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Zusammenfassung

Die vorliegende Arbeit stellt die Beitrage des Autors zu mehreren theoretischen und
numerischen Untersuchungen von Instabilitaten und komplexer nichtlinearer Dynamik
in Stromungen vor. Bei den betrachteten Stromungen handelt es sich um thermische
Konvektion in Ein- und Zwei-Schicht-Systemen nichtmischbarer Fluide, Zweiphasen-
Scherschichten und Kanalstromungen elektrisch leitfahiger Flissigkeiten in einem
auBeren Magnetfeld. Diese Konfigurationen sind durch eine Reihe von Anwendungen
motiviert, z.B. Warme- und Stoffiibergang an fluiden Grenzflachen bei verfahrenstech-
nischen Prozessen, Zerstaubung von Flussigkeiten fiir die Verbrennung oder elektro-
magnetische Pumpen und Bremsen fiir die Materialverarbeitung in der Metallurgie.
Die Komplexitat der realen Anwendungen wurde betrachtlich reduziert, um funda-
mentale Mechanismen und Eigenschaften solcher Stromungen zu untersuchen. Die
erreichte geometrische und konzeptionelle Einfachheit ist zweckmaBig fir die nu-
merischen Untersuchungen, weil man dadurch spezialisierte, aber sehr effiziente nu-
merische Methoden einsetzen kann. Die Ergebnisse solcher Untersuchungen konnen
das physikalische Verstandnis der Stromungen verbessern und zur Validierung von
allgemeineren numerischen Verfahren dienen.

Auf dem Gebiet der thermischen Konvektion hat der Autor mehrere Anordnun-
gen untersucht. Die erste ist oberflaichenspannungsgetriebene (thermokapillare) Kon-
vektion in einer einzelnen Flussigkeitsschicht. Fur diese Anordunung wurden die
Stromungsstruktur und das Skalierungsverhalten des Warmestroms mit zwei- und
dreidimensionalen Simulationen untersucht, einschlieBlich des Falls mit Magnetfeld.
Die Kopplung zwischen thermokapillarer Stromung und Auftrieb spielt in einen System
aus zwei Schichten mit Heizung von unten eine Rolle. Diese Anordnung kann eine
oszillatorische Instabilitat des warmeleitenden Grundzustands aufweisen sowie eine
Reihe verschiedener moglicher Konvektionsmuster fur deren nichtlineare Sattigung.
In einer weiteren Zwei-Schicht-Anordnung fiihrt die thermische und mechanische Kop-
plung an der Grenzflache zwischen Flissigkeitsschichten mit sehr unterschiedlichen
Warmeleitfahigkeiten zu einer auftriebsinduzierten Instabilitat bei Heizung von oben.
Diese beiden Zwei-Schicht-Systeme wurden mit dreidimensionalen, nichtlinearen Si-
mulationen untersucht, wobei der Schwerpunkt auf den Veranderungen der Konvek-
tionsmuster bei Variation der Starke des thermischen Antriebs lag.

Auf dem Gebiet der Zweiphasen-Scherschichten hat der Autor zwei lineare Sta-
bilitatsuntersuchungen auf der Grundlage der gekoppelten Rayleigh /Orr-Sommerfeld-
Gleichungen durchgefiihrt, sowie eine Verifikation des nichtlinearen SURFER Codes
mit Hilfe der linearen Stabilitatsresultate aus den Orr-Sommerfeld-Gleichungen. Das
Neue an diesen Arbeiten ist der direkte Vergleich der Resultate fiir den reibungsfreien
Fall und den Fall endlicher Zahigkeit bei Grundstromungen mit gleicher Struktur, und
die Identifikation eines spezifischen, zahigkeitsbedingten Instabilitatsmechanismus im
Parameterbereich von Zerstaubungsexperimenten mit Luft und Wasser. Weiterhin
wurde die Gltigkeit bestimmter Naherungen fiir das Geschwindigkeitsprofil der Grund-
stromung mit Hilfe exakter Losungen der Grenzschichtgleichungen fiir zwei Fluide



bestatigt.

Auf dem Gebiet der Kanalstromungen leitfahiger Flussigkeiten war der Autor an
numerischen Untersuchungen des Turbulenziubergangs und der Turbulenz beteiligt.
Fir ein Magnetfeld in Spannweitenrichtung wurde ein nichtlinearer Mechanismus fur
den Turbulenziibergang bei subkritischer Reynoldszahl analysiert. AuBerdem wur-
den die Eigenschaften der Turbulenz sowohl fiir ein Magnetfeld senkrecht zur Kanal-
wand als auch mit Magnetfeld in Spannweitenrichtung mittels numerischer Simulatio-
nen bestimmt. Zusatzlich wurde die Eignung des dynamischen Smagorinsky-Modells
fur die Grobstruktursimulation solcher Stromungen durch Vergleich mit direkten nu-
merischen Simulationen nachgewiesen.

Die Zusammenfassung schildert vorwiegend die Motivation fur die verschiedenen
Arbeiten sowie die grundlegende Physik der betrachteten Stromungen. Hauptergeb-
nisse werden auch angegeben. Einzelheiten zu den mathematischen Modellen und
numerischen Methoden finden sich in den Veroffentlichungen. Der Eigenanteil des
Autors an den verschiedenen Veroffentlichungen ist in einem separaten Anhang aus-
gewiesen.
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1 Introduction

The present work outlines the contributions of the author to several theoretical and
numerical investigations of instabilities and complex nonlinear dynamics in fluid flows.
The flows under study are thermal convection in single and immiscible double fluid
layers, two-phase shear layers, and channel flows of electrically conducting fluid with
an imposed magnetic field. These configurations are motivated by a variety of applica-
tions, e.g. interfacial heat and mass transfer in chemical engineering processes, liquid
atomization for combustion, or electromagnetic pumps and brakes for the processing
of materials in metallurgy. The complexity of the real applications has been reduced
considerably in order to examine fundamental mechanisms and properties. The ge-
ometric and conceptual simplicity achieved this way is also useful for the numerical
studies since it typically allows one to use specialized but very efficient simulation
methods. The results of such investigations can improve our understanding of flow
physics and can also serve as benchmarks for the verification of more general com-
putational approaches.

On the topic of thermal convection the author has considered several configura-
tions. The first is purely surface-tension driven convection in a single liquid layer.
For this configuration the flow structure and the heat flux scaling was studied by
two-dimensional and three-dimensional simulations, and in the presence of a mag-
netic field. The coupling between thermocapillary and buoyancy convection plays a
role in a system of two coupled layers heated from below. This configuration admits
an oscillatory instability of the basic state of pure heat conduction, and a variety of
possible convective patterns for the nonlinear saturation of this instability. In another
two-layer configuration, the thermal and mechanical coupling between layers of very
different thermal conductivity gives rise to a buoyancy-induced instability with heating
from above. These two systems were studied by three-dimensional numerical simu-
lations in the nonlinear regime with a focus on the transformation of the convective
patterns with the thermal forcing.

On the topic of two-phase mixing layers the author has performed two linear stabil-
ity studies based on coupled Rayleigh/Orr-Sommerfeld equations, and a verification
of the nonlinear simulation code SURFER by means of the viscous linear stability
results. The novelty in the linear stability calculations consisted in a direct compari-
son of viscous and inviscid results for geometrically equivalent configurations, and in
the identification of a specific viscous instability mechanism in the parameter range
of experiments on air/water atomization. Moreover, the validity of certain approxi-
mate velocity profiles of the basic flow was studied by means of exact solutions from
boundary layer theory.

Finally, on the topic of channel flows of electrically conducting fluid with an
imposed magnetic field the author has been involved in numerical studies of transition
and turbulence in conducting channel flows with uniform magnetic field. A nonlinear
transition mechanism for subcritical Reynolds numbers was investigated for a spanwise
magnetic field, and the properties of magnetohydrodynamic turbulence were studied



for both wall-normal and spanwise magnetic field. In addition, the utility of large-eddy
simulations with the dynamic Smagorinsky model for such flows was established by
direct comparison with direct simulation results.

The summary mostly presents the motivation of the different studies and the es-
sential physics of the systems under consideration. Main results are also described.
Details of the mathematical models and numerical methods are given in the publi-
cations. The contributions of the author to the individual papers are described in a
separate appendix.
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3 Marangoni and interfacial flows

3.1 Introduction

Flows with free surfaces or interfaces between different fluids are commonplace in na-
ture and technology, and are a major focus of current research. These flows can dis-
play interesting phenomena such as topology changes, e.g., when a droplet detaches
from a liquid thread. The interplay of surface tension and fluid inertia determines
the dynamics in this situation. However, surface tension does not only cause normal
forces (Laplace pressure) due to surface curvature. A non-uniform surface tension
also causes shear stresses at the interface. This so-called Marangoni effect is an
important driving mechanism for interfacial convection. Spatial variations of surface
tension can be caused by its dependence on temperature (thermocapillary effect) or
concentration (concentration-capillary effect).

Interfacial convection appears in various applications in chemical engineering and
materials processing. It can significantly enhance the efficiency of interfacial heat and
mass transfer, e.g. in liquid/liquid extraction or gas absorption. It is important in
processes involving phase changes, e.g. evaporation from thin films or boiling in heat
exchangers [31]. Specifically, thermocapillary convection is responsible for convection
in weld pools [36] and in electron beam evaporation of metals for coating purposes
[90], where it affects the weld structure and the energetic efficiency. Thermocapillary
forces are also a main cause of melt flow in crystal growth [61, 87]. The concentration-
capillary effect is used for the drying of silicon wafers in the semiconductor industry
[74].

Experimental and theoretical studies of interfacial convection have stimulated
and accompanied the development of the theory of pattern formation and nonlinear
phenomena in general. The instability in an open layer of fluid heated from below has
played a prominent role in this context. It was first studied systematically by Henri
Bénard in the early years of the 20th century. He used an open, shallow oil layer and
observed the spontaneous appearance of a flow when a certain critical temperature
difference was applied. This instability was interpreted and analysed as buoyancy-
driven phenomenon by Lord Rayleigh [86]. It was established only in the 1950s by
several researchers [18, 83] that the thermocapillary effect can lead to the so-called
Bénard-Marangoni instability, which turns out to be the main driving mechanism in
the experiments of Bénard. Convection in plane fluid layers with heating from below
and free upper surface is therefore known as Bénard-Marangoni convection.

Bénard-Marangoni convection typically displays a regular cellular pattern with
a hexagonal structure when the temperature difference is close to the convection
threshold. The characteristic cell size is of the order of the layer thickness. How-
ever, the Marangoni effect is only dominant for shallow layers. In thicker layers the
buoyancy-driven instability identified by Rayleigh contributes as well, and may even-
tually supersede the thermocapillary mechanism when the liquid layer is sufficiently
deep. Another thermocapillary instability mechanism involves surface deformation.
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Figure 1: (a) Instability mechanism in Bénard-Marangoni convection: A localized tem-
perature perturbation at the free surface causes thermocapillary stresses, whereby warm
fluid rises towards the surface. (b) Hexagonal cells in Bénard's original experiment. The
photograph was reprinted in [28].

The so-called long-wave instability appears at arbitrarily small temperature difference
when the stabilizing effect of gravity is neglected in the stability analysis [93].

Mechanical coupling with the gas phase above the liquid is unessential for the
Bénard-Marangoni instability. The flow in the gas phase can be neglected, and the
heat conduction in the gas can be approximated by an effective thermal boundary
condition at the interface. The mathematical model of Bénard-Marangoni convection
is thereby simplified to a single fluid layer.

However, this reduction is inappropriate for interfacial convection between immis-
cible liquids, where significant mechanical and thermal interactions can occur between
the different phases. The simplest configuration is a planar two-layer arrangement,
which retains the advantage of a single inhomogeneous direction in space. This is
particularly attractive for the study of additional instability mechanisms on account
of the presence of an “active” second fluid [78]. The author has explored such in-
stabilities in two different double-layer systems by direct numerical simulations. This
work was made in close collaboration with A. Nepomnyashchy and I. Simanovskii.
The main interest was on the spatial organisation of the convective pattern, which
need not be hexagonal as in the classical Bénard-Marangoni convection.

Further numerical studies by the author have examined the behavior of thermo-
capillary convection in single layers under strong thermal forcing. These investigations
have been motivated in part by scaling analyses of the heat transport in thermocapil-
lary convection with localized heating on the free surface, and by previous numerical
simulations of turbulent Bénard-Marangoni convection by the author, which were re-
stricted to two dimensions. The realization of turbulent thermocapillary convection
in three-dimensional simulations has therefore been a major objective. The next sec-
tions summarize several works on one-layer simulations with strong thermal forcing
followed by two numerical works on patterns in two-layer systems.
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3.2 Governing equations and numerical methods

The mathematical model of the fluid flow is provided by the incompressible Navier-
Stokes equations in combination with the energy equation. Buoyancy effects are
treated through the classical Oberbeck-Boussinesq approximation. The system of
equations for velocity v, pressure p and temperature 7' is

2_1;+(U-V)v = ‘%”Vz”—g(l—a(T—Toﬂeza (1)
Vv = 0, (2)

T

aa_t+(v-v>T = WV, (3)

where the fluid density, kinematic viscosity, thermal expansion coefficient and thermal
diffusivity are denoted as p, v, « and k.
Non-dimensionalisation of these equations leads to two dimensionless parameters.
Typically one introduces the Prandtl number
v

Pr = ~ (4)

which can be interpreted as the ratio of the timescales of thermal and viscous diffusion.
The forcing of the flow by buoyancy is characterized by the Rayleigh number
agd3 AT

VK

Ra = (5)
where d is the layer thickness, and AT is a characteristic temperature such as the
temperature difference across the domain in the case of pure heat conduction. In the
case of two fluid layers one has to consider two separate fluid domains with different
material properties and separate Rayleigh and Prandtl numbers.

The equations have to be augmented by appropriate boundary conditions on the
bounding surfaces of the individual fluid domain. In principle, the shape of the
domain is part of the problem because the interface (free surface) may be displaced
by the flow. However, one can study many aspects of interfacial convection with the
assumption of a static interfacel. The author has used this approximation in all of
his numerical studies of interfacial convection.

1The neglect of interface deformation is justified on length scales of order d when the dynamic
pressure is small compared with the Laplace pressure of surface deformations with a radius of
curvature d. The dynamic pressure may be estimated by the geometric mean of the viscous and
thermal velocities v/d and x/d, whereby one arrives at the crispation number Cr = pvk/Sd. A
large surface tension S - quantified by the condition Cr <« 1 - allows one to make use of the
static interface assumption on lateral scales comparable with d. The advantage of this assumption
for numerical simulations quite significant: One has effectively to deal with single-phase flows on
fixed computational domains in this case. When the interface geometry is part of the problem, the
simulations require a completely different approach with moving grids or fixed-grid methods with
variable fluid properties. Numerical methods for such general two-phase flows still have considerable
problems and limitations in terms of reliability and accuracy, and it is therefore advantageous to
employ proven and computationally efficient methods for single-phase flows where possible.

11



The assumption of a static planar interface eliminates the need to consider the
balance of normal forces on the interface, which is chosen as z = const. The balance
of tangential forces is given by the conditions

,,%_ ,/% _ 98 (6)
P11 92 P22 9. o

V%_ V% _ 98 (7)
P11 G P2 25, dy’

on the horizontal velocities u and v, where the index 1 refers to the top and index 2
to the bottom layer [63, sec. 61]. The temperature dependence of surface tension is
usually approximated by a linear relation

S=Sy— T —Tp). (8)

Nondimensionalisation of the tangential force conditions with this relation gives rise
to the so-called Marangoni number

_ ydAT

Ma ,
PUK

(9)

where d and the quantities in the denominator could be that of the top or bottom layer
or any dimensionally matching combination of the fluid properties. The Marangoni
number describes the forcing of the flow by the thermocapillary effect. In the single
layer approach one simply neglects the shear stresses by the top layer in eq. (6,7).

The numerical simulations of interfacial convection in a single or two coupled,
plane layers have been performed with pseudo-spectral methods based on Fourier-
Chebyshev modal expansions of the hydrodynamic fields. The velocity is represented
through a velocity potential formulation known as poloidal-toroidal representation,
whereby the incompressibility constraint is satisfied automatically. The methods have
been implemented by the author for distributed memory parallel computers using
domain decomposition on the array of spectral expansion coefficients. The single-
layer code is described in detail in the doctoral thesis of the author [19], and the
extension to the two-layer problem in the publications [6, 24].

3.3 One-layer systems
3.3.1 Three-dimensional simulations [1, 2]

Low Prandtl numbers are typical of liquid metals and semiconductors, which have
high thermal conductivity. Investigations of the flow structure and heat transport in
thermocapillary flows of such liquids are of interest for materials processing, and for
the understanding of fluid turbulence near free boundaries.

The author had previously studied Marangoni convection at low Prandtl num-
bers in his doctoral thesis and observed clear power-law scaling of the Nusselt and

12



localized heat flux

isothermal wall |

Figure 2: Computational domain and the thermal boundary conditions for the study
of Marangoni convection with heating from above.

Reynolds numbers in two-dimensional simulations of the Bénard-Maragoni system.
At that time, three-dimensional simulations could not be realized for sufficiently large
Marangoni numbers because of limited computer resources. The publications [1, 2]
present such three-dimensional simulations with Pr = 0.1 for two different configu-
rations. The first is the Bénard-Marangoni system with uniform heating from below,
which has been studied with periodic boundary conditions in the two horizontal di-
rections (x,y). The second configuration has non-uniform heating from above and
lateral confinement by adiabatic, free-slip walls. It corresponds reasonably well to the
theoretical model formulated by Pumir and Blumenfeld [84] for the heat transport in
electron beam evaporation, which provides scaling laws for the characteristic velocity
and temperature with the heat flux. The chosen lateral boundary conditions in the
second configuration are without alternative because of the use of the Fourier system
in the modal expansion of the hydrodynamic fields.

The results for localized heating from above (Fig. 2) are described in the publica-
tion [1] and will be summarized first. The aspect ratio of the square box is L/d = 2
and the heat flux distribution at the free surface is prescribed as a centered Gaussian

of the form
z—d)?’+ (y—d)?
Q(IE,?/) = ({max €XP <_5 ( ) d2( ) ' (10)

This heat flux distribution is compatible with the reflection and rotation symmetries
of the computational domain2. The temperature scale © and the Marangoni number

are defined as p g
qmax ’YQmax
0= Maq=—— 11
P VR (11)
where \ denotes the thermal conductivity. The Prandtl number is Pr = 0.1. Buoy-
ancy effects are neglected (Ra = 0).
The state of pure heat conduction has a non-uniform temperature distribution on

the free surface because of the non-uniform heating. It is illustrated in Fig. 3(a) and

2Eq. (23) for the heat flux distribution in [1] is incorrect.

13
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Figure 3: Temperature distributions in the vertical midplane for Marangoni convection
with heating from above: (a) corresponds to the conductive state Ma = 0; (b) shows
a snapshot at some point during the oscillation period at Ma = 1.4 x 10°.
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Figure 4: Dependence of Reynolds number (a) and average temperature (b) on Ma
for Marangoni convection with heating from above.

causes appearance of Marangoni convection as soon as Ma > 0. The laminar flow
at small Ma resembles a deformed toroid with upflow in the middle of the box and
downflow at the lateral walls. This global flow pattern persists at higher Ma even
after the onset of time dependence and chaotic flow. The increasing loss of symmetry
with increasing Ma is documented in the publication [1].

The transformation of the temperature distribution by the flow is illustrated by
vertical temperature profiles in the plane y = L/2 shown in Fig. 3(b). In contrast
to the conductive state in Fig. 3(a), the isotherms are concentrated below the heat
source in Fig. 3(b), and the temperature variation in the outer regions near the walls
is minimal. This structure of the isotherms is caused by the strong vortical motion
near the walls. The temperature distribution on the free surface is also modified
considerably, and does no longer show the concentric arrangement of the conductive
state. Nevertheless, the highest instantaneous temperature is located at the center of

14



the free surface for all values of Ma realized in the simulations except for the highest
Ma = 2 x 10°. At this value of Ma the flow becomes chaotic and loses its spatial
symmetry.

The rms velocity (Reynolds number) and the time-averaged temperature at the
center of the free surface are shown in Fig. 4 as functions of Ma. One can clearly
identify two distinct scalings. For low Ma, the two quantities scale as

Re ~ Ma', T ~ Ma". (12)

These relations correspond to laminar flow at moderate Reynolds and low Peclet
number, i.e. there are no boundary layers and the temperature distribution remains
close to the conductive state. For Ma > 10* the Peclet number remains no longer
small, and the temperature is reduced in comparison with the conductive state by the
additional convective heat transfer. The relations

Re ~ Ma*®, T ~ Ma "' (13)

are obtained from best fits to the data between Ma = 5 x 10* and Ma = 1.4 x 10°.
This scaling is in fair agreement with the model by Pumir and Blumenfeld, which
predicts exponents 1/2 for Re and —1/4 for T" in case of laminar boundary layer flow
[84]. The turbulent regime is also modeled by these authors, but the simulations
could only realize a weakly turbulent state at the highest value Ma = 2 x 10°. The
discrepancy between the boundary layer model and simulation in the scaling exponents
for T' is not particularly surprising since the model assumes homogeneous temperature
except for a hot spot beneath the surface. This assumption is not fully adequate for
the temperature distribution in Fig. 3(b).

Simulation results for the Bénard-Marangoni system with the Prandtl number
Pr = 0.1 are documented in the publication [2]. In this configuration, the heat is
transported from the isothermal bottom to the free surface, where a uniform heat
flux density ¢ is assumed. The temperature scale © and the Marangoni number are

defined as p »
q vq

0="— Ma = )

A7 “ PAVE

(14)

Buoyancy effects are neglected (Ra = 0). The horizontal directions are periodic with
dimensions L, = L, = 2xd.

In contrast to the previous case with heating from above, convection can only
be sustained for Ma 2 80 because of the finite instability threshold. The flow
pattern at this threshold consists of stationary hexagonal cells with downflow in the
cell center [96]. For higher Ma these so-called inverted hexagonal cells are unstable
and the flow aquires time-dependence and spatial irregularity. In the parameter range
Ma > 500 considered in [2] the flows appear to be turbulent. Fig. 5(a,b) show
a snapshot of the surface temperature distribution and mean temperature profiles.
The temperature difference is reduced by increasing Ma because of the additional
convective heat transport.
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Figure 5: Bénard-Marangoni convection at Pr = 0.1: (a) snapshot of surface temper-
ature at Ma = 4000, (b) mean vertical temperature profiles, (c) surface temperature
spectra for several Ma. The power laws in (c) are shown for comparison.

For the interval 500 < Ma < 4000 covered in the three-dimensional simulations,
the Reynolds number Re and mean temperature difference can be described by power
laws in Ma with exponents that are fairly close to those from two-dimensional simu-
lations of turbulent Bénard-Marangoni convection at the same Prandtl number [22].
These exponents are also in reasonable agreement with a simple model from [22]
based on laminar thermal boundary layers in combination with a turbulent estimate
e ~ Re? for the viscous dissipation rate €. However, at the same Re the viscous
dissipation rate ¢ is considerably larger in the three-dimensional case than in the
two-dimensional case considered in [22].

Another similarity with the two-dimensional results concerns the temperature dis-
tribution on the free surface. Fig. 5(a) shows that there are relatively large, warm
patches (in red) with upflow and small gradients, whereas the cold downflow regions
are narrow bands (in blue) with a high density of isotherms. This structure is reflected
in the surface temperature spectra Ejy(k) shown in 5(c), which are calculated from
the Fourier coefficients ék; with wavevector k by

Ey(k) = Z 1O |*. (15)

k—Ak<|K|<k+Ak

The wavenumber increment Ak = /L, is prescribed by the periodicity length of the
computational domain. Time-averaged spectra display an approximate k~* decay with
the wavenumber k. This power law is characteristic of discontinuities in the gradients,
which are localized along lines. It has been originally suggested by Saffmann for the
distribution of vorticity in two-dimensional turbulence [88]. The k~* decay is different
from Bénard-Marangoni convection at large Prandtl numbers, where an approximate
k=3 spectrum has been found in numerical simulations [98]. The smaller exponent
—3 points to stronger singular structures, namely point singularities in the Laplacian
of the surface temperature [98].
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3.3.2 Two-dimensional simulations [3, 4]

The comparison between two- and three-dimensional results for Bénard-Marangoni
convection at low Prandtl number in the publication [2] shows that that two-dimensio-
nal, laminar convection provides the most efficient heat transfer. This so-called inertial
convection occurs for two-dimensional roll cells with a near inviscid balance of pressure
gradients and nonlinear terms in the Navier-Stokes equations. For Bénard-Marangoni
convection, this mode of convection has been realized in two-dimensional numerical
simulations by using the free-slip condition at the bottom of the fluid layer [21].
Inertial Bénard-Marangoni convection provides a characteristic scaling

AT,

N
YTAT

~ Ma'/3 (16)
of the Nusselt number Nwu, which is independent of the Prandtl number. In eq.
(16), the quantity AT denotes the average temperature difference across the layer.
Convection reduces AT in comparison with ATy in the conductive state since the
heat flux is prescribed. The ratio ATy/AT is therefore an appropriate measure of
the heat transfer by convection. The Marangoni number in eq. (16) is defined by eq.
(9).

The remarkable properties of inertial convection provided the motivation for two
subsequent studies of two-dimensional Bénard-Marangoni convection. In the first
study, the effect of a vertical magnetic field on Bénard-Marangoni convection at low
Prandtl number is considered. The results are described in the publication [3], which
also includes some three-dimensional simulations. The second study [4] considers the
opposite case of two-dimensional Bénard-Marangoni convection at very large Prandtl
numbers. Two-dimensional simulations allow one to reach much larger Marangoni
numbers than three-dimensional ones because the computational effort at the same
Marangoni number is considerably smaller.
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Figure 6: Isocontours of (a) streamfunction 1), (b) vorticity w and (c) temperature for
steady two-dimensional Bénard-Marangoni convection with Ha = 20, Ma = 32000,
Pr =0.02, L, = 27/3.82. Only a single roll is shown due to the imposed mirror
symmetry. The flow orientation is counter-clockwise.
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Figure 7: Two-dimensional Bénard-Marangoni convection with vertical magnetic field
and Pr = 0.02: (a) scatter plot of w and ¢ for Ha = 20, Ma = 64000, Pr = 0.02,
L, = 2mw/3.82; (b) Nu(Ma) for different domain sizes L, = 2m/k and Hartmann

numbers.

