Ein universelles und dynamisch rekonfigurierbares Interface für eingebettete und intelligente Multi-Sensor-Systeme mit Self-x Eigenschaften

  • Seit Aufkommen der Halbleiter-Technologie existiert ein Trend zur Miniaturisierung elektronischer Systeme. Dies, steigende Anforderungen sowie die zunehmende Integration verschiedener Sensoren zur Interaktion mit der Umgebung lassen solche eingebetteten Systeme, wie sie zum Beispiel in mobilen Geräten oder Fahrzeugen vorkommen, zunehmend komplexer werden. Die Folgen sind ein Anstieg der Entwicklungszeit und ein immer höherer Bauteileaufwand, bei gleichzeitig geforderter Reduktion von Größe und Energiebedarf. Insbesondere der Entwurf von Multi-Sensor-Systemen verlangt für jeden verwendeten Sensortyp jeweils gesondert nach einer spezifischen Sensorelektronik und steht damit den Forderungen nach Miniaturisierung und geringem Leistungsverbrauch entgegen. In dieser Forschungsarbeit wird das oben beschriebene Problem aufgegriffen und die Entwicklung eines universellen Sensor-Interfaces für eben solche Multi-Sensor-Systeme erörtert. Als ein einzelner integrierter Baustein kann dieses Interface bis zu neun verschiedenen Sensoren unterschiedlichen Typs als Sensorelektronik dienen. Die aufnehmbaren Messgrößen umfassen: Spannung, Strom, Widerstand, Kapazität, Induktivität und Impedanz. Durch dynamische Rekonfigurierbarkeit und applikationsspezifische Programmierung wird eine variable Konfiguration entsprechend der jeweiligen Anforderungen ermöglicht. Sowohl der Entwicklungs- als auch der Bauteileaufwand können dank dieser Schnittstelle, die zudem einen Energiesparmodus beinhaltet, erheblich reduziert werden. Die flexible Struktur ermöglicht den Aufbau intelligenter Systeme mit sogenannten Self-x Charakteristiken. Diese betreffen Fähigkeiten zur eigenständigen Systemüberwachung, Kalibrierung oder Reparatur und tragen damit zu einer erhöhten Robustheit und Fehlertoleranz bei. Als weitere Innovation enthält das universelle Interface neuartige Schaltungs- und Sensorkonzepte, beispielsweise zur Messung der Chip-Temperatur oder Kompensation thermischer Einflüsse auf die Sensorik. Zwei unterschiedliche Anwendungen demonstrieren die Funktionalität der hergestellten Prototypen. Die realisierten Applikationen haben die Lebensmittelanalyse sowie die dreidimensionale magnetische Lokalisierung zum Gegenstand.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Robert Freier
URN:urn:nbn:de:hbz:386-kluedo-39669
Advisor:Andreas König
Document Type:Doctoral Thesis
Language of publication:German
Date of Publication (online):2015/01/16
Year of first Publication:2015
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2014/12/18
Date of the Publication (Server):2015/01/16
Page Number:IX, 176
Faculties / Organisational entities:Kaiserslautern - Fachbereich Elektrotechnik und Informationstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 28.10.2014