
Architecture Design for Distributed
Mixed-Criticality Systems based on

Multi-Core Chips

DISSERTATION
zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt Dissertation von:

Mohammed Abuteir

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der
Universität Siegen

Siegen− Dezember 2016

Promotionskommission:
Prof. Dr. Roman Obermaisser

Prof. Dr. Roland Wismüller
Prof. Dr. Madjid Fathi

Prof. Dr. Kristof Van Laerhoven

Lehrstuhl Embedded Systems
Tag der mündlichen Prüfung:

4 Mai 2017

Architecture Design for Distributed
Mixed-Criticality Systems based on

Multi-Core Chips

This dissertation is submitted for the degree of

Doctor of Engineering
by

Mohammed Abuteir

Submitted to the Faculty of Science and Technology of
the University of Siegen
Siegen− December 2016

Examination commission:

Prof. Dr. Roman Obermaisser
Prof. Dr. Roland Wismüller

Prof. Dr. Madjid Fathi
Prof. Dr. Kristof Van Laerhoven

Chair for Embedded Systems Defense Date: 4 May 2017

This dissertation is dedicated to my parents, my
wife, and my family.

Acknowledgements

I would like to express my special appreciation and thanks to my advisor Professor Dr.
Roman Obermaisser, you have been a tremendous mentor for me. I would like to thank
you for encouraging my research and for allowing me to grow as a research scientist. Your
advices on both research as well as on my career have been priceless.

Special thanks to my parents and my family for their endless love and support through
my life, and for my lovely wife for her unconditional love, support, and understanding.

To all my friends and colleagues thank you for your motivation and encouragement.

Kurzfassung

In vielen Anwendungsbereichen wie beispielsweise der Avionik, industriellen Kontrollsyste-
men und dem Gesundheitswesen gewinnen sogenannte Mixed-Criticality Systeme, in denen
Anwendungen mit unterschiedlicher Wichtigkeit sowie unterschiedlichen sicherheitskritis-
chen Anforderungen auf einer gemeinsamen Rechenplattform implementiert werden, immer
größere Bedeutung. Die Hauptanforderung an solche Systeme ist ein modularer Sicherheit-
snachweis, der eine unabhängige Zertifizierung von Anwendungen anhand der zugehörigen
Sicherheitsebenen unterstützt. Um dieses Ziel zu erreichen fehlt im Stand der Technik jedoch
eine Mixed-Criticality Architektur für vernetzte Multi-Core-Chips mit Echtzeitunterstützung,
Fehlereingrenzung und Sicherheit. Die Dissertation befasst sich mit dieser Problematik und
bietet einen Lösungsansatz auf Basis von Architekturmodellen, selektiver Fehlertoleranz,
Scheduling-Techniken und einer Simulationsarchitektur.

Die Basis dieser Integration sind Mechanismen für die zeitliche und räumliche Par-
titionierung, die die Sicherheit der Anwendungen mit verschiedenen Kritikalitätsstufen
sicherstellen, so dass keine gegenseitige Beeinflussung entsteht. Die zeitliche Partitionierung
wird über den Einsatz von autonomer zeitlicher Kontrolle basierend auf einem zeitgesteuerten
Schedule mit definierten Zeitpunkten aller Kommunikationsaktivitäten in Bezug auf eine
globale Zeitbasis realisiert. Diese Zeitpunkte der periodischen Nachrichten verbessern die
Vorhersehbarkeit und ermöglichen eine rigorose Fehlererkennung und Fehleranalyse.

Zeitgesteuerte Schedules erleichtern zudem die Beherrschung der Komplexität von Fehler-
toleranzmechanismen und die Erstellung analytischer Zuverlässigkeitsmodelle. Ferner wird
eine Partitionierung der Netzwerkbandbreite verwendet um verschiedene Zeitmodelle (z.B.
periodisch, sporadisch und aperiodisch) zu kombinieren.

Ein weiterer Beitrag dieser Arbeit ist die selektive Fehlertoleranz für Mixed-Criticality
Systeme. Ein Hauptmerkmal der Fehlertoleranz in Kommunikationsprotokollen wie Time-
Triggered Ethernet (TTEthernet) und ARINC 664 ist die Bereitstellung redundanter Kommu-
nikationskanäle zwischen Netzwerkknoten über mehrere unabhängige Netzwerkkomponen-
ten. Die Datenflüsse zwischen den Netzwerkknoten sind gegen Fehler der verschiedenen
Netzwerkkomponenten, wie beispielsweise Links oder Switches, geschützt. Der Haupt-
nachteil replizierter Netzwerke in großen Systemen sind jedoch die zusätzlichen Kosten,

viii

insbesondere wenn die Netzwerke ihre Dienste für mehrere Subsysteme, nämlich nicht-
sicherheitskritische und kritische Subsysteme, bereitstellen. Diese Arbeit stellt eine neuartige
Systemarchitektur vor, welche die Redundanz in Mixed-Criticality Systemen basierend auf
einer Ring-Topologie unterstützt. Diese Architektur erfüllt die Anforderung der sicherheitskri-
tischen Systeme und ist gleichzeitig auch für nicht-sicherheitskritische Systeme wirtschaftlich
einsetzbar. Das Hauptmerkmal der vorgeschlagenen Architektur ist die Fehlereingrenzung,
so dass Fehler keinen Einfluss auf Subsysteme mit höherer Kritikalität aufweisen. Außerdem
garantiert die vorgeschlagene Architektur die Bereitstellung von Nachrichten mit begrenzten
Verzögerungen und begrenztem Jitter.

Basierend auf den in dieser Arbeit vorgestellten Architekturansätzen werden effiziente
Scheduling-Algorithmen für große Mixed-Criticality Systeme mit verschiedenen Zeitmod-
ellen eingeführt. Die Architekturmodelle werden auch mit Hilfe eines Simulations-Frameworks
evaluiert, welches hierarchische Mixed-Criticality Systeme mit vernetzten Multi-Core-Chips
unterstützt. Ferner wird dieses Framework verwendet um die vorgeschlagenen Scheduling-
Algorithmen zu verifizieren. Diese Evaluation wird zudem um analytische Modelle der
End-to-End-Kommunikation für verschiedene Kritikalitätsstufen ergänzt.

Abstract

In many domains such as avionics, industrial control, or healthcare there is an increasing
trend to mixed-criticality systems, where applications of different importance and criticality
are implemented on a shared computing platform. The major requirement of such a system
is a modular safety case where each application is certified to the respective assurance level.
A mixed-criticality architecture for networked multi-core chips with real-time support, fault
isolation and security is missing in the state-of-the-art. In this dissertation, we advance
the state-of-the-art by providing solutions to research gaps towards such an architecture for
networked multi-core chips, which include the architecture models, selective fault-tolerance
concepts, scheduling techniques, and a simulation framework.

The foundations for this integration are mechanisms for temporal and spatial partitioning,
to ensure that applications of different criticality levels are protected so they cannot influence
each other. We establish temporal partitioning using autonomous temporal control based on
a time-triggered schedule containing the instants of all message exchanges with respect to a
global time base. The predetermined instants of the periodic messages improve predictability
and enable rigorous error detection and fault isolation. The time-triggered schedules facilitate
managing the complexity of fault-tolerance and analytical dependability models. In addition,
we use network bandwidth partitioning to support different timing models (i.e., periodic,
sporadic and aperiodic traffic). We introduce an architectural model for mixed-criticality
systems based on networked multi-core chips, which describes both the physical system
structure as well as a logical system structure of the application.

Another contribution of the dissertation is a selective fault-tolerance concept for mixed-
criticality systems. One of the key features of existing fault-tolerant communication protocols
such as Time-Triggered Ethernet (TTEthernet) and ARINC 664 is providing redundant chan-
nels for the communication between nodes over multiple independent network components.
The data flows between the nodes are protected against the failure of any network component
such as a link or a switch. However, the main drawback of replicated networks in large
systems is the extra cost, in particular, if the networks provide their services for non safety-
critical subsystems alongside with the critical subsystems. We introduce a novel system
architecture supporting redundancy in mixed-criticality systems based on a ring topology,

x

which fulfills the requirements of high-critical systems while also being economically suitable
for low-critical systems. The main characteristic of the proposed architecture is fault isolation
so that a failure of a low-critical subsystem cannot reach subsystems of higher criticality.
Moreover, the proposed architecture supports the delivery of messages with bounded delays
and bounded jitter.

Based on these contributions, we address the scheduling algorithms for large scale mixed-
criticality systems where different criticality levels of the subsystem as well as high numbers
of nodes and applications lead to a steady increase of the complexity of scheduling the events
associated with such systems.

The architecture models have also been evaluated using a simulation framework. This
simulation framework is established for hierarchical mixed-criticality systems based on
networked multi-core chips. Additionally, this framework is used to verify the proposed
scheduling algorithms. This evaluation is accompanied by analytical models of end-to-end
communication for different criticality levels.

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Objectives . 2

1.2 Overview . 5

2 Concepts and Terms 7
2.1 Dependability . 7

2.2 Fault Hypothesis . 9

2.3 Concept of Component, Service and Behavior 10

2.4 Concept of State . 10

2.5 Real-Time Systems . 10

2.5.1 Classification of Real-Time Systems 11

2.5.1.1 Concept of Hard and Soft Real-Time System 11

2.5.1.2 Resource Adequacy for Hard Real-Time Systems and Best-
Effort for Soft Real-Time Systems 11

2.5.1.3 Concept of Time-Triggered and Event-Triggered Control 12

2.5.1.4 Fail-Safe and Fail-Operational Systems 12

2.6 Architecture Paradigms . 13

2.6.1 Federated Architecture . 13

2.6.2 Integrated Architecture . 14

2.6.3 Mixed-Criticality Architecture . 14

2.7 Partitioning . 15

2.8 Certification . 17

2.9 Modular Certification . 18

xii Contents

3 State of the Art in Mixed-Criticality Systems 19
3.1 State of the Art: Communication . 20

3.1.1 On-chip Communication . 20

3.1.2 Off-Chip Networks . 22

3.1.2.1 Off-chip Communication 23

3.1.3 Fault-Tolerance Networks . 26

3.2 State of the Art: Gateways . 27

3.3 State of the Art: Distributed Scheduling 28

3.4 Research Gap in the State of the Art . 29

4 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet 31
4.1 Conceptual Architecture Model . 31

4.1.1 Physical and Logical System Models 31

4.1.2 Platform Services . 33

4.1.2.1 Global Time . 33

4.1.2.2 Communication with Heterogeneous Traffic Types 36

4.1.2.3 Fault Containment . 38

4.1.2.4 Fault Tolerance . 39

4.1.3 Fault Hypothesis . 40

4.2 Concrete Architecture Model . 41

4.2.1 On-Chip Architectural Building Blocks 42

4.2.1.1 Cores with Application Components 42

4.2.1.2 On-Chip Network . 45

4.2.1.3 Gateway . 45

4.2.2 Off-Chip Architectural Building Blocks based on TTEthernet . . . 46

4.2.2.1 Switch . 46

4.2.3 Node . 50

5 Redundancy for Mixed-Criticality Networks with Multiple Ring Topologies 51
5.1 Mixed-Criticality Architecture based on a Ring Topology 51

5.1.1 Conceptual Model of Extended Switch 53

5.1.2 Error Detection & Containment in the Switch 54

5.1.3 Mechanisms of Switch for Supporting Redundancy based on Multi-
Ring Topologies . 57

5.1.4 Model of Extended Node . 59

Contents xiii

6 Off-chip/On-chip Gateways for Mixed-Criticality Systems 61
6.1 Architecture of Off-Chip/On-chip Gateway 62

6.1.1 Message-Classification Service 63
6.1.2 Message-Scheduling Service . 64
6.1.3 Traffic-Shaping Service . 64
6.1.4 Relaying of Aperiodic Messages 64
6.1.5 Down Sampling . 64
6.1.6 Protocol Conversion . 64
6.1.7 Egress-Queuing Service . 65
6.1.8 Ingress Queuing Service . 65
6.1.9 Virtual-Link Queuing Service . 65
6.1.10 Serialization Service . 66
6.1.11 Configuration Parameters . 66

6.2 Processing of Different Traffic Types . 67
6.2.1 Processing of Periodic Messages 68
6.2.2 Processing of Sporadic Messages 71
6.2.3 Processing of Aperiodic Messages 72

7 Scheduling of Sporadic and Periodic Traffic in Multi-Cluster Systems 73
7.1 Scheduling and Allocation Algorithm . 73

7.1.1 Logical Scheduling Model . 74
7.1.2 Physical Model . 74
7.1.3 Scheduling Model . 75

7.2 Scheduling Algorithm . 77
7.3 Worst-Case Latency . 80

8 Implementation and Evaluation 83
8.1 Implementation . 83

8.1.1 Off-chip Communication . 83
8.1.2 On-chip Communication . 84
8.1.3 Framework for Evaluation of Scheduling Algorithms 86

8.1.3.1 Random Generator for Physical Model of Platform 86
8.1.3.2 Random Generator for Logical Model of Application . . 87
8.1.3.3 Scheduling Algorithm 88
8.1.3.4 Verification Using Simulation Environment for Off-chip

Communication . 89
8.2 Evaluation . 89

xiv Contents

8.2.1 Automotive Evaluation Use-case 89
8.2.2 Evaluation Use-case Based on Ring Topology 91
8.2.3 Evaluation Use-case Based on Gateway 94
8.2.4 Evaluation of Scheduling Algorithm 96

8.3 Discussion and Interpretation of Results 97

9 Conclusion 103

Bibliography 105

Selected Publications 119

List of Figures

1.1 Dissertation Overview . 3

2.1 Real-Time System . 11
2.2 Federated Architecture . 14
2.3 Integrated Architecture . 14
2.4 Mixed-Criticality Architecture . 15
2.5 Safety Relevant Standards in Different Areas 17

4.1 Physical and Logical System Model . 32
4.2 Example of Different Clock Speeds at Different Parts of the System 34
4.3 Example of Synchronized Global Time Based at On-chip and Off-chip . . 36
4.4 System Model of the Multi-core Chip . 42
4.5 Modules of the Scheduled Flow Control Mechanism for Sporadic Messages 44
4.6 System Model of a Gateway . 46
4.7 System Model of a Switch . 46
4.8 System Model of the Single Core Node 50

5.1 System Model of Mixed-Criticality System with Multiple Ring Topologies . 52
5.2 Extended Switch with Redundancy Management 53
5.3 Time-Triggered Schedule . 54
5.4 Rate-Constrained Configuration Parameters 55
5.5 Time Line of a Redundant Periodic Message 56
5.6 Peripheral Switch at the Interface between Rings 58
5.7 Block Diagram of (a) Non Safety-Critical Node and (b) Safety-Critical Node

with Double Channels . 59

6.1 Off-Chip/On-chip Gateway . 62
6.2 Architecture of the Off-Chip/On-chip Gateway 63
6.3 Flowchart for Periodic Messages . 67

xvi List of Figures

6.4 Flowchart for Timely Block Mechanism 68
6.5 Flowchart for Shuffling Mechanism . 69
6.6 Flowchart for Sporadic Messages . 70
6.7 Flowchart for Aperiodic Messages . 71

7.1 Directed Acyclic Graphs of Logical Model 75
7.2 Scheduling Algorithm . 78
7.3 Heuristic Neighbourhood Algorithm . 79
7.4 Scheduling of Hyper-period . 80

8.1 Overview of Simulation Building Blocks for On-chip System 84
8.2 Gateway Class Diagram . 85
8.3 Validation Framework . 86
8.4 Example of Platform with 10 Switches, 23 nodes, 30% PCSW and 50% PCL 87
8.5 Example Scenario for Automotive Use-case 89
8.6 Simulation Results for Automotive Use-case 90
8.7 Evaluation Scenario Based on Ring Topology 91
8.8 Evaluation Use-case Based on Gateway 94
8.9 Upper bound for critical path delay after different iterations 96

List of Tables

2.1 Safety Integrity Levels - Target Failure Measures for a Safety Function
Operating in High Demand Mode of Operation or Continuous Mode of
Operation [IEC10a] . 18

3.1 Comparison of Mixed-Criticality Requirements 22

4.1 Fault Containment Regions for Design & Physical Faults 39

8.1 Definition of Input Parameters . 88
8.2 Application Timing Behavior of Evaluation Scenario Based on Ring Topology 92
8.3 Messages Exchange in the Evaluation Scenario Based on Ring Topology . . 92
8.4 Simulation Results of Evaluation Scenario Based on Ring Topology (The

listed jitter is the average observed jitter in ms of all destination nodes and the listed latency

is the average observed latency.) . 93
8.5 Message Exchange in the Evaluation Use-case Based on Gateway and Simu-

lation Results . 95
8.6 Use-case Result from Simulation Environment 97

Chapter 1

Introduction

The use of multi-core processors in embedded systems enables new applications with high-
performance requirements such as embedded vision systems for autonomous vehicles [KG14].
In addition, the computational power of a multi-core processor facilitates a higher physical
integration, where several electronic functions can be implemented on a single chip. In large
electronic systems, e.g. the distributed in-vehicle electronic system of a car, this higher
integration allows providing given services with fewer ECUs compared to systems with
single-core processors. Benefits include a reduction of cabling, lower hardware cost, less
weight and easier installation.

The physical integration often leads to mixed-criticality systems, if the functions of the
multi-core processor exhibit different safety assurance levels. In this case, mechanisms
for temporal and spatial partitioning [Rus01, Rus99a] are required, which establish fault
containment and the absence of unintended side-effects between functions.

At the same time, multi-core processors introduce significant challenges for safety-critical
systems and mixed-criticality systems. An example of such a challenge is the sharing of
resources (e.g., caches, buses and inputs/outputs), which can lead to temporal interferences
precluding the assurance of the real-time requirements. Therefore the use of multi-core
processors in safety-critical systems is a cause of concern to certification authorities. For
example, avionic certification authorities point out that the features of multi-core processors
could cause a loss of integrity, a loss of availability or non-deterministic behavior [Cer14].

In order to overcome these challenges, the integration of functions with different criticality
using time and space partitioning has been introduced at various integration levels in prior
research. Operating systems and execution layers that provide these services based on task
scheduling, memory protection and suitable hardware abstractions are available as products
(e.g. PikeOS [Sys10], Deos [DI11]).

2 Introduction

Temporal and spatial partitioning were also addressed in communication networks at
a chip level. Deterministic multi-core platforms use message-based Network-on-a-Chips
(NoCs) with Time Division Multiple Access (TDMA) to avoid the temporal unpredictability
and the potential for fault propagation of architectures with shared memories and memory
hierarchies. Examples of these architectures are the GENESYS MPSoC [SEH+12] and
Æthereal [GH10].

However, a single multi-core chip is insufficient in many embedded applications. There-
fore, hierarchical networks including off-chip and on-chip networks are required. Likewise,
hierarchical networks are required to achieve a system reliability beyond the reliability of a
single chip and to satisfy resource requirements exceeding the capacity of a single chip. As a
consequence, hierarchical platforms emerge in which cores inside a multi-core chip interact
by on-chip networks whereas multi-core chips are interconnected by off-chip networks.

At present, there is, however, a significant gap between the mixed-criticality integration
at chip-level and off-chip level, which is a challenge for upcoming mixed-criticality systems
with multi-core chips. This dissertation introduces multi-core platforms for a hierarchical
system perspective of mixed-criticality applications combining the chip and off-chip level.
This combination is established through a gateway to enable vertical integration and seamless
communication in hierarchical networks respecting mixed-criticality safety requirements.We
support message-based NoCs and off-chip networks with different timing models, while also
establishing real-time guarantees, fault isolation and protocol transformations.

Moreover, hierarchical networks with different timing models including time-triggered
communication, event-triggered communication with rate-constraints and best-effort commu-
nication require new scheduling and allocation algorithms in order to establish the connectiv-
ity between nodes, while satisfying the application requirements with respect to timeliness,
performance, safety and availability.

This dissertation focuses on the design of a hierarchical architecture that is suitable
for mixed-criticality services. This architecture requires configurations that depend on the
particular set of applications that is deployed in the system. Therefore, new scheduling
algorithms are introduced to guarantee the correct temporal behavior of the applications in
the system. Figure 1.1 gives an overview of the main contributions of the dissertation.

1.1 Objectives

A major contribution of this dissertation is the design of a mixed-criticality architecture with a
hierarchical platform comprised of networked multi-core chips. We consider communication
resources with the respective timing properties. This system model consists of switches and

1.1 Objectives 3

Mixed-criticality system services

On-chip communication

Gateway

Off-chip communication

Sc
h

ed
u

lin
g

Figure 1.1 Dissertation Overview

nodes that can be implemented as multi-cores. Each multi-core node communicates with
other nodes through the off-chip/on-chip gateway. This system supports full flexibility for
designing complex network topologies with different applications as well as varying numbers
of nodes and switches.

Moreover, the proposed system architecture ensures a predictable timing with bounded
latency and jitter based on periodic time-triggered and sporadic rate constrained messages.
Fault-tolerance using redundant switches and multiple stars is supported to preserve the
communication services despite the failure of individual physical links or switches. However,
other communication topologies are required in order to achieve scalability to large-scale
systems and to support mixed-criticality systems. We introduce multi-ring topologies with
corresponding switches for large-scale mixed-criticality systems. The architecture supports
redundant channels using heterogeneous paths for periodic time-triggered and sporadic rate
constrained messages, where switches autonomously perform the duplication and deduplica-
tion of redundant messages. Differences with respect to latencies on the redundant paths are
hidden to ensure an unchanged network timing in the case of failures.

Furthermore, multi-core processors promise improved performance and a higher physical
integration by combining functions of different criticality levels in one platform. Networked
multi-core chips are required to achieve a system reliability beyond the reliability of a single
chip and to satisfy resource requirements exceeding the capacity of a single chip. As a
consequence, hierarchical platforms emerge in which cores inside a multi-core chip interact
by on-chip networks whereas multi-core nodes are interconnected by off-chip networks. We
present gateways for establishing such a hierarchical platform. We support message-based

4 Introduction

NoCs and off-chip networks with different timing models, while also supporting real-time
guarantees, fault isolation and protocol transformations as follows:

• Gateways supporting different timing models. The proposed gateways support three
types of timing models for the redirection of messages between on-chip and off-
chip networks: (1) periodic time-triggered messages, (2) sporadic event-triggered
communication with rate-constraints, and (3) aperiodic, best-effort communication.

• Temporal partitioning. The presented gateways enforce temporal specifications in-
cluding periods and phases of time-triggered messages and rate-constraints of an
event-triggered communication. Untimely messages are blocked, thereby preventing
fault propagation between chip level and off-chip level.

Moreover, we present a scheduling algorithm that performs the allocation of computa-
tional and communication activities to nodes and networks, as well as the scheduling of the
communication and execution times. Both periodic time-triggered activities as well as event-
triggered rate-constrained activities are supported. Moreover, we introduce a simulation
and validation environment, which supports the automatic generation of test cases based on
scenario parameters and the testing of scheduling algorithms using these test cases. Thereby,
a large number of test cases can be analyzed in order to gain a deeper understanding of the
behavior of scheduling algorithms under different scenarios. We present the generic simu-
lation environment and use it for the evaluation of the presented neighborhood scheduling
and allocation algorithm. The simulation environment is also an effective foundation for
the comparison of different scheduling algorithms. Thereby, we enable a comprehensive
evaluation of the scheduling algorithm for use cases of varying complexity. In addition,
the simulation and verification framework is a foundation for the systematic comparison of
different scheduling algorithms including the evaluation of schedulability and run-time for
different types of scenarios.

To evaluate the mixed-criticality architecture for the hierarchical systems and to validate
the scheduling algorithm, the simulation framework is instantiated for the proposed archi-
tecture. The main results of the simulation framework are generic building blocks of the
infrastructure elements of the proposed system, which can be configured and extended to
create an application-specific simulation model:

• Generic model of a switch. We have developed a generic simulation model of a
switch supporting periodic time-triggered, sporadic rate-constrained and aperiodic
best-effort communication. In order to construct the overall simulation model, the
user can perform multiple instantiations of the generic switch, establish connections

1.2 Overview 5

to nodes and other switches, and assign to each switch instantiation a corresponding
configuration. The switch configuration defines the message timing including a periodic
time-triggered communication plan.

• Generic model of a node. The user can perform instantiates of the generic node and
connect each instantiation to switches. Nodes can be configured to produce messages
according to application-specific parameters (e.g., interarrival time distributions of
sporadic messages, periods of periodic messages). In addition, nodes can be extended
with the application behavior (e.g., C++ application code).

• Generic fault injectors. Building blocks for fault injection allow investigating the
system behavior in the presence of component failures. Generic fault injectors can
be instantiated and configured to inject specific failure modes (e.g., babbling idiot,
masquerading failure, ...).

• Generic model of a switch with fault-tolerance. We extended the switch simulation
building block to integrate and evaluate the proposed fault-tolerance mechanism.

• Generic gateway: We have developed a generic simulation model of the gateway
to couple the chip and off-chip simulations. The proposed gateways are realized
as simulation components based on GEM5 and the GARNET NoC models. The
simulation environment demonstrates the timely redirection and fault isolation of
periodic time-triggered, sporadic rate-constraint, and aperiodic messages.

1.2 Overview

The dissertation is structured as follows:

• Chapter 2 contains definitions and detailed information about the main concepts and
terms that are used throughout the dissertation. It starts by explaining the dependability
concepts with their main classifications, and the fault hypothesis concept with its
main components. The chapter continues with the real-time systems concepts with the
concentration on distributed systems. Then the chapter explains different architecture
paradigms ranging from federated to integrated and mixed-criticality architectures.
Then the partitioning at various levels such as processor, memory, I/O and communica-
tion is illustrated. Finally, the chapter ends with certification concepts and modular
certification.

6 Introduction

• Chapter 3 gives an overview of the state-of-the-art in the areas of on-chip communica-
tion, off-chip communication, fault-tolerance, gateways, and scheduling algorithms.
The chapter closes with an overview of the research gap in the state of the art and the
proposed architectures.

• Chapter 4 presents the architecture for the hierarchical system that supports the mixed-
criticality services. A conceptual and a concrete system model of a platform that
consists of networked multi-core chips are introduced. In the conceptual system model,
we describe the physical and logical system structure, the platform services of the
system model and the fault hypothesis.

• Chapter 5 introduces multi-ring topologies with corresponding switches for large-
scale mixed-criticality systems. The architecture supports redundant channels using
heterogeneous paths for periodic time-triggered and sporadic rate constrained messages,
where switches autonomously perform the duplication and deduplication of redundant
messages. Differences with respect to latencies on the redundant paths are hidden to
ensure an unchanged network timing in the case of failures.

• Chapter 6 focuses on the gateway model and services of a bridging both on-chip and
off-chip networks that address the requirements for a system perspective of mixed-
criticality applications by combining both networks and by performing protocol trans-
formations between heterogeneous networks.

• Chapter 7 presents a scheduling algorithm for the mixed-criticality systems. We
support the allocation and scheduling of periodic time-triggered and sporadic rate
constrained applications to nodes and communication links.

• Chapter 8 provides the detailed description of the implementation of the simulation
framework. The architecture and the proposed models are evaluated using a simulation
framework in different use-cases. it also describes a simulation and verification
framework for the hierarchical system. The simulation and verification framework
supports the automatic generation of test cases based on generic scenario parameters
including the connectivity degree as well as the number of networks, nodes, switches
and services. Thereby, we enable a comprehensive evaluation of the scheduling
algorithm for use cases of varying complexity.

• Chapter 9 concludes the dissertation and gives an outlook for future work on mixed-
criticality systems.

Chapter 2

Concepts and Terms

This chapter contains definitions and detailed information about the main concepts and terms
that are used throughout this dissertation.

2.1 Dependability

Dependability [LAK92] is the property of a computer system that reliance can justifiably be
placed on the service it delivers. The service delivered by a system is its behavior as it is
perceived by its user(s). A user is another system (physical, human) which interacts with the
former. A systematic exposition of the concepts dependability consists of three parts: the
threats to, the attributes of, and the means by which dependability is attained.

Threats

The threats to dependability are faults, errors, and failures, which can affect a system and
cause a drop in dependability. Threats are expected to occur or to be part of any system since
no system can be designed or operated perfectly.

• Failure: It occurs when the actual behavior of the component is no longer consistent
with to the specification, either because the component does not comply with the speci-
fication, or because the specification did not adequately describe its function [LAK92].

• Error: It is the part of the state of the system that may cause a subsequent failure. A
failure occurs when an error reaches the service interface.

• Fault: It is the adjudged or hypothesized cause of an error. A fault is a concept that
is introduced to stop recursion [UAcLR01]. As stated in [LAK92], the fault can be
classified according to various criteria such as the phenomenological cause, the intent,

8 Concepts and Terms

the domain, the phase of creation or of occurrence, the location with respect to the
system boundaries, and the persistence.

Attributes

According to [LAK92], the following attributes characterize a dependable system:

• Reliability: It is the probability that a system will provide the correct behavior (speci-
fied service) during the period of a mission. The reliability denotes the probability that
the system functions properly and continuously in the period of a mission.

• Safety: It is the ability of the system to avoid the occurrence of a catastrophic failure
for a given application in a given environment.

• Security: It is concerned with the authenticity and integrity of information, and the
ability of a system to prevent unauthorized access to information or services.

• Integrity: It is defined as the absence of improper alterations of information.

• Maintainability: It is related to the time interval that the system needs to repair itself
after the occurrence of a benign failure, and it can be defined as the ability of the
system to undergo repairs.

• Availability: It is measured by the fraction of time that the system is ready to provide
the service. The availability is determined by the reliability and maintainability of the
system. High availability of a system can be achieved either by high reliability or by
short repair times.

Means

The concept of the means of dependability consists of the following techniques, to achieve
the various attributes of dependability [ALRL04].

• Fault prevention: It is a set of techniques attempting to eliminate or reduce the
introduction or occurrence of faults in the system during the design and manufacturing
of hardware and software. These techniques are the quality control techniques that
are implemented in the process of manufacturing, and development of software or
hardware systems.

• Fault tolerance: It targets techniques and methods to keep the system providing its
service in the presence of faults. It includes error detection, recovery and fault handling,
which mask faults or prevent faults from being activated again.

2.2 Fault Hypothesis 9

• Fault removal: It is a set of techniques targeting the reduction of the number of faults
which are present in the system. It includes verification to test if the system‘s service
is within the specifications. It also includes diagnosis that finds mistakes in the system
implementation and deploys corrective actions.

• Fault forecasting: It is the technique used to estimate how many faults are present
in the system. Fault forecasting also analyses possible future occurrences of faults
and the consequences of faults. It is done by performing an evaluation of the system
behavior regarding to the fault occurrences or activation. It can be qualitative by
identifying, classifying and ranking failures, or it can be quantitative which is basically
a probabilistic evaluation of the satisfaction regarding the dependability attributes.

2.2 Fault Hypothesis

The fault hypothesis specifies assumptions that describe the types of faults, the rate at which
components fail and how components may fail [Pow92]. The fault hypothesis is a central
part in any safety-relevant system and provides the foundation for the design, implementation
and test of the fault-tolerance mechanisms [Obe12].

A Fault Containment Region (FCR) is a collection of components or a subsystem that oper-
ates correctly regardless of any arbitrary logical or electrical fault outside the region [Pow92].
A FCR is a set of subsystems that share one or more common resources that one single fault
may affect [Kop11]. An FCR limits the immediate impact of a fault, but fault effects mani-
fested as erroneous data can propagate across FCR boundaries. Therefore, the system must
also provide error containment [OP06] to avoid error propagation by the flow of erroneous
messages.

An Error Containment Region (ECR) is defined as a subsystem that is encapsulated by
error-detection interfaces such that there is a high probability that the consequences of an
error that occurs within this subsystem will not propagate outside this subsystem without
being detected and/or masked [Kop11]. The error detection mechanisms must be part of
different FCRs than the message sender. Otherwise, the error detection mechanism may be
impacted by the same fault that caused the message failure.

Part of the fault hypothesis is a specification of the failure rate of FCRs. In general,
different failure rates with respect to different failure modes and failure persistence are
necessary. Related to the failure rates in industrial communication the residual error rate
needs to be calculated according to IEC 61784-3 [IEC10d]. The residual error rate needs
to stay below 1% of the probability of dangerous failures per hour (PFH) of the target

10 Concepts and Terms

Safety Integrity Level (SIL) according to IEC 61508. Furthermore, failure persistence (i.e.,
permanent or transient) is an important factor in the differentiation of failure rates.

2.3 Concept of Component, Service and Behavior

We use the concept of a task for the process of executing an algorithm. The tasks are executed
in components and a component is considered to be a self-contained hardware/software unit
that communicates via a communication service that enables components to interact with
their environment exclusively by the exchange of messages. The timed sequence of output
messages that a component produces is called the behavior of the component. The intended
behavior of a component is called its service.

2.4 Concept of State

The concept of the state is fundamental for the investigation of complex systems. The state is
introduced in order for the systems description to separate the past from the future behavior
[Kop11]. This definition is based on the idea of Mesarovic and Takahara [MT89] if one
knows what state a deterministic system is in and the future inputs, he could with assurance
ascertain what the output will be. Hence, the state of a system accumulates the history and
captures only what is relevant for the future behavior of the given system. In a deterministic
system, future outputs just depend on the current state and the future inputs.

2.5 Real-Time Systems

Real-time computing systems [Kop11] are systems in which the correctness of the system
behavior depends not only on the logical result of the computation but also on the time at
which the results are produced.

The real-time system usually has inputs that correspond to entities in the physical world,
and outputs that also relate to physical entities. Most of these entities are connected to
controlling processes. The most stringent temporal requirements come from control loops
where all the functions for controlling the physical environment are included, e.g., controller
computing a set value of a controlled entity such as an automotive engine. The lag time
between inputs and outputs must be sufficiently small to ensure the stability of control. The
time interval when a result (output) must be produced is called a deadline. The deadline
is classified as soft, if a result has utility even after the deadline has passed, otherwise it is
firm. Deadlines are called hard deadlines if severe consequences can result from missing a

2.5 Real-Time Systems 11

deadline. In fact, the real-time system is a system that maintains a continuous and timely
interaction with the environment (cf. Figure 2.1).

Environment

Real Time
System

OutputInput

Feedback

Figure 2.1 Real-Time System

2.5.1 Classification of Real-Time Systems

2.5.1.1 Concept of Hard and Soft Real-Time System

Real-time systems can be classified into two categories: hard real-time systems and soft real-
time systems. Hard real-time systems have strict temporal constraints, in which missing the
specified deadline could have a dramatic impact on human life and on the environment. The
system damage when missing a deadline can be orders of magnitude higher than the utility of
the system under normal operation. Hard real-time systems are used in many domains such
as military applications, space missions, and automotive applications. Automobile engine
control systems and anti-lock brakes are examples of hard real-time systems.

Soft real-time systems also have temporal constraints but these constraints are not as
strict. In other words, the missing of deadlines does not lead to a catastrophic failure of the
system. Examples of soft real-time applications are call admittance in voice over internet
and cell phones, multimedia services and augmented reality systems.

2.5.1.2 Resource Adequacy for Hard Real-Time Systems and Best-Effort for Soft
Real-Time Systems

Resource adequacy is related to the provision of enough computing and communication
resources to handle the specified fault- and load-hypothesis. The system that supports
resource adequacy needs careful planning and extensive analysis during the design phase.
The system that does not support guarantees is called best effort, which is only suitable for
non safety-critical applications. There are two reasons to support such kinds of systems:

12 Concepts and Terms

• Economic viability: The provision of sufficient resources to handle every possible
situation involves high cost.

• Dynamic systems and flexibility: A dynamic resource allocation strategy based on
resource sharing and probabilistic arguments about the expected load and fault scenar-
ios is suitable for highly dynamic systems with dynamically changing compositions of
components.

2.5.1.3 Concept of Time-Triggered and Event-Triggered Control

According to [Kop11], a trigger is an event that causes the start of some action, e.g., the
execution of a task or the transmission of a message. Two different approaches in the design
of real-time systems can be distinguished according to the triggering mechanisms for the
processing and communication activities:

Time-Triggered System:

In the time-triggered approach, the communication and processing activities are initiated
at a particular point in time of a synchronized global time base. The global time base is a
sparse time [Kop92] and enables the temporal coordination of actions by providing a system
wide clock reference. In the time-triggered system, each process activation or message
communication is done based on a static schedule table built offline.

Event-Triggered System:

In event-triggered systems, event triggers serve as control signals for communication and
computational activities. According to [Obe05], the event can originate either from activities
within the computer system (e.g., termination of a task) or from state changes in the natural
environment (e.g., alarm condition indicated by a sensor element).

2.5.1.4 Fail-Safe and Fail-Operational Systems

Two different approaches can be distinguished in the realization of a safe real-time system.

Fail-Safe System:

Fail-safe systems have one or more safe states that can be reached in case of a system failure.
In other words, the system will not endanger lives or property when it fails. This system
must, however, have a high error-detection coverage. An example of a fail-safe system is a

2.6 Architecture Paradigms 13

railway signaling system. A safe state for this system might be setting all signals to red and
thus stopping all the trains.

Fail-Operational System:

Fail-operational means that the system must continue to operate correctly in case of a failure.
This system requires a technique to mask component failures and continue the provision of
the correct service. One of the possible techniques that can be used is active redundancy
with voting (see [OKS08] for more details). A flight control system aboard an airplane is an
example of a fail-operational system [Kop11].

2.6 Architecture Paradigms

In the last decades, the use of embedded systems in many domains such as the automotive
and avionic industry has rapidly increased. Sensors and control subsystems with different
criticalities are becoming more complex, where these subsystems should meet stringent spec-
ifications for safety, reliability, availability and other attributes of dependability. Additionally
to that, the requirement for small size suitable for mobility an extremely low production costs
require small and controlled resource consumption with limited hardware capacity.

2.6.1 Federated Architecture

Each dedicated node implements at most one service, and the applications are loosely coupled
[OESHK09, Rus99b]. Figure 2.2 shows an example of a federated architecture where we
have three applications of different criticality levels implemented on a distributed system. In
case an application consists of several services, each service can comprise several tasks in its
own node that is only loosely coupled to the nodes of another service.

This architecture has remarkable advantages from the point of view of complexity
management, fault isolation, and fault containment. In the federated architecture, the fault
containment units are clearly defined and due to separate physical resources, a faulty task
cannot affect the rest of the system. The evident drawback of the federated architecture is its
profligate use of resources, which means that the number of nodes in the system is as high as
the number of services. This also increases the associated wiring, hardware cost, size, weight
and power. Another drawback of the federated architecture is the limited sharing of hardware
and communication resources.

To overcome these drawbacks of the federated architecture, the trend in real-time systems
is towards integrated architectures.

14 Concepts and Terms

Legend

Service

Node

Figure 2.2 Federated Architecture

2.6.2 Integrated Architecture

The integrated architecture describes a system that integrates different services in each
node and sharing a single physical communication channel [Kop04b]. An example of the
integrated architecture is shown in Figure 2.3.

Legend

Service

Node

Figure 2.3 Integrated Architecture

Such an architecture reduces cost, increases dependability, and weight by reducing the
number of nodes and cables. A drawback of integrated architectures is the complexity
increase of the system due to the possible potential for interference through shared resources.

2.6.3 Mixed-Criticality Architecture

A mixed-critical system is an integrated suite of hardware, operating system and middleware
services and application software that supports the execution of safety-critical, mission-
critical, and non-critical software within a single, secure embedded platform [BBB+09]. In
addition to the integration of multiple services with different certification assurance levels
using a shared platform, the modular certification (see section 2.9) is an important aspect

2.7 Partitioning 15

in a mixed-criticality architecture to limit certification costs. Partitioning (see section 2.7)
is a prerequisite to enable this modular certification, where each component is certified to
the respective level of criticality. An example of a mixed-criticality architecture is shown in
Figure 2.4.

Legend

Service

Node

Partitioning

Figure 2.4 Mixed-Criticality Architecture

2.7 Partitioning

A partitioned architecture provides partitioning mechanisms at the platform level for isolating
the functional and temporal behavior of each node, in order to avoid the propagation of
functional and timing faults. As stated in [Rus99b], the goal of such an architecture is
providing fault containment equivalent to an idealized system in which each partition is
allocated to an independent processor where associated peripherals and all inter-partition
communications are carried on dedicated lines.

In this architecture, two categories of partitions can be distinguished according to their
domains: spatial and temporal partitions. Spatial partitioning ensures that a service in a
partition will not overwrite memory elements of other partitions (i.e., protection of data and
code), and will prevent interference between partitions [Rus99b]. Temporal partitioning
guarantees the temporal properties of shared resources (e.g, processor or communication
channel) even in the case of faulty services in other partitions.

An example of such an integrated architecture is Integrated Modular Avionics (IMA) [Pri92]
in the aerospace domain. Each partition in IMA is associated with dedicated resources such
as processor time, memory, I/O and communication.

The partitioning at the processor level can be realized using the hardware or by virtu-
alization in software. An example of a hardware mechanism is a Memory Management
Unit (MMU) to ensure spatial partitioning by preventing a running application on differ-
ent partitions from the overwriting memory of other partitions. An example for temporal

16 Concepts and Terms

partitioning is a predetermined partition table for granting access of applications to the
processor. Virtualization is a technology that introduces a software abstraction layer between
the underlying platform and the operating system. This layer is called a Virtual Machine
Monitor (VMM) or a hypervisor [BK10, RG05, SML10]. The main responsibilities of the
hypervisor are hardware abstraction, robust resource and time partitioning, inter-partition
communication, partition management, and the provision of an intra-partition Real-Time OS
API.

Examples of virtualization solutions at processor level are the Linux Kernel Virtual Ma-
chine (KVM), XtratuM [CRM10], PikeOS [Sys10], VxWorks [PK07] and LynxOS [Lyn02].

The partitioning at memory level can be realized by splitting the memory into segments.
Each partition is forced to use only the memory segment which it owns. The memory
partitioning can be attained using a hardware approach or a software approach [BCSM08].
Dividing the memory into N segments with fixed size is an example of the hardware ap-
proach [KS90]. In the software approach, the code and data of an application are logically
restricted to specific memory portions which are done by mapping instructions and assigning
data only to certain parts of the addressing space [BCSM08].

The partitioning at I/O level is realized by assigning I/O devices to partitions and ex-
tending the protection and isolation properties of partitions for I/O operations. To deal with
the interrupts from multiple I/O devices, an application is used, which can configure these
interrupts to either be handled directly by a partition (e.g. Intel’s VT-x [UNR+05]) or to
invoke the hypervisor (e.g. Intel’s virtualization [Int14]) which then routes the IRQ to the
corresponding partition.

The partitioning at communication level is realized using communication protocols that
ensure the spatial and temporal partitioning (e.g. FlexRay, ARINC 664, TTEthernet).

FlexRay [Fle04] is a time-triggered communication protocol with a static segment that
supports segregation of the messages from different components in the time and value
domains and with a dynamic segment that can be used for event messages.

ARINC 664 [Com05] guarantees the timely delivery of messages by dividing the total
bandwidth on the network between the nodes that share the network. Each type of data is
assigned a Minimum Inter-Arrival Times (MINT) that limits the frequency with which that
type of data can be sent.

TTEthernet [Com11] is a real-time Ethernet extension that supports the exchange of
messages with bounded transmission delays, low jitter and high channel utilization. TTEther-
net ensuring the deterministic behavior of the time-triggered messages using pre-scheduled
communication.

2.8 Certification 17

2.8 Certification

Electrical Drivers

IEC 61800-5-2

Machinery

ISO 13849
IEC 62061

Avionic

DO-178B/C
DO-254

Furnaces

EN 50156

Lifts

ISO 22201

Automotive

ISO 26262

Railways

EN 50126 / 8 / 9

Medical
IEC

60601
Medical

ISO 15998

Earth Moving
Equipment

Figure 2.5 Safety Relevant Standards in Different Areas

Certification is a third-party assurance of a product or, system ensuring that the system
conforms to defined requirements. There is a large number of corresponding standards that
have been established by different organizations like ISO or IEC.

The current approach to certification practice is standards based, which requires that the
product and the development processes fulfill the requirements and satisfy the objectives of a
certain certification standard, depending on the application area [Rus07]. Figure 2.5 shows
examples of safety standards in different areas.

Most of the domain-specific safety standards are derived from the generic safety standard
IEC 61508 [IEC10a, IEC10b, IEC10c] (e.g., ISO 26262 [cit09]), or use similar approaches
(e.g., DO-178C [oR11]).

The IEC 61508 standard defines four Safety Integrity Levels (SILs) based on the risk
of a critical failure, ranging from SIL 4 (most critical) to SIL 1 (least critical). The SIL
is determined by the consequences of software failures (systematic failures) and hardware
failures (systematic and random failures). Table 2.1 lists the target failure measures for a
safety function according to IEC 61508 [IEC10a]. DO-178C defines five assurance levels,
rated by the criticality of the software functionality. Level A, the highest criticality level,
is assigned for software whose anomalous behavior causes a catastrophic failure condition
whereas Level E, the lowest level, is required for software whose anomalous behavior has no
effect on the system’s operational capacity with respect to safety.

18 Concepts and Terms

Table 2.1 Safety Integrity Levels - Target Failure Measures for a Safety Function Operating
in High Demand Mode of Operation or Continuous Mode of Operation [IEC10a]

Safety Integrity Level,
(SIL)

Average frequency of dangerous failure of
the safety function [h−1],

(PFH)

4 ≥ 10−9PFH < 10−8

3 ≥ 10−8PFH < 10−7

2 ≥ 10−7PFH < 10−6

1 ≥ 10−6PFH < 10−7

2.9 Modular Certification

Modular certification means that a system is certified not as a monolithic piece but as a set of
modules using a certification strategy that promises a massive reduction in certification cost
through modularization and reuse of certification arguments.

In fact, certification is a significant cost factor in the development of safety-criticality
systems. For example, the cost of the certification and validation ranges between 60% and
70% of the cost of an avionics component [ASS+08]. Moreover, the cost of the certification
is increasing based on the criticality level (e.g. the development cost of avionic software
according to the safety level increases by 300–500% [ASS+08]). Consequently, there is a
need for an architectural approach, which enables the certification of small, reusable modules
and applications.

The main challenge in modular certification is the need for a component and interface
model, which is also valid in the presence of faults. Therefore, fault containment and
encapsulation services from an integrated architecture are required.

Although real-time communication protocols such as time-triggered networks can not
solve the analysis of such hazards at the application level, they provide an important base
line for modular certification due to the temporal and spatial partitioning.

Chapter 3

State of the Art in Mixed-Criticality
Systems

This chapter analyses architectures and communication services as well as their suitability
for mixed-criticality systems.

One of the main challenges in mixed-criticality systems based on multi-core processors is
the safety certification. This is because sufficient evidence must be provided to demonstrate
that the resulting system is safe for its purpose. Therefore, the designer of the mixed-criticality
system shall consider the following safety aspects for the system [25]:

• No interference between the applications executing simultaneously on the separate
cores may occur.

• The code or private data of one application cannot be altered by any other application.

• Applications will have no effect on each other’s ability while sharing a common
resource such as memory, cache, data buses and peripheral devices of the entire
multi-core systems.

• No collision between messages in the communication channels.

The encapsulation concept is the realization of these aspects. To ensure that the mixed-
criticality system is free of interferences, the system shall ensure the spatial and temporal
independence between applications.

An equally important challenge in mixed-criticality systems based on multi-core proces-
sors is reliability. For instance, the increasing rates of transient faults are more significant in
highly integrated chips such as modern multi-core processors. Since the mixed-criticality
system combines applications with different safety requirements, services such as fault
containment and fault tolerance are required.

20 State of the Art in Mixed-Criticality Systems

Furthermore, mixed-criticality systems differ not only in the safety assurance levels, but
typically also exhibit varying temporal requirements for the underlying platform. Many
applications of the highest criticality levels realize cyclic control services. For example,
time-triggered communication protocols are well suited for these safety-critical control
applications [Obe11]. Functions of lower criticality often employ less restrictive timing
models. Sporadic communication with rate-constraints offers higher potential for resource
sharing and bounded latencies, but higher variability of communication latencies. Aperiodic
communication activities without temporal guarantees are suitable for non safety-relevant
functions.

Another important challenge in mixed-criticality systems is the support for a real-time.
Therefore, architectures and communication systems shall guarantee that the messages meet
the specified deadlines in all situations. Establishing multiple priorities may not suffice
for assuring determinism, since the collisions between messages of the same priority may
cause unacceptable delays. Therefore, a deterministic behavior is required to guarantee the
end-to-end latency for the real-time messages. To ensure the deterministic communication
behavior, a pre-defined schedule and predefined paths are required.

3.1 State of the Art: Communication

This section gives an overview of the state of the art for the on-chip communication as well
as the off-chip communication. In addition, we discuss how the mixed-criticality challenges
are addressed in different protocols.

3.1.1 On-chip Communication

The use of multi-core processors in embedded systems enables new applications with high
performance requirements such as embedded vision systems for autonomous vehicles [KG14].
The uses of multi-core processors also leads to interest in NoCs. A NoC is an interconnec-
tion network that transports data between cores, which provides a solution for scalability,
parallelism and system modularity, high frequency operation and power efficiency.

Shared resources of a multi-core processor such as caches, buses and inputs/outputs are a
source of indeterminism in execution time analysis. Therefore, researchers proposed various
resource reservation and priority-based mechanisms to achieve Quality of Service (QoS), i.e.,
to provide guarantees in latency and bandwidth.

Æthereal [GH10] and Nostrum [LTMJ05] adopt the resource-reservation mechanism
to offer guaranteed services for throughput and latency in conjunction with best effort

3.1 State of the Art: Communication 21

services. Both architectures employ a Time-Division Multiplexing (TDM) Circuit-Switching
mechanism to provide these guarantees. Æthereal uses the concept of open-ended virtual
circuits while Nostrum uses the concept of closed-loop virtual circuits. A detailed discussion
of both methods is available in [LJ07]. A virtual circuit is a technique where resources are
reserved in both space and time using an explicit time division multiplexing mechanism
called temporally disjoint networks [BDM06].

Moreover, the Time-Triggered Network-on-a-Chip (TTNoC) [Pau08, WEK10] uses also
TDM with simple routers to provide predictable communication for real-time systems.
The TTNoC with a pseudo-static communication schedule allows for a high bandwidth
interconnect with inherent fault isolation for heterogeneous components of possibly different
criticalities.

Resource-reservation mechanisms require the connection establishment between the
source and target components before starting the data transmission. The connection is
established by using configuration information to reserve the path between the respective
routers. The path reservation avoids the establishment of other conflicting connections in the
path. Some NoCs, such as Æthereal, use table data to store the required bandwidth of the
guaranteed throughput (GT) flows, but such a table increases the router area significantly.

The advantage of using these NoCs is scalability due to their modular structure and the
provision of a guaranteed and predictable performance. Likewise, this method guarantees a
lossless and deterministic communication. On the other hand, the resource and the space
consumption for the hardware implementation is significantly high.

In the priority-based mechanism two approaches can be distinguished to enable control
over communication flows; Static Priority and Dynamic Priority. The static priority approach
aims to use a resource allocation mechanism based on static priorities for providing differ-
entiated services to the flows. Each priority has its lane to serve its messages. In contrast,
the dynamic priority approach aims to assign the priority to the communication flows as
opposed to the static priority approach, where priorities are assigned to lanes. This gives the
system more flexibility, which allows sending the transmitted messages through any lane,
transmitting messages through different lanes along the message path, and using the time
division multiplexing by transmitting messages with the same priority through different lanes
in the same physical link.

The priority-based mechanism is adopted in different NoC architectures (e.g. Mango
NoC [BS05], STNoC [CGL+08]). Mango NoC uses the concept of virtual channels for
message-passing over open core protocol (OCP) interfaces to achieve the QoS in an asyn-
chronous network. The virtual channel is implemented using separate physical buffers in
each switch that contend for access to the shared physical link. STNoC is a flexible and a

22 State of the Art in Mixed-Criticality Systems

scalable packet-based on-chip network where the router comprises multiple interconnected
input and output ports and dynamic arbitration mechanisms that resolve any output port
conflicts based on the messages priorities. STNoC also uses the concept of virtual channels.

The priority-based mechanism can only guarantee the QoS for a small number of virtual
channels. From the implementation point of view, the router area increases approximately
with the square of the number of the virtual channels [MTCM05].

The comparison among NoCs with respect to mixed-criticality requirements is summa-
rized in Table 3.1.

Protocol Encapsulation

Real‐Time
(Bounded
Latency and

Jitter)

Timing Models Global Time Fault Containment
Error

Containment

Aethereal Yes Yes Periodic and aperiodic NO Yes NO

Nostrum NO Yes Periodic No NO NO

TTNoC Yes Yes Periodic Yes Yes Yes

Mango NO Yes Periodic and aperiodic NO NO NO

STNoC NO Yes
Sporadic and
aperiodic

NO NO NO

Table 3.1 Comparison of Mixed-Criticality Requirements

3.1.2 Off-Chip Networks

This section provides a brief discussion on the off-chip communication networks for mixed-
criticality systems including the support for fault tolerance.

Ethernet has evolved to offer higher bandwidths and support improved media access
control methods. It is now widely used in many application areas. According to [Car16],
there is a market share of 38% for industrial Ethernet and an annual growth rate of 20%.
Ethernet has become attractive in embedded applications because it is an open standard
with many Commercial-Off-The-Shelf (COTS) components on the market. Furthermore,
Ethernet-based embedded systems can be seamlessly connected to higher network levels
(e.g., business planning and logistics) and integrated into the Internet-of-Things [VD10].
Therefore, Ethernet-based networks are pervasive in many domains such as automotive,
avionics and industrial control.

3.1 State of the Art: Communication 23

In this dissertation, we will focus on the off-chip communication in a hierarchical
architecture using Ethernet-based networks addressing mixed-criticality requirements.

3.1.2.1 Off-chip Communication

Since Ethernet did not support the real-time and the mixed-criticality requirements, Ethernet
was extended with several approaches. Examples are audio video bridging based on an
IEEE Standard [AVB16], ARINC 664 and TTEthernet. The architecture proposed in this
dissertation was inspired by these communication protocols.

Ethernet based on IEEE Standard and Extensions for Time Sensitive Networking

In the 1980s, the IEEE project 802 generated standards for the design and compatibility of
hardware components that operated within the Open Systems Interconnection (OSI) physical
and data link layers. This standard is the IEEE 802.3 specification. Over time, the family of
IEEE 802 standards was extended and changed according to new communication demands
including share media (e.g. hubs, switches, physical links).

The family of IEEE 802 standards nowadays uses Virtual Local Area Networks (VLANs)
to divide one physical network into multiple broadcast domains based on IEEE 802.1Q
[80211]. VLANs are a core protocol required for different systems such as Audio/Video
Bridging (AVB). AVB aims to enhance Ethernet with QoS using the priorities of outgoing
queues.

This mechanism allows network traffic to be separated from each other without changing
physical connections or including additional devices. Furthermore, it is possible that for each
virtual network the optimal route between two end nodes is defined. Moreover, the failure
of a node or a connection does not necessarily cause the failure of the entire network traffic
between two end nodes, because AVB supports the reconfiguration of the virtual networks
by using the Multiple VLAN Registration Protocol (MVRP).

Hard real-time traffic is not sported by AVB. The upcoming Ethernet standard time
sensitive networking (IEEE 802.1Qbv) [IEE13] will introduce scheduled traffic based on
time-triggered communication plans, while also offering run-time reconfigurability and
management capabilities.

ARINC 664

Due to the growing complexity of avionic systems, the data transmission in the network
has increased. Boeing and Airbus developed a next-generation avionics data bus using the
COTS components on the market. This step has resulted in the development of Avionics

24 State of the Art in Mixed-Criticality Systems

Full-Duplex Switched Ethernet (AFDX) based upon IEEE 803.2 Ethernet technology. The
AFDX switch is extended with specific functionality to provide a deterministic network with
guaranteed services in order to comply with the stringent requirements of Aircraft Data
Networks (ADNs). Aeronautical Radio, Inc. (ARINC) standardized it based on Ethernet
technology as the standard ARINC 664.

The ARINC 664 standard aims to provide dedicated bandwidth to each communication
path in the network and allows the specification of the Quality of Service (QOS) available to
each node in the system.

The ARINC 664 standard supports redundant channels, namely two channels transmitting
the same data stream at the same time to improve system reliability. Therefore the end node
supports the redundancy management to forward only one data stream to the upper layers,
and automatically excludes an erroneous data stream from being forwarded.

The ARINC 664 standard ensures a BER as low as 10−12 while providing a bandwidth
up to 100 Mbps, thereby fulfilling the requirements of new generations of avionics in terms
of reliability and available bandwidth.

TTEthernet

Since Ethernet does not support applications with real-time and safety requirements, Ethernet
extensions with predictable timing were developed. TTEthernet [Com11] is a real-time
Ethernet extension that was standardized by the Society of Automotive Engineers (SAE). It
supports message exchanges with bounded transmission delays, low jitter and high channel
utilization. TTEthernet establishes a global time base through clock synchronization and
provides fault containment for failures of switches, communication links and nodes. In
particular, mixed-criticality applications are supported, where safety-critical subsystems
(e.g., alarm monitoring functions, active safety functions) and non safety-critical subsystems
(e.g., multimedia functions) are combined in a single system [SBct]. For these different
types of subsystems, TTEthernet includes suitable communication mechanisms ranging from
best-effort messaging with a high channel utilization to predictable real-time messaging
based on a time-triggered communication schedule.

