Over-The-Air Testing using Wave-Field Synthesis

Today's wireless communication devices, such as GNSS receivers, smart-phones, etc. aim at a high integration grade to save space, costs and energy consumption. Besides small devices, also very large communication devices, e.g. cars with integrated LTE antennas exist. To accelerate the development process and time-to-market, adequate test procedures are needed to ensure proper functioning of all device components. The goal of this thesis is to develop test processes that guarantee for reproducible test conditions and to allow for comparable performance measurements of communication systems of different sizes. This thesis consists of two parts, namely Wave Field Synthesis for electrically small, and Wireless Cable for electrically large devices.

Moderne Kommunikationsgeräte, z. B. Smartphones und GPS-Empfänger streben einen hohen Integrationsgrad an, um Kosten, Platz und Energie zu sparen. Es existieren auch große Geräte, wie zum Beispiel Fahrzeuge mit integrierten Long Term Evolution-Antennen. Um den Entwicklungsprozess zu beschleunigen, werden adäquate Testverfahren benötigt, die eine korrekte Funktionsweise aller Gerätekomponenten sicherstellen. Das Ziel dieser Arbeit ist es, Testverfahren einschließlich Kalibrierverfahren zu entwickeln, die reproduzierbare Testbedingungen erlauben, um vergleichbare Leistungstests von Kommunikationssystemen zu ermöglichen. Diese Arbeit besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit Wellenfeldsynthese (WFS) für elektrisch kleine Geräte. Der zweite Teil präsentiert ein alternatives Testverfahren für elektrisch große Geräte, welches Wireless Cable (WLC) bezeichnet wird. Im WFS-Teil werden Simulationen durchgeführt, um die Anwendbarkeit der WFS für Over-The-Air-Tests in 2D und 3D zur Erzeugung ebener elektromagnetischer Wellen zu untersuchen. Ein Kalibrierverfahren wird für die 2D-WFS vorgestellt, um den Frequenzgang analoger Systemkomponenten zu entzerren. Das Kalibrierverfahren wird mit Hilfe der Metriken Error Vector Magnitude und Poynting Vector Angular Deviation verifiziert. Es werden zur Verifikation des gesamten WFS-Systems Messungen auf Basis von GPS durchgeführt, die mit kabelgebundenen Tests verglichen werden. Zur Demonstration der Vollständigen Mess- und Testprozedur werden verschiedene Mehrelement-Antennen unter identischen Messbedingungen verglichen. Einflüsse auf ein reales System durch Rauschen, Drift und Temperatureinfluss werden untersucht. Für 3D-WFS wird ein optimierender Algorithmus wird entwickelt und verifiziert, um Emulationsantennen auf einer Sphäre oder Hemisphäre optimal zu verteilen. Im Wireless Cable-Teil wird das gleichnamige Testverfahren vorgestellt, das als alternative Over-The-Air-Testmethode die Untersuchung großer Geräte erlaubt. Die Anwendbarkeit in nicht-reflexionsfreien Umgebungen wird demonstriert. Wie alle Over-The-Air-basierten Testverfahren berücksichtigt Wireless Cable auch Selbstinterferenz. Eine Langzeitstabilitätsanalyse wird durchgeführt, außerdem eine Verifikation der Anwendbarkeit eines realistischen Funkkanals für den Anwendungsfall Long Term Evolution.

Today's wireless communication devices, such as GNSS receivers, smart-phones, etc. aim at a high integration grade to save space, costs and energy consumption. Besides small devices, also very large communication devices, e.g. cars with integrated LTE antennas exist. To accelerate the development process and time-to-market, adequate test procedures are needed to ensure proper functioning of all device components. The goal of this thesis is to develop test processes that guarantee for reproducible test conditions and to allow for comparable performance measurements of communication systems of different sizes. This thesis consists of two parts, namely WFS for electrically small, and WLC for electrically large devices. In the WFS part, simulations are conducted to verify the applicability of OTA tests using WFS for two- and three-dimensional emulation of plane electromagnetic waves. A calibration procedure is developed for 2D-WFS to compensate for analog components' frequency responses that include contributions of amplifiers, cables and antennas. This calibration procedure is verified by grid measurements to allow visual inspection of the plane waves, and by analysis of the wave shape using appropriate metrics. Reflections inside the anechoic chamber are analyzed and discussed. A verification measurement is performed and compared to conducted measurements using a GPS use case to verify the whole WFS OTA system. Three different multi-element antennas are investigated by emulation of identical wave-fields in each test run to demonstrate the general test procedure. System imperfections such as noise, drift and the influence of temperature are investigated. For 3D WFS OTA testing, an optimizing sub-sphere algorithm is developed to distribute EA on a sphere or hemisphere adequately. Simulations are conducted to verify the derived distributions. In the WLC part, the homonymous test method is presented as an alternative OTA test method especially suited for large test devices. The applicability even in non-anechoic environments is shown. A long-term stability analysis is performed, and a verification of the application of a realistic measurement-based propagation channel for the use case LTE is made.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten