant, or how to perform a lane change. Realistically, this knowledge is stored in
every driver’s long-term memory and accessed while participating in traffic. In the context
of a simulation, this knowledge can also be considered global knowledge that applies to
all agents within the virtual world. Both approaches are used in the presented traffic
simulation. Driving strategies represent behaviors or knowledge common to all agents, e.g.,
vehicle following or lane changing. However, agents can apply the general behavior to their
own situation, personality, and emotional state. These agent-centric deviations can include
maintained distance to a leading vehicle, when to initiate a lane change, or how to handle
speed limits.

While it is useful to modulate driving strategies, the same does not necessarily apply to
other global knowledge. What actual speed limit applies to a given road, how wide a lane

is, which state a traffic light is in, or on which side to drive on are examples of facts that



90 Application of the Agent Architecture Design

Figure 6.6: (a): A semantic road network added to a virtual world as additional layer. Information
from that layer can be accessed via object semantics using an agent’s perceptual system. Image from
[SvS8]." © 2014 IEEE (b): A closeup of the road network representation showing lanes (red) and
connectors (green) on three roads and a connecting intersection. Boundaries of lanes and connectors
are indicated in blue.”

“Terrain assets generated using Trian3DBuilder [Tri].

“Vehicle assets based on designs by Dosch Design (pink car) [Dos], “Underground Lab” (blue car) [Und], and

“kilastaras” (black car) [kila]. Terrain assets and yellow car by IVC.

describe the current state of the world and the rules of traffic. Agents may interpret and use
this knowledge differently, but that does not change it for other agents. So instead of storing
this information in LTM and having agents decide what to make of it, it is represented
globally as an additional semantic layer in the virtual world (see Figure 6.6). This layer is
not visible to a user of the system, but agents are able to perceive elements of this layer using
an application-specific sensor (cf. Section 7.3.2.1). Although the information in this layer is
global, the semantics are object-based as each object of that layer contains the information.
Providing such an approach avoids holding this information redundantly and provides
it to each agent efficiently. Regarding the latter, agents do not have to employ complex
processes that deduce lane topologies, right-of-way priorities, or what path to take across
an intersection. Agents can sense this information and integrate it into their model of the
world to utilize it for navigation and decision making. The provided information is exact
and correct, but agents are free to ignore or modulate it internally. For example, while the
exact course of lanes is encoded in the network, agents are not restricted to it; they can choose
to drive elsewhere.

The semantic road network layer is based on the OpenDRIVE® standard [DSG10] and
the road network representation used in VISSIM [FV10]. The network ® is defined by a

set of lanes L, a set of connectors C, a set of roads R, a set of paths P, a set of information
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elements I, a set of nodes N, and a set of junctions | resulting in a graph-like structure given

by
® =(L,C,R,P,I,N,]). (6.4)

The fundamental elements are nodes n = (?, #), whose most important intrinsic information
are their positions in 3D space 7 Additionally, each node is associated with a set of
information elements .# C I made available to an agent that perceives the node, e.g., speed
limits, associated traffic signs or traffic lights, lane width, etc. A sequence of nodes defines
a segment S, which connects the semantic representation to the 3D geometry of the virtual
world. The order of nodes in S defines the direction and course of the segment represented
by a polygonal chain. Formally, each segment is a partitioning set of N, i.e., for a set of all
segments .7 the following holds:
N =UgesS

0= SiﬂS]',VSi,S]' €Si#]

(6.5)

Segments represent either lanes [ € L or connectors ¢ = (§,1,,1s). Connectors have the special
property that they have exactly one preceding lane [, and exactly one succeeding lane ;.
Consequently, although lanes can have multiple incoming and outgoing connectors, the
connector property provides a one-to-one correspondence between connectors and lanes.
Lanes and connectors are further grouped to roads and paths, respectively. The main intent
is to provide an additional structure on which relationships like neighborhoods or other
properties can be defined. Roads are connected by junctions j = (¢, .#), which are associated
with a set of connectors % that describe all possible paths across the junction. Features .7
associated with a junction are, e.g., right-of-way priorities for its connectors and therefore
its connected lanes. An example of several road network elements is depicted in Figure 6.7.
Since the semantic road network representation is utilized for simulating traffic, it needs
to be aligned with the virtual world to be meaningful. This alignment can be achieved by a
manual workflow, e.g., using an appropriate editing tool. However, manually creating the
semantic network becomes a tedious and error-prone process when larger road networks are
realized. To increase efficiency and accuracy, the semantic information can be generated in
combination with the 3D geometry of the road network automatically. To realize the traffic
simulation prototype, both approaches have been implemented with the latter transforming
OpenDRIVE® data to the format described above. More details about the model and the

automatic generation process can be found in [SvS7, SvS6, SvS8].
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Figure 6.7: A schematic view of road network representation. Lanes are combined to roads, where
the sign of the lane describes the driving direction with respect to the direction of description. Roads
consists of one right lane (/_;) connecting both junctions and two left lanes (/; and I;) with the turning
lane [ beginning in the middle of the road. Connectors c; are assigned to junctions, describing all
possible paths across a junction (exemplified for the junction on the left). Direction and geometry of

each segment (lane or connector) is determined by a sequence of nodes n. Image based on [SvS9].

6.3 Scaling Simulations by Level of Detail

Traffic simulations in virtual environments often only simulate the visible surroundings of
the user with a microscopic traffic simulation. However, it is undeniable that the level of
detail required for microscopic, behavior-driven simulation requires significant computa-
tional resources even if efficiency is considered throughout the design and development
phase. Especially in multi-agent simulations, a system will cease to be interactive once a
certain number of entities is simulated. The more complex the simulation, the faster this
threshold is reached. A standard approach for dealing with this issue, is to remove agents
from the simulation once they exit a user’s visual field, i.e., they are no longer visible on
screen. One requirement for the FIVIS traffic simulation was to continuously simulate all
traffic participants in an urban area to maintain realistic traffic densities and avoid incon-
sistent situations. Especially, agent-specific characteristics and states should be maintained
throughout the simulation. Similar requirements have been adapted recently by open world
video games, emphasizing their role in simulating a believable virtual world. For example,
the game Assassin’s Creed Origins® included a system that avoids deleting specific agents

from a large open world [Lef18].

6Ubisoft, 2017
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Figure 6.8: Depiction of the level of detail approach to traffic simulation realizing a hybrid simula-
tion. A microscopic simulation of cognitive agents (CA) and simplified agents (SA) and a simulation
of mesoscopic agents (MA). In (a) the boundaries and transitions between the three layers are illus-
trated. Transitions are triggered based on distance to a user and visibility criteria, visualized in (b).

Images based on [SvS9].

For the implemented virtual world used in FIVIS — a recreation of an area of the city of
Siegburg — it was estimated that about 500 traffic participants must be simulated to represent
rush hour conditions and 200 agents for regular traffic. Using agents described in Section 6.1
to populate the road network, an interactive simulation is achievable until about 40 agents
are simulated. Simply removing agents from the simulation when the threshold is reached
would contradict the requirements stated above. Therefore, to fulfill the requirement and
preserve an interactive application, the simulation is divided into three layers as shown
in Figure 6.8. The result is a hybrid traffic simulation, which combines microscopic and
mesoscopic simulation (cf. [BKAO5b]) with the microscopically simulated area centered

around and moving with the user.

6.3.1 Level of Detail Simulation of Traffic Agents

Cognitive agents (CA) take full advantage of the CA2RVE architecture and the techniques
and properties included therein. Additionally, to provide a realistic visual representation,
vehicle physics are simulated, e.g., to achieve the typical pitching motion of a vehicle when
braking. This layer is the most resource intensive to simulate, but since behavior of other
drivers can only be observed in detail for a few agents at a time and in close proximity to a

user, only a limited number of cognitive agents is required. While this number depends on
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the application, the layout of the road network, and the structure of the world, it should be
below the mentioned system limit for most situations.

Once agents leave the vicinity of a user, they will still be visible and thus cannot be
removed or hidden. However, since their behavior is not observed as closely, they need
not be simulated in such detail as agents in the CA layer. Specifically, a simplified vehicle
representation without realistic physics can be used, driving dynamics can be simplified to
following the nodes of the road network as described by the semantic road network layer, and
perception can use simplified sensors designed toward efficiency, or the perception process
can be simplified. The purpose of these simplified agents (SA) is to reduce computationally
intensive components, while keeping a rudimentary visual representation that should be
indistinguishable from CA when observed from a distance.

Finally, after agents become occluded by world geometry, it does not make sense to keep
a visual representation of an agent. Furthermore, without a body many additional functions
become obsolete as well, e.g., lane changing, car following, perception, etc. However, due
to the required persistence, agents cannot be removed from the simulation. Using a macro-
scopic traffic simulation for occluded agents did not suffice as all individual characteristics
of an agent are lost when transitioning to a macroscopic simulation (cf. [SvS2, IVC4]). In-
stead, agents are tracked throughout the road network using a mesoscopic traffic simulation.
A mesoscopic approach was chosen as it preserves enough microscopic detail to maintain
individual information (e.g., an agent’s personality) as well as evolving parameters (i.e.,
emotional state), but reduce enough detail to provide an efficient low-overhead simulation.
Mesoscopic agents (MA) are separated from the CA’RVE architecture as their simulation is
based on a different approach. While both CA and SA are used for microscopic simulations,
where they actively decide what to do and where to go, MA are moved passively through
the road network like packets by corresponding components.

The most critical aspect in combining the microscopic and the mesoscopic simulation
layers is determining when transitions should occur between the two. Straightforward
heuristics can be used to determine transition points that are connected to user proximity.
For example, all roads ahead of a user’s current travel direction could be simulated micro-
scopically up to a certain distance along the network. It could be argued that if the distance is
large enough, users would not be able to notice appearing or disappearing agents. However,
such a heuristic would not explicitly include visibility between a user’s location and road
network elements. As a result, road sections that are beyond the specified distance away,
could still be visible, e.g., through gaps in buildings or across open terrain. Additionally,
user may not even be constrained to the road network itself but could navigate to any area

of the world. Visibility information must be available in these areas as well.
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Figure 6.9: View of ajunction area in a virtual environment. In (a)” a visualization of the road network
elements used by agents for navigation and decision making is shown. To determine visibility of
these elements, proxy geometries are generated that can be used for hit testing using raycasting in
(b)". Images from [SvS9].

*Vehicle assets based on designs by Dosch Design (pink car) [Dos] and “3DJunior” (green car) [3DJ]. Terrain
assets by IVC.

To determine all visible network elements for a given position in the world would be
a very resource demanding task at run-time, especially since it would require constant
visibility checks to all directions. Spending substantial resources to perform these checks
would defeat the purpose of reducing simulation complexity. Therefore, a visibility set V4
is determined for a specified area A during an offline process, which includes all network
elements that are visible from area A. Given a function 7 : R® x R x R — 2E, which describes
a subset of all network elements E that are visible from a position x viewed in the direction
of the polar angle 0 and the azimuthal angle ¢, the visibility set is defined as:
V= g r(x,0,) (6.6)

x€A,0<0<m,0<p<2m

For the traffic simulation prototype, r is realized using a raycast approach that tests
intersections between rays and bounding boxes of scene geometry. Since road network
elements are not physically represented in the virtual world, temporal proxy geometries
are used for determining visibility (see Figure 6.9). The continuous parameters x, 0, and ¢
are stochastically sampled, and the road network geometry can be used to further restrict
parameter ranges. For example, if the network is defined within a plane, x becomes two-
dimensional and directions outside of the plane do not have to be sampled, i.e., 0 is neglected.
Areas are defined by dividing the virtual scene using a uniform grid of adjustable cell sizes.

Knowing the visibility sets for all grid cells, a user’s current and adjacent cells are

used to determine which agents are currently visible to a user and need to be simulated
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Figure 6.10: Schematic representation of a road for mesoscopic traffic simulation using a priority
queue and following FIFO queues. The size of priority queues is limited by the maximum capacity
of the road segment ;5. The sort key for the priority queue is each agent’s time to destination (tdd).
FIFO Queues exist for each connected road element and agents are queued based on their routing

decision. Illustration based on [SvS3].

microscopically. From this information, it is deduced where agents must transfer between
the microscopic and the mesoscopic layer, without the user noticing it.

Even with the addition of the MA and SA simulation layers, the number of simulated
CA remains the limiting factor of the simulation. The current realization uses a fixed size
ellipsoid around a user to simulate CA. In Chapter 7, it is shown that this approach may still
lead to situations where the number of CA becomes too large to simulate in real-time. To
mitigate this issue, instead of using a fixed size vicinity, the CA region could be defined to
include a maximum number of CA, i.e., as soon as the number of CA passes this number, the
size of the vicinity is reduced to match the specified maximum number. Other alternatives
could be to keep the size fixed but use a scheduling algorithm to distribute the calculation of
all CA across several frames, or similar agents could be grouped, and simulations could be
performed on an aggregated representation. Both optimization options were not integrated

into the described realization, but are interesting approaches for future improvements.

