Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-78395

Entwicklung und Anwendung eines Reaktors zur Simulation der Besiedlung des Dickdarms

  • Die Kenntnis über die im Gastrointestinaltrakt ablaufenden Prozesse spielt in der Entwicklung neuer Arzneiformen eine entscheidende Rolle. Besonders im Dickdarm ist dabei neben den physiologischen Bedingungen die bakterielle Besiedlung zu beachten, welche sowohl inter- als auch intraindividuell hoch variabel ist. Bislang gibt es keine einheitliche Methode zur Untersuchung des Einflusses der intestinalen Mikrobiota auf die Metabolisierung von Arzneistoffen. Diese Methoden sind jedoch entscheidend für das Verständnis des Einflusses der bakteriellen Metabolisierung auf die Pharmakokinetik und -dynamik der Arzneistoffe. Übergeordnetes Ziel dieser Arbeit war es, ein In vitro-Modell zu entwickeln und anzuwenden, welches die dynamischen Bedingungen im Colon ascendens, insbesondere im Hinblick auf die pH-Werte, Durchmischung und bakterielle Besiedlung, darstellt. Um dieses Ziel zu erreichen, wurde im Rahmen erster Versuche untersucht, wie es sowohl mit monographierten als auch biorelevanten Modellen möglich ist, die mechanische Belastung, die auf eine Arzneiform im GIT ausgeübt wird, darzustellen. Die Verwendung der SmartPill™ eröffnete die Möglichkeit, in den Apparaturen auftretende Drücke aufzuzeichnen. Außerdem konnten die gemessenen Drücke anschließend mit Daten aus In vivo-Studien verglichen werden. Die Untersuchungen ergaben, dass in den monographierten Apparaturen keine Drücke auftreten, die den während der Magen-Darm-Passage auftretenden Drücken entsprechen. Im Gegensatz dazu können im DOFTA gezielt Drücke und so auch vollständige Druckprofile simuliert werden. Im weiteren Verlauf der Arbeit waren die zuvor gewonnenen Erkenntnisse hilfreich für die Entwicklung des neuen Modells zur Darstellung des Colon ascendens. In das MimiCol wurden pH-Wert-Daten aus einer SmartPill™-Studie implementiert. Die Vorteile des neuartigen Bioreaktors MimiCol sind das kleinere Medienvolumen, das den In vivo-Bedingungen näherkommt, die Möglichkeit, Medienwechsel durchzuführen und dadurch Metabolite abzuführen und neue Nährstoffe hinzuzufügen sowie die genauere Simulation von In vivo-Durchmischungsmustern. Ziel der durchgeführten Untersuchung war der Vergleich der Metabolisierung des Modellarzneistoffs Sulfasalazin in dem neuartigen dynamischen Bioreaktor MimiCol und einem statischen Standard-Batch-Fermenter. Beide wurden mit der gleichen, kryokonservierten fäkalen Standardmikrobiota beimpft. Die Experimente zeigten, dass das MimiCol in der Lage ist, die dynamischen Bedingungen im aufsteigenden Dickdarm zu simulieren. Die dynamischen Bedingungen im MimiCol führten zu einer Verdopplung der Metabolisierungskonstanten im Vergleich zum statischen Batch-Fermenter. Das MimiCol ahmt, besonders in Bezug auf pH-Fluktuationen und Bakterienwachstum, die dynamischen Bedingungen im aufsteigenden Dickdarm nach und könnte sich in allen Phasen der Arzneimittel- und Formulierungsentwicklung als nützlich erweisen. Zur Erleichterung und Beschleunigung der Datengenerierung wurde im nächsten Schritt eine Erweiterung des Modells angestrebt. Hierbei war es die größte Herausforderung, die ursprünglichen Parameter auf ein erweitertes Modell mit einer anderen Steuerung und anderen Komponenten zu übertragen. Außerdem wurde in diesem Zuge die Charakterisierung komplexer Bakterienkulturen mittels 16S rRNA-Sequenzierung eingeführt. Bei der Erweiterung des Modells wurde besonderes Augenmerk auf die Einfachheit des Designs und die leichte Skalierbarkeit gelegt. Um zu beweisen, dass die Übertragung der Parameter erfolgreich war, wurde erneut der Abbau von Sulfasalazin untersucht und die bakterielle Zusammensetzung während des Experiments durch 16S rRNA-Sequenzierung analysiert. Die Übertragung der Versuchsbedingungen auf das neue Modell war erfolgreich. Kommerziell erhältliche Komponenten wurden in den Aufbau implementiert. Das Modell MimiCol³ repräsentierte das Colon ascendens in seinen Eigenschaften bezüglich des Volumens, pH-Werts und Redoxpotentials zufriedenstellend. Die 16S rRNA-Sequenzierung führte zu weiteren Erkenntnissen über die bakterielle Zusammensetzung in den drei Gefäßen. Der Abbau von Sulfasalazin stand in guter Übereinstimmung mit den In vivo-Daten und den im MimiCol gewonnenen Daten. Das neue Modell des Colon ascendens MimiCol³ ermöglichte es, zuverlässigere Daten zu sammeln, da drei Experimente gleichzeitig unter denselben Bedingungen durchgeführt wurden. Die durchgeführten Untersuchungen zeigen, dass ein wichtiges Instrument zur Untersuchung des Einflusses unseres Mikrobioms im Darm auf den Abbau von Arzneistoffen und Arzneiformen entwickelt wurde.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Regine Beeck
URN:urn:nbn:de:gbv:9-opus-78395
Title Additional (English):Development and implementation of a bioreactor simulating bacterial colonisation of the large intestine
Referee:Prof. Dr. Werner Weitschies, Prof. Dr. Jennifer B. Dressman
Advisor:Prof. Dr. Werner Weitschies
Document Type:Doctoral Thesis
Language:German
Year of Completion:2023
Date of first Publication:2023/02/09
Granting Institution:Universität Greifswald, Mathematisch-Naturwissenschaftliche Fakultät
Date of final exam:2023/01/27
Release Date:2023/02/09
Tag:Arzneistoffmetabolismus; In vitro-Modell; MimiCol; MimiCol³
GND Keyword:In vitro, Dickdarm, Biopharmazie, Mikrobiota
Page Number:70
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Pharmazie
DDC class:500 Naturwissenschaften und Mathematik / 500 Naturwissenschaften
600 Technik, Medizin, angewandte Wissenschaften / 610 Medizin und Gesundheit