A TTEthernet [Obe11] network consists of a set of nodes and switches, which are
interconnected using bi-directional communication links. TTEthernet combines different
types of communication on the same network. A service layer is built on top of IEEE 802.3,
thereby complementing layer two of the Open System Interconnection (OSI) model [Obe11].

TTEthernet supports synchronous communication using so-called time-triggered frames.
Each participant of the system is configured offline with pre-assigned time slots based on
a global time base. This network access method based on TDMA offers a predictable

3.1 State of the Art: Communication 25

transmission behavior without queuing in the switches and achieves low latency and low
jitter.

The bandwidth that is either not assigned to time triggered frames or assigned but not used
is free for asynchronous frame transmissions. TTEthernet defines two types of asynchronous
frames: rate-constrained and best-effort frames. Rate-constrained frames are based on
the AFDX protocol and intended for the transmission of data with less stringent real-time
requirements [s0911]. Rate-constrained frames support bounded latencies but incur higher
jitter compared to time-triggered frames. Best-effort frames are based on standard Ethernet
and provide no real-time guarantees.

The different types of frames are associated with priorities in TTEthernet. Time-triggered
frames have the highest priority, whereas best-effort frames are assigned the lowest priority.
Using these priorities, TTEthernet supports three mechanisms to resolve collisions between
the different types of frames [Obe11, Se09]:

• Shuffling. If a low priority frame is being transmitted while a high priority frame
arrives, the high priority frame will wait until the low priority frame is finished.
That means that the jitter for the high priority frame is increased by the maximum
transmission delay of a low-priority frame. Shuffling is resource efficient but results in
a degradation of the real-time quality.

• Timely Block. According to the time-triggered schedule, the switch knows the in
advance the transmission times of the time-triggered frames. Timely block means
that the switch reserves so-called guarding windows before every transmission time
of a time-triggered frame. This guarding window has a duration that is equal to the
maximum transmission time of a lower priority frame. In the guarding window, the
switch will not start the transmission of a lower priority frame to ensure that time-
triggered frames are not delayed. The jitter for high priority frames will be close to
zero. Timely block ensures high real-time quality with a near constant delay. However,
resource inefficiency occurs when the maximum size of low-priority frames is high or
unknown [Ste06].

• Preemption. If a high priority frame arrives while a low priority frame is being relayed
by a switch, the switch stops the transmission of the low priority frame and relays the
high priority frame. That means that the switch introduces an almost constant and a
priori known latency for high priority frames. However, the truncation of frames is
resource inefficient and results in a low network utilization. Also, corrupt frames result
from the truncation, which can be indistinguishable to the consequences of hardware
faults. The consequence is a diagnostic deficiency.

26 State of the Art in Mixed-Criticality Systems

The TTEthernet frame format is fully compliant to the Ethernet frame format. However,
the destination address field in TTEthernet is interpreted differently depending on the traffic
type. In best-effort traffic, the format for destination addresses as standardized in IEEE 802.3
is used. In time-triggered and rate-constrained traffic, the destination address is subdivided
into a constant 32-bit field and a 16-bit field called the virtual-link identifier. TTEthernet
communication is structured into virtual links, each of which offers a unidirectional connec-
tion from one node to one or more destination nodes. The constant field can be defined by
the user but should be fixed for all time-triggered and rate-constrained traffic. This constant
field is also denoted as the CT marker [s0911]. The two least significant bits of the first octet
of the constant field must be equal to one, since rate-constrained and time-triggered frames
are multicast messages.

3.1.3 Fault-Tolerance Networks

Redundant communication architectures based on time-triggered networks and different
topologies have been introduced in previous work. Bus topologies with local guardians offer
low cost, but limited independence of fault containment regions due to the spatial proximity
between host computers and local guardians [ASe03]. A star topology has the advantage of
a higher level of independence, since guardians are located at a physical distance from nodes.
Furthermore, guardians reshape signals and support additional monitoring services. Ring
topologies do not require a central node to manage the connectivity between the nodes. Also,
the point-to-point connection between devices with immediate neighbors has advantages
w.r.t. installation, reconfiguration as well as identification and isolation of faulty nodes [For07,
p. 136]. For example, a braided-ring architecture with superior guardian functionality and
complete Byzantine fault-tolerance were introduced [HDPDB05] to achieve high integrity
and availability levels similar to SAFEbus but at significantly lower cost.

Prior work has also introduced redundant communication architectures based on ex-
isting protocols. For example, extensive results are available for improving the widely
used Controller Area Network (CAN) protocol [ISO93]. Previous work has addressed
fault-tolerance by active redundancy (e.g., [Ruf97]), using consistent atomic broadcast mech-
anisms (e.g., [RVA+98, KL99, Liv99]), redundant channels and redundancy management
(e.g. [SP07]). ReCANcentrate [BAP05] and CANbids [PBe12] provide fault-tolerance by
using star couplers. Likewise, fault-tolerance extensions were performed for industrial Eth-
ernet networks [F. 03], where redundant paths are used to arrive at each node using a ring
or mesh topology. A redundant Ethernet system based on a ring topology without switches
or hubs using a new topology adaptation network management protocol was introduced
in [YKK+06].

3.2 State of the Art: Gateways 27

Fault-tolerance extension was also explored in different industrial domains. ARINC
664 part 7 [ari05] introduces redundant Ethernet-based communication networks for avionic
systems. The integration of different communication protocols with a redundancy concept
was presented in [KsH10] for in-vehicle networks.

The existing solutions of fault-tolerant ring architectures do not specifically address
mixed-criticality systems where the trade-off between cost and reliability requires fault-
tolerance for safety-related communication only.

Furthermore, a communication architecture for mixed-criticality systems needs to sup-
port different traffic types and timing models to satisfy the heterogeneous requirements of
application subsystems with different criticalities. Safety-critical control loops typically
exhibit a regular periodic timing, which can be fulfilled by time-triggered communication.
Non safety-critical applications such as multimedia and comfort systems often use less rigid
timing models (e.g., sporadic and periodic activities).

3.2 State of the Art: Gateways

In this section, the state-of-the-art of gateways that bridge different networks are given.

The state-of-the-art provides gateways for hierarchical systems with local networks and
wide-area networks. The architectural design and implementation of the multi-level internet-
working gateways is presented in [BE83]. [DC97] describes the design and implementation
of a gateway that links a consumer electronic bus to the Internet or an equivalent WAN. The
main functionality of this gateway is to manage, broker and integrate network traffic between
these two distinct categories of networks.

A hardware/software co-designed architecture to support the real-time transcoding be-
tween IEEE 1394 based digital video and Ethernet-based MPEG4 streaming are introduced in
[JLLK07]. An architecture of gateways with Quality-of-Service (QoS) and traffic forecasting
aiming to favor application requests with temporal constraints is proposed in [MMT10]. This
gateway classifies traffic into six classes with different priorities using IEEE 801.1q.

[FFR+11] focuses on the development of an embedded time gateway for interfacing
Simple Network Time Protocol (SNTP) based clients with a Precision Time Protocol (PTP)
synchronization infrastructure. A multi-interface sensor network gateway architecture for
home automation and other distributed monitoring applications is introduced in [SZZS08].

In the literature, several gateway approaches for integrating mobile ad-hoc networks and
the Internet have been proposed [RK03, AER04, OAOK14]. The approaches are generally
classified into two-tier and three-tier architectures.

28 State of the Art in Mixed-Criticality Systems

A cloud networking architecture to achieve dynamic and on-demand cloud computing
services using different underlying networking technologies is proposed in [MZZM13].
Moreover, the authors present a cloud networking gateway manager to enable networking
of distributed cloud resources by authorized customers and to provide network control and
configuration capabilities.

An Internet-of-Things (IoT) architecture that allows real-time interactions between mobile
clients and legacy devices (e.g., sensors and actuators) via a wireless gateway is proposed
in [DBN14]. This architecture provides to clients the support for dynamic discovery of
Machine-to-Machine (M2M) devices and endpoints. It manages connections with non-smart
devices connected over Modbus and associated meta-data to sensor measurements using the
Sensor Markup Language (SenML).

The gateways presented in this dissertation go beyond the state-of-the-art by providing an
off-chip/on-chip gateway architecture for networked multi-core chips that provides a solution
for mixed-criticality systems with different timing models, fault isolation and real-time
guarantees.

3.3 State of the Art: Distributed Scheduling

Since time-triggered networks are a fundamental technology for the partitioning in a mixed-
criticality architecture and since time-triggered networks depend on static schedule tables,
distributed scheduling algorithms are presented for computing these tables.

The optimal scheduling of a distributed real-time system is an NP-complete problem
[EDPP00]. There are several approaches to tackle the scheduling problem in time-triggered
systems. The static scheduling and partitioning of processes, and the allocation of system
components are introduced in [Ben96, PP92] based on Mixed Integer Linear Programming
(MILP). The main drawback of this approach is that the runtime of solving the MILP
model grows quickly with the number of processors and services. Therefore, heuristics
have been introduced such as list scheduling heuristics using different priority criteria
(e.g., [SS01, KA96]), branch-and-bound algorithms (e.g., [NYC06, EKP+98]) and heuristics
based on neighborhood search (e.g., [TSX00, AB06, Esw09]). Popular meta-heuristics in
the neighborhood search are simulated annealing, tabu search and genetic algorithms.

Many researchers have provided solutions for offline scheduling of distributed systems
with bus-based multi-core processes. The scheduling problem of TTEthernet systems is
addressed in a few research results. [Ste10] provides an algorithm to handle periodic traffic
over multiple hubs based on TTEthernet using the Satisfiability Modulo Theory (SMT) solver.
The static scheduling for integrating time-triggered and event-triggered traffic is introduced

3.4 Research Gap in the State of the Art 29

in [Ste11]. In [TSPS12] the authors used the tabu search to schedule periodic traffic and to
minimize the end-to-end delay of sporadic messages.

However, none of the previous results for time-triggered networks address the scheduling
of the services with dependencies, while at the same time handling periodic and sporadic
traffic. Since mixed-criticality systems support different timing models, we present a new
scheduling algorithm for periodic and sporadic traffic based on neighborhood search. We
minimize transmission delays and execution times, while also supporting service dependen-
cies.

3.4 Research Gap in the State of the Art

A mixed-criticality architecture for networked multi-core chips with support for safety,
real-time performance, fault isolation and system integrity is missing in the state-of-the-art.
Existing architectures do not support reliable and predictable communication services, such
as timing guarantees (e.g., minimal jitter, bounded delay, best effort), using heterogeneous
communication systems with different criticality, different timing models and different
models of computation.

Moreover, the integration of on-chip and off-chip networks with different protocols into a
coherent embedded architecture for networked multi-core chips taking into account complete
segregation to establish mixed-criticality support on the network level is not available.

In addition, architectural support for fault-tolerance based on the boundary conditions
of mixed-criticality systems (e.g., heterogeneous models of computation, non-deterministic
subsystems, and different timing models) is missing.

In addition to that, mixed-criticality scheduling has to be considered at the off-chip
network and the on-chip network. Many existing scheduling algorithms focus on the off-chip
message scheduling only, without support for integration with the chip-level and end-to-end
considerations.

We advance the state-of-art and introduce an integrated off-chip and on-chip communi-
cation system with a reliable and temporally predictable communication infrastructure that
supports different criticality levels, QoS requirements (e.g., bandwidth, latency, reliability)
and communication modes (e.g., streaming, cyclic control messages, event notifications).
In addition, we present an off-/on-chip gateway that supports the mixed-criticality services,
fault isolation and real-time guarantees.

Likewise, we establish redundant communication paths, traffic shaping and exploit
QoS parameters in order to improve reliability and temporal predictability for end-to-end
communication.

30 State of the Art in Mixed-Criticality Systems

Furthermore, a fault injection environment is introduced to support the injection of
different fault types of the timing and value failures into networks to evaluate the system’s
reliability. The injected faults are derived from certification standards such as IEC 61508.

Finally, we advance the state-of-the-art of mixed-criticality scheduling to address the
scheduling of the services with dependencies, while at the same time handling periodic and
sporadic traffic.

Chapter 4

System Model of Multi-Core Chips
Interconnected by Real-Time Ethernet

This chapter presents a mixed-criticality architecture based on networked multi-core chips
that integrates applications at different levels of criticality on the same platform. The system
architecture aims at defining the platform services of the mixed-criticality system and how
these services are applied in the architecture models.

The first part of this chapter describes a conceptual system model of a platform that
consists of networked multi-core chips. In addition, we describe the platform services of
the system model. In addition, we present the platform services of the mixed-criticality
architecture. We use fundamental services of a mixed-criticality architecture (global time,
communication with heterogeneous traffic types, fault containment, and fault tolerance) as the
architecture’s platform services. Subsequently, a concrete system model for mixed-criticality
systems based on networked multi-core chips is described.

4.1 Conceptual Architecture Model

The system model illustrated in Figure 4.1 consists of a physical and a logical model as well
as a mapping to platform services which are described in the following subsections.

4.1.1 Physical and Logical System Models

The overall system (cf. Figure 4.1) is physically structured into a set of nodes that are
interconnected by a real-time communication network in a corresponding network topology
(e.g., mesh, star, redundant star, ring). An off-chip/on-chip gateway serves as the bridging
point between chip-level and off-chip communication.

32 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

Platform Services

Global Time Fault
Containment

Commination
Service Fault Tolerance

Resources
(Computational,

Communication, I/O,
Memory)

 On-Chip Interconnect

P
ar

ti
ti

o
n

s

Virtualization Layer

Memory Traffic Shaper

Node Node NodeNodeNode

SwitchSwitchSwitch

Physical Model

NI NI

Core

NI

Off-Chip/
On-Chip GW

N
o

C

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t
OS

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

e
n

t

OS

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

en
t

OS

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

e
n

t

OS

Core

NI

Core

NI

Core

NI

Core

Figure 4.1 Physical and Logical System Model

Each node is a multi-core chip containing cores that are interconnected by a NoC. Each
core has a Network Interface (NI) which is the connecting point between an IP core or
several IP cores and the on-chip interconnect. According to the application and architecture
requirements, the NoC has a corresponding topology for interconnecting the cores and the
on-chip routers (e.g., mesh, torus, folded torus, hypercube, octagon).

The IP cores within a core can run a hypervisor that establishes partitions, each of which
executes a corresponding software component (or component for short). The hypervisor
establishes time and space partitioning, thereby ensuring that a software component cannot
affect the availability of the computational resource in other partitions (e.g., time and duration
of execution on IP core, integrity and timing of memory).

An off-chip/on-chip gateway is responsible for the redirection of messages between the
NoC and the off-chip communication network. The off-chip communication network consists
of a set of switches, that establish connections between the nodes and other switches.

From the logical point of view, the system model is structured into criticality levels.
Each criticality level belongs to multiple application subsystems. Each of these applications
is assigned to a safety integrity level such as Class A to E in avionics, ASIL A to D in
automotive and SIL1-4 in multiple domains according to IEC-61508. Examples of application
subsystems are steer-by-wire and brake-by-wire in the car that belong to the highest criticality
level (ASIL D). An application subsystem can be further subdivided into components, which
interact by the exchange of messages via ports. Each component provides services to its
environment. The specification of a component’s interface defines its services, which are the

4.1 Conceptual Architecture Model 33

intended behavior as perceived by the transmission of messages as a response to inputs, state
and the progression of time. Three types of messages are distinguished based on their timing:

1. Periodic messages represent time-triggered communication. Their timing is defined by
a period and phase with respect to a global time base.

2. Sporadic messages represent rate-constrained communication with minimum interar-
rival times between successive message instances.

3. Aperiodic messages have no timing constraints on successive message instances and
no guarantees with respect to the delivery and the incurred delays.

The logical and physical system models for networked multi-core chips are defined
with corresponding architectural services that are essential for the evolvability, scalability
and complexity management of mixed-criticality systems. These services allow abstracting
from the platform technology such as network protocols and types of processor cores. The
communication services support the timing models (i.e., periodic, sporadic and aperiodic)
as well as temporal/spatial partitioning based on the enforcement of time-triggered sched-
ules, rate-constraints and permitted address information. The gateway services address the
requirements for resolving the various communication services that are required for bridging
between chip-level and cluster level communication for hierarchical system structures.

The global time services fulfill the demand for a consistent global time base in a system
of networked multi-core chips with bounded precision and bounded accuracy. This global
time is the foundation for the temporal coordination of activities and the establishment of a
deterministic communication infrastructure.

The fault hypothesis is important to satisfy the requirements on fault detection, contain-
ment and masking. In addition, we introduce fault-tolerance services to mask component
failures according to the fault hypothesis.

4.1.2 Platform Services

The proposed architecture supports different services such as global time, communication
with heterogeneous traffic types, fault containment and fault tolerance. These services are
the foundation for the development of mixed-criticality systems.

4.1.2.1 Global Time

In a distributed system where each node has its own local clocks, the clock synchronization
problem appears. The aim of the clock synchronization service 1 is to establish a global time

1The overall clock synchronization idea has been discussed with the DREAMS partners in [Con14].

34 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

Node

On-Chip Interconnect

P
ar

ti
ti

o
n

s

Virtualization Layer

Memory Traffic Shaper

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t

OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t

OS
A

p
p

lic
at

io
n

C
o

m
p

o
n

en
t

OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t

OS

Off-chip Network

Core CoreCore

Off-Chip/On-

Chip GW

Legend
Off-chip Network
(Message level)
On-Chip Interconnect
 (flit level)
Network Interface (Phit
level)
Processor Cores

50 MHz

200 MHz

1 GHz

2,5 GHz

NI NI

NI NI

NI

CoreCore

Figure 4.2 Example of Different Clock Speeds at Different Parts of the System

between the nodes and switches that have local clocks. The global time is an assumption that
the clocks of all nodes and switches have “about the same value” at “about the same points
in real-time”.

The concept of the global time gives the ability to establish the temporal coordina-
tion of activities, a deterministic communication infrastructure and a relationship between
timestamps from different components.

The clock synchronization service is also responsible for establishing the global time in a
system, which supports different clock domains. As shown in Figure 4.3, different parts of
the system can operate at different clock speeds and components can include an arbitrary
number of local clock domains, which are not visible outside of the core.

The goal of the clock synchronization service is to keep the time of the local clocks in
close relation to each other or to a reference clock. In order to achieve this goal, the clock
synchronization service performs two different modes of operation: a startup and keeping
clocks synchronized during normal operation.

The startup mode establishes the initial synchronization between nodes and switches
by negotiating and agreeing on the initial synchronization point [Obe11]. This initial syn-
chronization is an essential prerequisite for the realization of a deterministic communication,
which performs the temporal coordination of all communication activities using the global
time. In fact, clock synchronization algorithms for most applied deterministic protocols

4.1 Conceptual Architecture Model 35

such as FlexRay and TTEthernet are based on the assumption of initially synchronized local
clocks as established by a startup mode.

The startup mode does not depend on the individual power-on times of the participating
nodes and switches. Therefore, most startup modes are generally divided in two phases: a
“coldstart” and an “integration” phase.

In the coldstart phase, a new synchronized time-base is established by the nodes and
switches rather than integrating to an existing one. The authors in [Obe11] discussed different
coldstart algorithms based on different communication protocols.

The integration phase concerns the nodes and switches that are joining an already syn-
chronized system. After the coldstart phase, the nodes and switches periodically exchange
integration messages. Those messages are read by an integrating node and used to initialize
their local clocks.

In the normal operation, each node and each switch perform the following three phases
as stated in [Obe11]:

Phase 1: Collection of clock time values. In phase 1, a node or a switch receives the
time values of other clocks actively participating in the synchronization where this
time could be equal to the actual time or different.

Phase 2: Calculation of correction value. The purpose of this phase is bringing the
collected clock time values from phase 1 closer together by computing a correction
value of the collected clock time values.

Phase 3: Clock correction. In phase 3, a node or a switch uses the calculated
correction value of phase 2 as a reference clock value.

At the chip level, a multi-core processor generally provides multiple clock domains
to support clocking down of individual IP blocks as part of power management or the
heterogeneous IP blocks require different speeds (e.g., high-clocked special purpose hardware
and a slower general purpose CPU). The global time base at the chip-level embodies an
independent clock domain, which typically is established through the low-frequency macro
tick clock signal in the chip.

The gateway provides the synchronization service between the on-chip global time and
the off-chip global time base using rate correction in combination with overflow time intervals.
Since the on-chip global time base is typically faster than the off-chip global time base, it is
supposed to be synchronized, if each N rising edge of the on-chip global time is associated
with a rising edge of the off-chip global time base. However, if the on-chip global time
base runs faster, after the N cycles, the next rising edge waits until the rising edge of the

36 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

reflow
interval

Synchronized global timeat off-
chip and on-chip

Time

On-
chip

Off-
chip

Figure 4.3 Example of Synchronized Global Time Based at On-chip and Off-chip

off-chip global time base. This interval is called reflow interval that determines the tolerable
deviation between the rates of the off-chip and on-chip global time base. Figure 4.3 shows
an example of this synchronization, where the on-chip global time base is six times faster
than the off-chip global time base.

4.1.2.2 Communication with Heterogeneous Traffic Types

Mixed-criticality systems differ not only in the safety assurance levels but typically also
exhibit varying temporal requirements for the underlying platform. Many functions of the
highest criticality levels realize cyclic control services. For example, time-triggered commu-
nication protocols are well suited for safety-critical control functions [Obe11]. Functions of
lower criticality often employ less restrictive timing models. Sporadic communication with
rate-constraints offers higher potential for resource sharing and bounded latencies, but the
higher variability of communication latencies. Aperiodic communication activities without
temporal guarantees are suitable for non safety-relevant functions.

Therefore, the system model supports three types of criticality according to the traffic
types:

• Time-triggered transmission of periodic messages: They are temporally defined by
a period and phase with respect to a global time base and they can be assigned the
highest priority to resolve conflicts with the other traffic types in order to minimize the
latency jitter.

4.1 Conceptual Architecture Model 37

• Rate-constrained transmission of sporadic messages: Sporadic messages represent
rate-constrained communication with minimum interarrival times between successive
message instances.

• Best-effort transmission of aperiodic messages: They have no timing constraints on
successive message instances and no guarantees with respect to the delivery and the
incurred delays.

In the proposed system, the concept of Virtual Links (VLs) is used to realize bandwidth
partitioning and hide the physical system structure of the platform from the components. The
timing and reliability of the VL are determined by the properties of the underlying physical
networks.

A VL is an end-to-end multicast channel between one sender component and multiple
receiver components.

Time-triggered VLs serve for the time-triggered transmission of periodic messages at the
specified period and phase with respect to a global time base. Rate-constrained VLs establish
the transport of sporadic messages with minimum interarrival times. A rate-constrained
VL also has a priority that determines how contention with other rate-constrained VL is
resolved. Rate-constrained communication guarantees sufficient bandwidth allocation for
each transmission with defined limits for delays and temporal deviations. Aperiodic messages
do not require VLs, but are subject to a connectionless transfer.

In the proposed system model, we use the following mechanisms to resolve the contention
between periodic, sporadic and aperiodic messages for VLs.

Timely block for periodic messages: Contention can be resolved by timely block of
the physical links for the conflict-free traversal of periodic messages through the networks.
Timely block ensures that a network is free when a periodic message arrives. In a time-
triggered schedule, the periods and phases of other periodic messages can be aligned in
such a way that there is no contention. For sporadic and aperiodic messages, a guarding
window is required prior to the transmission of each periodic message. The guarding window
prevents the start of a transmission of a sporadic or aperiodic message, if it would delay the
subsequent periodic message.

For a VL, where the transmission of a periodic message occurs on multiple successive
networks, the transmission of the periodic message and the associated guarding windows can
be phase-aligned on these networks.

Each network has a time-triggered schedule that determines the time intervals of guardian
windows and when a message received from on network is relayed to another network. Hence,

38 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

timely block requires an alignment between the time-triggered schedules of the on-chip and
off-chip networks.

Shuffling for periodic messages: Shuffling is an alternative to timely block with a
more efficient utilization of the network bandwidth. Shuffling avoids the overhead of the
guarding windows where no messages can be transmitted.

In case of shuffling, periodic messages are assigned higher priority than sporadic and
aperiodic messages. If contention occurs on a non-preemptive network, a periodic message
is delayed by at most one sporadic or aperiodic message that is already in transmission. In
the VL there can be an additional delay of another message with maximum size on every
network of the end-to-end channel.

Interference between periodic messages can be avoided, when the time-triggered schedule
separates any two periodic messages by a sufficiently large time interval. This timer interval
must be at least as large as the transmission jitter, which is equal to the transmission duration
of a maximum size message.

Shuffling for sporadic messages: Shuffling can be used to limit the effect imposed upon
sporadic messages from lower priority sporadic and aperiodic messages. The maximum effect
is the delay for transmitting one lower-priority message of maximum size. In combination
with the rate-constraints for the higher priority messages, upper bounds for the transmission
delays of sporadic messages can be specified.

4.1.2.3 Fault Containment

The fault containment between components is one of the key properties in mixed-criticality
systems in order to improve robustness, attain clear integration responsibilities and enable
modular certification. As we discussed in section 2.2, a Fault Containment Region (FCR) is
defined as a set of subsystems that shares one or more common resources that can be affected
by a single fault and is assumed to fail independently from other FCRs. The fault can be
divided into two categories, namely design faults and physical faults. Based on these types,
one can distinguish corresponding FCRs.

Since the system model supports safety-critical real-time systems, the system must have
a failure rate with regard to critical failure modes that conforms to the ultra-high reliability
requirement. In these systems with ultra-high reliability, a maximum rate of critical failures
of 10−9 per hour is demanded. Therefore, design faults in hardware and software - that are
introduced during the development of the platform and the application - are demanded to

4.1 Conceptual Architecture Model 39

Table 4.1 Fault Containment Regions for Design & Physical Faults

Fault Containment Region Containment Coverage
(Correlated Failures per Hour)

Partition < 10−9

Multiple partitions containing
the same application component or the same guest OS < 10−9

Application
cores with the hypervisor layer < 10−9

Cores < 10−9

Nodes < 10−9

lead to less than 10−9 correlated failures per hour for the corresponding FCRs (See Table
4.1)

A physical fault affects physical resources, such as mechanical or electronic parts. To
form a fault containment boundary around a collection of hardware elements, one must
provide independent power and clock sources and additionally electrical isolation and spatial
separation. These requirements make it impractical to provide more than one FCR within
a node at a safety-critical rigor (at a containment coverage with a probability of correlated
failures of 10−9 failures per hour). We also regard each switch with the corresponding
physical links to the nodes as a FCR. For example, a central guardian of a time-triggered
network (e.g., TTEthernet switch) serves as a FCR [CMFC+98].

For physical faults, the hardware approach can provide a certain containment coverage by
providing spatial separation of the cores, multiple clock domains and pin-out (e.g., grounding)
on the chip layout (e.g., for SEEs [BPH98]). These on-chip FCRs for physical faults (i.e.,
cores) work only at single chip failure probabilities (e.g., around 10−5 to 10−6 correlated
failures per hour [AC03]). Therefore, additional fault containment at off-chip level is required
in ultra-dependable systems.

Physical fault containment and design fault containment are orthogonal properties. Physi-
cal fault containment does not assure design fault containment and vice-versa. For instance,
one may use two separated chip processors (two FCRs for physical faults) to implement a
function but both can fail simultaneously due to a single design fault of the software. In the
same way, a NoC can assure design fault containment for two independent operating systems
within the same chip and a single physical fault can make both fails.

4.1.2.4 Fault Tolerance

Fault tolerance is the property that enables a system to continue its operation normally or
with a reduced quality, but without causing total breakdown of the whole system while it has

40 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

one or more faults within its components. A FCR is introduced in order to delimit the impact
of a fault. As the fault-error-failure chain is introduced section 2.1, the fault that causes the
failure can be categorized as (i) design fault of the hardware or software of the FCR, (ii)
operational fault of the FCR and (iii) faults at the system-level. The latter type of fault is a
failure of an FCR, which could cause a fault in another FCR via a sent message that deviates
from the specification. If the transmission instant of the message is not in agreement with the
specifications, we speak of a message timing failure. A message value failure means that the
data structure contained in a message is incorrect.

Such a fault can be masked using fault tolerance mechanisms, and the most common
mechanism is N-Modular Redundancy (NMR) [LA90]. N replicas receive the same requests
and provide the same service. The output of all replicas is provided to a voting mechanism.
The voting mechanism determines if the result is correct by selecting one of the results (e.g.,
based on the majority) or by transforming the results to a single one (average voter). The
most frequently used N-modular configuration is Triple Modular Redundancy (TMR).

We denote the number of the replicated components and a voter as a Fault-Tolerant
Unit (FTU). Replica determinism has to be supported by the mixed-criticality architecture
to ensure that each FTU produces the correct outputs in defined time intervals. The deter-
ministic communication (e.g. time-triggered communication) addresses key issues of replica
determinism. Typically, the deterministic communication supports replica determinism by
using the global time based in conjunction with predefined communication and computational
schedules. The predefined schedules determine the points in time for triggered computational
activities after the last message of a set of input messages has been received by all replicas of
a FTU. The alignment of communication and computational activities on the global time
base ensures temporal predictability and avoids race conditions.

