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Abstract

The Internet of Things (IoT) connects heterogeneous physical objects
« Things » with the virtual world. This network allows the data exchange be-
tween arbitrary devices to enable more complex applications. The Semantic
Web (SW) was invented to support machines in understanding human read-
able texts. Metadata is attached to the text to achieve this goal. In the
Semantic Internet of Things (SIoT), the SW metadata concept is applied
to the IoT data exchange. This metadata allows large amounts of data
from different sources to be processed and stored together. The amount of
sensors and, therefore, data is rapidly increasing. As the complexity and
volume of data continue to increase, the existing DataBase Management
Systems (DBMSs) are less and less able to meet the resulting requirements.
The requirements for a DBMS used in the SIoT include handling heteroge-
neous hardware, performance, heterogeneous networks, communication pro-
tocols, parallelism, distributed storage, and distributed processing. There-
fore, a new DBMS called Logisch und Physikalisch Optimierte Semantic Web
Datenbank-Engine 3000 (LUPOSDATE3000) is designed with these topics in
mind.

All of these requirements depend on the quality of the query plan, which
in turn depends on the underlying data organization. Therefore, this work
studies the data and query organization in a SIoT environment. This work
is organized into three parts: The first part elaborates on the consequences
of multiple local partition schemes regarding storage requirements and per-
formance. It is shown that the optimal number of partitions depends on the
amount of data and the number and selectivity of join operators. The second
part shows that the network traffic can be reduced when the join order opti-
mizer is granted access to routing information. The third part analyzes the
cost and benefit of Machine Learning (ML)-based join order optimizers. We
show that ML can optimize the join order faster than traditional approaches
while maintaining a similar quality.
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Kurzfassung

Das Internet of Things (IoT) verbindet heterogene physische Objekte
« Things » mit der virtuellen Welt. Dieses Netzwerk ermöglicht den Da-
tenaustausch zwischen beliebigen Geräten, um komplexere Anwendungen zu
ermöglichen. Das Semantic Web (SW) wurde erfunden, um Maschinen beim
Verstehen von menschenlesbaren Texten zu unterstützen. Um dieses Ziel zu
erreichen, werden dem Text Metadaten hinzugefügt. Im Semantic Internet of
Things (SIoT) wird das SW-Metadatenkonzept auf den IoT-Datenaustausch
angewendet. Dies ermöglicht es, große Datenmengen aus unterschiedlichen
Quellen gemeinsam zu verarbeiten und zu speichern. Die Menge an Sensoren
und damit Daten nimmt rasant zu. Da die Komplexität und Menge der Da-
ten weiter zunimmt, werden die bestehenden DataBase Management Systems
(DBMSs) immer weniger den daraus resultierenden Anforderungen gerecht.
Die Anforderungen an ein DBMS, das im SIoT verwendet wird, umfassen
den Umgang mit heterogener Hardware, Leistung, heterogenen Netzwerken,
Kommunikationsprotokollen, Parallelität, sowie verteilter Speicherung und
Verarbeitung. Daher wurde ein neues DBMS namens Logisch und Physika-
lisch Optimierte Semantic Web Datenbank-Engine 3000 (LUPOSDATE3000)
unter Berücksichtigung dieser Eigenschaften entwickelt.

Alle diese Anforderungen hängen von der Qualität des Abfrageplans ab,
der wiederum von der zugrunde liegenden Datenorganisation abhängt. Daher
werden in dieser Arbeit die Daten- und Abfrageorganisation in einer SIoT-
Umgebung untersucht. Diese Arbeit ist in drei Teile gegliedert: Der erste Teil
befasst sich mit dem Speicherbedarf sowie der Performance durch mehrerer
lokaler Partitionierungsschemata. Es wird gezeigt, dass die optimale Anzahl
von Partitionen von der Datenmenge und der Anzahl sowie Selektivität der
Join Operatoren abhängt. Im zweiten Teil wird gezeigt, dass der Netzwerk-
verkehr reduziert werden kann, wenn der Joinreihenfolge-Optimierer Zugriff
auf Routing-Informationen hat. Der dritte Teil analysiert die Kosten und den
Nutzen von Machine Learning (ML)-basierten Joinreihenfolge-Optimierern.
Es wird gezeigt, dass ML die Joinreihenfolge schneller als herkömmliche An-
sätze optimieren kann, während eine ähnliche Qualität beibehalten wird.
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Chapter 1

Introduction

The IoT connects heterogeneous physical objects - "Things" - with the vir-
tual world. This network allows the data exchange between arbitrary devices
to enable more complex applications. One core challenge is connecting many
heterogeneous devices [50]. These heterogeneous devices are unavoidable in
large projects like smart cities, where several organizations work together
[136, 8]. Some of these devices have sensors that constantly provide new
measured values. The devices must interact with each other to make the mea-
sured values usable. In addition, many of these devices are battery-powered.
Transmitting data is one of the largest energy consumers [29]. Therefore, the
transmitted data must be reduced as much as possible. However, most data
must be stored to perform complex queries later, so sending some messages
around is unavoidable. Since there is no uniform sensor standard in the IoT,
there is also no fixed storage scheme. All data schemes can be converted to
triples because triples are the most basic way to encode information.

The SW was invented to support machines in understanding human read-
able texts [13, 93]. However, metadata can be attached to arbitrary data as
well. Ontologies are used to formalize the structure of knowledge.

In the SIoT, the SW technologies are applied to the IoT [98]. Therefore
the metadata, which is the core of the SW, is used to annotate the data
from the IoT to introduce a generic structure for sensors, actuators, and the
environment. Triple stores can be used to store arbitrary directed graphs.
This flexibility makes them ideal for the SIoT. The data must be stored
in a physically distributed manner. In this context, there are a lot of open
research questions to reduce network traffic and, thus, energy consumption.
Also, validation of facts is possible. Contradictions in the data can be dis-
covered and presented to the user. The ontologies and the metadata help to
improve the quality of user queries because the machine has more context
information [98].
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SPARQL Protocol and Resource Description Framework (RDF) Query
Language (SPARQL) is a query language commonly used to interact with
triple stores. Due to the distributed data flow, the query evaluation must
also be distributed. Some central operators are used frequently in SPARQL,
as in many other languages. Except for the join operator, most operator im-
plementations can be trivially parallelized. However, with the join operator,
it is necessary to distribute the data so subtasks can be processed indepen-
dently. Since the join operator is frequently used, several strategies exist.
Thus the data can be stored partitioned, or only if necessary, selectively
partitioned. Partitions can be formed after a single variable or by cluster-
ing algorithms. When partitioning, it is essential to consider the underlying
data structure. For example, there are many more different object values
than predicate values. Figure 4.3 supports this assumption later. The sub-
ject values often indicate a direct relationship. Depending on the application,
there may be other relationships, so the strategy should always be flexible to
match. Modern DBMS already reduce their network traffic for speed reasons.
However, they do not focus on the network topology. Network topology is
essential because sending multiple small data packets to another node that
is far away will cause more package overhead than sending a large amount of
data to a neighboring device. Therefore, the data distribution algorithm has
to minimize the distances between data sources, data storage, and receivers.
Therefore, new techniques are needed for networking between routing and
application layers.

1.1 Research Questions and Focus of this Work
This work is motivated by three primary research questions:

• What are the consequences of multiple partitioning schemes
regarding storage space and the performance of the queries?
This question is answered in chapter 5. Due to the increased number
of replications, the storage space requirements are increased along with
the performance whenever much data is divided into many partitions.
On the contrary, the performance is decreased if too many partitions
are used for too few data. After the experiments, a function to estimate
the optimal number of partitions is proposed.

• How is the network traffic affected if the DBMS is granted
access to the topology information of the routing protocol?
With more information about the environment, a more sophisticated
execution plan can be created. These details, however, come at the
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cost of a more complex plan generation process, which needs more time
during the optimization phase. More details can be found in chapter 9.

• How much cost and advantages are obtained using ML in
query optimization? ML algorithms feature a constant evaluation
time of a given model, drastically improving the optimization phase’s
speed. However, a new training phase is introduced, which requires a
lot of upfront computations. Also, the output quality is less predictable
as ML naturally introduces some randomness. Chapter 10 shows the
approach and the results.

Besides answering the main research questions, several secondary contri-
butions are made. These contributions are necessary to solve the primary
research questions, but their value is independent of them.

• The SPARQL DBMS LUPOSDATE3000 is open-source and publicly
available (chapter 3) [158]. This DBMS is completely written in Kotlin,
such that it can deal with heterogeneous Operating System (OS) envi-
ronments. Another feature is that multiple components of the DBMS
can be easily exchanged to experiment with new algorithms.

• The Simulator SIMulating Open Routing protocols for Application in-
teroperability (SIMORA) (chapter 6) [159] can simulate entire applica-
tions within a network topology. The key feature is that the network
interface can be modified such that the evaluation of the primary re-
search questions becomes possible.

• Improved multicast techniques allow the distribution of similar data to
multiple destinations using topology information within the application
(chapter 7). Compared to a combination of state-of-the-art multicast
and unicast, the number of packages and, thus, metadata is reduced,
decreasing the overall traffic in the network.

• A scaleable benchmark scenario supporting network topologies (chap-
ter 8). The primary contribution of the benchmark is that the data
streams are decentralized, concurrent, and reproducible for any num-
ber of devices.
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1.2 Publications and Presentations
I have implemented, evaluated and presented some key concepts of this dis-
sertation at national and international conferences, workshops, and journals.

• The flexible partitioning approach (chapter 5) which is based on
LUPOSDATE3000 (chapter 3) was published in 2021 at the Daten-
banksysteme für Business, Technologie und Web (BTW) conference
[162].

• The simulator SIMORA (chapter 6) with the Dynamic Content (DC)
Multicast (chapter 7) was presented in 2022 at the International Con-
ference on Fog and Edge Computing (ICFEC) [164].

• The benchmark scenario (chapter 8) was presented in 2022 in Pro-
ceedings of The International Workshop on Big Data in Emergent Dis-
tributed Environments: (BiDEDE) [161].

• The topology-driven join order optimization (chapter 9) was introduced
in 2023 at the international database engineered applications sympo-
sium (IDEAS) [160].

• The ML approach for join order optimization (chapter 10) is submitted
to the Journal of Web Semantics [163].

1.3 Organization of this Work
Figure 1.1 shows the dependencies between the chapters of this work. In the
beginning, the DBMS LUPOSDATE3000 is introduced in chapter 3. This
DBMS is used to compare and analyze the different approaches with each
other.

The three main research questions are bundled with their required de-
pendencies in parts, shown as rectangles in the figure. Chapter 5 considers
an approach to improve the execution speed of SPARQL queries by using
multiple partitioning schemes simultaneously. The intention is to gain speed
up by selecting the most promising partitioning scheme at runtime based on
the specific query. Then the topology-driven optimization approaches are
explored in chapter 9. In focus are the changes to the network traffic, which
are caused by different topologies, partitioning schemes, and join order op-
timizers. Finally, ML optimization techniques are introduced and compared
in chapter 10 regarding their speed and the quality of the resulting query
execution.
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Part 1

Part 2

Part 3

Chapter 1

Chapter 2

Chapter 3 Chapter 4

Chapter 5

Chapter 6

Chapter 7Chapter 8

Chapter 9

Chapter 10

Figure 1.1: This figure shows the dependencies between the chapters of this
document.

Definitions and foundations are introduced in chapter 2. These defini-
tions are used throughout the following chapters. Chapter 4 specifies the
hardware on which the benchmarks are executed. Additionally, the chapter
introduces the used datasets, benchmarks, and competitive DBMS, which
were used to evaluate the approaches. The simulator SIMORA is presented
in chapter 6. This simulator is the foundation for all network-related eval-
uations. Next, DC Multicast is introduced in chapter 7. This approach
can reduce network traffic further by using the topology knowledge of the
routing protocol. Finally, a benchmark scenario is introduced in chapter 8.
This benchmark includes simulating sensor devices to improve the evaluation
quality in a distributed context.
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Chapter 2

Fundamentals

This chapter explains in detail many basic definitions that will reappear
in later chapters. These definitions belong to three fields: The SW with its
ontologies and flexible data structures, the IoT with its heterogeneous devices
and networks, and SW DBMS, which can store SW data.

2.1 Semantic Web

The worldwide connection of computers, known as the Internet, allows shar-
ing of information globally within a short amount of time. Initially, the In-
ternet was only usable by people who understood the technical foundations
of providing and using resources. Over time, Internet use is becoming easier
and more accessible, so even children can use it to exchange information.
However, the same development, which made it easier for people to use the
Internet, makes it more complicated for machines to understand and interact
with the resources. Even though the links only connect one resource with
another, humans can understand how the resources belong to each other.
This understanding is possible because both humans share some background
knowledge of how things work in the real world.

The SW is a concept in which information on the Internet is given mean-
ing, making it more easily understandable and usable by computers and
people [13]. The SW is built on the idea that the meaning of the informa-
tion should be explicit and machine-readable rather than relying on human
interpretation. This metadata allows computers to process and understand
information more intelligently, creating new and innovative applications and
services.

To achieve this, the SW needs a standardized way of expressing this meta-
data, which makes automated resource processing possible [13]. The basic
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SOSA[66]

SSN[96]

OWL[166]

RDFS[60]

RIF[87]

SHACL[90]SPARQL[142]

RDF[89]

XML[147], JSON, CSV, TTL[130]

IRI[39]

URI[12]

Unicode[154]

Figure 2.1: Layer Cake of SW

idea of the SW described by Tim Berners-Lee was to enable machines to pro-
cess data in a context-aware way. The intention is to produce more context-
aware answers [13]. To still allow everyone to benefit from this technology,
the usage of SW is hidden from the user. To enable the widespread use of this
technology, the World Wide Web Consortium (W3C) published standards for
data formats and exchange protocols in the World Wide Web (WWW). The
W3C continuously updates the standards and protocols, which implies that
the specifications still have yet to reach their final state.

The SW is built on a set of technologies introduced in the following sec-
tions.

2.1.1 Layer Cake of Semantic Web

Figure 2.1 shows the overview of several SW technologies and their related
standards. The bottommost layer of the SW is data storage and exchange.
Since the existing resources on the Internet use a string-based encoding to
encode their links and information, the SW also uses this to ensure compati-
bility with other resources. Since the universal character set (UCS) encoding
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already considers different language sets, it is used for storage and exchange-
ability purposes. This string encoding is already standardized and used in
many applications. For example, a Uniform Resource Locator (URL) can
reference a specific web page on the Internet. For compatibility consider-
ations, encoding an Internationalized Resource Identifier (IRI) matches an
URL’s encoding. This IRI can then define web pages and uniquely define
resources.

The SW allows the information to be encoded in the Extensible Markup
Language (XML) format to embed SW-related information into existing web
pages. Besides the XML format, the data can be encoded in various text-
based file formats, including JavaScript Object Notation (JSON) and comma-
separated values (CSV). Additionally, the data can be encoded in the Turtle
file format, which drops the compatibility, but enables a higher information
density. This layer should ensure that the information is readable by humans
and machines simultaneously.

The last layer in the context of the data description is the RDF layer.
This layer finally allows the declaration of connections and statements, which
help the machine understand the context.

On top of this coherent data layer, different functionalities can be pro-
vided. SPARQL is defined to access the data. This language defines multiple
operators which enable Create, Read, Update and Delete (CRUD) opera-
tions. Since the purpose of the SW is to consider contextual knowledge,
there are also RDF Schema (RDFS) and Web Ontology Language (OWL).
These two provide a framework to express class hierarchies and ontologies.
The rules can be exchanged with the Rule Interchange Format (RIF) layer,
allowing the knowledge processor to infer additional knowledge not explicitly
mentioned in the data. On top of this framework stack, the two ontologies
Semantic Sensor Network (SSN) and Sensor, Observation, Sample, and Ac-
tuator (SOSA) are shown because these are used later in this thesis.

2.1.2 UCS

The universal character set (UCS) standard allows consistent encoding and
representation of text. Due to this consistency, the handling of text within
applications is simplified. The long-term goal of UCS is the collection of all
meaningful letters from all over the world in any text form. This standard
avoids the need for any local encoding scheme, which could lead to false
representations of letters. The first version of UCS was released in 1991 [154].
The collection contained letters and signs which belonged to one or multiple
languages. The current version of UCS 15.0.0 from 2022 contains 149186
characters with code points that cover 161 modern and historical scripts and
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multiple symbol sets. The UCS standard is organized in planes. The first
four bits of the data refer to the plane number, and the others refer to the
character within the given plane. The first plane is the Basic Multilingual
Plane (BMP). This plane covers most of the frequently used symbols. The
other planes are called supplementary planes. As of version 15.0.0, five plains
contain symbols, and seven are named. The limitation to 16 planes comes
from UTF-16, which limits the number of possible characters to 220. UTF-8
would allow the encoding of 221 symbols with its current encoding, which
equals 32 planes.

The last two planes are open for private use, which allows users to add
their symbols at the price of incompatibility.

2.1.3 IRI, URL, and URI

The Internationalized Resource Identifier (IRI) uniquely identifies a resource
by a given chain of characters and symbols [12]. The IRI originates from
the Uniform Resource Identifier (URI) used in the WWW as a Uniform Re-
source Locator (URL). These URLs are also called web addresses. An URL
refers to an existing location, while a URIs does not need to refer an exist-
ing resource. An URI follows a fixed scheme, as shown in figure 2.2. The
difference between a URI and an IRI is the allowed character set. While an
IRI can contain any character, a URI allows only American Standard Code
for Information Interchange (ASCII) characters. An IRI can be transformed
into a URI using the percent-encoding, which replaces non-ASCII chars with
their hexadecimal representation, always indicated with a previous percent
sign. Figure 2.3 shows an example URI which uses all the components. In
the example, https specifies the resource scheme. By using the scheme, the
client-side application can make assumptions about the content of the trans-
mission. The next part is the username benjamin. The username can be
used to verify that the requesting user has permission to view the resource.
The third component specifies the server, which has the resource. In this ex-
ample, it is www.uni-luebeck.de. The port must be specified if non-standard
ports are used. When using standard ports, the specification is optional.
With the port, it is possible to specify which application on the destination
server should receive the query. The remaining components of the URI are
interpreted within the application. The "path"-component in the example,
abc, determines the resource within the application. Optional query param-
eters like a=1 allow the generation of individual resources based on different
parameters. Finally, the fragment component #1 can be used to specify the
position in the document. This component could refer to, e.g., captions in
the document.
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scheme ’ : ’ [ ’ / / ’ [ u s e r i n f o ’@’ ] host [ ’ : ’ port ] ] path
↪→ [ ’ ? ’ query ] [ ’# ’ fragment ]

Figure 2.2: URI syntax

https : //benjamin@www . uni−luebeck . de :1234/ abc?a=1#1

Figure 2.3: URI example

The scheme part always specifies how to use the given resource. The
optional authority part consisting of userinfo, host, and port describes the
computer on which the resource can be found. The mandatory path seg-
ment specifies the name of the physical or logical resource on the previously
given machine. Finally, the optional query and fragment segments can pass
parameters to access a logical resource.

An example of IRI is given in figure 2.4. In this case, the IRI uniquely
identifies a parking area. Even if this string matches the URL scheme, it
does not refer to an existing web page.

2.1.4 XML

With standardized text encoding and a common way of referencing resources,
the next step is a syntactical arrangement. The Extensible Markup Lan-
guage (XML) layer provides a machine and human readable representation
[147]. As the name suggests, the markup language distinguishes between key-
words, annotations, and text. The design goals of XML emphasize simplicity,
generality, and usability across the Internet. Although the design focused on
documents, the format can express arbitrary data structures. The format
is one of the most important formats used on the Internet because it is a
foundation for Hypertext Markup Languge (HTML) to display the website
content to users. Due to the flexibility, the XML used to display a website
can be enhanced with additional invisible information, which the SW can use
to provide further information to the machine.

https : // parking#area

Figure 2.4: IRI example
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2.1.5 RDF

Resource Description Framework (RDF) is a directed, labeled graph data for-
mat representing Web information [89]. It intends to connect resources in the
WWW semantically. This layer is placed above the flexible XML encoding.
A fact is always represented by a triple consisting of subject, predicate, and
object. The triple can be interpreted as a sentence that describes the subject.
The formal definition of a Triple is (s, p, o) ∈ (I ∪B)× I× (I ∪B∪L), where
I represents the set of IRIs, B the set of blank nodes, and L the set of Liter-
als. Figure 2.5 shows the graphical representation of some RDF data. Since
IRI was explained earlier, only the blank nodes and Literals are examined
further.

Blank nodes are not globally unique but only within their document.
Therefore these can be used to identify something which does not have or
does not need a global identifier. When combining multiple documents, the
blank nodes need to be renamed because they refer to different things no
matter what they are called.

Literals represent values like strings, numbers, and dates. The standard
allows the attachment of an explicit datatype or language to the string rep-
resentation. However, both datatype and language tags are optional. The
specification of a datatype allows the application to interpret the data mean-
ingfully. Literals with a given datatype are also called typed literals. Sim-
ilarly, literals with a given language tag are called language-tagged strings.
Language-tagged strings can be implicitly assumed to be strings by any appli-
cation. Data formats like Terse RDF Triple Language (TTL) do not specify
a language-tagged string’s datatype. When neither datatype nor language
tags are given, the literals are called simple literals. In this case, most ap-
plications assume the string datatype. Literals can only occur in the object
position of a triple.

Subjects represents specific resources that need to be described. When an
subject is globally unique, an IRI directly references the resource. Otherwise,
a blank node can be used as a placeholder to reference the resource. Every
node in the graphical representation with an outgoing edge is an subject in
at least one triple.

Objects can be any value type. When the type is an IRI or a blank node,
then the object might be the subject of another triple, in which case the
triple represents a connection between two things. If the object is a literal,
it must be an attribute of the given subject. In the graphical representation,
all nodes with incoming edges are at least once in the object position of a
triple.

Predicates must be IRIs. They describe how the subjectd and objects are
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Figure 2.5: Graphical representation of RDF data. The blue nodes are Lit-
erals, and the red nodes are blank nodes. The black texts represent IRIs.
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@pref ix parking : <https : // parking#> .
@pref ix sosa : <http ://www.w3 . org /ns/ sosa/> .
@pref ix ssn : <http ://www.w3 . org /ns/ ssn/> .
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .

parking : Ava i l ab l ePark ingS lo t s a sosa : Fea tureOf In t e r e s t ;
ssn : hasProperty _: Park ingS lotLocat ion .
parking : CarMovement a ssn : St imulus ;
ssn : isProxyFor _: Park ingS lotLocat ion .
parking : SensorOnEachSlot a sosa : Procedure .
_: Park ingS lotLocat ion a sosa : ObservableProperty ;
parking : area \"${ area }\"^^xsd : i n t e g e r ;
parking : spotInArea \"${ spotInArea }\"^^xsd : i n t e g e r ;
sosa : isObservedBy _: Sensor ;
ssn : i sPropertyOf parking : Ava i l ab l ePark ingS lo t s .
_: Sensor a sosa : Sensor ;
parking : sensorID \"${ sensorID }\"^^xsd : i n t e g e r ;
sosa : obse rve s _: Park ingS lotLocat ion ;
ssn : d e t e c t s parking : CarMovement ;
ssn : implements parking : SensorOnEachSlot .

