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Zusammenfassung

Diese Arbeit beschreibt die theoretische und numerische Optimierung der neuarti-
gen kontaktlosen Messmethode Lorentzkraftanemometrie (LKA). Die LKA basiert
auf der Messung der Lorentzkraft, die auf ein Magnetsystem nahe einem elektrisch
leitfdhigen Medium wirkt. Fliissigkeiten mit einer niedrigen Leitfdhigkeit von eini-
gen S/m stellen eine besondere Herausforderung dar. Hier ist die Lorentzkraft
relativ klein verglichen mit Messungen an fliissig Metallen, deren Leitfihigkeit 10°
Gréfenordnungen grofer ist. AuBere Storungen haben einen viel groferen Einfluss
auf die Messungen und es ist unerlésslich die Qualitdt des Signals fiir die Anwen-
dung in der Industrie zu verbessern. Eine Moglichkeit dieses Ziel zu erreichen, die
Optimierung des Magnetsystems, steht im Focus dieser Arbeit.

Um Kenntnisse in die optimale fundamentale Form des magnetischen Feldes zu
erhalten wird ein Aufbau von Dipolen untersucht. Unter bestimmten Bedingungen
ist die analytische Losung dieses Problem moglich. Komplexere Dipolanordnun-
gen werden numerisch mit Simulationssoftware basierend auf der finiten Elemente
Methode (FEM) optimiert. Die Orientierung der magnetischen Momente und die
Positionen der Dipole gehdéren zur moglichen Menge der Entscheidungsvariablen.
Ihr Einfluss wird in unterschiedlichen Dipolproblemen untersucht um auf mogliche
Design-Losungen fiir ein praktisches Magnetsystem zu schlussfolgern.

Die Eignung mehrerer Optimierungsalgorithmen wird getestet und verglichen.
Hohe Anforderungen werden an die Algorithmen gesellt. Die Zielfunktion hat eine
sehr komplexe globale Landschaft mit vielen lokalen Extrema, so dass das Auffinden
der globalen Maxima schwierig ist. Ein weiteres Hindernis sind die teuren Funk-
tionsauswertungen die durch die FEM-Modelle zur Verfiigung gestellt werden. Es
werden nur die Eingabeparameter angegeben mit denen das Softwareprogramm die
Zielfunction berechnet. Diese Art von Problemen konnen als Blackbox Probleme
evaluiert werden, die besonders schwer zu optimieren sind.

Die Kenntnisse die durch die verschiedenen Dipolprobleme gewonnen wurden,
werden angewendet um ein realistische Magnetsystem fiir die Anwendung in der
LKA numerisch zu optimieren und zu analysieren.



Abstract

This thesis aims at theoretically and numerically investigating the optimization of
the novel non-contact measurement method called Lorentz force velocimetry (LEV).
LVF is based on the measurements of the Lorentz force acting on a magnet system
close to electrically conducting media. Fluids with a low electric conductivity in
the range of a few S/m present a special challenge. The Lorentz force is relatively
small compared to measurements with liquid metals which have a conductivity that
is 10% higher. Therefore disturbances have a high influence on the measurements
and it is essential to improve the quality of the signal for industrial application. One
possibility to reach this goal is the optimization of the magnet system.

To provide insights into the optimal fundamental form of the magnetic field a
setup of dipoles is considered analytically with the appropriate conditions. More
complex dipole arrangements are optimized numerically with finite element (FEM)
software. The orientation of the magnetic moments and the positions of the dipoles
belong to the feasible set of decision variables. The rate of their influence is inves-
tigated in different setups to infer possible design solutions for a practical magnet
system.

The suitability of a variety of optimization algorithms is tested and compared.
High demands are made to the algorithms. The objective function has a very com-
plex landscape with a great number of local extrema, making the location of global
maxima difficult. Another hindrance are the expensive function evaluations provided
by the FEM models, where only the input parameters are given to the software pro-
gram for the calculation of the objective function. These kind of problems can pose
as possible black box problems which are especially difficult to optimize.

The knowledge gained by the different dipole problems is then applied to numer-
ically optimize and analyze a realistic magnet system for the application in LFV.
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Chapter 1

Introduction

The interaction between moving, electrically conductive media and a magnetic field
is a highly complex field of theoretical physics. Many scientists have conducted re-
search into this field. Einstein’s special theory of relativity [14] was derived from a
thought experiment, where the medium was a solid object. Faraday tried to mea-
sure the velocity of the Thames river and developed the basic principle for today’s
electromagnetic flow meters [54]. The flow meter uses closed electrical currents,
i.e. eddy currents as measurement parameter. Eddy currents arise when an electri-
cally conductive medium moves through a static magnetic field or when the electric
medium is at rest, but the magnetic field changes in time. The eddy currents depend
on the motion and conductivity of a medium which is under the influence of a mag-
netic field. They oppose their source, thus having a breaking effect on the medium.
This was studied in detail by the Dutch mathematician and physicist Hendrik An-
toon Lorentz in 1892 [34]. The breaking effect and the resulting force was named
after him. The Lorentz force is the force a moving charge experiences in a magnetic
and /or electric field.

The effect of eddy currents can be used in a wide range of practical applications.
Most prominent is possibly induction heating [49]. At the TU Ilmenau a strong focus
is on the Lorentz force as a measurement tool for the movement of conducting media,
mainly liquids. As such, a whole research training group!' undertakes experimental
and numerical studies on liquid metals and salt water. A branch group studies
defects in solid bodies. The fluid groups use Lorentz forces to measure the flow
rate of the respective liquid. This measurement technique was termed Lorentz force
velocimetry (LFV) [60].

LFV is a contactless technique to measure and analyze physical properties of
moving media. The working principle is as follows (fig. 2.1) a magnet system gener-
ates a time independent and inhomogeneous magnetic field which acts on a moving
conductor. The charges inside the conductor experience a Lorentz force that is per-
pendicular to their motion. Thus, they are deflected from their original path and
form loops because of the spatially inhomogenious magnetic field. These loops, the

ITU  Imenau: https://www.tu-ilmenau.de/lorentz-force/ (Homepage of the DFG-
Graduiertenkollegs , Elektromagnetische Stromungsmessung und Wirbelstrompriifung mittels
Lorentzkraft*)



eddy currents, produce a secondary magnetic field (Lenz’s law [32]). The interac-
tion of the eddy currents and the magnetic field gives rise to the Lorentz force which
opposes the fluids motion. Consistent with Newton’s 3rd law [41] an opposite but
equal force acts on the magnet system, pulling them along the direction of the flow.
This influence on the magnets can be measured for example by optical methods
through deflection or by force compensation balance systems [64].

1.1 Motivation

For measurement in liquids of different properties, different flow meters need to
be used. The criteria which determine the type of applicable flow meter are for
example opacity, conductivity and corrosivity. For example: ultrasound doppler ve-
locity (UDV) measurement methods can be used for the non-contact measurement
of velocity profiles of transparent liquids [58], thus conductivity and corrosivity of
the liquid do not matter; turbine-flow meters [5] are inserted into the fluid which
needs to be non-corrosive; conducting and non-corrosive fluids can be measured by
magnetic flow meters [63] which require direct contact. The meters in these appli-
cations are well developed and sophisticated, but the measurement of one specific
type of fluid remains challenging, i.e. conductive, opaque (UDV not applicable) and
corrosive/extremely hot fluids or fluids where direct contact with the measurement
tool is not desired. Examples of these fluids are liquid metals, molten salt and other
electrolytes, which can be very hot and corrosive or where contact is undesired. A
selection of possible fields of application are the steel industry (molten metals), the
food and beverage industry (milk, liquid eggs, beer, lemonades), the chemical in-
dustry (acids, alkaloids) or in water supply/waste-water treatment (chlorine dioxide
solution, waste-water).

Since Faraday did his initial experiment at the river Thames, flow meters have
been further advanced. Electromagnetic flow meters (EMFs) belong to the most
common types of flow meters, next to positive displacement and differential pressure
flow meters [57]. They combine the subjects of classical electromagnetism and fluid
dynamics, belonging to the field of magnetohydrodynamics. The principle of an
EMF is as follows: A conductive fluid fills a pipe completely. The fluid is under
the influence of a magnetic field created by magnetic coils. Because the fluid is
electrically conducting, this gives rise to a potential difference proportional to the
velocity component of the fluid velocity, that is perpendicular to the flux lines of
the magnetic field. The potential difference is measured by two electrodes which
are diametrically and perpendicular to the pipe and in direct contact with with the
fluid [54].

The required direct contact to the process liquid is a major drawback to the
EMF. The material of the electrodes needs to permit good electrical contact with
the measurement fluid and adequately resist corrosion. Also the connection be-
tween the flow meter and pipe must adhere to specific standards. For example: the
food, beverage and pharmaceutical industries use super heated steam and chemical
processes for cleaning and sterilization which the EMF must withstand [28].



The standard EMF with electrodes is not suitable for very weakly conducting flu-
ids (o < 5uS/m, although manufacturers recommend consultation if o < 30uS/m).
Here, a no-electrode EMF can be used. Instead of electrodes large-area capacitor
plates are put on the outside of the pipe making the chemical compatibility between
electrode and fluid redundant. Nevertheless, these EMFs can be very sensitive to
vibrations [28].

The EMFs mentioned above are only suitable for fully filled pipes. In the case of
partially filled pipes, additional equipment measures the filling level and additional
pairs of horizontal electrodes have to be added at a lower level. The risk remains,
that the fluid level drops below the lowest pair of electrodes canceling the signal [28].

For these fluids LFV is a very well suited method, but more research needs to be
done for an effective and efficient implementation in industry. One special branch
is the measurement of weakly conducting fluids. These produce only a relatively
weak Lorentz force, which increases the influence of external disturbances, making
the detection of the measurement signal difficult and ambiguous [64].

The measurement of the Lorentz force suffers because of the low conductivity.
Compared with liquid metals the conductivity is approximately 10°S/m smaller.
Thus, the measured force is in the range of u/N. This greatly increases the influence
of external disturbances, like vibrations, deformations of the housing caused by
temperature, electromagnetic objects, etc. [12].

The source of the primary magnetic field consist of permanent magnets. Other
sources are possible like coils [64], but experimental setups show that they have un-
desirable characteristics. They are heavy, need cooling during continuous operation
and electric bondings are necessary. High temperature super conductors [66] are
currently under investigation for the application in LFV since they generate very
high magnetic fields.

1.2 Aims and Objectives

The goal is to improve measurement quality of the above described LE'V for weakly
conducting fluids. The force to noise ratio can be increased in two ways. First by
shielding the magnet system. This lessens unwanted electromagnetic impact, but
other influences like vibrations and expansionary changes remain. This will be the
subject of future research. Second is the increase the Lorentz force F' by optimizing
the primary magnetic field. This is a very promising approach since the Lorentz
force depends quadratically on the magnetic flux density B [60]:

F ~ ovB?,

where o is the electrical conductivity and v the velocity of the fluid (fig.2.1). Thus
a doubling of the magnetic flux density will produce a four times higher Lorentz
force. By maximizing the force to noise aspect ratio, the measurements will be of a
higher quality and better suitable for industrial application.

The optimization of the magnetic field will be made under two aspects. One is
a spatial approach, which investigates a configuration consisting of segmented mag-
netic rings surrounding a pipe. This will be done with three dimensional (3D) finite
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element (FEM) simulation. The second is of a more theoretical nature. Point dipoles
are put at relatively large distances around the cylinder (asymptotic approximation).
Analytical expressions for the Lorentz force, its derivative and hessian matrix can
be calculated, which help in the location of global/local maxima and while the max-
imum can only be derived analytically for selected cases, the Lorentz force can be
optimized numerically.

To accomplish the proposed aims, the following steps are addressed in this thesis:

e Theoretical description of the physics of general LFV.
e Study of simplified academic setups gives insight for practical solutions.

e 3D FEM based simulations apply theoretical findings and provide possible
practical applications.

1.3 Thesis Overview

The above stated steps and goals are presented in different chapters of this work.
Chapter 2 explains the theory of LFV. In chapter 3 the numerical simulation software
programs are presented. Chapter 4 develops the approximations for the analytical
model and verifies the numerical model. Chapter 5 formulates the optimization
problem and describes the optimization process with its methods and tools. Chap-
ter 6 discusses the mathematical study and optimization of the different problems.
Chapter 7 summarized the results and provides outlook for further work in LFV for
weakly conductive fluids.



Chapter 2

Theory of Lorentz Force
Velocimetry for Weakly
Conducting Fluids

This chapter addresses the functional (chapter 2.1) and theoretical (chapter 2.2)
principles of the contactless electromagnetic flow measurement technique LF'V specif-
ically for weakly conducting fluids. This method has been successfully applied to
liquid metals even under industrial conditions [65], but it needs to be further refined
for the application to weakly conducting fluids.

The technique is named Lorentz force velocimetry, since it measures the Lorentz
force! which acts on the magnet system surrounding the fluid under observation.

2.1 Basic Principles

LVF is based on the principle of induction [24]. Fig.2.1 shows the working principle.
A process fluid with an electrical conductivity o passes through a magnetic field B
created by some kind of field source. According to Faraday’s law the magnetic flux
density induces eddy currents J in the fluid. As long as the working fluid is contained
in an isolated pipe or channel the eddy currents form closed loops and generate a
secondary magnetic flux density. The direction of the eddy currents is dictated by
Lenz’law [32], it stipulates that the secondary magnetic field opposes the polarity of
the primary magnetic field.

The interaction of eddy currents and magnetic flux density gives rise to the
Lorentz force F' , which is oriented in a way that opposes the motion of the fluid,
thus braking it. Newtons 3rd law [41] "lex tertia" or actio = reactio, also known
as interaction principle, states that forces exist in pairs. The force pairs have the
same magnitude but are opposite in sign. Applying this to the LFV setup gives: the
magnetic field distribution that exerts the Lorentz force on the fluid (actio) and an
opposing force that acts on the field source (reactio). This opposing force represents

! Actually, the Lorentz force acts on the fluid and a counter force, which is of equal magnitude
but opposite in sign (Newton’s 3rd law [41]), acts on the magnet system.
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Figure 2.1: Working principle of Lorentz force velocimetry. Magnets create a pri-
mary magnetic field which acts on a moving electrically conducting fluid and gives
rise to eddy currents. The interaction between magnetic field and eddy currents
produce the Lorentz force, which breaks the fluid. An equal but opposite force pulls
the magnets along the fluids direction.

the Lorentz force, since it has the same magnitude only the sign is opposite. The
influence of the opposing force on the field distribution can be measured.

For these measurements, a steady, time-independent magnetic field is necessary.
Currently a system of permanent magnets is used for experimental evaluations. The
magnet system is emitter and receiver at the same time, since it creates the primary
magnetic field and is exposed to the counter force.

Since the focus here is on weakly conducting fluids, beneficial assumptions and
simplifications to the theory can be made. The effects of the eddy currents on
the field source are neglected as are the influence of the Lorentz force on the fluid
motion. These two effects must not be left out when liquid metals are concerned
[61]. The fluid obeys Ohm’s law and its electrical conductivity is isotropic and
constant, i.e. unaffected by the magnetic flux density and the velocity profile. Also
thermoelectric effects [48] are neglected. Furthermore, the fluid is nonmagnetic and
has the permeability of Vacuum. This way, the fluid can only affect the magnet
system because of its motion and electrical conductivity o.



2.2 Governing Equations

The investigations in this work pertain to Lorentz force velocimetry for weakly
conducting media. The used geometric and material parameters refer to an experi-
mental saltwater channel [12]. However, a pipe is used here, instead of a square duct
with a cross section of 50mm x 50mm. A pipe with radius R = 25mm contains the
working fluid with electrical conductivity o = 4S5/m. The pipe’s axis aligns with
the z-axis and its length L depends on the dipole configuration (fig.2.3).

Dipoles are used for the analytic investigation and can represent realistic, possible
magnet configurations. They are placed at a distance h from the surface of the
conductive medium. The dipole moment is m = 3.5Am?.

The following sections introduce the governing equations and the appropriate
simplifications and boundary conditions for LFV. With these the problem can be
solved via FEM simulations or even analytically with some additional simplifications
43), 18], [26).

2.2.1 Maxwell’s Equations

Maxwell’s equations [24](p3, p15) are the basis for every electromagnetic phenomenon.
They can be divided into a microscopic and macroscopic formulation. With the mi-
croscopic formulation every atom of a medium needs to be considered and magnetic
properties cannot be derived without additional knowledge of quantum mechanics.
For macroscopic media, it is almost impossible to solve the microscopic Maxwell’s
equations. It is also not necessary, since the macroscopic Maxwell’s equations need
only the mean values of fields and sources over a volume which is large compared to
a single atom or molecule. The macroscopic Maxwell’s equations are:
Gauss’s law for magnetism:

V-B=0 (2.1)
Gauss’s law:
V-D=p (2.2)
Maxwell-Faraday equation:
- 0B
VXE=—— 2.3
Ampere’s circuital law:
-~ - 9D
VxH=J+— 2.4
X + 5 (2.4)

where t is the time, E is the electric field vector, B is the magnetic flux density
vector, p is the charge carrier density and J is the current density. Additional fields
are the displacement field D and the magnetizing field H. The constitutive relations
link the vector fields together:

5 = Eoﬁrﬁ g = uourﬁ (25)
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Figure 2.2: xy plane of the dipole problem setup. The position of the dipoles m; is
fixed to a specific distance ﬁz in the z = 0 plane. The orientation of the magnetic
moments are given by the spherical coordinates y; and v;. The magnetic field created
by m; at i is expressed with eq. 4.1.

1|

N
A4

Figure 2.3: 3D setup of the cylinder surrounded by a dipole. The cylinder domain
2 with boundary I' and normal vector to the surface 7 moves with a velocity ¢ and
has an electrical conductivity o.



€0 = 8.8 - 10712F/m is the permittivity and uo = 47 - 1077 H/m the permeability of
free space.

The physical properties o, pu, and €, are usually second-order tensors and de-
pend on the temperature T, i.e. o = o(E,T), pip = pur(E,T) and ¢, = e,(E, T) [7].
Since the optimization aspect dominates this thesis, all materials are assumed to be
isotropic and independent of other factors like temperature or field values, meaning
that these quantities are scalar and constant. Furthermore, the electric permit-
tivity of the working fluid is set to one, the relative permeability is about one for
diamagnetic and paramagnetic materials which are in the focus here [25].

The magnetic flux density (B) produced by the permanent magnets or magnetic
point dipoles induce eddy currents (j ) in the electrically conducting (o) and moving
(¥) fluid (fig. 2.1):

J=0(E+7x B). (2.6)

The eddy currents are solenoidal, since the walls of the pipe under consideration
are insulating. Thus, the current is conserved inside the working liquid:

V-J=0. (2.7)

These equations together with the following approximations build the framework
for LFV for weakly conducting media and enable an analytic and computational
investigation of different setups.

2.2.2 Quasi-static Approximation

A very important simplification that is utilized is the quasi-static approximation,
where the displacement current can be discarded. The quasi-static approximation
holds when the velocity in the applications are very small compared to the speed
of light ¢, then the magnetic field changes relatively slowly with time. The finite
velocity of light with which electromagnetic waves travel is disregarded, instead it
is assumed that the electromagnetic field moves instantaneously. This is a good
approximation when the system under observation is small compared to the elec-
tromagnetic wavelength, which corresponds to the dominating time scale of the
problem.

A scale analysis shows the dependencies of the appropriate terms. For this
characteristic values are needed for the relevant parameters, i.e. B and E are a
typical scales for the magnetic and electric field respectively, v is a typical fluid
velocity, T a typical time scale and L a typical length scale, meaning that v = L /7.
Then Maxwell-Faraday’s equation (eq.2.3) requires that:

The same procedure can be applied to determine the ratio between displacement
current and total current (eq.2.4):

0D/dt| D/t EL L2 2
= Y — € —_— = —,
v x i|  B/mL

Br 212 2



Thus, the displacement current oD /Ot can be neglected in Ampeére’s circuit law
(eq.2.4), for small velocities v? < ¢?:
Ampere’s circuital law (eq. 2.4) then becomes:

VxH=1J. (2.8)

2.2.3 Magnetic Reynolds Number

As mentioned above the influence of the secondary magnetic field created by the in-
duced currents on the primary magnetic field is neglected. This decision is supported
by the value of the magnetic Reynolds number R,, [24]. It is a nondimensional pa-
rameter that presents the ratio of induced (or secondary és) to applied (or primary
Ep) magnetic field and depends only on the characteristics of the process fluid, i.e.
its size L, velocity v, electric conductivity ¢ and relative permeability p:

_|B)
B,

R, = poovL.

Special attention needs to be put on the size parameter L. This geometric quan-
tity depends on the setup and needs to be determined for every single application.
Here, it is the diameter of the pipe R (fig. 2.3).

The magnetic Reynolds number can be derived via the induction equation with
the diffusive term. For its derivation, the rotation of Ampere’s circuital law (eq. 2.8)
is taken:

Vx(VxH) =Vx.J

Then Ohm'’s law (eq.2.6) and the constitutive relation for the magnetic field

(eq.2.5), assuming that uo and o are constant, are inserted:

L G (VX B) = oV x (B4 x B)=o(Vx B4V x (7 x B)).
Ho

Considering the product rule:
V x (Vx B)=V(V-B)—-AB,
the fact that B is divergence free (eq.2.1) and Maxwell-Faradays equation (eq.2.3):
1, = dB -

Rearranging gives the magnetic induction equation:

oB 1 - -

The quantity 1/peo is the magnetic diffusivity. This equation characterizes the
development of the magnetic flux density. It depends on the induction and diffusive
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term (first and second terms on the right hand side, respectively). The induction
term depends on the velocity field v and is the only one that can produce a field.
Without the presence of a velocity field ¢ the diffusive term lets the field decay.

The magnetic Reynolds number can be derived with this equation when the
necessary parameters are replaced with the product between the characteristic values
(chapter 2.2.2) and nondimensional quantities denoted by the * symbol, then B =
BB*, = v0*, t = 7t* and V = V*/L.

Then the induction equation (eq.2.9) becomes:

BdB* B . 1 B, =
— = —V*'x (0" x B)+ ——=A*B".
T Ot L X (77 x BY) + oo L?
Rewriting this equation and using v = L/7:
dB* . .
=V*x (" x B* AB*.
ot (v )+ foov L

The prefactor of the diffusive term is the inverse of the dimensionless magnetic
Reynolds number:
R,, = poovlL.

It is the magnetic analogue of the Reynolds number in fluid dynamics and indicates
the relative strength of the inductive/convective and diffusive terms of a magnetic
fluid via the induction equation:

IV x (¢ x B)|  vB/L
-LAB| o B/ L

oo Hoo

= poovL.

If R,, < 1 then the secondary magnetic field is small compared to the primary
field and can be neglected. The overall effect of the magnetic field on the fluid
amounts to an extra dampening term in the Navier-Stokes equations. The fluid
velocity has little influence on the the magnetic field, since the induced magnetic
field is negligible compared with the primary magnetic field. This approximation
immensely simplifies the problem.

If R,, > 1 then the perturbation of the primary magnetic field is significant
and has to be taken into account. The magnetic field is strongly influenced by the
fluid velocity. The advection of the magnetic field by the fluid velocity can generate
Alvén waves, an important phenomenon in magnetohydrodynamics [11].

2.2.4 Potential Functions

The magnetic flux density can be expressed by the magnetic vector potential A.
Since the divergence of the magnetic field is zero (eq.2.1), the magnetic field can be
expressed by the rotation of an arbitrary vector field:

B=VxA. (2.10)
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Since only static vector fields are consider, all time derivation % = 0. Thus,
in eq. 2.3 the rotation of the electric field is equal to zero. When the rotation of a
vector field is zero then it is possible to express the vector field with a gradient field

since the divergence of a rotation (V - Vx) of a vector field is zero. In this case:
E=-V¢ (2.11)

and ¢ is the electric scalar potential.

In general, if the time dependence is considered, the partial time derivative of
the magnetic vector potential needs to be included. A replaces B in eq. 2.3 and the
integration gives the following expression for the electric field:

E=-V$——.
¢ ot

B and E are not uniquely defined by A and ¢. An gradient of an arbitrary scalar

field V& can be added to the vector potential and the time derivative of an arbitrary

scalar field 0,¢ can be subtracted from the scalar potential without changing the

field. This gauge transformation holds for any scalar function &:

A— A=A+ Ve

0
¢ — ¢ = —af.

The fields are invariant if they are not changed by the gauge transformation, i.e.
B=B and E=F"

B =VxA=VxA+VxVE=VxA=D8

oA of 0A 0 _ - q

E'=-Vé - ot ot ot

Therefore Maxwell’s equations (eq. 2.1-2.4) have a gauge symmetry.

2.2.5 Boundary Conditions

It is necessary to know the appropriate boundary conditions [47] for the modeling
of the different regions, i.e. the conductor, air and magnets. This is especially im-
portant for the FEM simulations where symmetry reduces the computation domain
and saves time.

There are three types of boundary conditions. Initial conditions also belong to
this group, but are ignored here since there is no time dependence.

First are the boundary conditions that confine a parameter to a specific domain,
for example the eddy current. As mentioned above the eddy currents are confined to
the conductor. Since there are no sources or sinks the eddy current field is divergence
free (eq. 2.7) and forms closed loops. The conductor walls are non-conducting. Thus,
there is no current flow into the wall, meaning the normal component of the eddy
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current density J, and the normal derivative of the electric scalar potential d¢/0n
vanish, 7 is the normal vector to the surface of the pipe (fig.2.1).

Second are the boundary conditions that change a parameter when it crosses
domain boundaries, also called interface conditions. This is the case, when the
magnetic and electric fields cross the interface of two media with different physical
properties, i.e. electrical permittivity and magnetic permeability. Here the vector
field are not differentiable and the following conditions are needed, where 7i,, is
a normal vector from medium a to medium b and p, is the surface charge of the
interface.

For the electric E and displacement field D:

ﬁab X (Eb — Ea) =0 ([jb — I_ja) . ﬁab = Ps-

The tangential component of the electric field F; and the normal component of
the displacement current D,, are continuous across the interface.
For the magnetic flux density B and the magnetic field strength H:

(By — Ba) iy = 0 Ty X (Hy — Hy) = J,

with the surface current density J, of the interface. The normal component of
the magnetic flux density B, and the tangential component of the magnetic field
intensity H; are continuous across the interface.

For the eddy current density J:

(jl;_jt;)'ﬁabzo-

Last are the symmetry boundary conditions. These can immensely reduce com-
putational resources and time. Symmetry planes always mirror the geometry ex-
actly, while the vector fields are either symmetric or antisymmetric relative to the
symmetry plane. The magnetic field is mirrored exactly if the magnetic field has
only a tangential component in the symmetry plane. As a result the current can
only flow normal to the symmetry plane. Thus, this symmetry plane is parallel to
B and perpendicular to J. The opposite case is if the symmetry plane is parallel to
the current flow and perpendicular to the magnetic field. In the mirror plane the
currents have only a tangential component while the magnetic field is normal to it.

These boundary conditions simplify an electromagnetic model and reduce the
size of FEM models. Especially for simulation purposes it is a significant reduction
of computational requirements and time.

2.2.6 Solid Body Approximation

LFV is a measurement method especially targeted for liquids. However the sim-
ulation of liquids is computationally complex and time consuming since the full
Navier-Stokes equations are involved. It is unfeasible to consider the fluid flow in an
optimization procedure. Time is one of the most important aspects in optimization.
In order to reduce, it a model is usually simplified as much as possible. One very
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useful and extremely effective approach is to replace the highly complex fluid flow
with a solid body velocity profile. Meaning that a plug flow profile is used instead of
the laminar or turbulent velocity distribution for the process medium. The error of
this assumption is relatively low, especially for turbulent flows, while the simulation
time is significantly decreased. This approximation is also called solid body approx-
imation since the plug profile has the same velocity distribution at every point like
a solid body [1].

The corresponding boundary conditions for this assumption are specified in the
next section.

2.3 Lorentz Force Velocimetry

The setup of LF'V is arbitrary. In order to simplify the problem the process fluid
is contained in a pipe with radius R. Consequently, cylindrical coordinates can
be used whenever properties depend on the radial component 7. Additionally, the
pipe’s axis aligns with the z-axis (fig. 2.3), meaning that there is only a z-component
of the velocity, because of the solid body approximation (chapter 2.2.6):

U= (vg,vy,v,) = (0,0,v,). (2.12)

The Lorentz force F develops in the domain €2, i.e. the conductor, because of
the interaction of eddy currents and magnetic flux density (fig.2.1):

F= /fx Bdo. (2.13)
Q
Expanding the cross product in the integral:
L JyB, — J.B,
(JxB)=|J.B, — J.B,
JoBy — Jy B,

Since the movement of the process fluid is restricted to the z-direction, only the
z-component of the Lorentz force is of interest:

F = / (JuB, — J,B,)d<. (2.14)
Q

The principle of LEV bases on Ohm’s law. When a conductive medium with an
electrical conductivity o moves with a velocity ¢ through the magnetic flux density
B then eddy currents J are induced in the conductor (fig.2.1):

J=0(-V¢+7xB). (2.15)
The @ x B term reduces to:
UyBZ - UZBy _Usz
UvVXB=|v,B,—v,B., | =] v.B, |. (2.16)
Ve By — vy B, 0
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Thus, the z, y and z-components of (eq.2.6) are:

Iy —0;¢0 +v,B, —v,B, —0,¢ — v, B,
Jy|=0|-0yp+v.By —v,B, | =0 | =0, +v.B,|. (2.17)
J, —0.¢ + v, B, — v, B, —0,¢0

The boundary conditions for the electric potential ¢ can be inferred from the
boundary conditions for the eddy currents. The currents are confined to the process
fluid, i.e. the region ). Thus, the normal component of the eddy current vector
J, = 0 on the surface I' (fig. 2.3) and with the radial unit vector é;:

J-ée=0onTatr=R = d,¢p=¢6,-(7x B)onI. (2.18)

The unit vector €, in cartesian coordinates is €, = €; cos 8 + €,sin 3. [ is the
polar angle and cos 8 = x/r, sin § = y/r. Inserting this and eq. 2.16 into eq. 2.18:

—v, B,
- o = Y Y
Orp=¢6-(UxB)=(€z—+¢€,=) | v.B;
" " 0 (2.19)

= —Eszy + gszw = v,(—By cos  + B, sin ).
r r

Inserting eq. 2.6 and eq.2.11 into the law of current conservation (eq.2.7) and
assuming that ¢ is constant gives:

V-J=V-(c(-Vé+TxB)=0(-V-Vé+V -TxB)=0
= Ap=V-(0xB). (2.20)
Applying the product rule on the right hand side of eq. 2.20:
Ap=V -(GxB)=B-(Vx#)—0-(VxB). (2.21)

The velocity of the fluid is ¥ = v,€,. Furthermore, the solid body approximation
is used, meaning that instead of having a parabolic or turbulent velocity profile,
the process liquid has a plug like profile moves as if it would be a solid body. This
approximation has been employed before [1] where it was also shown that the error
this simplification brings is negligible. Thus, v, is constant and:

V xv=0.

The magnetic dipole field is an irrotational vector field and the secondary mag-
netic field created by the eddy currents is neglected, resulting in:

VxB=0.

Inserting this into eq. 2.21:
A¢ = 0. (2.22)
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Because of the assumptions of a kinematic problem (7 is given) and neglecting
the secondary magnetic flux density, the Lorentz force (eq.2.13) can be calculated
when B and the electric potential (eq.2.6) are known, together with the boundary
conditions (eq.2.18).

Complex magnetic flux density sources (elaborate magnet systems) are only solv-
able via computationally heavy and time consuming FEM simulations. The only
way to derive analytic solutions is for rather simple arrangements, for example when
dipoles are considered as source for the magnetic flux density. This will be done in
chapter 4.
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Chapter 3

Numerical Models

Numerical simulations contribute significantly to the cost and time efficient design
and optimization of technical applications. They help to understand the physical
interactions in fundamental research and make prototype design less risky.

For the development of Lorentz force lowmeters knowledge of the interaction be-
tween magnet system and measurement fluid are vital for a successful setup. Most
important is the prediction of the force and torque with which the fluid acts on the
magnet system. The necessary data is obtained by numerically solving the govern-
ing equations. The validity of these complex simulations are verified by analytic
problems with known solutions [6], [51].

Two FEM codes are available here, the in-house code PROMETHEUS [35] and
the commercial software COMSOL Multiphysics [10]. In this chapter both codes
are introduced and their advantages and disadvantages stated.

3.1 PROMETHEUS

For the academic problem with dipoles the in-house code PROMETHEUS [35] is
used. The advantage of independent software programs is that it is license-free.
PROMETHEUS was developed at the Technische Universitéit [lmenau in the group
of Electro-Thermal Energy conversion. It is used in science and industry alike [35].
It is still being worked on and further extended. For this work the code was trans-
lated from Pascal to C, in order to enable parallel computing on the cluster of the
computation center using Open MPI [17]. This significantly reduces computational
time and is especially favorable in optimization processes, when many parameter
are used or a lot of iterations have to be made to archive good statistical results.
Furthermore, a gradient ascent method was implemented for optimization purposes
(chapter 5.2.3).

PROMETHEUS considers linear and non-linear material properties, boundary
conditions and the coupling of different fields (magnetic, electric, thermal). It is
able to solve steady and non-steady-state potential and temperature fields and
quasi-stationary electromagnetic fields in 1D, 2D and 3D and 2D calculation of
mechanical tension fields. It automatically generates meshes in 2D and 3D using
a macro-element concept [69]. It is possible to postprocess the resulting data to a
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limited extend via POST4. For a more sophisticated post processing, vtk [52] files
where generated, enabling the use of the open-source data analysis and visualization
application PARAVIEW [22].

Here, PROMETHEUS solves the FEM calculations based on the electric scalar
potential (¢ - formulation). Inserting Ohm’s law (eq.2.1) into the divergence-free
character of the eddy currents (eq.2.7) gives:

V-lo(-Vo+7xB)| =0 (3.1)

with the boundary condition 0,,¢ = 7 - (17 x B).

Thus, one equation describes the dipole problem with one unknown ¢. The
material parameters o and pou, are constant and predefined.

PROMETHEUS solves the differential equation (eq.3.1) with the FEM [69],
[46]. The method of finite elements was developed in the 60s and is one of the
most important numerical techniques for finding approximate solutions of differential
equations in engineering and physics. The entire problem domain is subdivided into
finite elements. The more complex equation over the large domain is approximated
using variational methods by minimizing an error function in the finite elements.
The electric potential function is substituted by its respective value at each node and
multiplied by a form function. The form function is 1 at the relevant node and 0 at
all other nodes, leading to a sparse band matrix. PROMETHEUS uses the Galerkin
method of weighted residuals to solve the partial differential equations [9]. Since the
functions are approximated in each element, the partial differential equations are no
longer exactly fulfilled. The residual between exact and approximated formulation
depends on the location (x,y,z). The Galerkin method minimizes the residuals in the
solution domain. Ideally, the integral of the residuals over the domain should vanish.
The resulting system of equations is solved by an incomplete Cholesky conjugate
gradient method [50].

PROMETHEUS has the particular feature to use so called macro-elements which
are built by a special preprocessing program. A macro-element is a certain ge-
ometric entity which is constructed of finite elements. They are defined by the
coordinates, the subdivisions along edges and the ratio of segmentation if they are
non-equidistant. Here prisms are used. Spatial functions can be applied to the
surfaces of the macro-elements in order to deform them, i.e. the cylinder used here
is made of curved macro-elements. Each macro-element is assigned to a specific
domain, which contains material properties. Boundary and symmetry conditions
can be applied on the surface of the macro-elements. It is possible to build very
sophisticated geometric entities based on this rather simple macro-element method.

A gradient-ascent method [55] was implemented for optimization (section 5.2.3.

3.2 COMSOL

COMSOL Multiphysics [10] is a commercial software. It simulates physical processes
based on differential equations discretized on finite elements. COMSOL is able to
couple different physical modules which enables multiphysics analysis. In this work
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the partial differential equations (PDE) module is used for the dipole setups and
the AC/DC module is used for setups with realistic magnet systems which are not
possible to simulate with PROMETHEUS.

PDE Module

The setup for the PDE module is sketched in fig. 2.3. The surface I' whose normal
unit vector is 7 encompasses the domain 2 of the cylinder. The dipole(s) outside of
Q) create the magnetic field B inside the pipe. The cylinder moves with the given
velocity U (eq. 2.12). The electric potential ¢ is solved with the following differential
equation for a constant conductivity o:

V-J=V- (-V¢+7)=0

with:
y=1UXxB
resulting in:

Ap=V -7 x B.

The boundary conditions specify zero flux across I':

—ii- (=Vo+17) =0
Sn-Vo=m-v
= O.¢|r =7 - (T x B)|r.

The problem is steady stationary and as such there is no change in time:
8t¢ =0in Q.

A pointwise constraint for the potential ¢ = 0 is used on the ends of the cylinder
in order to ensure uniqueness. Every value of potential is measured with respect to
that zero.