6.3.2 Mesoscopic Simulation of Traffic Agents

The mesoscopic simulation realized for this traffic simulation prototype is an adapted ver-
sion of the FastLane model, which is based on queuing theory [Gaw98a, Gaw98b]. Roads
are represented by directed edges E, with the direction indicating the driving direction. Each
edge connects two vertices V, which are intersections. The resulting road network descrip-
tion is a directed graph G = (V,E). The travel time a vehicle spends on a road is simulated
using a combination of priority queues and First In, First Out (FIFO) queues (see Figure 6.10).
Furthermore, each road is described by its length L, a maximum vehicle capacity gay, the
current number of vehicles p, and the number of lanes n. While the maximum number of

vehicles that can travel on a road is calculated from a traffic density parameter in FastLane,
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the value is derived from an average vehicle length [ in the realization presented here:

Omax = 7 ‘n (6-7)

The average vehicle length can be based on information found in the literature (e.g., [CBNO3,
Gaw98b]) or be derived from vehicle types deployed within the traffic simulation. Once
the maximum number of vehicles is reached for a road, agents cannot transfer to it from
connected roads. Instead, they must stay on their current road until a transfer is possible,
resulting in spill-back effects. At the same time, the number of vehicles leaving a road is
limited by a capacity parameter to simulate queuing effects. The capacity can additionally
be randomized between simulation steps to emulate flow fluctuations of real traffic.

An agent’s time to destination ttd (where “destination” is the end of the current road) is
calculated once the agent enters a road based on the road’s length and the agent’s desired
velocity vp:

ttd = £ (6.8)

Y0

In the original FastLane implementation, the current number of vehicles on a link is con-
sidered in addition to road length and desired velocity when determining ttd. However,
Gawron also mentions that the number of vehicles can be neglected to sufficiently reproduce
other traffic models [Gaw98b]. The ttd values are the priority parameter of the road’s queue,
being reduced until they reach zero. In the presented simulation, agents can have different
desired velocities, e.g., based on personality, vehicle type, or simply randomization. For the
presented context, this means the order of vehicles in the priority queue may change, which
simulates vehicles passing each other, which is not unreasonable. In some cases, this may
not be possible (e.g., overtaking may be prohibited or there is only one lane), but the effect
is tolerated here. If overtaking needs to be restricted, desired velocities must be adjusted to
agents present on the road or set to be equal for all vehicles entering a road.

As soon as the ttd has expired, agents are queued for leaving the road using FIFO queues.
In the presented prototype, one FIFO queue is used for every connection to another road and
capacities are shared according to road layout. For this reason, junction elements control the
transfer processes between roads. Which FIFO queue an agent is added to can depend on
various criteria. A probability distribution can be used for selection, but choices can also be
based on route plans. Distributions can also be adjusted dynamically to provoke or prevent
certain phenomena. For example, traffic jams are uninteresting situations for a road safety
education simulator. Therefore, traffic can be distributed more evenly across the network to

keep traffic flowing (cf. [SvS3]). When agents are transferred to the microscopic simulation
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layer, their position in a FIFO queue and their current ttd are used to calculate their exact
spatial position on a lane by iterating over all nodes of a lane.

The current number of vehicles in FIFO queues must be included in the maximum
number of vehicles for the entire road. Turn pockets may increase the maximum number
for short sections of a road, but this is effect is ignored for the sake of simplicity. If vehicles
cannot exit a road, FIFO queues might fill up such that the sum of vehicles across all FIFO
queues equals the maximum number of vehicles on that road, i.e., none of the vehicles on
the road are currently moving. Further details on the mesoscopic traffic model can be found
in [SvS2, IVC4, SvS3], and [SvS9].

6.3.3 Road Network Representation for Mesoscopic Simulation

To facilitate MA simulation, an additional road network layer is required. This layer can
be generated automatically from the existing semantic road network (see Section 6.2) as
all necessary information is available, such as lane-connector relationships, junctions, and
segment lengths. An additional advantage gained from generating one network from the
other is that mismatches during the transfer process between the two layers are avoided.
Details about the generation process can be found in [SvS7, IVC7, SvS6, SvS8].

The geometric representation of lanes is encoded implicitly by the length L of a road.
Since the employed queues support only one driving direction, roads with lanes in opposite
driving directions are represented using two directed edges.

To simulate traffic, control is transferred from agents to the network elements (edges and
vertices). Vertices representing junctions store distribution probabilities used for routing
decisions. Consequently, agents behave like packets that are being passively transported
across the network by the controllers. Since the tasks performed by the network elements
have little complexity and agents do not perform any calculations, large networks containing

large numbers of agents can be simulated efficiently, which will be shown in Section 7.4.