A vertical magnetic field raises the threshold for the Bénard-Marangoni instability
and modifies the unstable wavelength [106, 97]. However, the magnetic damping
of the flow by the Lorentz force is linear in the velocity®, and should therefore not
preclude the possibility of a near inviscid balance when the flow is sufficiently fast.
The simulations in paper [3] are in line with this expectation. Fig. 6 shows isolines
of streamfunction and vorticity as well as isotherms for a magnetic induction B
corresponding to the Hartmann number Ha = 20. The symmetric form and the visual
resemblance of isolines of streamfunction and vorticity in Fig. 6(a,b) are indications
of a near balance of nonlinear and pressure terms in the Navier-Stokes equations. This
is confirmed by the scatter plot of streamfunction 1 and vorticity w for a single roll
in Fig. 7(a). It reveals a functional relation w(v)) for large 1, which is approximately
linear. Such values of 1 correspond to the core region of the convection roll. The
functional relation between ) and w disappears towards the boundary layers, where
viscosity becomes important. The finite slope in the w()) relation is an indication of
the Joule dissipation. It is absent in the non-magnetic simulations, where the vorticity
is constant by the Prandtl-Batchelor theorem [35, sec. 3.5]. The paper [3] considers
this aspect in more detail.

The effect of the magnetic field on the Nusselt number is shown in Fig. 7(b).
The curves for different parameter combinations (two domain sizes L, = 27 /k and
two Hartmann numbers) demonstrate the shift in the instability threshold to higher
Ma by the magnetic damping. In contrast to the two cases with Ha = 0, there is
no clear indication of the scaling (16) for Nu with Ma for Ha > 0. This is not
surprising since the temperature field still lacks the isothermal core in the bulk in Fig.

3Section 5.2 describes the mathematical model for conducting flows. The Hartmann number is
defined in eq. (42).
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6(c), which is assumed for the scaling relation (16). This observation applies for all
simulations with magnetic field performed for paper [3]. Eq. (16) may nonetheless
become valid at even larger Marangoni numbers.
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Figure 8: Two-dimensional Bénard-Marangoni convection with infinite Pr: (a)
streamfunction (top) and temperature (bottom) for Ma = 320000, (b) mean tem-
perature profiles for different Ma. The thermal boundary layer at the bottom is
considerably thicker than at the free surface.

Bénard-Marangoni convection at large Prandtl numbers is dominated by viscos-
ity. Any viscous boundary layers will therefore be considerably wider than thermal
boundary layers. The limit of infinite Prandtl number eliminates inertia completely,
and the velocity field then lacks any boundary layers. Thermal boundary layers can
nonetheless develop in this case, which is explored in paper [4]. The two-dimensional
simulations at infinite Prandtl number from paper [4] do not provide time-dependent
solutions, i.e. the flow organizes in stationary roll cells. The significant advection of
the temperature field leads again to approximately isothermal core regions, which can
be seen in Fig. 8(a). However, the mechanical boundary conditions at the bottom
play an important role for the heat transport in this case. For free-slip conditions,
the velocity is finite at the lower wall, and the thermal boundary layer has therefore
a characteristic thickness of order V' =1/2, where V is the spatial rms velocity. The
thermal boundary layer at the free surface has the same property, and one obtains a
Nusselt number scaling with Ma'/? as in eq. (16) for inertial convection.

However, the boundary layer scaling changes when the no-slip condition is used at
the bottom wall. In this case, the velocity is approximately proportional to the distance
from the bottom wall, and the thermal boundary layer has then a characteristic
thickness of order V=1/3 where V is again the integral velocity scale. This estimate
can be found in [92]. The different behavior of the thermal boundary layers at the
bottom wall and at the free surface is apparent from Fig. 8(b). As a consequence,
the lower boundary layer limits the heat transport in this situation. The asymptotic
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model for the Nusselt number scaling is thereby modified, and provides
Nu ~ Ma??. (17)

The numerical results in [4] agree closely with the relation (17).

3.4 Two-layer systems

Two-layer systems are interesting because the mechanical and thermal interactions
between immiscible liquids can introduce instability mechanisms that are qualita-
tively different from those in the one-layer approximation. The author has studied
such instabilities in two different two-layer systems mainly in collaboration with A.
Nepomnyashchy and |. Simanovskii. The two studies have been published in the pa-
pers [5, 6]. In contrast to the one-layer approximation, specific substances had to be
chosen because of the large parameter space associated with the material properties
of the fluids.*

3.4.1 Anticonvection [5]

The study is concerned with the so-called anticonvection, i.e. buoyancy-driven insta-
bility with uniform heating from above. The liquids are mercury and water as sug-
gested by Welander, who noted that anticonvection can exist in a two-layer system
when the thermophysical properties of the liquids are very different [105]. A suitable
configuration for anticonvection requires a lower, dense liquid of high thermal con-
ductivity combined with an upper liquid with considerably smaller heat conductivity.
The instability mechanism can then be described by considering a rising fluid element
in the lower layer approaching the interface. Because of continuity and mechanical
coupling at the interface, a corresponding downward motion is generated in the up-
per liquid. This downward motion in the top layer carries warmer fluid towards the
interface, whereby the temperature rises in the lower layer near the interface thanks
to the high thermal conductivity of the lower liquid. This way, the rising fluid element
in the lower layer can obtain an excess temperature relative to the mean (positive)
temperature gradient and thereby sustain its motion through positive buoyancy. In
the top layer, the downward flow is opposed to the buoyancy forces.

The simulations in paper [5] were performed for equal thicknesses d; = ds of
mercury and water. The control parameter is the Grashof number

(18)

defined with the material properties and the thickness d; of the water layer. The
temperature difference AT is the total applied temperature difference across both

4Six independent, dimensionless quantities are necessary to characterize the system, e.g., the
ratios of densities, viscosities, thermal conductivities, thermal diffusivities, expansion coefficients,
and one of the two Prandtl numbers.
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liquid layers. The absolute value of AT is used for convenience in eq. (18) since AT
is negative for heating from above. Linear stability analysis provides a critical value
G =~ 2010 for this configuration with a critical wavenumber k.d; ~ 0.97.

Figure 9: Interface temperature snapshots for anticonvection at (a) G=2050, (b)
G=3150, (c) G=5000. The aspect ratio is L, = L, = 40d;.
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Figure 10: Anticonvection: (a) surface temperature spectra for several G, (b) mean
temperature profile.

The convective pattern on the interface is shown in Fig. 9 for different values
of GG. Near the threshold G. the pattern is composed of hexagonal cells and free of
defects (Fig. 9(a)). The orientation of the flow in the center of a cell is upwards in
the lower mercury layer. This hexagonal pattern can be sustained for G < GG down to
about G, = 1730. This subcritical interval (G, — Guin)/Ge =~ 0.14 is considerably
larger than the interval (Ma. — Mamm)/Ma. =~ 0.01 in one-layer Bénard-Marangoni
convection at small or large Prandtl numbers [23, 98]. The flow becomes time-
dependent around G & 3000, and develops an approximately rhombic cellular pattern
around G =~ 3200. This pattern is not stable, and becomes more and more disordered
as (G is increased to G = 5000 and beyond. At the same time, the cellular structures
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grow in size. This trend is apparent from Fig. 9, but it can be quantified further
by time-averaged spectra Fjy of the temperature on the interface (Fig.10a) . They
are calculated by eq. (15). The peak of Ej is around k =~ 1 for G = 3500 and
shifts to smaller values upon increasing GG. For G = 20000, the decaying part of the
spectrum can be approximated by a 5735 power law for wavenumbers from the peak
up to about k =~ 3, i.e., over about one decade in k. This behavior is similar to that
of single-layer Bénard-Marangoni convection at Pr = 0.1 considered in the previous
section.

Due to the peculiar nature of the instability mechanism it cannot be expected
to enhance the heat transfer across the two liquid layers. This was already noted
by Welander, who pointed out that measurements of the integral heat flux as a
function of temperature difference can probably not reliably detect anticonvection in
an experiment. This conclusion applies even for G = 20000. It can be seen in Fig.
10(b) that the temperature drop across the mercury is fairly small, and that the mean
temperature profile differs only slightly from the conductive profile.

3.4.2 Convection with anomalous thermocapillary effect [6]

The second study has been made for a system where the two liquids have fairly
similar thermophysical properties. The upper layer is a silicone oil (10 cS viscosity)
and the lower layer is ethylene glycol. In contrast to the anticonvection problem
described above, the layers are heated from below, and Marangoni forces are taken
into account. However, the interfacial tension for this liquid-liquid system increases
with temperature for temperatures somewhat above room level. This behavior is
referred to as anomalous thermocapillary effect. For other liquid-liquid systems, the
interfacial tension usually decreases with temperature.

The mechanical coupling on the interface by the shear stresses implies that the
buoyancy instability mechanism in one layer is opposed by that of the other layer.
When the buoyancy mechanism in the lower layer dominates, then the normal ther-
mocapillary effect adds to the forcing, and supports the instability. The situation is
reversed when the buoyancy mechanism dominates in the upper layer. In this case,
buoyancy and thermocapillary forces oppose each other, and can give rise to linear
oscillatory instability. The same argument can be made for the anomalous thermo-
capillary effect when the roles of upper and lower layer are reversed. Competition of
buoyancy and thermocapillary forces can lead to oscillatory instability when buoyancy
in the lower layer dominates. For this reason, both stationary and oscillatory instabil-
ity is expected to occur in the 10 ¢S silicone oil /ethylene glycol system. The patterns
associated with the oscillatory instability are the main interest in [6].

In addition to the six dimensionless quantities for the material properties, the two-
layer system is characterized by the ratio d;/ds of the layer thicknesses, and Grashof
and Marangoni numbers

_ OzlgA2Td§’7 M ~ATd,

Vi P11k

G

(19)
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for the buoyancy and Marangoni forces. The ratio dy/ds = 5/9 of layer thicknesses is
adopted in [6] since a previous linear stability analysis had provided both stationary and
oscillatory instability for this choice of d; /ds [26]. The corresponding stability diagram
is shown in Fig. 11. The Marangoni number is negative because the temperature
coefficient 7y in eq. (8) is negative for the anomalous thermocapillary effect.
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Figure 11: Linear stability results for two-layer convection with anomalous thermo-
capillary effect and dy/ds = 5/9.

Figure 12: Snapshots of the interfacial temperature during one oscillation period of
alternating rolls for G = 20, M = —1000.

The numerical simulations in the paper [6] have explored the different instability
regions in Fig. 11. The parameters were restricted to G < 20 and M > —4000. In
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the region |l of stationary instability the convection appears in the form of parallel rolls
when | M| is small and as hexagonal cells for larger |M|. In the terminology of pattern
formation theory, these pattern are “one-wave’ and “three-wave’ patterns because
hexagons can be described as a superposition of three plane waves exp(ik,, - €) with
wave vectors k,, of equal magnitude but different orientation in the (x, y)-plane. The
appearance of hexagons is expected for flows with thermocapillary forcing, whereas
rolls are typical for predominantly buoyancy-driven flow.

Figure 13: Vertical structure of velocity field and isotherms of a single pair of al-
ternating rolls for G = 15.5 and M = —1000: Snapshots taken when the flow is
approximately two-dimensional in the top layer. (a) Top layer flow in the (x, z)-plane
and (b) top layer flow perpendicular to the (x, z)-plane. The interface is located at
z=0.

For the oscillatory instability there are numerous conceivable periodic patterns
near the onset of convection. They have been theoretically classified for square and
hexagonal lattices, i.e. for underlying “two-wave" and “three-wave” configurations
with wave vectors forming right angles and 27/3 angles, respectively [30]. In the
simulations, it turns out that the typical flows in region |l are alternating rolls, which
belong to the “two-wave” variety. Other possible solutions with the same underlying
spatial symmetry would be traveling or standing rolls and traveling or standing squares.
The time evolution of alternating rolls is illustrated by snapshots of the interfacial
temperature in Fig. 12. One observes a roll pattern that changes its orientation
periodically. In addition, it is shifted by a half-period in space after the first change
of orientation. A typical vertical structure of the velocity field for alternating rolls is
illustrated in Fig. 13 at two different times. The z-dependent phase of the oscillatory
mode prevents it from becoming two-dimensional at any point during the cycle.

Particularly interesting flows can be found near the boundary between stationary
and oscillatory instability, i.e. regions Il and Il in Fig. 11. The preferred pattern in
region Il is a “three-wave” pattern (hexagons), whereas it is a “two-wave’ pattern
in region Il (alternating rolls). The simulations show that the “three-wave” flows
become time-dependent as one approaches the boundary from within region Il before
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the “two-wave" type emerges. Moreover, these flows typically have spatial defects or
modulations and may evolve chaotically. They can therefore no longer be described
in the framework of bifurcation theory for spatially periodic patterns.

3.5 Summary

Marangoni convection with strong thermal forcing at low Prandtl number is an im-
portant aspect of several technological applications, e.g. welding and crystal growth.
Numerical simulations are a useful tool for the understanding of such flows, which
are difficult to study in controlled experiments. From the application viewpoint it
is desirable to include as much realism as possible in the numerical models. How-
ever, from a fundamental perspective it is preferable to study simple configurations
in detail before turning to complex models. The latter approach is followed in the
works [1, 2, 3, 4] for one-layer convection, which focus on the heat transport and the
structure of the hydrodynamic fields. The present understanding of these aspects of
strongly nonlinear Marangoni convection is fairly limited.

The three-dimensional simulations with heating from above [1] have shown that
laminar boundary layer flow postulated in [84] can be realized and exhibits the theoret-
ically predicted scaling. The turbulent parameter range could barely be reached in [1].
The flow turns out to be fairly stable due to the constraining lateral boundaries. For
the Bénard-Marangoni system in [2] the cellular structures are not stabilized by lateral
walls, and the flow becomes spatially disordered and turbulent at fairly low Marangoni
number. A detailed analysis of the turbulence properties has not been made in [2].
It will be the subject of future work. To the knowledge of the author, the publication
[3] presents the first computational study of nonlinear Bénard-Marangoni convection
with a magnetic field.

The two-dimensional simulations in [4] are useful because they allow one to reach
very large Ma. The laminar flows at large Ma provide benchmarks for the three-
dimensional case and for upper-bound theories of heat transport in Bénard-Marangoni
convection, which have presently only considered the case Pr — oo [37]. They are
also interesting for simplified, semi-analytic descriptions such as those developed for
Rayleigh-Bénard convection at large Prandtl number [29].

Two-layer systems have been extensively studied in two-dimensional simulations
[78]. The publications [5, 6] are among the first nonlinear studies in three dimensions.
At the instability thresholds one finds regular patterns that are known from other
systems. The destabilization and transformation of these patterns for stronger forcing
is discussed in [5, 6], and should be interesting for theoretical modeling of patterns,
and for possible experimental studies. Anticonvection has so far not been realized in
experiments.

25



4 Instability of two-phase shear layers

4.1 Introduction

The breakup of a continuous mass of liquid into droplets is of considerable importance
in nature as well as in technological applications. The first investigations date back to
Savart in the early 19th century. Plateau identified the static instability of a cylindrical
liquid column under surface tension in 1849 using an energy minimization argument.
Dynamical effects in this process were taken into account about 30 years later by
Lord Rayleigh [28, 38]. A detailed review of such surface-tension-driven instabilities
is given by Eggers [39].

In many applications liquid fragmentation (atomization) is not driven by surface
tension but by shear forces. The typical configurations are the injection of a fast
liquid jet or sheet into a stagnant or slowly moving gas phase [69], or the acceleration
of a slowly moving liquid by a surrounding gas stream of high velocity. Such rapid
atomization of liquids is important for achieving high combustion rates in furnaces
and thermal engines, or for efficient spray deposition or spray cooling processes in the
metal processing industry, the food industry, chemical engineering and agriculture
[66]. In nature, sea spray is important for the heat and mass exchange between
atmosphere and ocean.

gas

liquid

Figure 14: Schematic representation of atomization from a concentric nozzle by a
fast gas stream.

The atomization of a liquid under the influence of a fast gas stream is a complex
process, which is initiated at the nozzle exit. It is shown schematically in Fig. 14 for
atomization from a concentric nozzle. The fast gas stream surrounds the liquid jet,
which is discharged with a relatively low velocity. The high velocity difference between
gas and liquid causes high shear at the interface and thereby supports the Kelvin-
Helmholtz instability. The interface develops a wavy deformation that grows with
the distance from the nozzle exit. This interface deformation can be characterized
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by an interval of wavelengths with certain velocities and amplification rates. At
larger downstream distances transverse perturbations develop on the crests of the
propagating waves, which are drawn into ligaments by the gas stream. The stretching
of the ligaments eventually leads to the detachment of droplets at their tips. The
detachment of liquid from the jet or sheet characterizes the so-called primary phase
of atomization. The secondary phase is characterized by further destabilization and
fragmentation as well as collision and merging of the detached liquid in the gas stream
due to aerodynamic forces [64, 73].

The quantitative description of atomization as an inhomogeneous turbulent two-
phase flow presents numerous challenges for theory and experiment. Typical mean
features of the flow accessible for experimental measurement are the length of the
liquid core before it is completely broken up by primary atomization, and the opening
angle of the spray [64]. On the statistical side the main interest is in the size distri-
bution of the droplets emerging from the secondary phase of atomization. Moreover,
the development of the initial deformation of the liquid interface can also be observed
in experiments [73, 85].

Theoretical understanding of atomization remains fairly limited, especially with
regard to the complex nonlinear dynamics of the interface in the primary phase and
the subsequent processes in the secondary phase. The existing models for features
such as the length of the liquid core or the droplet size statistics involve significant
simplifications and assumptions of uncertain validity [64]. Detailed numerical sim-
ulations of atomization are therefore highly desirable not only from an engineering
perspective but also for progress on the theoretical side. The development of numeri-
cal methods for this purpose is an active field of research. State-of-the-art simulations
can already reproduce major qualitative features of atomization, although they fall
short of realistic physical parameters found in experiments and actual applications
[42]. The post-processing of such simulations also poses some additional challenges
such as the extraction of droplet size statistics or similar quantities.

As mentioned earlier, the prerequisites for Kelvin-Helmholtz instability exist near
the nozzle due to the strong shear near the undeformed interface. It is therefore a
common view that the initial stage of the evolution from separate streams to turbulent
flow with dispersed liquid is controlled by this instability, and that its characteristic fea-
tures (lengthscales, rates of growth and wave speeds) correspond to those of the most
amplified linear perturbations. The prediction of these properties should therefore be
feasible in the framework of hydrodynamic stability theory, and a considerable num-
ber of works have addressed certain idealized configurations, e.g. [103, 43, 67, 107].
Common assumptions in these works include

e time-independent basic flow with parallel streamlines,
e axisymmetric or two-dimensional perturbations,

e inviscid flow and
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e temporal stability analysis.

The simplest formulations are achieved by by incorporating most or all of these as-
sumptions. In particular, the first assumption reduces the stability problem to one
inhomogeneous direction in space, and is therefore almost universally adopted. The
relaxation of these modeling assumptions has progressed incrementally but is far from
complete. The contributions of the author on the instability of two-phase shear layers
are part of these ongoing efforts. Linear stability results for this problem also furnish a
valuable test case for computational methods for multiphase flow. The next sections
give an overview of the linear stability calculations by the author and their use in
the verification of an improved viscosity approximation in the Volume-of-Fluid code
SURFER [62].

4.2 Linear stability results
4.2.1 Basic assumptions

Linear stability results for two-phase shear layers were obtained by the author in close
collaboration with S. Zaleski. They are described in two publications [7, 8]. The
focus is on the effects of viscosity and of approximate basic velocity distributions in
two-dimensional, temporal stability analysis. The use of temporal stability analysis
can be justified when the instability grows slowly in comparison with the time scale
of advection [51, 33].

phases separated phases in contact
by splitter plate

Figure 15: Compensation of the velocity defect with increasing downstream distance
from the splitter plate. Only the velocity distribution close to the interface is consid-
ered in the formulation of the stability problem.

The flow geometry under consideration is sketched in Fig. 15. It retains only
the essential features of the problem, namely two parallel streams of gas and liquid
coming into contact at the tip of a splitter plate. The two fluids have constant
velocities at large distance from the interface, i.e. the effect of outer boundaries is
neglected. At the tip of the splitter plate the velocity distribution is characterized
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by boundary layers and a velocity defect, which are caused by the no-slip boundary
condition. The velocity defect will be compensated at some distance from the plate
because the liquid is accelerated through shear exerted by the fast gas stream. The
velocity distribution should then approach the defect-free shape illustrated in Fig. 15
on the right. Only such “relaxed” profiles are fully compatible with the assumption
of essentially time-independent basic flow in linear stability theory, and they have
therefore been considered exclusively. This point is also further discussed in the
publications [7, 8].

4.2.2 Viscous effects [7]

In the publication [7], the influence of viscosity on the linear instability is examined
systematically by comparing viscous and inviscid calculations. The basic velocity
profiles for this study are shown schematically in Fig. 16. In the viscous case, the
basic velocity distribution is composed of an error function in each phase, which are
centered on the interface, i.e.

Miquid = U(O) + Ul erf(y/(sl)7 (y < O)? (20)
Ugas = Ut + U, erf(y/ég), (?/ > O)- (21)

This choice of velocity profile is made because of the distant resemblance of the
configuration with the first Stokes problem, i.e. parallel flow with cross-stream mo-
mentum diffusion caused by an impulsively started, flat boundary. The velocity profile
in the Stokes problem is given by an error function.
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Figure 16: Basic velocity profiles with boundary layers on the interface. The viscous
stability problem requires a smooth profile (a). A piecewise linear profile (b) is used
for the inviscid case. Boundary layer thicknesses and asymptotic velocities are the
characteristic features.

For the inviscid calculations, this error function profile has been simplified to a
broken-line profile with identical main features, i.e. boundary layer sizes and asymp-
totic velocities. The simplification allows one to find an analytic dispersion relation
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because the Rayleigh equation can be solved by exponentials when the velocity profile
is linear. Single-phase calculations have shown that temporal stability results are fairly
insensitive to such modifications.

Non-dimensional parameters of the viscous problem are the ratios

r=pg/p, M= g/, N =0dg/0 (22)

of densities, viscosities and boundary layer thicknesses as well as the Reynolds and
Weber numbers based on the gas layer, i.e.

— ng_l?ég Re — nggég
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(23)

where S denotes the surface tension. The velocity ratio U, /U, is determined by the
shear balance
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This relation is also imposed for the broken-line profile although there is no shear on
the interface in the inviscid case.

The formulation of the Orr-Sommerfeld and Rayleigh equations as complex linear
eigenvalue problems for the streamfunction perturbations

Viiquid (7,9, 1) = explia(r —ct))oi(y) (y <0), (26)
Vgas(,y, 1) = explia(z — ct))y(y) (y > 0). (27)

with given wavenumber « is described in [7]. In the inviscid case, the complex
eigenvalues ¢(«) are obtained by solving the polynomial dispersion relation with the
Maple computer algebra package. In the viscous case, the Orr-Sommerfeld equations
are discretized by a Chebyshev collocation method, and the resulting general algebraic
eigenvalue problem is solved with a NAG library function. Of interest are mostly the
unstable modes, i.e. eigenvalue branches c¢(a)) with positive imaginary part.

Surface tension opposes the deformation of the interface and thereby provides
a damping influence. In [7] it is therefore mostly neglected in order to observe all
possible inviscid and viscous instability mechanisms. Different physical mechanisms
lead to multiple unstable branches, but these modes are usually “mixed”, i.e. affected
by more than one of the instability mechanisms. Systematic changes in the parameters
such as r and Re can therefore be useful to clarify the nature of these unstable modes.
This approach is followed in [7]. The nondimensional results discussed below are based
on the lengthscale ¢, and velocity scale U,.

Major differences between viscous and inviscid cases can be identified from the
growth rates ac; in Fig. 17 for parameters r and m close to the pairing air/water. The
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Figure 17: Viscous stability results forn = 1, r = 0.0012, m = 0.012: (a) unstable
modes for Re = 6 x10*; (b) for Re = 2000, Re = 10*, Re = 4x10*, Re = 1.6 x10°
in the high-wavenumber range. Surface tension is neglected.

multiple unstable branches in Fig. 17(a) are not found in inviscid calculations, where
only an unstable branch in the vicinity of mode | appears. The other branches I, IlI,
IV are therefore caused by viscosity, and are sensitive to changes in Re. By variation
of Re it turns out that mode IV is not the result of a distinct viscous instability
mechanism but rather of “mode mixing" between the inviscid mode and damped
viscous modes. However, branch Il appears to be caused by the Tollmien-Schlichting
mechanism, i.e. the destabilization of a neutral mode by viscous diffusion, because it
becomes weaker and its peak shifts to smaller « with increasing Re [38].

The most significant result is the appearance of mode Il. Its peak retains its
amplitude but shifts to larger values of o (Fig. 17(b)). The wavenumber of the peak
grows in proportion with v/Re. This scaling is caused by a purely viscous instability
identified by Hooper and Boyd [50] for plane and unbounded two-fluid Couette flow.
Its physical mechanism was later explained by Hinch [48]. The velocity profile in the
present configuration is equivalent to such a Couette flow near the interface provided
that the instability lengthscale is small compared with the boundary layer. The mode
[l associated with this instability is called the H mode in [7] to acknowledge the
authors Hooper and Hinch.

The time scale of the H mode is set by the inverse shear rate S™' = §,/U, at
the interface. Since the unbounded Couette flow lacks an intrinsic length scale, the
lengthscale of the H mode is then set by viscous diffusion during the characteristic
instability time S, i.e. /1,871 = 59/\/@. This lengthscale differs by the factor
1/v/Re from the chosen unit length d, used above, and thereby accounts for the
scaling of the most unstable wavenumber of the H mode with v/Re.

The physics of the H mode is not obvious. The starting point is a weak sinu-
soidal interface deformation, which gives rise to vorticity perturbations because of the
continuity of tangential velocity and shear stress on the interface. The perturbation
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vorticity is advected differentially by the mean shear, and can thereby sustain and
amplify the interface deformation. This process does not require fluid inertia. The
finer points of this instability mechanism are analyzed and explained by Hinch [48].

100
0.1; [
F 10 .
£ viscous
8— 0.01¢ & 1 inviscid
inviscid R 0.1
0.001} 4 g
0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1
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Figure 18: Maximum growth rate and corresponding wavenumber as function of the
density ratio r for m = 0.01, n = 1. Surface tension is neglected.

For a given viscosity ratio, the H mode can provide higher maximum growth rates
than the inviscid Kelvin-Helmholtz mechanism over a fairly large range of density
ratios. This is illustrated by Fig. 18, which shows the maximum growth rate ac; and
the corresponding wavenumber « from viscous and inviscid calculations for m = 0.01
and n = 1. The velocity profile is not affected by the density ratio r. For r close to
unity and very small values below 10~ the inviscid mechanism dominates because
the growth rates from the inviscid case are slightly larger than those of the viscous
case, and the wavenumbers with maximum growth rate are close between the two
cases. For moderate r the H mode dominates. It provides larger growth rates at
smaller wavenumbers. The inviscid growth rate is reduced with decreasing r because
the inviscid instability is driven by the dynamic pressure in the gas phase. It finally
reaches a plateau below r &~ 0.005 because at such low r the effect of the gas phase is
no longer felt in the liquid. The instability is then merely that of the liquid boundary
layer with a free surface.

The damping influence of surface tension affects the H mode preferentially because
it typically acts at smaller lengthscales than the other instabilities. Even at fairly large
We it is therefore already partly suppressed, but it can nonetheless cause noticeable
differences between viscous and inviscid growth rates. This is demonstrated in [7]
for parameters corresponding to air/water atomization experiments [73]. The need
for viscous stability analysis in such problems on account of the H mode is the main
conclusion of [7].
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4.2.3 Basic flow profiles from boundary layer theory [8]

The basic velocity profiles for the stability calculations in [7] are physically plausible
but they are not justified by a self-contained mathematical model. This lack of a
mathematical foundation is perhaps not too severe in view of the numerous additional
assumptions that have to be made in the analysis, but it is nonetheless a weak
point that should be addressed. The publication [8] is concerned with this issue.
It replaces the error function profiles by solutions of the two-fluid boundary layer
model proposed by Lock [71], and compares the stability results when error function
profiles are appropriately matched to the profiles from boundary layer theory. The
deficiencies of this approach are that the flow in the nozzle or along the splitter
plate is replaced by uniform streams, and that the absolute boundary layer thickness
remains indeterminate. As in other boundary layer problems, it grows as /x with the
streamwise coordinate .

The non-dimensional parameters in the two-fluid boundary layer model are the
density- and viscosity ratios 7 and m and the asymptotic velocity ratio

\ = Miquid(y - _OO)
Ugas(y — +00)

(28)

The boundary layer equations for this problem have been formulated by Lock [71],
but they were only solved semi-analytically in the special case of a liquid layer at rest.
In Ref. [8] they are solved numerically in each fluid, and the matching conditions for
velocity and shear stress are satisfied by an iterative procedure. With the converged
solution for the velocity profile one can then calculate the displacement thicknesses
djiquid and dg,s of the boundary layers in each phase. With the interface located at
y = 0, these thicknesses are

1 o0
dgas - Ugas(oo) - Ugas(o) A <UgaS(OO) B UgaS(y)) dy, (29)
1 0
dliquid = U“qmd(o) — U“qmd(_oo> /_OO (Unquid(y) - U|iquid(—00))dy~ (30)

Fig. 19 shows the dependence of the ratio n = dgas/diiquia for two parameter
combinations corresponding roughly to air/water (r = 0.001, m = 0.01) and hy-
drogen/liquid oxygen (r = 0.02, m = 0.025). In both cases, the thickness ratio n
changes noticeably for small ), but it remains of the same order of magnitude.

The influence of the velocity profile on the stability results is examined in Ref.
[8] by comparison with error function profiles (20,21) with the same displacement
thicknesses and matching velocities U(®) = Ug.g(0) = Uliquia(0) on the interface. Fig.
19(b) shows a satisfactory agreement of growth rates based on the velocity profile
from two-fluid boundary layer theory (called exact in the legend) and on the matching
composite error function profile (called approximate in the legend). The velocity ratio
in Fig. 19(b) is A = 0, i.e. the liquid is at rest. For larger values of \ the agreement
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Figure 19: (a) Ratio n of displacement thicknesses from the two-fluid boundary layer
model as function of the asymptotic velocity ratio; (b) temporal stability results for
exact and approximate velocity profiles (20,21) for r = 0.001, m = 0.01, Re = 500,
We =10. Re and We are based on the gas properties and Uy, 4.

becomes closer. At A = 0.9 the differences are no longer visible when the results
are plotted as in Fig. 19(b). The results for » = 0.02, m = 0.025 display identical
trends. In conclusion, the use of boundary layer theory does not lead to qualitative
differences in the temporal stability results obtained in [7].

4.3 Direct numerical simulations [9]

Two-phase flows with large density and viscosity ratios r and m still represent a
challenge for direct numerical simulations (DNS). The linear instability of a two-phase
shear layer is therefore an important test case for such codes. It can be studied in
two-dimensional simulations. The author has implemented this test case in the DNS
code SURFER, which has been developed by S. Zaleski and his co-workers [62, 44].
SURFER is based on the Volume-of-Fluid (VOF) approach. The two phases are
represented as one fluid with variable properties on a fixed grid. The two fluids are
distinguished by a characteristic function. It takes the values 0 or 1 depending on
the presence of one or the other phase at the given location in space. The discrete
analog of this function is the volume fraction or color function C', which represents
the fraction of the grid cell occupied by one of the phases. The VOF method tracks
the interface implicitly through the color function, which is advected with the flow.
The advantage of this approach is that it captures topology changes automatically.
This is a major difficulty in explicit interface tracking by connected markers, where
the geometry of the interface has to be monitored and the topology is changed by
breaking and/or reconnecting different parts of the interface mesh [101, p. 56].
However, this advantage of VOF methods in the handling of topology change does
not come for free. In contrast to markers, the VOF methods require considerable effort
for proper interface advection. It particular, the interface must be reconstructed in
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each time step, i.e. the interface position must be calculated in “cut” grid cells partly
occupied by both phases. Apart from this kinematic problem, the cut cells also require
effective values for the material properties density and viscosity for time advancement
of the discretized Navier-Stokes equations, which are treated with finite differences
and a projection algorithm in SURFER [62].

For the interpolation of the density in cut cells the arithmetic mean

p = Cpiquia + (1 = C)pgas (31)

is clearly appropriate (additivity of mass). For the interpolation of viscosity there is
no such obvious answer. The arithmetic mean is frequently chosen for simplicity, but
it can be advantageous to use the harmonic mean

1 C 1-C

— = + . (32)
M Hliquid Hgas

The effect of these different viscosity interpolations in SURFER on the linear evolution
of the two-phase shear layer instability has been studied by the author in collaboration
with S. Zaleski, P. Yecko and A. Bagué in [9]. This parametric study shows that the
harmonic mean is superior to the arithmetic mean, and that SURFER can reproduce
the linear growth rates from the stability calculations over a wide range of density
and viscosity ratios.

The harmonic mean of the viscosity has been used in earlier work by Coward et al.
[32] on two-layer Taylor-Couette flow. The argument leading to the harmonic mean
for viscosity is similar to that for the effective thermal conductivity in one-dimensional
heat conduction when the conductivity is discontinuous across an interface [82, sec
4.2-3]. In this case, the heat flux across the interface is continuous, but the temper-
ature gradient is not. The effective heat conductivity A is then given by

dit+dy dy  do

=142 33
Aeff A1 Ao (33)

where d; and d, are the thicknesses of the layers 1 and 2 with thicknesses d; and
ds. In two-phase flow, the analog of the heat flux and temperature gradient are the
shear stress and the shear rate, respectively. The harmonic mean (32) is then a direct
consequence of eq. (33). It should be noted that the harmonic mean is based on
an essentially one-dimensional configuration and does not account for the full set of
balance conditions for velocity and stress at the interface.

The effect of the viscosity interpolation in SURFER is explored in two-dimensional
simulations with periodic boundary conditions in . The simulations are initialized
with the basic velocity profile given by (20,21) and an added unstable eigenmode
(26,27) from linear stability calculations. According to linear theory, the position
y = H(xz,t) of the interface evolves as

H(z,t) = A(t) cos (ax — ), (34)
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Figure 20: SURFER results for r = 0.02, m = 0.02, n = 1: amplitude A (a) and
phase 3 (b) for arithmetic and harmonic mean and different initial amplitudes. A
is normalized to the mesh size. The Reynolds number based on gas velocity and
boundary layer thickness is Re = 2000. Surface tension is neglected.

where the amplitude A and phase angle (3 satisfy the relations
A(t) = Agexp(acit), B = act+ By (35)

The interface position in the simulation is reconstructed by adding the color function
over vertical grid columns, and the amplitude and phase angle are obtained by Fourier
transform of the function H(x,t). Boundary layers of the basic velocity profile are
well resolved by the numerical grid.

Fig. 20 shows that linear stability results and simulation results differ for the
arithmetic mean if the initial amplitude of the interface modulation is significantly
smaller than one grid cell (red lines: arithmetic (A = 1073)). Possible modifications
of nonlinear results by the arithmetic mean are also apparent in this case. However,
the effect of the overpredicted viscosity in the cut cells ceases to be important as soon
as the amplitude reaches the dimensions of a grid cell. The correct growth rate and
phase velocity are then almost recovered. With large initial amplitudes (A = 0.5 in
Fig. 20), the different viscosity interpolations provide essentially identical exponential
growth in good agreement with linear stability theory. In further simulations with the
harmonic mean, good agreement for growth rates and phase velocities with linear
stability theory was obtained for the two viscosity ratios m = 0.1, m = 0.02 and
density ratios in the range 0.005 < r < 1.

The effect of surface tension and Reynolds number on the formation of ligaments
and droplets in the nonlinear stage is the focus of the publication [20]. The contribu-
tion of the author to this work is mainly the code validation with the unstable modes
as explained above. In [20] it is demonstrated that the formation of ligaments and
droplets requires fairly large Reynolds and Weber numbers. However, the ligaments
stretch to unrealistic lengths because of the absence of transverse instabilities in the
two-dimensional simulations.

36



4.4 Summary

The accurate modeling and simulation of the complex phenomena in two-phase shear
layers remains a challenge for theory and computation. The publications [7, 8] have
drawn attention to the potential role of the viscous H mode in the linear stage of the
destabilization of the liquid-gas interface. Viscosity has been frequently neglected in
this context because of the high Reynolds numbers and because the flow is inviscidly
unstable. The H mode had been previously considered mainly in the context of two-
layer channel flow at small Reynolds numbers. In [7] the H mode is clearly identified
on the basis of its dependence on the Reynolds number. This aspect is missing in
[107].

Viscous stability results are also required for the validation of DNS codes for two-
phase flows. The original motivation for the stability studies [7, 107] came from tests
with the SURFER code, which failed to provide satisfactory results because of the
use of inviscid stability theory with a discontinuous velocity profile and the arithmetic
mean for the viscosity approximation. The proper representation of the shear balance
on the interface has not only been an issue with SURFER [9, 20]. Other authors have
recently considered this aspect for another class of numerical methods for two-phase
flows [94, 79].
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5 Magnetohydrodynamic channel flows

5.1 Introduction

The interaction of magnetic fields with conducting fluids is of considerable interest in
geo- and astrophysics, but also for industrial and laboratory applications. Among the
latter are the pumping and stirring of liquid metals by magnetic fields in metallurgical
plants [34], magnetic brakes in continuous casting of steel [100] and magnetic damp-
ing of melt flow in crystal growth [104]. In addition to these desired interactions,
ambient magnetic fields can lead to an undesirable magnetohydrodynamic instability
in the Hall-Héroult electrolysis cells for primary aluminum production [35, ch. 11]. A
minimum layer thickness of the highly resistive electrolyte layer is required to aviod
this instability, which limits the energetic efficiency of this process. The suppression of
turbulence by strong magnetic fields also hinders efficient turbulent heat transport in
liquid metal blankets for the toroidal plasma chamber of future fusion reactor designs
[27]. The study of turbulent magnetohydrodynamic flows of liquid metals is therefore
not only of fundamental interest but also important from an application perspective.

The theoretical and experimental investigation of liquid metal flows under the
influence of an imposed magnetic field began with the pioneering work by Hartmann
around 1937. On the theoretical side, he obtained the laminar solution for channel
flow with transversal magnetic field [46]. Together with Lazarus he also took mea-
surements of the pressure loss in pipe and duct flow with a transversal magnetic field
[47]. Using mercury as working fluid, they verified the laminar friction law predicted
by Hartmann's theoretical work. They also detected transition to turbulence through
departures from the laminar friction law, and studied a variety of geometrical shapes
of the cross-section of the pipes. Later work by Murgatroyd [77] improved the exper-
imental accuracy of the pressure loss measurements, and provided critical parameters
for the transition to turbulence in magnetohydrodynamic duct flow. Similar experi-
ments with increasing complexity were performed subsequently by numerous groups
in the Soviet Union, Western Europe and the US in the 1960s and 1970s. These
developments were accompanied by efforts on the theoretical side to understand the
influence of magnetic fields on instability and turbulence. The theoretical studies
focused on geometrically simple flows such as homogeneous turbulence and simple
wall-bounded geometries. In particular, the linear stability problem for the laminar
Hartmann flow (channel flow with transversal magnetic field) was studied by several
authors, and simple closure models for the turbulent Hartmann flow were developed
[25].

In recent years, numerical simulations have played an increasingly important role in
the study of magnetohydrodynamic flows [58]. Direct numerical simulations have ex-
plored the anisotropic features of homogeneous turbulence in periodic computational
domains, and in simple wall-bounded flows [108, 56, 89]. In addition, turbulence
models on the basis of the Reynolds-averaged Navier-Stokes equations and subgrid-
scale models for large-eddy simulation have been adapted and tested for such flows
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[57, 59, 55]. The work presented here is a part of these broader efforts in the numerical
study of magnetohydrodynamic turbulence. In particular, the author has contributed
to a numerical study of turbulent Hartmann flow and to a study of transition to
turbulence in magnetohydrodynamic channel flow with spanwise magnetic field. The
following sections give an overview of this work.

5.2 Basic equations and numerical method

Conducting flows in a time-independent magnetic field B are affected by the Lorentz
force 7 x B caused by the induced current density 7 in the fluid. The body force
term j x B has to be added to the Navier-Stokes equations (1). In comparison with
the applied field B, the induced magnetic field b associated with 7 is usually fairly
small for the typical dimensions and velocities of conducting flows in the laboratory
and in technological applications. It can therefore be neglected in the Lorentz force
term. To the same order of approximation, the electric field in the conducting fluid
can be expressed by a potential gradient —V®. Ohm'’s law for a moving conductor
is then given by

j=0(-V®+vx B), (36)

where o denotes the electric conductivity. The high conductivity of liquid metals
ensures that the fluid remains electrically neutral, i.e. the charge density is zero on
macroscopic time scales. For this reason, the current density is solenoidal, and one
can find the electric potential from the condition
V-3
0=-2 - V2% 4+V.(vxB). (37)
o
Eq. (36,37) represent the so-called quasistatic approximation based on the electric
potential [35]. The appendix contains a more systematic derivation from the full
induction equation by an expansion in the magnetic Reynolds number.
In summary, the mathematical model for conducting flows is given by

2_1;+<U.v)v = _%+uvzv+%(—V®+va)xB, (38)
v.’v = 07 (39)
V@ = V- (vxB). (40)

Boundary conditions for the channel geometry are zero velocity conditions on the
walls located at z = L. The channel walls are assumed to be insulating throughout
this section, whereby the normal current density j. vanishes for z = +L, and thereby
the normal derivative of the electric potential.

As for Marangoni convection, the numerical studies have been performed with
pseudo-spectral methods based on Fourier-Chebyshev modal expansions of the hy-
drodynamic fields. The extension of the corresponding parallel code from the doc-
toral thesis of the author [19] is described in the papers [60, 11]. The additional
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computational effort for the Lorentz force is fairly small since the term requires no
additional Fourier transforms. The Poisson equation for the electric potential causes
negligible computational cost because it decouples for different wavevectors k, and
only one-dimensional Helmholtz equations have to be solved.

5.3 Turbulent Hartmann flow [10]
5.3.1 Parameters and equations

For non-magnetic laminar channel flow the driving pressure gradient is exclusively
compensated by viscous forces. When a wall-normal magnetic field is applied, then
electric currents are induced in the spanwise direction, and the associated Lorentz
force opposes the flow. Provided the induced currents are sufficiently strong, the
Lorentz forces dominate over the viscous forces, and the uniform driving pressure
gradient is almost exclusively compensated by the Lorentz forces. In this situation a
uniform (plug) velocity profile is established in place of the parabolic Poiseuille profile.
The uniform velocity profile adjusts to the no-slip condition at the channel wall in
a boundary layer characterized by a balance of viscous and Lorentz forces. This so-
called Hartmann boundary layer has a thickness of order §, which is determined by the
balance of viscous and Lorentz forces. The viscous forces in the Hartmann layer are
of order pl/U/52, where U is the bulk velocity. The induced currents are estimated
by cU B, and the Lorentz force estimate is therefore U/ B?. By equating these two

forces one finds
1 [pv
0= —,/—.
BV o

The corresponding dimensionless parameter is the Hartmann number

o L
Ha=LB,|— = —. 42
a «/py 5 (42)

It also characterizes the ratio of Lorentz forces to viscous forces for a characteristic
lenghtscale L of the flow, which is customarily chosen as the half-channel width in
the case of channel flow.

The mean velocity distribution u(z) satisfies the streamwise momentum equation

(41)

pv— + e oB*(u—U,y) — — = 0. (43)

This equation applies for turbulent flow as well as for laminar flow. In the latter
case the fluctuating streamwise and wall-normal velocity components u’ and w’ are
absent, and the turbulent stress 77(z) = —p(u/w’) vanishes.

The Lorentz force term is —o B (u — U, ), where U, denotes the mean velocity
in the channel. As a consequence, the total Lorentz force turns out to be zero. Eq.
(43) can also be written as dr/dz = dp/0x, where T is the sum of the viscous stress
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7, = prdu/dz, the turbulent stress 7 and the electromagnetic stress 7,,, representing

the integrated Lorentz force term in eq. (43). As in ordinary channel flow, the total

stress 7 is an antisymmetric linear function with respect to the middle of the channel.
The solution of eq. (43) in the laminar case is

cosh(Ha) —cosh (Ha z/L)
cosh(Ha) — 1 ’

u(z) = Uy (44)

where Uy is the center-plane velocity and the channel walls are located at z = L.
For Ha > 1, the velocity profile approaches the asymptotic form

u(z) = Uy (1 —exp(—2'/d)), (45)

where 2’ denotes the distance from the wall. Instabilities of this velocity distribution
due to mean shear must therefore originate in the Hartmann layer, and the appropriate
instability parameter is the Reynolds number

. U(](S . U()L/Ha, . E

R
v v Ha

(46)

based on 9 and U,.

The linear instability of the laminar Hartmann flow has been considered by sev-
eral authors [95, 70]. The critical value for exponentially growing perturbations is
R, ~ 48000. This value is far larger than the values R ~ 200...400, at which
transition to turbulence is found in experiments. Significant gaps between theoretical
and experimental instability thresholds are also found in other, non-magnetic shear
flows. These apparent contradictions have been partly resolved in recent years by
the development of new concepts in stability theory [91]. For Hartmann flow, a
two-step transition mechanism was considered by Krasnov et al. [60]. It is based
on transient linear growth of non-modal perturbations, which are then destabilized
by random noise. This numerical study provides a critical value R. =~ 400, which is
in good agreement with R. ~ 380 found in the recent experiment by Moresco and
Alboussiere [76].

Based on these results, a systematic study of the effects of R and Ha on turbulent
mean flow properties was undertaken by the present author in collaboration with D.
Krasnov and E. Zienicke. The main results have been reported in the publication
[10]. The following discussion summarizes the main points.

5.3.2 Mean flow properties

The direct numerical simulations were performed for R = 450, R = 500, R = 700
and R = 900 with four different values of Ha for each of these R. These extensive
parallel computations required several 10000 hours of mono-processor time to obtain
sufficiently converged statistics. The computational rescources were provided mainly
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Figure 21: Velocity distribution v,(y,z) in a vertical plane for Hartmann flow at
Ha = 30: (a) laminar flow, (b) snapshot of turbulent flow at R = 500.
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Figure 22: Mean velocity profiles normalized with u,. and v/u.. For fixed R the
plateau grows with increasing Ha, while increasing R leads to a wider logarithmic
interval. The profiles are drawn across the entire channel in order to highlight the
plateau.

by the von Neumann Institute for Computing at the research center Jiilich through a
grant application.

In the simulations the mean velocity U,, is prescribed, i.e. the simulations run
with constant volume flux in the channel. The two velocities U,, and U, are related
by the equation

. cosh(Ha) —sinh(Ha)/Ha Uy

_ ~ Uy — =2 4
U = o cosh(Ha) — 1 Lo Ha’ (47)

which is obtained from integration of the laminar velocity profile (44). One can also
define a Reynolds number R,, based on U,, instead of R based on Uj.
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Fig. 21 shows that the turbulence does not spread to the bulk provided that
Ha is large enough. However, the turbulent Hartmann layers become broader by
comparison with their laminar counterparts. As a consequence, the average turbulent
velocity profile appears more rounded than the laminar one. This is in contrast with
ordinary channel turbulence, where the turbulent mean profile is considerably steeper
near the walls than the parabolic laminar profile. Animations of fluctuating velocity
distributions as shown in Fig. 21(b) have been prepared by D. Krasnov in the course
of our joint work on this problem. The author submitted them to Prof. G. Homsy,
who is the editor of the educational DVD “Multimedia Fluid Mechanics”. They are
included in the second edition of this DVD, which was published in 2008 [49].

In hydrodynamic channel turbulence it is customary to work with friction units.
They are based on the wall shear stress 7,, = LJp/0x, which is used to define the
friction velocity u., by

pu? =1, = LOp/0x. (48)

The friction length is therefore v/u., and the friction Reynolds number is Re, =
u,L/v. These units will be used in what follows. Dimensionless quantities in friction
units are indicated by the superscript +.

The influence of the parameters R and Ha is illustrated in Fig. 22, where semi-
logarithmic plots of the mean velocity are presented. In Fig.22(a) one can identify
three different regions in the profiles. A viscous sublayer (with ut ~ z*) marked
as region | is followed by a logarithmic layer (with ut ~ Alog(z*) + B) marked as
region I, which starts around 2z ~ 30...40. The plateau region marked Ill is formed
at sufficiently large Ha. The profiles for different Ha then essentially coincide except
for the width of the plateau.

Fig. 22(b) compares the profiles at the highest Ha for each R. One sees clearly
that that the logarithmic range becomes wider as R increases, and that the plateau
shrinks upon increasing R for Ha = 30. For R = 900 and Ha = 25 a plateau is
barely present. From R = 450 to R = 700 the slope A increases whereas the offset
B decreases. The differences between R = 700 and R = 900 in the logarithmic
range are only slight. At R = 900 and Ha = 25 the values A = 2.4 and B = 5.65
provide a good fit.

The persistence of the logarithmic layer with a slope and offset in fair agreement
with the hydrodynamic case suggests that the influence of the Lorentz forces on the
turbulent fluctuations is rather weak in the turbulent Hartmann layers. This argument
was already made by Alboussiere and Lingwood, and they consequently proposed the
use of the classical mixing length model for the turbulent stress [15]. As detailed in
the publication [10], the turbulent stresses are better matched by the older model by
Lykoudis and Brouillette [72], which introduces some additional correction terms in
the mixing length ansatz. However, both models fail to represent the relatively rapid
transition from the logarithmic layer to the the plateau region, and they overpredict
the turbulent stress considerably. These deficiencies appear to be inherent in the
mixing-layer approach and demonstrate the need for more sophisticated turbulence
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models even in this simplest wall-bounded flow.

5.3.3 Friction coefficient

From a purely engineering viewpoint, the closure of the mean momentum equation
(43) by a model term for the turbulent stress 71 serves a single purpose, which is to
predict the pressure loss or wall stress for given Re and Ha. In principle, this can also
be accomplished if the velocity profile is known for given Re and Ha. This approach
is tempting for the turbulent Hartmann flow in view of the pronounced three-layer
structure of the mean velocity. It will therefore be briefly presented at this point.

From the previous results it is apparent that the parameter R = Re/Ha deter-
mines the extent of the logarithmic layer in friction units when the plateau is present.
However, the plateau may be absent if Ha is too low. In contrast to the laminar case
the width of the turbulent Hartmann layer is also not simply determined by Ha. A
separation of the turbulent Hartmann layers should appear when the ratio of electro-
magnetic and inertial forces exceeds a threshold value. The velocity scale in this case
should be that of the fluctuations rather than the mean flow, i.e., it should be wu..
The inertial forces can then be estimated as pu?L and the Lorentz forces as o B%u,.
The ratio is the interaction parameter

oB%*u, Ha?