AC/DC Module

The PDE modules is only suited for simple setups like the dipole formulation. For
more complex realistic magnet systems without an analytic expression for the mag-
netic flux density the AC/DC module is used. It simulates electromagnetic processes
based on Maxwell’s equations (chapter 2). The AC/DC module is further subdi-
vided into physics interfaces, which cover different types of electromagnetic field
simulations. They solve for the physical quantities ¢, the electric scalar potential,
/T, the magnetic vector potential and 1, the magnetic scalar potential (tb.3.1).
The appropriate interface needs to be chosen depending on the type of electromag-
netic problem, i.e. electro-/magnetostatic, electric currents in conductive media or
low-frequency simulation. The available study type and variables depend on the
selected interface. The number of variables determines how many degrees of free-
dom are solved. The most complex AC/DC physics interface is mef (magnetic and
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dependent field applicable

hysics interface . .
Py variables components  domain

—

mef (magnetic and electric fields) 0, A B,E.A,J  conductor
mfnc (magnetic fields, no currents) (0 B air

Table 3.1: Summary of the physics interfaces of COMSOL Multiphysics, which are
used for the simulations.

electric fields). It solves for ¢ and ff, i.e. there are four variables at every grid point
leading to a high number of DoF which puts heavy demands on computational time
and effort. Every individual problem should be analyzed to determine if a simpler
interface, one with less dependent variables, can be applied.

The problem here involves stationary magnetic fields produced by permanent
magnets in a non-conductive air domain and a moving conductor. The magnetic
field induces eddy currents in the conductor. The appropriate interface for the
conductor is mef. However, the air domain is non-conductive, meaning that no eddy
currents develop. Here it is possible to use the physics interface mfnc (magnetic
fields, no currents). mfnc has only one dependent variable, the magnetic scalar
potential ¢». The coupling of these interfaces at the domain boundary I' reduces the
number of DoF, since only one variable, v, is solved on the nodes of the air domain.
The mef interface simulates the field components of the magnetic and electric field,
the magnetic potential and the current density. The mfnc interface only simulates
the field components of the magnetic field. The two interfaces are coupled at the
boundary surface I, i.e. the surface of the conductor, where the magnetic field of
the mfnc interface goes over into the magnetic field of the mef interface.

COMSOL and PROMETHEUS solve the same differential equations for this spe-
cific case but internally COMSOL uses quadratic shape functions for each element,
while PROMETHEUS uses linear shape functions.

3.3 Mesh Study

[8] studied mesh convergence for a dipole very close to the cylinder. They used a
ratio of /R = 0.005, i.e. when R = 25mm then h = 0.125mm. This is the opposite
case of the asymptotic approximation. The finite radius and curved surface of the
cylinder become insignificant, approaching the case of a dipole close to a translating
halfspace. The analytic solution for a single dipole is [43]:

1 piov

Fy=——
5127 h3

(2m2 4+ m +4m2). (3.2)

Because is not possible to simulate an infinitely long moving object, its length [
needs to be sufficient to eliminate effects due to finite length. [ is varied depending
on the distance h and different meshes are used in the computations to verify mesh
convergence in representative cases. A systematic variation of the length shows
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Cr (. number of
in mm inmm elements

2.00 8.00 2448 3.0010%  1.5110%
1.00 4.00 32760 3.66107  1.8410%
0.25 1.00 1915872 6.4710°  3.1510*
0.10 0.50 25934796 4.9810*  1.5010°
0.09 0.36 38840580 4.8310*  1.4310°
0.08 0.32 51422112 4.9210*  1.4710°

F,/Fy AFin%

Table 3.2: Parameters for the nonuniform meshes in PROMETHEUS. (¢, (. are the
numbers of mesh finesness.

[ = 5h to be an adequate value for the simulations. However, the mesh convergence
study in tb. 3.4 and 3.2 was done with [ = 7h.

The axial component is the main Lorentz force component (eq.2.14), because
the moving object is oriented along the z axes and its velocity is v = v,e,. The
relative error AF for the force component asserts the difference between analytic F,
(eq.3.2) and numeric F,, calculation:

(Fn_Fa>

AF =
F,

(3.3)
F,, depends on the mesh size. Because the dipole is very close to the cylinder,
strong gradients of the magnetic flux density penetrate the cylinder. In order to

resolve these changes the sensitive region in the middle of the cylinder it is more
finely meshed (fig.4.1).

Mesh Study PROMETHEUS

In the PROMETHEUS model the sensitive central region of the pipe is again /8
wide and meshed with the parameter (;. The size of the mesh elements then increase
towards the ends of the cylinder as defined by the parameter (.. There is no outer
margin of the sensitive region like in the COMSOL model. The sensitive region
extends along the whole cross section. Fig.3.1 displays the mesh for ¢; = 1mm,
(. = dmm.

A mesh convergence study (tab.3.2) was done for one dipole oriented perpendic-
ular to the cylinder surface, with a cylinder length of L = 7(h + R). The calculated
Lorentz force converges with increasing numbers of mesh elements. Fig.3.2. shows
convergence of the numerical results to the analytic solution with increasing numbers
of nodal values, i.e. degrees of freedom, in the grid. The relative error decreases ap-
proximately with the elements size and is thus inversely proportional to the number
of elements. The results show a good agreement with [8], considering the different
focuses on the meshes, i.e. a fine mesh along the total middle part of the cylinder
vs. a single selective concentration.

It is important that the cylinder is sufficiently long in order to exclude the
influence of edge effects. The length variation was done for one dipole and with the
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Figure 3.1: Mesh of the model in PROMETHEUS for ¢y = 1mm and ¢, = 4mm.
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Figure 3.2: Comparison of analytic to numerical results of the Lorentz force for
different grids (h=0.005R) in Prometheus.
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Figure 3.3: Typical structure of a mesh used for numerical simulations in [8] with
small distances between dipole and cylinder surface; a)cross-section view, b) top
view. The cylinder axis is oriented along the z-axis, which differs in this work.

mesh parameters (; = 0.4mm and (. = 1.6mm for the finely and coarsely meshed
regions of the cylinder. The results of the length study are listed in Tab.3.3. The
Lorentz force in the cylinder of length L = 10(h + R) = 500mm is used as the
reference value for calculating the Lorentz force deviation in smaller cylinders. The
mesh convergence study was done with a length L = 7(h+ R) which differs by 0.011%
from the reference value. During the optimization procedure a cylinder length of
L = 5(h+ R) was chosen, since an error of 0.028% with regard to the reference value
is acceptably small compared to the reduction in computation time for one function
evaluation.

L in mm error in %
10(h + R) = 500 -
7(h+R) =350  0.011
6(h+R) =300  0.021
5(h+R)=250  0.028
A(h+R) =200  0.029
3( )
2(

h+ R) =150 0.242
h+ R) =100 4.077

Table 3.3: Parameter study for the length of the cylinder.

Mesh Study COMSOL

[8] use a structured mesh for their convergence study (fig. 3.3). The region under-
neath the single dipoles is meshed very finely to provide the necessary resolution to
display the strong gradients of the magnetic field. Farther away from this region the
mesh is coarser and the elements are very stretched. While this mesh is well suited
for a single dipole, it does not adequately resolve multiple dipoles placed around the
cylinder, which is in the focus here. The strongly stretched mesh elements distort
the physical fields leading to a high error and unreasonably long computation time.
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Figure 3.4: COMSOL mesh for the convergence study. The outer middle region is
more sensitive because of its closeness to the dipole and needs to be meshed finer.

Here, the cylinder is meshed with tetrahedral elements (fig. 3.4). This permits for
very finely meshed regions in the center of the cylinder, where field gradients are high,
while the elements grow more regularly in size in the remaining domain (fig.3.4).
The outer part of the middle region of the cylinder has a finer mesh. Its length is [/8
and the radius of the inner circle is 4R/5. Tbh. 3.4 lists the mesh parameters. The
elements of the finer sensitive region vary from a maximum element size of 3-1073m
to 1-1073m. The minimum elements size is kept constant at 1 - 10~%mm, while the
default settings for extremely fine are used for all other parameters. The remaining
domain is meshed with the predefined normal setting.

Fig. 3.5 displays the convergence plot for the COMSOL model which uses second-
order elements. Compared with [8] the numerical results do not converge as quickly
to the analytic solution. They used only one dipole and needed to refine the mesh
in one specific region, whereas the distribution of multiple dipoles requires a finer
grid all around the cylinder. As such a higher number of mesh elements are needed
to archive a good convergence. Thus, while the total number of mesh elements is
higher than in [8], the convergence is slower.
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remaining  sensitive domain  number of

domain  max. element size elements F/F Ak
in mm
0.30 1517966 2.1770 63.2757
0.25 2566067 1.8080 35.6046
normal 0.20 4847789 1.6437 23.2796
0.15 11143757 1.4820 11.1536
0.12 21386495 1.3815 3.6152

Table 3.4: Parameters for the grid in COMSOL for one dipole placed very close to
the cylinder surface.

100

10

AFin %

1 | | | I I N | | | | I I I
1.E+06 1.E+07 1.E+08

number of elements

Figure 3.5: Convergence plot for mesh refinement study in COMSOL for one dipole
for the close approximation. Second-order elements are used.
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Chapter 4

Dipoles - Analytic Approximation

Chapter 2 introduced the physical background of Lorentz force velocimetry and the
expression for the Lorentz force was derived for the special quasi-static case of a
weakly conducting medium moving with a plug like profile in a pipe. However,
an analytic solution for arbitrary magnetic field sources is not attainable. The
difficulty lies in the calculation of the electric potential ¢ inside the pipe. Even with
all the applied simplifications the analytic derivation of ¢ can only be done with
further approximations. There are two limiting cases for an analytic formulation
for dipoles. Either the dipole is very close to the surface of the cylinder or very
far away. Investigations were made with one single dipole placed very close to a
moving conducting plane [59], [43] or far away from a moving square bar [26] and a
translating and rotating cylinder [8]. In this work multiple dipoles are put around
a pipe and the orientation of the magnetic dipole moments is optimized which has
not been done before. The use of multiple dipoles gives insight into the optimal
configuration and flow of the magnetic flux density. Conclusions can be drawn from
these results and adapted for a realistic and practical magnet system for Lorentz

force velocimetry.
Dipoles are the simplest expression for magnetic field sources. They produce the
following magnetic flux density at the point 7 (fig. 4.1):
S g 307 (- rT) — "

B(r) = 12 = (4.1)

7 is the position vector and 7 its magnitude || = ((x — H,)? 4 (y — H,)? + (2 —
H.)Y)Y2 . i = (m,,m,,m,) is the magnetic dipole moment. 77 = 7 — H can be
expressed by the distance vector H ! from the origin to the dipole and the vector 7
pointing from the origin to the position vector r/ (fig. 4.1).

Here the asymptotic approximation developed by [26] is extended to include
more dipoles placed at a fixed distance H in a plane perpendicular to the cylinder
surface. The derivation for arbitrary positions was unsuccessful.

The approximation for large distances uses a long-wave expansion in the axial

coordinate z. Since the dipole is very far away from the cylinder the magnetic flux

IThe distance vector H should not be confused with the magnetic field H. The meaning can
be inferred from context.
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density B varies slowly in z while the other parameters vary on the scale of the
cylinder radius R. This disparity in length scales can be exploited by a regular

perturbation expansion [67] in the small parameter ¢ = % < 1. For this the
cartesian coordinates need to be rescaled:
x = Rz% y = Ry z=H2Z. (4.2)

In the following chapters the regular perturbation theory is used to derive the
Lorentz force for the small parameter €, which is used to verify the numerical FEM
model.

4.1 Analytic Lorentz Force

Regular perturbation theory [67] is a type of perturbation theory, where the effects
of small disturbances are small®. It is used when a mathematical problem cannot
be solved exactly. In this case an approximate solution is obtained by utilizing a
small dimensionless parameter. The smaller the parameter the more accurate is the
approximate solution.

The physical values B , b, J and F expressed with the rescaled coordinates are
expanded to function series depending on the small parameter 0 < ¢ < 1 where R
and H are constant. The upper indices in brackets indicate the number of the term
of the expansion. They coincide with the power of e.

Magnetic flux density:

B=BO 4+eBW 1 2B@ 4 4 "B™ 4 o(e") (4.3)
Eddy currents:
J=JO 4 2] 4 4 J0 4o (4.4)
Electric scalar potential:
¢ = ¢ + oM 4+ 20@ 4 . 4 "™ + o(e") (4.5)
Lorentz force:
F=FO 4 cFO 4 2F@ 4 4 o F0 o) (4.6)

Furthermore the rescaled coordinates are inserted into the vector differential
operator:

1 1
0y ?3@ ?3@ 1 [ O
62 ﬁag ﬁa;? 582
and the laplace operator:
1 O: 1 % Lo 2 | 292
882 882

20therwise, they are termed singular
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With the rescaled coordinates and expansions a solvable analytic expression for
the Lorentz force can be derived analogous to [26] and [8]. The complete, step by
step derivation can be found in appendix A.

The necessary steps are shortly summarized here. First, the expanded values
(eq.4.3-4.6) are inserted into eq. 2.1-2.4 and the boundary conditions of the electric
scalar potential eq.2.19 are used to derive ¢(¥. Second, the boundary conditions
(eq.2.18) and the divergencelessness of the eddy currents (eq.2.7), with the help
of the stream function (eq. A.9) and its characteristics, lead to an expression for J.
Then the Lorentz force (eq. A.19) can be derived, which consists of predefined param-
eters £ = (0,vz, R, h,m) and an integral containing the derivatives of the magnetic
field components containing the optimization variables ¥ = (u, v, vy) (fig. 4.1):

F,(€,%) = — 2[(0:BV)* + (0:B\")?] + (0: B))?dz. (4.7)

—00

This is the objective function which is optimized for an varying number of dipoles
in chapter 6, the subscript a indicates the analytic expression of the Lorentz force
F'. The components of the magnetic field produced by multiple dipoles i = 1,2, ...,n
are the sum of each individual contribution, i.e.

0) _ N~ RO 0) _ N~ 50 0) _ N~ RO
Bi’ _ZBzx7 Bg _ZBiy7 Bé _ZBzz
i=1 i=1 i=1
With this derivation the FEM models are verified for one dipole. In chapter 6
the number of dipoles is increased and the respective Lorentz force is optimized.

4.2 Verification of Numerical FEM Model

A variety of setups with one dipole were already studied, by [59] (one fixed orienta-
tion, close to surface), [43] (dipole oriented along the three axes, close to surface), [26]
(asymptotic approximation, bar) and [8] (asymptotic approximation, cylinder). All
these studies have in common that they use only a single dipole. In this chapter the
numerical results of [8] are reconstructed, since they also use a cylinder, to verify the
used numerical FEM models. [8] used COMSOL Multiphysics for their numerical
analysis. Licenses of this commercial software are very expensive and limit the num-
ber of program calls. Therefore, the results are compared with the results attained
with the in-house code PROMETHEUS to assess applicability, whose usage is not
restricted like COMSOL.

As will be seen in chapter 6, a complete analytic optimization of this simplified
problem is limited by the number of dipoles, i.e. number of optimization variables.
However, while a numerical optimization of this simplified problem is possible, i.e.
the derived objective function is numerically optimized, the extension to arbitrarily
placed dipoles is not. This obstacle can only be overcome with complete numerical
calculation. Two FEM simulation software programs are used here, the in-house
code PROMETHEUS [35] and the commercial code COMSOL Multiphysics [10].
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Figure 4.1: Geometrical dimensions of the dipole problem setup with the sensitive
region which is meshed finer to better resolve field gradients and cross section view
of the xy plane. The position of the dipoles m; is fixed to a specific distance H;
in the z = 0 plane. The orientation of the magnetic moments are given by the
spherical coordinates u; and v;. The magnetic field created by m; at 1; is expressed
with eq.4.1. h is the distance of the dipole from the surface of the cylinder and H
the distance from the dipole to the origin. The cylinder has the radius R, length [,
conductivity ¢ and velocity v/
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Figure 4.2: Nondimensionalized Lorentz force as a function of the distance h between
one dipole oriented in |m| direction and the cylinder surface of a moving pipe.
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Figure 4.3: Relative error AF' between analytic results and numerical results from
PROMETHEUS.

In this chapter the derived analytic formulation of the Lorentz force (eq.4.7) for
the asymptotic approximation of one dipole is compared to the numerical results
provided by PROMETHEUS and COMSOL. Consistently with [8] three different
orientations of the single dipole are investigated. Fig.4.1 depicts the geometrical
dimensions. The dipole is fixed along the three coordinate axes x, y and z, respec-
tively. Its distance to the cylinder is set to h = 0.125mm for a mesh refinement
study or is increased from h/R = 4 to 100 to determine the dependency on the
distance. h is the distance of the dipole from the surface of the cylinder and R
is the cylinder radius. With a ratio of h/R = 100 the dipole is at a distance of
H = 2.525m from the center of the cylinder.

For better comparison of the results the simulated Lorentz force is nondimen-
tionalized with the following reference value [60]:

Fy = ovpgm?L ™3

m is the absolute value of the magnetic dipole moment and L = R is the character-
istic length which equals the radius of the cylinder. Inserting the following values?
for the parameters:

c=385-10"S/m  v=082678m/s m=354Am> L =25mm

gives:
= Fyp =39.41N.

3The cited values were taken from [8] to make for better comparability. Contrary to their work,
the focus here lies on weakly conducting fluids, meaning a electric conductivity of ¢ < 10S/m.
The quasi-static approximation (chapter 2.2.2 still holds, because of the small product of vL 3.
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h  number of F./F, AF-1073

incm  elements (m,,0,0) (0,m,,0) (0,0,m,) (m,0,0) (0,m,,0) (0,0,m,)
10 617760 4.40107°7 6.94107°" 7.80107%8 54.26 59.79 108.84

20 1233180 6.92107% 1.09107°® 1.2010~% 14.83 18.42 40.99

25 1605240 1.69107% 2.66107% 2.9110~1° 9.83 13.08 31.73

50 3004560 1.8210~' 2.8610~' 3.11107'2 2.99 5.66 18.80
100 6891300 1.68107'% 2.64107' 2.8610~ 1.21 3.66 15.35
200 10801440 1.43107'° 2.2410~% 2.44107'6 0.83 3.19 14.70
250 12397320 3.04107'6 4.7910°'6 5.20107'7 0.81 3.15 14.70

Table 4.1: Lorentz force depending on the distance to the cylinder surface h.

If the distance between dipole and cylinder is of the same size as the cylinder
radius h &~ R or larger then the field gradients (of the magnetic flux density, eddy
currents, etc.) do not vary as strongly in the cross section of the cylinder. Thus the
high resolution of the mesh of the cross section can be reduced. This is essential
since the farther away the dipole is located the longer the moving object needs to
be to ensure sufficient decay of the field towards its ends to eliminate effects due to
finite length. For h/R > 1 the size of the mesh elements are increased and higher
values are used for the parameters ¢y and (.. Simultaneously, the axial length [ of
the cylinder is increased. A systematic variation determined [ = 5h to be adequate
for a specific dipole distance h.

For the dependence of the dipole distance to the cylinder surface h is varied from
0.1m to 12.5m. For [ = 12.5m the integrated Lorentz force converges to an satisfying
value for a mesh of (y = 0.4mm, (. = 1.6mm. However, the resulting number of total
mesh elements requires to much computational resources. The difference between
this converged Lorentz force and the one with the mesh parameters (; = 1mm,
C. = 4mm is less than 2%. This is an acceptable deviation and good choice for the
calculations. Tb.4.1 displays all data points for a mesh of (; = Imm, (. = 4mm.
The mesh does not stretch along with increasing [, but the number of elements grows
with [. When [ is small PROMETHEUS needs less memory and finer meshing would
be possible.

Fig. 4.2 shows the development of the Lorentz force depending on the distance
from the cylinder surface h. Near h/R ~ 1 the dependency of the distance of the
dipole transitions between the asymptotic approximation and the close approxima-
tion h < R. In the close approximation, the dipole is very near the translating
conductor [59] (vertical dipole orientation, only) and [43] (arbitrary dipole orienta-
tion). This branch for /R < 1 is not reconstructed with numerical data, because
here the analytic multi-dipole study (chapter 5) is limited to the asymptotic case.

The analytic Lorentz force (eq.4.7) for one dipole (eq.4.1) for the asymptotic
approximation is:

p2 Row

= m(@%mi + 720m;, + 6705m3). (4.8)
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The numerical results agree well with (eq.4.8) for large h and different dipole
orientations. With increasing h/R the Lorentz force gets closer to the asymptotic
solution confirming the power law F' ~ h™7.

Fig. 4.3 depicts the relative error (eq. 3.3) between analytic and numerical values
for all dipole orientations. They are in the range of previous work of [8], but show
a different behavior. The relative error of the Lorentz force for the different dipole
orientations show small variations, and while the overall error values are lower, they
stagnate for h/R > 40, which is not the case in [8]. This might be due to numerical
uncertainties.
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Chapter 5
Optimization

This chapter gives an overview of the optimization procedure. It formulates the opti-
mization problem and introduces the used optimization procedures and algorithms.
Finally, it summarizes the optimization variables of the different setups.

5.1 Introduction

Optimization plays a very important role in the field of engineering. A lot of en-
ergy and effort are put into finding optimal cost-benefit ratio, production processes,
techniques, etc. [45], [56]. The goal is to find the values for one or several decision
variables that minimize or maximize one or more objectives, which may be subjected
to constraints.

There is a wide variety of optimization algorithms ranging from relatively simple
heuristic [20] to complex global [23] methods. Some require a lot of information
like the analytic objective function, its derivatives and even hessian matrix. Others,
so called black box algorithms [3], only need the input parameters and the corre-
sponding value of the objective function delivered by some kind of numerical model.
All of them are suited for different problems, which exploit their respective advan-
tages and disadvantages. Many optimization algorithms and especially the heuristic
methods produce only local extrema of the objective functions. Fortunately, in the
field of engineering it is often enough to find an acceptable improvement of the cur-
rent situation, especially if the time of the optimization process is also considered
important [44]. The final result is in the foreground and the algorithm only a tool.
This is in contrast to mathematics, where the optimal solution is often known and
the main focus is on the methods to derive this solution.

In this work, different optimization types are used in the study of the multi-
dipole problem. The goal is to find the optimal setup of magnetic field sources in
the framework of LF'V. The following chapter gives an overview of the methods and
algorithms which are applied to the different setups in chapter 6.
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5.2 Formulation of the Problem

The most basic formulation of an optimization problem for the objective function
f(x) : R¥ — R with the decision variables * = (z1, 9, ...,7;) belonging to the
feasible set G C RF is:

f(z) — min (max)
subject to
x € (.

Conventionally this function is minimized. However a change in sign converts a
minimization into a maximization problem and vice versa:

min f(z) = max — f(z).

One can adapt the formulation to aid in the understanding of a specific problem.
In the field of engineering it is more intuitive to talk about finding maxima instead
of minima, when a physical quantity is supposed to be actually maximized.

The nature of f(x) and G classify the optimization problem and determine the
appropriate optimization method. Important characteristics are for example linear-
ity, monotony convexity and differentiability [15], multi-objectivity, discretness of
variables, constraints, etc [42]. The more good-natured the optimization problem
and especially the objective function is the better can an optimization algorithm be
formulated to fit the task and most importantly the more successful the results will
be. Good-natured are functions which are differentiable, convex, etc, which provide
the algorithm many useful properties to consider. If the optimization problem is not
good-natured, high demands are put on the optimization method.

The variable z* is a local maximizer if there exists a neighborhood U of z* such
that 2* produces the highest value of f(z) in z* compared to all z € U N G. This
neighborhood U is an open set containing x*:

f(z*) > f(x) for z € U.

x* is a global maximizer if it archives the highest value of f(x), where x ranges
over the domain of interest:

fz®) > f(x) Vo e G.
The maximizer is unique if the inequality is strict:
fz*) > f(x) for z € G\ {z"}.

The analytic part of the asymptotic dipole problem is non-linear, smooth and dif-
ferentiable with multiple decision variables limited by box constraints. The feasible
set has upper and lower bounds:

b <z <ub.
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The fundamental steps of a numerical optimization algorithm are as follows [42]:

e A starting point 2" is supplied based on user knowledge or some other arbitrary
manner.

e The objective function f(x°) and its characteristics (like derivative, mono-

tonity, ...) are evaluated at the current 2¢ and even former iterates 2°, 2!, ..., 27 1.

e The selected strategy, i.e. line search, trust region,... generates the next iterate
2T based on the information gained from f(z).

e A stopping criterion prescribes when this sequence terminates.

The next chapter explains the analytic optimization of an objective function.

5.2.1 Analytic Optimization

The analytic expression for the multi dipole problem which is derived from eq. A.19
is a smooth function and depends on the parameters x = (z1, %2, ..., T, ..., Tg). It
can be analytically optimized as follows:

e The first derivatives of the objective function are taken with respect to all x;
and set to zero:
of(z)

e The critical points z..; are calculated which satisfy eq. 5.1.

e The Hessian matrix of the objective function is derived. The Hessian contains
the second derivatives of f(z) and determines the character of the critical

points:
9 f(x) 9 f(x)
an(l’) 0x1011 T O0x10xy
Hilw) = <8x.8x.> - : :
YU L=k & f(x) 9 f(x)
Oxpdry " Oxpldry

A twice continuously differentiable multivariable function is independent of
the order in which the derivatives are taken according to Young’s theorem [2]:

*f(x) _ 0°f(x)
8.’151'8373' N 8%81:2

meaning that the Hessian H¢(z) is symmetric. It is positive/negative definite
if the leading principle minors are positive/negative or the eigenvalues are
greater /smaller than zero. The Hessian is evaluated at the critical points f(z)
and the definite quadratic form of the Hessian is calculated.

- Hessian is positive definite = 2% is a unique local minimum

- Hessian is negative definite = z“** is a unique local maximum
- Hessian is semi-definite or indefinite = assertion is not possible

crit

35



e Calculation of the values of the objective function belonging to the respective
local extrema which reveals the global optimal solution.

This process is done with the symbolic calculation software MATHEMATICA
and only with the analytic dipole problem (chapter 3) with a small number of dipoles
(chapter 6.1). As the number of dipoles increases MATHEMATICA is not able to
calculate the critical points anymore. Thus, more complex setups are optimized
numerically (chapters 6.2 and 6.3) via the MATLAB optimization toolbox [38] for
a large number of dipoles.

5.2.2 Nelder-Mead Simplex Direct Search

The most successful optimization algorithm from the MATLAB optimization tool-
box [38] in the context of this work is the Nelder-Mead simplex direct search method
(NMSDS). This chapter describes this method in more detail.

J. A. Nelder and R. Mead introduced this heuristic algorithm in 1965. It
impresses with a simple and robust character, making it easy to use and imple-
ment [40], [37]. While modern methods are more sophisticated, it enjoys popularity
in engineering [36], physics [16] and finance [53], to name just a few and it is still
object of current research [18], [29].

NMSDS is a direct search method, meaning that it does not use the derivative of a
function, but evaluates the objective function values to determine the next possible
iterate. This makes the algorithm well suited for problems without access to a
gradient, i.e. f(z) is provided by a black box simulation, the exact first derivatives
are difficult to compute, etc. A consequence of this is that it converges slower
compared to the methods which use gradients [30] and it might converge to a non-
stationary point [39].

The objective function f(z) : R* — R can be non-linear and depends on k
variables, without constraints. The corresponding simplex S on which this method
is based is a polyhedral with k+ 1 vertices 2%, 2!, ..., 2" € G. The set {z* — 27|k €
{1,...,k+1}\{j}} is linear independent in R¥. The simplex adjusts itself to the local
form of the objective function according to three methods: reflection, expansion and
contraction (fig.5.1). The algorithm passes through the following steps:

1. The function values at the vertices of the simplex are compared and sorted
from the point 2 with the worst function value f(2%) to 2® with the best func-
tion value f(z). Here, the worst and best function values are the respective
minimal and maximal function values.

2. a% is then reflected to x* with regard to the centroid of all other vertices z°
with i # w (fig. 5.1). The function value f(z*) determines the next action:

If f(z*) < f(z*) < f(2°) then 2* is the new vertex of the simplex, replacing
" and continue to step 3.
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Figure 5.1: Generation of a new iterate x* in the Nelder-Mead simplex direct search
method with a 2D simplex: a) reflection, b) expansion, ¢) contraction based on [19].

If f(2°) < f(x*) then z* is further extended to the point z** (fig.5.1), which
is used as the new iterate if f(z°) < f(z**) otherwise it is z* and continue to
step 3.

If f(z*) < f(2")Vi # w then f(z*) is always the minimum and the simplex
is contracted with respect to the centroid. Should this point be again worse
then all 2* are moved and continue to step 3.

3. Repeat from step 1 until the stopping criterion is meet.

The following optimality conditions are necessary for the NMSDS method, as-
suming that f(z) is once differentiable:

f(x) has a local maximum at 2° € G
<= There is a ball B(x) around z°
such that f(z) < f(2°)Vz € G N B(x)

= % (xb) =0,1=1,2,.... k.

f(z) has to be twice differentiable for the sufficient conditions:
o f(z") =0,i=1,2,... k and

by o2 b . el .

Hy(2®) = (amjaxif(x ))kk is positive definite

= f(x) has a unique local maximum at z° € G.

Compared with other methods, especially ones that use gradients, NMSDS does
relativly well when there are great differences in the function values, but suffers
when it closes on an optimum, leading to a slow convergence [30]. This is not a
disqualifying factor in the field of engineering and particularly when simulations
with numerical errors are considered. It is already satisfactory to reach a better
result than the given one.

37



5.2.3 Gradient-Ascent Method

PROMETHEUS uses a simple, build-in gradient method [42] for optimization pro-
cedures, enabling parallel computation which reduces computation time.

The gradient method also called steepest-ascent is a line search algorithm. Line
search methods determine a direction p. and then move a step size .. in this direc-
tion. The steepest-ascent method uses the gradient as the direction p. = V f(z€) to
a local maximum. Requirement is that the objective function f(z) is differentiable.
PROMETHEUS numerically calculates f(z) at the current point ¢ and numerically
determines the gradient V f(x¢). The algorithm then goes in the direction of the
gradient to determine the new iterate x¢*!.

7t = 2+ a V f(z°).

The step size «. determines the distance traveled along the direction of the
gradient. PROMETHEUS starts with a user defined step size and an integer value u
specifying how many times «a, moves along the gradient. For each time the objective
function f;(z¢+ia.) is calculated with ¢ = [1,u]. The best function value determines
the step size for the next iteration a.,; = ia.. The u function evaluations are done
in parallel computation, allowing for a more efficient optimization.

The starting step size for all gradient-ascent optimizations is a, = 1 - 10® and
u = 8.

The steepest-ascent method is a local optimization algorithm and there is no
guarantee that it will find global maxima, however it is able to leave local maxima.

5.2.4 Non-linear Optimization by Mesh Adaptive Direct
Search

Engineering and industrial problems are real life problems and as such they bring
along several difficulties. With the help of simulations one can relatively cost effi-
ciently analyze a problem and of course optimize it. A special area in the methodol-
ogy of optimization are so called black box problems [3]. They present a field which
is characterized by very specific attributes.

In black box optimization the objective functions are computed via computer
simulations, where one evaluation is usually computationally heavy, time consum-
ing, or the results might have a low quality, i.e. are affected by numerical noise or
inaccuracies. They are termed black-box, because the user provides only the input
data and then receive an output.

Usually one cannot access the internal structure of the problem, making the
determination of a gradient time consuming and not feasible. Thus, derivative free
methods are used without assuming anything about the objective function or the
admissible region. Only the values for the set of variables can be provided as an
input. Based on the resulting output value of the objective function, the next input
variables are determined.

The commercial FEM simulation software COMSOL Multiphysics does not pro-
vide the gradient of the objective function nor does it allow access to its source code,
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in order to numerically derive it and one function evaluation is computationally ex-
pensive. Thus, it can be termed as a black box problem.

Non-linear optimization by mesh adaptive direct search (NOMAD) [31], [4] is the
black box algorithm applied in the optimization of the COMSOL problem of this
work. NOMAD is a software based on a constrained mesh adaptive direct search
(MADS) algorithm. It handles single- and bi-objective problems, considers general
inequality constraints and continuous, integer or binary decision variables.

Direct search methods search the space of variables systematically for maxima.
Their only clue is the function evaluation provided by the numerical model. MADS
algorithms are a more sophisticated form of direct search methods [33], [27] with a
detailed convergence theory based on non-smooth calculus. This iterative method
discretises the space of variables on a mesh which is refined if necessary.

Each iteration is composed of a SEARCH, and POLL step. The SEARCH
step tries to find a better solution on the mesh. Previously evaluated points are
stored which avoids double evaluations. Should the SEARCH step be unsuccessful
then the POLL step starts. It explores the mesh near the current best solution
with a set of trail points. The convergence analysis relies on the POLL step which
is consequently more strictly defined. If a better solution than the current iterate
has been found then the mesh is coarsened otherwise it is refined and the procedure
repeats itself until the stopping criteria is met.

5.3 Defining the Geometric Setup and Optimiza-
tion Variables

The geometric setup of the multi-dipole problem is as follows: a cylinder representing
the conductive medium is surrounded by dipoles (fig.4.1). The center of mass of
the cylinder lies in the origin and its axis aligns with the z-axis. Now that the
expression for the Lorentz force for this problem is derived (eq.4.7), it can be used
to analytically calculate different configurations of dipoles. The dipoles are located
on a circular ring in a plane perpendicular to the center of the cylinder. A derivation
for arbitrary distances H was not successful. The orientation of the i = 1,2,....n
dipoles depends on spherical coordinates, i.e. the polar angle p; and the azimuthal
angle v;. The principle of superposition [24] states that the magnetic flux density of
multiple sources is the sum over all single sources:

B:ZB

=1

~

n
— —

The magnetic flux density for a single dipole (eq.4.1), the location vector ﬁi,
position vector 7 and orientation vector m; are (fig.4.1):

H cosy; T msin v; cos [;
H;=|Hsinvy; |,7=|y|,m;= | msinysiny; | . (5.2)
0 z ™ COoS V;
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case Kj; Kg K3 decision variables k number of dipoles

3 1 1 1 Yie1, iy Vi 3n—1 n=123
2 0 1 1 Wiy Vs 2n n=123
1 0O 1 0 Lbi n n=1,2,..6,816

Table 5.1: Summary of the different x; values and the respective decision variables.
The three ; represent optimization cases with varying degree of complexity for the
analytic dipole formulation. ~; is the angles of the positioning vector of each dipole
and p; and v; are the polar and azimuthal angles of the magnetization vectors.

H is the distance from the dipoles to the origin, v; is the positioning angle of
the 7th dipole and starts from the z-axis counterclockwise, 7 is the position vector
of the magnetic field, m; is the magnetic moment of the dipoles with the orientation
angles u; and v;.

The derivation of the magnetic flux density B for the asymptotic approximation
(appendix A) is inserted into the expression for the Lorentz force of the asymptotic
approximation (eq.4.7). This resulting objective function depends on the prede-
fined parameter £ = (H, m, R, p,v,0) and the optimization variables z = (v, u, v)
(fig. 4.1).

The complexity of the optimization problem varies with the number of decision
variables k = K1Y oY + Ko doiq i + K3 i Vi k;j = 0,1 is a binary number
and represents different optimization cases of complexity, which are summarized in
th.5.1. The position of the first dipole is always fixed without loss of generality
because of symmetry. <, is always given, reducing the problem by one variable.
Three different optimization cases are investigated.

In case 3 the optimization variables are the azimuthal and polar angles of the
orientation vectors of the magnetic dipole moments and their position vector. The
feasible set of the position vectors is not arbitrary but fixed to a ring in the z = 0
plane, i.e. 7s,...,7,, because this allows for a derivation of an analytic objective
function (appendix A).

In case 2 the angles ~; of the position vectors ﬁl are distributed equidistantly
around the pipe. The orientation of the magnetic moments is allowed to adjust in
3D leaving its azimuthal and polar angles as the decision variables.

Case 1 is the simplest formulation and considers only the variation of the az-
imuthal angle of the orientation of the magnetic dipole moment, i.e. the dipole
moment vectors are only allowed to change in the z = 0 plane. However, as will be
seen later, even this simple variation of the problem is still very complicated with
increasing numbers of dipoles.

This successive decrease in the number of optimization variables is done to study
the influence of the type of variable on the problem and also to test the capability
of the optimization algorithm to handle the problem.

The geometry of the investigated problems allows the reduction of the optimiza-
tion variables. For example, if the cylinder is surrounded by only one dipole, there
is an infinite number of optimal solutions, since at any arbitrary position, within
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the stated limits, the magnetic dipole moment may point perpendicular towards or
away from the cylinder surface to yield a maximal Lorentz force. Therefore, for the
first dipole, we can fix the position without loss of generality and limit the magnetic
moment orientation to a half sphere. Keeping this in mind, we obtain only one
global maxima which represents all possible global maxima, which can be derived
by rotating the dipoles around the z-axis and by changing the magnetic moments
orientation by 180°.
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Chapter 6

Results

In this work, three different optimization types are used. The goal is to find the
optimal setup of magnetic field sources in the framework of Lorentz force velocimetry.

The first is a completely analytic solution. This is done with the analytic for-
mulation of the Lorentz force for a small number of dipoles (chapter 6.1). However,
with increasing numbers of dipoles the numerical capabilities of symbolic compu-
tation software like MATHEMATICA [68] are quickly exceeded. The derivation of
first derivatives and hessian matrix is still possible, but the system of equations
containing the critical points is no longer analytically solvable.

Second is the numerical optimization of the analytic formulation of the Lorentz
force for a higher number of dipoles (chapter 6.2). For a small number of dipoles
the standard optimization algorithms of the MATLAB optimization toolbox [3§]
successfully find global maxima. For larger numbers of dipoles it is not possible to
ascertain the type of the derived extrema and it is highly possible that only local
maxima were reached.

And last is the numerical and black box optimization applied to complex 3D
FEM model setups (chapter 6.3).

6.1 Completely Analytic Solution

The analysis starts with the most complex optimization formulation case 3. For
n = 1 dipole the Lorentz force does not depend on the position of the dipole as
long as H = const. because of the cylindrical character of the pipe. 7 is set to 90°
so that the dipole is located at (x,y,z) = (0, H,0). The orientation of the dipole
(u1 - polar angle and vy - azimuthal angle) is optimized (fig.4.1). Replacing the
constant parameters with w = m?u2Rov,/HT results in the following objective
function (eq.4.7):

. 45uRYov,
F _ Mot 9,
(&%) = 3107207

45
- 13178072 (SmZ(Vl) (149 sin2(u1) + 16 COS2(M1>) + 95 COS2(V1)> .

(16m2, + 149m?, + 95m2, )
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There are two first derivatives, one for the variables p; and vy:

OF(€,7) 5985w

sin(p) cos(p1) sin?(vy)

o 65536
OF(&,7) 45w :
—_— = — 1 2 2 211).
0r 262144( 33 cos(2p1) + 25) sin(2u4)

These derivatives are set to zero and the system of equations is solved analyti-
cally. The resulting critical points are potential extrema:

(p1, 1) = (1, 0%), (0°, —90°), (0°,90°), (—90°, —90°), (—90°, 90°),
(90°, —90°), (90°, 90°),

where ; can take on any value.
The Hessian matrix is needed to assert the character of a critical point:
L PP
Hr (€, T) = N
. w 11970 cos(241) sin?(v1) 23940 cos (1) cos(vy ) sin(py ) sin(vy)
© 131072 \ 5985sin(2u ) sin(2vy)  —45(133 cos(2u1) + 25) cos(2v) )

Maxima are the critical points for which the Eigenvalues of the Hessian are
negative:

(1, v1)" = (=90°, —90°), (—90°, 90°), (90°, —90°), (90°, 90°).

Thus, the dipole orientations that create a maximal Lorentz force point either
perpendicular away or towards the cylinder surface (fig. 6.4a).

Since this problem has only two variables a graphical analysis (fig. 6.1) is pos-
sible and the obtained optimized variables match the four global maxima in the plot.

For n = 2, the position of the dipoles and their orientation is variable (case 3).
The location of one dipole can be fixed because of the symmetry of the problem to
for example at (0, H,0). This eliminates one variable.

The objective function is:

453 RYov,

= Sgaraag 1 eos(2n) (16mz1m0z — 19m2, + 4d4myimy, + 19m2)

Fcase?) (57 f)
+ 28 cos(y2) (sin(2) (—8my1mys + 22maamy + 19mgemys)

+ 5mx2my1)
+ 140 sin(vys) (my1my2 + 2m,1m.s) + 32mf€1 — 48m 1My
+ 165m%, + 298m?, + 148m,;1m

+5 (33m2, + 38m2, + 20m.im.s + 38m%)).

When their position is allowed to vary, the dipoles collect themselves in a single
point 7; = v = 90°. The corresponding optimal dipole orientations point per-
pendicular towards or away from the cylinder surface p; = £90° and v; = +90°.
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Fpy,vy)

O0<v, <2m

Figure 6.1: Lorentz force for one dipole depending on the azimuthal () and polar
(v1) angles of the orientation vector of the magnetic moment.

max

min

Figure 6.2: Magnitude of the magnetic field inside the cross section of the cylinder
directly underneath the dipole. The cylinder is divided vertically in the middle. The
left hand shows the optimized magnetic field for n = 1 dipole and the right hand
side the optimized magnetic field for n = 4 dipoles.
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Meaning that a single strong filed source is better than several weaker ones. Fig. 6.2
shows the cross-section of the cylinder directly underneath the dipole. The cylinder
is divided vertically and the left hand side shows the resulting magnetic field for the
optimized dipole orientation of n = 1 dipole. On the right hand side, we have the
resulting magnetic field created by n = 2 dipoles. This is attributed to the fast decay
of the magnetic field, which varies with H=3 and H~7 for close and large distances
respectively [43], [8]. When the magnetic field strength of multiple weak dipoles
reaches the pipe, it is weaker than the field created by one strong magnetic source.
Regarding the practical aspect for the magnet system construction, the strength
of permanent magnets cannot be increased randomly, but it is limited by current
magnet materials. As such, the dipoles are placed equidistantly around the cylinder
and only their orientation is optimized.

In case 2, the dipoles will be equidistantly positioned around the pipe. For n = 2,
the dipoles face each other, leaving p; and v; as the decision variables (case 2).

The objective function is:

_ 45pgRYov,

Feasea &%) = 37 fmg 7 (16(ma1 + Mg2)” + 149m2, + 158my1myp

+ 149m§2 + 95m?, — 90m.1m.o + 95m?2,).

The optimal polar angles are p; = £90° and, as long as the dipoles are positioned
in one plane only, the optimal azimuthal angles are also v; = £90°. Thus, the
azimuthal angles can be removed from the list of optimization variables, while u; =
[0°,360°], which leads to case 1.

In case 1, the azimuthal angles v; = 90°, so that the orientation of the dipoles
varies only in the perpendicular z = 0 plane.

The objective function for case 1 is:':

B 45w
131072

Fruse1(&,T) (158 sin(pe1) sin(pe) + 32 cos(p1) cos(pi2)

+ 149[sin’ (1) + sin®(pu2)] + 16[cos® (1) + cos®(p2)]).
The two first derivatives of the objective function F_.,..; are:

OFase1(§,7)  4bw
Ot 65536
OFaser (§:T)  4bw
Ots 65536

(16 sin(p ) cos(pe) — cos(pr) (133 sin(py) + 79sin(ps)))

(16 cos(py) sin(pa) — cos(p2) (79 sin(uy) + 133 sin(uz))).

f 8Fcase1(§7f)

The critical points which solve the system of equations consisting o S

0 and M’%@ =0 are:
H2

(p1, p2)™ = (0°,0°), (0°,180°), (—90°, —90°), (—90°,90°), (90°, —90°),
(90°,90°), (180°, 0°), (180°, 180°).

IThe functions for cases 3 and 2 are shown with their dependency on the components of the
magnetic moments. The expansions to include the angles u; and v; is rather long and can be done
by inserting eq. 5.2.
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Figure 6.3: Lorentz force for two dipole depending on the azimuthal angles p; and
{12 of the orientation vector of the magnetic moments.

The hessian for this problem is:

— 62Fcase Y v
HFcasel (57 CC) = w

8/118[112
2(—79sin(p1) sin(p2) 2(16 sin(p1) sin(u2)
B 45w —16 cos(p1) cos(p2)+133 cos(2u1)) 479 cos(p1) cos(u2))
131072
2(16 sin(pq) sin(p2) (—95 cos(p1—p2)
+79 cos(p1) cos(p2)) +63 cos(p1+pu2)+266 cos(2u2))
And the eigenvalues are negative (W = 0) for the following critical

points:
(1, p2)™*® = (=90°,—90°), (—90°,90°), (90°, —=90°), (90°,90°).

These critical points are all maxima. Whether the type of maxima is local or
global, can be determined by graphical analysis (fig.6.3), since there are only two
variables, or by inserting the points into the objective function and comparing the
calculated values. The global maxima are:

(Hl; :u2)b = (_900’ _900)’ (9007 900)7

meaning that they are aligned with respect to each other and perpendicular to the
cylinder surface.

With increasing number of variables the symbolic software MATHEMATICA is
not able to solve the system of equations to attain the critical points. For these
problems numerical optimization is used next.
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algorithm gradient constraints

fminunc trust-region yes no
fminsearch Nelder-Mead simplex direct search no no
fmincon trust-region-reflective yes yes

Table 6.1: Summary of suitable MATLAB optimization algorithms.

6.2 Numerical Analytic Solution

The means to solve the analytic dipole problem is quickly exceeded with rising
numbers of dipoles. To continue the optimization process numerical algorithms from
the MATLAB optimization toolbox [38] are used. Since the problem is non-linear
and uses box constraints the algorithm fmincon should be suited best. Nevertheless
fminunc and fminsearch are also tested to revise the best choose for this problem.
This chapter compares and evaluates the results of the optimization of the analytic
dipole problem with numerical means.

fminunc, fminsearch and fmincon are all algorithms that optimize scalar,
non-linear, multivariable functions and are in this aspect well suited for the analytic
dipole problem. Tb.6.1 summarizes the characteristics of the three possible prob-
lems of the MATLAB Optimization Toolbox [38]. fmincon seems to be the most
appropriate since it uses gradients and considers the constraints for the feasible set.

The parameter exitflag categorizes the reason why the algorithm terminates
and thus indicates how successful the optimization has been. A value of 1 means
that the first-order optimality measure (chapter 5.2.2) and maximum constraint
violation were less than the specified limit. exit flag takes on 0, when the number of
allowed function evaluation is exceeded, i.e. the algorithm was not able to satisfy the
convergence criteria during 200 - k£ function evaluations. Interior-point algorithms
(fmincon) denote a 2 when the first-order optimality measures are not meet, but
the change in the variable x and maximum constraint violation were less than the
specified limits.

The suitability of the three optimization problems fmincon, fminsearch and
fminunc are evaluated for the analytic dipole problem. Theoretically all three
are applicable to the provided non-linear objective function, while fminunc does
not utilize the box constraints of the feasible set and fminsearch does not consider
additional derivative information and is the least sophisticated with its Nelder-Mead
simplex direct search algorithm (chapter 5.2.2).

For the comparison of the optimization problems the objective functions of the
analytic dipole formulation (eq.4.7) forn = 1,2, 3,4,5,6, 8 and 16 dipoles were used.
The algorithms were run 1000 times starting from randomly determined starting
points #°. These starting points are the same depending on the number of op-
timization variables, i.e. the same 1000 randomly determined individual starting
points were used for the nth dipole problem for all three optimization formulations
(fmincon, fminsearch and fminunc). The optimized Lorentz force F is nondi-
mensionalized by dividing it with the prefactor —w, i.e. the value of F depends
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only on the decision variables, the respective angles. The optimized values for the
variables and objective function are summarized in tb.6.3 and fig.6.4 shows the
cross section view of the cylinder and dipoles. The success rates of the algorithms
fminunc, fmincon and fminsearch are summarized in tb.6.2. Figs.6.6-6.13 show
the success of the three optimization algorithms for the first 100 starting points.
Each of the 100 runs represents one of optimization rounds with the resulting opti-
mized nondimensionalized Lorentz force.

The same three optimization cases are considered like in section 6.1. Case 3 has
the most decision variables for for ¢ = 1,2, ..., n dipoles, i.e. the azimuthal angles v;
and the polar angles y; of the magnetic moments of the dipoles and the position of
the dipoles specified by ;.1 since the position of the first dipole ~; is fixed without
loss of generality.

Case 2 sets ; = 90° + (i — 1)360°/n, leaving p; and v; as decision variables.

Case 1, considers only a variation of the polar angles pu;, while the azimuthal
angles are set to v; = 90°.

The total number of dipoles optimized in case 3 was increased successively from
n=1ton=3.

The n = 1 dipole formulation includes two optimization variables, the azimuthal
vy and p; polar angles of the orientation vector of the magnetic dipole moment.
Because of the symmetry of the problem, the location of the dipole can be arbitrar-
ily fixed without loss of generality. Since there are only two variables the objective
function can be plotted, graphically analyzed (fig. 6.1) and the global maxima deter-
mined. There are multiple global maxima. The Lorentz force is maximal when the
dipole points perpendicularly to or away from the pipe, which is at p; = £90° and
v1 = +90° (fig. 6.4a) producing a Lorentz force F = 0.0511. The optimized values
of the force for the first 100 starting points (fig6.6) show that fminunc is a lot less
successful in reaching the global maximum compared with the other two algorithms.
It lands very often on an inflection point and it also has exit flag values of 2 meaning
that the algorithm did not converge in the allowed number of iterations. Therefore,
fminunc is not further considered for analysis. fmincon and fminsearch always
have an exit flag value of 1, i.e.the first-order optimality measure and maximum
constraint violation were satisfied. Both problems found the global maximum al-
most all the time, making it not yet possible to assert the success of one algorithm
over the other.

For n = 2 dipoles in case 3 when the location of the dipoles is also optimized,
the dipoles coalesce into one point, which is the fixed position of the first dipole.
The effect is that the two dipoles act as if they are one single dipole with a four?
times higher strength F = 0.2046. As with the formulation with only one dipole,
the orientation of the vector of the magnetic moments of the two dipoles point
in the same direction, perpendicularly away or towards the pipe p; = +£90° and
v; = £90°. Fig.6.7 indicates that fminsearch reaches more frequently the global

2Because of the quadratic dependence in m, see eq. 6.1.
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Figure 6.4: Depiction of the azimuthal angles p; and the resulting magnetic field
(color and contour plots) in the xy cross section of the cylinder for the numerically
optimized analytic problems.
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algorithm local max successful convergence

fminunc n=1 82% 99%
fmincon n=1 96% 100%
case 3 40% 95%
n=2 case?2 69% 98%
case 1 60% 87%
case 3 11% 0%
n=3 case?2 53% 0%
case 1 43% 100%
n=4 34% 95%
n=>5 71% 100%
n==~06 52% 67%
n==~8 55% 21%
n =16 27% 0%
fminsearch n =1 94% 100%
case 3 55% 100%
n=2 case?2 94% 100%
case 1 84% 100%
case 3 39% 83%
n=23 case?2 100% 99%
case 1 55% 100%
n=4 93% 100%
n=>5 92% 100%
n==~6 93% 100%
n==~§ 98% 6%
n =16 39% 1%

Table 6.2: Success rates of the algorithms fminunc, fmincon and fminsearch.

maximum than fmincon and even when fminsearch lands on a local maximum, it
finds a higher objective function value than fmincon (case 3). The exitflag value
for fminsearch is always 1, meaning that the first-order optimality measure and
maximum constraint violation were less than the specified limit.

The qualitative findings gained from the convergence study when two dipoles are
considered are confirmed in the results for n = 3 dipoles. In case 3 all dipoles cluster
together, resulting in one stronger magnetic dipole moment pointing directly away
or towards the pipe and a higher force F = 0.4604.

The current results are enough for a qualitative assessment of all similar setups
for increasing number of dipoles. When the location of the dipoles is also optimized,
the dipoles coalesce into one point, which is the fixed position of the first dipole.
This supports the importance of the strength of the magnetic source (fig. 6.2, section
6.1). A source, for example a magnet, that is twice as strong is far superior to two
sources that are only half as strong each (fig. 6.5). This is attributed to the quadratic
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n — 1 2 3 4 5 6 8 16

dipoles . . . . . ) . . .
P il opiin® ppin® g in® gy in® oppin® o in® gy in o pyin °

1 90.0 90.0 90.0 199.6 90.0 89.9 98.5 94.1
2 90.0 3.2 70.3 206.0 181.8 1759 126.0
3 176.8  199.6 38.5 3581  319.1  163.3
4 70.3 1414 90.0 36.5  218.6
) 333.9  181.8 98.5  299.0
6 358.1 1759 354.2
7 319.1 31.5
8 36.5 63.4
9 94.1
10 126.0
11 163.3
12 218.6
13 299.0
14 354.2
15 31.5
16 63.4

force #/ 0.0511 0.1566 0.1915 0.4757 0.5058 0.7395 6.1523 5.1440

Table 6.3: Overview of the optimized polar angles p; and nondimensionalized force
F of the analytic dipole problem for case 1.

dependence of m and the fast decay of the magnetic field, which varies with distance
H. The decrease of the field of a dipole is ~ H~2 for small distances and ~ H~7
for large distances [59], [26], [8]. Thus, the strength of the magnetic field of the
two weak dipoles is a lot weaker when it finally reaches the pipe than the magnetic
field created by a single, twice as strong, magnetic source. However, regarding the
practical aspect for the construction of the magnetic source, i.e. the magnet system,
the strength of permanent magnets cannot be increased randomly, but is limited by
current magnet materials. While it is possible to optimize the size and mass of the
permanent magnets, it is not effective to arbitrarily increase them since the force
measurement setup limits the dimensions and mass of the magnet system (chapter
6.5).

For the further analysis of the analytic dipole problem the positioning variables
will be removed as an optimization parameter and the dipoles are equidistantly fixed
v = 90° + (i — 1)360°/n, which is case 2.

The results for case 2 for n = 1 dipole are the same as in case 3, i.e. the Lorentz
force is maximal when the dipole points perpendicularly to or away from the pipe,
which is at gy = £90° and v; = £90° (fig.6.4a) producing a Lorentz force F =
0.0511.

The maximum for n = 2 dipoles is reached when the variables are p; = puy =
+90° and v; = +90°, meaning the orientation vectors are parallel to each other and
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Figure 6.5: Magnitude of the magnetic field inside the cross section of the cylinder
directly underneath the dipole. The cylinder is divided vertically in the middle. It
shows the optimized magnetic field for n = 2 dipoles for case 3 (left hand side) and
case 2/case 1 (right hand side). The magnetic field reaching the cylinder is stronger

when the dipoles cluster together in one position, than when the dipoles on opposite
sides of the cylinder.

perpendicular to the pipe (fig. 6.4b). Which essentially also happens in the first case,
but now the dipoles are placed at opposite positions and not in the same spot.

For n = 3 dipoles, the optimal values for the azimuthal angles are v; = 90° and
the optimal polar angles have values of (u1, o, u3) = (90°,3.2°,176.8°) (fig. 6.4c),
which produce a force F = 0.1915.

These results indicate that a maximal Lorentz force can only be reached, when
the dipoles orient themselves in a plane perpendicular to the cylinder axis. As such,
the azimuthal angles of the vector of the magnetic dipole moment will be set to
v; = 90°, i.e. restricting the orientation vector of the magnetic dipole moments to
the z = 0 plane. This also reduces the complexity of the optimization problem,
which increases exponentially with the number of variables. The consideration of
variable azimuthal angles is again of interest when neighboring dipole rings interact
with each other (chapter 6.4).

In case 1 the dipoles are equidistantly placed around the pipe and the azimuthal
angles are v; = 90°, only the polar angles p; are optimized.

The results for n = 1 dipole are the same as above.

For n = 2 dipoles the optimized variables are p; = +90° (fig.6.4b) with a
force of F = 0.1566. This is the same result which was gained from case 2. Since
there are only two optimization variables a 3D presentation (fig. 6.3) of the objective
function is possible which proves the location of the two global maxima. fmincon
exceed in the first case in 1% of the runs the specified number of objective function
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Figure 6.6: Best values of the nondimensionalized force F for the first 100 starting
points for n = 1 dipole, optimized by: a) fminunc, b) fmincon, ¢) fminsearch.
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Figure 6.7: Best values of the nondimensionalized force F for the first 100 starting
points for n = 2 dipole, optimized by: a) fmincon, b) fminsearch, for case 3 (red)
and case 1 (black).

evaluations, indicated by exit flag = 0. In 3% of the runs of the first case exit flag =
2 meaning that the first-order optimality measure was not met but the variables and
maximum constraint violation were less than specified. Thus, even though fmincon
is a more sophisticated algorithm, fminsearch seems to be better suited for the
dipole problem.