6.4 Conclusion

This chapter discussed a realization of the cognitive agent architecture concept and its inte-
gration into a traffic simulation. The motivation was provided by the FIVIS bicycle simulator
developed at the Institute of Visual Computing of Hochschule Bonn-Rhein-Sieg. The simula-
tor provides a tool for road safety education, which should include other traffic participants
that emulate human traffic behavior as closely as possible. To this end, the architecture
described in Chapter 3, including the concepts for static and dynamic personalities (Chapter

4) as well as perception (Chapter 5), was implemented using the Unity game engine. The
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main focus was on real-time capability and a loose coupling of modules. Driving decisions
are implemented using a behavior tree containing general and situation specific driving
strategies. The influence of politeness on lane changing is described as one example for con-
necting driving decisions to an agent’s personality and emotional state. Additional world
knowledge is encoded using a semantic road network layer that can be perceived by agents
using an application-specific sensor. The idea is to augment information gathering without
accurately modeling the according combination of perception and reasoning. Designing
such “super-human” sensors help maintain performance by reducing the complexity of a
task for an agent. If the sensor is defined carefully, the plausibility of the perception process
is not compromised.

To further consider real-time and consistency requirements in multi-agent simulations,
a three-layered model is proposed that realizes a level of detail approach. Fully detailed
cognitive agents are simulated only in the vicinity of a user. Agents outside the vicinity are
reduced to a visual representation and simplified traffic behavior. An offline process is used
to determine the visibility of road structures for every discretized position in the virtual
world. This visibility information is used to transfer simplified agents to a mesoscopic sim-
ulation layer. In this layer, agents are no longer visualized but their individual information
is preserved and restored once they transition back to the visible layer. A queuing model
based on Gawron’s FastLane model is used to perform the mesoscopic simulation.

By providing the described implementation using a game engine, it is argued that the
proposed architecture concept is suitable for use in real-time applications, indicating an
answer to RQ4. By developing a modular and extensible agent design, simulations can be
adjusted to application-related constraints, especially real-time capability. While multiple
cognitive traffic agents can be simulated simultaneously, it was impossible to simulate the
required number of 200 agents and achieve more than 30 frames per second. It could
therefore be argued that RQ4 could not be answered successfully, as the agent simulation
does not scale to the required population size. To increase performance, several steps could
have been taken towards improving integration of the agent architecture into the game
engine. Optimizations could have been more GPU utilization, simulating groups of agents
together, or scheduling and balancing update cycles for each agent (see, e.g., [Coul5]). Other
systems that are intricately connected to the game engine but not the agent architecture, e.g.,
rendering, physics, and animation, could have been optimized as well. However, within
the scope of this thesis project addressing these optimizations was infeasible. Instead,
the modular design of the architecture allowed meeting target framerates by successively
disabling certain systems and modules, including resource intensive modules of the agent

architecture, such as action selection and communication. Additional requirements, like
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not discarding agents after they leave the user’s field of view, were met by introducing
additional systems, e.g., the presented mesoscopic simulation. Using these techniques, it is
possible to meet the requirements. In addition to the answer to RQ4 given in this chapter,

the next chapter provides quantitative measures supporting the claim.



EvAaLUuATION AND RESULTS

“Without proper self-evaluation, failure is inevitable.”

- John Wooden

HE objective of this thesis project was to design an architecture for attentive cog-

nitive agents that answers the research questions stated in Chapter 1. The main

concern was to provide consistent but individualized behavior with additional

focus on perception and attention, which can be applied to real-time virtual en-
vironments. In this chapter, the strategies used for evaluating the proposed solutions are
presented. A thorough evaluation of an IVA architecture is a difficult endeavor. Primarily,
evaluating believability of simulated agent behavior is always subjective and situational,
which introduces bias. Evaluations are therefore based on surveys and questionnaires that
also depend on user expectations and experience, the evaluated application, and what the
agent is trying to imitate (cf. [Liv06]). Besides the issue of subjectivity, judging how human-
like an agent behaves is another difficult challenge [ALS09]. One possible solution to this
problem is a version of the Turing test. In the test’s original form, a computer program must
win the “imitation game” against a human, judged by a human interrogator. A variation of
the test that had often been used by researchers to judge the humanness of virtual characters
was the 2K BotPrize! [ALS09, AML*12, GKB*09, Hin09, Liv06]. The contest had a mix of
human players and artificial players (bots) compete against each other in the first-person
shooter game UT 20042. During play, a panel of expert judges decided for each player
whether they were a human or a bot. As elaborated by Livingstone [Liv06], this type of
Turing test is only suitable to evaluate whether agents can play a game like a human would.

However, in situations where it is known that a