4.1.3 Fault Hypothesis

The fault hypothesis specifies assumptions about the types of faults, the rate at which
components fail and how components may fail [OP06]. The fault hypothesis is a central part
in any safety-relevant system and provides the foundation for the design, implementation
and test of the fault-tolerance mechanisms [Obe12].

The fault assumptions of the system model are based on IEC-61508-2, according to which
transmission errors, deletion, corruption, delay, repetitions, masquerading and insertion need
to be addressed [IEC10e].

Failure modes of FCRs are defined according to the effects appearing at the service
interface of an FCR. The failure mode is independent of the actual cause or rate of the failure.
The following failure modes are assumed:

4.2 Concrete Architecture Model 41

• Component crash: The crash failure occurs when the node or the switch exhibits a
permanent fault and produces no outputs.

• Link failures: The link failure occurs when the link exhibits a permanent or transient
failure and fails to redirect a message. In combination with the component crash, this
failure corresponds to the transmission error according to IEC-61508-2.

• Omission: An omission failure is a transmission failure where a sender is not able to
generate a message and/or a receiver is not able to receive a message. This failure
corresponds to the deletion according to IEC-61508-2.

• Corruption: This failure involves changes to the original data (e.g., due to EMI
disturbances).

• Delay: Faulty nodes or switches can delay the transmission of messages.

• Babbling idiot: This failure occurs when a node or a switch starts sending untimely
messages (e.g., insertions according to IEC-61508-2), possibly generating a high traffic
load by generating more messages than specified.

• Masquerading: A masquerading failure is an erroneous node that assumes the identity
of another node. In case of periodic time-triggered and sporadic rate-constrained com-
munication, a faulty node sends messages with the incorrect virtual link identification.
For best effort messages, the node will send messages with an incorrect MAC address.

Another important parameter is the maximum number of failures. This parameter of the
fault hypothesis denotes the maximum number of FCR failures, which must be handled by
the system. The maximum number of failures depends on the failure rate and the recovery
interval of FCRs. We assume a single failure only, which is a prevalent assumption in
many present day safety-critical systems (e.g., TTA [Kop04a]). A fault hypothesis with this
assumption is also frequently denoted as a "single fault hypothesis" (from a system-level
point of view).

4.2 Concrete Architecture Model

In this section, a detailed description of the architectural building blocks for the on-chip
and off-chip networks is given. Furthermore, interfaces, data and control flows between the
building blocks are discussed.

42 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

Multi-Core Chip

On-Chip Interconnect

P
ar

ti
ti

o
n

s

Virtualization Layer

Memory

Traffic Shaper

NI NI

Core

NI

Off-Chip/
On-Chip GW

N
o

C

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

en
t

OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t

OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t
OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t

OS

Core

NI

Core

NI

Core

NI

Core

Aperiodic
Priority

Sporadic
Shaper

Time
Triggered

clock

prioritization layer

Figure 4.4 System Model of the Multi-core Chip

4.2.1 On-Chip Architectural Building Blocks

The overall architectural building blocks of a multi-core chip are depicted in figure 4.4. This
section provides detailed information about these building blocks that consist of three groups:
cores with application components, the on-chip network and the gateway.

4.2.1.1 Cores with Application Components

The architecture model supports different criticality levels for the application. Based on the
criticality levels, we support different communication types to transfer the messages. The
safety-critical applications require a deterministic behavior with a priori known temporal
behavior. Therefore, predetermined time slots are used for the transfer of periodic messages.
The non-safety applications use the event-triggered communication either via sporadic or
aperiodic communication. Event-triggered messages are transmitted in those time intervals
where the communication medium is not needed for the transmission of periodic messages.
The separation of sporadic messages is enforced by the minimum interarrival times, while
aperiodic messages are sent without temporal restrictions.

In addition, the architecture ensures time and space partitioning for the computational
resources by using partitioning OSes and virtualization layers for the sharing of processor
cores among mixed-criticality applications, including safety-critical ones.

In the architecture model, each application components executes application services that
can send messages. The virtualization layer is also responsible for mapping the application
messages to the correct communication type, i.e., either periodic, sporadic or aperiodic.

4.2 Concrete Architecture Model 43

A traffic shaper is responsible for establishing temporal and spatial partitioning for the
communication by enforcing the temporal parameters of the above-mentioned communication
types. The traffic shaper is responsible for handling incoming messages from the application
and forwarding them to the NoC, which assures the real-time guarantees for the safety critical
messages and ensures that there is no collision between messages.

Based on the communication type, the traffic shaper performs different mechanisms for
the transfer of messages to the NoC. Let us illustrate how these mechanisms work using the
example in Figure 4.4 with three applications X, Y and Z for periodic, sporadic and aperiodic
messages.

Transmission of Periodic Messages by Application Z

The core comprises several partitions, each of which can execute an application using an
operating system or bare-metal. In mixed-criticality systems, the virtualization layer such as
a hypervisor is widely used in order to provide subsystems of different criticality levels with
isolated partitions.

Let us assume that application Z is a safety-critical application and sends periodic
messages to the virtualization layer. The virtualization layer passes these outgoing messages
to the time-triggered clock layer, since the configuration parameters in the virtualization
indicate that application Z is periodic time-triggered. In the time-triggered clock layer, the
incoming message is buffered in a corresponding virtual-link buffer. Finally, the message is
sent to the prioritization layer at the time specified in the static communication schedule.

The prioritization layer contains three queues, namely one for each traffic type. The
message that comes from the time-triggered clock layer is directly sent to the lower layer
in case no message is being transmitted. Otherwise, the message is put into the queue for
periodic messages.

The prioritization layer sends the messages to the NoC according to their priority. Periodic
messages have the highest priority, whereas aperiodic messages are assigned the lowest
priority.

Transmission of Sporadic Messages by Application Y

For sporadic communication, the configuration parameters in the virtualization layer identify
the outgoing messages from application Y as sporadic, therefore the virtualization layer
passes the messages to the sporadic shaper layer (cf. Figure 4.5). The sporadic shaper layer
guarantees a Bandwidth Allocation Gap (BAG) interval between two consecutive instances
of sporadic frames on the respective virtual link. The incoming sporadic messages are queued

44 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

Sporadic shaper

Priority 1Priority 2

Traffic Regulator

Scheduler MUX

Unregulated Flow of Sporadic Messages

Regulated Flow
BAG+Jitter ≈ 0 for each VL

Single Multiplexed Flow
BAGs + Jitter ≠ 0

Classifies the incoming Frames

Figure 4.5 Modules of the Scheduled Flow Control Mechanism for Sporadic Messages

at the sporadic shaper layer using a dedicated queue for each virtual link. In the next step, the
message is carried from its queue to one of two multiplexed queues controlled by the BAG.
The multiplexed queues are used to multiplex the message flow that comes from the virtual
links. Two multiplexed queues in the sporadic shaper layer serve for the distinction between
two priority levels. Finally, the controller layer puts the messages from the sporadic shaper
layer into the sporadic queue in the controller layer.

Transmission of Aperiodic Messages by Application X

Thirdly, an application X sends event messages without any restriction in the temporal domain.
In our architectural model, two priority levels are distinguished for aperiodic messages. The
virtualization layer passes the outgoing messages to the aperiodic priority layer, where the
messages are queued in one of the aperiodic priority queues. Then, the message is sent to
the lower layer according to the priority. In the controller layer, the incoming messages are
queued in the aperiodic queue and sent to the NoC.

4.2 Concrete Architecture Model 45

4.2.1.2 On-Chip Network

The multi-core chip contains cores that are interconnected by NoCs. In this dissertation, the
architectural models of the core - that were presented in the previous section - build upon
NoCs that contain two components: routers and network interfaces. We distinguish between
two types of NoCs; priority based NoCs and NoCs with resource reservation.

In a priority based NoC such as the STNoC [DCC+11], the concept of virtual channels
is used to realize priorities within the NoC. In order to support the mixed-criticality require-
ments, messages can be mapped to different priorities. For instance, the underlying NoC
shall support at least two different priorities to bound or prevent effects of non safety-critical
applications onto safety-critical ones. The highest priority is dedicated to the messages of
the safety-critical applications.

The resource reservation NoC provides guaranteed services with predefined spatial/tem-
poral allocations of messages to routers. An example of such a NoC is the TTNoC [OEHK08]
which introduces a predictable on-chip interconnect with inherent fault isolation to facilitate
the seamless integration of independently developed components, possibly with different
criticality levels. However, while the TTNoC is suitable for the transmission of messages
from the safety critical applications, it does not support the transmission of sporadic and
aperiodic event-triggered messages.

Another resource-reservation is Æthereal [GDR05]. The Æthereal NoC introduces the
concept of contention-free routing for guaranteed services with guaranteed throughput and
bounded latency in addition to best-effort services. The contention-free routing guarantees
a certain level of performance for a communication using resource reservation in the NoC
[GDR05]. In contention-free routing or pipelined time-division multiplexed circuit switching,
a connection is established by reserved wires and buffers for certain points in time. In order
to map the presented architectural model to the Æthereal NoC the safety critical application
would have to be mapped to guaranteed services, while the sporadic and aperiodic messages
can use the best-effort services in the underlying NoC.

4.2.1.3 Gateway

Off-chip/on-chip gateways are used to establish the end-to-end communication over het-
erogeneous and mixed-criticality networks. The connection between off-chip and on-chip
networks is established through gateways as illustrated in Figure 4.6. The gateway consists
of the gateway core functionality, network interfacing and Media Access Controls (MACs).

The gateway core is responsible for processing incoming messages based on timely redi-
rection, protocol conversion, monitoring and configuration services. The network interfacing

46 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

 Monitoring and
Configuration

 Packet
classification

 Serialization
service

 Ingress and
egress queuing

 MAC interfacing

Gateway Core
Functionality

Network Interfacing

Network 1
MAC

Network 2
MAC

Timely Redirection of Messages
 Time-triggered redirection of periodic messages
 Traffic shaping of sporadic messages
 Redirection of aperiodic messages
 Up/down sampling
Protocol Conversion
 Conversion of naming
 Conversion of control information (e.g., header)
Monitoring and Configuratuion
 Update of data structures for redirection of

messages and protocol conversion
 Detection of timing and value failures

Figure 4.6 System Model of a Gateway

Physical
Layer

MAC
Layer

Physical
Layer

MAC
Layer

Physical
Layer

MAC
Layer

Bridge

Port
1

Port
2

Port
3

VL Buffer

Packet
Classification

Ingress stream1

Ingress stream2

Ingress stream3

Time-
Triggered

Scheduling

Sporadic
shaper

Aperiodic
Configuration

VL-ID 1
VL-ID 2
VL-ID 3

VL-ID 1
VL-ID 2
VL-ID 3

VL Queue

Aperiodic Queue
Data
BPDU

Egress
stream 1

PE
SP Pri. H
SP Pri. L
AP Pri. H
AP Pri. L

Egress
stream 2

PE
SP Pri. H
SP Pri. L
AP Pri. H
AP Pri. L

Figure 4.7 System Model of a Switch

provides the interface between the MAC and the gateway core. Furthermore, classifica-
tion and serialization of the packets is performed in the network interfacing. In order to
realize fault-tolerance, the gateway can include multiple network MACs. Each network
MAC connects the gateway to either an off-chip network or an on-chip network. In case of
network redundancy, multiple network MACs are required. Thus, the network interfacing is
responsible for merging identical incoming messages and duplicating outgoing messages
to be sent to different MACs. We present in Chapter 6 more details of the off-chip/on-chip
gateway services and functionalities.

4.2.2 Off-Chip Architectural Building Blocks based on TTEthernet

This section provides detailed information on off-chip architectural building blocks, which
are composed of two groups: switches and nodes.

4.2.2.1 Switch

Standard Ethernet does not guarantee either the real-time capability or bounded transmission
delays. Therefore, it is not suitable for the real-time and safety aspects in mixed-criticality
systems. In the architectural model of the proposed switch, we assume temporal and spatial

4.2 Concrete Architecture Model 47

partitioning that guarantees predictable timing of periodic time-triggered messages and
bounded latencies for sporadic rate-constrained messages.

The switch extends the standard Ethernet switch by adding the time deterministic message
transfer capabilities, while retaining full compatibility with the requirements of IEEE 802.3.

Such a system simplifies the design of complex distributed systems and applications as
well as processing of critical (periodic, sporadic) and non-critical Ethernet traffic (aperiodic).
High-priority periodic messages are routed through the switch according to a predefined
schedule with fixed latency and a transmission jitter in the sub-microsecond range. Sporadic
messages are routed based on the AFDX protocol. All other messages are forwarded based
on standard Ethernet when bandwidth is available.

As shown in Figure 4.7, the switch consists of multiple ports and a bridge. Each port
contains a physical layer and a MAC layer. The physical layer is built according to IEEE
802.3. The MAC layer is based on IEEE 803.2 with the extensions explained in the following.

The MAC layer checks the validity of the destination address for an incoming message
and distinguishes between traffic types based on connection-oriented and connectionless
communication. The connection-oriented communication is used for the periodic and
sporadic messages. Aperiodic messages use the connectionless communication. We regard a
message as a tuple with the following elements:

• Message in connection-oriented communication: <type, VLID, data>

• Message in connectionless communication: <type, destination address, data>.

For example, these traffic types can be realized in TTEthernet as follows. The constant
field is extracted from the destination address using the bit mask 0x f f f f f f f f 0000. In
case the constant field has the predefined value of the Critical Traffic marker (CT marker),
this message is either time-triggered or rate-constrained. Otherwise, the message will be
regarded as aperiodic. The switch distinguishes between periodic and sporadic messages
using the EtherType value. The IEEE Standardization Authority has assigned the values
0x88d7 [SAE11] and 0x0800 [ECR05] for the EtherType fields of time-triggered and rate-
constrained messages.

Figure 4.7 shows the block diagram of the bridge. The task of the bridge is to handle and
forward ingress messages to the egress ports depending on the traffic type. The bridge model
contains five layers: the bridge classification layer that determines the traffic type of an
ingress message, the TT scheduling layer that processes the periodic messages, the Sporadic
shaper layer that handles the rate-constrained messages, the Aperiodic configuration layer
that handles the aperiodic messages, and the egress port layer for realizing shuffling and
timely block.

48 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

Processing of Periodic Messages

For each periodic message, a static communication schedule defines three parameters: pe-
riod, phase and maximum frame size. Periodic messages are scheduled to be transmitted
periodically, where the phase parameter defines the exact start time relative to the start time
of the period. In each period multiple periodic messages with different phases are supported.
In addition, the static communication schedule defines the ingress and egress ports of each
time-triggered message, as well as the buffer size in the bridge.

When a periodic message arrives at the bridge from the MAC layer, the bridge classifica-
tion layer checks the integrity and validity of the message. The integrity checking verifies
that the message has the correct size and arrives from the correct ingress port as defined by
the communication schedule for the virtual link of the message. Valid messages are put into
the corresponding virtual-link buffer, which provides buffer space for exactly one message.
In case this buffer is full and another message arrives with the same virtual-link identifier,
the newer message replaces the old one.

The TT scheduling layer is responsible for relaying the periodic messages from the
virtual-link buffer to the queue for periodic messages at the correct egress port according to
the communication schedule. The communication schedule also determines the point in time
when the periodic message is relayed, thereby ensuring the deterministic communication
behavior.

For each egress port, the bridge has five egress queues with decreasing priorities: one
queue for periodic messages, two queues for sporadic messages (each one for a different
priority class) and two queues for aperiodic messages (also for two different priority classes).

The egress port layer forwards the messages from the egress queues to the MAC layer
according to the priority. The highest priority is assigned to periodic messages, whereas
aperiodic messages have the lowest priority.

Also, the shuffling and timely block mechanisms are realized in this layer. The timely
block mechanism disables the sending of other Ethernet messages in the bridge during
a guarding window prior to the transmission of a periodic message. For the shuffling
mechanism, no guarding window is needed. In the worst-case, the bridge delays a periodic
message for the duration of an Ethernet message of maximum size (i.e., 123 µs in case of
100 Mbps).

The virtual-link buffer and the static communication schedule ensure fault isolation for
failures of nodes. For example, a babbling idiot failure of a node involving the transmission
of untimely messages cannot affect the timing of messages from other nodes. In addition,
masquerading failures are detected by the bridge classification layer. A masquerading failure
occurs if an erroneous node assumes the identity of another node.

4.2 Concrete Architecture Model 49

Processing of Sporadic Messages

Sporadic messages are encapsulated by a specific bandwidth allocation. The message flow
of sporadic messages is associated with two main parameters for each virtual link: the
Bandwidth Allocation Gap (BAG) and the jitter. The BAG value defines the minimum time
between two Ethernet messages that are transmitted on the same virtual link. Jitter may be
introduced by multiplexing all virtual links into shared egress queues.

In addition to these parameters, the bridge needs for every virtual link information about
the ingress and egress ports, as well as the required queue size.

When a sporadic message arrives at the bridge, the message is checked in the filtering
unit of the bridge classification layer. The size of the message must be below the maximum
message size and the ingress port must comply with the configuration parameters of the
virtual link. Valid messages are enqueued into the corresponding virtual-link queue.

The RC shaper layer realizes the traffic policing for the sporadic message by imple-
menting an algorithm known as token bucket [ECR05]. This layer checks the time interval
between consecutive messages on the same virtual link and moves sporadic messages from
the virtual-link queue to one of the sporadic egress queues. We distinguish between two
priority classes of sporadic messages with two corresponding sporadic egress queues. The
egress port layer is responsible for forwarding the messages from the egress queue to the
MAC layer.

Processing of Aperiodic Messages

The Spanning Tree Protocol (STP) as defined by IEEE 802.1D is used to establish a loop-
free topology for communication of aperiodic messages [IEE04]. The supported periodic
messages include Bridge Protocol Data Units (BPDU) and best-effort data messages.

BPDU messages are exchanged between switches to determine the network topology,
e.g., after a topology change has been observed.

The switch needs two queues (called aperiodic queues) for these two aperiodic message
types. The bridge classification layer puts incoming aperiodic messages into the BPDU
queue or the aperiodic data queue.

The Aperiodic configuration layer consists of two processes: a process that handles
aperiodic data messages and another one handling BPDU messages according to STP. Each
process relays aperiodic messages from an aperiodic queue to one of the aperiodic egress
queues. TTEthernet supports two classes of best-effort messages with each priority class
having one aperiodic egress queue. The egress port layer forwards the messages from the
egress queue to the MAC layer as explained previously for sporadic messages.

50 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet

Single Core Chip

P
ar

ti
ti

o
n

s

Virtualization Layer

Memory

Traffic Shaper

A
p

p
lic

at
io

n
C

o
m

p
o

n
en

t

OS

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

en
t

OS

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

en
t

OS

A
p

p
li

ca
ti

o
n

C
o

m
p

o
n

e
n

t

OS

 Core

Aperiodic
Priority

Sporadic
Shaper

Time
Triggered

clock

Prioritization Layer

Signal Core Chip

Pa
rt

it
io

n
s

Virtualization Layer

Memory

Traffic Shaper

A
p

p
lic

at
io

n
C

om
po

n
en

t

OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
e

n
t

OS

A
p

p
lic

at
io

n
C

o
m

p
o

n
e

n
t

OS

A
p

p
lic

a
ti

o
n

C
om

po
n

en
t

OS

Core

Aperiodic
Priority

Sporadic Shaper
Time Triggered

clock

prioritization layer
Physical Layer

MAC Layer

MAC interface

Physical
Layer

MAC Layer

MAC
interface

Figure 4.8 System Model of the Single Core Node

4.2.3 Node

In the proposed system, we distinguish between two types of nodes: multi-core nodes and
single core nodes. The multi-core node is detailed explained in section 4.2.1. The system
model of a single core node is shown in figure 4.8. To provide the temporal and spatial
partitioning for such a system, the core architecture is built on top of the MAC layer. The
MAC interface layer is responsible for providing services for the outgoing messages from
the core and the incoming messages from the MAC layer. The messages that come from the
MAC layer, are directly sent to the corresponding application.

Chapter 5

Redundancy for Mixed-Criticality
Networks with Multiple Ring Topologies

The main requirement in the mixed-criticality systems is to achieve the high reliable system
that can prevent a fault in a non safety-critical application from affecting safety-critical
applications. This chapter introduces the redundancy and fault-tolerance solution for the
off-chip networks based on TTEthernet as introduced in the system model in Chapter 4. We
establish a balanced trade-off between cost and fault-tolerance for application subsystems of
different criticality on shared networks. Safety-critical nodes are connected to two switches
using redundant links, whereas non safety-critical nodes can use a single link to one switch.

The architecture supports periodic messages with low latency and jitter, sporadic mes-
sages with bounded latency and aperiodic communication. The proposed switches hide the
duplication/deduplication of periodic and sporadic messages as well as the differences in
the latencies incurred via different redundant paths. For periodic messages, a deterministic
communication behavior with predefined latencies is ensured that does not change upon the
failure of one of the redundant paths.

5.1 Mixed-Criticality Architecture based on a Ring Topol-
ogy

Figure 5.1 illustrates the proposed architecture, which consists of four main parts: non-
redundant nodes, redundant nodes with double channels, switches and Ethernet channels.
Nodes are connected to switches in a star topology, while the topology for the interconnection
of switches are rings or multiple rings. Figure 5.1 shows an example of a multi-ring topology,

52 Redundancy for Mixed-Criticality Networks with Multiple Ring Topologies

Switch
1.1

Switch
1.2

Switch
1.3

Switch
1.4

Node
 1.1

Node
 1.7

Node
 1.2

Node
1.3

Node
 1.4

Node
1.6

Node
 1.5

Switch
2.1

Switch
2.2

Switch
2.3

Switch
2.4

Node
2.1

Node
 2.2

Node
 2.3

Node
2.4

Node
 2.6

Node
2.5

Node
 2.7

Peripheral
Switch 1

Peripheral
Switch 2

Figure 5.1 System Model of Mixed-Criticality System with Multiple Ring Topologies

where multiple rings are connected through peripheral switches. The peripheral switches
connect to each ring using two Ethernet links to different switches.

Two categories of subsystems can be distinguished according to their criticality: safety-
critical and non safety-critical nodes. Mixed-criticality for the nodes is supported based on
the traffic type (i.e., periodic, sporadic, aperiodic).

Safety-critical nodes use double channels with periodic and sporadic traffic. The messages
from safety-critical nodes are redundantly transferred on both channels, each of which is
connected to a different switch. The aperiodic traffic can use both channels in order to
increase the bandwidth.

A non safety-critical node is connected to only one switch using a non redundant channel.
Nevertheless, periodic and sporadic traffic can be replicated at the first switch in order to
improve the reliability of the communication from non safety-critical nodes.

Moreover, the redundancy management hides the duplication of messages on the network
as well as the differences with respect to latencies of the redundant paths. The redundancy
management is located in the switches and the safety-critical nodes. The hiding of latency
differences and redundancy occurs as following:

• Periodic traffic: Time-triggered communication is done according to a static commu-
nication schedule that is defined off-line. Due to the schedule, it is known in advance
when each redundant message will arrive. The redundancy management exploits the

5.1 Mixed-Criticality Architecture based on a Ring Topology 53

time-triggered schedule to identify corresponding redundant messages that arrive from
different paths. The time-triggered schedule includes the point in time for deciding on
the sending of one message out of the redundant periodic messages.

• Sporadic traffic: The redundancy management hides redundancy based on sequence
numbers and a "First Valid Wins" policy [Com05]. All sporadic messages include a
one byte sequence number field, which is handled separately for each virtual link. A
virtual link is a unidirectional connection from one node to one or more destination
nodes.

5.1.1 Conceptual Model of Extended Switch

Po
rt

Physical
Layer

MAC
Layer

Po
rt

Physical
Layer

MAC
Layer

Bridge

Packet Classification

VL Buffer

VL-ID 1
VL-ID 2
VL-ID 3

Aperiodic
Queue

Data

BPDU

VL-ID 1
VL-ID 2
VL-ID 3

VL Queue

Time-
Triggered

Scheduling

Sporadic
Shaper

Aperiodic
Configu-

ration

Redundancy
Management

Egress Queue

Pe
rio

di
c

Ta
bl

e

Sp
or

ad
ic

 C
on

fig
ur

at
io

n
Pa

ra
m

et
er

Layer

Queue

Configuration
Parameter

Po
rt

Physical
Layer

MAC
Layer

Pe
rio

di
c

Se
nd

in
g

Pa
ra

m
et

er
 T

ab
le

Pe
rio

di
c

Re
ce

iv
in

g
Pa

ra
m

et
er

 T
ab

le

Figure 5.2 Extended Switch with Redundancy Management

The model of a switch with redundancy management for multi-ring topologies is illus-
trated in figure 5.2. The switch provides multiple ports and a bridge. Based on a priori
knowledge on the permitted timing of messages, the switch supports error containment by
ensuring that untimely message will not propagate between networks.

The time-triggered communication is based on a predefined schedule where there are two
groups of parameters for each periodic message: a periodic receiving parameter table and a
periodic sending parameter table providing the message period and phase with respect to a
global time base (see figure 5.3).

54 Redundancy for Mixed-Criticality Networks with Multiple Ring Topologies

The rate-constrained communication is based on configuration parameters that define a
BAG and jitter for each virtual link. The BAG denotes the minimum time interval between
two consecutive messages that are transmitted on the same virtual link. The jitter is the
maximum timing variability that can be introduced by multiplexing the virtual links into
shared egress queues. A message that arrives within the jitter is considered as timely,
otherwise a new BAG interval is started. The structure of the configuration parameters is
shown in figure 5.4.

Receiving
Parameter Table

Sending Parameter
Table

typedef struct {
double Reciving_win_start_ch_A;
double Reciving_win_finsh_ch_A;
double Reciving_win_start_ch_B;
double Reciving_win_finsh_ch_B;
int VL_ID;
double time_of_period;
double time_of_phase;

 double size;
 int sender_port_ch_A;

int sender_port_ch_B;
int queue_num_ch_A;
int queue_num_ch_B;
int receiver_ports[MAX_RECEIVER_PORTS];
int RM_Activate ;

}TT_Table;

Figure 5.3 Time-Triggered Schedule

The switch architecture (cf. section 4.2.2.1) is extended by adding functionality in the
existing layers and by adding a redundancy management layer to address error containment
and redundancy management. The redundancy management layer hides the path and latency
of the redundant messages.

5.1.2 Error Detection & Containment in the Switch

The proposed architecture provides several error detection and containment mechanisms,
which are an essential part of error mitigation [Han06]. The switch performs error contain-
ment to avoid error propagation by the flow of erroneous messages.

The MAC layer detects errors such as noise spikes from power surges, crosstalk from
wires being too close together and echoes due to faulty connections. Furthermore, the MAC
layer uses Cyclic Redundancy Checks (CRCs) to detect transmission errors.

5.1 Mixed-Criticality Architecture based on a Ring Topology 55

typedef struct {

 double BAG;
 double max_jitter; % jitter value
 double max_size; % Maximum message size
 int sender_port_ch_A;

int sender_port_ch_B;
 int receiver_ports[MAX_RECEIVER_PORTS];
 int RM_Activate ;
 % The active can be:
 No REDUDANCY: the switch sends the Packet according to the receiver

ports.
 FUSION: the switch applies the Redundancy Management before it sends

the packet to the destination node.

 int priority;
 int queue_num_ch_A;
 int queue_num_ch_B;
 int VL‐ID;
 double last_frame_time;
 double next_frame_time;

double last_frame_time_B;
 double next_frame_time_B;

int SN; % sequence number
 Boolean jitter;
} RC_msg;

Figure 5.4 Rate-Constrained Configuration Parameters

The bridge classification layer provides error containment based on the different traffic
types as described in the following.

• Periodic traffic:

The bridge classification layer uses the periodic receiving parameter table to check
the integrity and validity of the periodic messages. This includes the verification of the
message size, checking whether messages arrive from the correct ingress port and whether
they arrive within the specified receiving windows of the virtual link. Using theses predefined
parameters, the switch protects receiving nodes and channels from several types of faulty
message including untimely messages (e.g., babbling idiot failure), masquerading failures
and syntactically invalid messages.

Periodic messages that arrive outside the receiving windows, message with a wrong
sender port and messages with a wrong size are considered faulty.

Moreover, the bridge classification layer isolates messages from nodes of different
criticality according to the VLID. The bridge classification layer assigns to each VLID a
dedicated virtual-link buffer, which provides buffer space for exactly one message.