For n = 3 dipoles, case 1 has three parameters and a graphical analysis is
not possible anymore. However, three variables are still quite a small number and
it is feasible to do a brute force calculation with a parameter step size of 1° to
find maxima. In a brute force calculation all possible values of the feasible set
are assessed within the limits set by this step size. The resulting maximum is at
(p1, po, pt3) = (90°,5°,175°). The angles uy and pg differ by 1.8° from the maximum
reached by the numerical optimization. There are two possible reasons for this
deviation. The first is numerical error. The second is that the algorithm converged
to a local maximum. fminsearch found this maxima more often than fmincon

(fig. 6.8).
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Figure 6.8: Best values of the nondimensionalized force F for the first 100 starting
points for n = 3 dipole, optimized by: a) fmincon, b) fminsearch, for case 3 (red)
and case 1 (black).

The convergence plots for four dipoles are very interesting (fig.6.9). The val-
ues of the objective function found by fminsearch are always in the range of F =
0.4757 with an angle configuration of (pq, po, i3, pa) = (199.6°,70.3°,199.6°,70.3°)
(fig. 6.4d). There is no proof, that this maximum is global or only local, a graphical
analysis is not possible and a brute force calculation with a sufficiently fine param-
eter step size is not feasible. This is the only instance that an algorithm always
converges to such a narrow range of the objective function. This suggests, but does
not guarantee, that a global maximum was reached. fmincon finds also sometimes
objective function values that are in the same range of the maxmima reached by
fminsearch, but it often lands in a weaker local maximum. The values of exit flag
also support the success of fminsearch, which always satisfy the first-order opti-
mality measure and maximum constraint violation, while fmincon sometimes just
meets the specified change in variables and maximum constraint violation.

For n = 5,6 and 8 dipoles the convergence plots (fig. 6.10-6.12) exhibit a similar
behavior and are examined together. fminsearch is the more successful algorithm.
It finds the highest maximum objective function value more often. Only in less
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Figure 6.9: Best values of the nondimensionalized force F for the first 100 starting
points for n = 4 dipole, optimized by: a) fmincon, b) fminsearch.

than 10% of the runs this maximum was not found. It cannot be proven what
kind of maximum the attained results are, but the consisted results reinforce the
likelihood that it is a global maximum. fmincon is also able to find the same
maximal value of the objective function but with a much lower probability, which
further decreases with increasing dipoles. exitflag again supports the qualitative
assessment of the two algorithms. fminsearch satisfies the first-order optimality
measure and maximum constraint violation for n = 5 and 6 dipoles, for 8 dipoles
it sometimes exceeds the allowed number of maximal function evaluation. Allowing
for more function evaluations might result in exit flag to always take on the value 1.
exit flag indicates that fmincon does not reach the first-order optimality measure,
but fmincon still satisfies the limits for the change in the variables and maximum
constraint violation. The frequency for ezitflag = 2 increases with the number of
dipoles. The optimal polar angles p; and the corresponding forces are summarized
in th. 6.3 and visualized in fig. 6.4e-g.

The case of n = 16 dipoles is the last formulation of the analytic dipole problem in
this context. It is the most complex with 16 variables and with the most complicated
expression of the objective function. This makes it very difficult for an optimization
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Figure 6.10: Best values of the nondimensionalized force F for the first 100 starting
points for n = 5 dipole, optimized by: a) fmincon, b) fminsearch.

algorithm to find the global maximum. The attained maximal value of the objective
function F = 5.1440.

Both algorithms fminsearch and fmincon reach this value (fig. 6.13). However,
it is not possible to determine which of the algorithms is more successful. Both
are not able to satisfactorily process the problem and land often in local maxima.
This is also reflected in the values for exitflag. fmincon stopped because the
change in the variables and maximum constraint violation was less than specified.
fminsearch reached the limit of allowed function evaluations, except for a single
instance where it was able to meet the first-order optimality measure and maximum
constraint violation. The optimal polar angles y; and the corresponding force are
listed in tb. 6.3 and visualized in fig. 6.4h.

Fig.6.14 shows a graphical depiction of the vector fields created by the opti-
mized magnetic dipole moments for n = 16 dipoles indicated by the orange dots.
One quarter of the cylinder was cut out. The color indicates the magnitude and
the arrows point into the direction of a) the magnetic field, b) eddy currents and c)
Lorentz force. The magnetic field is almost homogeneous. The eddy currents form
two closed loops which are separated by the dipole plane. The Lorentz force points
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Figure 6.11: Best values of the nondimensionalized force F for the first 100 starting
points for n = 6 dipole, optimized by: a) fmincon, b) fminsearch.

towards the cylinder axis on the one side of the dipole plane, while it points out-
wards on the other side. This results from the interaction of the magnetic field and
eddy currents. The Lorentz force points only in the center of the cylinder against
the velocity direction and opposes the movement, which is the component of the
Lorentz force used in LFV.

The results of case 1 can be summarized very nicely by splitting the azimuthal
angles y; into the position angles ~; and the deflection angles w; with respect to the
line connecting the origin and respective dipole, i.e. w; = pu; — v, i.e. w; = p; — V.
Fig. 6.15 shows the azimuthal angles p; with 7; on the abscissa and w; on the ordinate.
There is a periodicity w;i,/2 = w; + 180°. Also w; meanders along the line v; = w;.
The angles w; are confined to a rather limited area close to this line, seemingly
restricting the variable domain to w; € [w; 4+ d, w; — ] with 6 < 70°. With increasing
numbers of dipoles the curve seems to approach an optimum that represents the
optimal orientation of infinitely many dipoles, i.e.a continuous ring. . The polar
angles p; are split into the position angles v; and the deflection w; with respect to
the line connecting the origin and respective dipole, i.e. w; = p; — ;.
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Figure 6.12: Best values of the nondimensionalized force F for the first 100 starting
points for n = 8 dipole, optimized by: a) fmincon, b) fminsearch.

Global Optimization

The algorithms used in chapter 6.2 do not guarantee to find the global maximum and
very often they land in local maxima as can be seen from the results (fig. 6.6-6.13).
Next to the normal optimization toolbox, which was used until now, MATLAB offers
a global optimization toolbox [38]. The included algorithms have specific functions
designed to deal with global maxima and minima. Two of these solvers, the global
search and the multistart solver, were tested. Both are gradient based methods, use
local solver and multiple starting points to find local and global maxima. Thus,
qualitatively they analyze a problem in the same way, like the local optimization
problems in chapter 6.2, i.e. a local solver was started from multiple starting points.
The difference lies in the type of acquisition of the starting points. In chapter 6.2,
1000 randomly chosen points were used as starting configurations, while the global
optimization algorithms determine them via other, internal methods like scatter-
search algorithms or evenly distributed between barriers.

For small numbers of variables the results gained by these global solvers coincide
with the local solvers. This is true specifically for n = 1,2 dipoles when all possible
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Figure 6.13: Best values of the nondimensionalized force F for the first 100 starting
points for n = 16 dipole, optimized by: a) fmincon, b) fminsearch.

variables (v, v, u) are included and for n = 4 when only p are considered. In all
other cases the procedure applied in the last chapter proved to be more successful
in finding local optima.

Also a modified BB method [13] which finds all optimal solutions was used for
a small number of variables, i.e. n = 2,4 and varying only p;. They proofed that
the obtained maxima from chapter 6.2 where indeed global maxima. Nevertheless,
these algorithms reached their limits when the number of variables was increased.

In summary: the optimization solver fminsearch with its Nelder-Mead simplex
direct search algorithm proved to be more successful than the more sophisticated
fmincon, which uses interior-point algorithm and also considers gradients in its
calculations. The global optimization solvers were only effective for problems with
a small number of variables and verified the results gained by the local solvers.
With higher number of variables the global solvers failed miserably. Therefore the
algorithms provided by the normal MATLAB optimization toolbox are used in this
work, i.e. fminsearch and fmincon.
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Figure 6.14: Graphical depiction of the vector fields created by the optimized mag-
netic dipole moments for n = 16 dipoles indicated by the orange dots. One quarter
of the cylinder was cut out. The color indicates the magnitude and the arrows point
into the direction of a) the magnetic field, b) eddy currents and c¢) Lorentz force.
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Figure 6.15: Azimuthal angles pu; for the numerical optimization of the analytic
problems for n = 1,2,...,16 dipoles. pu; is separated into position angle v; and
deflection angle w; = p; — ;.

6.3 Numerical FEM Solution

The analytic analysis of the dipole problem has its limits. First the applied approxi-
mation is only true for magnetic dipoles placed very far away from the pipe. At least
in a distance of h/R = 10 where R is the radius of the pipe and h is the distance
from the dipole to the cylinder surface (fig.4.1). Unfortunately, this is a very incon-
venient setup for practical applications. The farther away the magnetic field sources
the smaller the Lorentz force. It is proportional to H—3 for small [59], [43] and H 7
for large distances [26], [8]. A complete analytic study of the dipole problem is not
possible, especially with multiple arbitrarily placed dipoles. Furthermore, complex
realistic magnet systems and the resulting forces can only be analyzed by numerical
means. Such being the case, the problems studied with the complete analytic for-
mulation are reconstructed with two FEM software programs and also optimized to
gauge which software is better suited for more complex problems.

Here two software programs are used. One is the in-house code PROMETHEUS
[35] and the second is the commercial program COMSOL Multiphysics [10]. Both
software programs are introduced, their functional principle is explained and their
advantages and disadvantages considered in chapter 3. They both solve the govern-
ing equations (chapter 2). The magnetic field of the dipoles is analytically specified
inside the pipe by eq.4.1. The outer air domain can be discarded, reducing the sim-
ulation region to the pipe. This significantly decreases the number of FEM elements
and computational cost.

For the study of the multi dipole problem the distance of h = 25¢m, a cylinder
length of L = 5h = 125¢m and radius R = 2.5¢m is used (fig.4.1). These geo-
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n — 1 2 3 4 5 6 8 16

dipoles . . . . . ) . . .
P il opiin® ppin® g in® gy in® oppin® o in® gy in o pyin °

1 89.9 89.9 89.9  109.3 96.4 89.9 98.3 92.8
2 89.9 4.6 160.5 250.2 181.6 1757 124.3
3 1754 109.3 46.9  358.0 3187 160.5
4 160.5 151.9 89.9 36.4  211.7
) 351.0 181.6 98.3  290.9
6 358.0 175.7  350.8
7 318.7 29.6
8 36.4 62.0
9 92.8
10 124.4
11 160.5
12 211.7
13 290.9
14 350.8
15 29.6
16 62.0

force F 0.0522 0.1575 0.1929 0.3523 0.5011 0.7393 1.2940 5.1474

Table 6.4: Overview of the optimized polar angles p; and nondimensionalized force
F of the numerical FEM dipole problems simulated with PROMETHEUS and op-
timized by the inbuilt gradient method.

metric parameters where chosen, because at a ratio of h/R = 10 the asymptotic
approximation just begins to hold, while the appropriate parameters for the cylin-
der allows for a relatively fine and regular mesh, i.e. the mesh elements are not
stretched too much out of proportion along the pipe. Two meshes with different
degrees of fineness are used in the optimization procedure. A coarse mesh decreases
computational time so that the optimization algorithm may converge quickly. The
resulting optimal angle configurations are then used as the starting point for the
calculations with a finer mesh. For PROMETHEUS the parameters for the coarse
mesh are ¢y = 2mm, (. = 8mm and for the fine mesh are ¢y = 1mm (. = 4mm,
i.e. the same as in chapter 4.2. The model in COMSOL (chapter 4.2, fig.3.4) is
meshed with the default setting of finer. For the fine calculation the setting for the
sensitive region is changed to extremely fine with a maximum / minimum element
size of 1mm / 0.01mm.

PROMETHEUS is optimized with two methods. The first is the inbuilt gradient-
ascent method (chapter 5.2.3), which requires absolutely no licenses and uses parallel
computing. The second is the MATLAB problem fminsearch [38], fmincon is
passed on because it was less successful with the analytic problem (chapter 6.2).
COMSOL is used in conjunction with fminsearch but also with the algorithm
NOMAD (chapter 5.2.4), which was made for the optimization of time and resource
expensive black box problems.
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n — 1 2 3 4 5 6 8 16

dipoles . . . . . ) . . .
P il opiin® ppin® g in® gy in® oppin® o in® gy in o pyin °

1 90.0 89.9 89.9 70.5 89.9 90.0 98.3 94.1
2 90.0 3.9 194 205.8 181.7 36.4 1259
3 176.0 70.5 384 3582 3187 1634
4 194  141.5 90.0 175.7  218.6
) 334.1  181.7 98.3  298.8
6 358.2 36.4  354.0
7 318.7 31.4
8 175.7 63.3
9 94.1
10 126.0
11 163.4
12 218.6
13 298.8
14 354.0
15 31.4
16 63.3

force F 0.0526 0.1578 0.1927 0.3526 0.5064 0.7399 1.2951 5.1476

Table 6.5: Overview of the optimized polar angles u; and nondimensionalized force
F of the numerical FEM dipole problems simulated with PROMETHEUS and op-
timized by fminsearch from the MATLAB optimization toolbox [38].

Now the objective function is not given as an analytic expression, but its value
is provided by an FEM calculation. One function evaluation by FEM software
is relatively time consuming. Based on the results of chapter 6.2 the dipoles are
equidistantly placed around the cylinder in a ring of radius H = h + R (fig.4.1).
The decision variables are reduced to p;, since all dipoles are in the z = 0 plane. It
is not feasible anymore to explore multiple starting configurations, let alone 1000,
as it was done with the analytic study of the problem (chapter 6.2). All problems
forn=1,2,...,6,8,16 dipoles start from the same point u; = 0°.

Th. 6.3 and 6.5 provide an overview of the results from PROMETHEUS with the
fine mesh optimized with the gradient ascent method and fminsearch respectively.

The differences between the optimized angles for the coarse (not shown) and fine
mesh are up to £3° for the gradient ascent method. The algorithm also stops after
only a few function evaluations with the fine mesh. The same cannot be said for the
optimization with fminsearch. The angles for the coarse (not shown) and fine mesh
may vary by £155° and a high number of function evaluations are also needed for
the optimization with the fine mesh, even though the starting point was the optimal
configuration gained from the coarsely meshed problem. The optimization is prone
to finding local optima and depends also on the cylinder mesh sizes. The algorithm
starts from the starting point and converges to an optimum for a coarsely meshed
cylinder. The optimization with the fine mesh, starting from this optimum, can leave
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dipoles analytic PROMETHEUS COMSOL
n obj. function gradient fminsearch fminsearch NOMAD

1 0.0511 0.0522 0.0527 0.0517 0.0517
2 0.1566 0.1575 0.1579 0.1566 0.1566
3 0.1915 0.1929 0.1928 0.1924 0.1923
4 0.4757 0.3523 0.3526 0.3524 0.3357
) 0.5058 0.5012 0.5064 0.5029 0.5061
6 0.7395 0.7393 0.7400 0.4146 0.6989
8 6.1523 1.2940 1.2952 1.1766 1.2945
16 5.1440 5.1475 5.1477 2.8292 5.0814

Table 6.6: Overview of the best objective function values (nondimensionalized force
F) from the numerical optimization.

this local optimum to converge at another point. Fig.6.16 shows the convergence
plots for the coarse mesh and how it continues when a fine mesh is considered. There
is no significant change of the objective function values for the different meshes for
n =1,2,3,16. This is not the case for n = 4,5, 6, 8, where the algorithm leaves the
local optimum for the coarsely meshed cylinder to find a better configuration.

Despite this different behavior for the angles, the final objective function values
agree relatively well with each other (tb.6.6) considering that the analytic objective
functions from section 6.2 uses the asymptotic approximation, while the dipoles
in the FEM models are exactly modeled, but closer to the cylinder surface. The
difference between the gradient ascent and fminsearch methods are < 1% and
compared to the analytic results (tb.6.3) the difference is < 0.7%, except for n = 4
where it is 8.7%.

The model in COMSOL is optimized with fminsearch (chapter 5.2.2) and NO-
MAD (chapter 5.2.4). The calculated optimized angles are not shown, because it
would not lead to new fruitful findings. The objective function values derived by
fminsearch and NOMAD do not agree as well as PROMETHEUS with the ana-
lytic results (tb.6.6, fig.6.17). This is especially the case for n > 6 dipoles, with
NOMAD being more successful than fminsearch. For n = 4 dipoles both the
PROMETHEUS and COMSOL models differ rather strongly from the analytic re-
sult, but agree well with each other. This is not surprising since the FEM models
were started with the same angle configuration and seem to have found the same
maximum. Numerical uncertainties can account for the slight differences between
them.

The results reflect the behavior of the respective objective function. The land-
scapes of the objective functions have multiple valleys, hills and inflection points,
which makes optimization very difficult, but some agreement is still obtained.
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Figure 6.17: Best objective function values (nondimensionalized force F) from the
numerical optimization.

6.4 PROMETHEUS - Multi-Dipole-Ring Prob-

lems

Up until now the dipole problem was restricted to a relatively small number of
dipoles placed in a plane at a specific distance around the cylinder. The goal was
to gain insight into possible realistic magnet systems. With these limitations the
only obtainable practical arrangement can be of cylindrical nature with a cavity,
like a Halbach cylinder which can produce a high magnetic field on the inside of the
structure, while it is weaker on the outside [21].

The results of the last section suggest that a magnetic field which is rather close
to a Halbach cylinder is suited best for LE'V. A Halbach cylinder setup produces
an almost homogeneous magnetic field within the cylinder, while it cancels itself on
the outside. Here, the magnetic field is not quite as uniform, but more closely to
the magnetic field a dipole in the center of the setup would produce.

To assess possible and more complex magnet systems the number of dipoles
needs to be increased also along the cylinder axis. The study of the dipole problem
restricted to one plane suggest that a ring of n = 8 dipoles to be a good compromise
between number of variables and qualitative representation of the results.

Three different setups are analyzed in this context. In the first case two successive
rings of 8 dipoles are placed around the cylinder, while the second case includes
three successive dipole rings (fig.6.18). The last case is the most complex setup
investigated in the scope of the dipole problem. It consists of 11 successive dipole
rings. s denotes the distance between each ring, which is an optimization variable
only in the first two cases, since it would be too time consuming for the third case.
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Figure 6.18: Geometric parameters of the multi dipole ring setups for 2 and 3 dipole
rings.