_: Sensor sosa : madeObservation _: Observation .
_: Observation a sosa : Observation ;
sosa : hasFeatureOf Inte r e s t parking : Ava i l ab l ePark ingS lo t s ;
sosa : hasSimpleResult \"${ isOccupied }\"^^xsd : boolean ;
sosa : madeBySensor _: Sensor ;
sosa : observedProperty _: Park ingS lotLocat ion ;
sosa : phenomenonTime \"${sampleTime}\"^^xsd : dateTime ;
sosa : resu l tTime \"${sampleTime}\"^^xsd : dateTime ;
sosa : usedProcedure parking : SensorOnEachSlot ;
ssn : wasOriginatedBy parking : CarMovement .

Figure 2.6: Example TTL file.

connected. The graphical representation labels every connection between two
nodes with a predicate.

2.1.6 TTL

Terse RDF Triple Language (TTL) is a file format used to represent RDF
data [130]. It is a terse RDF syntax designed for readability and simplicity,
often used to represent simple, small RDF graphs. The format is designed
to be more concise and accessible to read than other RDF syntaxes, such as
XML.

Figure 2.6 shows an example TTL file. In the first couple of lines, the
frequently used prefixes are defined. The prefixes shorten the following entries
and improve the TTL file’s overall readability. Afterward, the data is defined.
Only one triple is defined in each line to increase the readability. However,
this is not required. Each triple consists of subject, predicate, and object.
If multiple consecutive triples share the same subject, then the triples are
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separated by a semicolon.
In the given example, the first block of triples contains static data, which

is initialized once per sensor. The second block contains the data, which is
generated, whenever the sensor reads a new sample.

TTL files use a simple and readable syntax that allows developers to ex-
press RDF data in a way that is easy to understand, making it a popular
choice for representing data in linked data and SW applications. Conse-
quently, TTL files can be used to exchange data between different DBMS.
When using TTL files for data exchange, the data in the original DBMS
is first exported to a TTL file, which can then be imported into the target
DBMS. This process can be done using various RDF-related libraries and
tools. Whenever a DBMS does not natively support RDF data, a middleware
or plugin may be needed to import the data.

2.1.7 SPARQL

SPARQL Protocol and RDF Query Language (SPARQL) is a query language
and protocol for querying and manipulating RDF data [142]. It is similar to
Structured Query Language (SQL) because it allows users to retrieve and ma-
nipulate data stored in an Relational DBMS (RDBMS). Still, it is designed
specifically for querying RDF data. It can express queries across diverse
data sources, whether the data is stored natively as RDF or viewed as RDF
via middleware. The language contains capabilities for querying required
and optional graph patterns, conjunctions, and disjunctions. SPARQL also
supports aggregation, subqueries, negation, creating values by expressions,
extensible value testing, and constraining queries by source RDF graph. The
results of SPARQL queries can be result sets or RDF graphs. Due to the
graph structure of the underlying RDF data, the join operator is one of the
most frequently used operators. This behavior is different in SQL because
the data originates from tables that do not exist in SPARQL.

The basic structure of a SPARQL query is composed of a SELECT state-
ment, which defines the variables that will be returned in the query results,
followed by a WHERE clause. The WHERE clause explains the conditions
the data must meet to be included in the query results. These conditions
include a set of triple patterns defining the RDF data. Figure A.7 shows an
example SPARQL query consisting of multiple elements.

SPARQL Prefix

In SPARQL, a prefix is a shorthand notation for a longer IRI that refers
to a specific namespace in an RDF dataset. A namespace is a collection of
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related resources identified by a shared prefix. The prefix notation allows
using short and readable names for IRIs in SPARQL queries. For example,
instead of using the full IRI http://www.w3.org/ns/sosa/resultTime to refer
to the resultTime property in the SOSA vocabulary, the prefix sosa and the
local name resultTime can be used in the query, like this: sosa:resultTime. A
prefix in a SPARQL query needs to be defined using the PREFIX keyword,
followed by the prefix and the IRI it represents. For example, the sosa prefix
is defined in the first line of figure A.7. Multiple prefixes can be defined in
a single query and used in any part of the query, including the SELECT-
and WHERE-clauses and triple patterns. It is worth noting that the prefix
notation is only a shorthand notation. The entire IRI is used internally by
the SPARQL engine when it processes the query.

SPARQL Join

A join operator matches and combines data from different parts of an RDF
dataset based on shared variables. The result of a join is a new set of variable
bindings that combines the information from the matched triples.

A join operation is typically used in the WHERE clause of a SPARQL
query, where multiple triple patterns are specified. The variables in the
different triple patterns are matched based on the variable name, and the
results are combined to form the final query results.

For example, suppose there are two triple patterns in the query, one
that matches triples with the subject variable ?Observation and the predi-
cate sosa:resultTime, and another that matches triples with the subject vari-
able ?Observation and the predicate sosa:hasSimpleResult. In that case, the
SPARQL engine will match the subject variable in both patterns and combine
the results to form a new set of variable bindings, including the resultTime
and the simpleResult of the matched observation.

A join operator can also be defined with more than two triple patterns.
Additionally, as shown in figure A.7, subqueries can be part of the join.
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SPARQL Group-by

In SPARQL, the GROUP BY clause groups the query results by one or more
variables. The GROUP BY clause can be used with aggregate functions,
such as COUNT, SUM, AVG, MIN, and MAX, to calculate group summary
statistics.

The basic syntax for using the GROUP BY clause is to specify one or
more variables after the keyword GROUP BY, separated by commas. In
figure A.7, only one variable is specified.

When a query includes a GROUP-BY-clause, the SPARQL engine will
first group the query results by the specified variables and then apply the
aggregate functions to each group. In this example, the query groups the
results by the ?ParkingSlotLocation variable and calculates when the last
information was received.

It is worth noting that a HAVING clause can filter the result of the
GROUP BY clause.

SPARQL Filter

In SPARQL, the FILTER keyword is used to restrict the results of a query
based on a Boolean expression. The FILTER keyword is used in the WHERE
clause of a query to specify a condition that the results must meet to be in-
cluded in the final query results. For example, the filter can be used whenever
a simple equality test in a triple pattern is insufficient.

The basic syntax for using the FILTER keyword is to specify a Boolean
expression after the keyword FILTER. The Boolean expression can include
variables, literals, and built-in functions. For example, in figure A.8, the
filter expression includes only certain parking areas in the result set.

The FILTER keyword is a powerful tool to refine a query’s results and
retrieve only the data that meets specific conditions. It also can help improve
the query’s performance by reducing the number of possible solutions before
the join operation.

2.1.8 RDFS

RDF Schema (RDFS) is a set of vocabulary and rules describing the structure
and constraints of RDF data [60]. RDFS provides a way to define classes,
properties, and constraints that can be used to create a formal schema for
an RDF dataset.

RDFS defines a set of classes, including rdfs:Class, rdfs:Resource, and
rdfs:Literal, and a bunch of properties, including rdfs:domain, rdfs:range,
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@pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@pref ix parking : <https : // parking#> .

parking : Observation r d f s : subClassOf r d f s : Resource .
parking : Sensor r d f s : subClassOf r d f s : Resource .
parking : ObservableProperty r d f s : Resource .

parking : sensorID rd f s : subPropertyOf r d f s : l a b e l .
parking : area r d f s : subPropertyOf r d f s : s eeAl so .

parking : sensorID rd f s : domain parking : Sensor .
parking : area r d f s : range xsd : i n t e g e r .

Figure 2.7: Example RDFS file.

rdfs:subClassOf, and rdfs:subPropertyOf, that can be used to create a hierar-
chical structure for classes and properties in an RDF dataset.

Likewise the rdfs:subClassOf property is used to specify that one class
is a subclass of another. Finally, the rdfs:subPropertyOf property is used
to specify that one property is a sub-property of another. These properties
define a hierarchy of classes and properties, making it possible to express
inheritance relationships between them.

The rdfs:domain and rdfs:range properties specify the domain and range
of properties, respectively. The domain of a property is the class of resources
that can be used as the subject of triples that use the property, and the range
of a property is the class of resources that can be used as the object of triples
that use the property.

RDFS also provides a way to specify constraints on using properties,
such as cardinality constraints (e.g., minCardinality, maxCardinality) and
type constraints (e.g., rdfs:range), which can be used to ensure that data is
consistent and conforms to a specific schema.

RDFS is widely used in the RDF community, and many vocabularies
and ontologies are defined using RDFS. This acceptance allows for greater
interoperability between different RDF datasets and makes it easier to create
and use powerful, reusable vocabularies for describing data on the web.

Figure 2.7 shows how RDFS can be used to specify components of the
parking scenario. In this example, the parking:Observation, parking:Sensor,
and parking:ObservableProperty are the RDFS class rdfs:Resource subclasses.
parking:sensorID and parking:area are sub-properties of the RDFS properties
rdfs:label and rdfs:seeAlso, respectively. Then the rdfs:domain and rdfs:range
properties specify that the parking:sensorID property has a domain of park-
ing:Sensor. The range of the parking:area property consists of all xsd:integer.
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2.1.9 OWL

Web Ontology Language (OWL) is a language for representing ontologies on
the WWW. Ontologies are formal representations of a set of concepts and
relationships that exist in a particular domain of knowledge. They provide
a way to define the vocabulary and structure of a specific domain and to
express constraints and inferences that can be made from that vocabulary
[166].

OWL has three different levels of expressiveness: OWL Lite, OWL DL,
and OWL Full [166]. OWL Lite is the most basic level, providing a small
set of constructs for defining classes, properties, and individuals. OWL DL
and OWL Full share the same vocabulary, an extension of the vocabulary of
OWL Lite. OWL DL is a more expressive level, providing a more extensive
set of constructs and allowing for more complex reasoning. However, OWL
DL enforces some restrictions, making distinguishing between things that
appear in different contexts easier. Finally, OWL Full is the most expressive
level, allowing for using constructs incompatible with reasoning.

OWL provides a rich set of constructs for defining classes, properties,
individuals, and constraints, including:

• Class and property hierarchies using rdfs:subClassOf and
rdfs:subPropertyOf

• Property characteristics such as functional, inverse functional, symmet-
ric, transitive, and inverse properties

• Cardinality and existence restrictions on properties

• Logical operators such as intersection, union, and complement

• Built-in predefined classes and properties, such as owl:Thing and
owl:sameAs

OWL also supports reasoning, allowing inferences to be made from on-
tology. Reasoning means that if the ontology implies a statement but is not
explicitly stated, a reasoner can infer that statement. This inference makes it
possible to automatically discover new information and relationships in the
ontology and check for consistency and completeness [166].

OWL ontologies allow for greater interoperability and reuse of vocabular-
ies across different applications and domains, enabling automated reasoning
over the represented knowledge. This interoperability makes it a valuable
tool for many applications, such as knowledge management, natural language
processing, semantic search, and the SW.
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OWL is based on RDF. Therefore, it is designed to be used alongside
other W3C standards, such as RDF and RDFS. This design allows for easy
integration of OWL ontologies with other RDF data and effortless linking
of ontologies to other resources on the web. Furthermore, OWL ontologies
can be represented in different serialization formats, such as RDF/XML [48],
Turtle [25], and OWL/XML [140]. These representations make exchanging
and sharing ontologies across other systems and platforms easy.

OWL 2 is fully backwards compatible to OWL [1]. Some new features
are only syntactic sugar (e.g., disjoint union of classes), while others add new
functionality such as asymmetric, reflexive, and disjoint properties.

2.1.10 SOSA

Sensor, Observation, Sample, and Actuator (SOSA) is a lightweight ontology
representing sensor observations, measurements, and related information in
RDF format [96, 66]. It is intended to provide a shared vocabulary for
describing sensor observations and measurements in a machine-readable and
human readable way.

SOSA provides a set of classes and properties for describing sensor obser-
vations and measurements, including:

• sosa:Observation, a class representing an observation made by a sensor

• sosa:Result, a class representing the result of an observation

• sosa:hasResult, a property linking observation to its result

• sosa:madeBySensor, a property linking observation to the sensor that
made it

• sosa:hasFeatureOfInterest, a property linking observation to the feature
of interest that it observed

SOSA aligns with other ontologies and vocabularies, such as SSN, which
enables integration and linking sensor data with other domain-specific data
and knowledge, making it helpful in building intelligent and interoperable
sensor systems.

SOSA also allows for querying and reasoning over sensor data using
SPARQL. This reasoning allows for discovering and understanding patterns
and relationships in the sensor data and automatically generating new sensor
data based on the existing data and ontological constraints.
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PREFIX parking : <https : // parking#> .
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/> .
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/> .
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#> .

_: Observation a sh : NodeShape ;
sh : t a r g e tC l a s s sosa : Observation ;
sh : property [
sh : path sosa : madeBySensor ;
sh : minCount 1 ;
sh : maxCount 1 ;
sh : datatype _: Sensor .

] .
_: Sensor a sh : NodeShape ;

sh : t a r g e tC l a s s sosa : Sensor ;
sh : property [
sh : path sosa : madeObservation ;
sh : datatype _: Observation .

] .

Figure 2.8: Example SHACL file.

2.1.11 SHACL

Shapes Constraint Language (SHACL) defines a language, which can vali-
date RDF graphs against conditions [90]. These conditions are provided as
shapes; other constructs are expressed as an RDF graph. RDF graphs used
in this manner are called shapes-graphs in SHACL, and the RDF graphs
validated against a shapes graph are called data graphs. As SHACL shape
graphs validate that data graphs satisfy a set of conditions, they can also be
viewed as a description of the data graphs that meet these conditions. Such
descriptions may be used for various purposes besides validation, including
user interface building, code generation, and data integration.

Figure 2.8 defines two shapes. First, it defines an observation, and af-
terward, a sensor that can make such an observation. Then, the SHACL
defines how those objects are related. Additionally, it can specify constraints
such as the observation having to select exactly one sensor that made the
observation.
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2.1.12 RIF

The Rule Interchange Format (RIF) standard is maintained by the W3C,
an international organization that develops and maintains open standards
for the web. RIF aims to provide a standard interchange format for rules,
making sharing and reusing rules across different applications and domains
easier. It is mainly used to exchange rules among rule systems, particularly
Web rule engines [87]. RIF focused on exchange rather than trying to develop
a single one-fits-all rule language. The reason is that in contrast to other SW
standards, such as RDF, OWL, and SPARQL, it was immediately apparent
that a single language would not satisfy the needs of many popular paradigms
for using rules in knowledge representation and business modeling.

Nevertheless, even rule exchange alone was recognized as a complex task.
There are three categories of available rule systems: first-order, action rules,
and logic-programming. The syntax and semantics of these systems only
share little fragments. Moreover, systems have significant differences, even
within the same paradigm.

The Working Group designed a family of dialects with rigorously specified
syntax and semantics to obtain a simple-to-use notation. The family of RIF
dialects is intended to be uniform and extensible. Therefore, dialects are
expected to share the syntactic and semantic apparatus as much as possible.
Extensibility here means it should be possible to define a new dialect, which
extends an existing dialect by adding the desired functionality. When defined,
these new RIF dialects would be non-standard but might eventually become
standards.

RIF is more than just a format specification. However, the format concept
is essential to how RIF is intended to be used. The medium of exchange
between different rule systems is XML, a format for data exchange. Central
to the idea behind rule exchange through RIF is that different systems will
provide syntactic mappings from their native languages to RIF dialects and
back. These mappings are required to be semantics-preserving. Thus, rule
sets can be communicated from one system to another, provided the systems
can talk through a suitable dialect they both support.

The example in figure 2.9 defines that an observation is made by a specific
sensor, if that sensor made that observation. A modus ponens argument can
logically derive this fact. The rule system can use this definition to infer
additional knowledge.
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Document (
Pr e f i x ( cpt <http :// example . com/ concepts#>)
Pre f i x ( sosa <http ://www.w3 . org /ns/ sosa />)
Group
(

Fo r a l l ? Sensor ?Observation (
cpt : a1 (? Sensor sosa : madeObservation ?

Observation )
:− cpt : a2 (? Observation sosa : madeBySensor ?

Sensor )
)

)
)

Figure 2.9: Example RIF file using RIF-Core.

2.2 Internet of Things

The graph in figure 2.10 shows that the speed of a single processor core has
mostly stayed the same in the last 20 years. Due to physical limitations, the
speed of a single core cannot be increased significantly. However, thanks to
the ongoing hardware miniaturization, the space freed up can be used for
new computing cores. Therefore, software must follow the new paradigm
to efficiently use hardware capacities and satisfy the increasing demand for
higher data processing performance. At the same time, the permanent stor-
age available on the hardware side is also increasing. The additional stor-
age can support the massive parallelization demanded by providing multiple
variants of the original data. This change creates new challenges and oppor-
tunities for parallel and distributed processing. The increasing availability of
low-cost, high-performance IoT devices and advances in technologies such as
5G and edge computing is contributing to the growth of the IoT [153]. IoT
refers to the growing network of physical objects connected to the Internet
that can collect and exchange data. These objects, known as smart devices,
can include many devices such as smartphones, home appliances, vehicles,
industrial machines, and more. The IoT allows these devices to communicate
and share data with other systems, such as cloud-based servers, through the
Internet. This communication enables new and innovative applications and
services, such as remote monitoring, control and automation, real-time data
analysis, and predictive maintenance, to name a few [28].
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Figure 2.10: Central Processing Unit (CPU) performance and storage size
over the last 70 years. CPU data modified from GitHub [135]. Storage data
modified from Wikipedia [68]. This figure is incomplete and contains only
data which is available to the public.

Some specific areas of growth in IoT hardware are:

• The increasing adoption of IoT sensors and actuators in industrial and
manufacturing applications

• The rising demand for smart home devices and appliances

• The increasing adoption of IoT devices and solutions in the healthcare
industry

• The growing demand for connected cars and other connected trans-
portation systems.

Overall, IoT hardware prognoses suggest that the IoT market is expected
to continue growing in the coming years, driven by the increasing adoption
of IoT devices and solutions across various industries and the availability of
advanced technologies.

The difficulty is that the hardware often offers little computing power.
Especially in factories, many small devices can be networked together. Many
of these devices have sensors that constantly provide new measured values.
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It is possible to store all data in a central computing cluster within a fac-
tory. It is estimated that between 24 [38] and 100 [86] billion things will be
connected to the IoT. So in the context of the IoT, the network is a crucial
issue. Wireless Sensor Networks (WSNs) are networks that consist of many
interconnected sensing devices. The devices are sometimes far apart in the
context of weather or other environmental measurements. Therefore, most
devices are connected to another machine rather than directly to the Internet.
For battery-powered devices, energy is always a scarce resource. The avail-
able energy limits a device’s lifetime and computing power. Transmitting
data is one of the largest energy consumers in WSN [41]. Several approaches
exist to optimize the routing protocols to reduce energy consumption during
transmission [29]. However, sending less data is even better. Therefore, the
amount of data to be transmitted must be reduced as much as possible. The
topology of the devices must be considered to reduce the amount of data be-
cause it costs more energy to send a small piece of data over a long distance
than a large amount of data over a short distance [41].

Since sensors can produce a large amount of data, data storage, and pro-
cessing is an important research area. While current sensor data is sufficient
for simple queries, complex analyses must also consider historical data. One
possibility is to use cloud-based approaches. In this case, the sensors send the
measured data directly to a cloud. In this scenario, the cloud can provide a
large amount of computing power for the application. However, this leads to
enormous latencies for trivial queries, as the data has to be sent over a long
distance from the source to the cloud before any analysis can be performed.
In the IoT domain, the network structure is also complex. Since the data is
highly distributed, it is natural to store it in a distributed manner. Here, it
is essential to distribute the data sensibly so that the queries can compute
a solution as quickly and efficiently as possible. This distribution has given
rise to edge computing, where medium-sized devices can be integrated into
the network [24]. The amount of small devices, in turn, increases the effort
to find the desired data.
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2.3 Semantic Internet of Things

The combination of SW and IoT is called SIoT. It combines the machine-
interpretable data semantics with many sensor devices of the IoT. The
primary advantage is that devices of different manufacturers can be used
together. All devices which support semantic data can benefit from the
additional information. This unified representation allows for splitting re-
sponsibilities across multiple applications, such that a dedicated and opti-
mized DBMS can focus on data storage and processing. The disadvantage
is that the semantic enhancement requires extra bytes to be encoded, which
increases the data volume to be sent around the network.

00 01 02 03
04 05 06 07
08 09 0a 0b

Figure 2.11: Binary sensor data.

<sensor4> <measurement> _: measure .
_: measure <temperature> 23 .
_: measure <time> " 01 .01 .2023 ␣ 08 :05 "^^<xsd : datetime> .

Figure 2.12: Sensor data encoded in TTL.

Figures 2.11 and 2.12 present the different encoding schemes. Both figures
represent the same data. While manufacturers may choose another binary
encoding, which others can not use, many applications can immediately use
the SW version. A few applications may still need some conversation because
of multiple possible ontologies, but the compatibility is improved overall.

2.4 Semantic Web DBMS

The SW is a concept in which information on the Internet is given meaning,
making it more easier to understand and usable by computers and people. An
SW DBMS can store and manage data in a format that computers and people
can easily understand. According to a survey paper on query languages in
the SW [10], SPARQL [142] is the primary RDF query language.

In a heterogeneous network, different devices are connected, often with
varying levels of compatibility. An SW DBMS can help bridge the gap be-
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tween these different systems by providing a shared data storage and manage-
ment format. The DBMS allows data to be shared and used across different
systems, regardless of their underlying technology.

Overall, SW DBMSs play a critical role in enabling interoperability and
data sharing in heterogeneous networks, thus allowing the seamless integra-
tion of different devices. There is a strong relationship between the SPARQL
query optimization and the indexing strategies used in the underlying triple
store.

DBMS on heterogeneous hardware is already being explored. Hardware
features like the CPU and the graphics processing unit (GPU) are considered
in most research [22]. Heterogeneous distributed memory and data storage
is another research focus [168]. Research also combines both heterogeneous
processing and heterogeneous storage [104]. In addition to hardware, research
is being done on combining different DBMSs [128].

2.4.1 Dictionary

Many DBMSs [115, 26, 16, 30] use dictionaries for their internal data repre-
sentation. However, some DBMSs [148] use those dictionaries only for data
types of varying length or when the datatype consumes much space, espe-
cially Binary Large Objects (BLOBs) and strings.

There are several names for the dictionary. E.g., in Apache Jena, this is
called the node table [45], while PostgreSQL calls this Large Object table [58].
Virtuoso calls them dictionaries [150].

These bidirectional dictionaries store a mapping between a string and an
integer representation. These integers can then be compactly stored in the
indices of the DBMS. The DBMS’s use of dictionaries can enormously reduce
the required storage space, especially when using several indices.

Due to the massive volume of data in the most extensive datasets, 4-byte
integers might not always have enough bits to encode the various values in
a dataset. Therefore some DBMSs use ids with eight or more Bytes [26].
However, due to the extra bytes, it is also possible to encode some of the
smaller, frequently used values directly inside this id representation [26].
This is done by defining one of the bits to be a flag. Whenever the flag is
set, the remaining bits of the ID directly represent the value. This encoding
requires that the value fits into the remaining bits. The candidates for inline
encoding are small numbers, date and time values, and blank nodes.
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2.4.2 Indexing Schemes

The two most essential indexing strategies are RDF3X [113, 115] and Hexa-
store [165].

RDF3X [113, 115] uses twelve indexes. A duplicated index exists for each
subject, predicate, and object permutation, namely SPO, SOP, PSO, POS,
OSP, and OPS. The abbreviation SPO stands for the sort order in which the
triples are sorted first by subject, then by predicate, and finally, by object.
The other sort orders differ in which triple component is sorted first, second,
and last. Aggregate indexes SP, SO, PO, subject, predicate, and object are
also created to store only the number of entries for each key. The individual
values are stored in a dictionary and assigned integer IDs to save memory.
B+-trees are used to store these IDs within the indexes. The B+-tree can
then be used to determine the starting point of the triple patterns quickly.
The data can then be read sequentially. In addition, this indexing scheme
offers many possibilities for partitioning. The basic idea of the RDF-3X
indexing scheme is the basis for many other approaches in many different
research works.