• Sporadic traffic:

When a sporadic message arrives at the bridge classification layer, the size of the message
is compared against the maximum permitted message size. In addition, the ingress port

56 Redundancy for Mixed-Criticality Networks with Multiple Ring Topologies

must comply with the configuration parameters of the VLID. The switch protects receiving
nodes and channels from faulty messages such as a violation of the BAG. Valid messages
are queued into the corresponding virtual-link queue where there is one such queue for each
virtual link.

• Aperiodic traffic:

There is no guarantee and error containment for best-effort messages. However, any
faulty message of the best-effort traffic type will not affect any other traffic types. This is due
to the fact that the best-effort traffic has the lowest priority and the bridge classification layer
handles best-effort messages using different queues, thereby isolating them from other traffic
types.

The bridge classification layer interfaces the following three layers to handle the different
traffic types:

1. Time-triggered scheduling layer

The time-triggered scheduling layer uses the information of each VLID that is listed in
the periodic sending parameter table to pull the messages from the virtual-link buffer
according to communication schedule and then forwards them to the correct egress ports.
The communication schedule also ensures the deterministic communication behavior for
the periodic messages. Furthermore, the time-triggered scheduling layer ensures the error
containment for the failures of nodes. For example, babbling idiot failures of a node, which
involve the transmission of untimely messages, cannot affect the timing of messages from
other nodes.

TT Message
VL1

Redundant
TT Message

VL1

Redundancy Management Decision

Figure 5.5 Time Line of a Redundant Periodic Message

5.1 Mixed-Criticality Architecture based on a Ring Topology 57

2. Sporadic shaper layer

The sporadic shaper layer is extended by functionalities to protect receiving nodes and
channels from faulty messages such as the babbling idiot failure. In case the rate-constrained
message arrives with a shorter interarrival time than the specified BAG, the message is
dropped. On the other hand, a correct message could be dropped in case the previous
message is delayed.

3. Aperiodic configuration layer

The same Aperiodic configuration layer in Section 4.2.2.1 has been deployed in the
extended architecture. Section 4.2.2.1 has a full description of this layer.

5.1.3 Mechanisms of Switch for Supporting Redundancy based on Multi-
Ring Topologies

The redundancy management layer is responsible for eliminating the redundant copies of
messages that arrive at the switch and to hide different paths of messages in the multi-ring
topology for the critical traffic types (i.e., time-triggered and rate-constrained). Depending on
the specification of the redundancy degree (cf. entry RM_Activate in TT_Table and RC_Msg)
the redundancy management has different responsibilities.

Establishment of redundancy

The redundancy management layer creates copies of an incoming message belonging to the
sporadic or periodic traffic and sends them using redundant paths of the ring topology. This
mechanism is used on the first switch that meets the sporadic or periodic traffic.

Fusion of redundant messages

The fusion mechanism is deployed on the last switch of a message’s path to a non safety-
critical node. The fusion mechanism is also deployed in each safety-critical node to protect
against a failure of one of the two attached switches.

In the fusion mechanism, the redundancy management handles the redundant messages
differently according to the traffic type:

The redundancy management layer interfaces with the time-triggered scheduling layer to
hide the redundant paths and to perform the deduplication of the periodic messages. As we
mentioned in subsection 5.1.1, the classification layer assigns the redundant periodic message
to separate virtual-link buffers. In order to hide the paths and different latencies of the different

58 Redundancy for Mixed-Criticality Networks with Multiple Ring Topologies

Switch Switch

Switch
Peripheral

Switch
Switch

Switch Switch

Figure 5.6 Peripheral Switch at the Interface between Rings

paths for the redundant periodic messages, the redundancy management layer requires a priori
knowledge about the time-triggered schedule. This schedule includes information about the
receiving time, the sending time and the corresponding buffer identification. The redundancy
management layer checks the corresponding virtual-link buffer before the sending time
and takes the decision to send one of the redundant periodic messages accordingly. The
redundancy management layer not only hides the path of the redundant message, but also
establishes deterministic arrival times of these messages. As shown in figure 5.5, the arrival
times do not change in case of an omission failure affecting one of the redundant messages.

The redundancy management layer interfaces with the sporadic shaper layer to hide the
redundancy of the sporadic paths and to perform the deduplication of sporadic messages. For
each incoming sporadic message the redundancy management layer checks the sequence
number and compares it with the sequence number that is listed in the configuration pa-
rameters. The "First Valid Wins" policy is used to take the decision on the forwarding of
redundant messages. Upon the transmission of a message, the redundancy management layer
updates the sequence number in the configuration parameters.

Fusion and deduplication in multi-ring topologies

In case of a multi-ring topology, the redundancy management layer performs both the fusion
and the duplication at the interface between individual rings. The connection of multiple rings
uses peripheral switches connected to different switches as shown in figure 5.1. Alternatively,
a ring of ring topology can be used as shown in figure 5.6.

5.1 Mixed-Criticality Architecture based on a Ring Topology 59

Non-redundant communication

In this mechanism, the redundancy management is not activated. Therefore, only the time-
triggered scheduling layer and the sporadic shaper layer handle the periodic and sporadic
messages.

5.1.4 Model of Extended Node

In order to support safety and to establish redundancy, we classify the nodes into two types:
safety-critical nodes and non safety-critical nodes. The safety-critical nodes have the ability to
communicate using two different channels while the non safety-critical nodes are connected
to a single channel. Figure 5.7 shows the block diagram of a node. The safety-critical node
is an extension of the node described in Section 4.2.3 with the redundancy management
functionality on top of the MAC layers.

The redundancy management layer eliminates the redundant copies of the messages
that already passed to the upper layers by deploying the fusion mechanism explained in
Section 5.1.3. On the other hand, the non safety-critical node does not need any redundancy
management since it enforces by the connected switch to forward only a single copy of each
message as explained in Section 5.1.3. Section 4.2.3 has a full description of other node
layers.

Non Safety-Critical
Node

Core

Physical Layer

MAC Layer

MAC Interface

Safety-Critical Node

Core

Physical Layer

MAC Layer

MAC Interface

Physical Layer

MAC Layer

Redundancy Management

P
ar

ti
ti

o
n

s

Virtualization Layer

Memory

Traffic Shaper

A
p

p
lic

at
io

n
C

om
po

n
en

t

OS

A
p

p
lic

at
io

n
C

om
po

n
en

t

OS

A
p

p
lic

at
io

n
C

om
po

n
en

t

OS

A
p

p
lic

at
io

n
C

om
po

n
en

t

OS

Aperiodic
Priority

Sporadic Shaper
Time Triggered

clock

Prioritization Layer

Figure 5.7 Block Diagram of (a) Non Safety-Critical Node and (b) Safety-Critical Node with
Double Channels

Chapter 6

Off-chip/On-chip Gateways for
Mixed-Criticality Systems

Multi-core processors introduce significant challenges for safety-critical systems and mixed-
criticality systems. Shared resources of a multi-core processor such as caches, buses and
inputs/outputs are a source of indeterminism in execution time analysis. As a consequence,
the use of multi-core processors in safety-critical systems is a cause of concern to certification
authorities. For example, avionic certification authorities point out that the features of multi-
core processors could cause a loss of integrity, a loss of availability or non-deterministic
behavior [Cer14].

In order to overcome these challenges and pave the way towards multi-core processors
in safety-critical applications, deterministic multi-core platforms were introduced. Several
multi-core architectures introduce message-based NoCs with TDMA, thereby avoiding the
temporal unpredictability and the potential for fault propagation of architectures with shared
memories and memory hierarchies. Examples for these architectures are the GENESYS
MPSoC [SEH+12] and Æthereal [GH10].

However, a single multi-core chip is insufficient in many embedded applications. In many
mixed-criticality systems, platforms encompassing networked multi-core chips are required.
In addition to requirements exceeding the resources of a single chip, today’s technology does
not support the manufacturing of electronic devices with failure rates low enough to meet the
reliability requirements of ultra-dependable systems. Since component failure rates per hour
are usually in the order of 10−5 to 10−6, ultra-dependable applications require the system as
a whole to be more reliable than any one of its components. This can only be achieved by
utilizing fault-tolerance strategies that enable the continued operation of the system in the
presence of component failures.

62 Off-chip/On-chip Gateways for Mixed-Criticality Systems

Considering message-based NoCs and message-based off-chip networks, we obtain a
hierarchical platform with on-chip and off-chip networks. Components on different multi-
core chips need to interact through the communication over both on-chip and off-chip
networks. This chapter introduces gateways between the chip-level and the cluster-level
in order to establish this hierarchical platform. The gateways are specifically addressing
mixed-criticality systems by combining heterogeneous timing models as well as temporal
partitioning.

In what follows, the architecture of the proposed gateways including the services for
selective redirection and fault isolation is presented in Section 6.1. The underlying algorithms
are detailed in Section 6.2.

6.1 Architecture of Off-Chip/On-chip Gateway

An off-chip/on-chip gateway is responsible for the redirection of messages between the
NoC and the off-chip communication network. Moreover, the off-chip/on-chip gateway
supports different criticality levels. Three traffic classes are distinguished as the basis for
different criticality levels as explained in Section 4.1. Examples of networks that support
these three message types are TTEthernet [Com11] and FlexRay [Fle04] for the off-chip
level. Æthereal NoC [GDR05] and the Time-Triggered NoC (TTNoC) [OESHK08] support
these traffic types at the on-chip level.

Gateway Core
Functionality

Network
Interface

Network
Interface

Timely Redirection of Messages
 Time-triggered redirection of periodic messages
 Traffic shaping of sporadic messages
 Redirection of aperiodic messages
 Up/down sampling
Protocol Conversion
 Conversion of naming
 Conversion of control information (e.g., header)
 Packet classification
 Serialization service
 Ingress and egress queuing
 interfacing with NI
Monitoring and Configuratuion
 Update of data structures for redirection of

messages and protocol conversion
 Detection of timing and value failures

 Off Chip
Network

 ON Chip
Network

Figure 6.1 Off-Chip/On-chip Gateway

6.1 Architecture of Off-Chip/On-chip Gateway 63

Serialization Message
Bridging

Serialization

Network
interface

Configuration Parameters

Network
interface

Ingress Queues

Egress Queues

Sporadic Queues
Priority 0
Priority 1

Periodic Queue

Aperiodic Queues
Priority 0
Priority 1

Egress Queues

Sporadic Queues
Priority 0
Priority 1

Periodic Queue

Aperiodic Queues
Priority 0
Priority 1

VL Queues

Periodic VL buffers

V
L

1

V
L

n

Sporadic VL Queues

V
L

1

V
L

n

Ingress Queues

Figure 6.2 Architecture of the Off-Chip/On-chip Gateway

The off-chip/on-chip gateways are used in order to establish the end-to-end communica-
tion over heterogeneous and mixed-criticality networks. The connection between off-chip
and on-chip networks is established through gateways as illustrated in Figure 6.1. The
services of the gateway are explained in the following subsections.

6.1.1 Message-Classification Service

The message classification is based on the concept of VLs. The message-classification
service is responsible for classifying the incoming messages from the network interface in
order to decide on the corresponding buffer (i.e., VL queues and egress queues) according to
the message type and the configuration parameters. Additionally, the message-classification
service checks the message format and its control information, e.g. the Virtual Link IDentifier
(VLID). In case the message has an invalid message format, it is discarded.

Moreover, the message-classification service uses the configuration parameters to check
the integrity and validity of the periodic and sporadic messages. This includes the verification
of the message size and checking whether messages arrive with correct VLID. In addition,
the gateway checks whether the periodic messages arrive within the specified reception
windows of the VL.

64 Off-chip/On-chip Gateways for Mixed-Criticality Systems

6.1.2 Message-Scheduling Service

This service guarantees the determinism of the redirection of periodic messages within the
on-chip/off-chip gateway. Each periodic message has predefined timing parameters such as a
period and a phase. According to the predefined configuration for the message scheduling,
this service determines the points in time when the periodic messages are relayed.

6.1.3 Traffic-Shaping Service

This service is responsible for guaranteeing the minimum interarrival time between two
consecutive sporadic messages on the respective VL. The minimum interarrival time is part
of the configuration parameters for each VL.

6.1.4 Relaying of Aperiodic Messages

This service is responsible for relaying the aperiodic messages between ingress and egress
queues based on the respective data direction and the destination addresses.

6.1.5 Down Sampling

This service provides the message exchange between networks with different periods of
periodic messages or different rate-constraints of sporadic messages. Down sampling is also
required to resolve the differences in the bandwidths of off-chip and on-chip networks. The
gateway has to redirect a subset of the incoming messages to satisfy the timing requirements
of the target network. In addition, the redirection needs to be synchronized between networks
to ensure the forwarding of consistent data.

In the down sampling service, the gateway will send the most recent periodic message
that arrived before the next transmission instant. In case of sporadic messages, the traffic
shaper will drop all messages that arrive within the minimum interarrival time.

6.1.6 Protocol Conversion

The protocol conversion service is responsible for the encapsulation and decapsulation of
incoming and outgoing messages. The gateway adapts the message format and the control
information according to the used communication protocols (e.g., headers with addresses,
flow-control information, CRC). In addition, the gateway needs to establish for each incoming
messages a new address for the destination network. This computation is performed using

6.1 Architecture of Off-Chip/On-chip Gateway 65

the address information of the incoming message and differs according to the traffic and
network types.

In case of periodic and sporadic traffic, the new addressing information is either a VLID
or a routing path towards the final destination or towards another gateway. The routing
path is required for source-based routing, which is common in many NoCs. The VLID or
the routing path can be acquired by a lookup of the incoming address information in the
gateway’s configuration.

In case of aperiodic traffic, the new addressing information is either a destination ad-
dress or a dynamically computed routing path. The gateway can use the spanning tree
protocol [stp04] to establish the destination address in a dynamic way.

6.1.7 Egress-Queuing Service

The egress queues consist of one periodic egress queue, multiple sporadic queues and one
aperiodic egress queue. Each sporadic queue has its own priority level.

The deterministic behavior of the periodic messages is ensured by the message scheduling
service (see Section 6.1.2) in combination with a higher priority than sporadic messages. The
deterministic behavior guarantees that no conflict appears at the egress queue. Therefore one
queue is sufficient, which needs to provide buffer capacity for a single periodic message of
maximum size. To control the resolving of contention between the sporadic messages, we
distinguish multiple queues according to their priorities. These queues are used to multiplex
the frame flow that comes from the internal message queues. The queues provide guaranteed
buffer capacities, which can also be realized by dynamic memory allocation. The guaranteed
buffer capacities allow to prevent message loss due to the bounded accumulation of sporadic
messages determined by the rate-constraints.

6.1.8 Ingress Queuing Service

The ingress queue consists of one FIFO queue for each network. The incoming messages
from the network are queued into the ingress queue, then the ingress queuing service notifies
the message classification service.

6.1.9 Virtual-Link Queuing Service

The VL queues belong to two groups: one for the periodic messages and the other one for
the sporadic messages.

66 Off-chip/On-chip Gateways for Mixed-Criticality Systems

• Periodic VL buffers: Each periodic VL has one periodic VL buffer, which provides
buffer space for exactly one message. In case this buffer is full and another message
arrives with the same VLID, the newer message replaces the old one.

• Sporadic VL queues: Each sporadic VL has one queue. It is possible to store several
messages of the respective VL in this queue.

6.1.10 Serialization Service

The serialization service forwards the messages from the egress queues to the network
(off-chip or on-chip) according to the priority. The highest priority is assigned to periodic
messages, whereas aperiodic messages have the lowest priority.

Also, the serialization service uses either shuffling or timely blocking to resolve con-
tention between different traffic types. The timely block mechanism disables the sending
of other messages in the egress queues during a guarding window prior to the transmission
of a periodic message. For the shuffling mechanism, no guarding window is needed. In the
worst-case, the gateway delays a periodic message for the duration of a sporadic or aperiodic
message of maximum size.

6.1.11 Configuration Parameters

The configuration parameters of the gateway are as follows:

• Guaranteed buffer capacity: Each ingress queue, egress queue and VL queue is
associated with a corresponding guaranteed minimum buffer capacity. The buffer
capacity is determined by the maximum message size and the message timing. This
buffer capacity can avoid message omissions of sporadic and periodic messages based
on rate-constraints and message periods.

• Address information of ports: The VL associated with a port and the data direction
(from the off-chip network or to the off-chip network) are defined.

• Message type: The message type is defined such as periodic, sporadic or aperiodic.

• Timing parameters: In case of periodic messages, the parameters include the period
and phase. For sporadic messages, the interarrival time, the jitter and the priority are
specified. In case of aperiodic messages, no timing parameters are required.

6.2 Processing of Different Traffic Types 67

Classification

VL Buffers

TT scheduling

Redirection

INIT

+ Classification of message

Msg. type
+ Message analysis

Period

Sporadic

Aperiodic

Valid Msg.

NO

+ Delete message

+ Check VL buffer status

IS VL buffer empty?

+ Insert the message
in VL buffer

+ Discard the buffered
message
+ Insert the message in VL
buffer

NO YES

+ Update VL buffers status

+ ...

+ ...

Not Empty

 Empty

+ Compute the next transmission
time
+ Wait
+ Pass information to redirection

+ Check VL buffer status

IS VL buffer empty?

+ Remove The Message
from VL buffer
+ Update VL buffer status
+ Queue the message in
the egress periodic queue

yes

No

+ update VL buffers status

Yes

 Msg. arrived

VL buffers
status

Figure 6.3 Flowchart for Periodic Messages

6.2 Processing of Different Traffic Types

In this section, we will describe the processing of the messages in the off-chip/on-chip
gateway based on the introduced gateway services as described in Section 6.1.

Figure 6.2 illustrates the proposed off-chip/on-chip gateway architecture, which consists
of the bridge, serialization, ingress, egress and VL-queue layers. The message bridging is
responsible for handling incoming messages using timely redirection, protocol conversion,
monitoring and configuration services. The network interface provides the interface between
the network and the message bridging. Furthermore, the classification and serialization of the
messages are performed. Each network interface connects the gateway to either an off-chip
network (e.g., TTEthernet) or an on-chip network (e.g., STNoC).

The ingress layer is invoked by an incoming message from the on-chip network or the
off-chip network. In the ingress layer, the incoming messages are relayed to the bridge layer.

68 Off-chip/On-chip Gateways for Mixed-Criticality Systems

The bridge layer classifies the incoming messages based on the message type (i.e., periodic,
sporadic and aperiodic). We explain the processing for each message type in the following.

6.2.1 Processing of Periodic Messages

Figure 6.3 depicts the flowchart for periodic message transmissions. In the classification
state, a message analysis function extracts from the periodic message the VLID. In case
the incoming message does not have a defined VLID in the configuration parameters, the
message is considered as invalid. Invalid messages are dropped in the classification state,
while valid messages result in a transition to the VL buffer state.

Timely block

+ Timly block checker
Send

+ Select message
+ Send

INIT

Not Empty

Empty

Status update

Is guarding
windows active?

No

+ Wait

Yes

TT send

+ Check the TT queue

+ Send TT message

Egress queues

+ Check the egress
queue status

Figure 6.4 Flowchart for Timely Block Mechanism

Based on VLID, the check VL buffer status function retrieves the buffer identifier from
the configuration parameters. Then, it puts the message into the VL buffer, which provides
buffer space for exactly one message. In case this buffer is full and another message arrives
with the same VLID, the newer message replaces the old one. When the message is buffered,
the “VL buffer status” for the corresponding VLID is updated.

If the “VL buffer status” denotes that the buffer is not empty, the next transmission
time function in the time-triggered scheduling state determines the point in time when the
periodic message is relayed according to the communication schedule, thereby ensuring the
deterministic communication behavior. At the next transmission time, the pass information
to redirection function sends the information (i.e., VLID, buffer identifier and direction)
to the redirection state. In the redirection state, the check VL buffer status function checks
whether the corresponding VL buffer contains a message. This message is then sent to one
of the egress objects according to the direction parameter, where the message is enqueued
in a periodic egress queue. When the message is removed, the “VL buffer status” for
the corresponding VLID is updated. These procedures are performed according to the
communication schedule until the “VL buffer status” indicates that the buffer is empty.

6.2 Processing of Different Traffic Types 69

The serialization is responsible for forwarding the message from the egress queues to
the on-chip or off-chip network interface according to the priority. The highest priority is
assigned to periodic messages, whereas aperiodic messages have the lowest priority. Using
these priorities, the serialization supports two mechanisms to resolve collisions between the
different types of messages:

Send

+ Select message
+ Send

INIT

Not Empty

Empty

Status update

Egress queues

+ Check the egress
queue status

Figure 6.5 Flowchart for Shuffling Mechanism

• Timely block: According to the time-triggered schedule, the serialization knows in
advance the transmission times of the periodic messages. Timely block means that
the gateway reserves so-called guarding windows before every transmission time of
a periodic message. The behavior of the timely block mechanism is illustrated in
Figure 6.4. The egress queues have four egress queues with decreasing priorities:
one queue for periodic messages, two queues for sporadic messages (each one for a
different priority class) and one queue for aperiodic messages. The egress-queue status
is updated when a message is enqueued in one of the egress queues. In case the status
of the egress queue is “not empty”, the timely block checker function in the timely
block state verifies that no guarding window is active.

In case of guarding windows, the wait function imposes a delay until the next trans-
mission time of the periodic message. If there is any periodic message, this message is
sent. Otherwise, the process of the flowchart returns to the egress queue state.

In case there are no guarding windows, the select message function in the send state
selects one message out of the sporadic and aperiodic queues based on the priority and
this message is sent.

70 Off-chip/On-chip Gateways for Mixed-Criticality Systems

Classification

VL Queues

Sporadic shaper

Redirection

INIT

+ Classification of message

Msg. type
+ Message analysis

Sporadic

Periodic

Aperiodic

Valid Msg.

NO

+ Delete message

+ Check VL queue status

IS VL queue empty?

+ Insert the message in
VL queue
+ Update VL buffer status
+ Update last incoming
VL message time

+ Insert the message in
VL queue
+ Update VL Queue
status

NO YES

+ ...

+ ...

VL queue
 status

Not Empty

 Empty

+ Sporadic traffic regulator and controller
+ Pass information to redirection

+ Remove the message from VL queue
+ Update VL queue status
+ Queue the message in the egress
+ Check VL buffer status

IS VL queue empty? + Update last
incoming VL
message time

Yes

NO

+ Update VL queues status

Yes

+ Update VL queues status

Msg.
arrived

Figure 6.6 Flowchart for Sporadic Messages

If the status of the egress queues is still “not empty”, the procedure is repeated until
the egress queues are empty.

• Shuffling: If a low priority message is being transmitted while a high priority message
arrives, the high priority message will wait until the low priority message is finished.
Figure 6.5 shows the flowchart for the shuffling mechanism within the serialization
object.

The egress queue status is updated when a message is enqueued in one of the egress
queues. In case the status of the egress queue is “not empty”, the select message
function removes one message from the egress queues based on the priority. The
send function forwards the message to the network interface of the on-chip or off-chip
network interface. If the status of the egress queue is still “not empty”, the procedure
is repeated until the egress queues are empty.

6.2 Processing of Different Traffic Types 71

Classification Redirection

INIT

+ Classification of message

Msg. Type

Aperiodic

Periodic

Sporadic
+ Assign new destination address
+ Insert the message in the egress
aperiodic queue

+ ...

+ ...

Msg.
arrived

Figure 6.7 Flowchart for Aperiodic Messages

6.2.2 Processing of Sporadic Messages

Figure 6.6 depicts the flowchart for sporadic message transmissions. The message analysis
function in the classification state checks incoming messages. The size of the message must
be below the maximum message size according to the configuration parameters of the VL. A
valid message is enqueued in the corresponding VL queue. When the message is enqueued,
the “VL queue status” for the corresponding VLID is updated. In case the VL queue was
empty, the update time function updates the reception time of the last incoming VL message.
This timestamp is essential for traffic shaping and temporal partitioning.

In the sporadic shaper, the sporadic traffic regulator and controller function guarantees
the minimum interarrival time between two consecutive instances of a sporadic message
on the respective VL. The sporadic traffic regulator and controller function compute the
necessary waiting time for each message based on the time of the latest incoming VL message.
When the waiting time has expired, the redirection function passes the information (i.e.,
VLID, buffer identifier and direction) to the redirection state. In the redirection state, the
remove message from VL queue function forwards the message from the VL queue to one of
the sporadic egress queues according to the direction and priority parameters. In case the
VL queue has another message, the time of the last incoming VL message is updated. This
step allows the sporadic traffic regulator and controller function to send the next message
after the minimum interarrival time. This procedure is repeated until the “VL queue status”
is “empty”.

72 Off-chip/On-chip Gateways for Mixed-Criticality Systems

Thereafter, the serialization is responsible for forwarding the message to the network
interface of the off-chip or on-chip network as explained in the previous subsection.

6.2.3 Processing of Aperiodic Messages

Aperiodic messages have no timing constraints on successive message instances and no
real-time guarantees. Therefore, the incoming messages are inserted into the corresponding
aperiodic egress queue (see Figure 6.7). When the message is enqueued, the “egress queue
status” is updated. Thereafter, the serialization is responsible for forwarding the message to
the network interface of the off-chip or on-chip network.

Chapter 7

Scheduling of Sporadic and Periodic
Traffic in Multi-Cluster Systems

Applications with different levels of criticality interact by the exchange of messages in a
mixed-criticality system. One of the challenges of such a system is to provide a scheduling
policy that ensures the timing guarantees for each level of criticality.

In this chapter, scheduling policies and resource allocation mechanisms of sporadic and
periodic communication in multi-cluster systems are described.

7.1 Scheduling and Allocation Algorithm

In this section, the scheduling and allocation of the application to the platform are described
based on the logical and physical models from Section 4.1.1. A major technical challenge
is the mapping of the application subsystems with their computational components and
communication activities to a multi-cluster platform, while satisfying real-time and reliability
constraints. In particular, end-to-end communication channels with guaranteed timing are
required to support the interaction of computational components located in different clusters
along multiple network segments and switches. In multi-domain and mixed-criticality
systems, typically different timing models need to coexist such as periodic time-triggered
activities, event-triggered sporadic activities and aperiodic activities.

In the following, the logical model and the physical model are formally described. Then,
the scheduling algorithm is explained for mapping both models considering timeliness,
performance, safety and availability.

74 Scheduling of Sporadic and Periodic Traffic in Multi-Cluster Systems

7.1.1 Logical Scheduling Model

The logical scheduling model encompasses information about the applications and the
dependencies between the applications. The dependencies between applications for each
subsystem are captured using a Directed Acyclic Graph (DAG). Each application sends a
message after completing its execution to the target applications.

A target application can be activated only after all its inputs have arrived. For example, in
figure 7.1 application AP6 can be activated after it received the messages sent by AP2,AP3
and AP4.

As shown in figure 7.1, each application has the following parameters:

• Service id

• Worst-Case Execution Time (WCET)

• Size of produced messages

In addition to these parameters, each subsystem has a criticality level, deadline, traffic
type and timing parameters (i.e., periodic or BAG). The timing of periodic messages is
characterized by a period and phase with respect to a global time base. Sporadic messages
have a minimum inter-arrival time.

7.1.2 Physical Model

The physical model includes information about the nodes, network channels and network
switches. Nodes can host applications from the logical scheduling model. Nodes are
connected to network switches in a star topology, while the topology for the interconnection
of switches is a tree.

The structure of the platform is modeled as an undirected graph GPHY (VPHY ,EPHY),
where VPHY represents the set of nodes, gateways and network switches. EPHY represents
the set of network channels, where each network channel ei = (vm,vk) ∈ E is an undirected
communication connection between vm and vk.

We denote the set of VLs with V L. A VL vli ∈ V L is an end-to-end multicast channel,
which can include several network channels between one sender and multiple receivers. A
vli can be denoted as a sequence [e1,e2, . . .] of network channels.

Each node executes a set of applications, where each application communicates with
others applications using a set of messages M .

7.1 Scheduling and Allocation Algorithm 75

Criticality T1
WCET

T4
WCET

T3
WCET

T2
WCET

T5
WCET

T6
WCET

T4
WCET

T7
WCET

Period /
Deadline

Criticality
T1

WCET

T4
WCET

T3
WCET

T2
WCET

T5
WCET

T6
WCET

T4
WCET

T7
WCET

Period /
Deadline

Criticality
T1

WCET

T4
WCET

T3
WCET

T2
WCET

T5
WCET

T6
WCET

T4
WCET

T7
WCET

Period /
Deadline

Criticality
T1

WCET

T4
WCET

T3
WCET

T2
WCET

T5
WCET

T6
WCET

T4
WCET

T7
WCET

Period

Criticality
T1

WCET

T4
WCET

T3
WCET

T2
WCET

T5
WCET

T6
WCET

T4
WCET

T7
WCET

Period /
Deadline

Criticality
T1

WCET

T4
WCET

T3
WCET

T2
WCET

T5
WCET

T6
WCET

T4
WCET

T7
WCET

Period /
Deadline

Criticality Deadline
Traffic Type

AP1
WCET

Msg. Size

AP5
WCET

Msg. Size

AP3
WCET

Msg. Size

AP2
WCET

Msg. Size

AP6
WCET

Msg. Size

AP7
WCET

Msg. Size

AP4
WCET

Msg. Size

AP8
WCET

Msg. Size

Period

Figure 7.1 Directed Acyclic Graphs of Logical Model

7.1.3 Scheduling Model

The scheduling model serves for the optimization of the overall execution and communication
time of the system. We minimize the maximum completion time of an application including
the necessary communication and execution times of other required applications (i.e., critical
path of the DAG).

