Verification of Automata with Storage Mechanisms

An important question in computer science is to ask, whether a given system conforms to a specification. Often this question is equivalent to ask whether a finite automaton with certain memory like a stack or queue can reach some given state. In this thesis we focus this reachability problem of automata having one or more lossy or reliable stacks or queues as their memory. Unfortunately, the reachability problem is undecidable or of high complexity in most of these cases. We circumvent this by several approximation methods. So we extend the exploration algorithm by Boigelot and Godefroid under-approximating the reachability problem of queue automata. We also study some automata having multiple stacks with a restricted behavior. These “asynchronous pushdown systems” have an efficiently decidable reachability problem. To show our results we first have to gain knowledge of several algebraic properties of the so-called transformation monoid of the studied storage mechanisms.

 

An important research topic in computer science is the verification, i.e., the analysis of systems towards their correctness. This analysis consists of two parts: first we have to formalize the system and the desired properties. Afterwards we have to find algorithms to check whether the properties hold in the system. In many cases we can model the system as a finite automaton with a suitable storage mechanism, e.g., functional programs with recursive calls can be modeled as automata with a stack (or pushdown).
Here, we consider automata with two variations of stacks and queues:
1. Partially lossy queues and stacks, which are allowed to forget some specified parts of their contents at any time. We are able to model unreliable systems with such memories.
2. Distributed queues and stacks, i.e., multiple such memories with a special synchronization in between.
Often we can check the properties of our models by solving the reachability and recurrent reachability problems in our automata models. It is well-known that the decidability of these problems highly depends on the concrete data type of our automata’s memory. Both problems can be solved in polynomial time for automata with one stack. In contrast, these problems are undecidable if we attach a queue or at least two stacks to our automata.
In some special cases we are still able to verify such systems. So, we will consider only special automata with multiple stacks - so-called asynchronous pushdown automata. These are multiple (local) automata each having one stack. Whenever these automata try to write something into at least one stack, we require a read action on these stacks right before these actions. We will see that the (recurrent) reachability problem is decidable for such asynchronous pushdown automata in polynomial time.
We can also semi-decide the reachability problem of our queue automata by exploration of the configration space. To this end, we can join multiple consecutive transitions to so-called meta-transformations and simulate them at once. Here, we study meta-transformations alternating between writing words from a given regular language into the queues and reading words from another regular language from the queues. We will see that such metatransformations can be applied in polynomial time. To show this result we first study some algebraic properties of our stacks and queues.

Ein wichtiges Forschungsthema in der Informatik ist die Verifikation, d.h., die Analyse von Systemen bezüglich ihrer Korrektheit. Diese Analyse erfolgt in zwei Schritten: Zuerst müssen wir das System und die gewünschten Eigenschaften formalisieren. Anschließend benötigen wir Algorithmen zum Testen, ob das System die Eigenschaften erfüllt. Oftmals können wir das Systemals endlichen Automaten mit geeignetem Speichermechanismus modellieren, z.B. rekursive Programme sind im Wesentlichen Automaten mit einem Stack.
Hier betrachten wir Automaten mit zwei Varianten von Stacks und Queues:
1. Partiell vergessliche Stacks und Queues, welche bestimmte Teile ihrer Inhalte jederzeit vergessen können. Diese können für unzuverlässige Systeme verwendet werden.
2. Verteilte Stacks und Queues, d.h., mehrere Stacks und Queues mit vordefinierter Synchronisierung.
Häufig lassen sich die Eigenschaften unserer Modelle mithilfe des (wiederholten) Erreichbarkeitsproblems in unseren Automaten lösen. Dabei ist bekannt, dass die Entscheidbarkeit dieser Probleme oftmals stark vom konkreten Datentyp des Speichers abhängt. Beide Probleme können für Automaten mit einem Stack in Polynomialzeit gelöst werden. Sie sind jedoch unentscheidbar, wenn wir Automaten mit einer Queue oder zwei Stacks betrachten. In bestimmten Spezialfällen sind aber dennoch in der Lage diese Systeme zu verifizieren. So können wir beispielsweise bestimmte Automaten mit mehreren Stacks betrachten - so genannte Asynchrone Kellerautomaten. Diese bestehen aus mehreren (lokalen) Automaten mit jeweils einem Stack. Wann immer diese Automaten etwas in mind. einen Stack schreiben, müssen sie unmittelbar zuvor von diesen Stacks etwas lesen. Das (wiederholte) Erreichbarkeitsproblem ist in asynchronen Kellerautomaten in Polynomialzeit entscheidbar.
Wir können zudem das Erreichbarkeitsproblem von Queueautomaten durch Exploration des Konfigurationsraums semi-entscheiden. Hierzu können wir mehrere aufeinanderfolgende Transitionen zu so genannten Meta-Transformationen zusammenfassen und diese in einem Schritt simulieren. Hier betrachten wir Meta-Transformationen, die zwischen dem Lesen und Schreiben von Wörtern aus zwei gegebenen regulären Sprachen alternieren. Diese Meta-Transformationen können in Polynomialzeit ausgeführt werden. Für dieses Ergebnis müssen wir jedoch zunächst verschiedene algebraische Eigenschaften der Queues betrachten.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten