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Abstract

To understand the evolutionary relationships between organisms, they are typically
presented in a tree-like structure, a phylogeny. In genomic studies, phylogenies are
traditionally reconstructed from a multiple sequence alignment. While most accurate,
this approach is also computationally demanding. The problem is that in order to identify
shared homologies, the sequences are usually first aligned nucleotide by nucleotide.
This alignment step has become a bottleneck in the practice of molecular biology, where
thousands of whole bacterial genomes, each a few megabases long, are sequenced and
then need to be summarized as phylogenies when analyzing pathogen outbreaks.

One alternative are methods that estimate evolutionary distances directly from un-
aligned genomes. These pairwise distances can then be used to cluster sequences in a
tree. Most of these alignment-free methods heavily rely on exact matching techniques for
words of a fixed size for fast sequence comparison. However, they usually do not reflect
the substitution rate, the most widely used measure of evolutionary distance.

Instead of using words of fixed size, Haubold et al. (2015) used matches of maximal
length as anchors for approximate pairwise alignments. These anchor alignments then can
be used to estimate the substitution rate. A first implementation, andi, quickly estimates
accurate pairwise distances from hundreds of bacterial genomes on standard hardware.
However, the thousands of genomes currently being collected during outbreaks again
slow the program down.
Andi uses a suffix array as a full-text index for each of the input sequences. Since con-

structing and searching in a suffix array is slow, the aim of this thesis was to investigate,
whether it might be possible to just compute a single suffix array for one of the input
sequences and pile all remaining sequences onto that reference. This should produce an
approximate multiple sequence alignment, from which pairwise mismatches could be
counted.

This approach is implemented in the program phylonium (Klötzl and Haubold 2019). It
is available via package managers or as open source at

github.com/evolbioinf/phylonium .

Phylonium is much faster than andi while losing little of its predecessor’s accuracy. In this
thesis I explain the background to phylonium, describe its implementation, and apply
it to simulated and real data. In the application section I compare phylonium to its best
competitors and show that it holds a reasonable position in the classical trade-off between
speed and accuracy.
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Kurzfassung

Um die evolutionären Beziehungen von Organismen zu verstehen, werden sie üblicher-
weise in einer baumartigen Struktur, einer Phylogenie, dargestellt. In Genomstudien
werden Phylogenien klassischerweise mit Hilfe eines multiplen Sequenzalignments re-
konstruiert. Dieser Ansatz ist sehr genau, aber auch rechnerisch anspruchsvoll, da die
Sequenzen erst Nukleotid für Nukleotid aligniert werden, um gemeinsame Homologien
zu finden. Dieser Alignierungsschritt ist zu einem Hindernis in der Molekularbiologie
geworden. Dort werden inzwischen bei Ausbrüchen von pathogenen Bakterien tausende
Genome sequenziert und zu Phylogenien zusammengefasst.

Mittlerweile gibt es Methoden, die evolutionäre Distanzen direkt von unalignierten
Sequenzen schätzen können. Mittels dieser Distanzen werden die Sequenzen dann zu
einer Phylogenie zusammengefasst. Dazu verwenden alignment-freie Methoden vielfach
Vergleiche basierend auf Wörtern einer festen Länge. Dadurch sind sie zwar schnell,
entsprechen aber nicht der Substitutionsrate, welche das übliche Maß einer evolutionären
Distanz ist.

Anstelle von Wörtern fester Länge verwenden Haubold u. a. (2015) Matches maxima-
ler Länge als Anker eines angenäherten, paarweisen Alignments. Dank dieser Anker-
alignments kann dann die Substitutionsrate geschätzt werden. Eine erste Implementation
names Andi, kann selbst auf Standardhardware die paarweisen Distanzen von hunderten
Bakteriengenomen schnell und genau schätzen. Die Tausenden von Genomen jedoch,
welche inzwischen bei Ausbrüchen gesammelt werden, stellen das Programm vor große
Herausforderungen.

Für jede Eingabesequenz baut Andi einen Suffix-Array als Index. Weil das Erstellen und
Suchen in einem Suffix-Array jedoch sehr langsam ist, untersuche ich in dieser Arbeit,
ob ein einziger Index ausreicht. Dazu wird nur für eine Referenzsequenz der Index
erstellt und alle anderen Sequenzen darauf gestapelt. Dies ergibt ein angenähertes mul-
tiples Sequenzalignment, welches dann zum Schätzen der paarweisen Substitutionsraten
verwendet wird.

Dieser neue Ansatz ist in dem Programm Phylonium implementiert (Klötzl und Hau-
bold 2019). Es ist via Paketmanager oder als freie Software verfügbar.

github.com/evolbioinf/phylonium

Phylonium ist schneller als Andi, ohne allzu viel Genauigkeit zu verlieren. In dieser Arbeit
erläutere ich den Hintergrund zu Phylonium, beschreibe die Implementierung und wende
es auf simulierte und reale Daten an. Ich vergleiche es mit Konkurrenzprogrammen und
zeige, dass es einen sinnvollen Kompromiss zwischen Genauigkeit und Laufzeit darstellt.
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1 Introduction

It is curious because you think, if you and another person,
another creature, are kind of in the same world, you must
be feeling roughly similar. But one of the things you begin
to realise when you look at different animals is that
because of their evolutionary history, and because of the
forms they have developed into, and the ways they have
developed to perceiving the world, they may be
inhabiting the same world, but actually a completely
different universe.

Douglas Adams

A straight line may be the shortest distance between two
points, but it is by no means the most interesting.

The Doctor

1.1 Sequence Comparison

Organisms are best understood by comparing them to each other. In any such comparison,
like needs to be compared with like, the human hand with that of the chimpanzee, with
the wing of the bat, or the fin of the whale. Using such morphological comparisons,
Haeckel (1897) drew one of the first phylogenies of humans depicted in Figure 1.1. It
shows humans on top surrounded by the apes gorilla, chimpanzee, orangutan, and
gibbon. At the bottom are the primitive forms of life like the single-celled amoebas.