The orientations of the magnetization vectors of the dipoles are optimized which are
given by azimuthal v;; and polar angles p;;, where i = 1,2,...,8 is the number of
dipoles in one ring and j = 1,2, ..., 0 is the number of successive dipole rings.

The parameters for the geometric setup of these problems are based on different
attributes than in former chapters. There, the main goal was the comparison with
the analytic asymptotic solution. With this aspect in mind the length of the cylin-
der and the distance between cylinder and dipoles were chosen. Now, the dipole
distribution should represent realistic, possible magnet configurations. They are
placed closer to the cylinder surface at h = 2.5¢m (fig. 6.18). This allows for the ap-
proximation of a magnet with a dipole and leaves necessary space between magnets
and pipe surface, since they are not permitted to touch. The length of the cylinder
depends on the lateral expansion S = (0 — 1)s of the dipole system. A systematic
variation of the length shows [ = 55 to be an adequate value for the simulations.
The conductivity is o = 45/m, the velocity is v = 5m/s and the dipole moment is
m = 2Am?.

PROMETHEUS and the inbuilt gradient-ascent method (chapter 5.2.3) are used
for the optimization. The mesh has again two different degrees of refinement. The
first optimization is done with a rather coarse grid defined by the parameters (; =
2mm, (. = 8mm to quickly find an optimal solution, which is then the starting
point for a fine mesh where (; = 1mm, (. = 4mm. (; meshes the central region of
the channel of length S.

Fig. 6.19 shows the dependence of the Lorentz force on the distance s between 2
and 3 dipole rings. The strongest force is produced, when the dipole rings are close
together. This underlines again the advantage of a stronger field source to multiple
weaker ones. The nondimensionalized Lorentz force decreases with s until it reaches
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Figure 6.19: Lorentz force depending on the distance s between the respective dipole
rings: a) 2 dipole rings, b) 3 dipole rings with 8 dipoles in each ring.
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a minimum at s = 90mm for 2 dipole rings. The force then increases by 0.004 and
decreases again until it reaches a constant value, when the two dipole rings do not
influence each other anymore.

The resulting optimized angles exhibit two different symmetrical cases. For the
2 dipole ring setup the first case is depicted in fig. 6.20, where the dots and contours
with the same colors represent the same dipole angle values, e.g.the topmost and
bottommost dipole in the first and second dipole ring are orange and have thus the
same p; angle. The contours of the topmost dipole in the first dipole ring and the
bottommost dipole in the second dipole ring have the same dark orange contour,
meaning that they have the same v; angles. The following angles concur, for the
distances s = 10, 20, 50, 200mm between dipole rings 3:

e The polar angles of opposite dipoles, i.e. j;; = p(;+4); where j =1 or 2 (filled
out dots in fig. 6.20a).

e The azimuthal anlges v;1 = v/(;44)2 (thick contours around the dots in fig. 6.20a).

e Two successive azimuthal angles with different values are followed by two az-
imuthal angles with the same value, i.e. angles v;_; and v; are followed (clock-
wise) by Vi1 = V49 (fig. 6.20a).

The second symmetry case is the same without the the last match and happens
for s = 40, 70, 80, 100, 130mm. There are no consecutive angles with the same value
as is indicated in fig. 6.20b.

For 3 dipole rings the force decreases steadily from s = 10mm to 100mm with two
minima at s = 30 and s = 80 (fig.6.19). These two points might be local extrema
that the algorithm found. The following angles coincide for s = 10, 50, 60, 7T0mm in
the first symmetry case (fig. 6.21):

e The polar angles of opposite dipoles in the first and third dipole ring, i.e.
fij = H(i+a); Where j = 1 or 3 (orange filled out dots in fig. 6.21a).

e The polar angles of opposite dipoles in the second dipole ring, i.e. fo = fi(i14)2
(green filled out dots in fig. 6.21a).

e The azimuthal anlges v;; = v(14); Where j = 1 and 3 on either side of the
equation (thick grey contour around the dots in fig. 6.21a).

e The azimuthal anlges v;3 = v(;14)2 and after two different v;_1)s # 1)z follow
two angles with the same value v 1)2 = V(i42)2 (thick blue and purple contour
around the dots in fig. 6.21a).

In the second symmetry case for the 3 dipole ring setup with s = 20, 30, 80, 90,
100mm the polar angles of opposite dipoles in the first and third dipole ring show
almost the same behavior as in the fist symmetry case. Only one opposite dipole

3The cyclic character of the problems should not be forgotten, i.e. angle;; = anlge(i1g);-
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Figure 6.20: Qualitative depiction of the symmetry among the dipole orientation
angles. Filled out dots represent the respective p; and the thicker contours to v;.
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Figure 6.22: Convergence plot of the 11 dipole rings problem optimized with the
gradient-ascent method in PROMETHEUS.

pair in the whole ring does not have the same value indicated by the striped orange
dots in fig. 6.21b.

In both cases the z = 0 plane marks a symmetry plane, but the parameters in the
first case are mirror-symmetric, while they are point-symmetric in the second case.
The second case is a more general formulation of the first case. As a consequence a
symmetry plane cannot be included in FEM simulations, which would significantly
reduce the geometric volume of the problem and thus the mesh. However, it is
possible to exploit the cyclic relations among the angles, which in turn reduces the
number of possible optimization variables.

The uncertainty of the optimum type, i.e. local or global, makes an interpretation
of these results difficult. The dipole interaction depends on the distance between
the dipoles and one configuration/symmetry can be more favorable than the other
at specific distances. A global optimization is necessary for final determination.
However, global optimization algorithms are usually limited to a smaller number of
decision variables [62].

11 dipole ring problem

The setup for o = 11 successive dipole rings (fig. 6.23) was chosen to test the capacity
of the optimization approach and as such the number of total dipoles per ring
was increased to n = 16. However, the distance between dipole rings s was fixed
to s = 10mm. This means there is a total of 352 decision variables. The other

geometrical parameters are analog to the other multi dipole ring problems. The
PROMETHEUS model is optimized with the built-in gradient method and fig. 6.22
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Figure 6.23: Geometrical setup of the 11 dipole rings problem. The dipoles are
indicated by the small cubes.
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Figure 6.24: Optimized magnetic flux density in 7" of the 11 dipole rings problem.
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Figure 6.25: Resulting eddy current density in A/m? of the 11 dipole rings problem.
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Figure 6.26: Resulting Lorentz force density in N/m3 of the 11 dipole rings problem.
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depicts the convergence plot. A maximum of the objective function is reached after
60 iterations.

Fig.6.24-6.26 show the magnetic flux density, the eddy current density and the
Lorentz force density on the cylinder surface. All physical properties exhibit a point-
symmetrical behavior. The dipoles are oriented in a way that the strongest part of
the magnetic field (fig.6.24) is tilted with respect to the cylinder axis. A larger
volume of the cylinder is penetrated by a strong magnetic field than it would be if
the flow of the magnetic field would be perpendicular to the cylinder axis. This is
reflected in all other physical properties.

The large number of dipoles could enable setups which send the magnetic field
through the cylinder multiple times. However, the magnetic field concentrates
only in the central part of the cylinder. All physical properties exhibit a point-
symmetrical behavior consistent with the simpler o = 2,3 dipole rings setups. The
strongest part of the magnetic field (fig. 6.24) is tilted with respect to the cylinder
axis. A larger volume of the cylinder is penetrated by a stronger magnetic field than
it would be if the flow of the magnetic field were perpendicular to the cylinder axis.
This is reflected in all other physical properties. Apparently, a magnet system that
is tilted with respect to the cylinder axis is most efficient.

6.5 COMSOL - Realistic Magnet System

Figure 6.27: Geometry of the setup with three successive magnet rings composed of
eight individual segments (units in cm).
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Figure 6.28: Optimization of the magnet system with the NOMAD algorithm.

The preliminary findings gained with the study of different dipole configurations
are finally applied to a realistic magnet system. Unfortunately the in-house code
PROMETHEUS is not able to simulate coupled setups with permanent magnets
and moving bodies. COMSOL Multiphysics [10] is used to conduct the simulations
in this chapter.

The conclusions drawn from the multi-dipole problems are as follows:

e For one ring of dipoles the magnetic field in a plane perpendicular to the
cylinder is similar to one that a dipole placed in the center would produce
(sections 6.2, 6.3).

~» A realistic representation of this setup is a magnet cylinder. The number
of segments is initially arbitrary. There should be enough segments to create
this dipole like magnetic field, while having as few optimization parameters as
possible. Magnet cylinders with 8 segments satisfactorily create the desired
magnetic field, while they contribute an acceptable number of 16 decision
variables, i.e. two parameters per segment.

e For multiple dipole rings the magnetic field is tilted with respect to the cylinder
axis (section 6.4).

~ The character of the magnetic field can be reproduced by successive magnet
cylinders with different segmential orientations (or with one magnet cylinder
where the segments are not in a single row but shifted in respect to each other.
This generates a tilted magnetic field compared to a straight magnet cylinder).
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Figure 6.29: 2D plots of the magnetic field in Tesla created by the optimized 3
magnet ring setup: a) cut through the xz plane and b) the zy plane.

e The Lorentz force for the 3 dipole ring problem is twice as high that for the 2
ring problem, even though the number of dipoles was increased by 1/3 (section
6.4).

~» Three successive magnet rings will be used (fig. 6.27).

The measurement fluid used in the actual experiments is saltwater with a very
low electric conductivity. Here the conductivity is set to 45/m. The water is pumped
with a velocity of 5m/s through a channel. The measured Lorentz forces are in the
range of a few uN. To detect this small force a very sensitive balance system is
used. The magnet system hangs from the balance system and its sensitivity limits
the weight of the magnet system to 1kg [12]. The density of NeFeB magnets is in
the range of 7.3 — 7.5g/cm?. This defines the maximal volume of magnetic material
that can be used. The magnets have a remanent flux density of 17. The distance
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Figure 6.30: 2D plots of the magnetic field in Tesla created by the optimized 3
magnet ring setup: cut through the middle of the a) first ring, b) the second ring,
¢) the third ring.

from the fluid to the channel is 0.03cm. It accounts for the thickness of the channel
wall and an air gap. For a pipe radius of 2.5¢m the inner radius of the magnet rings
is set to 2.8cm. The outer radius depends on the thickness of the magnet rings,
which is the same for all three rings. The radius of the surrounding air domain is
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Figure 6.31: 2D plots of the eddy currents in A/m? created by the optimized 3
magnet ring setup: a) cut through the xz plane and b) the zy plane.

10 times larger than the pipe and the length of the pipe is 20R in order to account
for the various geometric dimensions the magnet system can change into, i.e. slim
rings with a large diameter or thick rings with a small diameter.

The optimization variables are the orientation angles of the magnetization for
each segment of the magnet rings, considering the symmetric character displayed
in fig. 6.21b. This reduces the number of angle variables from 48 to 20. Thus, the
decision variables for ¢« = 1,2, ..., 8 dipoles per dipole ring and j = 1, 2, 3 the number
of the respective dipole rings are the polar angles ji;; = fi(;+4); where j = 1 or 3
and iz = p(i+4)2 and the azimuthal anlges v;; = v(;44); where j = 1 and 3 and
Vi = V(i+a)2- The thickness s; of and the distance s between the magnet rings are
also considered.

The optimization is done with the NOMAD algorithm. The configuration of
the starting point p; = v; = 0 and the distance between the magnet rings is s =
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Figure 6.32: 2D plots of the eddy currents in A/m? created by the optimized 3
magnet ring setup: cut through the middle of the a) first ring, b) the second ring,
¢) the third ring.

5cm and their thickness is s; = 5¢m. The bounds are s = [lem, 10cm| and s; =
[0.5¢m, 4.5cm]. The initial value of the objective function is already very close to
the derived maximum (fig. 6.28). The large swings in value mark changes on the
thickness of the magnet rings. The small changes in magnitude belong to changes

81



Figure 6.33: Graphical depiction of the vector fields created by the optimized magnet
system. One quarter of the cylinder was cut out. The color indicates the magnitude
and the arrows point into the direction of a) the magnetic field, b) eddy currents
and c¢) Lorentz force.

in the orientation angles of the magnets.

The optimal values for the magnet rings are s = 5.39cm and s; = 1.8cm. The
result for s is rather surprising. The multi dipole ring problems (chapter 6.4) showed
that the closer the dipole rings are the stronger the Lorentz force. Here, the optimal
distance between dipole ring is rather large with over 5cm. This might be attributed
to the difference between magnets and dipoles. The fast decrease of the magnetic
field of a dipole makes the clustering of multiple dipoles more favorable.

The resulting magnetic field (fig. 6.29, 6.30, 6.33a) inside the cylinder alternates
direction along the cylinder axis. Moving along the z-direction the magnetic field
first points in z-direction. Then it changes sign in the center of each magnet ring and
between the two magnet rings. The cuts through the dipole rings show two different
magnetic field distributions. The middle ring has a magnetic field that enters on
side of the cylinder and exits at the opposite side (fig.6.30b). The outer magnet
rings have multiple entrance and exit points of the magnetic field (fig. 6.30a,c).

The visualization of the eddy currents are not so descriptive in 2D (fig. 6.31, 6.32,
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6.33b). In front and behind the magnet rings the eddy currents alternate between
a clock and counterclockwise orientation across the diameter of the cylinder. The
eddy currents also form loops between the magnet rings to connect the clock and
counterclockwise loops.

The Lorentz force (fig.6.33¢) is maximal at the inner corners of the magnet
cylinder rings, but varies along the cylinder walls. It diminishes quickly, further
away from the magnet rings. The vectors of the Lorentz force form two half loops
at each magnet ring. In only relatively small regions opposes the Lorentz force the
movement of the cylinder, which is the component used in LFV.

The optimization of the magnet system for LFV illustrates the complex distri-
bution of the respective vector fields and the small volumes in which the Lorentz
force actually contributes to the braking force. If a weakly conducting medium is
considered this bottleneck constricts further, making it difficult to have a high qual-
ity measurement signal. Here, optimization is essential to improve the method for
further applications.
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Chapter 7

Summary and Outlook

This chapter summarizes and concludes the main results. Additional suggestions
for further study concerning practical, numerical and theoretical fields complete
this work.

7.1 Summary

The contactless measurement method for conducting media Lorentz force velocime-
try was numerically investigated assuming the quasi-static approximation. The goal
was to increase the Lorentz force resulting from the interaction between magnet
system and measurement medium approximated by a solid body, in this case a
cylinder.

The basis of the optimization was an intensive study of an academic dipole prob-
lem. A variable number of magnetic dipoles was placed around the cylinder and their
orientation and position was optimized. Different methods were applied, a complete
analytic formulation of a specific problem was investigated and more general setups
were examined with the aid of two FEM software programs and numerically op-
timized. The FEM software programs are the in-house code PROMETHEUS and
the commercial software COMSOL Multiphysics. Their different advantages were
utilized to complement and also to verify each other in the optimization.

The optimization of the problem itself is very difficult especially for increasing
numbers of variables. It is often not possible to determine the type of maximum
reached by the optimization algorithms. However it was always possible to attain
improvement configurations compared to the initial setups.

The results of the dipole formulation gave insight into the magnetic field distri-
bution, that can be applied the design of a practical magnet system.

The following objectives were accomplished:

e The results of [8] were reconstruction to verify the applied FEM software
programs. The in-house code PROMETHEUS converged satisfyingly, making
it suitable for FEM simulations in the framework of LF'V.

e The asymptotic approximation was extended of from one dipole [8] to mul-
tiple dipoles. The position of the dipoles is limited to a fixed distance and
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perpendicular plane with respect to the conducting cylinder axis, forming a
dipole ring. This allowed the derivation of an analytic objective function for
optimization. The position and orientation of the magnetic dipole moments
was optimized in order to maximize the Lorentz force acting on the conductor.
The dipoles clustered to one point, when their position was variable. When
the dipole positions were equidistantly fixed, their optimized orientations seem
to approach a continuous function.

e Different optimization algorithms were tested and compared. The analytic
objective function was analytically, via the Hessian matrix, and numerically
optimized. The FEM setups were optimized only numerically. The numerical
optimization algorithms were a gradient method and direct search methods.
The type of the attained optima, i.e. global or local optimum, depend on the
number of decision variables. Guaranteed global optima were found only for
a small number of variables n < 3.

e Conclusions from the results of the dipole problems were drawn and applied
to a realistic magnet system. In the multi dipole ring setup was the force for
3 dipole rings twice as high than for 2 dipole rings, even though the number
of dipoles was not doubled. Thus, a magnet system with 3 magnet cylinders
was constructed, where the thickness of the magnet cylinders and distance
between magnet cylinders was optimized. Furthermore, the magnet cylinders
consisted of segments whose magnetic orientation also belonged to the decision
variables. Here, the optimal symmetries among the multi dipole setup was used
to reduce the total number of variables for the magnetic orientations from 48
to 20, significantly reducing the complexity of the optimization.

7.2 Outlook

The results leave open a wide field for further investigations, numerically and prac-
tically.

e In the introduction it was pointed out that there are other practical possi-
bilities to improve the measurement of the Lorentz force. One of them is
to exchange the magnet system with high temperature superconductors [66].
This is a very promising approach. The results of the optimization of the posi-
tion of the dipoles show that it is always more favorable to use a single stronger
source than multiple weaker ones. Another possible method is to shield the
measurement system from outside disturbances. This raises the quality of the
measurement signal by decreasing the influence of noise.

e Theoretically the analytic multi dipole problem, which was investigated here
with an asymptotic approximation, can be extended to the close approxima-
tion [59], [43], where the dipoles are placed very close to the surface of the
conductor. Based on the two limiting cases a general formulation can be
obtained for multiple dipoles in one plane. Furthermore, an expression for
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arbitrary positions might be found, allowing for the dipoles to be placed in
the whole space.

A very interesting aspect is to consider dipoles of varying strength and variable
position. A minimal distance between dipoles has to be considered to avoid
the clustering of dipoles in one position.

The optimization algorithms fminsearch and the gradient ascent method are
not very sophisticated. Other types of algorithms can be investigated for
suitability. The most important ability is the processing of a high number of
variables.
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Appendix A

Analytic Expression for the
Lorentz Force

The components of the magnetic flux density created by a dipole, which are needed
for the calculation of the Lorentz force, depend only on 2. The derivation of this
goes as follows:

First, the rescaled coordinates (eq. 4.2) are inserted into the magnetic flux density
created by a dipole (eq.4.1).

