Thermal resistance of twist boundaries in silicon nanowires by nonequilibrium molecular dynamics

The thermal boundary resistance (Kapitza resistance) of (001) twist boundaries in silicon is investigated by nonequilibrium molecular dynamics simulations. In order to enable continuous adjustment of the mismatch angle, a cylindrical geometry with fixed atomic positions at the boundaries is devised. The influence of the boundary conditions on the Kapitza resistance is removed by means of a finite size analysis. Due to the diamond structure of silicon, twist boundaries with mismatch angles ϕ and 90°−ϕ are not equivalent, whereas those with ±ϕ or with 90°±ϕ are. The Kapitza resistance increases with mismatch angle up to 45°, where it reaches a plateau around 1.56±0.05Km2/GW. Between 80° and the 90°Σ1 grain boundary it drops by about 30%. Surprisingly, lattice coincidence at other angles (Σ5,Σ13,Σ27,Σ25) has no noticable effect on the Kapitza resistance. However, there is a clear correlation between the Kapitza resistance and the width of a non-crystalline layer at the twist boundaries.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Dieses Werk kann unter einer
CC BY 4.0 LogoCreative Commons Namensnennung 4.0 Lizenz (CC BY 4.0)
genutzt werden.