However, with the advent of molecular biology in the 1950s, residues in DNA, RNA,
and protein sequencing increasingly replaced the morphological traits studied by Haeckel
and his successors. Zuckerkandl and Pauling (1965) were among the first to realize that
the evolutionary history of an organism is written in its molecular sequences, which can
hence be used as a molecular clock. Today, phylogeny reconstruction from nucleotide
sequences is widely applied in biology.

Sequencing

Whole genome sequencing was part of DNA sequencing technology right from its
inception. When Sanger et al. (1977) published their di-deoxy sequencing method, now
simply called Sanger sequencing, they demonstrated its potential by presenting the
complete 5375 bp sequence of phage ΦX174, a virus that infects the bacterium Escherichia
coli. Sanger sequencing yields a few hundred nucleotides per reaction, a fraction of

1



1 Introduction

Figure 1.1: The Pedigree of Man as by Haeckel (1897).
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1.1 Sequence Comparison
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Figure 1.2: The cost of sequencing a million nucleotides (Wetterstrand 2020). The straight
line represents an exponential decrease.

the genome size, even if this comprises only the 5.4 kb of phage ΦX174. Later, Sanger
et al. (1982) realized that it is not necessary to sequence from one end of the DNA
molecule straight to the other. Instead, a large number of copies of the target genome are
smashed into random fragments, for example by sonication, which can then be sequenced
individually, in parallel. This shotgun approach was first applied to the 48.5 kb genome
of phage λ. The random sequences generated by shotgun sequencing are called reads
and need to be assembled, which created the assembly problem (Rice and Green 2019).
Assembly of Sanger sequenced reads remained the technology of choice for the next
twenty years, which saw the sequencing of ever longer genomes.

In 1995, the era of phage genome sequencing turned into bacterial genome sequencing
when the 1.8 Mb sequence of the human pathogen Haemophilus influenzae was published
(Fleischmann et al. 1995; Haubold and Wiehe 2006b, p. 35). A year later the first eukaryote
was sequenced, the 12 Mb yeast genome (Goffeau et al. 1996). 1998 came the first multicel-
lular organism, the nematode and model organism Caenorhabditis elegans (The C. elegans
Sequencing Consortium 1998). Two years later the first plant genome was sequenced, the
125 Mb of Arabidopsis thaliana, a model plant with a particularly compact genome (The
Arabidopsis Genome Initiative 2000). The same year saw the sequencing of the fruit fly
Drosophila melanogaster (120 Mb), which was the first metazoan genome sequenced by
whole genome shotgun sequencing (Adams et al. 2000). A year later, the 3.1 Gb of the
human genome were published (International Human Genome Sequencing Consortium
2001; Venter et al. 2001). This was the pinnacle of the classical phase of sequencing, when
the experimental side of genomics was so expensive, only large labs could participate.

As shotgun sequencing is still used today, the assembly problem also persists (Myers
2014). However, from the mid-noughts onward Sanger sequencing has been replaced
by a number of next generation methods. These vary widely in the length, number and
quality of the reads returned (Goodwin et al. 2016). Irrespective of the details, the cost
of sequencing fell 10 000 fold in the years between 2007 and 2011 (Figure 1.2) making
sequencing virtually free.
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Figure 1.3: The cost of a billion floating-point operations per second in 2020 US$. The
straight line represents an exponential decrease.

This has lead to the wide-spread application of sequencing in medicine, where pathogen
outbreaks are increasingly tracked using whole-genome sequencing, a development
called genomic epidemiology (Tang et al. 2017). As a result, massive samples of complete
genomes from closely related bacteria are published. For example, Holt et al. (2018)
sequenced 1635 isolates of Mycoplasma tuberculosis collected from tuberculosis patients in
Ho Chi Minh City, Vietnam. Each M. tuberculosis genome is approximately 4.4 Mb long.
By comparing their sample with 3144 isolates from elsewhere, they discovered that a
lineage imported from Beijing was three times more virulent than its local relative. They
were also able to pinpoint the gene most likely causing this increased in virulence (Holt
et al. 2018).

Computing

A similar drop in price as just described for sequencing took place in computing three
decades earlier. Forty-six years ago Ritchie and Thompson (1974) proudly announced that
“UNIX can run on hardware costing as little as $40,000.” The PC-revolution of the 1980s
made powerful computers widely available and lead to an accelerated decay in the price
of computer hardware. Figure 1.3 shows that in 1981, when the PC was first released, to
execute one billion floating-point operations per second (GFLOPS) one would have to
invest one hundred million dollars.1 Ten years later this was down to one million and
in 2001 a GFLOPS cost a thousand dollars. By the year 2011 the price of a GFLOPS had
collapsed to less than one dollar. Today UNIX and much more can run on a Raspberry Pi,
available to consumers for 30 €.

So sequencing and computing have both become virtually free. However, as Dijkstra
(1972) already predicted, increased computing power does not necessarily solve the
programming problem. In the particular case of sequencing data, its analysis remains
a formidable challenge. One of the most popular ways to analyze a set of genomes is

1Data taken from https://en.wikipedia.org/wiki/FLOPS#Cost_of_computing.
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1.2 Phylogeny Reconstruction

1 1111111112 2222222223 3333333334 4444444445
1234567890 1234567890 1234567890 1234567890 1234567890

Chimpanzee TTTCTCACAC AAGCAACTGC GTCCATAATT CTCCTGATAG CTATCCTCTC
Bonobo .......... .......C.. ......G... .....A.... ..........
Human ..C.....G. .......C.. A........C ..T..A.... .........T
Gorilla ..C....... .......... A........C .....A.... .C........
Orangutan ..C....... .......C.. A......... T....A.... .C......CA
Gibbon ..C...GT.. .......C.. A......... ...A.A.... .C..T.....
Baboon .....AG... ..T.T..C.. A........C ...A.A.... .A..TA.T..

1
5555555556 6666666667 7777777778 8888888889 9999999990
1234567890 1234567890 1234567890 1234567890 1234567890

Chimpanzee CAACAACATA CTCTCCGGAC AATGAACCAT AACCA-ATAC --TACCAATC
Bonobo .......... .......... .......... .....-.C.. --........
Human .....G.... .......... .......... .....-.... --........
Gorilla ......T... .......... .........C .....-..G. --C..T....
Orangutan .......... T.T....... .G.......C .G...-.... --C.....C.
Gibbon .......C.. ..T.....G. .G.....T.. .G...-.C.T --C.....C.
Baboon .......T.. T.A..A.... .C.....A.C ...A.C.A.. TAC.......

Figure 1.4: A multiple sequence alignment of 100 bp sequences taken from the mitochon-
drial genomes of seven primate species. A dot represents the same nucleotide
as in the top row. The Baboon sequence contains three additional nucleotides
which appear as gaps in all other sequences.

to summarize their evolutionary relationships as a phylogeny. This is also the central
application of the distance computation method I present in this thesis.

1.2 Phylogeny Reconstruction

Phylogeny reconstruction from molecular data began in the 1960s and many of the meth-
ods that have been developed since are implemented in the Phylip software package
(Felsenstein 2005). Its author also wrote the definitive guide to phylogeny reconstruction
(Felsenstein 2004), while Yang and Rannala (2012) provide a more recent and succinct
summary. Here, I give a brief overview of the most common methods. Phylogeny recon-
struction typically starts from an alignment, and Figure 1.4 shows a 100 bp sample of
seven mitochondrial genomes of primates, which are approximately 16 kb long. So the
example data represents 0.6 % of the mitochondrial genome, which in turn is roughly
200 000 times smaller than the 3 Gb of the primate nuclear genome.

There are two classes of methods available to reconstruct a phylogeny from an align-
ment like that in Figure 1.4: Either the space of possible trees is searched for the tree that
best fits the data as determined by some function; or the data is converted to pairwise
distances, which are then transformed into a tree.

5
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A
Chimpanzee, {T}

Bonobo, {T}

Human, {C}

Gorilla, {C}

Orangutan, {C}

Gibbon, {C}

Baboon, {T}

{T}
{C, T}

{C}
{C}

{C}
{C, T}

B
Chimpanzee, {T}

Bonobo, {T}

Baboon, {T}

Human, {C}

Gorilla, {C}

Orangutan, {C}

Gibbon, {C}

{T}
{T}

{C, T}
{C}

{C}
{C}

Figure 1.5: The number of mutations implied by column 3 in the alignment in Figure 1.4
given two example trees. In a bottom-up traversal, at every internal node the
child sets are intersected. If the intersection is empty, a mutation has occurred
and the union is formed. As a result, every set containing more than one
element implies a mutation, so A implies two mutations, B just one.

Trees are commonly scored using one of two statistics: The number of mutations
implied by the tree, or the probability—also called likelihood—of the data, given the tree
and a model of mutation. The first is called the parsimony criterion and since the aim is
to find the tree implying the fewest mutations, the corresponding method is known as
maximum parsimony. Similarly, the second method is called maximum likelihood, as the
aim is to find the tree that maximizes the likelihood of the observed data.

Maximum Parsimony

Fitch (1970) developed maximum parsimony based on the idea of searching for the tree
implying the fewest mutations. The number of mutations is computed as follows: Given
a tree and a polymorphic column in an alignment, label the leaves by the nucleotides in
the column; Figure 1.6 shows this for column 3 in the example alignment (Figure 1.4)
and two example trees. Think of these leaves as sets. Then traverse the tree bottom up.
At every internal node, v, form the intersection of the two sets in the child nodes. If the
intersection is empty, label v with the union and count one mutation, otherwise label v
with the intersection. The tree in Figure 1.5A implies two mutations, the tree B only one.
Thus, the biologically true tree B is more parsimonious at alignment position 3 than the
wrong tree A.

This procedure is repeated across all polymorphic positions in the alignment to give the
number of mutations for the tree. Multiple trees can imply the same number of mutations
and are thus equally parsimonious. For our example alignment, the smallest number of
mutations is 55, which is implied by the three trees in Figure 1.6.

Maximum Likelihood

The maximum likelihood criterion is based on the probability of the data, given the
tree and a mutation model. The simplest mutation model is to equate the number of

6



1.2 Phylogeny Reconstruction

A
Bonobo
Chimpanzee

Human
Orangutan

Gibbon
Gorilla

Baboon

0.05

B
Bonobo
Chimpanzee
Human

Gorilla
Orangutan
Gibbon

Baboon

0.05

C
Bonobo
Chimpanzee

Human
Gorilla

Orangutan
Gibbon
Baboon

0.05

Figure 1.6: The three most parsimonious trees.

mismatches with the number of mutations; in other words, the probability of any site
mutating more than once is zero. This is known as the infinite sites model often used
in population genetics (Wakeley 2009, ch. 4), where very closely related sequences are
compared. It is also effectively the model underlying maximum parsimony, where one
mismatch is one mutation. However, the alignment in Figure 1.4 contains seven positions
with more than two alleles: 42, 50, 58, 63, 72, 78, and 88. These positions must have
mutated more than once since their divergence from the last common ancestor.

For DNA sequences, a mutation model is a matrix of probabilities µxy of nucleotide x
changing into nucleotide y, with x, y ∈ {A, C, G, T}.

µAA µAC µAG µAT
µCA µCC µCG µCT
µGA µGC µGG µGT
µTA µTC µTG µTT


By definition each row sums to 1. In the simplest case all off-diagonal elements are set

to the same value, which is called the one-parameter model. For this model, an equation
developed by Jukes and Cantor (1969) transforms the number of mismatches per site, m,
into the number of substitutions per site, K,

K = −3
4

ln
(

1− 4
3

m
)

.

Table 1.1A shows the Jukes-Cantor distances based on the example data. As the baboon
sequence contains insertions, all other sequences have gaps at positions 86, 91, and 92,
denoted by a “-”. For my analysis I excluded the whole column, which is known as
complete deletion, so the distance is based on 97 positions. If instead a gap is only excluded
in the pairwise comparison, that is called pairwise deletion. Complete deletion has the
advantage that all distances are based on the same sites (Stecher et al. 2016).

There are a few alternatives to the one-parameter model. The next step is the 2-
parameter model by Kimura (1980), which accounts for the two chemical classes of
nucleotides, the purines A and G, and the pyrimidines C and T. Mutations within chemical
classes, transitions, have a different rate from mutations between classes, transversions.
So the 2-parameter model is based on the number of transitions per site, P, and the
number of transversions per site, Q, which sum to the total number of mismatches
m = P + Q,

K = −1
2

ln
(
(1− 2P−Q)

√
1− 2Q

)
.
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Table 1.1: Estimated substitution rates for the example alignment of Figure 1.4.

(A) 1-parameter model (Jukes and Cantor 1969)

Bo Ch Hu Go Or Gi Ba

Bo 0 .04 .10 .14 .17 .20 .27
Ch .04 0 .10 .11 .17 .23 .29
Hu .10 .10 0 .12 .17 .24 .30
Go .13 .11 .12 0 .15 .23 .27
Or .17 .17 .17 .15 0 .16 .29
Gi .20 .23 .24 .23 .16 0 .27
Ba .27 .29 .30 .27 .29 .27 0

(B) 2-parameter model (Kimura 1980)

Bo Ch Hu Go Or Gi Ba

Bo 0 .04 .10 .13 .17 .20 .29
Ch .04 0 .10 .11 .17 .22 .30
Hu .10 .10 0 .12 .17 .24 .32
Go .13 .11 .12 0 .15 .22 .29
Or .17 .17 .17 .15 0 .16 .31
Gi .20 .22 .24 .22 .16 0 .28
Ba .29 .30 .32 .29 .31 .28 0

Bonobo
Chimpanzee
Human

Gorilla
Orangutan

Gibbon
Baboon

0.05

Figure 1.7: Maximum likelihood tree. The scale bar represents the number of substitutions
on the branches.

Table 1.1B shows the Kimura distances for the example primate data. They are very
similar to the Jukes-Cantor distances, but tend to increase for more divergent pairs of
sequences. For instance, the Jukes-Cantor distance between Baboon and Bonobo is 0.27
substitutions per site, whereas the Kimura distance is 0.29 substitutions per site. Still
more complex models exist, the most general one having twelve parameters (Liò and
Goldman 1998), but the Jukes-Cantor model is the one I use throughout this thesis to
calculate the substitution rate from mismatches.

Given a mutation model and a tree, computing the likelihood of the data is more
difficult than computing the number of mutations, as the likelihood needs to be maxi-
mized across all possible branch lengths. This problem was solved by Felsenstein (1981).
Figure 1.7 shows the maximum likelihood tree for the example data, which is very similar
to the maximum parsimony tree in Figure 1.6B.

The great advantage of the maximum likelihood approach over other phylogeny meth-
ods is that alternative trees can be compared using the likelihood ratio test (Huelsenbeck
and Rannala 1997). For instance, the log-likelihood of the maximum likelihood tree is
-363.6. This can be compared to the log-likelihood of the two alternative trees from the
maximum parsimony method, Figures 1.6A and C, which is -363.9. The difference be-
tween the best phylogeny and its alternatives is thus only 0.3, not enough to reject the
alternatives (p = 0.491, test by Shimodaira and Hasegawa 1999).

Felsenstein (1981, p. 374) commented on the original implementation of his maximum
likelihood procedure, “it must be acknowledged that this computer program is quite slow,
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Figure 1.8: The number of binary trees, Cn, and rooted phylogenies, Rn, as a function of
the number of taxa.

and could be effectively used only by someone who had free computer time available.”
Today, free computer time is the norm rather than the exception and maximum likelihood
reconstruction is widely used in implementations such as RAxML (Stamatakis 2014).

Apart from the speed of scoring an individual tree, maximum parsimony and maxi-
mum likelihood require powerful algorithms for navigating the space of possible trees
(Felsenstein 2004, ch. 4 and 5), as this grows very quickly with the number of taxa.
Consider four taxa A, B, C, and D. Phylogenies of these taxa can be represented by paren-
thesizations, where pairs of parenthesis represent a subtree joined by an internal node.

((AB)C)D (AB)(CD) (A(BC))D A((BC)D) A(B(CD))

The number of possible parenthesizations is equivalent to the number of binary trees
with ordered labels, known as the Catalan numbers (Knuth 2013b, sec. 7.2.1.6),

Cn =
1

n + 1

(
2n
n

)
.

However, the order of labels can affect the biological interpretation of the tree. The
phylogeny (AB)(CD) is different from (BC)(DA), but not from (CD)(BA) as the left and right
child position of a node are equivalent. So for our four taxa that leads to the following
additional topologies.

((AC)B)D (AC)(BD) ((AC)D)B ((BD)C)A ((BD)A)C

((AD)B)C ((AD)C)B (AD)(BC) ((AB)D)C ((CD)A)B

The number of rooted topologies Rn with four taxa is thus R4 = 15. So the number of
rooted phylogenies, Rn for n taxa grows much quicker than the Catalan numbers Cn,

Rn =
n

∏
i=2

2i− 3 .

Figure 1.8 shows the growth for both combinatorial problems.
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Figure 1.9: NJ starts with a star topology (A) and then joins the two most closely related
neighbors (B). The branch lengths are not drawn to scale, since they are only
computed as the algorithm progresses.

Distance Methods

One of the most widely used methods to directly infer a tree from a distance matrix, D,
is neighbor-joining (Saitou and Nei 1987). Neighbor-joining (NJ) starts with a star-like
topology (Figure 1.9A) and, as the name implies, it then joins neighbors.

Whenever two neighbors are to be joined, a new node is created, y in Figure 1.9B, and
a new edge. Of all node pairs, NJ picks the one (a, b) that minimizes the overall branch
length. The new node is inserted and the neighbors attached to it. The distance of the
new node to all others is then calculated by averaging.

Dyz = (Daz + Dbz)/2

The algorithm stops when there are only three nodes left. It then places a last new node
in the middle. NJ recovers the true tree if the distances are additive, meaning that the
distance between two leaves is the sum of the edge lengths separating them. This can
also be checked on the distance matrix if for all quartets there exist a labeling so that

Dab + Dcd ≤ Dbc + Dad = Dac + Dbd . (1.1)

I use neighbor-joining throughout this thesis to cluster distances, and Figure 1.10 shows
the NJ tree for the example primate data. However, the NJ algorithm has two problems:
First, it does not quantify the discrepancy between the tree and the data. Second, the tree
is unrooted, but it is usually more convenient to read rooted trees. The first problem was
addressed by Fitch and Margoliash (1967), who proposed a sum-of-squares measure to
quantify the fit of the tree to the data. In Klötzl and Haubold (2016) we instead proposed
to use the discrepancy between the tree and the distance matrix to gain confidence in
individual splits. The four-point criterion (1.1) specifies the optimal topology of a quartet.
Any quartet not in that arrangement thus lowers the confidence in the tree (Section 2.3).

The second problem with NJ, lack of a root, is often solved by placing the root midway
between the two most distant leaves. For instance, in Figure 1.10 the root is placed
halfway between baboon and human. There are more sophisticated methods for rooting
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Figure 1.10: A neighbor-joining tree summarizing the distances of Table 1.1A with mid-
point rooting.

trees (Tria et al. 2017), but I have used midpoint rooting in this thesis as it is still widely
applied in biology.

Tree scores like maximum likelihood, maximum parsimony or sum of squares are com-
puted across all clades. However, the reliability of a phylogeny often varies considerably
between clades. The most widely-used method for quantifying clade reliability is based
on a statistical resampling method called the bootstrap (Efron 1979).

Bootstrapping Phylogenies

A central question in statistics is, given a measurement, for instance the average height
of a sample of wheat plants, how would that measurement vary if another sample was
drawn from the same field? This can be answered by modeling the distribution of the
statistics using mathematics or computer simulations. Among computer simulations, the
bootstrap has become particularly popular due to its simplicity: Given a sample for n
measurements, generate a pseudosample by drawing n elements with replacement, and
recalculate the statistic from that pseudosample. If repeated many times, this allows the
quantification of the uncertainty of the original measurement (Efron 1979).

Felsenstein (1985) introduced the bootstrap into phylogeny inference: Given an align-
ment of length l, such as that shown in Figure 1.4, where l = 100, draw with replacement
l columns from it and recalculate the phylogeny from this pseudosample. When repeated,
this allows the computation of the frequency with which each clade in the original tree
appears in trees based on the resampled data. The higher this frequency, the higher the
bootstrap support, that is the reliability, of that clade.

If this procedure is applied to the alignment of the mitochondrial sequences and the
neighbor-joining tree in Figure 1.10, the bootstrap frequencies shown in Figure 1.11 are
generated. A support value above 70 is generally considered significant (Hillis and Bull
1993). That applies to the clade Chimpanzee/Bonobo and the group of Chimpanzee/
Bonobo/Human/Gorilla. The low support of the clade Chimpanzee/Bonobo/Human on
this small sample of 100 bp mirrors the fact that for 30 % of the human DNA the Gorilla
is the closest living relative, not the Chimpanzee (Scally et al. 2012).

Having established how to convert distances to a tree, I describe how to get distances
in the first place.
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Figure 1.11: Neighbor joining phylogeny with support values computed via classical
bootstrapping.

1.3 Distance Computation

Given an alignment, evolutionary distances can be easily calculated, for instance using
the Jukes-Cantor model of sequence evolution to transform pairwise mismatches to sub-
stitution rates, as done with the mitochondrial genomes of seven primates in Section 1.2.
However, finding the optimal multiple sequence alignment (MSA) is NP-complete and
thus becomes computationally demanding with growing sequence length (Wang and
Jiang 1994). An assessment of common MSA tools showed that most take hours on
whole-genome data sets (Earl et al. 2014). For instance, on a simulated 120 Mb data set of
four primates, the program progressiveMauve took over four hours (Darling et al. 2010).
On a bigger data, set it ran for several weeks, using 200 GB of RAM, before being abruptly
terminated by a power outage. Earl et al. (2014) conclude that “it’s fair to say this imple-
mentation doesn’t scale reasonably to such datasets.” To overcome the computational
restrictions of alignment-based phylogeny reconstruction, alignment-free methods have
recently become popular (Haubold 2014).

Alignment-free tools skip the computation of an MSA and instead estimate evolution-
ary distances directly from the sequences. These distances can then be used as input for a
tree reconstruction algorithm such as neighbor-joining (Saitou and Nei 1987). Alignment-
free methods have the advantage of being much faster than alignment-based approaches.
For instance, on a data set of 29 whole Escherichia coli and Shigella genomes, each about
5 Mb long, the alignment-free tool mash took one second, whereas the MSA program
mugsy took almost 2 hours (Ondov et al. 2016; Angiuoli and Salzberg 2011, Section 4.3).
Extrapolating this to a data set a hundred times as large, gives an expected run time of
2.7 years (Seidel 2017, p. 72), where mash only takes seven minutes, single-threaded.

Figure 1.12 shows a classification of different phylogeny reconstruction methods.
To the left are the alignment-based approaches, including the ones already discussed,
maximum likelihood, maximum parsimony, and distance based. Alignment-free methods
are similar to the latter category as they tend to produce distance matrices. Thus, I
consider computing an MSA, counting mismatches, and estimating distance for neighbor-
joining the gold standard in this thesis, which all alignment-free tools are compared
against. Figure 1.13 shows a phylogeny of the whole mitochondrial genomes of the seven
primate species computed using mugsy, an MSA program (Angiuoli and Salzberg 2011).
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Figure 1.12: Classification of phylogeny reconstruction methods with commonly used
implementations. Adapted and extended from Haubold (2014).
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Figure 1.13: The phylogeny of seven primates, computed from a multiple sequence
alignment rooted using the Baboon as an outgroup.

1.4 Alignment-Free Distance Estimation

Among the first alignment-free methods invented were approaches based on counting
subsequences of a fixed length called words, k-mers or q-grams (Vinga and Almeida
2002). These methods would split the given sequences into k-mers, compute a vector of
occurrences for each k-mer and then estimate a distance between sequences producing a
matrix as in Table 1.1A. For instance, the d2 distance is based on a frequency word profile
m for different word lengths and compares them between sequences (Hide et al. 1994).
Here u, is an upper bound on k, and for each k, as there are four nucleotides, the number
of occurrences of 4k words ωi are compared.

d2 =
u

∑
k=1

4k

∑
i=1

(mS(ωi)−mQ(ωi))
2

Because of their simplicity, many variations were developed, with a recent review
bundling twenty-four into one web-based application (Zielezinski et al. 2017). However,
most distances produced by k-mer methods do not reflect the substitutions per site, the
most widely used evolutionary distances. For instance, Figure 1.14 shows the phylogeny
computed for the primate data using d2. Not only does it have an incorrect topology, but
the scale bar and branch lengths are also wrong. Moreover, the choice of k can greatly
influence the computed phylogeny (Leimeister et al. 2014). Despite over a decade of
research, the choice of the optimal k is still unclear (Reinert et al. 2000; Zuo et al. 2014).
Only a few methods from this category accurately estimate substitution rates, the most
important of which are described in the following.

Spaced Words Most of the k-mer based methods for phylogeny reconstruction measure
a quantity that grows monotonously with time but is not equal to the substitution rate,
the most widely used evolutionary distance. In contrast, Morgenstern et al. (2014) use
an explicit model of sequence evolution for accurate estimation of the substitution rate.
Furthermore, their k-mers are spaced words, that is, they contain don’t care positions, where
the characters are allowed to vary.

For instance, consider the sequence S = AACTT. It contains the 3-mers AAC, ACT and CTT.
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Figure 1.14: The phylogeny of seven primates, computed with d2. Note the incorrect
topology as well as the idiosyncratic scale. The negative branch length at
human is a symptom of bad distances.
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Figure 1.15: The phylogeny of seven primates, computed with spaced.

However, it also contains the 4-mers AA∗T and AC∗T, where the star denotes an ignored
character. A second sequence Q = AAGTT shares none of the 3-mers, but one of the spaced
4-mers. This way, spaced k-mers can increase the sensitivity of the distance estimation.
Figure 1.15 shows the tree computed by spaced, which is much more accurate than that
of exact words (Figure 1.14).

The authors of spaced use the Jensen-Shannon divergence on the word frequency
profiles to estimate evolutionary distances (J. Lin 1991). Using multiple patterns for
spaced words, they found their implementation could reconstruct phylogenies more
accurately than other alignment-free approaches (Leimeister et al. 2014). Further, they
developed a hill-climbing approach to pick the best patterns for even more accurate
results (Sohrabi-Jahromi et al. 2017).

Hashed Words A hash function reduces data of arbitrary size to a fixed-size hash value
(Knuth 2013a, pp. 513). Most hash functions spread their input values as evenly as
possible over the output range. One technique called MinHash, however, maps similar
data to similar sets of hashes (Broder 1997). Mash makes use of this property by splitting
a sequence into k-mers, computing a hash for each, and then assembling the k-mers with
the lowest hash value into a set (Figure 1.16). This set, termed sketch, is a random, fixed-
size sample of all k-mers from a sequence. Given two sequences A, B and their respective
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Figure 1.16: Estimating Evolutionary Distances from Genome Sketches; Taken from On-
dov et al. (2016). Each sequence is split into k-mers, which are hashed into
sets A, B. Of these sets only the—in this case 5—smallest k-mers are stored
in sketches S(A), S(B). These sketches are then compared.

sketches S(A), S(B) the amount of overlap of their k-mer sets can be approximated by
the overlap of the sketches (eq. (3) Ondov et al. 2016):

|A ∩ B|
|A ∪ B| ≈

|S(A ∪ B) ∩ S(A) ∩ S(B)|
|S(A ∪ B)|

This property is used to approximate the number of shared k-mers and thus, the mutation
rate between the two sequences (eq. (4) Ondov et al. 2016). Figure 1.17 shows the phy-
logeny for the seven primates.Mash puts no restrictions on the input sequences and hence
also works on raw sequencing reads or metagenomes. The latter describes situations
where a sequenced genome is actually a mix of sequences from several different genomes.
This issue arises when a species cannot be cultured individually as for instance some
human skin microbiota. In these cases, mash can be used to estimate the amount of one
sequence contained in another (Ondov et al. 2019).

One central feature of mash is that the sketches are of a predetermined, fixed size.
Thus, instead of comparing two k-mer sets of size O(|A|+ |B|), the analysis is limited to
two small samples. By default, mash uses a thousand hashes as the sketch size. When
comparing a large number of genomes, the reduction in dimensions leads to a significant
increase in speed (Section 4.6). Other authors have picked up this idea and provide
similar tools using different data structures for sketching (Zhao 2018). For instance, Baker
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Figure 1.17: The phylogeny of seven primates computed using mash.

and Langmead (2019) use HyperLogLog, which is a compact way of counting elements in
a set, to estimate the intersection of the sequences (Flajolet et al. 2007).

