Sensor-based Collision Avoidance System for the Walking Machine ALDURO

This work presents a sensor system develop for the robot ALDURO (Antropomorphically Legged and Wheeled Duisburg Robot), in order to allow it to detect and avoid obstacles when moving in unstructured terrains. The robot is a large-scale hydraulically driven 4-legged walking-machine, developed at the Duisburg-Essen University, with 16 degrees of freedom at each leg and will be steered by an operator sitting in a cab on the robot body. The Cartesian operator instructions are processed by a control computer, which converts them into appropriate autonomous leg movements, what makes necessary that the robot automatically recognizes the obstacles (rock, trunks, holes, etc.) on its way, locates and avoids them. A system based on ultra-sound sensors was developed to carry this task on, but there are intrinsic problems with such sensors, concerning to their poor angular precision. To overcome that, a fuzzy model of the used ultra-sound sensor, based on the characteristics of the real one, was developed to include the uncertainties about the measures. A posterior fuzzy inference builds from the measured data a map of the robot’s surroundings, to be used as input to the navigation system. This whole sensor system was implemented at a test stand, where a real size leg of the robot is fully functional. The sensors are assembled in an I2C net, which uses a micro-controller as interface to the main controller (a personal computer). That enables to relieve the main controller of some data processing, which is carried by the microcontroller on. The sensor system was tested together with the fuzzy data inference, and different arrangements to the sensors and settings of the inference system were tried, in order to achieve a satisfactory result.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten