Citation link: https://nbn-resolving.org/urn:nbn:de:hbz:467-14524
Files in This Item:
File Description SizeFormat
Dissertation_Julian_Belz.pdf15.23 MBAdobe PDFThumbnail
View/Open
Dokument Type: Doctoral Thesis
metadata.dc.title: Fighting the curse of dimensionality with local model networks
Bekämpfung des Fluchs der Dimensionalität mit lokalen Modellnetzen
Authors: Belz, Julian 
Institute: Institut für Mechanik und Regelungstechnik - Mechatronik 
Free keywords: Nichtlineare Systemidentifikation, Lokale Modellnetze, Eingangsselektion, Versuchsplanung, Nonlinear system identification, Local model networks, Input selection, Design of experiments
Dewey Decimal Classification: 620 Ingenieurwissenschaften und Maschinenbau
GHBS-Clases: WFR
Issue Date: 2018
Publish Date: 2019
Series/Report no.: Schriftenreihe der Arbeitsgruppe Mess- und Regelungstechnik - Mechatronik, Department Maschinenbau 
Abstract: 
Das Themengebiet der vorliegenden Arbeit ist die datenbasierte Modellbildung (Identifikation). Das Hauptaugenmerk liegt auf Verfahren der Eingangsselektion und der Versuchsplanung, die dazu dienen, Effekte des Fluchs der Dimensionlität abzuschwächen, indem sie spezielle Eigenschaften lokaler Modellnetze ausnutzen.
Der Modelltyp der lokalen Modellnetze ermöglicht die Aufteilung des Eingangsraums...

This thesis is settled in the field of data-based modeling (identification) and specifically focuses on the weakening of the effects of the curse of dimensionality with local model networks (LMNs). The methods for fighting the curse of dimensionality originate from the fields of input selection and design of experiments (DoE).
The model type of LMNs allows the distinction in two input spaces - ...
URN: urn:nbn:de:hbz:467-14524
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/1452
License: https://dspace.ub.uni-siegen.de/static/license.txt
Appears in Collections:Hochschulschriften

This item is protected by original copyright

Show full item record

Page view(s)

1,304
checked on Jan 22, 2025

Download(s)

684
checked on Jan 22, 2025

Google ScholarTM

Check