Planar Location Problems with Barriers under Polyhedral Gauges

  • The Weber problem for a given finite set of existing facilities {cal E}x = {Ex_1,Ex_2, ... ,Ex_M} subset R^2 with positive weights w_m (m = 1, ... ,M) is to find a new facility X* in R^2 such that sum_{m=1}^{M} w_{m}d(X,Ex_m) is minimized for some distance function d. In this paper we consider distances defined by polyhedral gauges. A variation of this problem is obtained if barriers are introduced which are convex polygonal subsets of the plane where neither location of new facilities nor traveling is allowed. Such barriers like lakes, military regions, national parks or mountains are frequently encountered in practice.From a mathematical point of view barrier problems are difficult, since the prensence of barriers destroys the convexity of the objective function. Nevertheless, this paper establishes a descretization result: One of the grid points in the grid defined by the existing facilities and the fuundamental directions of the gauge distances can be proved to be an optimal location. Thus the barrier problem can be solved with a polynomial algorithm.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Horst W. Hamacher, Kathrin Klamroth
URN:urn:nbn:de:hbz:386-kluedo-4634
Series (Serial Number):Report in Wirtschaftsmathematik (WIMA Report) (21)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011