Hexastore [165] uses an index for each subject, predicate, and object
subset. These subsets are then the keys of a hash map. The remaining
components that do not appear in the key are the values. Consequently, the
six fully replicated indexes are S-PO, P-SO, O-SP, SP-O, SO-P, and PO-S.
The hyphen in the names separates the components that are part of the
key from the values. Sometimes a seventh index SPO is added if the hash
consists of all three triple components. The values within a map entry can be
stored and sorted. The original version of Hexastore was only developed for
a central triple store. The most significant disadvantage is that it is tough
to distribute the indexing. The advantage of Hexastore is that a single entry
in the hash map directly contains the complete solution [123, 67].

After finding the first triple, both indexes allow easy iteration over an
ordered list. In addition, both triple stores support the aggressive use of
merging already sorted data retrieved from their indexes.

The Kowari approach [105] is very similar to the RDF3X. However, in-
stead of B+-trees, they use Adelson-Velskii and Landis (AVL) trees [105,
43]. They argue that in B+-trees, an average of 25% of space is unused. In
addition, this approach uses the three collation orders SPO, POS, and OSP.
Consequently, the index fits into memory longer than the RDF3X approach,
making it faster to execute.

In contrast to the above indices, which index the complete data, another
work proposes to index only a part of the graph. The Triag [111] index
looks for triangle patterns in the graph and stores them in a separate index.
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This index allows an optimizer to replace multiple consecutive joins with a
single range scan in this new index structure. Especially in the context of
ontologies, this can lead to a high-performance improvement.

The Double Chain-Star approach [109] has a similar idea. They create
an index for queries containing two "star shapes" connected by a path. The
authors claim that the candidates for this kind of indexing can be efficiently
computed. The data is then stored similarly to relational tables, with an
arbitrary number of named columns. All queries that select a subset of these
named columns can use an index scan instead of a costly join sequence so
that the speed can be increased dramatically.

TripleBit uses an entirely different storage layout [171]. They encode the
triple data as an ID-Chunk bit matrix. Additional to the range scans, which
are used by the other approaches, this strategy allows for further filtering the
possible join candidates directly in the triple store.

2.4.3 Data Partitioning and Data Distribution

In addition to parallel SPARQL processing, which uses multiple processor
cores on a device, the data can be distributed to various nodes. This distribu-
tion, of course, requires the presence of multiple nodes and a fast connection
between them to ensure high performance. Both variants involve the allo-
cation of triples to a particular computing unit. This assignment is usually
done using a deterministic algorithm. The main task of these algorithms is
to achieve a uniform distribution among all computing units. Care must also
be taken to minimize communication overhead when distributing data across
multiple nodes. In the context of IoT, data distribution must additionally
consider topology. There are a variety of approaches for partitioning and
distributing triple data. All of these strategies have their advantages and
disadvantages. When evaluating the strategies, it is noticeable that they are
often optimized only for querying rather than inserting data. This observa-
tion can be derived from the fact that these methods send a large amount of
data during the partitioning phase. If, during data partitioning, the data is
partitioned so that equal values of a triple component are always processed
on the same processor, then join operators can be computed independently.
If this succeeds, it is sufficient to send intermediate results, reducing the net-
work load and increasing the speed [53, 3, 173, 64]. Some variants of data
distribution are presented below.

All cluster-based approaches have in common that a large part of the
graph data must already be known at the beginning. The strongly connected
nodes are then stored together in the same partition.

The connectivity between triples is computed in the molecule cover [83]
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approach, such that closely related triples, called molecules, are assigned to
the same node. Apart from the large initialization overhead, many joins can
be computed independently and locally at a node in this way.

Another strategy is to create a separate table for each predicate [15].
These tables store the subject and object in independent arrays. Vectors
make the connection between these tables and arrays of pointers. These
vectors should achieve a higher storage efficiency. In addition, it is possible
to mark the pointer vectors on which devices further data is located. As a
result, this approach should cause less network traffic.

Another approach stores the triples in adjacency lists [172]. The data is
distributed so that related data is stored near to each other. The advantage
of this encoding is that it is immediately clear where the following data is
when it is read. In this encoding, joins are calculated by traversing the data
along the adjacency lists. Traversing lists avoids unnecessary intermediate
results. However, it prevents the data from being read sequentially from the
disk.

Another widely used clustering approach is duplicating data to obtain
the k-hop property. In the k-hop strategy, the triples are first distributed
using an arbitrary hash function. Then, all nodes up to k edges away from
any original node are also stored in the partitions. Each system uses a slight
variation, changing the value of k. The largest k used is three since this
already duplicates many triples. This property allows queries containing
path expressions up to a length of k to be evaluated locally on each node
without communication [69, 3, 51]. The main drawback of the k-hop property
is that some results are computed multiple times, which must be removed to
obtain a valid result.

In addition, there are many other clustering strategies [133, 104, 137, 138,
95, 168].

Since all clustering algorithms work with paths in the graph, they work
best when the data does not change. Since this work has a strong IoT focus,
clustering algorithms are not considered further below.

Hash-based methods do not require an initialization phase. There are
various options for what is hashed and how it is included in the hash function.
Many combinations have already been presented and studied in numerous
publications.
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• When hashing the subject, predicate, and object individually
[3], the data is duplicated multiple times, leading to a significantly
higher memory requirement. In addition, this approach makes it pos-
sible to calculate many join operators locally.

• Hashing by subject, predicate, and object in all permutations is
a different procedure. In contrast to the previous approach, all triple
components are always used in the hash function [124].

• S-O hashing [69] assumes that almost all joins are S-S or S-O joins.

• Similar to the previous approach, subjects and objects are considered in
the algorithm. However, hashing by subject is used to select the DBMS
instance, and hashing by object is then used within the DBMS instance
for partitioning [172]. Two-level data partitioning combines the low
communication cost of S-S joins with the fast S-O join processing.

• Hashing by subject [15, 156, 138] is mainly about speeding up S-S
joins. The parallel calculation of joins has the advantage of calculating
their respective partial results without communication. Additionally,
this strategy stores closely connected data at the same DBMS instance,
which may yield further optimization possibilities.

• Another approach is hashing by predicate [67, 79, 9, 46]. Since the
predicate is often specified as a constant in the queries, this results in a
single partition containing the entire result set of a triple pattern. This
partition scheme avoids including all partitions in the result calculation.

In the context of centralized in-memory DBMSs, many different data
partitioning strategies exist.

Merge joins have a considerable performance advantage over hash joins.
Therefore, another approach [4] partitions and sorts data on demand to de-
ploy massively parallel merge joins anywhere. Although the approach targets
RDBMSs, its results also apply to DBMS on the SW. Due to the additional
sorting operations at runtime, this approach requires much available memory.

In another approach [53], partitioning threads are partitioning the join
operator input data. In this way, each intermediate result can be partitioned
into any number of partitions at runtime, but at the cost of runtime over-
head for partitioning. If the input data for merge joins comes directly from
the triple store, partitions can be accessed based on the ranges in B+-trees.
Since a range is determined based on the histogram of the corresponding
triple pattern, the partition sizes of the triple design to be merged may need
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to be balanced. In addition to their approach, the authors evaluate the per-
formance gain from pipeline parallelism. They found that the main drawback
of operator-based parallelism is the queues between operators, which require
memory on the one hand and entail thread safety due to locking on the other.

2.4.4 DBMS and the Internet of Things

There can be several advantages to moving the entire DBMS to edge devices
[24]. First, latency can be reduced because the data does not have to be
transferred as far as before. The edge-devices capabilities can be used more
efficiently because the data can be stored where it is created. From these
two benefits comes another, namely a reduction in network traffic. As a side
effect, communication hotspots on the network are reduced, leaving devices
with more energy to compute something else. Among the disadvantages is
that the DBMS must give up its requirement of complete global knowledge
to adapt to the environment.

The biggest potential problem when running a DBMS on edge devices
is the intermediate results, which can increase the data volume by orders of
magnitude in the worst case. The amount of traffic depends directly on the
SPARQL data queries. Whether DBMSs are suitable for integration into IoT
networks will be evaluated later.

Regarding the distribution of data and storage, four different types of
DBMSs can be defined in figure 2.13. In addition to the regular fully func-
tional DBMS instances, others are added that are only involved in query
processing, not data storage. This change ensures that devices with little or
no memory can participate in query processing. It is also intended to reduce
the amount of data sent over the network by reducing the total distance.
These DBMSs are called ultralight DBMS instances in the following since
they require a minimum amount of storage. All the devices connected by
a mesh network in the figure could run a DBMS instance and store data.
Sensors too weak to run a DBMS instance are not shown in the figure. They
are indirectly shown with the icon next to the device which is connected to
them. For simplicity, only the device in the upper right corner is connected
directly to the Internet and a permanent power source. The four use cases
presented each use the same network configuration and differ only in the
DBMS design.

The upper left case corresponds to a classic centralized DBMS. All sensor
data must be sent to the same DBMS instance, all data is stored there, and all
query processing occurs on this one device. Since the device is connected to a
permanent power supply, from a network perspective, this case corresponds
to the point where all data is sent to the cloud, except for the latency between
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Figure 2.13: Possible combinations of distributed and centralized DBMS
storage and processing

the gateway and the servers in the cloud.
The top-right case shows a classic distributed DBMS. A DBMS is created

for each edge device directly connected to sensors. Depending on the data
distribution model of the DBMS, it is now possible that no communication is
required before the first query. However, due to query processing optimiza-
tions, it is likely, the DBMS can only store some of the data locally where
it was collected. Therefore, it distributes the data to all available DBMS
instances so that it can be read more quickly later.

Next, consider the third case at the bottom left of the figure. The data
is initially stored centrally in a single DBMS instance, but then the data is
distributed across the network again for query processing. This approach is
the worst case for the amount of data transferred over the network because
the data is transmitted over the network multiple times. The data is trans-
mitted once to store the data and then again for each query. On the other
hand, more available processing power can be used, which could reduce the
query response time.

The last case at the bottom right of the figure combines the best of the
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previous points. Data transfer during insertion can be reduced by storing
data closer to the sensors. In addition, the DBMS can use a multicast algo-
rithm to insert and retrieve data more efficiently.

2.4.5 Join-Algorithms

Since the join operator greatly influences the performance and memory re-
quirement, several implementations exist.

Among all implementations, the merge-join is the fastest and most memory-
friendly strategy because it reads the input streams only once. It is also able
to discard inputs without a matching join partner immediately. However, it
requires the input data to be already sorted.

A hash-join reads the data and stores it in internal hash maps. Several
variations exist about which and how many input sources are stored in the
hash map. If the hash-join stores multiple inputs in hash maps, one hash
map is required for each input source. Due to the hash map, the storage
requirement is quite high. Therefore it has no restrictions on the input order.

A third variant can be used when one join-input source is complex, and
the other join source is coming from the triple store. In this variant, the
complex join-input retrieves one row after the other, and for each row, the
triple store is queried with the exact range to generate the output. This
strategy reduces the memory requirement. However, this might be slower
due to repeating new requests to the triple store.
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Chapter 3

LUPOSDATE3000

LUPOSDATE3000 [158] is the successor of Logisch und Physikalisch Opti-
mierte Semantic Web Datenbank-Engine (LUPOSDATE) [54]. The DBMS
was designed for extensibility, making it easy to replace many components
for research purposes. There are several requirements and properties of an
IoT DBMS which are shown in the following sections.

3.1 Multi-Platform Capabilities

Common

JS
/
W
asmJV

M

Native

Figure 3.1: Kotlin multi-platform capabilities. Figure adapted from [44].

While the old LUPOSDATE was implemented entirely in Java, the new
LUPOSDATE3000 is implemented in Kotlin. This language yields multi-
ple advantages. With the focus on IoT, the DBMS must run on as many
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devices as possible, as shown in figure 3.1. Kotlin includes a Java Virtual
Machine (JVM) target that covers all devices that can run Java. In addition,
Kotlin allows JavaScript (JS) so that any Kotlin program can run directly in
browsers. Finally, Kotlin can output native binary code for many platforms.
For each Kotlin target, it is possible to include existing libraries. Because of
the many targets, Kotlin can run on desktop computers, servers, cell phones,
and browsers. At the time of writing, the Kotlin native garbage collector
is relatively slow. This issue makes Kotlin’s JVM target the fastest, but
since the language is very new, new features and improvements are regularly
added. Since the JVM target is the fastest, all benchmarks in this docu-
ment use the JVM target unless otherwise noted. Kotlin has several modern
language features, such as coroutines, inline functions, type inference, and a
garbage collector for all targets, including native binaries.

3.2 Dictionary

The DBMS uses a dictionary to map the values to an internal eight-byte ID
representation to reduce the required storage space. This encoding signifi-
cantly reduces the amount of memory required.

In LUPOSDATE3000, there are two dictionary implementations. An
in-memory dictionary has the advantage of a much higher speed for small
databases because, as the name suggests, it is entirely inside the main mem-
ory. In the implementation, there is a hash-map structure, which maps the
values to integer IDs. The other way around is implemented by an array,
where the ID is used as an index to access the corresponding value. One dis-
advantage of this implementation is the memory requirement, which scales
with the DBMS’s data. Another disadvantage is that during the startup and
shutdown of the DBMS, the whole dictionary must be converted and stored,
which leads to higher startup and shutdown times.

The other implementation is based on memory pages actively swapped
to disk. This swapping reduces the memory requirement but decreases the
performance due to disk access. The implementation for the data to ID
lookup uses tries. One example trie is shown in figure 3.2. The advantage of
this data structure is its compression [151, 18]. The more words are added,
the more prefixes appear and the higher the compression ratio. Since RDF
heavily uses prefixes to structure its ontologies, it is likely, that there are a
few very frequent prefixes in the dictionary. The other direction concatenates
all the values together with a jump table, which defines which ID is stored
where.

According to the specification, blank nodes have no fixed value. Therefore,
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Figure 3.2: Example trie which contains the mappings test → 1, toaster →
2, toasting → 3, slow → 4 and slowly → 5

blank nodes do not need to be included in the dictionary. Instead, blank
nodes are represented directly as IDs. The task of distributed, collision-free
allocation of new blank nodes can be trivially solved by having each device
manage its range of IDs. With some partitioning strategies, it is possible for
all inserted data to be stored entirely locally and partitioned correctly in this
way without the need for communication. Since most operators in a DBMS
do not require the textual representation of values, these IDs are used as long
as possible. Dictionary accesses are unavoidable when outputting the results.
Smaller values are encoded directly in these eight bytes, so it is unnecessary
to contact a remote dictionary for translation to id representation, to reduce
the number of network accesses to the dictionary. This approach works for
the most commonly used values, such as small integers, boolean values, and
timestamps. However, it does not work for IRIs, which are required for
each triple in the predicate position. Fortunately, each sensor uses a fixed
algorithm to output its values. Therefore, each sensor can be translated into
a small sensor-specific ontology. The collection of all these sensor ontologies
is tiny compared to an entire database, so that this dictionary part can
be replicated to any device in the network. These observations show that
triples can be created with a minimal dictionary overhead. No distributed
dictionary access is needed as long as only values from the ontology are used
along with small primitive values. Some ontologies make much use of blank
nodes. While this is good because fewer dictionary queries are required, it
leads to a new problem when these blank nodes need to be queried to insert
new data. The LUPOSDATE3000 DBMS allows internal blank node IDs to
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be specified directly in the query to avoid a sensor constantly using insert-
where statements, which would require a lot of network communication. This
change allows the sensor to query these IDs once and then use them for
further queries. An additional dictionary cache is created on each device
with the most recently used ID values that neither contain small inline values
nor are included in the sensor ontologies. The experiments resulted in low
network communication due to the dictionary during DBMS initialization.
More importantly, almost no dictionary access is required during subsequent
use.

3.3 Pipelining
Pipeline-based programming is often implemented with iterators. DBMS re-
sults contain multiple columns (variables) and rows (results). Consequently,
there are two types of iterators. Row iterators deliver the entire next row
with all its variables at once. When column iterators are used, there is one
iterator for each column. Multiple independent iterators allow the receiver
to request the columns independently from each other. LUPOSDATE3000
uses both column and row iterators. LUPOSDATE3000 prefers column iter-
ators. The reason is that when column iterators are used, there is no need
for buffers within the receiving operators.

Additionally, when reading directly from the triple store, it is possible
to skip a vast number of rows at once, such that those values are never
read from the disk, which improves performance. Skipping values is possible,
for example, when a merge-join or a filter operator reads directly from the
storage. However, there are exceptions to the usage of column iterators. For
example, the order-by-operator reads its input using row iterators because
the values of a row have to stay together regardless of the ordering. The
same applies to the reduce operator, which always reads the entire row to
eliminate duplicates.
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3.4 Indices, Partitioning, and Distribution
LUPOSDATE3000 stores the triples in multiple indices similar to RDF3X.
However, the original RDF3X aggregation indexes are absent. Therefore,
depending on the configuration, arbitrary collation orders are present or dis-
abled.

Regarding data partitioning and distribution, LUPOSDATE3000 sup-
ports arbitrary combinations of triple components that can be included in the
hash functions. In the experiments, the hash function only performs the mod-
ulo operator on the integer IDs. This trivial hash function already provides
a uniform distribution because the dictionary assigns ascending numbers.

The indices are explained in more detail in chapter 5.

3.4.1 Compression

Inside each index, the data is ordered. The ordering of data property yields
multiple features. First, duplicate elimination is trivial when the data is
sorted during insertion. It is only required to look at consecutive elements.
Second, the data can be compressed very well.

0xFF000001 0xFF000002 0xFF000003 triple 1
0xFF000001 0xFF000004 0xFF000005 triple 2
0xFF000002 0xFF000002 0xFF000006 triple 3
0xFF000003 0xFF000002 0xFF000007 triple 4

Figure 3.3: Index compression procedure step 1.

0xFF000001 0xFF000002 0xFF000003 triple 1
0x00000000 0x00000006 0x00000006 triple 1 ⊕ 2
0x00000003 0x00000006 0x00000003 triple 2 ⊕ 3
0x00000001 0x00000000 0x00000001 triple 3 ⊕ 4

Figure 3.4: Index compression procedure step 2.

Assuming each triple is stored as three 8-byte integers, the raw triple
requires 24 bytes - for each active index as shown in figure 3.3. Due to the
ordering, the triples next to each other are similar. Then ⊕ is applied to the
integer representation of the previous triple and the current triple. When
similar values are xored with each other, than the result has many leading
zeroes. In this example, the result is shown in figure 3.4. The final step is
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to count the nonzero bytes of each triple component. These counters are
stored in one header byte followed by the nonzero part of the triple. Since
the header byte has only 8 bits available, and there are 93 = 729 possible
sets of counters, an additional compression must be applied here as well. In
LUPOSDATE3000, there are 2 bits for the first triple component and 3 bits
for the second and third triple components. Whenever a counter is too large
to fit into the desired number of bits, it is increased to 8, such that in those
cases, leading zeros need to be stored as well. However, in practice, this only
occurs occasionally. The difference between two triples requires about 3 bytes
on average, which yields a storage reduction of factor 8. A similar encoding is
used in RDF3X [115]. However their system only considers 4-byte integers,
and subtracts values instead of applying ⊕.

These simple compression strategies need nearly no overhead during read
and write operations. Since fewer data must be read from the disk, the
speed may be increased as already shown in several research results [115,
167, 141]. Also, many operators profit from an id-based data abstraction.
One of the most important operators, which profits from the representation,
is the join operator because it can simply compare numbers with each other
instead of complex strings, which is much faster and simpler to implement
[113]. On the other hand, the dictionary yields a slower evaluation within
all operators, which need to access the values directly. Those are sorting,
filtering, and binding new values because these operators must convert the
ids to the values they represent. This conversion is an extra step that is
otherwise not necessary.

3.5 Optimizers
The overall optimization pipeline can be seen in figure 3.5. First, the query
is syntactically parsed to construct a syntax tree. Then some redundant lan-
guage features are striped to obtain a simple tree. Afterward, the query is
optimized logically. In this phase, the ordering of the operators is changed.
Constant expressions like filters and variable-bindings are evaluated. In this
phase, the join order is also optimized. LUPOSDATE3000 has integrated a
greedy optimizer and an optimizer that uses dynamic programming. In addi-
tion, the DBMS also features an interface for external join order optimizers.

Finally, the physical optimization phase starts. The logical operators are
replaced with the desired physical implementations in this phase. Afterward,
the operators are assigned to devices, where they are finally executed. The
executable for intermediates outputs the number of intermediate results in-
stead of the actual result.
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Figure 3.5: Query processing pipeline in LUPOSDATE3000.
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3.5.1 Greedy Join Order Optimizer

LUPOSDATE3000 ’s greedy join order optimizer uses minimalistic histograms
with only one bucket. As a result, basic histograms can be extracted directly
from the data without additional storage structures. It also allows the opti-
mizer always to use a current histogram. The optimization process consists of
several steps: The optimizer collects all input relations to get an overview of
what needs to be merged. Then, these inputs are grouped by variable names
to identify the star-shaped joins. The idea is that merge joins can be used
more frequently this way. In addition to a star-shaped pattern, many iden-
tical variable names indicate that the join is likely to reduce the output size.
Next, inputs are concatenated so that the estimated cardinality of the out-
put always remains as small as possible. The groups with different variables
must be merged in the final step. In doing so, the optimizer tries assembling
subgroups with at least one variable in common. Choosing inputs with a
shared variable prevents the optimizer from choosing the Cartesian product
as long as the SPARQL query allows it. The advantage of this optimization
strategy is that the time required to find a join tree is in O (n · log n), which
is the time needed to sort the inputs by their estimated intermediate results.

3.5.2 Dynamic Programming Join Order Optimizer

This optimizer enumerates all possible join orders and chooses the optimal
solution. The idea of dynamic programming is that the optimal solution for
a problem is composed of the optimal solutions of its partial problems [11].
For join order optimization, simpler sub-problems occur in multiple complex
problems. Therefore, it is sufficient to calculate simple problems once and
reuse its result multiple times. Figure 3.6 shows an example where four
inputs should be joined. Each two-component solution is reused three times,
and the original inputs are referenced seven times each. The more inputs
that should be joined, the higher the number of reused partial results.

The optimizer based on dynamic programming generates better join trees
than the greedy optimizer. However, the time required to create the join tree
is O (n · 2r) [80], where r is the number of inputs to be joined, and n is the
number of join orders. The number of possible join orders is defined as (2·n−2)!

(n−1)!
[52]. Since both functions increase exponentially or factorially, this type of
optimization is not used in LUPOSDATE3000 for more than 18 inputs.
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Figure 3.6: Dynamic programming is reusing partial solutions several times.

3.5.3 Interface for External Optimizers

In addition, an interface allows an external application to force a specific join
tree during execution. The interface simplifies interaction with the Python
programming language, which plays a central role in the ML community.
This interface is essential for using ML algorithms in chapter 10 to optimize
join orders.
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Chapter 4

Experimental Setup

The benchmarks are run on a server OS with Ubuntu 22.04. The CPU is
an Intel i9-10900K with a clock rate of up to 5.1 GHz on ten cores with 20
threads. 128 GB of Random-Access Memory (RAM) is installed, although
most benchmarks require less than 32 GB. Kotlin 1.8.255@24.Okt.2022 was
used to compile LUPOSDATE3000 and SIMORA. Since the Kotlin JVM
target is the fastest, all benchmarks use this target unless otherwise noted.
The JVM target uses Java 18 in the server edition. The stable baselines3
1.5.0 framework with the maskable Proximal Policy Optimization (PPO)
modification [77] is used for ML. The ML scripts run on Python 3.9.7.

4.1 Other Semantic Web DBMS

This chapter introduces other DBMSs that will be used later in evaluating
different approaches. None of these DBMSs use ML to optimize the join
order. A short overview of these DBMS can be seen in figure 4.1.

DBMS Language join tree licensing features
Apache
Jena JVM left-deep open source centralized database

Blaze
graph JVM open source fully replicated cluster,

federated system
Virtuoso C++ open source SQL backend
RDF3X C++ bushy open source
Ontotext
GraphDB C++ left-deep commercial

Figure 4.1: SW DBMS feature overview.
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Apache Jena [26] Version 3.14.0, Blaze-graph Version 2.1.6, and Virtuoso
[145], Revision 840b468fc400a254eab0eb20f1afde6ca3c2220d were chosen as
comparative DBMSs because they are the most commonly used open-source
RDF DBMSs according to an RDF DBMS ranking [81]. Apache Jena is
an RDF store that runs in the JVM. The Apache Jena TBD component,
responsible for storing triples, is aimed exclusively at centralized DBMSs.
Triples are stored in B+-trees. The Apache Jena DBMS is a fully open-
source DBMS [84]. This DBMS supports all SPARQL functions. However,
the Apache Jena Query Optimizer only generates left-deep join trees, so
many join orders are not considered.

Blaze-graph also runs in the JVM. The development started later than
Apache Jena. The DBMS can be configured as a fully replicated cluster
to achieve higher query throughput. In addition, multiple DBMS instances
can also be combined as a federated system. Indexes are stored in B+-trees
influenced by the Google BigTable system.

Virtuoso is written in C++. Only the Virtuoso RDF interface is used for
evaluation. It allows comparison with a compiled DBMS and is intended to
show that garbage-collected languages are not inherently slow.

The RDF3X DBMS is used [115, 114]. This DBMS introduced the origi-
nal RDF3X triple-store layout used in many DBMS implementations today.
In addition, the join order optimizer creates bushy join trees.

The Ontotext GraphDB is a commercial SPARQL DBMS [118]. Similar to
Apache Jena, the optimizer only generates left-deep join trees. However, the
number of intermediate results generated is significantly lower than Apache
Jena.
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4.2 Public available Real World Datasets
Several real world dataset collections are available for research purposes. The
purpose of real world datasets during benchmarks is to confront the DBMS
with inconsistent complex data structures. Figure 4.2 shows an overview
of the used datasets. In addition to the raw text file size, the compressed
internal data size is also shown.

dataset size of
turtle file

size of
processed data

number of
triples

number of
dictionary entries

Wordnet 0.4 GiB 0.4 GiB 2637168 1291219
Yago1 0.9 GiB 0.8 GiB 21383706 12752436
Barton 9.5 GiB 1.4 GiB 35184003 10830905
Yago2 5.8 GiB 4.2 GiB 123689922 54351098
Yago3 8.5 GiB 5.4 GiB 142608259 72644117
Yago2s 9.5 GiB 4.4 GiB 151474901 42599960

BTC2019 38.0 GiB 12.9 GiB 256059356 82631100
Yago4 474.0 GiB 82.8 GiB 2489858800 571715647

BTC2010 624.9 GiB 53.2 GiB 1426828906 279151232

Figure 4.2: Overview of real world data sets.

The early large datasets have been published in conjunction with the
Billion Triples Challenge (BTC). The latest dataset in this series is the
BTC 2019 [74], which contains about 250 million facts. This dataset collects
freely available data from hundreds of Internet domains. However, there is
no unified structure since the data was only copied together.

The Barton [2] dataset contains library data. Since the data is a collection
from several libraries, there are different conventions.

Wordnet [42] is a computerized linguistic dataset. Linguistic researchers
created the dataset. Since the dataset was not collected automatically, it is
much smaller than other SW datasets. On the other hand, this dataset has a
clear structure and goal so that different algorithms can be evaluated against
this data.

Yet Another Great Ontology (YAGO) 4 [152] is a knowledge base that
contains data from Wikipedia structured according to the ontology of Word-
net. Similar to BTC, several versions of this dataset are publicly available:
YAGO 1 [149], YAGO 2 [76], and YAGO 2s [14]. However, unlike the BTC
dataset, a strict ontology is evident. With around 2.5 billion facts, this is
one of the most extensive datasets available.

Even though the above data structures follow an ontology, for demonstra-
tion and experimentation purposes, it is helpful to use synthetic data as well.
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Synthetic data has the advantage that it can be varied in size and structure.
Synthetic data allows algorithms to be tested and optimized in controlled
environments before encountering complex data. Similar inputs can make
detecting connections between the data and the performance easier.

One generator for synthetic data is SPARQL Performance Benchmark
(SP2B) [139, 17]. This generator generates bibliography data, and citation
graphs are simulated.

Based on these data sets, it can be shown that regardless of the content
and origin, all of these data sets share a part of their metadata structure.
As shown in figure 4.3, knowledge about this structure allows us to improve
several partitioning, distribution, and join order optimization strategies. For
example, the analysis shows that the number of different predicate is always
the smallest, from which it follows that in each case, a few values are used
very frequently. In the graphic, the predicate line is always shown at the
bottom. For the subject, most are associated with fewer than 100 values.
For objects, most are used only ten times, while a few values, such as small
numbers, are used more frequently. For values composed of subject and
object, there are almost no duplicates. The Barton dataset stands out here
because it contains various library systems. A book has the same authors no
matter which library it is in, but how the link is named differs. With these
simple statistics, predictions can be made about the quality of the data.
However, even more insights can be gained here for DBMS. For example, for
each triple pattern, the variable and constant fields can be used to predict
how many results there will be. This structural knowledge is beneficial for
optimizing join order and data partitioning.

Since these datasets are available to everyone, they are often used to
illustrate some features of DBMS. Therefore, these datasets are also used in
this work.
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Figure 4.3: The figure shows the cumulative distribution function f (X < x).
The X-axis shows the number of triples that share the same value at the
columns specified by the legend entry. The Y-axis represents the percentage
of the triples in the triple store, which share their value with, at most, X
triples. The names of the graphs consist of the constant values of the triple
pattern. For example, the predicate graph shows the relation for triple pat-
terns of type ?s < p >?o, where the predicate is a constant.
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Chapter 5

Flexible Data Partitioning

The two most commonly used join implementations are hash joins and merge
joins. Merge joins can achieve much higher speeds and use much less mem-
ory but require that the inputs be sorted beforehand. To compute joins in
parallel, the data must also be partitioned by at least one join column. This
partitioning can be done at runtime or in the triple store. In general, more
threads are worthwhile for larger data sets than for smaller data sets. This
chapter deals with the approach of flexible partitioning in triple stores. This
approach uses the appropriate number of partitions to make the resulting
partitioning overhead as tiny as possible.

5.1 The Idea of the Flexible Data Partitioning
Approach

The data must be distributed over an arbitrary number of partitions to sup-
port parallel data processing. The first problem is to select suitable key
columns for partitioning. The second problem is to optimize the number
of partitions for this key. If too many partitions are used, the overhead of
partitioning and merging is greater than the benefit of parallel processing.
On the other hand, if too few partitions are used, fair data distribution is
impossible. As a result, the hardware cannot be fully utilized. Later in the
evaluation, this is supported by figures 5.4 to 5.6.

If only merge joins are used, the actual computation is so fast that the
overhead caused by live partitioning cannot be effectively compensated [53].
Therefore, the materialization of different partitions within an index is pro-
posed. These partitions can then be used as parallel inputs to multiple
merge-join threads without incurring runtime overhead.

Figure 4.3 shows that each triple pattern implies a drastically different



54 CHAPTER 5. FLEXIBLE DATA PARTITIONING

RDF3X

SPO

partitioning scheme 1
partition by P
n1 partitions

partition 1

ID-triple

· · · partition n1

ID-triple

· · ·
partitioning scheme m1

partition by O
nm1 partitions

partition 1

ID-triple

· · · partition nm1

ID-triple

· · ·

Figure 5.1: Structure of DBMS implementation.

number of triples. Ontology knowledge can be used to specify even more dif-
ferent clusters in terms of the necessary computational pipeline. Therefore,
it is not optimal to always use a fixed number of partitions. One possible so-
lution is to use several different partitioning schemes for each index. Multiple
indices enable flexible choices depending on the data properties at runtime.
Also, the number of partitions used can be chosen during query optimization.
This choice allows much finer control over effective parallelism. Figure 5.1
shows a structural example of the proposed triple-store implementation. It is
important to note that each partitioning scheme may choose a different hash
function and amount of partitions. These additional indexes are all stored
on disk to avoid partitioning overhead at runtime.

Each partitioning scheme occupies disk space. The more schemes are
defined, the more disk space is required. Therefore, only the most effective
schemes should be stored. Unfortunately, this leads to a different problem
since many partitions must be considered when planning the join order.

To allow more efficient implementations, each number of partitions must
be a power of 2. The reason for the efficiency is that if a different number of
partitions are to be joined, the index with the higher number of partitions
can continue to merge two partitions until the number of partitions matches.
The merging of partitions works as long as the hash function is the same.
It is also required that the modulo operator is finally used to trim the hash
value to the number of partitions. Multiple partitions allow multiple threads
to merge independent partitions simultaneously without any communication
between threads. Avoiding thread communication eliminates the need for
locks, increasing effective speed.
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5.2 Evaluation

Many performance aspects must be considered to determine how the number
or presence of an additional partitioning layer affects the performance of the
DBMS. If only centralized DBMSs are considered, there are already enough
interrelated features that this evaluation focuses only on centralized DBMSs.
The same concepts can be transferred to distributed DBMSs. However, the
overall evaluation is more complicated in a distributed setting.

5.2.1 Dataset and Queries

PREFIX b : <http :// benchmark . com/>
SELECT ∗ WHERE {

? s b : p0 ?o0 .
? s b : p1 ?o1 .
? s b : p2 ?o2 .

}

Figure 5.2: SPARQL A1.

PREFIX b : <http :// benchmark . com/>
SELECT ∗ WHERE {

? s b : p0 ?o0 .
? s b : p1 ?o1 .
?o1 b : p2 ?o2 .

}

Figure 5.3: SPARQL A2.

To get clear indications of how exactly partitioning affects execution
times, simple queries such as those shown in figures 5.2 and 5.3 are used.
A1 is a template for the benchmarks, which use up to 16 consecutive merge
joins. A2 enforces a hash join since joins are to be made on different vari-
ables.

Only synthetic data is used for this evaluation, so properties such as se-
lectivity and result size can be tightly controlled. Furthermore, since the
proposed changes have nothing to do with join order optimization, side ef-
fects caused by the applied optimization should be avoided. Therefore, the
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generated triple structure is the same for each triple pattern in the query, so
the join order does not matter.

For selectivities less than 1, a fixed n indicates how many triples should
be skipped after a triple involved in a join is generated. Then, this procedure
is repeated for each basic triple pattern during data generation. This results
in each join operator’s selectivity of 1

1+n
. The size of the generated data

sets is expected to scale with the join operators. When generating such
datasets, m blocks of triples are formed, each block containing the triples to
be concatenated. In the following, n and m are restricted to powers of 2.
This property is also called selectivity in the experiments since it specifies
the factor by which the number of rows within the joins changes.

During this evaluation, all graphs are labeled with the number of results
rows instead of the commonly used number of input rows. This way, a
uniform workload can be achieved across all threads used. In addition, this
prevents a situation where low selectivity combined with a low number of
input triples results in unnoticeable few result rows being computed. Having
results is essential because too few cannot be distributed evenly among the
threads, making evaluation more difficult.

Because of the new partitioning scheme, there are many ways in which
a simple query can be executed. For example, it is possible to compute
A1, shown in figure 5.2, with two merge joins. The following compares the
performance of 1, 2, 4, 8, and 16 partitions for each join operator and the
triple-store iterators. The options that require a merge join to change the
partitioning of its two inputs at runtime have been removed, allowing for
22 · 43 = 256 different operator graphs.

Using the same number of partitions in all operator graphs gives the best
results since no partitions need to be merged. In addition, different synthetic
datasets with uniform or non-uniform data distribution were also considered
in the experiments. In the non-uniform synthetic datasets, the join inputs
differences are magnified so that one triple pattern provides up to 128 times
more data to the following join operators. These patterns change the overall
query evaluation time but not the ranking of the optimal partitioning in the
operator graph.

Depending on where exactly the number of partitions changes in the
operator graph, the evaluation speed is not much lower than operator graphs
that use only one number of partitions. This outcome shows that using the
same number of partitions is always helpful but unnecessary.

The A2 shown in figure 5.3 joins two different variables, which means
that the second join cannot be a merge join. While the first query removed
all variants where the two inputs were partitioned differently, it is necessary
to partition them differently. Now the optimizer has to consider more options
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to merge these three inputs. One way is to merge the partitions after the
first join and then change the partitioning of the result in time for the second
join. The other option is to leave the partitioning as it is, meaning the second
join is not partitioned by its join column. In this case, the second join must
read all unpartitioned inputs from the triple store to continue to get valid
results. The measurements show that, in this case, it is fastest to use the
second option, where non-partitioned data is read multiple times from the
store.

5.2.2 Benchmarks

This section is divided into two parts.

Focus on Merge join Operator

This benchmark focuses on the performance of the merge-join operator. To
this end, several DBMS features have been disabled or bypassed. First, the
operator graphs, including the partitions used, are hard-coded to examine
their impact on query performance. The benchmark code is included in the
LUPOSDATE3000 binary to avoid the overhead of the Hypertext Transfer
Protocol (HTTP) interface. Finally, the result is computed only as a series of
integer IDs since the dictionary queries that would otherwise be required to
convert these IDs to strings would introduce significant runtime variations.
This benchmark only intends to show the impact on query evaluation when
the data structure and size change. Since applying the above changes to
other existing DBMSs is complicated, this part will only be evaluated within
LUPOSDATE3000.

In the tests, several properties have an impact on the query time. The
first observation is that a more significant number of rows leads to higher
speedups. This speedup comes from the sequential query’s initialization
phase, which takes less than the total computation time. The selectivity
of joins is also necessary because when more rows are filtered away, the next
join operator has less work to do, resulting in faster processing. The number
of CPU cores used is significant because, due to the in-memory benchmark
setup, all experiments are both memory and CPU limited. Using more par-
titions than CPU cores does not make sense as long as the data is evenly
distributed. LUPOSDATE3000 parallelizes its query evaluation based on
partitions only. Therefore, the maximum achievable speedup is equal to the
number of partitions. Multiple consecutive joins on the same join columns
can increase the throughput since the intermediate results do not have to be
serialized or cached when merging.
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The SPARQL template shown in figure 5.2 is used to create the queries.
Then the number of generated triple patterns is changed according to the
desired number of joins.

Figures 5.4 to 5.6 show that all three properties, selectivity, output rows,
and several joins, affect the optimal number of partitions in query evaluation.

Experiments are missing in the lower right of each figure because the
targeted number of output rows cannot be generated because of a massive
increase in rows within the join operator chain, which is higher than the
targeted number of output rows. The low optimal partition counts in the
lower left portion of each figure are due to the same reason. Due to the
deficient number of triples in memory, partitioning there does not make sense.

As expected, the optimal number of partitions is proportional to the
workload. The more triples removed due to low selectivity, the more triples
must be present in the memory in the first place. The same is true for the
number of merge joins. The more different triple patterns are to be joined, the
more input triples must be defined. The last property, increasing the number
of output rows, naturally requires rising input. Conversely, the result would
be similar if the number of input rows was fixed. In this case, the optimal
number of partitions would be proportional to the number of output rows.

The results of this benchmark are used to predict the best partitioning
scheme for the query optimizer. The polynomial a · x + b · y + c · z + d ·
x2 + e · y2 + f · z2 + g with x as the number of result rows, y as the number
of joins, and z as the expected selectivity are chosen as the basis function.
This function was chosen because it promises good results for predicting the
fastest partitioning, and the process can be evaluated quickly in the query
optimization phase. The function with the constants used, as they can be
calculated from the measurements, can be seen in figure 5.7. The auxiliary
function h (z) is used here to convert the selectivity values to a similar range
of numbers as all other variables. The value is rounded to discrete partitions
in the final step. The predictive function p (x, y, z) computes most numbers
of partitions optimally. Nevertheless, the mean square error between the
predicted partitions in figure 5.7 and the calculated partitions from figures 5.4
to 5.6 is 4.3030. This error is relatively small compared to the many known
value pairs that must be fitted.

Even though the above benchmark was evaluated on different synthetic
datasets with other queries, the same effects apply to actual data. A dif-
ferent subgraph is accessed each time a query uses another constant, such
as another predicate. Each subgraph in an actual data set can contain a
different number of triples, as shown in figure 4.3. When two different sub-
graphs are randomly selected and joined, there is a very different selectivity
within the join operators and a different number of output rows by changing
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h(z) = −log2 (z) (5.1)
f(x, y, z) = 0.0025 · x+ 1.4827 · y + 1.1277 · h (z) (5.2)

+ 0.0906 · y2 + 0.0279 · h (z)2 − 3.3696 (5.3)

p(x, y, z) = 2blog2(f(x,y,z))c (5.4)

Figure 5.7: Prediction function for the number of partitions to use

only the query. This observation confirms the assumption that the optimal
partitioning scheme changes by changing the query. This changing optimal
partitionings, in turn, require partition selection at runtime.

Comparison to other DBMS

In this section, the same queries are used for evaluation. However, this time
several different DBMS implementations are compared. All DBMS functions
are enabled in this part, and the HTTP SPARQL endpoints are used.

The LUPOSDATE DBMS has been configured to use either its in-memory
storage or a disk-based RDF3X storage layout. Consequently, the results of
both the in-memory storage and the disk-based RDF3X storage layout are
presented since the internal implementation of the triple stores is entirely
independent. All other DBMSs use their default parameters as suggested in
their documentation.

The performance measurements of the Blazegraph DBMS suffer from sub-
stantial measurement inaccuracies. All other DBMSs have a minimal varia-
tion in the time required for the same query. To counteract these inaccura-
cies, the experiments are repeated ten times - and the average measurement
values are shown in the graph.

Ten merge joins are performed with different data sets for the experimen-
tal comparison. These data sets are generated to obtain the target selectivity
for each merge operator. The figures 5.8 and 5.9 show the results of this com-
parison.

Two significant representatives were chosen, and the graphs show chang-
ing selectivities in each case. Both figures show different effects. The experi-
ments of the Jena DBMS and the in-memory LUPOSDATE in the 128 result
rows configuration are dominated by the effect that a fixed output size with
decreasing selectivity requires increasing input data.

The sequential performance of LUPOSDATE3000 decreases while the
time required for partitioned evaluation remains the same for selectivities
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Figure 5.8: Performance of A1 with ten merge joins on different DBMSs, with
a result size of 128 result rows. The numbers in the brackets, for example,
LUPOSDATE3000(8), show the number of used partitions.

above 1
1+29

. However, the execution times for LUPOSDATE3000 include the
overhead for endpoint communication and materialization of the string rep-
resentations of the values. Nevertheless, a speedup of up to a factor of 1.81
is still achieved compared to no partitioning. This speedup shows that the
correct number of partitions is essential for query evaluation.

All other configurations, Virtuoso, LUPOSDATE with RDF3X, and par-
titioned LUPOSDATE3000, require the same evaluation time, completely
independent of the selectivity of the join operators since, for minimal data,
the DBMS needs most of the time for static initialization.

Using 32768 result rows, figures 5.8 and 5.9 shows utterly different perfor-
mance characteristics, although the only difference in the benchmark setup is
the higher number of result rows. Virtuoso and LUPOSDATE with RDF3X
remain unaffected by the change in selectivity. This outcome indicates that
encoding the final results’ output limits these two DBMSs. In contrast to
before, the time required per row decreases with decreasing selectivity for all
LUPOSDATE3000 configurations and Blazegraph. This effect is because the
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Figure 5.9: Performance of A1 with ten merge joins on different DBMSs,
with a result size of 32768 result rows. The numbers in the brackets, for
example, LUPOSDATE3000(8), show the number of used partitions.

static initialization time becomes smaller than the total evaluation time. As a
result, more necessary computations during the evaluation phase increase the
overall speed per result row. The in-memory variant of LUPOSDATE suffers
from poor memory management, mainly because no dictionary is used to
map string representations to integer identifiers. In all other DBMSs, dictio-
naries reduce memory requirements so that out-of-memory errors are avoided
during the triple-load phase.

Although the previous benchmark showed that more partitions are bet-
ter with many result rows, this benchmark with 32768 result rows shows
that faster calculations are possible when fewer partitions are used. At the
same time, both benchmarks show that the sequential execution is slower
than the parallel execution. This effect is probably due to the different
benchmark environments. In particular, the sequential text output requires
synchronization between the threads, which was unnecessary for the previous
benchmark.
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5.3 Conclusion
This chapter investigated the factors affecting parallel SPARQL query pro-
cessing performance. The focus was on data parallelism. According to the
experiments, performance depends on the amount of data in memory, the
available hardware, and the structure of the query being processed. Further-
more, to avoid the overhead caused by additional partitioning phases, the
triple store should materialize several independent partitioning schemes and
select the best among them on the fly. Experimental analysis and concepts
were presented on how a DBMS can optimize its query processing in the
context of multiple partitioning schemes.
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Part II

Using Topology Information to
Reduce the Network Traffic
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Chapter 6

Simulator

This work aims to create and optimize complex applications in IoT envi-
ronments. Insight into the relationship between the environment and real
world applications must be gained while evaluating these optimizations. IoT
applications should minimize latency and overall data traffic by shortening
transmission paths. Data reduction is primarily achieved by storing data
close to the source. With the help of clever memory allocation, data can be
sent over the network in a better-compressed form. For this clever memory
allocation, the application must know the network and the communication
paths. Ultimately, only the application itself is capable of making the optimal
fine-tuning. Generic approaches can cover many cases, but no generic system
can prune implicit and, thus, redundant information. The application needs
an up-to-date overview of the surrounding network for fine-tuning. This in-
formation is already processed in the routing protocol algorithms running
on each device. An interface between the routing and the application layer
is proposed to avoid duplicated implementations. Later in this chapter, it
will be shown that this interface can reduce the network load of the entire
network. Therefore, a virtual environment is needed to test, evaluate and
compare innovative applications. Existing Network simulators often focus
on the lower communication layers. An overview of existing simulators will
be given in figure 6.1. Specialization allows simulators to focus on a spe-
cific topic. As a result, often only fictitious and abstract applications can be
simulated. In addition, the scenarios for network simulators do not include
resource-intensive applications such as a DBMS.

Consequently, the software stack of the simulators does not consider this
scenario either. Another argument for the need for a virtual environment is
the heterogeneity of wireless sensor networks. This heterogeneity complicates
the feasibility and also the repeatability of experiments. Finally, comparabil-
ity is problematic since an identical network structure must be reconstructed.
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This network structure requirement makes it almost impossible for other re-
search groups to confirm the results. Even within a research group, this can
be a problem because the hardware has to be replaced or removed after a
few years due to defects. In addition, the hardware environment must be
very flexible to support different use cases. It makes no sense to build a fixed
environment because it is not reusable. However, repeating the experiment
with a modified topology or different device characteristics makes sense for
debugging and analysis reasons. Using real hardware has the disadvantage
that it is difficult and expensive to configure different scenarios with different
network topologies.

In summary, there needs to be a simulator that can simulate the lower
communication layers but still focus on the application layer. This simulated
environment could then be used to develop and test applications that can
fully exploit heterogeneous hardware. However, current applications focus on
homogeneous hardware since only such simulators are available. Therefore,
this chapter presents the new simulator SIMORA. This simulator should
improve the development of innovative IoT applications.

6.1 Fundamentals

In this section, several existing simulators are presented. Afterward, some
representative routing protocols are shown.

6.1.1 Simulator

Figure 6.1 contains a brief comparison of the main features of several existing
simulators. After this brief overview, these simulators are presented in more
detail in the following subsections. Several simulators support edge comput-
ing scenarios. Two main groups can be distinguished: those with an abstract
application model and those that can evaluate real world applications based
on byte-level network simulation.

Abstract Cost Model Simulators

First, the simulators that use an abstract application model with fixed pre-
defined scenarios are compared. These simulators focus heavily on routing
protocols. None of these simulators can evaluate real applications.

FogNetSim++ [131] allows the modeling and simulation of predefined
fog computing scenarios. IoTSim-Osmosis [7] focuses on the composition of
applications. Applications are modeled as graphs of microservices that are
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CloudSim [23] JVM
COOJA [119] C, JVM 30 30 31 31

EdgeCloudSim [146] JVM
FogBed [34] Python 30 33

FogNetSim++ [131] C++ 30

iFogSim [63] JVM
IotSimEdge [85] JVM 30

IoTSim-Osmosis [7] JVM 30

Mininet [117] Python 30

MyiFogSim [100] JVM

NS-3 [33] C++,
Python 31 31 31 32

PureEdgeSim [108] JVM
Shawn [92] C++ 30 30 30 31

YAFS [97] Python
SIMORA Kotlin 30 30 30 31 31

Figure 6.1: Feature comparison of network simulators. 0: without program-
ming effort, 1: via an interface, 2: via file descriptor, 3: via Docker

then distributed in the computing pyramid. YAFS [97] is a simulator for
Fog computing. The main contribution is the dynamic allocation of appli-
cation components, device mobility, and device failure modeling. CloudSim
[23] is implemented in Java and is the basis for many event-driven IoT sim-
ulators. CloudSim’s model includes keywords such as data center, host, and
Virtual Machine (VM) that are generally not found in IoT environments
but must still be used to model IoT scenarios. EdgeCloudSim [146] extends
CloudSim with a simulation tool specifically for edge computing scenarios
using a modular architecture. It supports modeling Wireless Local Area
Network (WLAN) and Wide Area Network (WAN) link delays, position-
ing mobile devices and access points, and execution of configuration-defined
tasks. PureEdgeSim [108] is another extension of CloudSim. It is a simulation
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framework for evaluating the performance of fog, edge, and cloud computing
scenarios, focusing on success rate, delays, and energy consumption. iFogSim
[63] also extends CloudSim. It simulates physical fog devices such as VMs,
gateways, sensors, actuators, connectivity between them, and communication
capacities such as memory, processor, storage, uplink, and downlink band-
width. The data dependencies of fog applications are modeled as Directed
Acyclic Graphs (DAGs). The simulator manages fog application placement
and scheduling. MyiFogSim [100] is an extension of iFogSim to manage VM
migration for mobile users. It provides wireless network access points and
positioning capabilities. It also adds strategy and policy migration to the
simulated applications.

Byte Code Precise Simulators

Some simulators focus on byte code accurate simulation of network packets.
This model allows real applications to run on the simulator. There are sev-
eral ways in which precisely these applications interact with the environment.
NS-3 [33] allows various protocols to be implemented over the Transmission
Control Protocol (TCP)-Internet Protocol (IP) stack. The simulator allows
real applications to communicate with each other, but the communication is
done through file descriptors, which is very slow when moving large amounts
of data. COOJA [119] is a simulation framework for Contiki, an OS for
low-power wireless sensor devices. In this simulator, devices are modeled in
too much detail, making it too slow for simulating applications with mil-
lions of lines of code. Finally, FogBed [34] is an extension of the Mininet
emulator [117]. Its main feature is the simulation of real applications with
virtualization in Docker containers. The advantage of Docker containers is
that real applications can be run without modifications. The disadvantage
is that these Docker containers are heavier than simulators containing the
entire program in a binary file.

Cross-platform applications cannot be tested because none of these simu-
lators work across platforms. Similarly, none of these simulators can also be
used in the browser. However, the ability to run the simulator in the browser
is essential because it allows the simulator to be used on student hardware for
educational purposes. This way, there is no need for a strong cluster behind
the teaching.
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Virtualization Tools

Another approach to simulating network environments is virtualization tools.
VMs allow rigid separation between multiple machines. However, this ap-
proach comes with considerable overhead when simulating small devices with
tiny applications. Modern virtualization tools such as Docker significantly
reduce the overhead compared to real VMs for small applications. However,
the virtualization tool itself manages the network connections. Therefore,
only the already existing network Application Programming Interface (API)
functions can be used. However, this chapter is about experimenting with
the network API and adding some experimental features. Therefore, these
virtualization techniques cannot be used to experiment with the cooperation
between the routing protocol and the application.

6.1.2 Routing

There is already much research on the topic of routing. Therefore, there
are several existing routing protocols. These routing protocols can be clas-
sified based on the properties shown in figure 6.2. Low Power and Lossy
Networks (LLNs) are networks in which devices and links are constrained.
Constraint means that the devices in these networks operate with limited pro-
cessing power, memory, and energy. In addition, the interconnecting links
have high data loss rates, low data rates, and instability [21]. Therefore, de-
centralized, dynamic, local, and on-demand algorithms are preferred in IoT.
These algorithms can be more energy friendly, require fewer resources since
they have only local knowledge, and adapt more quickly to environmental
changes.

Centralized Decentralized
Where is the

routing performed?

Static DynamicHow fast do
routes change?

Global LocalHow much information
do the routers have?

In Advance On Demand
When is the

routing performed?

Figure 6.2: Classification of routing protocols. Figure adapted from [106].

This chapter focuses not on the protocols but on their impact on the
applications built on top of them. First, however, a brief overview of the
essential protocols is given.
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One of the first researches to provide IPv6 routing over the IEEE 802.14.5
standard [110] was done by Internet Engineering Task Force (IETF) and the
IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) Work-
ing Group. After that, other research with the same goal was proposed:
Hi-Low [169], Lightweight On-demand Ad hoc Distance-vector Routing Pro-
tocol (LOAD) [27], Dynamic MANET On Demand (DYMO)-Low [88], hybrid
routing protocol (HYDRO) [36] , and LOAD next generation (LOADng) [31].

After defining the routing requirements for LLNs in urban [102], building
automation [37], home automation [20], and industrial [127], the Routing
Over Low-Power and Lossy Networks (ROLL) working group proposed the
Routing Protocol for Low power and Lossy Networks (RPL) protocol [21].
Although most new routing protocols for LLNs were inspired by the afore-
mentioned existing protocols, RPL and LOADng were mainly used as a ref-
erence for recent research on routing for LLNs [144].

LOADng [31] is a reactive protocol based on the Ad-hoc On-demand
Distance Vector (AODV) routing protocol [125] but adapted for LLNs. In
this case, a device establishes a route only when forwarding information. For
this purpose, the source device sends an Route Requests (RREQ) message.
Once the destination is reached, it sends an Route Replies (RREP) message
to the source. In this case, LOADng does not use an intermediate RREP
message. In addition, an RREP acknowledgement (ACK) message may be
required to establish a bidirectional path. Each device updates its routing
tables with the information of received packets used in forwarding. Finally,
a Route Errors (RERR) message reports a problem in setting up the route.

The IETF has defined RPL [21] as the standard for LLNs. It is a proactive
distance vector routing. It organizes a network topology as a DAG divided
into Destination Oriented DAGs (DODAGs), where one DODAG per sink is
called a root or border router. RPL creates the DODAGs using the Objective
Function (OF), which defines a metric for routing purposes. The root device
starts the DODAG formation by sending DODAG Information Object (DIO)
messages. When a device joins the DODAG based on the policy defined in
the OF, it establishes its rank along with its preferred parent en route to the
root device. Destination Advertisement Object (DAO) messages are then
used to establish an upward path to the root device. Intermediate devices
can resend a DIO message. Although RPL is designed for MultiPoint to
Point (MP2P) upward forwarding, it can also support point to multipoint
(P2MP) downward forwarding. This chapter focuses on the distributed and
multicast functions in the routing process, focusing on the latest research on
multicast routing for LLNs.

Stateless Multicast RPL Forwarding (SMRF) [116] was proposed to en-
able multicast forwarding in RPL networks. However, SMRF only allows
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downlink multicast traffic in a DODAG, which is helpful for service discov-
ery and network management. Since each device receives packets from its
preferred parents and can forward a package once, uniquely identifying a
package is unnecessary. SMRF uses cross-layer optimization for multicast
transmissions.

Enhanced Stateless Multicast RPL Forwarding (ESMRF) [40] provides
an enhancement to multicast transmission. Since SMRF can only send mul-
ticast transmissions downstream, ESMRF can send multicast transmissions
downstream and upstream in a DODAG. When a device needs to send a
multicast packet, it is encapsulated with Internet Control Message Protocol
version 6 (ICMPv6) and sent to the root device, which forwards the multicast
packet to the destination.

Multicast Protocol for Low-Power and Lossy Networks (MPL) [78] uses a
trickle algorithm to organize control and data multicast transmission. MPL
avoids using a multicast forwarding topology through propagation within an
MPL domain.

To improve energy efficiency and bandwidth utilization, Bi-Directional
Multicast Forwarding Algorithm (BMFA) [122] proposes to improve SMRF
to enable uplink and downlink multicast transmission.

Bidirectional Multicast RPL Forwarding (BMRF) combines the best fea-
tures of RPL-multicast and SMRF to provide bidirectionality, link-layer
broadcast, and unicast. In unicast mode, BMRF uses the RPL multicast
method; in broadcast mode, it uses the same method as SMRF. A mixed
mode is possible, where the unicast and broadcast modes are mixed depend-
ing on the number of interested subordinate devices.

The simulator provides an All Shortest Path (ASP) Routing to simulate
the optimal case for unicast. In this case, the routing tables are created using
Floyd-Warshall based on the global topology. For each routing protocol, the
sum of all distances on the path is used as OF.

Since RPL is the established standard in IoT [144], the simulator also
supports this protocol. Another feature of RPL is that it constructs a tree-
shaped routing network on the nodes, similar to the SPARQL optimizer that
often builds tree-shaped operator graphs. Finally, RPL is used in storing
mode so that the DBMS can query the routing protocol for the next hops
with a DBMS.

The aim is to distribute the operator graph to the nodes using multicast
messages. For this purpose, the operator graph is to be assigned to the nodes
so that the operator graph is adapted to the network topology. Unfortunately,
the existing Application Layer Multicast (ALM) explicitly wants to hide the
underlying network topology from the application [49]. Since this is precisely
the information that should be used, traditional ALM cannot be used.
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6.2 The Simulator SIMORA

SIMORA is intended to help with the development of IoT DBMSs as well as
other applications. Therefore, the main goal is to simulate a heterogeneous
IoT network on the one hand and full-fledged applications on the other. The
timing and network packet model must be chosen accordingly to simulate
full-fledged applications. In addition, the application should respond to its
environment regarding network topology, transmission cost, and device char-
acteristics. Therefore, the simulator must provide an interface for interaction
between the routing and application layers.

Furthermore, a portion of the network stack must be simulated to re-
lay information from routing to the application. In addition, the simulator
should allow the simulation of different environments to provide better in-
sight into the influences of the environment on the application. Finally, the
simulator must be flexible to adapt to new requirements quickly.

Since no existing simulator allows interoperation between applications
and routing protocols, a new simulator called SIMORA is introduced. The
simulator has several functions, each of which will be presented in one of the
following sections.

6.2.1 Flexibility and Configuration

The simulator was developed as a tool for evaluating advanced approaches
for applications in the context of the IoT. A modular approach is taken in
the simulator to enable high extensibility.

The simulator is written in Kotlin, allowing applications to be integrated
into any programming language. In addition, this allows the simulator to
be used in many environments, as Kotlin has multiple targets, including JS,
JVM, and native.

The application only needs to implement the appropriate interfaces pro-
vided by the simulator to be run within the virtual environment. The inter-
faces are mainly related to initialization and sending and receiving messages.
Existing network interfaces are not supported since the goal of the simulator
is to add new functionality to the communication layer.

Any compatible application can be configured directly in the configura-
tion file passed to the simulator. In this file, the user can freely specify which
application should run on which device. It is also possible to use generated
parts of the configuration file when initializing the application. These gen-
erated variables are important because the configuration specifies patterns
where a single statement in the configuration file creates multiple similar
devices. In pattern-based topology specifications, information about inher-



6.2. THE SIMULATOR SIMORA 77

itance must be available at the initialization phase of the application. For
example, the placement of sensors may be divided into regions, and different
properties may exist within these regions.

For analysis purposes, SIMORA was developed to measure many relevant
details of applications in the context of the IoT. In particular, SIMORA
measures the number and size of individual messages grouped by type. The
application itself can freely choose these message types. Furthermore, each
application can define its tagged network packets so that statistics can be
used to quickly understand which packet type is causing which network traf-
fic.

SIMORA takes into account the length of the communication path in
its output. These insights allow for analyzing the application in more de-
tail to minimize the overall network traffic. Another essential aspect is la-
tency. SIMORA can measure the application’s response times so that the
performance of different implementations can be compared under the same
workload.

6.2.2 Time Model

There are two possible time models, event-driven and time-based.
The time-based model has the advantage of a continuously increasing

simulation clock. However, due to the combination of routing and applica-
tions, the time intervals between events vary greatly, making this approach
impractical for the simulator.

Therefore, SIMORA follows the event-driven simulation model, which is
more suitable for simulating the application layer. It allows easy integration
of complex applications. At runtime, there is a virtual clock. This clock
is updated according to the next event so that the possibilities are entirely
decoupled from the actual execution time.

In addition, SIMORA can measure the execution time of the processing
that follows the reception of a network packet. This measured time is scaled
according to the configuration so that each application considers the locally
available processing capabilities of the simulated devices.

6.2.3 Communication Model

The lowest simulated layer is the packet layer. Routing is performed based
on these packets. From the simulator’s point of view, each packet only needs
to implement the interface. Therefore, to speed up the simulation, sending
binary packets is unnecessary. However, this can be useful to test the correct-
ness of the distributed application itself. However, for non-binary packets,
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the simulator only knows the approximate size given by this interface, so it
should be specified as precisely as possible.

6.2.4 Network Stack

interface IActuator {
fun setMiddleware (m: IMiddleware )
fun startUp ( )
fun shutDown ( )
fun r e c e i v e ( pck : IPayload ) : IPayload ?

}

Figure 6.3: Network Stack Actuator interface.

interface IMiddleware {
fun addActuator ( c h i l d : IActuator )
fun r eg i s t e rT imer ( time : Long , e n t i t y : ITimer )
fun f l u s h ( )
fun send ( dest : Int , pck : IPayload )
fun resolveHostName (name : String ) : Int
fun getNextFeatureHops ( des t : IntArray , f i l t e rK ey : Int ) : IntArray
fun c loses tDev iceWithFeature ( f i l t e rK ey : Int ) : Int

}

Figure 6.4: Network Stack Middleware Interface.

Figures 6.3 and 6.4 show the most important interfaces of the network
stack. Each layer implements the actuator interface from the device to the
application. Conversely, each layer implements the middleware interface from
the application to the device. Consequently, the device does not need an ac-
tor interface, and the application does not require a middleware interface,
but everything in between must implement both. These interfaces create
a bidirectional connection between successive layers. The functions in fig-
ure 6.3, line 2, and figure 6.4, line 2 enable this communication. The naming
of the functions in figure 6.3, lines 3 and 4 is self-explanatory.

The functions implement timers in figure 6.4, line 3 and 4. Each layer in
the network stack can register a timer to implement simple repetitive events,
such as sensors periodically acquiring and sending current readings.

Applications mainly generate packets. The packet’s destination address
must be defined to send a packet (function figure 6.4, line 5). Therefore,
each device receives an automatically generated number during its initial-
ization phase. The simulated devices can be named in the configuration so
that name resolution (function figure 6.4, line 6) is possible. Named devices
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are implemented only for simplified initialization. Name resolution is read
directly from the configuration without any accurate simulation.

The network packets then pass through a simulated configurable appli-
cation stack. Each step in this stack can recode the packet, group it with
others, compress it, or perform another user-defined function. At the end of
this stack, the packet is passed to a routing protocol implementation that
calculates where to send the package. The result of precisely this calculation
can be queried by the application (figure 6.4, lines 7 and 8).

The packet is then routed over multiple hops to its final destination. Fi-
nally, the packet is forwarded to the device’s local routing layer to implement
routing over multiple hops, which can decide whether to forward the packet
to another device or process it locally.

When the packet arrives at its destination device, it traverses the appli-
cation stack in reverse order (function figure 6.3, line 5) until any part of
the application stack or an application consumes it. While processing the
packet, the application may also send new packets.

One of these network layers ensures that the network packets arrive in the
same order as they were sent. The order of network messages is significant
for DBMSs. For example, a table must be created before data is inserted
into that table.

Currently, the simulator does not simulate packet loss. This package loss
is irrelevant to the application evaluation since there is nothing the appli-
cation can do about it. Choosing a different route is the only way to work
around packet loss. Choosing another route is calculated by the routing pro-
tocol, which then informs the application of the current route. Since the
focus is on the application layer, packet loss will not be considered further
in the remainder of this paper.

6.2.5 API Design

Simulator applications can only explicitly send and receive packets, as shown
in figures 6.3 and 6.4. For both stateless and packet-based applications, this
is the natural network perspective. Common APIs such as Message Passing
Interface (MPI) also provide a stateless API so that these applications can
be used in the simulator with only minor modifications. However, the appli-
cation’s network module must be rewritten for socket-based applications to
handle the packets.
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(a) Random (b) Ring (c) Full Mesh (d) Uniform

Figure 6.5: Topologies as provided by the simulator.

6.2.6 Predefined Topologies

Due to the heterogeneity in IoT, it is challenging to perform standardized
experiments with defined network structures. Using real hardware has the
disadvantage that it is time-consuming and costly to configure different sce-
narios with different network topologies. Furthermore, different hardware in
different environments limits repeatability. This environmental requirement
makes it almost impossible to confirm experimental results for research pur-
poses. SIMORA supports several predefined network topologies, which can
be seen in figure 6.5. In addition, topologies can also be defined manually.
These predefined topologies can be nested and combined to create complex
patterns.

Different communication technologies can be used for each nesting level.
This configuration allows the simulation of multilayer network architectures.
For example, many routing protocols assume that a particular device is con-
nected to the Internet, which is then used as the starting point. For this
reason, and to allow nesting, each predefined topology is centered around a
device.

6.3 Evaluation
The only measurable parameter related only to the simulator itself is the
time it takes to start. The performance during runtime will be evaluated
in later chapters with more complex applications and configurations. The
startup time of SIMORA is closely related to the number of devices to be
simulated. Since the simulator is intended to be used in IoT-like scenarios,
it must be possible to simulate many devices. It turns out that almost all
of the time is spent initializing the routing protocol. Therefore, figure 6.6
compares the two implemented routing protocols and the Kotlin targets. The
used topology does not matter because the routing protocols must consider
all possibilities.



6.4. SUMMARY 81

0.0001

0.001

0.01

0.1

1

10

100

1000

4 16 64 256 1024 4096 16384 65536

in
it
al
iz
at
io
n
ti
m
e
(s
ec
on

ds
)

number of devices

RPL(JVM)
RPL(Native)

RPL(JS)

ASP(JVM)
ASP(Native)

ASP(JS)

Figure 6.6: This figure shows the SIMORA’s setup time for different numbers
of devices.

While ASP routing has an initialization time complexity of O (n3) due
to Floyd-Warshall, RPL has a time complexity of about O (m · log (n)). The
different Kotlin targets also have other performance characteristics. The
native Kotlin target suffers particularly from a slow garbage collector. On
the other hand, the JVM requires much more RAM than any other target.

6.4 Summary
The simulator provides the necessary functions to simulate fully parallel data
input. Many existing applications could benefit from improved test and eval-
uation environments. A simulator can verify the scalability of applications
to many data inputs and outputs in the standard build pipeline. Routing
algorithms know various network topologies as they form the basic commu-
nication layer between devices. However, applications are not aware of these
topologies.
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Chapter 7

Dynamic Content Multicast

Messages can be distinguished according to the number of senders and re-
cipients involved. The simplest message type is one-to-one, where a sender
sends a single message to a receiver. This type is also referred to as unicast.
Unicast is useful when the information is only needed at a single destination
device.

However, sometimes the same information is to be sent to multiple recip-
ients. Here, a distinction is made between a one-to-all message, which is also
called a broadcast. Furthermore, a message to be sent to several recipients
is called multicast.

Sending similar information to multiple destinations in the context of
DBMSs can make sense. For example, when data is inserted, the data is
replicated and distributed by a hash function that sends the same data to
multiple devices on the same network. In this scenario, portions of the mes-
sage can be reused to be sent once and read many times along the way of
the package. This message is read on each device on the network route, and
only the data that is still needed later is forwarded in each case to send as
little data as possible. This approach is referred to as DC Multicast in the
following.
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7.1 The Idea of Dynamic Content Multicast

In this section, the DC multicast is explained with an example. The cor-
responding topology can be seen in figure 7.1. All gray nodes in the image
correspond to the filter specified by the application. The others do not. For
simplicity, only the relevant network connections are shown.

AB

C

DE

F G

H

I

Figure 7.1: Example network layout for demonstrating DC multicast.

To create a multicast tree, the application must first pass a list of desti-
nation addresses to the function in figure 6.4, line 7.

Suppose that A wants to send some data to C, E, F, H, and I to cover
all possible variations. The function then sends the data to each of these
addresses.

Then the routing layer can compute the multicast tree, considering all
devices. Finally, it removes intermediate devices from the multicast tree if
they do not meet the application’s criteria.

In this example, devices B and G are removed. Devices E and F receive
unicast messages from A because device B cannot read the contents of the
packet.

After removing G, I is directly reachable from D. It does not matter how
much or what data is transmitted in this case.

Finally, the application obtains the mapping shown in figure 7.2, which
assigns each destination to the next hop on the path to that device.

destination C E F H I
next hop C E F D D

Figure 7.2: mapping of destinations to next hops.

This mapping lets the application know which destinations have the same
next hop.

The data for devices H and I can be combined into one message sent
to D. Device D can read the message entirely and create new messages that
are then forwarded. This understanding allows the entire message to be
compressed and encrypted, even if the content is intended for different recip-
ients. This knowledge also allows the application to interpret the content of
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the message. In this example, this avoids sending configurations overwritten
by more specific configurations, thereby reducing the size of the message. An
example of a packet structure is shown in figure 7.3.

A

D

H I

Figure 7.3: Example for DC multicast package structure.

This knowledge allows D to split an incoming packet into two filtered
packets sent to H and I. The main advantage over sending multiple indepen-
dent packets is that the application can infer which parts should be sent to
which destination, so this does not need to be transmitted. Unfortunately,
the current multicast layers cannot provide this functionality because, from
their point of view, they are just bits and bytes that could be identical.