By — o 3 ) —
r') = —
A 7’5
with
_I
r :<x_Hm>y Hyaz Hz)
/ 2 2 2\ (1/2
r'=((x— H,)* + (y — Hy)> + (z — H.)?)"/?
m = (Mg, My, m;)
leads to:
B (7?/) — pg 3(—Hy)[ma (&—Hy)+my (§— Hy)+mz(—Hz)l—mg [(2— Hy) 2 +(§— Hy) 2+ (2~ Hz)?)
* ir (2= Ha)2+(9—Hy)?+(2- Hz)2]%/2
Y — m3(177Hy>[mz(i*Hz>+my(Q*Hy)+mz(E*Hz)]*my[(Q*Hz)2+(Q*Hy)2+(2"*Hz)2]
B, (1
Y am (2~ Ha) 2+ (5~ Hy)2+(2—H)2]5/2
S\ po 3G—Hz)lma (& He)+my (§—Hy)+mz (4= Hz)l—mz (2 —He) > +(§—Hy) 2 +(3—H2)?)
B.(7 .
P e (2= Ha)2+(5—Hy) 2+ (:- Hz)2]?/2

Then the components of the magnetic flux density are expanded into a Taylor
series around € = 0. The zeroth polynomials of B;, By and B; depend only on the
translatory coordinate Z and not on Z or §. The Taylor expansions for ¢ =1,2,...;n
dipoles can be expressed in a compact general form, when the vectors of the magnetic
dipole moments m,; and the dipole locations H; are inserted in polar coordinates,
ie.

my = [myy | =m|cos(u) |, H=|Hiy|=H|cos(b)
Mis sin(f;) H;: sin(6;)
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B(O) £17 ZBZI 5’57

_ pom [1—22% — 62 cos 0; + 3 cos(20;)] cos pi; + 3sin(26;) sin p;
" 4nH? 2(1 + 2)5/2

B(O) 617 ZBzy 527

Al
pom 6(2 — cos6;) sin 0; cos p; + [—1 + 22% + 3 cos(26;)] sin y; (A1)
AnH? 2(1 + 2)52
617 Z Bzz 627
 pom [3Zcos(6; — i) + cos(pi) — 222 cos(p1;)]
AnH? (1+ 2y ’

With & = pom~y;u; H containing all other parameters. This is the special case
when the orientation of the dipoles are only allowed to vary in the xy plane. The
optimization in chapter 5 shows, that if the dipoles are located in this plane the
optimal azimuth angle is ¥ = 90, which is exactly here the case. The components
of the magnetic flux density are more complex for arbitrary positioning (not shown
here).

Only the first three orders in ¢ are needed for all wanted physical values B , O, J
and F. For the magnetic flux density they are:

0(e®) : BO(2)
O(eW) : BO(7)

—

0(e?@) : BA (7).

An exact expression like the one for B®(2) (eq. A.1) is not needed for the second
and third orders of the magnetic flux density. It is sufficient to know the relationship
between the terms of the different orders, since the higher order terms are replaceable
with BO(2). A system of equations that associates the different order terms is
gained by inserting (eq.4.3) into Gauss law (eq.2.1):

O-
| G - . - .
V-B= |0 (BO 4+ eBW 4+ 2B® 4 4 cnB™)
585
([0 (BY %\ (B 2\ (B
:E ag Bg(jo) +ée 8@ Bél) +€2 a@ ngz)
€0; B €0; BW €0; B?
2\ (BY
ot | Oy |- | B[] =0
882 Bén)
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Arranging the terms with respect of € gives:
O(E(O)) 0= 8@33%0) + 8233750)
0(=W):0=0:B” +8,B" + 9, B" (A.2)
0(=?):0=0:B" + 8, B + 9, B

The electric scalar potential inside the cylinder is derived by inserting (eq. 4.5)
into A¢ =0 (eq.2.20):

:;2(0;%; L 02 4 2202)(00) + 2oV 4 26 4 1 eng)
=024 02 +%02) (¢ + eV + 20 + . +e"¢™)
:8§(¢(0) + 5¢(1) + 52¢(2) 4o+ 5n¢(n))
+ a;(¢(0) + 5¢(1) + 52¢(2) 4.+ €n¢(n))
+ €2a§(¢(0) + €¢(1) + €2¢(2) 4.+ 5n¢(n))
=020 + 030V + 259 + . 4”036
+ 020 + c0i0) + 2076 + . 4+ "D
+220200) + £2026M) + 0261 + . 4+ 202
Arranging the terms on the order of magnitude of ¢ yields:
O(): 0= 920 + 856" = (95 + 07)0”
O(eW) : 0= 020" + 030" = (92 + 07) 9V (A.3)
O(e®): 0= 0020 + 930® + 020 = 926V + (92 + 92)9"
#© can be determined from the first equation in eq. A.3 with the appropriate

boundary conditions (eq.2.19) when the rescaled coordinates (eq.4.2) and r = 7R
are considered:

a¢ 1 a¢ Uz /UZ A A~
o = Rop = 5 ("tBy+yB.) = —(~RiB, + R{B,)

100 v,
= ——- = Z2(—%B, + 1B, A4
Ror ~ 7l Byt iB) (A4)
106 v
— — 22(—4#BO) 1 5B0O)Y
R or 7 BB
A possible expression for ¢ that solves the last equation in eq. A.4 is:

¢ = v, R(—2B(2) + §BY)(%)). (A5)

This satisfies the first equation in eq. A.3:
— 524(0) 2 4(0)
0=20;0" 4+ 0,0

= (v R(—=2B(2) + 9BV (2))) + 95 (v.R(—2B) (2) + §BY) (%))
= 0. R[02(—2B)(2) + §BY) (8)) + 02(—2B () + BV (%))
= v, R[-0;B{” (%) + 0,BL(2)] = 0



Inserting § = 7sin(f8) and & = 7 cos() and taking the derivative with respect to
7 gives:

0
o — 0. BB + 1B ()
= v, R(—0;7 cos(a)Bg))(é) + ;7 sin(a) BV (%))
= v, R(— cos(a)Bz(JO)(é) +sin(a) B (%))
i‘ 0)/ 2 g 0)/ 2
= UzR(—;B;(, '(8) + ;B:(c ()
£ —UZB?SO) . . _UZBz(/O) —UZB?SO)
=[] w.B® |=@>+e) | v.BO | =é-| v.BO
0 0 . 0 0
(7 x B).

Since there is now an expression for the zeroth component of ¢, it can be shown
that J = 0. For this Ohm’s law (eq.2.17) is expanded by inserting eq. 4.4, eq. 4.5
and eq. 4.3:

IO eI+ [IP |+ +e™ | g
JO Jm g2 g
—50:(00 + ep) +e2¢@ + 4 enp) — U2<Bg(10) + 88151) + 6233(,2) + ..+
n) (

=0 | —=19,(0© + 20W + 2@ + .. +e"0™) 4 vo(By + B + 2B + ...+ "B

TL2. (60 4 g 226 5 1 engtn)

Arranging the terms on the order of magnitude of ¢ gives:

(0) 1 (0)
©) o ~70:0"" — v:B,
OE™) - Jy | =0 —%@;(b(o) + vgBéO)
T 0
(1) !
OEW): | ) | =0 | =206 + v:BY (4.6)
i ~40:00"
2) 1 (2)
2 J:%Q) — 7020 —v:B,
OE?): | 17 | =0 | —40;6® +v:B}”
IS ~ e
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Eq. A.5 is inserted into the first vector of eq. A.6, confirming that JO = 0

y (8) ;
= O(UzBZSO)(Z) - Ungo)(i)) -0
IO = o(~ 500 + v:B0(2)) N
= 0= O R(=3B(2) + 9BV (2)) + v:BL (2)) a7
— o(—0,BY(2) + v:BY(2)) = 0
T = ‘7(—]1%59245(0))
= (g0 B35 () +1B(2) = 0

Now JU) can be derived. For this the divergence-free character of the eddy
currents are utilized by inserting eq. 4.4 into eq. 2.7:

0=V -J=V-JO 4]V 2] 4 4
V- JO V. eJV 1V 2] 4 4 V.

9\ (I 9\ (I

1 X X 5 X X
_ . (0) < . (1)
=1z | 9 Ty |t | Y Ty

Loy (Y e (0
o | [IP |+t 0 ||

B leo.) \

RJ@J Vb 07" 4 20:00) + RJ@J”+8J + 0.0
2 n

+%(0J + 0y Jy) +e0: ) + o+ 5 (0: 05 + 03y + €0:J7),

Arranging the terms on the order of magnitude of e gives:

Oy : 0= Rgaﬂ0+aJ)
O(=M): 0= RJ&f®+8J +95JM) (A.8)
O@%:O‘mwjm+8j +9,7).

With J© = 0 the second equation of eq. A.8 reduces to:
0= ;5" + 0"
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In the special case that the current is planar and non-rotational, it can be rep-
resented by a scalar stream function W. The stream function are the streamlines

which are tangential to the 2D current Jij) = (Jggl), ng)). The relation between the

components Jél), ng) and W is:

g Y g gm— _9Y

— Al A.
P N T T ah (4.9)

Using the expressions for Jggcl) and ng) from the second vector in eq. A.6 gives:

1 ov
(1) 1 (1)
Jy = o(—=0;01 — v:B;") = 77
1 oV
(1) 1 (1)

Considering the irrotationality of J}‘B and the second equation of eq. A.2 a Pois-
son equation for the stream function W is derived:
Vap x Jip = 0y s — 9; 050 = 020 + 920
1 1 1 1
= 8@0<—E@z¢(1) - Ung(; ) - 3&:0(—an¢(1) +uv:BY))

1 L1 )
=0PE%%&”—%W%)+E@%¢U—@%@U
1
R

== —O'Ug(ang(jl) + 8@.8:%1))
= 02}5(35320))
= AQD\I’ = O'Ug(agBéO))

= O'( (—851425(1) + 89%@(;5(1)) - Uganggl) - Uga@Bg))

The Laplacian in 2D in polar coordinates is:

1. . 1
AQD = gﬁf(rﬁf) + ﬁﬁz
since the symmetry of the cylinder implies that ¥ depends only in the radial co-
ordinate 7, i.e. ¥ = W(7#). The terms of the Poisson equation for W can then be
separated by the variables # and Z where each term is equal to the separation con-
stant C'. The integration leads to an expression for ¥ depending on the integration
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constants a and b:

—=

= / d(FO,0) = C / P
1
:>f6f\I/:C§f2+a
11
:>/d\I/:/C’ff+a7df
2 T
1
:>‘I/:C1f2+a1nf+b.

The term aln? = 0 in order to avoid singularity.
The boundary condition W(7 = 1) = 0 at the surface of the cylinder specifies the
integration b:

1 C
UV(ir=1)=C-+b= b=——.
(7f=1) C4+ 0= 1

Thus, the whole expression for ¥ is:

A, A A
e
4 T 11

":'2 (72 - 1)0:BY.

(7 ~1) =

¥ can now be reinserted into eq. A.9 to derive JS) and ng) and eq. A.5 to derive
Jél):

1
I =0,
=0y Jj;é (#* — 1)0:BY”
:"Zé 8:BL 0, (7> — 1)
(1 _
_ 5.0V 2 (0)
=03—~ (7" = 1)0: B (A.10)
:Uf 9: B0, (7> — 1)
Jo gaé (0)
N
= — Z0:0.R(=2B)(2) + §BY(2))

=00,0:(2B” (%) — BV (2)).

The calculation of J® requires the gradient in cylinder coordinates:

1 1
Ve = (05, 205, 0:) -

T =
T
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The divergence of J® in Cartesian and polar coordinates is:

o\ [P\ (o (T2
V-J® =18, - J<2 = 1o, |- J
o.) \s») o) \jb

z

1 1
= 030y + 0307 + 0:0 = 20:(FIY) + 30,07 + 05
T T

@) @_ 1o 2@, 15 5@

An expression for Jf) is now obtained, assuming that J® has no radial com-
ponent (eq.2.18) with the third equation of eq. A.8 and eq. A.10, followed by an
integration:

1
= 0SS + 9y = 20,0 = —0:0)
T
= 0: - 0:0"
Eazvzz%(—w;“)m + z;Bi (2))
= —ov,( cos ¢8? ( ) — 7'sin ¢823 )2
= 8¢J(§) = —ov,7*(cos p02 B

(
g
:>J(§) = —0v,7?(sin 02 é

(2) + cos qsa?B(O)(z))

The angular component of J® can be converted into the # and § components
with the unit vectors €y, €; and €y:

€y = — sin ¢e; + cos pe;
I, = 108 + JPe; = —singJ e, + cos 0 J0e;
to:
Jj(Q) = — sin quf)
=ov,T (Sln ¢82B(0 (2) + sin ¢ cos ¢823(0)(2))
JZ’(, = oS ¢J¢
= — ov,7*(sin ¢ cos ngE)QB( '(2) + cos® 902 BV (2)).

(A.11)

These are all the required components to finally derive the Lorentz force. Eq. 2.14
specifies only the z component of the Lorentz force to be necessary, which depends
on the  and ¢ components of J and B:

F= /(JxBy — J,B,)d. (A.12)

The components of the eddy current density and the magnetic flux density are
expanded according to eq. 4.3 and eq. 4.4, which shows the dependence of the Lorentz
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force on e:
F=FO 4 W) 4 2F® 4 4™

:/<(J3§0) el +e2 P + .+ e én))(Bgo) —|—5B§1) +52Bg§2) + ... —|—5”Bg§n)))
+

eV + 2P 4 e INY(BY 4+ eBY + 2BY + .+ e"BI)d0)

x x x

D 4 eBM + 2B 4 ..+ e"BMY)

+e J(z)(B(O) + 6B( )+ 523(2) +..+ 6”Bz§"))

+ ot " I(BY + B + 2B + ...+ e"BYY)

_Jygo)(B:(;n+€B<1)+EQB(>Jr "B

IVBY +eBY +2BY) + ...+ "BYY)
i J(2>(B<o> +eBW 4 2p® 4 4 o)
to "I (BY +eBY + 2BP + .+ e"BY))ds.
Arranging the terms on the order of magnitude of ¢ and considering that JO =

(0,0,0) (eq.A.7) gives:

0E"): FO = [ 0B — 10 B aq

-0
O FO = [JOBY + SV B - S0 B — 1Y BYag
_ [ Wp0 050
= [JBY ~ 5P B de (A.13)
0=y : @ :/Jéo)BéQ) +J§1)B§1)+J£2)BZ§O)
JOBY — gV BY — 1P BY 40
g z q o 9 z
[HBY — JOBY 4 2B~ 5P B0

The second eq. of A.13 reduces further to F") = 0, since:
// Jél)d:vdy =0 and // Jggl)da:dy =0 for z = const

because V - J = 0,.J, + Oydy + 0., =0 (eq.2.7)%.
Thus, only the F® term contributes to the Lorentz force:

/ JOBW — OB 4 j@A RO _ 2500

(
(] (]

—/J B~ VB d + [P B - P BPag.

Y

!The component of the current density can be replaced with the stream function ¥. The
integration is along a line with the same start and endpoint and thus is zero.

95



The stream function (eq. A.9) is inserted in the first integral on the right hand
side:

(A.14)

_ / 0,0) ng1> + (aixlf)Bi”dQ.

The integrand is rearranged:

s (\113 N+ 0,(WBY) = BP9, + wo, B + BV o, v + wo, B
= (9, 9) B + (0:9) B = 9;(WBY) + 0,(wBL") — w9, BY — wa,; B

Using eq. A.2:

(A.15)

Yy
_ / 0:(UBY) + 9;(WBY) 4+ w(9:B”)d€2.

The integral of the first two terms can be considered as the z component of a
curve. Then, Stokes’ theorem can be applied on a plane z = const:

/Vx??-dZ: X dr (A.16)
by [9))

The right hand side of eq. A.16 can be rewritten:

e
Ll (ax M) | <dm

0, X, — 0, X, dxdy
y z - aZXy 0
_ / / 0,X, —9,X. | - 0
3,z=const. achy _ ayX:v d:z:dy

_ / /E 0p X, — 0, X, dxdy.

The left hand side of eq. A.16 can be rewritten:

fx-dfzj{ x, || dy :7{ x, || dy :j{ X,dz + X,dy.
[2)> ox dz 0, z=const. ox

X, 0 0
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Thus, in the plane where z = const. Stokes’ theorem is:
[ 0s, — 0, Xedwdy = § Xda+ Xydy.
) %
For X, = UB; and X, = VB, follows:
/ 0,(UB,) (\I/B)dxdy—j{ UB;dx + UBydy = 0

because 0Y is the surface of the cylinder, where ¥ = 0.
The stream function ¥ (eq. A.15) is inserted into the third term on the right
hand side of (eq. A.15):

/ U(9:B)d0) = / / / U(89: B dwdydz = / 0.8 / / Wdady)dz

2 1

_ / 9. B / / Vrdrdf)dz = / 0.8 / / VR drdf)dz

= [0:BO w2 [ [ ZEG® — 1)0:Bpdidg)dz
00

1

0B o) [as o |
= /8232 ( 1 0:B; /r —rdr/dﬁ)dz
0

0

R 1,1
- [0:B0(*" aB§°>(Zr—§f2)

avz 1 1
—/aB 9.8 (5-3

2
_ _WalézR /(&QB;O))QdZ-

Reinserting this into eq. (A.14) together with the rescaled coordinate z = hZ
leads to the first part of the integral for the force:

F@a _ / g Y B4

7TO'UZR

—— /(@Béo))ZdZ (A.17)

SR2h T
e / (0:B9)2dz.

—0o0

For the second part on the right hand side of the force integral (eq. A.15) the «
and y components of J are taken form (eq. A.11) and the differential is replaced with
dQ = rdrdBdz = R?*hididfd2. The integrals not depending on 2 can be directly
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calculated?:
v [JPBY ~ P B e
= / ov, 7 (sin? BE)EB?(QO)(,%) + sin 3 cos /36239@0) (2))350)
+ ov,#%(sin B cos 5823@ (2) + cos® B2 B (2)) BY) R2hididpdz

¢=2m =

+oo
— v, R? / dzh / dp / di3(sin? BO2BL)(3) + sin B cos 02 B (2)) B

+ (sin S cos 563 J (z) + cos ﬁ@gBéo)(é))Béo)

+oo B=2m =1
—ov. R*r / dsh / dp / i3 (BO2BY(2) + BV a2 B (2))
—00 B=0 7=0

1
—ov. R / d5(B"92BY (2) + B9 B (2)).

The integrands may be rearranged for ¢ = Z, §:

0:(BY9.BY) = 9.B"9.B" + BV 2B
= BY9BY = 0.(B"0.B") — (9:B")*.

+o0o
The integral [ d282(Bi(0)8éBz-(0)) = 0 on the boundaries. Then:

1
PP = — ov.Rorh / d2[(0:BY)? + (9:B™)?. (A.18)

Putting the two parts of the Lorentz force (eq. A.17) and eq. A.18 together de-
livers the analytic expression for the asymptotic dipole approximation:
movs R i

F@ = _
8H

2[(0:B)? + (9:BV)?] + (9: BV dz. (A.19)

—0o0

=

2 27 27
2 [sin?BdB = [ cos®>BdB =m, [#3di =1/4 and [ sinfcosfB =0
0 0 0

(=)
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