Match Lengths Consider two aligned sequences. As the number of mismatches varies,
so does the distance between them, but in an inverse manner: For small substitution
rates there are long stretches of exact matches between two mutations. Conversely, as
exact matches end in a mismatch, they become shorter as the substitution rate increases.
Haubold et al. (2009) related the substitution rate to the match length of unaligned
sequences. Here X∗ denotes the prefix length of one sequence that appears somewhere in
the subject sequence S, and d is the number of mismatches (eq. (6) Haubold et al. 2009):

P(X∗ ≤ x) ≈ (1− e−xd) ·
x

∑
k=0

2x
(

x
k

)
pk
(

1
2
− p

)x−k
(

1− pk
(

1
2
− p

)x−k
)|S|

. (1.2)

The average match length can be used to estimate the substitution rate, with Figure 1.18
depicting this idea on the primate data. In the first implementation of this approach, kr,
pairs of sequences are stored in one generalized enhanced suffix array (GESA) (Haubold
et al. 2009; Abouelhoda et al. 2002). This is then traversed to compute the average match
length. Domazet-Lošo and Haubold (2009) later realized that a single GESA of multiple
sequences is sufficient to compute all pairwise distances. This reduces the comparison of
n sequences with a length of L from time O(n2L) to just O(nL) (Ohlebusch 2013, pp. 228).

The approach, as implemented in kr, is limited to substitution rates less than 0.55
(Haubold et al. 2009). To improve the accuracy beyond that threshold, modifications were
suggested that allow up to k mismatches in each match (Leimeister and Morgenstern 2014;
Pizzi 2016). However, the best known algorithm takes time O(kL2/ log L) per pairwise
comparison and thus implementations again fall back to heuristics to achieve reasonable
run times (Apostolico et al. 2016).

Counting Words with Mismatches Counting the number of mismatches is assumed to be
the gold standard for the estimation of an evolutionary distance in this thesis. On the other
hand, counting words requires neither an alignment nor assembly. The tool cophylog
combines counting mismatches with k-mers (Yi and Jin 2013). It uses spaced words with
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Figure 1.18: The phylogeny of seven primates computed using kr.
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Figure 1.19: The phylogeny of seven primates computed using cophylog.

just matching positions except for one don’t care in the middle. For all input sequences,
the set of spaced words with a certain length is computed. Next, the algorithm compares
sequences by looking at all spaced words featuring the same matching parts; they form a
micro-alignment. If the position in the middle varies, it is counted as a mismatch.

Using this approach, the mismatch rate is estimated (Figure 1.19). Unfortunately,
cophylog suffers from the problem that—again—the optimal length of the words is
unknown and it also does not have an explicit substitution model built-in. Furthermore,
the applicability of cophylog was initially limited as it was single-threaded. On a set of
3085 whole Streptococcus pneumoniae genomes it ran for 36 days (Haubold et al. 2015). To
speed it up, I parallelized the program. On 32 virtual cores it can now analyze the same
data in 17 hours. The faster cophylog can now be found online (Chapter A).

Filtering Spaced Words One ubiquitous problem in genome comparison is the distinc-
tion between homologous sections and random matches (Devillers and Schbath 2012).
Distinguishing between the true signal and the background matches requires an explicit
model of evolution. For example, blast assigns each alignment an E-value, the number
of alignments one would expect by chance between two random sequences of the same
length and composition (Karlin and Altschul 1990; Altschul et al. 1990).

Leimeister et al. (2017) have extended this model to spaced words. By default, their
software fswm uses words with only twelve fixed positions on one hundred don’t care
positions. It then compares the initial don’t care positions using a scoring matrix designed
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Figure 1.20: The phylogeny of seven primates computed using fswm.

for distantly related sequences (Chiaromonte et al. 2001). Comparisons with a negative
value (too many mismatches) are rejected. The remaining homologous spaced words are
used to estimate the number of mismatches between two sequences that are then turned
into an evolutionary distance using the Jukes-Cantor substitution model. Figure 1.20
shows the phylogeny for the primate data. Interestingly, fswm can estimate the substi-
tution rate accurately up to values of 0.8. Thereby it exceeds the range of many other
alignment-free approaches (Section 4.1). However, this accuracy comes at the cost of run
time; in the worst case fswm takes time O(L2) for each pairwise comparison.

1.5 Anchor Distances

Fast exact matching is conceptually simpler than inexact matching. Altschul et al. (1990)
use exact matches of a fixed size, k-mers, as seeds for local alignments in blast. Given
a long subject sequence S and a shorter query Q, they split the query into k-mers and
create a keyword tree from them. Using the algorithm of Aho and Corasick (1975) all
occurrences of the k-mers in S can be found in time O(|S|) with O(|Q|) preprocessing
time. As only the query is preprocessed, the algorithm requires O(|Q|) memory.

Where blast uses k-mers as seeds for local alignments, in Haubold et al. (2015), we use
maximal matches instead. A maximal match is guaranteed to be flanked by a mismatch
on either side and can be quickly found using full-text indices, such as suffix trees
(Section 1.6).

These maximal matches are the basis of anchor distances as implemented in andi
(Haubold et al. 2015). In Section 1.6, I explain how maximal matches are found, but
assume for a moment one can quickly determine the longest prefix of a query sequence
Q that also appears in a subject S. If this prefix is unique and longer than a threshold
t, it is termed an anchor. If a match does not fit the requirements, the search continues
beyond until an anchor is found. Given a left anchor, the program continues to search
for a second one, the right anchor. Two anchors form a pair if they are equidistant
(Figure 1.21). For anchor distances, we assume that such a pair does not contain an
insertion or deletion and thus is an approximate local gap-free alignment for which one
can count the mismatches in between to estimate the evolutionary distance using the
Jukes-Cantor model of sequence evolution (Section 1.2, Jukes and Cantor 1969). This idea
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Figure 1.21: Anchors as Exact Matches Between Two Sequences. A) Two maximal matches
span the same distance in Q as in S; thus, they form an anchor pair. B)
The dashed segment between the anchors is unequally spaced on the two
sequences and thus ignored in distance estimation.
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Figure 1.22: The phylogeny of seven primates computed used andi.

is implemented in the program andi and Figure 1.22 applies it to the primates (Haubold
et al. 2015).

Multiple queries can be streamed against the same subject and all algorithms involved
are linear in the length of the sequences, L, comparing a whole set of sequences thus
takes time O(Ln2) (Klötzl 2015). For andi we use algorithms that are slower in theory
but more efficient in practice. For instance, instead of the linear-time DC3 algorithm for
suffix array construction, we use libdivsufsort with a worst-case run time of O(L log L)
(Kärkkäinen et al. 2006; Fischer and Kurpicz 2017).