Each application is executed in a node, it then produces a message for one or more target
applications that can be located in other nodes. The schedule defines the timing parameters
for the message transmissions by nodes and off-chip networks (e.g., network switches).

A short summary of the variables and constants of the algorithm formulation is given
first. Ni represents the number of applications in the subsystem with id i. M is the number of
available nodes and L is the number of available network switches.

set of applications A P i =
{

APi0, . . . ,APiN−1

}
, |A P i|= Ni

set of nodes N E = {NE0, . . . ,NEM−1} , |N E |= M

set of network switches S W = {sw0, . . . ,swL−1} , |S W |= L

76 Scheduling of Sporadic and Periodic Traffic in Multi-Cluster Systems

The logical model of a subsystem can be represented mathematically as follows:

Gi =

period ∈ N

deadline ∈ N

criticality ∈ CRITICALITIES (e.g., ASIL A to ASIL D according to ISO26262)

traffic_type ∈ {Periodic,Sporadic}

D =
AP0 . . . APN−1

[d0 . . . dN−1]
, di ∈ N

DSM =
AP0
...

APN−1

AP0 . . . APN−1

dsm00 . . . dsm0N−1
...

dsmN−10 . . . dsmN−1N−1

,dsmi j ∈ {0,1}

(7.1)
where D is a vector with the WCET of each application. DSM denotes the application
dependencies where the element of the matrix dsmi j equals 1 if s j depends on si and
otherwise it is equal to zero.

The physical model is depicted as a matrix in equation 7.2. The matrix element toi j in
equation 7.2 is equal to one if there is a connection between the two elements, otherwise it is
zero. This connection is bidirectional, i.e., the matrix is symmetric.

TO =

p0
...
p(M−1)

sw0

...
sw(L−1)

p0 . . . p(M−1) sw0 . . . sw(L−1)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

to00 . . . to0(M−1) to0(M) . . . to0(M+L−2)

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

to(M+L−2)0 . . . to(M+L−2)(M−1) to(M+L−2)(M) . . . to(M+L−2)(M+L−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
(7.2)

We use a set of tuples for each node and each network channel in order to express the
resource allocations. Such a tuple is defined as follows:

< StartTime,EndTime, ID > (7.3)

7.2 Scheduling Algorithm 77

A node executes one application at a time which blocks the node for a certain interval
(from StartTime to EndTime). Likewise, a message blocks the network channel for its
transmission time.

The applications of a given graph are allocated to the nodes and represented in the
following matrix:

A =
NE0

...

NEM−1

AP0 . . . APN−1

A00 . . . A0N−1
...

AM−10 . . . AM−1N−1

,Ai j ∈ {0,1} (7.4)

Each application is allocated to a single node:

M−1

∑
i=0

Ai j = 1 (7.5)

Based on A and TO the scheduling model defines the set of V L where each V L is a sub-
graph of the platform graph. A V L for an application of APi where (APi ∈ {APi0,APi1, . . .})
comprises a set of hops from the sender to the receivers as follows:

V L APin
= {h0,h1, . . .} f or APin (7.6)

Each hop is a network channel between nodes or switches.

7.2 Scheduling Algorithm

This section presents a scheduling algorithm based on neighbourhood search, which also
serves as an example for the evaluation framework. The inputs for the scheduling algorithm
are generated from a scenario definition and the scheduling results are an input for the
simulation environment.

The scheduling algorithm is outlined in Figure 7.2. It supports the following scheduling
constraints:

• No collisions in execution: The scheduling of applications on nodes must avoid
collisions. Thus, the time intervals of applications scheduled on the same node must
not overlap.

78 Scheduling of Sporadic and Periodic Traffic in Multi-Cluster Systems

• No collisions in communication: The scheduling of message transmissions must avoid
collisions. Thus, the time intervals for message transmissions must not overlap at each
network channel.

• Dependencies: An application cannot start execution in a node before all required
inputs have arrived.

1: Load V L & Gi & A
2: set the TEPS for all root applications to zero
3: set the status of the root applications to active
4: for each active application do
5: reserve earliest possible time in the allocated node
6: if traffic type is Periodic then
7: for each hop do
8: reserve transmission time in network channel
9: end for

10: else
11: for each hop do
12: reserve bandwidth for transmission in network channel
13: compute WCL
14: end for
15: end if
16: if target application received all messages from relied upon applications then
17: mark target application as active
18: earliest possible start time of target application = max. reception time of incoming

messages
19: end if
20: mark the application as finished
21: end for
22: calculate the graph cost

Figure 7.2 Scheduling Algorithm

In the first line of the scheduling algorithm, we load the inputs (i.e., constant Gi) and we
initialize the decision variables (i.e., V L ,A). The status of each application is one of the
following:

• Inactive: The application depends on input from others applications and one or more
of these inputs are still unscheduled.

• Active: All required inputs of an application are already scheduled.

• Finished: The application was already scheduled.

7.2 Scheduling Algorithm 79

Initially, all applications in Gi have the status inactive. We denote the earliest possible
start time as TEPS. For the root applications in Gi, TEPS is set to zero and the application
status is set to active. The root applications do not depend on any other applications.

The next step is to schedule the active applications. First, we reserve a possible time
interval for the application execution in the node, where the application is located. The start
of this interval must be greater than TEPS of the application and the interval will end after the
WCET of the application (line 5). In case a target application is located in another node, we
reserve for each hop a message transmission time in case of periodic messages (line 7 to 9).

For sporadic messages we reserve the bandwidth based on the message size and the
minimum interarrival time of the message. A Worst-Case Latency (WCL) (line 11 to 14) is
computed based on the formula in the following subsection to determine the contribution to
the critical path.

In case all inputs for the target application have been scheduled, the target application
will change its status to active and set TEPS equal to the message reception time. This process
is repeated for all active applications.

To find near optimal solutions for the system schedule, a heuristic neighbourhood is used
as outlined in figure 7.3. We change the location for one application, which is randomly
chosen and reschedule the system again. By comparing the critical path latency between the
new and the previous solution, we can select the minimum critical path latency and repeat
these steps to optimize the solution.

1: for j=0; j<iterations, j++ do
2: change the location of one application
3: compute the V L according to equation 7.6
4: Update V L & A
5: run scheduling algorithm
6: if new cost < old cost then
7: keep new location
8: else
9: backtrack to old location

10: end if
11: end for

Figure 7.3 Heuristic Neighbourhood Algorithm

In case of periodic messages with different periods, we use the hyper-period of all periodic
messages. To find the scheduling solution within the hyper-period, we use the algorithm as
shown in figure 7.4.

80 Scheduling of Sporadic and Periodic Traffic in Multi-Cluster Systems

1: for k=1; k<(Gi.period/hyperperiod) do
2: mark all applications as inactive
3: set earliest start time of root applications to Gi.period · k
4: run the scheduling algorithm from line 3
5: end for

Figure 7.4 Scheduling of Hyper-period

7.3 Worst-Case Latency

The communication bandwidth Bp is reserved for the periodic communication, while the
bandwidth Bs is dedicated to the sporadic communication.

The access delay for the periodic messages using timely block depends on the precision
Π of the global time base, which is typically in the microsecond range. In case of shuffling,
the access delay is equal to the transmission delay of the largest message (denoted as dmax).

The sporadic messages are described as a set Msp:

Msp = {< id,mint,size, priority >} (7.7)

where mint is the minimum interarrival time. A given message with a priority p can be
delayed by other messages with higher or equal priority:

M(p) =
{

m ∈ Msp|m.priority ≥ p
}

(7.8)

The access delay of the sporadic messages depends on the competing messages that need to
be sent before the message. We can establish the worst-case delay incurred by the sporadic
messages with shuffling in M(p) at the cluster level:

d1
sp,cl(p) = dmax + ∑

m∈M(p)

m.size
Bs

(7.9)

During the delay d1
sp,cl(p), additional instances of sporadic messages might request the

transmission in case the minimum interarrival time is smaller than d1
sp,cl(p). The incoming

sporadic messages within the access delay d1
sp,cl(p) that have higher priority will further

increases the access delay. Thereby, we get a second-order delay d2
sp,cl(p).

By iteratively computing the increasing access delays due to the incorporation of addi-
tional instances of sporadic messages, we can derive the following access delay of order i for

7.3 Worst-Case Latency 81

a sporadic message at cluster level:

di
sp,cl(p) = dmax + ∑

m∈M(p)

m.size
Bs

(⌊
di−1

sp,cl(p)

m.mint
+1

⌋)
(7.10)

If the following condition is satisfied, the increase of the access delays is bounded

∑
m∈M(p)

m.size
m.mint ≤ Bs →∃ j ∈ N,∀n > j :

d j
sp,cl(p) = d j+n

sp,cl(p)

dsp,cl(p) = d j
sp,cl(p)

In order to compute the cluster delay dcluster, we further need to consider the physical link
delay which depends only on the size of the message and the link bandwidth Bl .

dlink = m.size/Bl

The cluster delay for the different traffic types is thus as follows:

dcluster(m)=

dlink+Π timely block
dlink+ max

msp∈Msp

msp.size
Bl

+Π periodic & shuffling

dlink+dsp,cl(m.priority)+Π sporadic & shuffling

Chapter 8

Implementation and Evaluation

The purpose of this chapter is to demonstrate the feasibility of the proposed architecture
using a simulation environment. The simulation environment executes mixed-criticality
applications realized with either data-driven or time-driven models of computation at off-
chip and on-chip level.

We evaluate empirically how the architectures achieve the dissertation objectives: (i)
real-time capability (ii) determinism, (iii) fault isolation, and (iv) support for different timing
models.

8.1 Implementation

The simulation environment is implemented using the GEM5 simulation tools [MSB+05]
for on-chip communication and the OPNET simulation tools [OPN15] for the off-chip
communication.

8.1.1 Off-chip Communication

The simulation environment for the off-chip communication implements the proposed archi-
tecture of the nodes (cf. Section 4.2.3) and switches (cf. Section 4.2.2.1) using the OPNET
simulation tools. The simulation allows different connections of nodes using one or more
switches in a given topology (e.g., star, ring). The main simulation building blocks at the
cluster level are generic building blocks of the infrastructure elements of a system, which
can be configured and extended to create an application-specific simulation model:

• Generic model of a switch. Switches are central building blocks of an off-chip commu-
nication system. We have developed a generic simulation model of a switch supporting

84 Implementation and Evaluation

periodic, sporadic and aperiodic communication. In order to construct the overall
simulation model, the user can perform multiple instantiations of the generic switch,
establish connections to nodes and other switches, and assign to each switch instan-
tiation a corresponding configuration. The switch configuration defines the message
timing including a periodic communication plan.

• Generic model of a node. The user can perform instantiates of the generic node and
connect each instantiation to switches. Nodes can be configured to produce messages
according to application-specific parameters (e.g., interarrival time distributions of
sporadic messages, periods of periodic messages). In addition, nodes can be extended
with the application behavior (e.g., C++ application code).

The off-chip simulation environment realizes the proposed architecture models of the
switch (cf. Section 4.2.2.1), node (cf. Section 4.2.3), extended switch with the redundancy
management (cf. Section 5.1.1) and safety-critical node with double channels (cf. Section
5.1.4) for the ring topology. To evaluate the reliability and safety of the architecture, fault
injection simulation building blocks are implemented, which inject faults according to the
fault assumptions (cf. Section 4.1.3).

8.1.2 On-chip Communication

Chip-level model with GW core and GARNET NoC

Garnet NoC

NI NI NI

NI NI NI

Core Core Core

GW Core Core

Figure 8.1 Overview of Simulation Building Blocks for On-chip System

The simulation model of the multi-core node with an off-chip/on-chip gateway was
implemented using the GEM5 simulation tools [MSB+05]. The gateway was realized as a

8.1 Implementation 85

core connected through the NoC to the others cores. The NoC simulation model uses the
fixed pipeline GARNET interconnection network [AKPJ09].

Figure 8.1 shows the overall simulation building blocks. The gateway and the cores are
connected through the GARNET NoC [AKPJ09] in a configurable network topology. GEM5
also allows configuring the cores (e.g., CPU, memory controller, L2 cache controller). The
proposed gateway architecture from chapter 6 has been realized using GEM5 and integrated
into the GARNET interconnection network. The class diagram for the gateway is illustrated
in Figure 8.2. The constituting classes of the gateway are the bridge, serialization, on-chip
network interface, off-chip network interface as well as ingress, egress and VL queues.

2

2

2

Sporadic Queue

Egress

Network Interface

Serialization

-TimleyBlock(CurrentTime,NextSendingTimeOfPeriodicsMessages):
TimeOfCloseGuardingWindowsForPorts[],
TimeOfOpenGuardingWindowsForPorts[]
- SetIncomingMessageInQueue(Message)

-NextPeriodicMessage (CurrentTime) : NextSendingTimeOfPeriodicsMessage

-PullMessageFromEgressQueues(TimeOfCloseGuardiansWindowsForPorts[],
TimeOfOpenGuardingWindowsForPorts[]) : PortID, SendingTime

Bridge

-ClassificationMessage(Message):PortID
-SetMessageInPort(Message,PortID)
-PeriodicMessageScheduling(CurrentTime):
NextSendingTimeOfPeriodicsMessage,
Direction
-TrafficShaping():
ReadyMessageToMove[PortID][Direction]
-RemoveMessageFromPorts(
NextSendingTimeOfPeriodicMessage, Direction,
ReadyMessageToMove[PortID][Direction])
-ErrorDetection(Message)

Periodic Queue

+Size

-InsertMessage(Message)
-RemoveMessage(Message)

-StausOfPeriodicQueue
-StausOfSporadicQueues
-StausOfAperiodicQueue

-ingressQueue

+Size

-InsertMessage(Message)
-RemoveMessage(Message)

Aperiodic Queue

+Size

-InsertMessage(Message)
-RemoveMessage(Message)

Off-chip Network Interface

-InjectMessageToNetwork(portId,
SendingTime)

2

2

Periodic Buffer

+Size
+BufferID

-InsertMessage(Message)
-RemoveMssage(Message)
-SendStatusFree
-SendStatus

VL Queues

-UpdateTheStatus()

- StatusOfSporadicVLQueues

Sporadic Queue

+Size
+QueueID

-InsertMessage(Message)
-RemoveMssage(Message)
-SendStatusFree
-SendStatus

1..*

- StatusOfPeriodicVLBufferes

1..*

Ingress

-GetMessageFromNetwork()

-InjectMessageToNetwork(portId,
SendingTime)

-GetMessageFromNetwork() -InsertMessage(Message)
-RemoveMessage(Message)

Figure 8.2 Gateway Class Diagram

In the GARNET NoC, the cache coherence protocols are used to establish the communi-
cation between the cores and the interconnecting networks. The cache coherence protocol
“Network test” 1 is used to test a network configuration with a specific protocol and observe
the statistics of the simulation with the messages sent from the core to the other cores. This
protocol was extended to allow the gateway to interact with the GARNET interconnection
network. Two virtual networks are used, namely one for the periodic messages and the other
one for the sporadic and aperiodic messages. This division gives priority to the periodic
messages within the interconnection network. In addition, the message generation in the
cores was realized to produce the different traffic types.

1http://www.m5sim.org/Network_test

http://www.m5sim.org/Network_test

86 Implementation and Evaluation

8.1.3 Framework for Evaluation of Scheduling Algorithms

A simulation framework has been established to evaluate and verify scheduling algorithms
using automatically generated scenarios. Figure 8.3 depicts the validation framework, which
consists of five building blocks: input parameters, a logical model of the application, a
physical model of the platform, a scheduling model and a simulation environment. The input
parameters include general information about the system (e.g., number of switches, number
of applications). These parameters are used to generate the application model (cf. subsection
7.1.1) and the platform model (cf. subsection 7.1.2). The application and platform models
are used as input for the schedule module, which computes the communication and execution
schedule. The simulation environment evaluates the behavior under the computed schedule.
The simulation framework provides feedback to the designer concerning the impact of the
schedules on the timing and reliability of the system.

Scheduling
Module

Simulation
Environment

Provide
Inputs

for Testing

Input
Parameters

Logical
Model

Physical
Model

Figure 8.3 Validation Framework

The implementation of the simulation and scheduling framework uses the OPNET
modeler in combination with a custom tool-chain as we explained above. The tool-chain
consists of four building blocks: a random generator for the physical model of the platform,
a random generator for the logical model of the application, a scheduling algorithm, and
a simulation environment for off-chip communication [AO13]. The tool-chain uses input
parameters for the generation of the simulation models as summarized in table 8.1.

The following subsections explain in detail the implementation of the building blocks.

8.1.3.1 Random Generator for Physical Model of Platform

The random generator for the platform is implemented using the OPNET modeler. Nodes
are connected to switches in a star topology, while the topology for the interconnection of
switches is trees organized in successive levels.

The generator starts by connecting the switches randomly in a tree topology. The switches
are partitioned into a number of horizontal layers. The model generator picks one switch
(called root switch) and sets the level number to zero. Then, the model generator picks a
number of switches and connects them to the root switches. These switches are children

8.1 Implementation 87

Figure 8.4 Example of Platform with 10 Switches, 23 nodes, 30% PCSW and 50% PCL

of the parent switch at the level of the parent + 1. The number of switches at each level
is selected randomly from a minimum of one switch to a maximum number of children
switches. This maximum is determined by the percentage of children switches out of the
number of remaining switches that still do not have a parent switch. In addition, one or more
of the children switches can skip a level and directly proceed to "parent level" + 2 based on
the targeted percentage of children switches PCL (e.g., "SW_5" in Figure 8.4(b)). Finally,
the nodes will be distributed randomly around the switches.

The outputs of the generator are CSV files which include the information of the distributed
system in a matrix form (cf. matrix in equation 7.2) and a simulation project including the
OPNET components of the distributed system and their interconnection. Figure 8.4 shows an
example of two output networks for the same input parameters.

8.1.3.2 Random Generator for Logical Model of Application

The random generator for the application is implemented in C++ and generates random
DAGs with applications, dependencies between applications, and further information as
explained in equation 7.1. The input variables for the generator are the number of the graphs,
the number of applications and the percentage of children applications in the next level
(PCS).

88 Implementation and Evaluation

Input Parameters

NOTATION DEFINITION

SW_num number of network switches
NE_num number of nodes
CHA_num number of network channels
num_Periodic_graph number of periodic

logical graphs
num_Sporadic_graph number of sporadic

logical graphs
num_Periodic_applications number of periodic applications
num_Sporadic_applications number of sporadic applications
PCSW percentage of children switches
PCL percentage of children switches

that exceed one level
link_bandwidth used bandwidth of Ethernet links
MAX_SERVICE_EXEC_TIME maximum execution time of applications
MIN_SERVICE_EXEC_TIME minimum execution time of applications
PCS percentage of children applications
P period

Table 8.1 Definition of Input Parameters

The application graph is structured as a DAG with a tree structure and multiple roots.
The application graph is partitioned into a number of horizontal levels. The generator picks
a random number of applications and assigns the level number as zero. An application at
level zero is called root application. Each root application will be connected to a random
number of children applications at the next level. Then each children application has a
random number of children applications at the next level+1. Each level has its number of
children applications based on a random selection of the product of the PCS with the number
of applications that still do not have a parent application. Additionally, the model generator
assigns a random value for the WCET of each application and also assigns a deadline to the
entire graph.

The output of the generator is also a CSV file, which includes information about the
logical system graphs. This information is explained in equation 7.1 in section 7.1.3.

8.1.3.3 Scheduling Algorithm

The scheduling algorithm is implemented in C++ to find a feasible solution. This algorithm
uses CSV files from the random generators for the platform and application to initialize the

8.2 Evaluation 89

Source Destination

Bandwidth

(Mbps)

Period

(ms)

Playload size

(Bytes)

Max

(µs)

Min

(µs)

e

(µs)

Max

(µs)

Min

(µs)

e

(µs)

Max

(µs)

Min

(µs)

e

(µs)

Camera Object Rec. [2.7, 10.8] 0.8 [300, 900] 2385 79 2306 2385 79 2306 2397 79 2318

DVD Display 9.6 1 1200 367 295 72 364 295 69

FlexRay DVD 2,048 1 256 130 113 16 114 68 45 114 68 45

FlexRay Camera 2,048 1 256 130 113 16 114 68 45 114 68 45

CAN DVD 0.256 1 32 136 120 16 137 75 62 137 75 62

CAN Camera 0.256 1 32 136 120 16 137 75 62 137 75 62

FlexRay Controller 2,048 1 256 130 113 16 114 68 45 114 68 45

FlexRay Sensor 2,048 1 256 130 113 16 114 68 45 114 68 45

CAN Controller 0.256 1 32 136 120 16 137 75 62 137 75 62

CAN Sensor 0.256 1 32 136 120 16 137 75 62 137 75 62

Sensor Controller 5.12 10 64 20 19 1 124 17 107 124 17 107

Controller Actouter 5.12 10 64 43 42 1 143 26 116 233 26 207

Actouter Sensor 5.12 10 64 75 74 1 243 26 217 243 26 217

Fault Injection

Tim-Triggered

CSS

Rate-Constrained

CSS

Rate-Constrained

CSS with Babl. Idiot

Gateway Camera

SensorActuator

Switch
1

Switch
2

Object
Recog.

Display

DVD
Player

Controller
C

o
n

tr
o

l S
u

b
sy

st
e

m
 (

C
SS

)

Figure 8.5 Example Scenario for Automotive Use-case

input parameters. The algorithm as described in section 7.1.3 is used as an example in the
validation framework.

The outputs of this scheduler are CSV files that include configuration parameters of the
simulation building blocks of the platform.

8.1.3.4 Verification Using Simulation Environment for Off-chip Communication

The simulation environment for off-chip communication (cf. Section 8.1.1) is used to verify
the scheduling algorithm. The output of the generator is a simulation project which is
configured using the parameter files. We extended existing switches (cf. Section 8.1.1) for
reading the configuration parameters from CSV file. Additionally, we implemented model
parsers to read CSV file and to set the configuration parameters of node.

The output of the simulation is information about the timing of the applications (i.e.,
latency and jitter).

8.2 Evaluation

Several tests have been performed to evaluate the proposed mixed-criticality architecture
with the extended nodes and switches. The transmission delay and jitter were observed for
the safety-critical and the non safety-critical applications. Moreover, fault injection was used
to test the fault-tolerance mechanisms and to evaluate the reliability of the system.

8.2.1 Automotive Evaluation Use-case

This section shows an automotive example scenario for the simulation environment. The
main objective of this scenario is to study the application behavior under different traffic
types (e.g., periodic and sporadic) and to evaluate the handling of faults.

90 Implementation and Evaluation

0

20

1 1000

10.5
0

20

40

Time-triggered (with & without babbling idiot)

Rate-constrained

Rate-constrained with babbling idiot

0.25 0.75

Figure 8.6 Simulation Results for Automotive Use-case

Figure 8.5 illustrates the network topology and the traffic generated by the nodes in
this example. The topology consists of several nodes that communicate over an off-chip
communication network with two switches. The sensor, the controller and the actuator nodes
realize a cruise controller to maintain the speed of a car at a desired value.

This example scenario including the switches and nodes was realized using the presented
simulation components. The cruise-control subsystem was implemented using an environ-
mental simulation in the sensor node and a PID controller in the controller node. Sporadic
communication was used between the camera, DVD player and the gateway. The control
service was realized both with sporadic and periodic frames. In addition, faults were injected
by simulating a babbling idiot failure of the DVD node.

Figure 8.6 shows the observed control behavior. The periodic messages result in the best
controller behavior without any effect from the babbling idiot. The sporadic communication
exhibits a transient oscillation for 0.3sec. The babbling idiot failure increases the latency and
latency jitter, thereby increasing the duration of the transient oscillation to more than 1sec.

The table in Figure 8.5 contains an overview of the observed minimum and maximum
latencies, as well as the latency jitter for the periodic (red rows) and sporadic (black rows)
communication.

8.2 Evaluation 91

NE_ 1

NE_ 5NE_ 4

SW_1

SW_4 SW_3

SW_2

Link #3

Link #4

Link #5

Link #2

N
E_ 3

N
E_ 2 NE_ 7Link #6

NE_ 6

Figure 8.7 Evaluation Scenario Based on Ring Topology

8.2.2 Evaluation Use-case Based on Ring Topology

Figure 8.7 illustrates the ring topology scenario, which consists of five non safety-critical
nodes, two safety-critical nodes and four switches that are connected through off-chip
networks. Each node contains one or more of the applications that are listed in table 8.2.
As shown in table 8.3 the data exchange of the applications is performed using periodic
messages and sporadic communication.

For the evaluation of the proposed architecture, we compared the fault-free case with
fault scenarios such as babbling idiot failures, delay failures, omission failures, link failures
and crash failures. Table 8.3 illustrates the traffic generated by the nodes for these scenarios
and the observed timing of the communication system.

Table 8.4 lists the simulation results for the fault-free case and the fault scenarios of the
evaluation. We observed significant discrepancies of the end-to-end jitter, i.e., the difference
between the maximum and minimum end-to-end latency between applications. The jitter of
the periodic messages is zero (when abstracting from the limited precision of the global time
base), while the jitter of the sporadic messages depends on the priority of the virtual link.

92 Implementation and Evaluation

App. 1 App. 2 App. 3 App. 4 App. 5 App. 6 App. 7
Service
Rate
(ms)

0.5 8 5 1 0.05-0.1 0.01 0.25-0.04

Size
(bytes)

512-786 1450 200 1024 400 64 800-1200

Table 8.2 Application Timing Behavior of Evaluation Scenario Based on Ring Topology

ID Application Sender Traffic Receivers
types type

1 App. 1 Node 1 Periodic Node 5 Node 6
2 App. 4 Node 1 Periodic Node2
3 App. 7 Node 2 sporadic Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
4 App. 2 Node 3 sporadic Node 2 Node 5 Node 7
5 App. 7 Node 3 sporadic Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
6 App. 1 Node 4 Periodic Node 5 Node 6
7 App. 2 Node 4 sporadic Node 2 Node 5 Node 7
8 App. 4 Node 4 Periodic Node 2
9 App. 5 Node 4 sporadic Node 1 Node 3 Node 6 Node 7
10 App. 3 Node 5 Periodic Node 1
11 App. 5 Node 5 sporadic Node 1 Node 3 Node 6 Node 7
12 App. 2 Node 6 sporadic Node 2 Node 5 Node 7
13 App. 6 Node 6 sporadic Node 1 Node 4
14 App. 3 Node 7 Periodic Node 3
15 App. 6 Node 7 sporadic Node 1 Node 4

Table 8.3 Messages Exchange in the Evaluation Scenario Based on Ring Topology

In the babbling idiot failure scenario, node 3 floods the network with untimely aperiodic
messages during a fault interval of 500 ms in the overall simulation time interval. The
periodic messages are unaffected because of the timely block mechanism used at the egress
ports as listed in Table 8.4. The latency and jitter of the sporadic messages increases (e.g., ID
3, ID 7), which results from the competing messages at the egress port where the shuffling
mechanism is used for resolving the event-triggered contention.

In the link failure scenario, link 4 fails for 500 ms during the simulation time interval.
Also in the omission failure scenario, all message transmissions via link 2 are dropped during
the fault interval of 500 ms during the simulation time. The latency and jitter of the periodic
messages in both scenarios are unchanged because the worst-case path (out of the redundant
paths) is considered at the design phase. The jitter of the sporadic communication is effected

8.2 Evaluation 93

when a message takes a longer redundant path and the shortest path becomes unavailable
during the fault interval.

In the omission failure scenario, switch 3 emulates the behavior of the transient fault.
Switch 3 does not relay the messages and it does not receive messages in two fault intervals
of 500 ms during the simulation. The safety-critical node 4 does not loose any messages,
while the non safety-critical nodes 5 and 6 are effected by the crash failure of switch 3. In
addition, the latency and jitter of the sporadic messages are effected, which results from the
sporadic messages taking a longer path to arrive at the destination address and the shuffling
mechanism at the egress port.

In the delay failure scenario, the transmission of messages from node 5 is delayed by 100
ms during a fault time interval of 500 ms. The delayed periodic messages are dropped by the
first switch, while the delayed sporadic messages exhibit an increased latency.