N = puL " Re, (49)

based on Re.. In summary, a plateau should be present if
N, > N, (50)

where the critical value N, should be of order unity. This argument is not new, it
can already be found in a less straightforward form in the book of Harris dated from
1960 [45]. It is also mentioned by Alboussiére and Lingwood [15].

To predict the plateau velocity u, for given R from this criterion one has to
combine it with the logarithmic velocity profile

u, 1 /

— =—In(zu,/v)+ B, 51
%~ (/) 651)
where z, corresponds to the edge of the plateau. For critical conditions, i.e., N, = N,
the edge of the plateau is located in the middle of the channel at a wall distance

Zz/) = L. One can now make use of the definitions
B Ha?v
o L’

and the estimate R = u,0/v to express the argument of the logarithm in eq. (51)
using R and u,/u, only:

Ha =

L
N, —
)

(52)

Lv Lvu?  Lu, u)
Ne = 2., - u, R?1? - R2u? (53)



If one replaces Lu., /v in eq. (51) using the previous relation, one finds

1 2
Y _ 1y (NCRQU—;) + B, (54)
U

Ur K 2
i.e. a relation for the velocity ratio u,/u,, which contains the single parameter R.
This relation can be rewritten in terms of the friction coefficient

cp = 21,/ pU?

av?

(55)

provided one makes the assumption that U,, ~ u,, i.e.,

Up/Ur = UnyJur; =1/2/cy, (56)

which is clearly justified for large Ha. The result is

\/2/cr = %ln (N.R*cy/2) + B, (57)

i.e. a closed expression for the friction coefficient for given R in the limit Ha — oo.

The numerical results were obtained for relatively moderate Hartmann numbers.
However, a direct comparison with the friction law (57) becomes possible by extrap-
olation of the friction coefficients from finite Ha to Ha — oco. The extrapolation
can be justified by consideration of the streamwise momentum equation (43) in the
following form

d’u  drp 2 1 2
_ — /2 — =0 8
2 & R (“ V /Cf> " RuHa\l (58)

based on friction units. This equation represents a nonlinear eigenvalue problem for
cg. The boundary conditions are u = 0 and du/dz =1 at z = 0 and du/dz = 0 in
the mid-plane of the channel at z,, = R.,Ha\/cs/2. In this equation, Ha appears
only in the nondimensional pressure term, and one can rewrite it as

d2u dTT 2 1
Ry 2 - —1/2 = —— 59
r/ (d22 * dz  RZ%cs (u /Cf)) Ha (59)

If one assumes that the turbulent stress 71 does not depend on Ha, then the small
parameter 1/Ha represents a linear perturbation term. Consequently, the leading
terms in an asymptotic series for c¢; would be

1

~ Rav 7
Cf C(]( ) + Ha

C1 (Rav)a (60)

i.e. linear in the small parameter. The problem with this argument is that the
boundary condition du/dz = 0 at z,, = R,,Hay/cs/2 contains the parameter Ha
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Figure 23: Friction coefficients from direct simulations of turbulent Hartmann flow:
(a) extrapolation to infinite Ha, (b) extrapolated values c;(R, Ha = c0) in compar-
ison with models and the laminar case.

as well. On the other hand, the effect of z,, on ¢; may become exponentially small
when u itself decays exponentially for large z, in which case the expansion (60) might
still work.

One can test the validity of the expansion (60) in the laminar case. The laminar
friction coefficient can be calculated analytically from the definition of ¢ together
with eq. (44) and eq. (47). Itis

2 tanh (Ha)
= R.y 1 —tanh (Ha) /Ha’

(61)

which provides the limit 2/ R, for infinite Ha. The first-order correction to this result
is proportional to 1/Ha as one can see from an expansion of the right hand side.
The hyperbolic tangent functions only provide exponentially small corrections.

The relation (60) does not apply directly to the simulation data, which have been
obtained with the parameter R = const. The two parameters R and R,, are related
by the formula

cosh(Ha) —sinh(Ha)/Ha R
R =R ~R——
cosh(Ha) — 1 Ha

(62)

when the Hartmann number is large. Assuming that the expansion coefficients of c
in eq. (60) are continuously differentiable functions of R,,, it is clear that dependence
of ¢y on 1/Ha for fixed R instead of fixed R, is also linear for Ha — oo, i.e.

1L o

7. (63)

cp o~ C;O)(R) + (R).

Fig. 23(a) shows that the simulation results are in agreement with the asymptotic

(0)

relation (63). The leading term c;”(R) from extrapolation to Ha — oo is shown in

46



Fig. 23(b) for the four different values of R in the simulations. For comparison, the
friction coefficients from the friction law (57) with N. = 0.6 are shown as Harris'
approximation, and further extrapolated results are shown from the mixing-length
models of Lykoudis & Brouillette (L&B) [72] and Alboussiére & Lingwood (A&L)
[15]. Remarkably, the simple closure leading to (57) provides better agreement with
the extrapolated data than the more involved models.

5.4 Channel flow with uniform spanwise magnetic field

5.4.1 Subcritical transition [11]

Figure 24: Sketch of channel flow with spanwise magnetic field. The directions x
and y are periodic.

Channel flow with spanwise magnetic field is the counterpart to Hartmann flow as
an idealization of MHD flow in a rectangular duct. Its geometry is shown schemat-
ically in Fig. 24. It is obtained by replacing the distant walls perpendicular to the
magnetic field with periodic boundary conditions. For Hartmann flow, the distant
walls are parallel to the magnetic field. The investigation of transition and turbulence
in channel flows with spanwise magnetic field is therefore of comparable interest as
in the Hartmann flow. It is also motivated by the same applications.

In contrast to the Hartmann flow the magnetic field produces no Lorentz force
on the mean flow when it is oriented in the spanwise direction, i.e. the term
oB? (u — U,,) is missing in the averaged streamwise momentum equation (43). The
laminar solution is therefore the parabolic Poiseuille flow, and there is no modification
of the shear length scale as in the Hartmann flow, where a modified Reynolds number
R based on the Hartmann layer thickness ¢ is required. For the flow with spanwise
field, the relevant Reynolds number is the same as in the non-magnetic case, i.e.
Re = UyL /v based on the half-channel width L.

Linear instability in non-magnetic channel flow originates from two-dimensional
perturbations known as Orr modes, which are independent of the spanwise coordinate.
These modes are also unaffected by the magnetic field, i.e. there is no change in
the critical Reynolds number Re. ~ 5772.2 for linear instability when Ha is non-
zero. However, this invariance of Re. does not carry over to subcritical transition
at Re < Re.. The latter is mediated by three-dimensional perturbations, which
experience a Lorentz force under a spanwise magnetic field. The modifications of such
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three-dimensional perturbations by the spanwise magnetic field and their secondary
instability leading to transition were the subject of a detailed investigation by the
author in collaboration with D. Krasnov, M. Rossi and O. Zikanov. The results have
been published in [11] and will be summarized below.

Subcritical transition in shear flows can be initiated by linear perturbations with
strong transient growth of the perturbation energy due to the lift-up effect. These per-
turbations typically have the form of streamwise vortices. The lift-up effect produces
wall-normal vorticity from wall-normal displacement of fluid parcels which maintain
their streamwise velocity. It thereby creates elongated, tubular regions with accel-
erated or decelerated fluid, which are also know as streamwise streaks. These flow
structures are sensitive to secondary perturbations and thereby lead to transition.

The investigation of the transient amplification and the structure of such linear
perturbations in the channel flow with spanwise magnetic field requires a suitable nu-
merical code, which is explained in [11]. This code implements a fixed-point iteration
with consecutive time integration of the linearized perturbation equations and their
adjoint equations. The perturbations are represented as Fourier modes with stream-
and spanwise wavenumbers « und 3, i.e.

~

(Vp, &, pp) = ((z,1),0(2, ), w(z, 1), (2, 1), p(2, 1)) explicx +ify).  (64)
The result of the fixed-point iteration is the initial condition u(z,0), v(z,0), w(z,0),

~

¢(z,0) und p(z,0) providing the largest energy amplification
Ep(a(z,T),0(z,T),w(z,T), o, )
Ep(a(z,0),9(z,0),w(z,0),a, B)

for given parameters Re, Ha, wavenumbers «, # and time interval T'. The energy
functional is simply the kinetic energy

G= sup (65)

initial cond.

E, - %/ iz T)2 + 16z T + [z, T)] de (66)

of the perturbation.

The numerical computations with this linear code have shown that the struc-
ture of optimal perturbations changes under the influence of the spanwise magnetic
field. The effect is illustrated schematically in Fig. 25. Without magnetic field, the
strongest transient growth occurs for streamwise vortices. As the Lorentz force tends
to eliminate gradients in the direction of the magnetic field, the energy amplification
by such structures is significantly weakened in the presence of the magnetic field. A
scaling analysis for Ha >> 1 provides the relation

Re?
Ha?
for the maximum energy amplification of streamwise optimal modes (vortices) with
a = 0 and optimal values

Gopt ~ (67)

Bopt ~ Ha™', Top ~ Re (68)
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Figure 25: Schematic representation of the influence of the magnetic field on the
orientation of optimal linear perturbations. The mirror image with respect to the
plane y = const. provides a symmetric perturbation with identical transient growth.
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Figure 26: (a): Tilt angle v of the axis of the optimal perturbation with respect
to the flow direction and (b) maximum energy amplification as functions of Ha for
Re = 5000. The optimal wavelength changes only slightly with Ha.

for the spanwise wavenumber and time. The numerical code confirms these scalings
and provides the prefactors

R2

Gopr 2 0.0018 =,

Bopt = 8.2Ha™*, Ty ~ 0.037Re. (69)
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Figure 27:  Schematic representation of results from transition simulations for Re =
5000. The normalized perturbation energy F(0) required for transition is shown for
different types of perturbations. E(0) is normalized by the kinetic energy of the basic
flow.

The strong damping influence of the Lorentz force can be reduced by tilting of the
streamwise modes into the spanwise direction. However, this also weakens the lift-
up mechanism because the wall-normal displacement of fluid elements produces less
wall-normal vorticity. The interplay of these effects causes the behavior shown in
Fig. 26 at Re = 5000. For moderate magnetic fields, the strongest transient growth
occurs for oblique modes. The tilt angle

~ = arctan (a/[3) (70)

increases with the strength of the magnetic field and finally reaches 90 degrees. In
this case the lift-up mechanism is inactive, and the Lorentz force is completely absent.
Transient growth is only provided by the comparatively weak viscous mechanism of
the Orr modes. It is responsible for the plateau of G at large values of Ha in Fig.
26(b).

Secondary instabilities of finite-amplitude optimal perturbations were investigated
by direct numerical simulations at Re = 5000 and various values of Ha. In order
to trigger such instabilities, the direct simulations were started either with linear
combinations of symmetric oblique modes with the same a and either 3 or —3, or
with a pure optimal mode with spatially random noise added at the time of maximum
energy amplification. The simulations show that oblique modes are most efficient
in destabilizing the flow for values 5 < Ha < 30, and that interacting symmetric
oblique modes provide a plausible transition scenario. For larger values of Ha the
transition could not be triggered at realistic perturbations amplitudes. The basic flow
remains stable in this case. These results are schematically summarized in Fig. 27.
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5.4.2 Direct and large eddy simulations of turbulent drag reduction [12, 13]

The laminar flow is unstable for Reynolds numbers Re > Re.. As a consequence, the
flow attains a state of developed turbulence also for weak or moderate magnetic fields.
The properties of the turbulent state increasingly deviate from the hydrodynamic
case when the Hartmann number is raised. These changes were investigated in a
parametric study by D. Krasnov, O. Zikanov and J. Schumacher in collaboration with
the author. Our results from direct numerical simulations and large eddy simulations
are documented in the papers [12, 13].

The main effect of the magnetic field is a reduction of the friction drag. The
magnetic damping strongly affects flow structures with rapid spatial variation along
the field direction. For the spanwise orientation these are precisely the structures
involved in near-wall production of turbulence such as slow-speed streaks and hairpin
vortices. The spanwise magnetic field can therefore lead to significant drag reduc-
tion in spite of the additional Joule dissipation. Turbulent drag reduction in this
configuration was already noted in the experiments by Hartmann and Lazarus with
elongated ducts, although the interaction of the field with the mean flow eventually
leads to drag increase with Ha on account of the Hartmann walls perpendicular to
the magnetic field [102].

Direct numerical simulations of turbulent channel flow with spanwise magnetic
field were performed by Lee & Choi [65] at the subcritical Reynolds number Re =
3000. They observed drag reduction and eventual relaminarization of the flow. The
present parametric study goes considerbly further in terms of Reynolds numbers and
in the level of analysis, especially with regard to the energy dissipation discussed in
[13]. The extensive parallel computations were again largely performed with a grant
of computing time from the von Neumann Institute for Computing in Julich.

Two Reynolds numbers Re = 10* and Re = 2 x 10* are considered for the aspect
ratio 2rL X wL x 2L in [12, 13]. The friction coefficient c; decreases by about 30%
when Ha is increased from Ha = 0 to Ha = 30 for Re = 10* and to Ha = 40 for
Re = 2 x 10*. For larger Ha one finds the large-scale intermittency, which will be
described below. The drag reduction by 30% is considerable, but the laminar flow has
a friction coefficient that is ten times smaller than for the turbulent state at Ha = 0.