7.1.1 Inverse Dynamic Content Multicast Tree

The multicast tree can also be used in reverse order. However, this is only
possible with the cooperation of the application and routing layers. Let us
take the same network layout in figure 7.1 as an example. Suppose A wants
to count all the data from nodes C, E, F, H, and I.

Two phases are required to obtain the information. First, A must inform
all nodes that information should be sent. Then, each node must send its
response back to A.

In the first phase, dynamic multicast does not provide any advantage
because an identical message is sent to many destinations. This task also
works with current multicast protocols.

In the second phase, device D can handle the responses from H and I and
only forwards the final result back to A. Of course, there are better options
than simply aggregating two numbers. However, this can be extended to any
complex stream processing where the application can evaluate the complex
processing directly on the devices on the optimal communication path. De-
pending on the network and application, this can significantly reduce traffic.



86 CHAPTER 7. DYNAMIC CONTENT MULTICAST

7.2 Application View
Applications can improve their network communication using a suitable mul-
ticast tree. The application must be able to specify criteria as to which user-
defined properties the participating devices must fulfill to make optimal use
of multicast. Only the routing protocol can calculate this optimal multicast
tree, considering the topology and all hardware aspects. SIMORA provides
the application with an interface function, as shown in function figure 6.4,
line 7. For performance reasons, each filter is initialized once during initial-
ization, where it is given a fixed ID that can be used later. For example,
one possible filter condition is to select all devices which run an instance of
a specific application.

7.3 Scenario
Since a DBMS is a very complex scenario, this chapter uses a much smaller
example to evaluate the concept and benefits of DC Multicast. Later, this
strategy will be shown and reused in the LUPOSDATE3000 DBMS. As a
simple use case, suppose that all IoT device configurations should be changed
according to the preferred settings stored on the user’s mobile device when
the user enters his home.

All devices share a global configuration, such as the user ID. Then, many
devices can be divided into groups, each with an additional global group
configuration set. For example, all speakers can have a maximum shared
volume, and all lamps can share a brightness setting. For simplicity, let us
assume that the global part of this message is 128 bytes, each group shares
another 64 bytes, and finally, each device gets 32 specific bytes that are not
needed by any other device. This message is sent to 32 devices divided into
four groups of eight devices each. Each topology defines 128 devices.
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7.4 Evaluating the Influence of Cooperation be-
tween Routing and Application Layer

All combinations of the parameters routing protocol, topology, and packet
type are compared to compare the effect of DC Multicast. The result can be
seen in figure 7.4. The simulator implements RPL and ASP routing protocols
and four basic topologies Ring, Random, Full, and Uniform. The message
types to be compared are unicast, broadcast, and multicast. For multicast,
there are two variants: State Of the Art (SOA) multicast, where the same
messages are sent to multiple hosts, and the new DC multicast. In SOA mul-
ticast, messages are split as much as possible. In real applications, where the
global section may contain default configurations that the individual sections
can override, the message could be reduced even further. The effects of all
three parameters must be compared at once because they strongly influence
each other, so it is impossible to analyze them individually. The most obvious
observation is that the total network traffic in the fully connected network
is lower than in any other topology because each device can communicate
directly without forwarding messages.

Consequently, in this topology, the unicast approach is most appropriate.
However, this is not a realistic wireless network due to full connectivity.
The ring topology has the fewest connections of all the topologies. As a
result, many messages must be forwarded multiple times. In this context, the
broadcast has the disadvantage that the later devices in the communication
path receive too much information.

On the other hand, the unicast method sends the same data multiple
times to the devices near the sender. Only the DC multicast method can
reduce the number of data sent because it does not send the same data twice
at the beginning. Simultaneously, it reduces the number of data sent at a
greater distance from the sender. The overhead of the prior art multicast
method is due to the increased number of messages, where each message
must contain its destinations further down the multicast tree. The uniform
topology is very similar to the random network design. The main difference is
that local clusters can occur in the random topology. Regardless of what the
topology is or how the routing is specified, the broadcast method is always
the worst case because too much unnecessary data is sent. The multicast
implementation, which can use both routing and application knowledge, can
reduce the amount of data sent by a factor between 2 and 6.
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Figure 7.4: Amount of KB sent in the network. The number of messages
sent (in thousands) is shown in brackets. All numbers refer to the transport
layer messages sent between two devices, aggregated over all devices. The
upper value represents ASP routing, and the lower is RPL routing.

7.5 Conclusion
This chapter presents a simple IoT scenario for distributing configurations to
IoT devices. Then, the impact of different topologies and routing protocols
on the total number of transport layer messages and their size was measured
and compared. Advanced techniques such as DC Multicast can thus reduce
the number of messages and the amount of data sent. In the experiments, the
number of messages can be reduced by 17 or 94 %, and the number of bytes
transmitted over the network can be reduced by up to 29 % compared to
conventional multicast techniques. Even though a straightforward scenario
was chosen for illustrative purposes, the method can also be applied to more
complex applications. More complex applications will be demonstrated in
the following chapters.
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Chapter 8

Benchmark Scenario

Many DBMSs claim to support SIoT scenarios. Several benchmarks compare
the behavior of DBMSs in different application scenarios. The main goal of
many benchmarks is to show how fast DBMS queries can be evaluated. These
benchmarks already consider many aspects, such as query variations to avoid
caching full results and data streams to simulate changing data sets over time
[139, 5, 61, 126, 17]. However, in the context of the IoT, applications must
be as energy efficient as possible. One aspect of energy efficiency is to send
as little data as possible. The realization that network traffic slows down
the evaluation of queries is already considered in many DBMSs [53, 69, 3,
51, 173, 64]. As a result, there are already many approaches to reducing
network traffic. However, the importance of the network topology is always
neglected. One must compare different network topologies to measure the
amount of data sent. To compare topologies, it is essential to examine how
the data was inserted into the DBMS since different indexing variants pro-
duce very different communication patterns. Distributed data insertion is a
crucial aspect of sensor data in IoT. After analyzing the most commonly
used SPARQL benchmarks, none is designed to insert data into the DBMS
in a distributed manner.

Therefore, a new benchmark framework is presented in this chapter to
gain insights into the interoperability between routing and application, and
thus effectively reduce communication costs. Various DBMS indexes are
evaluated regarding how much traffic they generate in a fully distributed
environment. Because repeatable tests in a distributed environment are the
target, the benchmark scenario is built to work in conjunction with SIMORA.
SIMORA can be used to simulate and compare a variety of network topolo-
gies. This variety allows for determining performance relationships between
the DBMS, the indexing strategy, and the topology. This benchmark is based
on the idea that the speed of a DBMS should not be the only performance
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measure. For example, suppose the DBMS consumes fewer resources than
the application can use them. Ultimately, the entire system is faster and not
just one component.

8.1 Fundamentals

There are several existing SPARQL benchmark scenarios. The simplest
benchmark type consists of three steps: data generation, data import, and
the evaluation of the query performance.

The most widely used benchmark for this principle is the Berlin SPARQL
Benchmark (BSBM) [17]. The benchmark simulates an e-commerce system
with many products and functions. The benchmark changes the queries’
constants to prevent DBMS caching. In this way, queries for many products
and functions are simulated. Another benchmark is the Lehigh benchmark
[61]. Here, a university domain ontology is simulated, consisting of courses
taught by professors and attended by students. The primary purpose of this
benchmark is to compare reasoning strategies based on the defined ontol-
ogy. Finally, the SP2B benchmark simulates Digital Bibliography & Library
Project (DBLP) data [139]. The main component of the dataset is the re-
lationships between articles, journals, and authors. Due to the simple data
structure, this benchmark can compare join order optimizers and the execu-
tion of joins and filters.

More realistic benchmarks use static data streams with timestamps in-
stead of a single static data import. These data streams can either be ac-
tual sensor readings or generated. The SR benchmark uses the SSN on-
tology [175]. The data describes actual weather measurements since 2002.
A SPARQL Performance Benchmark (SP2Bench) is a synthetic benchmark
[126]. The data model describes a social network. The benchmark contains
three primary data streams: locations, posts, and image upload notifications.
The City bench data corpus contains sensor data from a city in Denmark [5].
The benchmark contains traffic counters, such as available parking spaces.

However, all these existing benchmarks send data to a single central
DBMS instance with a running SPARQL endpoint. None of these bench-
marks consider distributed DBMS or network topologies. The sensors and
the DBMS would be in different locations in the real world. These geo-
graphically distributed locations make a big difference to the DBMS as the
differences between indexing strategies become much more relevant. There-
fore, a centralized coordination device is a significant disadvantage. Data
distribution must start at the data generation stage to compare indexing
strategies based on other metrics, such as network load caused. Especially
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in the IoT context, DBMS strategies requiring less data restructuring should
be preferred because they reduce network load.

All existing benchmarks could be modified to evaluate distributed DBMS.
However, in the case of actual data, the data must be heavily preprocessed to
be streamed to a distributed DBMS over time. In the case of generated data,
the entire data generation process must be rewritten so that these generators
can produce parallel data streams. Therefore, this new benchmark scenario
that generates data in a distributed manner is proposed.

8.2 The Benchmark Scenario

City bench inspires the definition of our benchmark scenario [5]. The City
bench data corpus contains, among other things, actual parking occupancy
data. On the one hand, this actual data enables the simulation of a real-
istic environment. On the other hand, it complicates the adaptation of the
scenario to different topologies. The sensor data follows a fixed data struc-
ture, meaning the structural difference between actual and generated data is
negligible. Therefore, this benchmark defines virtual sensors that generate
synthetic data instead of actual sensor data, similar to Citybench ’s parking
lot occupancy data. Each virtual sensor periodically sends its current park-
ing lot occupancy status to the closest DBMS. Since this benchmark is more
than just sending data to a DBMS instance, the configuration must consider
several properties.

8.2.1 Setup Script

Together with SIMORA, a script is provided that simplifies the topology cre-
ation. The benchmark topology creates a separate parking area for each full
DBMS. The size parameter defines the number of these full DBMS instances.
Within each parking area, there are ten parking spaces by default. Each of
these parking spaces, in turn, has a sensor attached to it, which generates
five data packets. The final select queries wait until all sensors have sent
all data packets to obtain a consistent result. It would be possible to start
the read queries while the sensors operate. However, this would result in
the DBMS having a different state for each topology. Therefore, it would be
much more difficult to compare the results of the different topologies. This
setup of a nested topology can be seen in figure 8.3. Additional devices are
added there for the network to be connected to both the random and uniform
networks. These devices would also be necessary for an actual city, as shown
in figure 8.2. Two additional devices are added for each complete DBMS
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in the generated topology. Depending on the configuration, these additional
devices may also run DBMS instances. However, these additional instances
may only participate in query processing, not data storage, to simulate fur-
ther heterogeneity. The spacing between devices is such that each device
has an average of 10 direct neighbors. In ring-shaped topologies, additional
devices would increase the communication volume by a constant factor. In
a fully meshed network, it also makes no sense to add additional devices
because these other devices would never be on the shortest path between
two devices. At the time of the last read request, there were d · (15 + s · 10)
triples in the DBMS, where d is the number of DBMS instances and s is the
number of measurements per sensor. Figure 8.1 shows some statistics about
the generated scenarios.

databases databases
without store sensors sensor

samples triples

4 8 40 200 2060
16 32 160 480 8240
128 256 1280 6400 65920

Figure 8.1: Statistics about used topologies. DBMSs without stores are only
available for topologies that are random and uniform.

In addition to the number of DBMS instances, the configuration script can
be used to set other properties that cannot simply be derived from a single
number. The routing algorithm and the topology layout are the options that
relate directly to the network topology. There are a few more options that
relate to the DBMS itself:

• Where is the operator mapped to a device?

• Are there DBMS instances without storage on the intermediate devices?

• What type of multicast will be used?

• What index strategy should be used?

All these properties are necessary to compare all combinations with each
other. Since the configuration script creates a JSON file, fine tuning can be
done later.
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Figure 8.2: Map of the city around the campus taken from OpenStreetMap
[65]. A DBMS instance is placed in each parking area. The stars are used as
additional devices required to connect the whole network. Like figure 2.13,
the DBMS can be further classified as having or not having an attached
storage.

8.2.2 Ontology

The binary data of the sensor must first be converted into a graph form before
it can be inserted into the SW DBMS. The SOSA ontology’s Sensor, Observ-
ableProperty, and Observation classes are used as a basis [32]. Blank nodes
are used for the subject, giving the DBMS more options for later optimiza-
tion. This freedom comes from allowing the DBMS to freely assign blank
nodes so that all data can be stored locally without communication. The
Sensor and ObservableProperty classes contain static information about the
location of the parking lot and are, therefore, only initialized once. The Ob-
servation class contains the actual measurement data, such as the occupancy
status of a parking space and the time of measurement. Another reason for
using many blank nodes is that the variable data in this way contains only
ontology vocabulary and primitive values. This choice means that the use of
the distributed dictionary and the associated traffic can be significantly re-
duced. With this definition, the properties of SIoT DBMSs can be compared
during computation without the data output being a significant part of the
communication.

The structure of the generated data can be seen in figure 2.5.



94 CHAPTER 8. BENCHMARK SCENARIO

(a) Random (b) Ring (c) Full Mesh (d) Uniform

Figure 8.3: The topologies as the topology generation script define them.
The dark-appearing zones are parking areas. The center device and the
devices in the parking areas run a DBMS instance. The other devices in the
parking areas contain sensors. The remaining devices are just filling devices
to connect to the network.

8.2.3 Queries

This benchmark defines nine SPARQL queries on this topic to simulate a
variety of realistic queries against the data corpus. These queries can be
found in part IV. In addition, different SPARQL features are used to evaluate
various parts of the DBMS:

• At the beginning, figure A.1 shows how the data is inserted into the
database. Therefore the insert query is shown so the reader can under-
stand how the data is shaped. The particular idea is that all subjects
of sensor samples are blank nodes. This structure allows some advanced
data placement strategies.

• Then Q1 (figure A.2) selects the entire dataset. This query does not
contain any special operators which could be optimized. Therefore it
can be used as a baseline for how the DBMS instances interact.

• Q2 (figure A.3) retrieves a list of all parking areas. The result size of
this query is independent of the number of sensor samples.

• Q3 (figure A.4) counts the number of parking spots in the parking area
9. Compared to the previous query, another triple pattern is added,
so now join ordering needs to be considered. However, the join is
star-shaped, so the differences between different orderings have a low
impact.

• Q4 (figure A.5) counts the number of samples from a specific parking
spot. This query adds path joins to the query. This path prevents
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plans, consisting of only merge joins, from being used and thus requires
a good join ordering.

• Q5 (figure A.6) finds out when the last sample from a specific sensor
was sent. It is the first query in this benchmark, which contains two
star-shaped joins connected by a path. Here the query optimizer must
detect the shapes correctly such that the joins can benefit from par-
titioning and local executions whenever the indexing strategy allows
it.

• Q6 (figure A.7) asks for the state of every parking spot in an area
and the timestamp of its last measurement. A nested SELECT clause
introduces a GROUP BY clause in the middle of the join tree. This
structure complicates the join order, making obtaining good statistics
harder.

• Q7 (figure A.8) asks for the state of every parking spot in multiple areas
and the timestamp of their last measurements. A FILTER operation
is introduced, which can affect cardinalities within or before the join
tree.

• Q8 (figure A.9) counts the number of free parking spots in a specific
area. Here two GROUP BY clauses are nested within each other, con-
taining joins. The problem with the join ordering algorithms is the less
reliable cost estimation.

• Q9 (figure A.10) joins everything together to showcase many joins.
Finally, three star-shaped joins are connected by multiple bidirectional
paths. The idea is to complicate the query without restricting the join
order optimizers’ possibilities. Indeed later evaluations will show that
this enables advanced optimizations.

8.2.4 Expandability

This scenario can be extended later in several ways. For example, the sensor
devices could add more static data and measurement properties. This static
data would increase the data generated for each sensor. In addition, it would
be possible to use different types of sensors simultaneously, with each sensor
sending another data format.
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8.3 Summary
Current well-known benchmarks insert their data into a single DBMS in-
stance. However, this hides the differences between the various partitioning
strategies, which only occur when the DBMS is used in a distributed manner.
In the newly proposed benchmark framework, all sensor data is dynamically
generated and distributed, allowing the benchmark to adapt to any topol-
ogy. Moreover, this is the only way for the benchmark to exploit a distributed
DBMS’s features fully. Combined with SIMORA, the runtime of queries on
different DBMSs and indexing strategies can be compared alongside how
much data is sent for this purpose.
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Chapter 9

Topology Driven Operator Graph
Distribution

The network’s topology can play an essential role in a distributed scenario.
In High Performance Computing (HPC), the servers are often connected by
fat tree networks [129]. As a consequence, not all devices can communicate at
full speed at the same time. In IoT, topology can take very different forms
from the perspective of individual devices. There is already research that
considers heterogeneous network topologies [103]. However, the most crucial
consideration is to compute as much data as possible on connected devices.
Current partitioning algorithms are based on the assumption of homogeneous
hardware. Since this is not the case in sensor networks, DBMSs should not
be operated in sensor networks without modifications. A particular problem
here is that the transmission paths are different. Basic assumptions such as
that join operators should be performed on devices with more data become
invalid. All data flow paths must be considered to determine the optimal
processing path.

Query distribution optimization strategies can be classified similarly to
routing protocols. This classification can be seen in figure 9.1. The data
must be stored, for example, by using a DBMS to access more than just the
sensors’ current values. In the context of the IoT, DBMSs are confronted with
many different sensors and, thus, many different data formats. The schemas
of an RDBMS need to be more flexible for this variety of data formats.
Therefore, in the SIoT domain, the information is encoded in triples because
this encoding allows the combining of arbitrary data sources. Additionally
are standardized ontologies such as SOSA [32]. These ontologies allow us to
handle a zoo of heterogeneous devices and support their data formats [55].

There are already several research efforts on SIoT DBMSs [172, 133, 82,
67, 70, 134, 64, 143]. However, there are many open challenges in the dis-
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Centralized DecentralizedWhere is decided,
which node is used?

Static DynamicFailure recovery
for failing subqueries?

Global Local
How much information
do the optimizers have?

In Advance On Demand
When are nodes assigned

to the operators?

Figure 9.1: Classification of distributed query optimizers.

tributed processing and storage of data in the SIoT context. Modern sensors
send their measured values to a central computer cluster over the Internet
[72, 176, 35]. This centralization makes it impossible for applications to guar-
antee low latencies because the data must be transmitted over the Internet.
In addition, all data from the sensor network must be sent externally, which
can lead to security and privacy issues. Since only a few devices are directly
connected to the Internet, a few devices have to forward many more mes-
sages, which means that the available energy in these devices is consumed
more quickly.

The current DBMS assumes that the hardware is homogeneous in the
initial optimization. Since this is not the case in sensor networks, DBMSs
cannot operate in sensor networks without modifications. Keywords such as
homogeneous hardware and server cluster imply that the pairwise commu-
nication latencies between all DBMS instances in the network are assumed
to be the same. Again, this is different in a physically distributed network.
A particular problem here is that the transmission paths are different. Ba-
sic assumptions such as that join operators should be performed on devices
with more data become invalid. All data flow paths must be considered to
determine the optimal type of processing.

9.1 The Approach

The central task of all routing protocols is the ability to calculate an efficient
route to a given destination. Many routing protocols, such as RPL in storing
mode, use a local routing table to accomplish their tasks. In this chapter,
the routing protocol is combined with the query distribution optimizer of a
DBMS. Therefore, additional information is stored in the routing tables to
determine the following DBMS instance on the way to the destination. The
widely used RPL protocol has been extended to include the position of the
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following DBMS instance in the DIO messages. This change could also be
applied to any other routing protocol.

Since routing is essential for the remainder of this work, these changes
and their effects are explained in detail. A simple network topology is shown
in figure 9.2.

a

b

c

d e

f

Figure 9.2: Example network topology. The nodes with a visible circle around
them are edge nodes with a locally running DBMS instance. The others are
just routers.

9.1.1 Extended Routing Tables

Since routing is an essential requirement for this chapter, the changes and
their effects are explained in detail. An example of the extended routing
tables can be seen in figure 9.3.

a b c d e f
a a(a) b(c) b(c) b(c) b(c) b(c)
b b c(c) c(c) c(c) c(c)
c c(c) d(d) e e(f)
d d(d)
e e f(f)
f f(f)

Figure 9.3: The routing tables as RPL uses them. The first column indicates
which device owns the row. The first row shows the destinations, and the
values indicate to which next hop the message should be forwarded. The
values in the parentheses are added to indicate the next hop with a DBMS
instance.
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If there is no entry for the next DBMS in the routing table next to the
next hop, then there is no DBMS on the way to this node. These empty
fields in the routing table are irrelevant because, from the DBMS’s point of
view, it would make no sense to ask the routing protocol for the next DBMS
on the way to any device. The DBMS only asks for the next DBMS towards
another DBMS peer.

If an empty cell is in the routing table, the original routing protocol for-
wards the message to the parent node. In these cases, it would be problematic
if the routing protocol is asked for the next device with a DBMS since it does
not know it. An instance of the DBMS is placed on the DODAG root node
defined by the RPL to solve this problem. If all complex queries are entered
into the DBMS at the DODAG root node, then all next DBMSs along the
entire path to the leaves of the network tree are always known. Another
solution would be to use multiple DODAGs in parallel - one DODAG for
each DBMS. There are already examples where multiple DODAGs are used
in parallel [99]. Whenever the next DBMS is unknown, a message can be
transmitted directly to the final destination, which means some optimization
potential is unused.

9.1.2 Query Distribution

Figure 9.4 shows the differences between the operator placement and join
order optimization strategies. Figure 9.5 shows the processing pipeline of a
SPARQL query. This entire chapter explains the details.

First, the SPARQL string request must be converted into an operator
graph. Therefore the string is tokenized and undergoes a logical optimization
process. In state-of-the-art, the definition of the final join order is part of
this process. This strategy is called the static approach in the following.
However, it is only possible to accurately compute the best join order by
calculating it. Hence, the result of the join order optimizer is always only an
approximation of what is likely to be better according to the optimization
goal. The optimization goal is often defined as the estimated execution time,
but other metrics, such as the network traffic, are also achievable goals. In
figure 9.4, this is shown as static (a). In addition, some optimizers rely on
variable name patterns, shown as static (b), to reduce the network traffic and
latency during optimization.
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Figure 9.5: Routing-assisted join order optimization in comparison to state-
of-the-art static join order optimization.
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A placeholder join operator indicates that multiple inputs should be
joined without specifying which order to let the routing choose which join
order should be used. For example, a join placeholder-tree is used to avoid
cartesian products. Therefore, only the identity of variable names in the
query must be considered, such that the CPU overhead is negligible. We call
this the routing approach.

Even if the state-of-the-art join order optimizer returns an explicit join
order, several join orders are often so similar that the optimizer makes a
random choice among similar results. We take advantage of this random
decision. Instead of choosing an arbitrary join order, the placeholder join
operator is used. We call this the routing-assisted approach. The figure does
not explicitly show this because it combines static and routing approaches.

No matter how this operator graph looks, it is split into many parts, one
for each operator. At each point where the operator graph is split, matching
send and receive operators are added, which are indicated by arrows in the
figure. These send-and-receive operators ensure that the operator graph can
be executed in a distributed manner.