Latency Jitter Latency Jitter Latency Jitter Latency Jitter Latency Jitter Latency Jitter
1 App.1 NE 1 0.10062 0 0.10062 0 0.10062 0 0.1006 0 0.1006 0 0.1006 0
2 App.4 NE 1 1.019175 0 1.01917 0 1.01917 0 1.0192 0 1.0192 0 1.0192 0
3 App.7 NE 2 93.96654 93.946 97.9142 97.8935 122.017 122 119.91 119.89 90.01 89.99 93.967 93.946
4 App.2 NE 3 134.0502 126 146.067 146.02 110.3 110.23 76.054 75.987 132.05 124
5 App.7 NE 3 155.1907 155.14 177.245 177.22 151.39 151.37 151.16 151.14 155.19 155.14
6 App.1 NE 4 0.09216 0 0.09216 0 0.09216 0 0.0922 0 0.0922 0 0.0922 0
7 App.2 NE 4 138.7938 138.76 158.05 158.018 139.749 139.05 138.79 138.76 142.19 141.85 166.07 166.03
8 App.4 NE 4 2.032455 0 2.03245 0 2.03245 0 2.0325 0 2.0325 0 2.0325 0
9 App.5 NE 4 70.08917 68.273 70.0892 68.2726 97.6626 97.644 70.089 68.273 71.054 69.041 70.079 68.262

10 App.3 NE 5 5.06685 0 5.06685 0 5.06685 0 5.0668 0 5.0668 0 5.0668 0
11 App.5 NE 5 61.64938 61.636 61.6812 61.6681 88.2622 88.174 57.89 57.877 65.681 65.668 161.65 161.64
12 App.2 NE 6 132.0975 132.05 138.811 138.761 100.163 100.13 134.05 126.04 137.2 157.18 132.1 132.05
13 App.6 NE 6 92.003 91.972 100.058 98.8602 102.105 102.09 92.003 91.972 96.002 95.981 100.05 100.02
14 App.3 NE 7 0.008089 0 0.00809 0 0.00809 0 0.0081 0 0.0081 0 0.0081 0
15 App.6 NE 7 98.06489 78.733 98.143 98.1304 112.26 112.25 97.091 88.377 78.095 78.03 98.065 78.733

Fault Injection

Omission
Failure (SW3)

Omission
Failure (L2)

Link
Failure (L3)

Delay
Failure (NE5)

Fault Injection

Application
Type

ID Sender
Fault Free Case

(NE3)
Babbling Idiot
Failure (SW2)

Table 8.4 Simulation Results of Evaluation Scenario Based on Ring Topology
(The listed jitter is the average observed jitter in ms of all destination nodes and the listed latency is the average
observed latency.)

94 Implementation and Evaluation

8.2.3 Evaluation Use-case Based on Gateway

This section presents an evaluation based on a use-case with the proposed off-chip/on-
chip gateway architecture. The main objective of the evaluation is to study the real-time
behavior of an off-chip/on-chip gateway with networked multi-core chips under different
traffic types (i.e. periodic, sporadic and aperiodic). A simulation environment for an off-chip
communication system [AO13] was used for the off-chip network. The off-chip/on-chip
gateway was implemented in GEM5 and combined with the GARNET NoC to emulate the
chip-level.

Chip-level model with GW core and GARNET NoC

Node 2

Node 1

Chip-level model
with GW core and

GARNET NoC

Switch

Core #4

CPU

NI

Core #3

CPU

NI

NOC

NI

Core #2

CPU

NI

Core #1

CPU

NI

Off/on-
chip
Gateway

NI

Core #7

CPU

NI

Core #6

CPU

NI

Core #5

CPU

Figure 8.8 Evaluation Use-case Based on Gateway

Figure 8.8 illustrates the use-case topology which consists of two nodes and a multi-core
chip that communicate over the off-chip network. The multi-core chip includes seven cores
and an off-chip/on-chip gateway interconnected by the GARNET NoC.

Table 8.5 summarizes the traffic generated by the nodes and the cores as well as the
observed timing of the communication system. The table contains information of the
communicated data (e.g., sender and destination) and the traffic type. The traffic type can
be periodic, where the application sends the messages periodically based on the period and

8.2 Evaluation 95

phase, sporadic with minimum and maximum interarrival times, or aperiodic with randomly
sent messages.

There are two evaluation scenarios. In the gateway scenario, the proposed off-chip/on-
chip gateway is used for the interaction between the off-chip and on-chip networks. In the
second scenario, the incoming messages for the off-chip/on-chip gateway are transferred
based on first-in/first-out.

Message Payload Message Generator

 Type size Behaviour

1 1 Node 2 NoC (4) 64 Period = 2 ms ; Phase=0 27.3 µs 9 ns 27.3 µs 9 ns
2 2 Node 1 NoC(2) 80 Period = 2 ms ; Phase=15µs 34.7 µs 12 ns 34.7 µs 12 ns
3 3 NoC(1) Node 2 70 Period = 2 ms ; Phase=75 µs 24.3 µs 0 423.3 µs 212.8 µs
4 4 Node 1 Node 2 64 Period = 2 ms ; Phase= 18 µs 20.8 µs 0 20.8 µs 0
5 5 Node 2 NoC (3) 100 Period = 2 ms ; Phase=111µs 70.2 µs 12 ns 70.2 µs 12 ns

Period 6 6 NoC (2) Node 2 64 Period = 2 ms ; Phase=172µs 37.1 µs 0 201 µs 140 µs
7 7 Node 1 NoC (1) 100 Period = 2 ms ; Phase=80µs 40.8 µs 0 40.8 µs 0
8 8 NoC (4) Node 1 64 Period = 2 ms ; Phase=183µs 35.5 0 114.8 µs 93.3 µs
9 9 Node 2 NoC (2) 100 Period = 2 ms ; Phase=207µs 39.2 µs 30 ns 39.2 µs 30 ns

10 10 NoC (3) Node 2 80 Period = 2 ms ; Phase=298µs 38.4 µs 0 597.3 µs 573 µs
11 11 Node 2 NoC (1) 80 U(1.9ms ,2.1 ms) 328.2 µs 101.1 µs 341.7 µs 310.3 µs
12 12 NoC (4) Node 2 70 U(1.9ms ,2.1 ms) 573.8 µs 85.4 µs 685 µs 645 µs
13 13 Node 1 Node 2 100 U(1.9ms ,2.1 ms) 433.7 µs 95.8 µs 427.3 µs 92.3 µs
14 14 Node 2 NoC (2) 64 U(1.9ms ,2.1 ms) 879.2 µs 113.5 µs 863.6 µs 798.5 µs

 Sporadic 15 15 NoC (1) Node 1 200 U(1.9ms ,2.1 ms) 174.7 µs 120.3 µs 609.3 µs 534.8 µs
16 16 Node 1 NoC (3) 100 U(1.9ms ,2.1 ms) 582.4 µs 143.9 µs 546.2 µs 470.6 µs
17 17 NoC (3) Node 1 80 U(1.9ms ,2.1 ms) 586 µs 189µs 945.7 µs 835.7 µs
18 18 Node 2 NoC (4) 70 U(1.9ms ,2.1 ms) 773.3 µs 124.7 µs 753.2 µs 119.3 µs
19 19 NoC (2) Node 1 64 U(1.9ms ,2.1 ms) 425 µs 187 µs 704.5 µs 270.7 µs
20 20 Node 1 Node 2 100 U(1.9ms ,2.1 ms) 453.2 µs 103.4 µs 479.4 µs 121.7 µs
21 - NoC (1) Node 2 80 1000 messages each 1 s 1.2 ms 1.11 ms 971.2 µs 959.4 µs
22 - NoC (4) Node 1 100 1000 messages each 1 s 813 µs 779.7 µs 1.081 ms 1.062 ms
23 - NoC (2) Node 2 64 1000 messages each 1 s 1.4 ms 1.355 ms 1.028 ms 1.002 ms
24 - NoC (3) Node 2 70 1000 messages each 1 s 1.488 ms 1.408 ms 1.097 ms 1.061 ms

Aperiodic 25 - NoC (2) Node 1 100 1000 messages each 1 s 1.492 ms 1.432 ms 1.028 ms 993 µs
26 - NoC (3) Node 1 64 1000 messages each 1 s 1.435 ms 1.377 ms 1.032 ms 999 µs
27 - Node 2 NoC (1) 64 1000 messages each 1 s 2.06 ms 1.483 ms 2.034 ms 1.347 ms
28 - Node 2 NoC (2) 100 1000 messages each 1 s 2.859 ms 2.125 ms 2.92 ms 2.359 ms
29 - Node 1 NoC (3) 80 1000 messages each 1 s 2.344 ms 1.814 ms 2.434 ms 1.853 ms
30 - Node 1 NoC (4) 80 1000 messages each 1 s 2.396 ms 1.789 ms 2.378 ms 1.821 ms

JiNode r
Max.

Latency
JiNode r

App.
ID

VLID
Sender
(Core #)

Destination
(Core #)

Max.
Latency

Result using
proposed GW

Result
Message Exchange and Message Generated using FIFO

Table 8.5 Message Exchange in the Evaluation Use-case Based on Gateway and Simulation
Results

Table 8.5 lists the simulation results for the two scenarios of the evaluation use-case. We
observed significant discrepancies of the end-to-end jitter, i.e., the difference between the
maximum and minimum end-to-end latency between applications.

In the gateway scenario, the jitter of the periodic messages that are sent from the gateway
to the off-chip network is zero (when abstracting from the limited precision of the global

96 Implementation and Evaluation

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160

C
o
s
t
fu
n
c
ti
o
n

(U
p
p
e
r
B
o
u
n
d
 o
f
th
e
 c
ri
ti
c
a
l
p
a
th
)

Number of iteration

experiment #1 experiment #2

experiment #3 experiment #4

experiment #5 experiment #6

experiment #7 experiment #8

Figure 8.9 Upper bound for critical path delay after different iterations

time base). The jitter of the periodic messages from the off-chip network to the on-chip
network is in the range of nano seconds. This jitter results from the sending of messages
through the interconnection network without guarantees for periodic messages. The jitter of
the sporadic message is in the range of micro seconds, whereas the aperiodic messages have
no real-time guarantees. The latency and jitter of the aperiodic messages are higher than for
the other message types.

In the second evaluation scenario where the getaway is not used, the latency and jitter
of the periodic messages from the gateway to the off-chip network increases (e.g., App.ID
3, App.ID 8). Here, a non real-time message delays the sending of the periodic messages.
The latency and the jitter of the periodic messages from the off-chip network to the on-chip
network are unaffected because of the guarantees provided by the off-chip switch.

The latency and jitter of the sporadic messages from the off-chip network to the on-
chip network are bounded, because the sending of sporadic messages is constrained by the
minimum and maximum interarrival times. However, the latency and the jitter of the sporadic
messages from the gateway to the off-chip network increase significantly (e.g., App.ID 12,
App.ID 14). The latency and the jitter of the aperiodic messages is slightly better than in the
first scenario.

8.2.4 Evaluation of Scheduling Algorithm

In this section, the scheduling algorithm is evaluated using the validation framework that
presented in Section 8.1.3. The input parameters of this framework comprise 10 switches,
40 nodes, 89 network channels, and a PCL of 30%. The nodes execute different numbers
of periodic and sporadic services with execution times between 10µs and 150µs. The
dependencies of these services are generated randomly in four graphs and the PCS is 30%.

8.3 Discussion and Interpretation of Results 97

The message size is selected randomly from values between 64 bytes and 1500 bytes. The
periodic services are executed periodically, which means that every service is executed once
in the period. The period of each graph is selected randomly from one of the following
periods {1,2,4,8,16,32,64,128ms}. The sporadic services are executed sporadically based
on the minimum and maximum interarrival time. The next point in time for executing a
sporadic service is calculated based on the uniform distribution between the minimum and
maximum interarrival time.

In our use-case, this uniform distribution is selected randomly from one of the following:
U(0.9ms,1.1ms), U(1.9ms,2.1ms), U(3.9ms,4.1ms), U(7.9ms,8.1ms), U(15.9ms,16.1ms),
U(31.9ms,32.1ms), U(63.9ms,64.1ms), U(127.9ms,128.1ms).

We generated eight different platforms and eight different applications. Each logical
model is represented using two graphs: a graph with 50 periodic services and another one
with 50 sporadic services.

For each of the eight models, we tested the scheduling algorithm with different numbers
of iterations using the input parameters that were explained in the above use-case. The value
of the cost function (i.e., upper bound of delays on the critical path) is shown for different
numbers of iterations in Figure 8.9. Each color represents one of the eight input models to the
scheduling algorithm. Figure 8.9 provides insight into the effect of the number of iterations
on critical path delay.

The number of iterations required for a "near optimal" solution depends on the total
number of services used in the simulation.

Table 8.6 shows the results from the simulation framework. Table 8.6 contains an
overview of the observed mean delays, the maximum delay and jitter of the experiments for
the periodic and sporadic communication.

Number of Max. Latency of Periodic Max. Latency of Sporadic
Experiments Periodic Msgs. Jitter Sporadic Msgs. Jitter

50 18.51 ms 0.013 ms 31.93 ms 16.82 ms
Table 8.6 Use-case Result from Simulation Environment

8.3 Discussion and Interpretation of Results

In this dissertation, we have proposed an architecture for mixed-criticality systems based
on networked multi-core chips. Mixed-criticality systems integrate on the same platform
multiple functions with different importance and certification assurance levels. Moreover, we

98 Implementation and Evaluation

provide separation mechanisms such that the functions of different criticality levels are iso-
lated, so they cannot influence each other. The foundation for the separation are mechanisms
for temporal and spatial partitioning [Rus99b], which establish fault containment and the
absence of unintended side-effects between functions. Partitions encapsulate resources tem-
porally (e.g., latency, jitter, duration of availability during a scheduled access) and spatially
(e.g., prevent functions from altering code or private data of other partitions).

In order to improve the reliability of the communication protocols, we provide fault
tolerance mechanisms for distributed real-time communication networks based on redundant
transmissions. In redundant transmissions, data packets are duplicated and sent in an
intelligent way to reduce the probability of losing both packets. Furthermore, this dissertation
introduced a novel architecture for selective fault-tolerance based on a ring topology with
support for real-time requirements, mixed-criticality integration, different traffic types and
error containment.

The increase in complexity imposed by these mechanisms is minimized by building upon
the existing services of real-time Ethernet and by exploiting the three traffic types of periodic,
sporadic, and aperiodic communication.

The scheduling problem for these systems requires to take decisions on the duplication
and fusion of messages, the deployment of safety-critical and non safety-critical nodes as
well as the topology (e.g., avoidance of loops).

Selective Fault-Tolerance

The proposed ring architecture supports selective fault-tolerance, which permits a bal-
anced trade off between cost and fault-tolerance for each subsystem of a mixed-criticality
system. Fault-tolerance can be adjusted at the level of nodes and individual messages:

1. Redundant nodes with duplicate messages: Redundant nodes have connections to two
switches and two duplicates of each message are sent to switches. Consequently, a
failure of a switch or the physical link to the switch can be tolerated.

2. Redundant nodes with single messages: In case of less important messages, a single
copy can be sent to one of the switches in order to reduce the load of the communication
system.

3. Non redundant nodes with duplicate messages: Non redundant nodes have only a
single connection to one switch. This switch, which is immediately connected to
the node, can perform a duplication of the messages and send two redundant copies
to two neighbors. Consequently, the failure of any switch except for the one that is

8.3 Discussion and Interpretation of Results 99

immediately connected to the non redundant node can be tolerated. Also, the switch
immediately connected to a node can fuse the redundant messages, thereby hiding the
replication from the node.

4. Non redundant nodes with single messages: Communication load can be reduced
by sending only a single message without duplication of the switch, thereby losing
however the ability to tolerate switch failures.

Error containment has been establishment in the switch for failures of nodes affecting
periodic and sporadic messages. In addition, we introduce redundant channels using het-
erogeneous paths for periodic and sporadic messages to protect against the failure of any
network component such as a link or a switch.

Evidence for the fault-tolerance mechanisms is provided by the simulation environment
for the proposed architecture, which has been developed using OPNET. In the evaluation
different fault scenarios are compared with fault-free scenarios based on the failure modes of
IEC-61508-2.

The simulation results demonstrate that the new architecture supports mixed-criticality
systems and guarantees real-time communication with bounded delays and minimal jitter.
The periodic messages were not affected in the different fault scenarios, while the sporadic
messages show bounded fault-effects.

Support for Different Traffic Types

The fault-tolerant architecture supports the communication needs of mixed-criticality
based on the three traffic types of real-time Ethernet. Mixed-criticality subsystems typically
differ not only with respect to their safety and reliability requirements, but also in the underly-
ing timing models. Periodic messages serve for safety-relevant control applications with high
temporal regularity. Such applications require temporal predictability with minimum delays
and jitter to ensure a high quality of control. We guarantee real-time support with bounded
end-to-end latency and small jitter of the time-triggered messages that are sent according to a
predefined scheduling table.

Sporadic messages support a better bandwidth utilization at the cost of weaker tempo-
ral guarantees. Sporadic messages provide bounded delays, but higher jitter than periodic
messages. Aperiodic communication aims at non safety-relevant communication without
temporal guarantees.

Support for Ring Topology

100 Implementation and Evaluation

In the state-of-the-art, many network topologies can be found, which differ w.r.t. per-
formance metrics [DT03, De03] such as throughput, maximum channel load, latency and
fault-tolerance. On the other hand, the topology involves cost through the number of links
and complexity for routing and scheduling.

A backbone is an example of a linear bus, where each node is attached to a linear trunk
line. However, a bus topology is not scalable because the bus becomes the bottleneck when
more nodes are added. A further problem is the susceptibility to common failure modes.

Indirect or switch-based networks are another class of interconnection networks, which
can exhibit predefined patterns or irregular topologies. An important parameter determining
the latency is the diameter of the topology. The bisection bandwidth, the node and edge con-
nectivity are important parameters for the network’s fault-tolerance. The cost is significantly
effected by the degree of nodes and the number of physical links.

A complete graph would be ideal w.r.t. fault-tolerance and latency. However, it would
involve prohibitive cost and limited scalability, because the number of physical connections
of a switch is limited by hardware constraints.

A ring with n switches offers a diameter of
⌊n

2

⌋
, an edge connectivity of 2 and a bisec-

tion bandwidth of 2. It is thus ideal for a single fault hypothesis (cf. fault assumption in
Section 4.1.3).

An alternative would be a d-dimensional mesh. A degree of 2d results in a diameter of
d(d
√

n−1), an edge connectivity of d and a bisection bandwidth of n
d−1

d [RR13]. However,
the significant additional cost is not required based on the single fault hypothesis.

Support for Scheduling of Heterogeneous Timing Models

The scheduling of applications with inter-job dependencies and different traffic classes
such as periodic time-triggered and sporadic rate-constrained traffic is important for the use
of real-time Ethernet in mixed-criticality systems. The presented scheduling and validation
framework enables the systematic evaluation of scheduling algorithms for large numbers
of test cases based on a generic definition of test scenarios and the automatic generation of
application and platform models. In our tool-chain, the application and platform models are
directly used as input to a real-time Ethernet simulation environment to provide feedback on
the temporal behavior.

8.3 Discussion and Interpretation of Results 101

Support for Hierarchical Architecture

Many upcoming mixed-criticality systems use networked multi-core platforms due to
resource requirements exceeding a single chip. Since several multi-core chips for mixed-
criticality systems use on-chip networks, gateways between off-chip and on-chip networks
are required.

This dissertation has introduced an off-chip/on-chip gateway architecture that supports
different timing models including periodic time-triggered, sporadic rate-constrained and
aperiodic communication. Different timing models are significant in many mixed-criticality
systems, because subsystems with different safety assurance levels are often based on differ-
ent models of computation (e.g., safety-critical time-triggered control application vs. non
safety-relevant event-triggered comfort systems).

Support for Temporal and Spatial Partitioning

The proposed architecture is based on synchronous global time, which is globally syn-
chronized within the system of hierarchical networked multi-core chips. The deterministic
communication and the temporal activities are established with respect to this global time.
The proposed architecture supports the determinism and real-time requirements using a
scheduler that enforces temporal constraints. The scheduler ensures deterministic behavior
for the real-time messages by establishing temporal segregation and ensuring isolation of the
synchronous real-time messages from other asynchronous messages.

Furthermore, the proposed architecture provides the spatial partitioning using protected
time slots to guarantee that real-time messages are not influenced by other non-critical
messages in the system.

Evaluation Use-cases

For the evaluation of the proposed architecture, we provide four use-cases:

• The automotive example demonstrates how the simulation framework can be used to
gain insight into the timing and reliability of a distributed control application based
on different configurations of the real-time Ethernet communication system. Sporadic
rate-constrained communication has resulted in higher variability of communication
latencies with a negative impact on the quality of control in the cruise control function.
A babbling idiot has a considerable effect on the application behavior in case of sporadic

102 Implementation and Evaluation

rate-constrained communication, whereas periodic time-triggered traffic establishes
fault isolation based on the static communication schedule.

• The ring topology example exhibits how the proposed fault tolerance mechanism for
the system can be used to increase the safety and reliability of the system. This evalua-
tion example shows that the periodic time triggered messages serve for safety-relevant
control applications with high temporal regularity. The proposed architecture can
guarantee real-time support with bounded end-to-end latency and small jitter of the pe-
riodic time-triggered messages. The sporadic messages can serve in the safety-relevant
applications that can tolerate higher jitter, where sporadic messages offer a better band-
width utilization at the cost of weaker temporal guarantees. Sporadic messages provide
bounded delays, but higher jitter than periodic messages. Aperiodic communication
aims at non safety-relevant communication without temporal guarantees.

• In the off-chip/on-chip gateway use case, the proposed architecture was compared to
the behavior of a normal gateway (first in first out) with aperiodic communication. The
simulation results demonstrate that the new architecture supports spatial and temporal
guarantees with bounded delays and minimal jitter.ate the proposed scheduling. This
validation framework provides feedback on the runtime of the scheduler and the
temporal behavior of the ensuing system.

Chapter 9

Conclusion

The importance of large-scale mixed-criticality systems comprised of networked multi-
core chips is increasing in many application domains. This dissertation has introduced
an architecture for mixed-criticality systems based on networked multi-core chips with
techniques for real-time support, mixed-criticality integration, different traffic types, fault
tolerance and error containment. The architecture models encompass both the on-chip level
and the off-chip level.

At the on-chip level, the architecture is built on top of the existing on-chip interconnects
(e.g., Æthereal, STNoC), which they employ either a TDMA scheme or priority-based
virtual networks to establish resource guarantees with respect to bandwidth and latency. To
bridge between the on-chip level and the off-chip level, gateways are introduced for different
integration levels while providing real-times guarantees, fault isolation and mixed-criticality
capability.

At the off-chip level, the architecture is compatible with the Ethernet since this protocol
has become attractive for many industrial domains such as automotive, avionics and railway.
The architecture gives solutions to enable mixed-criticality communication allowing hard
real-time and non safety-critical traffic such as aperiodic best effort messages to coexist
simultaneously within one physical system. Moreover, the temporal and spatial partitioning,
time guarantees as well as fault isolation are supported in the architecture.

Furthermore, this dissertation has introduced techniques for selective fault-tolerance
using a ring topology with support for real-time requirements, mixed-criticality integration,
different traffic types and error containment. The real-time support is guaranteed by the
bounded end-to-end latency and small jitter of the periodic time-triggered messages that
are sent according to a predefined scheduling table. Mixed-criticality is supported by safety
and non safety-critical nodes. The safety-critical nodes are connected to two switches using
redundant links, whereas non safety-critical nodes use a single link to one switch only.

104 Conclusion

Error containment has been establishment in the switch for failures of nodes affecting
periodic time-triggered and sporadic rate-constrained messages. In addition, we introduce
redundant channels using heterogeneous paths for periodic time-triggered and sporadic rate-
constrained messages to protect against the failure of any network component such as a link
or a switch.

In such large-scale mixed-criticality systems, techniques for scheduled end-to-end com-
munication with resource reservations and temporal guarantees are required. In this disserta-
tion, heuristic scheduling techniques for periodic time-triggered and sporadic rate-constrained
messages in a multi-hop network were introduced. The presented scheduling and validation
framework enables the systematic evaluation of scheduling algorithms for large numbers
of test cases based on a generic definition of test scenarios and the automatic generation of
application and platform models.

Different traffic types including periodic time-triggered, sporadic rate-constrained and
aperiodic best-effort are supported in the simulation environment. Generic building blocks
of the simulation environment comprise nodes (i.e. multi-core node and single core node)
and switches, which can be instantiated and configured based on application-specific com-
munication schedules (e.g., period and phase of periodic time-triggered messages) and
communication parameters (e.g., minimum interarrival time of sporadic rate-constrained
messages). The simulation environment enables system developers to investigate the implica-
tions of the choice of different traffic types and communication schedules on the timing and
reliability of the system. To evaluate the architecture models, different use case are used. The
simulation results provide experimental evidence for the real-time support and fault isolation.

Bibliography

[80211] IEEE Standard 802.1Q-2011. Media Access Control (MAC) Bridges and
Virtual Bridge Local Area Networks, 2011.

[AB06] César Rego A and Renato Duarte B. A filter and fan approach to the job shop
scheduling problem, 2006.

[AC03] J Arlat and Y Crouzet. Comparison of physical and software-implemented
fault injection techniques. IEEE Transactions on Computers, 52(9):1115–1133,
2003.

[AER04] H. Ammari and H. El-Rewini. Integration of mobile ad hoc networks and
the internet using mobile gateways. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, pages 218–, April 2004.

[AKPJ09] N. Agarwal, T. Krishna, Li-Shiuan Peh, and N.K. Jha. Garnet: A detailed
on-chip network model inside a full-system simulator. In Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium
on, pages 33–42, April 2009.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. Dependable and Secure
Computing, IEEE Transactions on, 1(1):11–33, Jan 2004.

[AO13] M. Abuteir and R. Obermaisser. Simulation environment for time-triggered
ethernet. In 2013 11th IEEE International Conference on Industrial Informatics
(INDIN), pages 642–648, July 2013.

[AO14] M. Abuteir and R. Obermaisser. Mixed-Criticality Systems Based on Time-
Triggered Ethernet with Multiple Ring Topologies. In IEEE International
Symposium on Industrial Embedded Systems (SIES), 2014 9th, 2014.

[AO15] M. Abuteir and R. Obermaisser. Scheduling of rate-constrained and time-
triggered traffic in multi-cluster ttethernet systems. In Industrial Informatics
(INDIN), 2015 13th IEEE International Conference on, July 2015.

[AOA16] H. Ahmadian, R. Obermaisser, and M. Abuteir. Time-triggered and rate-
constrained on-chip communication in mixed-criticality systems. In 2016 IEEE
10th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSOC), pages 117–124, Sept 2016.

106 Bibliography

[AOOM15] M. Abuteir, R. Obermaisser, Z. Owda, and T. Moudouthe. Off-chip/on-chip
gateway architecture for mixed-criticality systems based on networked multi-
core chips. In 2015 IEEE 18th International Conference on Computational
Science and Engineering, Oct 2015.

[ari05] Aircraft data network part 7 avionics full duplex switched ethernet (AFDX)
network, June 27 2005.

[ASe03] A. Ademaj, H. Sivencrona, and et al. Evaluation of fault handling of the time-
triggered architecture with bus and star topology. In Proc. of the Int. Conference
on Dependable Systems and Networks, 2003.

[ASS+08] E. Althammer, E. Schoitsch, G. Sonneck, H. Eriksson, and J. Vinter. Modular
certification support the decos concept of generic safety cases. In Industrial
Informatics, 2008. INDIN 2008. 6th IEEE International Conference on, pages
258–263, July 2008.

[AVB16] Iso/iec/ieee international standard - information technology – telecommuni-
cations and information exchange between systems – local and metropolitan
area networks – specific requirements – part 1ba: Audio video bridging (avb)
systems. ISO/IEC/IEEE 8802-1BA First edition 2016-10-15, pages 1–52, Oct
2016.

[BAP05] M. Barranco, L. Almeida, and J. Proenza. ReCANcentrate: A replicated star
topology for CAN networks. In Proceedings of the 10th IEEE Conference
on Emerging Technologies and Factory Automation (ETFA 2005), volume 2,
pages 8 pp. –476, sept. 2005.

[BBB+09] James Barhorst, Todd Belote, Pam Binns, Jon Hoffman, James Paunicka,
Prakash Sarathy, John Scoredos, Peter Stanfill, Douglas Stuart, and Russel
Urzi. A research agenda for Mixed-Criticality systems. In Cyber-Physical
Systems Week, 4 2009.

[BCSM08] B.D. Bui, M. Caccamo, Lui Sha, and J. Martinez. Impact of cache partitioning
on multi-tasking real time embedded systems. In Embedded and Real-Time
Computing Systems and Applications, 2008. RTCSA ’08. 14th IEEE Interna-
tional Conference on, pages 101–110, Aug 2008.

[BDM06] Luca Benini and Giovanni De Michelli. Networks on chips : technology and
tools. The Morgan Kaufmann series in systems on silicon. Elsevier Morgan
Kaufmann Publishers, Amsterdam, Boston, Paris, 2006.

[BE83] E.A. Benhamou and J. Estrin. Multilevel internetworking gateways: Architec-
ture and applications. Computer, 16(9):27–34, Sept 1983.

[Ben96] A. Bender. Design of an optimal loosely coupled heterogeneous multipro-
cessor system. In European Design and Test Conference, 1996. ED TC 96.
Proceedings, pages 275–281, Mar 1996.

[BK10] Diane Barrett and Gregory Kipper. Virtualization and Forensics. Syngress,
Boston, 2010.

Bibliography 107

[BPH98] A. Meyna B. Pauli and P. Heitmann. liability of electroniccomponents and
control units in motor vehicle applications. In VDI Berichte 1415, Electronic
Systems for Vehicles, page 1009–1024, 1998.

[BS05] T. Bjerregaard and J. Sparso. A router architecture for connection-oriented
service guarantees in the mango clockless network-on-chip. In Design, Au-
tomation and Test in Europe, 2005. Proceedings, pages 1226–1231 Vol. 2,
March 2005.

[25] Certification Authorities Software Team (CAST). Position paper on multi-core
processors - cast-32. 2014.

[Car16] Thomas Carlsson. Hms - industrial network market shares 2016 according to
hms. HMS - Industrial network market shares 2016 according to HMS, Feb
2016.

[Cer14] Certification Authorities Software Team (CAST). Position paper cast-32 multi-
core processors. Technical report, 2014.

[CGL+08] Marcello Coppola, Miltos D. Grammatikakis, Riccardo Locatelli, Giuseppe
Maruccia, and Lorenzo Pieralisi. Design of Cost-Efficient Interconnect Pro-
cessing Units: Spidergon STNoC. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 2008.

[cit09] ISO/DIS 26262-1 - Road vehicles -Functional safety- Part 1: Vocabulary.
Technical report, Geneva, Switzerland, July 2009.

[CMFC+98] A. B. Campbell, O. Musseau, V. Ferlet-Cavrois, W. J. Stapor, and P. T. Mc-
Donald. Analysis of single event effects at grazing angle [cmos srams]. IEEE
Transactions on Nuclear Science, 45(3):1603–1611, Jun 1998.

[Com05] Airlines Electronic Engineering Committee. Aircraft Data Network Part 7
Avionics Full Duplex Switched Ethernet AFDX network, 2005.

[Com11] Avionics Interface Technologies Company. White paper: SAE AS6802 deter-
ministic ethernet network solution. Technical report, March 2011.

[Con14] DREAMS Consortium. D1.2.1 distributed real-time architecture for mixed
criticality systems. 2014.

[CRM10] A. Crespo, I. Ripoll, and M. Masmano. Partitioned embedded architecture
based on hypervisor: The xtratum approach. In Dependable Computing
Conference (EDCC), 2010 European, pages 67–72, April 2010.

[DBN14] S.K. Datta, C. Bonnet, and N. Nikaein. An iot gateway centric architecture
to provide novel m2m services. In Internet of Things (WF-IoT), 2014 IEEE
World Forum on, pages 514–519, March 2014.

[DC97] J. Desbonnet and P.M. Corcoran. System architecture and implementation
of a cebus/internet gateway. Consumer Electronics, IEEE Transactions on,
43(4):1057–1062, Nov 1997.

108 Bibliography

[DCC+11] F. Dubois, J. Cano, M. Coppola, J. Flich, and F. Petrot. Spidergon STNoC
design flow. In Proc. of 5th IEEE/ACM Int. Symposium on Networks on Chip,
pages 267–268, May 2011.

[De03] J. Duato and et al. Interconnection Networks – An Engineering Approach.
Elsevier, 2003.

[DI11] DDC-I. DEOS – A Time & Space Partitioned DO-178 Level A Certifiable
Family of RTOS Products, 2011.

[DT03] William Dally and Brian Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[ECR05] Airlines Electronic, Engineering Committee, and Aeronautical Radio. Aircraft
Data Network Part 7 Avionics Full Duplex Switched Ethernet (Afdx) Network
Arinc Specification 664P7. 2005.

[EDPP00] P. Eles, A. Doboli, P. Pop, and Zebo Peng. Scheduling with bus access
optimization for distributed embedded systems. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 8(5):472–491, Oct 2000.

[EKP+98] P. Eles, K. Kuchcinski, Zebo Peng, A. Doboli, and P. Pop. Process scheduling
for performance estimation and synthesis of hardware/software systems. In
Euromicro Conference, 1998. Proceedings. 24th, volume 1, pages 168–175
vol.1, Aug 1998.

[Esw09] A. Eswaramurthy, V.; Tamilarasi. Hybridizing tabu search with ant colony
optimization for solving job shop scheduling problems. International Journal
of Advanced Manufacturing Technology, 40 Issue 9/10:1004, April 2009.

[F. 03] F. Madren. Redundancy with standards in industrial Ethernet LANs. In A White
Paper for Network Engineers in Factories, Transportation Systems, Utilities,
and Other Heavy Duty Networking Applications. 2003.

[FFR+11] P. Ferrari, A. Flammini, S. Rinaldi, G. Prytz, and P.C. Juel. Architecture of
an embedded time gateway between ptp and sntp. In Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on, pages 71–74,
June 2011.

[Fle04] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corpo-
ration, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen
AG. FlexRay Communications System Protocol Specification Version 2.0, July
2004.

[For07] B.A. Forouzan. Data Communications and Networks. Tata McGraw-Hill,
2007.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on chip:
concepts, architectures, and implementations. Design Test of Computers, IEEE,
22(5):414–421, Sept 2005.

Bibliography 109

[GH10] Kees Goossens and Andreas Hansson. The aethereal network on chip after ten
years: Goals, evolution, lessons, and future. In Proceedings of the 47th Design
Automation Conference, DAC ’10, pages 306–311, New York, NY, USA, 2010.
ACM.

[Han06] R.S. Hanmer. Error containment. In Proc. of the 2006 Conference on Pattern
Languages of Programs, PLoP ’06, pages 18:1–18:11, New York, NY, USA,
2006. ACM.

[HDPDB05] B. Hall, K. Driscoll, M. Paulitsch, and S. Dajani-Brown. Ringing out fault
tolerance. a new ring network for superior low-cost dependability. In De-
pendable Systems and Networks, 2005. DSN 2005. Proceedings. International
Conference on, pages 298–307, June 2005.

[IEC10a] Functional safety of electrical/electronic/programmable electronic safety-
related systems – part 1: General requirements. IEC 61508-1, 2010.

[IEC10b] Functional safety of electrical/electronic/programmable electronic safety-
related systems – part 2: Requirements for electrical / electronic / pro-
grammable electronic safety-related system. IEC 61508-2, 2010.

[IEC10c] Functional safety of electrical/electronic/programmable electronic safety-
related systems – part 3: Software requirements iec 61508. EC 61508-3,
2010.

[IEC10d] Industrial communication networks - profiles - part 3-13: Functional safety
fieldbuses - additional specifications for cpf 13. IEC 61784-3, 2010.

[IEC10e] IEC. 61508 functional safety of electrical/electronic/programmable electronic
safety-related systems. International electrotechnical commission, 2010.

[IEE04] IEEE. IEEE Standard for Local and metropolitan area networks: Media
Access Control (MAC) Bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std
802.1D-1998), pages 1–277, 2004.

[IEE13] IEEE 802.1Qbv IEEE. Enhancements for Scheduled Traffic, Draft 0.2, 2013.

[Int14] Intel. Intel® virtualization technology for directed i/o architecture specification.
October 2014.

[ISO93] ISO-11898. Road vehicles – Interchange of Digital Information – Controller
Area Network (CAN) for High-Speed Communication. Int. Standardization
Organisation, ISO 11898, 1993.

[JLLK07] Hyo-Moon Jeong, Myung-Jin Lee, Dong-Kyu Lee, and Soon-Ju Kang. Design
of home network gateway for real-time a/v streaming between ieee1394 and
ethernet. Consumer Electronics, IEEE Transactions on, 53(2):390–396, May
2007.

[KA96] Yu-Kwong Kwok and I. Ahmad. Dynamic critical-path scheduling: an ef-
fective technique for allocating task graphs to multiprocessors. Parallel and
Distributed Systems, IEEE Transactions on, 7(5):506–521, May 1996.

110 Bibliography

[KG14] B. Kisacanin and M. Gelautz. Advances in Embedded Computer Vision.
Springer, 2014.

[KL99] J. Kaiser and M.A. Livani. Achieving fault-tolerant ordered broadcasts in CAN.
In Proc. of European Dependable Computing Conference, pages 351–363,
1999.

[KOAAT14] A. Khalifeh, R. Obermaisser, M. Abuteir, and D. Abou-Tair. Systems-of-
systems framework for providing real-time patient monitoring and care. In
Proceedings of the 8th International Conference on Pervasive Computing
Technologies for Healthcare, ICST, Brussels, Belgium, Belgium, 2014.

[Kop92] H. Kopetz. Sparse time versus dense time in distributed real-time systems. In
Distributed Computing Systems, 1992., Proceedings of the 12th International
Conference on, pages 460–467, Jun 1992.

[Kop04a] H. Kopetz. The fault hypothesis for the time-triggered architecture. In Proc. of
the IFIP World Computer Congress, 2004.

[Kop04b] Hermann Kopetz. An integrated architecture for dependable embedded sys-
tems. In Reliable Distributed Systems, 2004. Proceedings of the 23rd IEEE
International Symposium on, pages 160–161, Oct 2004.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. 2011.

[KS90] D.B. Kirk and J.K. Strosnider. Smart (strategic memory allocation for real-
time) cache design using the mips r3000. In Real-Time Systems Symposium,
1990. Proceedings., 11th, pages 322–330, Dec 1990.

[KsH10] H. Kimm and Ho sang Ham. Integrated fault tolerant system for automotive
bus networks. In Proc. of 2010 Int. Conference on Computer Engineering and
Applications, volume 1, pages 486–490, 2010.

[LA90] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition, 1990.

[LAK92] J.C. C. Laprie, A. Avizienis, and H. Kopetz, editors. Dependability: Basic
Concepts and Terminology. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1992.

[Liv99] M.A. Livani. SHARE: A transparent approach to fault-tolerant broadcast in
CAN. In Proc. of 6th Int. CAN Conference (ICC6), November 1999.

[LJ07] Zhonghai Lu and Axel Jantsch. Slot allocation using logical networks for tdm
virtual-circuit configuration for network-on-chip. In Proceedings of the 2007
IEEE/ACM International Conference on Computer-aided Design, ICCAD ’07,
pages 18–25, Piscataway, NJ, USA, 2007. IEEE Press.

[LTMJ05] Zhonghai Lu, Rikard Thid, Mikael Millberg, and Axel Jantsch. Nnse: Nostrum
network-on-chip simulation environment. In In Proc. of SSoCC, 2005.

Bibliography 111

[Lyn02] Lynuxworks. Lynxos user’s guide, release 4.0. 2002.

[MMT10] J. Marcello, C.E. Moron, and L.C. Trevelin. A gateway architecture for qos
management considering time constraint application. In Systems Man and
Cybernetics (SMC), 2010 IEEE International Conference on, pages 1300–1305,
Oct 2010.

[MSB+05] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.
Wood. Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99, November 2005.

[MT89] Mihajlo D. Mesarovic and Yasuhiko Takahara, editors. Abstract Systems
Theory, volume 116 of Lecture Notes in Control and Information Sciences.
Springer-Verlag, Berlin/Heidelberg, 1989.

[MTCM05] A. Mello, L. Tedesco, N. Calazans, and F. Moraes. Virtual channels in networks
on chip: Implementation and evaluation on hermes noc. In Integrated Circuits
and Systems Design, 18th Symposium on, pages 178–183, Sept 2005.

[MZZM13] M. Mechtri, D. Zeghlache, E. Zekri, and I.J. Marshall. Inter-cloud networking
gateway architecture. In Cloud Computing Technology and Science (Cloud-
Com), 2013 IEEE 5th International Conference on, volume 2, pages 188–194,
Dec 2013.

[NYC06] Rabia Nessah, Farouk Yalaoui, and Chengbin Chu. A branch and bound
algorithm to minimize total weighted completion time on identical parallel
machines with job release dates. In Service Systems and Service Management,
2006 International Conference on, volume 2, pages 1192–1198, Oct 2006.

[OAKAT15] R. Obermaisser, M. Abuteir, A. Khalifeh, and D. Abou-Tair. Systems-of-
systems framework for providing real-time patient monitoring and care: Chal-
lenges and solutions. In Communications in Computer and Information Science,
volume 515. 2015.

[OAO15] Z. Owda, M. Abuteir, and R. Obermaisser. Co-simulation framework for
networked multi-core chips with interleaving discrete event simulation tools.
In 2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), Sept 2015.

[OAOD14] Z. Owda, M. Abuteir, R. Obermaisser, and H. Dakheel. Predictable and reliable
time triggered platform for ambient assisted living. In 2014 8th International
Symposium on Medical Information and Communication Technology (ISMICT),
April 2014.

[OAOK14] K. Okano, Y. Aoki, T. Ohta, and Y. Kakuda. An autonomous clustering-based
inter-domain routing protocol for heterogeneous mobile ad hoc networks. In
Mobile Ad-hoc and Sensor Networks (MSN), 2014 10th International Confer-
ence on, pages 144–150, Dec 2014.

[Obe05] Roman Obermaisser. Event-Triggered and Time-Triggered Control Paradigms,
volume 22. 2005.

112 Bibliography

[Obe11] R. Obermaisser. Time-triggered communication. Taylor & Francis, 2011.

[Obe12] Roman Obermaisser. Time-triggered communication. Embedded systems.
Taylor & Francis, Boca Raton, 2012.

[OEHK08] Roman Obermaisser, C. El Salloum, B. Huber, and Hermann Kopetz. The
time-triggered system-on-a-chip architecture. In Industrial Electronics, 2008.
ISIE 2008. IEEE International Symposium on, pages 1941–1947, 2008.

[OESHK08] R. Obermaisser, C. El Salloum, B. Huber, and Hermann Kopetz. The time-
triggered system-on-a-chip architecture. In Industrial Electronics, 2008. ISIE
2008. IEEE International Symposium on, pages 1941–1947, June 2008.

[OESHK09] R. Obermaisser, C. El Salloum, B. Huber, and Hermann Kopetz. From a
federated to an integrated automotive architecture. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 28(7):956–965, July
2009.

[OKS08] R. Obermaisser, H. Kraut, and C. Salloum. A transient-resilient system-on-a-
chip architecture with support for on-chip and off-chip tmr. In Dependable
Computing Conference, 2008. EDCC 2008. Seventh European, pages 123–134,
May 2008.

[OOA+14] R. Obermaisser, Z. Owda, M. Abuteir, H. Ahmadian, and D. Weber. End-to-
end real-time communication in mixed-criticality systems based on networked
multicore chips. In Digital System Design (DSD), 2014 17th Euromicro
Conference on, Aug 2014.

[OP06] R. Obermaisser and P. Peti. A fault hypothesis for integrated architectures. In
Intelligent Solutions in Embedded Systems, 2006 International Workshop on,
pages 1–18, 2006.

[OPN15] OPNET Technologies. OPNET Modeler 17.1 Documentation, 2015.

[oR11] Special C. of RTCA. DO-178C, software considerations in airborne systems
and equipment certification, 2011.

[OUOA16] Z. Owda, M. Urbina, R. Obermaisser, and M. Abuteir. Hierarchical transac-
tional memory protocol for distributed mixed-criticality embedded systems. In
2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing,
14th Intl Conf on Pervasive Intelligence and Computing, pages 334–343, Aug
2016.

[PAG+16] P. Petrakis, M. Abuteir, M. D. Grammatikakis, K. Papadimitriou, R. Ober-
maisser, Z. Owda, A. Papagrigoriou, M. Soulie, and M. Coppola. On-chip
networks for mixed-criticality systems. In 2016 IEEE 27th International Con-
ference on Application-specific Systems, Architectures and Processors (ASAP),
pages 164–169, July 2016.

[Pau08] Christian Peter Paukovits. The Time-Triggered System-on-Chip Architecture:
Wien, Techn. Univ., Diss., 2009. 2008.

Bibliography 113

[PBe12] J. Proenza, M. Barranco, and et al. The design of the CANbids architecture. In
Proc. of the IEEE Conf. on Emerging Technologies and Factory Automation,
2012.

[PK07] Paul Parkinson and Larry Kinnan. Safety-critical software development for
integrated modular avionics. 2007.

[Pow92] D. Powell. Failure mode assumptions and assumption coverage. In Fault-
Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second Inter-
national Symposium on, pages 386–395, July 1992.

[PP92] Shiv Prakash and Alice C. Parker. Sos: Synthesis of application-specific
heterogeneous multiprocessor systems. Journal of Parallel and Distributed
Computing, 16(4):338 – 351, 1992.

[Pri92] P.J. Prisaznuk. Integrated modular avionics. In Aerospace and Electronics
Conference, 1992. NAECON 1992., Proceedings of the IEEE 1992 National,
pages 39–45 vol.1, May 1992.

[RG05] M. Rosenblum and T. Garfinkel. Virtual machine monitors: current technology
and future trends. Computer, 38(5):39–47, May 2005.

[RK03] P. Ratanchandani and R. Kravets. A hybrid approach to internet connectivity
for mobile ad hoc networks. In Wireless Communications and Networking,
2003. WCNC 2003. 2003 IEEE, volume 3, pages 1522–1527 vol.3, March
2003.

[RR13] T. Rauber and G. Rünger. Parallel Programming for Multicore and Cluster
Systems. Springer, 2nd edition, 2013.

[Ruf97] J. Rufino. Dual-media redundancy mechanisms for CAN. Technical Re-
port CSTC RT-97-01, Centro de Sistemas Telemáticos e Computacionais do
Instituto Superior Técnico, Lisboa, Portugal, January 1997.

[Rus99a] J. Rushby. Partitioning for avionics architectures: Requirements, mechanisms,
and assurance. NASA Contractor Report CR-1999-209347, NASA Langley
Research Center, June 1999.

[Rus99b] John Rushby. Partitioning for safety and security: Requirements, mechanisms,
and assurance. NASA Contractor Report CR-1999-209347, NASA Langley
Research Center, June 1999. Also to be issued by the FAA.

[Rus01] J. Rushby. Modular certification. Technical report, Computer Science Labo-
ratory SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025,
USA, September 2001.

[Rus07] J. Rushby. Just-in-time certification. In Engineering Complex Computer
Systems, 2007. 12th IEEE International Conference on, pages 15–24, July
2007.

114 Bibliography

[RVA+98] J. Rufino, P. Veríssimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-tolerant
broadcasts in CAN. In Proc. of the 28th Int. Symposium on Fault-Tolerant
Computing Systems, pages 150–159, June 1998.

[s0911] AS-6802 – Time-Triggered Ethernet, 11 2011.

[SAE11] SAE - AS-2D Time Triggered Systems and Architecture Committee. AS-6802
– Time-Triggered Ethernet, 11 2011.

[SBct] W. Steiner and G. Bauer. Mixed-criticality networks for adaptive systems. In
Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA 29th, pages
5.A.3–1–5.A.3–10, Oct.

[Se09] W. Steiner and et al. TTEthernet dataflow concept. In Proceedings of the 2009
Eighth IEEE International Symposium on Network Computing and Applica-
tions, NCA ’09, pages 319–322, Washington, DC, USA, 2009. IEEE Computer
Society.

[SEH+12] C.E. Salloum, M. Elshuber, O. Hoftberger, H. Isakovic, and A. Wasicek.
The across mpsoc – a new generation of multi-core processors designed for
safety-critical embedded systems. In Digital System Design (DSD), 2012 15th
Euromicro Conference on, pages 105–113, Sept 2012.

[SML10] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on concepts,
taxonomy and associated security issues. In Computer and Network Technology
(ICCNT), 2010 Second International Conference on, pages 222–226, April
2010.

[SP07] M. Short and M.J. Pont. Fault-tolerant time-triggered communication using
can. Industrial Informatics, IEEE Transactions on, 3(2):131–142, May 2007.

[SS01] O. Sinnen and L. Sousa. Comparison of contention aware list scheduling
heuristics for cluster computing. In Parallel Processing Workshops, 2001.
International Conference on, pages 382–387, 2001.

[Ste06] K. Steinhammer. Design of an FPGA-Based Time-Triggered Ethernet System.
PhD thesis, Technische Universität Wien, Austria, 2006.

[Ste10] W. Steiner. An evaluation of smt-based schedule synthesis for time-triggered
multi-hop networks. In Real-Time Systems Symposium (RTSS), 2010 IEEE
31st, pages 375–384, Nov 2010.

[Ste11] W. Steiner. Synthesis of static communication schedules for mixed-criticality
systems. In Object/Component/Service-Oriented Real-Time Distributed Com-
puting Workshops (ISORCW), 2011 14th IEEE International Symposium on,
pages 11–18, March 2011.

[stp04] IEEE standard for local and metropolitan area networks: Media Access Control
(MAC) bridges. IEEE Std 802.1D-2004 (Revision of IEEE Std 802.1D-1998),
pages 1 –277, 9 2004.

[Sys10] Sysgo. PikeOS Safe and Secure Virtualization, 2010.

Bibliography 115

[SZZS08] Guangming Song, Yaoxin Zhou, Weijuan Zhang, and Aiguo Song. A multi-
interface gateway architecture for home automation networks. Consumer
Electronics, IEEE Transactions on, 54(3):1110–1113, August 2008.

[TSPS12] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of commu-
nication schedules for ttethernet-based mixed-criticality systems. In Proceed-
ings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’12, pages 473–482,
New York, NY, USA, 2012. ACM.

[TSX00] Yajie Tian, N. Sannomiya, and Yuedong Xu. A tabu search with a new
neighborhood search technique applied to flow shop scheduling problems. In
Decision and Control, 2000. Proceedings of the 39th IEEE Conference on,
volume 5, pages 4606–4611 vol.5, 2000.

[UAcLR01] Algirdas Avizienis Ucla, Algirdas Avizienis, Jean claude Laprie, and Brian
Randell. Fundamental concepts of dependability, 2001.

[UNR+05] R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V. Ander-
son, S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel virtualization
technology. Computer, 38(5):48–56, May 2005.

[VD10] J.-P. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP: The Next
Internet. Morgan Kaufmann, 2010.

[WEK10] A. Wasicek, C. El Salloum, and H. Kopetz. A system-on-a-chip platform
for mixed-criticality applications. In Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), 2010 13th IEEE International
Symposium on, pages 210–216, 2010.

[YKK+06] Geon Yoon, Dae Hyun Kwon, Soon Chang Kwon, Yong Oon Park, and
Young Joon Lee. Ring topology-based redundancy ethernet for industrial
network. In SICE-ICASE, 2006. International Joint Conference, pages 1404–
1407, Oct 2006.

Acronym

TDMA Time Division Multiple Access

PE Processing Element

VL Virtual Link

ECU Electronic Control Unit

TTEthernet Time-Triggered Ethernet

NoC Network-on-a-Chip

VLID Virtual Link IDentifier

BAG Bandwidth Allocation Gap

OSI Open Systems Interconnection

MINT Minimum Inter-Arrival Times

VLAN Virtual Local Area Network

AVB Audio/Video Bridging

AUTOSAR AUTomotive Open System ARchitecture

QoS Quality of Service

AFDX Avionics Full-Duplex Switched Ethernet

CAN Controller Area Network

CIS CAN Interface Subsystem

CRC Cyclic Redundancy Check

118 Bibliography

CSMA/CA Carrier Sense Multiple Access Collision Avoidance

ADN Aircraft Data Network

MPSoC Multi-Processor-System-on-a-Chip

NMR N-Modular Redundancy

TMR Triple Modular Redundancy

TTNoC Time-Triggered Network-on-a-Chip

TTSoC Time-Triggered System-on-a-Chip

COTS Commercial-Off-The-Shelf

SAE Society of Automotive Engineers

CPS Cyber-Physical System

CT marker Critical Traffic marker

NI Network Interface

FCR Fault Containment Region

MU Management Unit

WCL Worst-Case Latency

FTU Fault-Tolerant Unit

TDM Time-Division Multiplexing

MILP Mixed Integer Linear Programming

DAG Directed Acyclic Graph

WCET Worst-Case Execution Time

SIL Safety Integrity Level

MAC Media Access Control

Selected Publications

1. M. Abuteir and R. Obermaisser. Simulation environment for time-triggered ethernet.
In 2013 11th IEEE International Conference on Industrial Informatics (INDIN), pages
642–648, July 2013

2. Z. Owda, M. Abuteir, R. Obermaisser, and H. Dakheel. Predictable and reliable time
triggered platform for ambient assisted living. In 2014 8th International Symposium
on Medical Information and Communication Technology (ISMICT), April 2014

3. A. Khalifeh, R. Obermaisser, M. Abuteir, and D. Abou-Tair. Systems-of-systems
framework for providing real-time patient monitoring and care. In Proceedings of the
8th International Conference on Pervasive Computing Technologies for Healthcare,
ICST, Brussels, Belgium, Belgium, 2014

4. M. Abuteir and R. Obermaisser. Mixed-Criticality Systems Based on Time-Triggered
Ethernet with Multiple Ring Topologies. In IEEE International Symposium on Indus-
trial Embedded Systems (SIES), 2014 9th, 2014

5. R. Obermaisser, Z. Owda, M. Abuteir, H. Ahmadian, and D. Weber. End-to-end
real-time communication in mixed-criticality systems based on networked multicore
chips. In Digital System Design (DSD), 2014 17th Euromicro Conference on, Aug
2014

6. R. Obermaisser, M. Abuteir, A. Khalifeh, and D. Abou-Tair. Systems-of-systems frame-
work for providing real-time patient monitoring and care: Challenges and solutions. In
Communications in Computer and Information Science, volume 515. 2015

7. M. Abuteir and R. Obermaisser. Scheduling of rate-constrained and time-triggered
traffic in multi-cluster ttethernet systems. In Industrial Informatics (INDIN), 2015 13th
IEEE International Conference on, July 2015

120 Bibliography

8. Z. Owda, M. Abuteir, and R. Obermaisser. Co-simulation framework for networked
multi-core chips with interleaving discrete event simulation tools. In 2015 IEEE 20th
Conference on Emerging Technologies Factory Automation (ETFA), Sept 2015

9. M. Abuteir, R. Obermaisser, Z. Owda, and T. Moudouthe. Off-chip/on-chip gateway
architecture for mixed-criticality systems based on networked multi-core chips. In
2015 IEEE 18th International Conference on Computational Science and Engineering,
Oct 2015

10. P. Petrakis, M. Abuteir, M. D. Grammatikakis, K. Papadimitriou, R. Obermaisser,
Z. Owda, A. Papagrigoriou, M. Soulie, and M. Coppola. On-chip networks for mixed-
criticality systems. In 2016 IEEE 27th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 164–169, July 2016

11. Z. Owda, M. Urbina, R. Obermaisser, and M. Abuteir. Hierarchical transactional
memory protocol for distributed mixed-criticality embedded systems. In 2016 IEEE
14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on
Pervasive Intelligence and Computing, pages 334–343, Aug 2016

12. H. Ahmadian, R. Obermaisser, and M. Abuteir. Time-triggered and rate-constrained
on-chip communication in mixed-criticality systems. In 2016 IEEE 10th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pages
117–124, Sept 2016

	Title
	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Overview

	2 Concepts and Terms
	2.1 Dependability
	2.2 Fault Hypothesis
	2.3 Concept of Component, Service and Behavior
	2.4 Concept of State
	2.5 Real-Time Systems
	2.6 Architecture Paradigms
	2.7 Partitioning
	2.8 Certification
	2.9 Modular Certification

	3 State of the Art in Mixed-Criticality Systems
	3.1 State of the Art: Communication
	3.2 State of the Art: Gateways
	3.3 State of the Art: Distributed Scheduling
	3.4 Research Gap in the State of the Art

	4 System Model of Multi-Core Chips Interconnected by Real-Time Ethernet
	4.1 Conceptual Architecture Model
	4.2 Concrete Architecture Model

	5 Redundancy for Mixed-Criticality Networks with Multiple Ring Topologies
	5.1 Mixed-Criticality Architecture based on a Ring Topology

	6 Off-chip/On-chip Gateways for Mixed-Criticality Systems
	6.1 Architecture of Off-Chip/On-chip Gateway
	6.2 Processing of Different Traffic Types

	7 Scheduling of Sporadic and Periodic Traffic in Multi-Cluster Systems
	7.1 Scheduling and Allocation Algorithm
	7.2 Scheduling Algorithm
	7.3 Worst-Case Latency

	8 Implementation and Evaluation
	8.1 Implementation
	8.2 Evaluation
	8.3 Discussion and Interpretation of Results

	9 Conclusion
	Bibliography
	Selected Publications