The drag reduction is associated with a modification of the mean velocity profile
in Fig. 28. The slope near the wall is reduced with Ha, and the profile becomes
steeper in the middle of the channel. For the larger values of Ha the profile has a
certain resemblance with the laminar profile. In the semi-logarithmic representation
(Fig. 28(b)) one can see that u™ deviates increasingly from the logarithmic law of
the wall for hydrodynamic channel flow. This was already suggested for the low
Reynolds number Re = 3000 in [65], but could only be unambiguously confirmed
in the present study. The drag reduction and modification of the velocity profile by
the spanwise magnetic field are manifestly different from those in polymer solutions,
where the logarithmic dependence on 27 is preserved [17]. They are comparable with
those in channel flow with density stratification, which have been obtained by large
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Figure 28:  Mean velocity profiles for Re = 10* and different Ha: (a) normalized
by the mean velocity U,; (b) normalized by the friction velocity w, and the friction
length v /u..

eddy simulations [16].

The explanation for the disappearance of the logarithmic dependence on 2t re-
mains an open problem. The average streamwise momentum equation (43) has no
Lorentz force term, i.e. the magnetic damping is exclusively in the Reynolds stress
term. As a consequence, there is no obvious reason why the usual arguments leading
to the logarithmic law of the wall fail in the case of spanwise magnetic field. More
speculation on this issue can be found in [12].

Another aspect of the study in [12, 13] is the validation of large eddy simulations
by comparison with direct simulations. Two common closures for the subgrid stresses
are considered, namely the classical Smagorinsky model and the Smagorinsky model
with the dynamic procedure suggested by Germano et al. [41] and improved by Lilly
[68]. The classical Smagorinsky model is used in the version adapted to hydrodynamic
channel flows [75]. The so-called dynamic model is used with test filtering in the
periodic streamwise and spanwise directions. The simulation results show that the
classical Smagorinsky model cannot reproduce the modification of the flow by the
spanwise field with acceptable accuracy. By contrast, the dynamic model provides
good agreement for all values of Ha considered. This finding is in line with the
general observation that the dynamic model adapts effectively to spatial variations in
the large scales, e.g. in wall-bounded or transitional flows [40].

5.4.3 Large-scale intermittency [14]

Further numerical work on this problem explored the behavior at supercritical Re
for moderately strong magnetic fields. It is documented in the joint publication [14]
by the author together with D. Krasnov, A. Thess and O.Zikanov. Turbulence will
not be sustained in this case because of the significant Joule dissipation, i.e. the
flow should evolve towards the laminar state. On the other hand, the laminar state
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Figure 29: Flow evolution during one cycle of the intermittent process. Four stages
are shown using isosurfaces of streamwise velocity perturbations normalized by corre-
sponding rms values. (a) growing two-dimensional spanwise TS mode, (b) turbulent
state at the maximum of perturbation energy, (c) decaying flow dominated by stream-
wise streaks, (d) disappearance of the streamwise streaks and return of the growing
TS waves.

is unstable. At least one Orr mode has a positive growth rate above Re., and is
unaffected by the magnetic field. As a result one observes an intermittent dynamics,
which is characterized by several stages. They are illustrated in Fig. 29, which shows
snapshots of the streamwise velocity perturbation from a simulation with Re = 8000
and Ha = 80. The corresponding evolution of the driving pressure gradient is shown
in Fig. 30.

In the first stage, the flow is initially close to the laminar state. It departs from this
state by exponential growth of an unstable Orr mode, which is marked as (a) in Fig 29.
Alternatively, this mode is called Tollmien-Schlichting (TS) mode in [14]. After some
time, this Orr/TS mode reaches an amplitude where secondary instabilities become
amplified, and transition takes place (b). The resulting turbulent state is immediately
suppressed, i.e. the flow decays towards the laminar state (c). This decay stage ends
when the flow approaches the laminar state, where the unstable Orr mode is again
seeded by the fluctuating background, which is either due to the inherent numerical
“noise” from finite-precision arithmetic, or due to an explicit noise term (stage d).
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Figure 30: Mean pressure gradient (normalized to the basic flow) at Re = 8000 for
the intermittent state at Ha = 80, for purely two-dimensional channel flow [52], and
for fully developed turbulence at Ha = 40.

After that, the cycle repeats itself.

During the intermittency cycle, the friction coefficient ¢, (and thereby the driving
pressure gradient) remains close to the laminar value except for the short interval
corresponding to the turbulent “burst”. Remarkably, c; is not only lower than for
sustained turbulent flow realized at weaker magnetic fields. Except for the short
bursts, cs is also lower than for the time-dependent, purely two-dimensional flow
investigated by Jimenez [52]. At the parameters studied in [14], this two-dimensional
solution is a traveling wave state, which is unaffected by the magnetic field.

In the simulations of channel flow with spanwise magnetic field the intermittent
solution appears to be a robust phenomenon. It is found for both computational
domains considered, which differ in their streamwise periodicity length, and over a
significant interval of Hartmann numbers for a given, supercritical Reynolds number.
In the configuration shown in Figs. 29,30 the intermittent solution is only suppressed
when the Hartmann number exceeds Ha ~ 200.

From a more general viewpoint, the intermittent dynamics in channel flow with
spanwise field presents another realization of an apparently generic intermittency
phenomenon in MHD flows with interaction parameters of order unity. Previous
observations of such intermittent solutions were made in numerical simulations of
forced, homogeneous MHD turbulence in a periodic box [108] and for inviscid flow in a
tri-axial ellipsoid with the magnetic field aligned with one axis [99]. In comparison with
these cases, the channel flow is considerably more realisitic because it incorporates
the effects of solid walls, viscosity and mean shear. On the other hand, it is still
a considerable simplification of experimental reality because of the missing lateral
channel walls and the periodicity in streamwise direction. More realistic simulations
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in the duct geometry, i.e. including lateral walls, are a possible next step towards an
eventual experimental verification of intermittency in wall-bounded MHD flows. This
aspect and further open issues in the channel simulations are also discussed in [14].

5.5 Summary

Experiments on transition and turbulence in wall-bounded magnetohydrodynamic
flows can only provide very limited information because liquid metal flows preclude
optical flow measurements. Accurate numerical simulations become therefore par-
ticularly important. The works presented in this section are focused on the channel
geometry, i.e. they have neglected the influence of lateral walls. The publication [10]
presents the first systematic study of the mean properties of turbulent Hartmann flow.
The publications [11, 12, 13, 14] are concerned with the case of spanwise magnetic
field and address transition and turbulence comprehensively. The publication [11] is
the first systematic numerical transition study for the configuration with spanwise
field. The properties of the turbulent state are addressed in [12, 13|, which provide
a more detailed picture than the previous study [65] at subcritical Reynolds number.
In addition, the utility of the dynamic Smagorinsky model for wall-bounded magne-
tohydrodynamic flows has been demonstrated in [12] on the basis of DNS results.

Large-scale intermittency as found in [14] could have a significant impact on
conventional views of turbulence suppression by magnetic fields, provided it can be
realized in the presence of side walls.
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6 Conclusions

Nature and technology abound with fluid flows on a wide range of length and time
scales and under the influence of various forces. The focus of the works summarized
above is on some of the effects associated with shear, interfacial tension, buoyancy,
and electromagnetic forces. A common aspect is the fairly simple geometry of the fluid
domain, whereby one can employ specialized and highly efficient numerical methods.
It is typically composed of one or two plane layers.

On the subject of Bénard-Marangoni convection, the author is presently interested
in the properties of three-dimensional convection in the limit of zero Prandtl number
Pr = 0, and in the differences to the case of finite Prandtl number. Preliminary
simulation results for Pr = 0 are markedly different in the Reynolds number scaling
with the Marangoni number. Statistical properties of velocity and temperature fields
are another aspect of turbulent Bénard-Marangoni convection that has so far not
been discussed in [2].

Instabilities in two-phase shear layers emanating from a nozzle grow with the
downstream distance, and should therefore be treated in the framework of spatial
stability [51, 33| rather than in that of temporal stability as in [7, 8]. Such analyses
have recently appeared for the inviscid case, e.g. [53, 54]. Viscous studies of spa-
tial growth are currently performed by the Ph.D. student Thomas Otto under the
supervision of the author and in collaboration with Dr. M. Rossi (University Paris
VI). Preliminary results have been published in conference proceedings [80, 81]. The
collaboration with Prof. Zaleski (University Paris VI) will resume for studies of the
nonlinear development of spatial modes.

On the topic of magnetohydrodynamic flows the author continues the collabo-
ration with Dr. D. Krasnov, who has been a member of the Emmy-Noether junior
research group headed by the author. Our current interest is the transition in the
magnetohydrodynamic duct flow with lateral walls and uniform magnetic field. For
these studies, new finite difference codes for the optimal linear perturbations and
for fully nonlinear simulations (DNS) have been developed mostly by Dr. Krasnov.
Our collaborators on this topic are Prof. Zikanov (University of Michigan-Dearborn)
and Dr. M. Rossi. A joint grant proposal with Prof. A. Thess for further numerical
and experimental investigation of the large-scale intermittency in an annular duct
with axial magnetic field was submitted to the Deutsche Forschungsgemeinschaft in
2008. It is currently under review. In the framework of the research training group
(Graduiertenkolleg) “Lorentz Force Velocimetry and Lorentz Force Eddy Current Test-
ing” the author is jointly responsible with Prof. Schumacher and Prof. Thess for two
projects on the interactions of localized magnetic fields with liquid metal flows. This
work will commence in January 2010.
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A Appendix: Quasistatic approximation

The motion of a conducting liquid in a magnetic field B gives rise to an induced
current density 7, which produces a Lorentz force density 7 x B acting on the flow.
The fluid remains electrically neutral because of its high conductivity, i.e. the induced
currents are solenoidal. The induced currents also modify the magnetic field because
of Ampere's law. Displacement currents are neglected in Ampere's law.

The equations describing the electric and magnetic fields in the conducting fluid
are

V-B =0 (71)
V-3 = 0 (charge conservation) (72)
woj = V. x B  (Ampere's law) (73)
—%—1: = V x E (Faraday's law) (74)
j = o(E+vxB), (Ohm'slaw) (75)

The induction equation is obtained in two steps. First, Ohm's law is solved for the
electric field, and the resulting expression substituted into Faraday's law. After that,
the current density is expressed by Ampere's law. The result is

B
aa—t:nVQBJer(va), (76)

where V - B = 0 has been used. The quantity

1
n= (77)
is the magnetic diffusivity of the conducting liquid. It is of the order 1 m? /s for typical
liquid metals, i.e. about 10° times larger than the typical kinematic viscosity.

To simplify the induction equation for the typical applications of liquid-metal
magnetohydrodynamics one now introduces nondimensional quantities on the basis
of the scales L, U and L/U for length, velocity and time, which are characteristic of
the fluid flow. The scale of the magnetic field is By, which is typical of the imposed
magnetic field in absence of fluid flow. The nondimensional form of the induction
equation then becomes

—— =V?B+ R,V x (17><B), (78)

where the tilde indicates the dimensionless quantities and
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is the magnetic Reynolds number, which is typically small compared with unity for
velocities and lengthscales of laboratory and industrial flows. One can therefore
consider R,, as a small quantity € and try a regular perturbation expansion

B=>) ¢B" (80)
n=0

for the solution of the induction equation, which is then placed into the dimensionless
induction equation. Omitting the tilde for ease of notation, one obtains

V:BY = (81)

at order €° and

0

ot
at order €!. The leading term in the magnetic field represents the imposed magnetic
field produced outside the liquid. The next term provides the first-order response in
the magnetic field to the presence of the moving fluid. Higher-order contributions are
not considered because ¢ = R,, is assumed to be small. The currents and electric
fields induced in the fluid can also be written as expansions in € with leading term
¢!, The unit for the electric current density j is chosen as By/jioL and the unit for
the electric field E is chosen as and By/opoL. Placing the expansions into Ampere's
and Ohm's laws one finds

B = v2BY ;v x ('v X B<°>) (82)

i = vxB™ (83)
j™ = EM™ 4y x BOY, (84)

whereby it follows that
VxB™=E" 4 vyx B, (85)

At order ¢! one finds by taking the curl of equation (85) that

9
V x BV = -v2BM — v x (v X B(O)> - B, (86)

The curl of the electric field at this order of approximation is therefore zero provided
that the imposed magnetic field is time-independent. One can therefore write the
electric field as a gradient, i.e.

EY = —voW, (87)

For a time-independent imposed external field B, the first-order approximation for
the induced currents can be represented by a magnetic field perturbation B as

i = v xBWY, (88)
v2BY = _vx ('v x B<°>) . (89)
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The equivalent representation using the electric potential is

iV = —vol + v x BO, (90)
v-iV = o (91)

The condition (91) is needed to ensure that the currents are solenoidal in agreement
with equation (72). It determines the electric potential as solution of the Poisson
equation

V2ol = v . (v x B<0>> . (92)
The nondimensional Lorentz force is given by the expression
f(l) — j(l) « BO (93)

to first order approximation.
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