Afterward, these parts must be assigned to the devices. The operators
for triple store access must be executed on specific devices since they require
local data. In the figure, this is displayed by the operator-mapping table.
All other operators could be executed anywhere. The local routing table
of the current device is used to shorten the data paths. In the example,
device one is only connected to devices 2 and 3. Therefore, it cannot send all
triple-store operators directly to their destination. Therefore, for each triple-
store operator, the next device through which it must be routed to reach its
destination is computed. This functionality must be used inside the routing
protocol as well. Therefore, it is helpful if the routing protocol exposes these
functions.

An operator’s inputs are considered to check for the other operators where
to send them. If all inputs are sent to the same device, that operator is also
sent there. This procedure is repeated until a destination is assigned to each
operator. Operators whose inputs are sent on different devices are calculated
locally on the current device. In the case of the placeholder operator, the
placeholder is split whenever different devices are directly involved. This step
is repeated on each device to which operators are passed until all operators
are to be executed locally in terms of that device. In this way, the operator
graph is adapted to the topology.

During or after the evaluation of a join operator, the possibility to undo
the decision of sending the operator further down the network whenever
the join result is larger than its inputs is added. In this case, the input
streams and the operator are forwarded to the parent DBMS instance. This



104 CHAPTER 9. TOPOLOGY OPERATOR DISTRIBUTION

relocation increases the CPU workload because the partial join has to be
calculated again, but this reduces the network load, as fewer data needs to
be sent. This extension can be applied to every operator placement strategy.
The effect of this extension for all approaches is shown in the evaluation.

In the presented example, there are two joins. From the overall network’s
point of view, an additional operator must be sent due to the routing ap-
proach, but a stream of intermediate results can be omitted. As for the
message size, an operator has a fixed number of bytes. However, the size
of a data stream always depends on the number and structure of the stored
data. So, the approach always yields better results, provided the joins have
similar selectivities. This requirement is also why a pure routing-based join
order optimization is not considered in the evaluation. In this case, the join
order is not influenced by an estimation of the selectivities. Consequently,
the used join orders can and will produce substantial intermediate results so
that the queries no longer terminate in a reasonable time.

9.2 Evaluation

The configuration generation script with the size parameter 128 generates the
topology used in the evaluation. In this evaluation, the longest measurement
took 26 minutes for a benchmark case with a large ring topology where the
indexing algorithm sent the data over long distances.

The number of bytes sent in the following figures appears large for such
a small number of triples. This high number is because the message size is
counted each time a message moves from one device to another, which can
happen many times for a single message depending on the topology. As a
result, self-messages do not contribute to the number of bytes sent.

All data is first entered using sensors to obtain fair and reproducible
results. Then the read queries are performed. The simulator and also the
DBMS allow simultaneous execution. Still, it is much more challenging to
analyze the numbers because each query would give different answers for each
scenario since the timing of the read and insert queries are different.

9.2.1 Insert Queries

First, the behavior of different indexing strategies during the INSERT phase
is compared.

Looking only at the amount of data sent, grouped by topologies, figure 9.6
shows that the fully connected network sent the least. In reality, however, a
fully connected network is unrealistic. The ring network performs well when
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Figure 9.6: Several bytes are sent during INSERT by topology and routing
protocol.

there are a small number of devices but performs worse when there are more
devices. In this evaluation, the uniform topology behaves similarly to the
random topology, especially for more extensive networks.

Next, the influence of the routing protocol on the data traffic is consid-
ered. This influence is shown in figure 9.6. In the case of the RPL protocol,
a single DODAG tree is used where data must take longer paths to its final
destination. All routing tables for the shortest path are created using the
Floyd-Warshall algorithm.

Figure 9.7 shows the sent data volume grouped by topology, several
DBMSs, and an indexing strategy.

The ontology must be loaded in all cases, and the sensor data must be
sent from the sensor to the nearest DBMS instance. In addition, during
initialization and simulation, some static data must be sent regardless of the
indexing strategy.

There are many different hashing strategies, each with different strengths
and weaknesses. For example, in the centralized strategy, there is no data
distribution at all. Instead, each triple is stored in the same DBMS instance.
However, all triples must be sent to this central DBMS, which causes more
network activity than if the data were stored locally. In addition, the more
replicas an index uses, the more data must be sent when writing to the index.

In key based hashing, different combinations of columns are hashed and
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Figure 9.7: Several bytes are sent during INSERT by topology and hash
strategy. From top to bottom, the results for a) 4, b) 16, and c) 128 DBMSs
are shown.

distributed. Because of the different subject, predicate, and object subsets,
other values are included in the hash. As a result, this hashing strategy has
sent the data to many different devices. This strategy can improve query
speed and data security but also increase traffic. With increased DBMS
instances, data traffic is among the most expensive indexes.

Among the indices based on specific triple pattern parts, partitioning
by subject with a factor of about 10 is the best strategy in this benchmark.
The reason is that almost all triples have blank nodes at the subject position.
When these blank nodes are hashed, everything is stored locally on the device
that receives the insertion request. Therefore, partitioning by object is not
helpful for this benchmark data. Partitioning by the second or third column,
as defined by sort order, is also poor in combination with this data layout.
Partitioning by multiple columns achieves the highest level of data security
since most triples are stored on six different devices. However, it increases
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the data traffic considerably.

9.2.2 Read Queries

The benchmark in chapter 8 defines nine queries that read from the triple
store. The benchmark queries have been illustrated and explained in fig-
ures A.1 to A.10.

The randomized topology is used for all benchmarks because it is the most
realistic. In addition, the other standard simulator topologies are unsuitable
for the intended comparisons.

Figure 9.8 shows the results of the benchmarks. This figure layout is
entirely new. Therefore, the layout is explained first. All combinations of all
the options shown in the legend are executed to create this figure. Then the
total network traffic can be calculated. This number of bytes evaluates to
100% in the innermost circle. The remaining option with the most significant
impact is always chosen from the inside to the outside. This subset is the
new 100% for the further ring segment below this option. From the center of
the circles outward, the graph shows the decision trees designed to show the
essential options and how much influence they have compared to each other.
When the differences caused by the remaining options are close to zero, then
no further circle segments are shown. Consequently, only effective options
are shown, leading to the partial disk shapes in the graph.

The figure shows that the amount of data is almost always in the middle
of the circles. This option determines how many data samples each sensor
generates, which scales the data in the DBMS. Of course, in productive envi-
ronments, how much data is stored in a DBMS cannot be chosen. However,
this does indicate how the DBMS will behave with different-sized data sets.

During initialization, the sensors generate data sent to the DBMS and
stored there. Besides the obvious information that more sensor samples im-
plicate more traffic, it can be observed that the DBMS partitioning scheme
significantly changes the amount of data sent. When the keys from the hex-
astore index are used for data distribution, almost ten times more data must
be sent than with subject-hash partitioning. Additional hops refer to DBMS
instances involved in computations but not storing data. Even though these
DBMS instances are not involved in storage, they can help send multicast
messages with DC, which reduces network traffic by eliminating duplicates
during the data send process.

Q1 selects the entire data. Since no join operators and nothing else could
be optimized, the query only scales with the amount of data.

The result of Q2 does not depend on the number of sensor samples, so
this is the only query not affected by the amount of data. However, network
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traffic is strongly influenced by the partitioning used in the DBMS. If the
data is partitioned by subject, then all DBMS instances must participate in
the computation, whereas only a few are used with key-based partitioning.
Key-based partitioning benefits from additional DBMS instances because the
join operator can be evaluated earlier, reducing the amount of data sent over
the network. In the case of key-based partitioning, the topology-aware join
order generates less traffic than the topology-unaware optimizer. Together
with Q1, this confirms that the visualization strategy works as expected.

Q3 is the most extreme example, where key-based partitioning signifi-
cantly reduces the amount of data transferred. The small size of the data is
related to the small number of DBMS instances involved in the result com-
putation. While this reduces network traffic, it also increases the load on a
few devices, which can be another problem in an IoT environment. In Q4,
the routing-assisted join order can reduce network traffic in key-based parti-
tioning. Q5 to Q8 do not show anything conceptually new. Therefore they
are not shown.

We have added Q9 to the benchmark. The query joins most triples
together so that each sensor sample is converted into a single line. This
results in a much larger result set with many more star joins. It can be
seen that the routing-assisted join order reduces network traffic. Also, the
dynamic relocation of operators can be used here whenever the result of a
join is more significant than its inputs. The measurements show that this can
reduce network traffic by up to four percent in the larger data scale setups
and up to 23% when only a few triples are present in the store.

In summary, the topology strongly influences the amount of data sent.
However, the topology is predetermined and cannot be changed by software
in an actual application. The second most substantial influence is the par-
titioning scheme, which decides where the data is stored. This decision is
crucial when inserting and retrieving data, as it affects where operator graphs
must be sent and how far intermediate results must be transmitted. Like the
topology, once the partitioning scheme is chosen, it cannot be changed unless
heavy repartitioning is triggered, adding massive one-time network traffic.

Among the changeable things for each query is the routing-assisted opti-
mizer, which adjusts the join order to match the topology. Some modified join
orders are better, while others are worse than the static optimizer. There-
fore, it is not optimal to always use one algorithm or the other. Whether or
not the decision to use routing-assisted join order optimization is reasonable
depends on the similarity of the estimated intermediate results. The routing-
assisted join order will likely improve the result if the estimate is similar. In
contrast, significant differences in estimated cardinalities should be statically
optimized to reduce overall traffic and computation time.
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9.3 Summary
Modern DBMSs already minimize their network traffic to increase their exe-
cution speed. However, these DBMSs rarely consider the path that the data
travels. This path is critical because a larger piece of traffic traveling a short
path is better overall than a small piece of data traveling a very long path.
This work proposed combining DBMSs and routing protocols to solve this
problem. Furthermore, this strategy can be executed in a fully decentral-
ized manner with a relatively small overhead during the initialization of the
routing protocol.
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Order Optimization
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Chapter 10

Machine Learning

Join order optimization is a central and complex problem in modern DBMS
[73]. The problem of selecting a good join order becomes more complicated
when there are more inputs since the number of possible join trees is (2·n−2)!

(n−1)!
[52], where n denotes the number of inputs to be joined.

While in RDBMSs, the number of tables and, thus, the number of joins
in SQL queries is relatively small [101, 177], the number of joins in SPARQL
queries is typically much higher due to the simple concept of triples in RDF.
For example, reports of more than 50 join operators exist in a practical
application [59]. Other applications also require a high number of joins [121,
120]. Therefore, when the number of joins is high, join order optimization
becomes much more critical in SPARQL queries. Other studies report that
the join operator is one of SPARQL’s most commonly used operators [19].

Due to many possible join sequences, several strategies have been devel-
oped to deal with this problem.

For example, there are several variants of greedy algorithms [6, 94]. In
this category of algorithms, the goal is to select two relations as quickly as
possible that yield the fewest intermediate results. This procedure is then
repeated until all inputs have been merged. In practice, however, it may
sometimes be faster to compute a slightly larger intermediate result if a
faster merging algorithm can be used.

Another strategy is dynamic programming [6, 94]. This strategy assumes
that the optimal solution can be constructed from the optimal solutions of
the subproblems. Consequently, it is unnecessary to traverse the entire search
space of the join tree, but only a portion of it, without missing the desired
solution. Another issue in optimizing the join order is that not only the
execution of the query plan but also the optimization of the query takes time
[59]. This issue is also shown in figure 10.1.

Therefore, a balance must be found between the time required to find a
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Figure 10.1: The time needed to construct an optimized join tree with a given
number of inputs to join in the LUPOSDATE3000 DBMS. The optimization
of queries was repeated until at least 60 seconds were spent for each join size,
then the average time per query was calculated.

good plan and the time needed to execute the plan. For example, greedy
algorithms have a shorter planning time, but the execution is often longer.
Conversely, dynamic programming often suggests a better query plan but
takes more time, especially for many joins in SPARQL queries.

There are already approaches that use ML in optimizing join order [157,
107, 174, 47, 62, 71, 73]. The idea is that a machine-learning approach only
requires a little time to evaluate a given model. The time required is shifted
to a separate learning phase. A learned model can be reused for many queries
if the data does not change significantly. The advantages of a short optimiza-
tion time can be combined with a short execution time, provided that the
estimates are reasonable. However, these existing approaches only work for
SQL DBMSs [157, 107, 73]. The remaining approaches only estimate the
runtime of a query without optimizing the query itself [174, 47, 62, 71]. This
chapter presents how ML can optimize the join order in SPARQL queries.
The focus is on optimization for a large number of joins.
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10.1 Related Work

This section presents several existing machine-learning approaches related to
the proposed algorithm.

10.1.1 Machine Learning Approaches

There are various approaches for optimizing SQL queries in conjunction with
ML. However, research [174] has shown that such techniques cannot directly
translate into SPARQL environments.

The Reinforcement Learning Join Order Optimizer (ReJOIN) approach
[107] receives SQL queries and chooses the best join order from the available
subset. The ReJOIN enumerator is based on a reinforcement learning ap-
proach. The backbone of ReJOIN is the PPO algorithm to enumerate the
join trees. ReJOIN was trained on the Internet Movie Database (IMDb),
which contains 113 queries [132]. Of these, 103 queries were used for training
and 10 for analysis. This approach does not work for SPARQL because to
capture tree structure data, they encode each binary subtree as a row vector
of size n, where n is the total number of relations in the database. When SQL
tables are translated into predicates of SPARQL, this vector would contain
thousands of elements, mostly zero. They create a square matrix of size n
for each episode to capture critical information about join predicates. When
using large datasets, this would not fit into memory. When using smaller
datasets, this may fit into memory. However, this would be too large to be
useful as machine-learning model input.

Another work [157] uses reinforcement learning to choose a data storage
structure for the data automatically. Suitable indices are also calculated.
Finally, suitable join orders are specified for these indices.

Another article [170] explores join order selection by integrating both re-
inforcement learning and long short-term memory. Graph neural networks
are used to capture the structures of joined trees. In addition, this work
supports multi-alias table names and database schema modification. To en-
code join inputs, they use vectors of size n, where n is the number of tables.
Additionally, they use a quadratic matrix of size n to encode what should
be joined with each other. Similar to the ReJOIN approach, this fails for
SPARQL due to the massive size of this matrix.

Another research group proposed a Fully Observed Optimizer based on
the PPO Algorithm (FOOP) [73]. This work uses a data-adaptive learning
query optimizer to avoid the enumeration of join orders. Thus it is faster
than dynamic programming algorithms. Similar to the previous optimizers,
they also use bit vectors which consist of one bit for every column in every
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table. Additionally, their state is a matrix where one dimension equals such
a vector, and the other is scaled with the number of joins in a query. The
memory consumption is much better than in the other approaches, but still,
it scales with the number of predicates in SPARQL, which is too large.

Other approaches [174, 47, 62, 71] predict query performance directly,
detached from any data knowledge, by looking at the logs of previously exe-
cuted queries. In their approach, the authors consider execution time as an
optimization objective [71]. First, they encode the queries in terms of feature
vectors. Then they measure the distance of the new feature vector to known
feature vectors to predict the new execution time.

Some approaches [174, 62] focus only on predicting how long and how
many CPUs will be used without explicitly computing the join trees. For
this purpose, SPARQL queries are converted to feature vectors.

The proposed approach is unique to all other techniques because it out-
puts an executable join tree. Furthermore, during the generation of the join
tree, the required memory depends on the number of joins, not the number of
predicates. Finally, the proposed approach is optimized for SPARQL instead
of SQL.

10.2 The proposed Algorithm

The algorithm consists of several parts. First, the algorithm is presented
to generate the training and evaluation queries. Then, Reinforcement learn-
ing for Join Order Optimization in SPARQL (ReJOOSp) is presented and
explained.

10.2.1 Generating Queries

For training and evaluating the ML models, the SPARQL [142] queries have
to contain precisely a certain number of joins. The idea is that queries that
contain only join operators make it easier to interpret the result. Unfortu-
nately, actual queries are not helpful for ML because they are too similar.
After all, they change only a few constants or are too different because ac-
tual queries can contain other SPARQL elements besides joins. Also, getting
enough queries to use for training can be challenging. Finally, there are
queries with many joins, but applications that use so many joins use fewer
variations, so again, there need to be more queries.

The optimizer could adapt to these elements, but the outcome is harder
to interpret for comparison purposes. Existing benchmarks use a small set
of queries unsuitable for ML. Benchmark queries originating from templates
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Figure 10.2: Example graph to show how queries can be generated.

are not considered because ML would learn the explicit query structure such
that it can not adapt to different query templates. We experimented with
several strategies to generate useful SPARQL queries containing exactly n
triple patterns. We discovered that it is essential that the result set of each
query is not empty. The problem with the empty result set is that ML prefers
the join trees that quickly detect the empty result. In practice, almost every
SPARQL SELECT query will return a result [19].

The best strategy is to think of the triples as a directed graph, as shown
in figure 10.2. Then a random subgraph is chosen with n distinct edges
in this graph. For this example, let us pick the bold edges AB, BC, and
CD with their predicate A, B, and C, respectively. The algorithm is wholly
randomized, so the chosen subgraphs can have any shape, including paths,
star patterns, circles, and combinations. By definition, the generated query
structure will always follow the shapes in the data, which means that actual
queries could also use similar ones.

The target is that the model generalizes for arbitrary queries. Therefore
different shapes were not considered independently of each other. Besides
that, assuming that every predicate is used only once per subject, the join
order does not matter if multiple star joins are compared with each other.
When there are a few duplicate predicates, there might be slight differences
between execution plans, but they are also not significant. When only path
joins are considered, the best execution plan starts with one triple pattern
and repeatedly connects the next section of the path to it. No ML is needed
to find a good execution plan in this case. The only interesting queries
contain a mixture of different patterns because the join order is nontrivial.

After selecting the subgraph, it is converted into a SPARQL query by
replacing all node labels with variable names. The generated query for this
example can be seen in figure 10.3. By construction, this guarantees at least
one solution. Even though RDF stores allow for very flexible data structures,
there are repetitive structures, so queries generated using this approach will
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SELECT ∗ WHERE { ?A a ?B . ?B b ?C . ?C c ?D . }

Figure 10.3: Example generated query.

SELECT ∗ WHERE {
? a r t i c l e dc : c r e a t o r ? author .
? a r t i c l e swrc : j ou rna l ? j ou rna l .
? j ou rna l dc : t i t l e ? t i t l e .
? j ou rna l swrc : volume ?volume .

}

Figure 10.4: Example SPARQL query.

likely return multiple results. The same applies to the real world as well.
Some queries are intended to retrieve a few results like "Who published x?",
and others are expected to return many results like "What is published by
x?". The same applies to the generated queries. Some queries return one
result, some return up to 20 results, and some return a considerable amount.
However, since the query generation is randomized, this can only be guar-
anteed with a much more complex query generator, which would need more
time to prepare the model’s training.

10.2.2 The Machine Learning Algorithm

While the number of tables in SQL is small, the number of predicates in
SPARQL is very high. This observation makes a significant difference in
possible encoding for ML. In SQL, it is enough to say which tables should
be joined. On the other hand, in SPARQL, the triple patterns must be ex-
plicitly connected, dramatically increasing the input size for ML and making
it harder for the model to learn what is essential.

Figure 10.4 shows a simple example of a SPARQL query that retrieves
the authors of an article along with the title and volume of the journal in
which the article appears. A plausible approach would be first to connect
the triple patterns (4) and (5), assuming that there are more articles than
journals. Next, the triple patterns (2) and (3) could be joined, allowing a
second independent star-shaped join. Finally, both intermediate results must
be joined.

The Stable Baselines 3 [75] framework is used because there are many
more open-source contributors than in other frameworks. Especially there is
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Figure 10.5: Reinforcement learning.

a community addon [77] extending the built-in PPO model with the possi-
bility of masking. Applying masks to the available actions is crucial for the
model to produce good join trees. We use the default MultiLayer Percep-
tron (MLP) policy with two layers and 64 nodes, also used in other join order
optimizing articles [91]. Using more layers increases the number of learning
steps required since the model must first learn how to use these hidden lay-
ers. We need to keep the training phase short. Otherwise, the changes in the
dataset will immediately render the newly trained model useless.

We want to treat the ML model as a black box. This simplification allows
us to focus on the encoding of the query and the calculation of a reward.
Additionally, this simplifies many different experiments. A simplified view of
the ML framework is shown in figure 10.5. The model’s actions modify the
environment and the join inputs. ReJOOSp exposes a reward to the model
when the join order is complete.
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The internal state of the essential variables is shown in figure 10.6 to
explain ReJOOSp in detail. This figure should give an overview of how the
join tree is constructed. Next, the details of ReJOOSp are explained in the
following. Each row in the figure shows a time step.

The essential step in the initialization is the definition of the observation
matrix. This matrix is created from a transformation of the SPARQL query.
First, the literals of the SPARQL query are replaced with numbers from a
dictionary. This dictionary assigns a unique positive number to each literal,
starting at 1. Since the same dictionary is used for every query, the model
can learn the cardinalities of the query constants. Next, another dictionary is
used for the variables for each query. Finally, the variables are assigned neg-
ative numbers to distinguish between literals and variables, starting with −2.
Because the variables are always renamed to a sequence of negative numbers,
the model can also learn variables’ patterns in the queries to calculate the
best join order. As shown in figure 10.7, the resulting number sequence can
be obtained by applying the above transformations to the query.

This list is transformed into the diagonal of a square matrix to obtain
the observation matrix. This matrix is necessary for the neural network to
remember which inputs have already been connected. The remaining cells
of this square matrix are filled with (−1,−1,−1). The matrix size is chosen
to represent the largest desired join. This choice means the matrix size is
quadratic in the number of joins. Even if this seems to be a large matrix, it
is still tiny compared to approaches from RDBMSs, where the matrix size is
quadratic to the number of tables. The unused part of the matrix is filled
with (0, 0, 0). The purpose of the matrix is that each join is mapped to a
sequence of numbers of the same size. The DBMS itself does not need this
observation matrix.

The possible actions are defined as a list of pairs of rows in the matrix
that could be joined. To further reduce the ML search space, the difference
between the left and right input of the join operator is ignored. For the
example in figure 10.4 with four triple patterns, this list of possible actions
can be seen in the top row of figure 10.6 next to the observation matrix. In
figure 10.6, the invalid actions are marked in gray.

[(−2, 1,−3) , (−2, 2,−4) , (−4, 3,−5) , (−4, 4,−6)]

Figure 10.7: SPARQL query of figure 10.4 transformed into a number se-
quence.
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The ML model now receives the matrix and the action list and selects a
new action until only one action is possible. Then this last action is applied,
and the join tree is complete. Finally, for each selected action, the step
function is executed.

The step function first calculates which two inputs are to be joined. Then,
the action ID is looked up in the action list to decide which inputs were
chosen.

Then the observation matrix is updated. Therefore, the values from the
second join input matrix line are copied to the first join input matrix line.
All fields with values of (−1,−1,−1) are skipped so that existing data is
not overwritten. Finally, the entire row is set to (0, 0, 0) from the right join
input.

Then the currently selected join step is appended to the list of join steps.
This list of join steps is the target of ReJOOSp, as it is the only variable
passed to the DBMS at the end. The DBMS can use this list to build the
join tree shown in the right column of figure 10.6.

This phase is done when the entire matrix contains only the value (0, 0, 0)
except for the first row. The matrix always ends up in this state, regardless
of the chosen join order.

Once the join tree has been computed, a reward must be returned to
the model. The reward is intended to reflect the quality of the join tree
compared to other previously run join trees. Calculating the reward for joins
with up to 5 inputs is easy as it is possible to traverse all the join trees and
keep statistics on the good and the bad ones. However, since the model is
intended to work with more significant joins, such as 20 join inputs, this
approach will only work as it can collect statistics on all available join trees.
Therefore, the default optimizer is used first to initialize the statistics for each
SPARQL query. These statistics only map the query and the total number
of intermediate results. These statistics do not contain specific join orders.

Furthermore, whenever a new reward during training is calculated, these
statistics are extended with the intermediate results produced by the current
join plan. All these statistics about queries and their generated intermediate
result counts are stored in a separate SQL DBMS. These stats will contin-
ually improve as the model is trained. After the training, these statistics
are removed since they consume much storage space. When the model needs
to be retrained, these statistics would be outdated, so there is no reason to
keep them after the training. The reward calculation function can be seen
in figure 10.8. The variables vmax and vmin refer to the min and max of the
intermediate results for this specific query. In contrast, vcurrent refers to the
intermediate results for the current join plan. Even if the actual best and
worst case is unknown, this estimation is good enough to train the model.
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r =


0 if vmax = vmin

−10 if vcurrent = null

min
(
10,− log

(
vcurrent−vmin

vmax−vmin

))
otherwise

Figure 10.8: The reward function uses vmin and vmax from the statistics,
which refer to the currently known best and worst-case numbers of interme-
diate results. vcurrent may receive a null value when it runs into a timeout.
This null value is not considered when calculating the known worst case.

A logarithmic reward function is used along with a minimum to compen-
sate for the potentially high variation between different join trees. Generally,
good join trees should be rewarded, while those with very high intermediate
result counters or timeouts are punished.

10.3 Evaluation

In this chapter, the quality of the ML optimizer is evaluated.

10.3.1 Environment

The synthetic SP2B dataset [139] generator is used to produce an approxi-
mately 220 triples dataset. This amount of triples is chosen because the data
is large enough to show differences between join orders. At the same time,
the dataset is small enough, so poor join orders still have a chance of being
calculated completely. Additionally, the WordNet [155] real world dataset is
used, which contains 2637168 triples. The queries are generated, as explained
in section 10.2.1. All the queries contain only basic triple patterns, which
should be joined together.

The training phase took between 1 and 20 hours, depending on the num-
ber of triple patterns to join. At the beginning of the training, the execution
time is dominated by the timeout for a single query because the more joins
are to be optimized, the higher the probability of choosing a terrible join
order. When dealing with many joins, bad decisions during the join order
optimization yield execution plans that never terminate. Every learning ap-
proach, which needs to execute some sample queries during training, will
suffer from this same problem. Therefore, this is considered a short train-
ing time. The triple store size also influences the training time requirement,
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mainly because poor join orders become very bad due to increased data for
every join iterator.

First, the time needed to optimize the join tree is compared in figure 10.1.
The speed of the optimizers only depends on the number of joins in a sin-
gle query because all optimizers have the same heuristics available. The
greedy optimizer is the fastest one, but the evaluation in the following sec-
tions will show that its generated join trees are bad. On the other hand,
the dynamic programming optimizer needs much more time to optimize join
trees. At approximately 11 join inputs, the ML-based optimizer is faster than
the dynamic programming optimizer during the generation of the join tree.
ReJOOSp is, therefore, faster during the optimization phase. The following
sections will focus on the quality of the generated join orders.

10.3.2 Evaluating Different Numbers of Triple Patterns

The number of joins used during training is shown on the x-axis in the right
half of figure 10.9. The y-axis shows the number of joins when evaluating
the models. In the left part of figure 10.9, other DBMS’s explain functions
are used to compare their optimization capabilities with ML. GraphDB and
Apache Jena only produce deep left join trees. The Apache Jena DBMS pro-
duces the worst query plans in the context of synthetic data, while RDF3X
produces the worst results in actual data, as shown in figure 10.10. Despite
this, the RDF3X DBMS uses bushy join trees, which could allow paral-
lel processing of independent subtrees. However, this is insufficient in the
WordNet dataset, as the join orders generated are terrible compared to all
other optimizers. Next, two different join order optimizers are implemented
in LUPOSDATE3000. First, a greedy join order optimizer always chooses the
two entries with the smallest estimated result. Second, in LUPOSDATE3000,
a join order optimizer for dynamic programming is implemented. Here the
quality of the join order is better, but its performance drops drastically with
a higher number of joins which can be seen in figure 10.1.
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None of the deterministic synthetic data approaches can produce repro-
ducible good join orders for many triple patterns. None of the join order
optimizers tested on actual data achieved good results for more than eight
joins. Each trained model can optimize joins with up to six entries relatively
well. On the right side of the diagram, different ML optimizers trained with
varying numbers of join inputs are shown. As expected, these trained mod-
els provide plausible results over a broader range of inputs when used on
synthetic data sets. In the context of actual data, the mixed models show
no improvement over other models. However, these results are inferior to
specially trained models in both data sets, meaning the user is better off
training multiple models for the desired purpose. Next, the figure shows
that the models perform better for the number of join inputs they used for
training. While this result is obvious, each model can also optimize join trees
of comparable size from n − 3 to n + 3 very well. In the case of synthetic
data, this can be seen in the graph. The measurements show a similar result
with actual data, which is much less noticeable in the graphic because the
training effect is weak overall.

10.3.3 Evaluating Different Numbers of Training Steps

In figure 10.11, multiple models for queries with different numbers of joins are
trained. All models were tested with queries containing 16 triple patterns.
The y-axis shows how long each model was trained. This figure should high-
light how long the training must last to achieve good results. The results
of some join order optimizers without ML are shown on the left. We show
that ML on the synthetic data set produces better results than traditional
query optimizers. However, the quality of the ML-generated join orders is
slightly worse for the real world dataset. In addition, figure 10.12 shows that
no optimizer can reliably generate good join orders. The synthetic data set
shows that the models must be trained in at least 217 steps to achieve good
results often. The quality distribution for the WordNet dataset is similar,
but the overall quality is lower.
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Furthermore, one can see that only the models trained with a similar
number of joins can produce good join trees. In the diagrams on the right,
models with mixed numbers of triples are trained. These models should be
usable for a broader range of queries. However, the results show that these
models for synthetic data can only be used for larger joins after a longer
training time. With real world data, these mixed models do not work at all.
It is better to explicitly train a new model for each desired join tree size.

10.3.4 Evaluating what the Model has Learned

Synthetic datasets often receive good join orders, so it is unlikely that the
quality of the join order is purely random. We looked closely at what join
order is used to prevent the model from learning one join order per number
of joins. For 3 and 4 triple patterns, only half of the possible join orders
are used. The remaining join orders swap the left and right operands while
keeping the same structure. When five or more triple patterns should be
joined, no join tree is used in more than 1.5 % of the queries. Among the
join orders for 20 input triples, no join order is used in more than 0.03 %.
From this, it can be concluded that either the model learns the cardinality
of the predicate or learns to recognize patterns in the query structure and
avoid Cartesian products.

10.4 Evaluating Machine Learning on Network
Traffic

In the previous section, ML is applied to the number of intermediate results.
This strategy is similar to state-of-the-art join order optimizers. This section
improves models by training them on the network traffic from specific queries
instead of the intermediate results. SIMORA is used to simulate the DBMS
in a reproducible randomized topology. This topology was chosen because it
is the most realistic one.

Additionally, the simulator allows the application of all the previous chap-
ters’ strategies simultaneously to investigate the best possible variations of
each strategy. The distributed parking scenario benchmark generates 9923
triples to obtain and compare plausible network loads. Since the insertion is
independent of the join order, the data transmission to store the data is not
included. Due to the simulation component, the execution is much slower,
so only joins with up to six triple patterns can be analyzed. The smaller
number of triple patterns allows as a side effect for a much shorter train-
ing phase. During all measurements, the DBMS distributed the data based
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on subject hashes because this allows many star-shaped join operators to
be executed locally. Figure 10.13 shows the reward received by the model
after x iterations. After about 8192 steps, each model frequently receives a
high reward. Frequent high rewards indicate that the model is done with
the training phase. Similar to the previous section, the training and test
phase queries are disjoint. The evaluation of the evaluation-query set con-
firms that the quality of the join orders does not significantly improve with
longer training.
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Figure 10.13: This figure shows the reward for the model after x training
steps. The displayed graphs use an average running function reset after
logarithmic increasing distances. The graph names of the models contain
the number of triple patterns used during training.

Having at most six triple patterns has the advantage of executing all pos-
sible join orders and storing their intermediate results and network traffic.
A timeout of one minute is applied. Additionally, all join orders with Carte-
sian products are immediately aborted. Whenever a query fails this way,
twice the worst-case number of intermediate results and network traffic is
assumed during reward calculation. This complete statistical data is used to
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evaluate the quality of the join orders calculated by the different algorithms.
First, the results for the evaluation based on intermediate results are shown
in figure 10.14.
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LUPOSDATE3000 dp

LUPOSDATE3000 greedy
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model trained on 5-6
model trained on 6-6

evaluated on 6evaluated on 5evaluated on 4evaluated on 3

Figure 10.14: All optimizers were evaluated based on the produced intermedi-
ate results. The X-axis shows which evaluation on how many triple patterns
was performed. I means Intermediate-results, and T means network-Traffic.
The Y-Axis shows the average factor between the best join order and the
chosen join order of a given join order optimizer. A factor of 1 is achieved if
the optimizer always chooses the best case. The models are trained on joins
with the number of triple patterns specified in their labels.

The optimizers from Jena and GraphDB consider only left deep join
orders. However, if only three triple patterns exist, this still matches all
possibilities Nevertheless, these two optimizers always produce about 100
times more intermediates than necessary.

The optimizer of RDF3X achieves much better results. It can always
select the best case for three triple pattern queries and frequently for five
triple patterns. However, the four and six triple pattern queries achieve bad
results like the previous optimizers.

LUPOSDATE3000 provides two optimizers, dynamic programming (dp in
the figure) and greedy. The dynamic programming optimizer can optionally
cluster the triple patterns by variable names, which reduces the search space,
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and increases the optimization speed. In the figure, the optimizer marked
with nc is not using clustering by variable names. In the context of three
triple patterns, all LUPOSDATE3000 built-in optimizers always choose the
best join order. However, with more triple patterns, the optimizer achieves
a similar quality as the other optimizers without ML.

The ML models, when trained on network traffic, almost always choose
the optimal join order. However, when the reward function during training
is based on intermediate results, the optimizer creates unnecessary work.

1

1.1
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Figure 10.15: All optimizers were evaluated based on the network traffic. The
X-axis shows which evaluation on how many triple patterns was performed. I
means Intermediate-results, and T means network-Traffic. The Y-Axis shows
the average factor between the best join order and the chosen join order of a
given join order optimizer. A factor of 1 is achieved if the optimizer always
chooses the best case. The models are trained on joins with the number of
triple patterns specified in their labels.

Next, figure 10.15 shows the results for the same queries, but this time
the ranking is based on network traffic. The overhead factor is generally
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much lower than the previous figure showing the intermediate results. This
reduction is achieved by the dynamic operator relocation, which first executes
the join. Then the bytes of the input are compared with those of the output.
Finally, the option with fewer bytes is chosen and sent over the network.

Consequently, the only overhead is the operator graph size, which is sent
twice for every device on the path. Since only the network traffic counts
in this comparison, and the smaller number is always chosen, this is no
advantage for any specific optimizer. Without this optimization, the bad
join orders would be much worse than they are now. It is also possible
that the ranking between good and bad join orders changes by disabling this
feature. However, in that case, the absolute number of bytes sent through the
network will increase, so those join orders can not be called optimal anymore.

The interesting part of this figure is that the trained model almost always
achieves less network traffic than the state-of-the-art static optimizers.

When the models are trained on network traffic, their result is almost
optimal. They are slightly better than those models which were trained on
intermediate results. The best possible results were achieved with the model,
which trained on all possible mixed triple pattern sizes. Consequently, the
figure also shows that overfitting occurs if the models are trained on small
query sets, slightly decreasing the quality.

10.5 Summary
This chapter first presented different strategies for systematically generating
queries for training ML models. Then, a new ML approach was presented
to optimize join trees in a SPARQL DBMS. After about 1 million training
steps, the learned models lead to excellent join sequences in about 80% of the
cases for synthetic data. On the other hand, no optimizer can produce good
join sequences for real world data in more than 50 % of the queries. Unlike
traditional join tree optimizers, ML allows these join trees to be computed
in linear time. While most trained models in the literature learn execution
time directly, this approach focuses on the number of intermediate results.
Since the number of intermediate results is closely related to the execution
time, the execution time is also good. Moreover, the generated query plans
are very memory friendly. Finally, the evaluation shows that models trained
on network data can increase the quality of the results even further.
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Chapter 11

Conclusion

This dissertation focuses on the quality of the query plan, which in turn
depends on the underlying data organization. Therefore several data and
query organization strategies in a SIoT environment have been studied.

11.1 Summary of Contributions

Overall, the contributions of this thesis can be summarized as follows.
Multiple partitioning schemes were compared with each other. Also,

multiple partitioning schemes were applied at the same time, which increased
the replication level of the DBMS. Increased replications, and thus options
for the join order optimizer, can effectively increase the query performance.
However, replications require additional storage space. The analysis also
shows that not all partitioning schemes are accessed with the same frequency,
so less often used indices can be omitted, saving some storage space. The
evaluation shows that too many partitions can also decrease the performance
because the overhead for launching threads and merging the results becomes
slower than just calculating the result. After the experiments, a function
to estimate the optimal number of partitions is proposed. This function
considers the amount of data and the number and selectivity of the joins in
a query.

DBMS with access to the topology information of the routing
protocol. With more information about the environment, a more sophisti-
cated execution plan can be created. After the plan is generated, the topol-
ogy information can be used again to distribute the operator graph in the
network. Here it becomes possible to place the operators on the natural
path of the data, which reduces the overall distance the data needs to travel.
However, this topology information is usually unavailable. Therefore this
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approach currently works only in the simulator SIMORA.
ML and join order optimization ML algorithms feature a constant

evaluation time of a given model, drastically improving the optimization
phase’s speed. However, a new training phase is introduced, which requires
a lot of upfront computations. Also, the output quality is less predictable
as ML naturally introduces some randomness. State-of-the-art join order
optimizers also generate a lot of not optimal join orders. Nevertheless, in
combination with topology information, the ML models can produce more
efficient join trees than state-of-the-art dynamic programming algorithms
since those do not consider network traffic in their cost function.

11.2 Future Research Directions

LUPOSDATE3000 implements only hash-based data distribution. Neverthe-
less, there already exist other clustering-based distribution strategies. Those
strategies can be expected to send more data during the clustering phase
because the DBMS needs to decide what to store where. Later during the
data retrieval, however, the network traffic might be reduced.

This work analyses heterogeneous network topologies. It also distin-
guishes between DBMS instances with and without physical data storage.
However, heterogeneous hardware properties of the other components, e.g.,
CPU, GPU, RAM, and storage space, are not considered. Considering com-
pletely heterogeneous hardware in one DBMS and how to utilize it efficiently
might be interesting.

LUPOSDATE3000 only implements the features necessary to perform
the evaluations mentioned in this dissertation. However, other SPARQL
features, e.g., inference, still need to be implemented. Furthermore, to apply
inference, the rules must be distributed - and updated - yielding additional
research questions.

This work only considers an SW DBMS. However, graph, relational, mul-
timodel, and other DBMS types are not considered. In those DBMS, similar
data management questions will occur. Due to the different models, each
DBMS can ensure different additional properties, e.g., a relational DBMS
has fixed data types per column. Those additional properties might further
prune irrelevant intermediate results to reduce network traffic and CPU load.
Right now, the SW data is stored in a triple store. Another possible research
topic could be automatically inferring relational data schemes and storing
those triples in automatically inferred relational tables. Those tables could
reduce the number of joins in the SW queries. Additionally, by placing multi-
ple triples in a relational table, the common subject could be eliminated, such
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that the required storage space might be reduced. Due to the more complex
data structure, however, the compression might need to be improved, e.g.,
by some heuristics about how much data could be stored together or not.

Currently, the DBMS considers one query at a time and optimizes each
query independently. However, if there are multiple queries, some might
share some intermediate results, which could be reused. In addition, con-
tinuous queries might introduce another type of query, which could share or
reuse some intermediate results.

The simulator SIMORA could be enhanced to use multiple threads at
once. This enhancement can then be used to increase the performance and,
thus, the possible amount of data in the DBMS during simulation. Higher
amounts of available data might yield different data streams during process-
ing, which might be optimized differently.

LUPOSDATE3000 applies ML in order to optimize the join order. How-
ever, the quantum computing hardware is getting cheaper, smaller, and more
efficient, so they might also be used for join ordering in SW DBMS.
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A Benchmark Scenario SPARQL
queries

This section shows the SPARQL queries for the benchmark defined in chap-
ter 8. The interesting aspects of each of these queries are also explained
there.

PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
INSERT DATA {

parking : Ava i l ab l ePark ingS lo t s a sosa : Fea tureOf In t e r e s t .
parking : Ava i l ab l ePark ingS lo t s ssn : hasProperty _: Park ingS lotLocat ion .
parking : CarMovement a ssn : St imulus .
parking : CarMovement ssn : isProxyFor _: Park ingS lotLocat ion .
parking : SensorOnEachSlot a sosa : Procedure .
_: Park ingS lotLocat ion a sosa : ObservableProperty .
_: Park ingS lotLocat ion parking : area \"${ area }\"^^xsd : i n t e g e r .
_: Park ingS lotLocat ion parking : spotInArea \"${ spotInArea }\"^^xsd : i n t e g e r .
_: Park ingS lotLocat ion sosa : isObservedBy _: Sensor .
_: Park ingS lotLocat ion ssn : i sPropertyOf parking : Ava i l ab l ePark ingS lo t s .
_: Sensor a sosa : Sensor .
_: Sensor parking : sensorID \"${ sensorID }\"^^xsd : i n t e g e r .
_: Sensor sosa : obse rves _: Park ingS lotLocat ion .
_: Sensor ssn : d e t e c t s parking : CarMovement .
_: Sensor ssn : implements parking : SensorOnEachSlot .

_: Sensor sosa : madeObservation _: Observation .
_: Observation a sosa : Observation .
_: Observation sosa : hasFeatureOf Inte r e s t parking : Ava i l ab l ePark ingS lo t s .
_: Observation sosa : hasSimpleResult \"${ isOccupied }\"^^xsd : boolean .
_: Observation sosa : madeBySensor _: Sensor .
_: Observation sosa : observedProperty _: Park ingS lotLocat ion .
_: Observation sosa : phenomenonTime \"${sampleTime}\"^^xsd : dateTime .
_: Observation sosa : resu l tTime \"${sampleTime}\"^^xsd : dateTime .
_: Observation sosa : usedProcedure parking : SensorOnEachSlot .
_: Observation ssn : wasOriginatedBy parking : CarMovement .

}

Figure A.1: SPARQL Benchmark Query Insert. The variables enclosed in
${} highlight which values are changed for each sensor sample.
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SELECT ? s ?p ?o WHERE {
? s ?p ?o .

}

Figure A.2: SPARQL Benchmark Q1. Select everything.

PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT DISTINCT ? area WHERE {

? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area ? area .

}

Figure A.3: SPARQL Benchmark Q2. Retrieve a list of all parking areas.

PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT (COUNT(DISTINCT ? spotInArea ) AS ? count ) WHERE {

? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area 9 .
? Park ingS lotLocat ion parking : spotInArea ? spotInArea .

}

Figure A.4: SPARQL Benchmark Q3. Count the number of parking spots
in the parking area 9.

PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT (COUNT(? Observation ) AS ? count ) WHERE {

? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area 6 .
? Park ingS lotLocat ion parking : spotInArea 1 .
? Observation a sosa : Observation .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .

}

Figure A.5: SPARQL Benchmark Q4. Count the number of samples from a
specific parking spot.
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PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT (MAX(? resu ltTime ) AS ? l a t e s tDat e ) WHERE {

? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area 7 .
? Park ingS lotLocat ion parking : spotInArea 1 .
? Observation a sosa : Observation .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : resu l tTime ? resu ltTime .

}

Figure A.6: SPARQL Benchmark Q5. Find out when the last sample from
a specific sensor was sent.

PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX parking : <https : // parking#>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? spotInArea ? isOccupied ? lastObservedAt WHERE {

? Observation sosa : resu l tTime ? lastObservedAt .
? Observation sosa : hasSimpleResult ? i sOccupied .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Park ingS lotLocat ion parking : spotInArea ? spotInArea .
{

SELECT(MAX(? resu ltTime ) AS ? lastObservedAt ) ? Park ingS lotLocat ion WHERE {
? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area 9 .
? Observation a sosa : Observation .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : resu l tTime ? resu ltTime .

}
GROUP BY ? Park ingS lotLocat ion

}
}

Figure A.7: SPARQL Benchmark Q6. Ask for the state of every parking
spot in an area and the timestamp of its last measurement.
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PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ? area ? spotInArea ? isOccupied ? lastObservedAt WHERE {

? Park ingS lotLocat ion parking : area ? area .
? Park ingS lotLocat ion parking : spotInArea ? spotInArea .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : resu l tTime ? lastObservedAt .
? Observation sosa : hasSimpleResult ? i sOccupied .
{

SELECT(MAX(? resu ltTime ) AS ? lastObservedAt ) ? Park ingS lotLocat ion WHERE {
? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area ? area .
? Observation a sosa : Observation .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : resu l tTime ? resu ltTime .
FILTER (? area IN (9 , 8 , 2) )

}
GROUP BY ? Park ingS lotLocat ion

}
}

Figure A.8: SPARQL Benchmark Q7. Ask for the state of every parking
spot in multiple areas and the timestamp of their last measurements.

PREFIX parking : <https : // parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT (COUNT(? Park ingS lotLocat ion ) AS ? count ) WHERE {

? Park ingS lotLocat ion parking : spotInArea ? spotInArea .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : resu l tTime ? lastObservedAt .
? Observation sosa : hasSimpleResult " f a l s e "^^xsd : boolean .
{

SELECT(MAX(? resu ltTime ) AS ? lastObservedAt ) ? Park ingS lotLocat ion WHERE {
? Park ingS lotLocat ion a sosa : ObservableProperty .
? Park ingS lotLocat ion parking : area 9 .
? Observation a sosa : Observation .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : resu l tTime ? resu ltTime .

}
GROUP BY ? Park ingS lotLocat ion

}
}

Figure A.9: SPARQL Benchmark Q8. Count the number of free parking
spots in a specific area.
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PREFIX parking : <https : // github . com/ luposdate3000 / parking#>
PREFIX sosa : <http ://www.w3 . org /ns/ sosa/>
PREFIX ssn : <http ://www.w3 . org /ns/ ssn/>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
SELECT ∗ WHERE {

? Observation sosa : hasSimpleResult ? i sOccupied .
? Observation sosa : madeBySensor ? Sensor .
? Observation sosa : observedProperty ? Park ingS lotLocat ion .
? Observation sosa : phenomenonTime ?sampleTime .
? Observation sosa : resu l tTime ?sampleTime2 .
? Sensor sosa : madeObservation ? Observation .
? Park ingS lotLocat ion parking : area ? area .
? Park ingS lotLocat ion parking : spotInArea ? spotInArea .
? Park ingS lotLocat ion sosa : isObservedBy ? Sensor .
? Sensor parking : sensorID ? sensorID .
? Sensor sosa : obse rve s ? Park ingS lotLocat ion .

}

Figure A.10: SPARQL Benchmark Q9. Join everything together to showcase
many joins.
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