While being state-of-the-art at the time, andi had some limitations: As the uniqueness
criterion for anchors is only with respect to the subject, not the query, duplications
can lead to varying mismatch counts depending on the labeling. To make estimates
symmetric, both sequences in a comparison have to serve once as a subject and once
as a query. Thus, for a set of n sequences, n full text indexes are computed for n2 − n
comparisons. Each single comparison is quick, but as the data set grows linearly, the
run time grows quadratically. So for the new tool described in this thesis, phylonium,
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Figure 1.23: Suffix tree for the sequence S = AAGTAAGG$.

we focused on reducing the quadratic portion of the distance estimation by piling all
sequences in a sample onto a single reference. Further, phylonium handles duplications
differently so the distances become symmetric and thus fewer comparisons have to be
performed. This is described in detail in Chapter 3.

1.6 Finding Maximal Matches

Anchor distances require maximal matches. Given the two sequences S and Q, what is
the longest prefix of Q that is also contained anywhere in S? We call this prefix a maximal
match.

Definition 1 (Maximal Match Problem) Let Σ be an alphabet and S ∈ Σ∗, Q ∈ Σ∗ two
words over that alphabet. Find the largest q so that for all i < q : S[i + k] = Q[i] holds for a
fixed k. The maximal match then starts at position k in S and has length q.

For instance, for the subject S = AAGTAAGG$ and the query Q = TACC$ the maximal
match is TA. It starts at position 3 in the subject and is two characters long, S[3..4] = Q[0..1].

With anchor distances we repeatedly match many different queries against the same
subject. Thus, we are willing to spend more time preprocessing the subject if that reduces
the time for finding maximal matches. One solution here is to use a suffix tree (Weiner
1973; Gusfield 1997). Figure 1.23 depicts the suffix tree for the string S = AAGTAAGG$. Each
leaf is labeled with a number i, 0 ≤ i < |S| and each path from the root to a leaf spells
out the suffix starting at that position, for instance S[6..] = GG$.

Each outgoing edge from a node begins with a different letter from the fixed size
alphabet Σ. For example, there is one edge of the root labeled A leading to an internal
node labeled v. The four leaves on the subtree of v each give the position of the letter A in
S. Continuing from v there is an edge labeled AG. All suffixes on leaves below it not only
start with A, but with AAG.

The properties noted above can be adapted into a matching algorithm. Recursively
iterating down from the root one can quickly find all occurrences of a pattern P in the
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i SA S[SA[i]..]

0 8 $
1 4 AAGG$
2 0 AAGTAAGG$
3 5 AGG$
4 1 AGTAAGG$
5 7 G$
6 6 GG$
7 2 GTAAGG$
8 3 TAAGG$

Figure 1.24: The suffix array for the string S = AAGTAAGG$. Next to each entry is also the
associated suffix.

tree. Consider P = AG. Starting from the root, follow the edge labeled with the first letter
P[0] = A. Continue from there with the next letters until the pattern is exhausted or no
suitable edge is available. In the former case, every leaf below the last match gives the
starting position of the pattern in the subject. In our case, below node w are the leaves 5
and 1, which indeed give the starting positions of AG in S. An optimal search algorithm
on a suffix tree runs in time O(|P|) (Gusfield 1997, p. 92). Thus, the time to search for a
pattern in the index is independent of the size of the index. This is particularly useful
when the index has to be built only once and many patterns are matched against it. The
algorithm by Weiner (1973) and its simplification by Ukkonen (1995) create a suffix tree
from a sequence S in O(|S|) time using O(|S|) memory.

While the suffix tree solves the exact matching problem in the same asymptotic time
as the algorithm by Knuth et al. (1977), it is a data structure that can be reused. It thus
provides a speed up when searched repeatedly. However, suffix trees have been criticized
for their practical memory demands (Manber and Myers 1993; Abouelhoda et al. 2004).
Manber and Myers (1993) proposed a simpler data structure with similar capabilities,
the suffix array (SA). The suffix array of a string S contains the integers 0 through |S|
representing the lexicographic order of the suffixes. Figure 1.24 gives the suffix array, SA,
for the same string S = AAGTAAGG$. The sentinel character $ is considered smaller than
any other character, thus the suffix S[8..] comes first in the SA.

A suffix array can be constructed from a suffix tree by visiting the edges in alphabetic
order. Note how, read from left to right, the indices on the leaves of the suffix tree in
Figure 1.23 correspond to the entries in the suffix array (Figure 1.24). Thus, a suffix
array can be computed in time O(|S|) with O(|S|) memory. Since its invention, many
algorithms have been discovered that directly construct a suffix array in linear time
(Kärkkäinen and Sanders 2003; Ko and Aluru 2003). The most used library in practice,
libdivsufsort, computes a SA in time O(|S| log |S|) (Fischer and Kurpicz 2017).

Searching for a pattern in the suffix array can be done by binary search. This leads to a
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i SA LCP CL CR FVC S[SA[i]..] lcp-intervals

0 8 −1 9 $

0

1
3

2

1

1 4 0 5 A AAGG$
2 0 3 T AAGTAAGG$
3 5 1 2 4 G AGG$
4 1 2 T AGTAAGG$
5 7 0 3 8 G G$
6 6 1 7 G GG$
7 2 1 T GTAAGG$
8 3 0 6 T TAAGG$
9 −1 1

Figure 1.25: An enhanced suffix array for the sequence S = AAGTAAGG$ using the same
example as Klötzl (2015).

run time of O(|P| log |S|) (Manber and Myers 1993). To arrive at a run time independent
of the size of the array, we need to guide the binary search along specific intervals. These
intervals are LCP-intervals and the guides are child tables. Here, LCP stands for longest
common prefix. In Figure 1.25 the suffix array has been enhanced by an LCP column.
Each LCP value gives the length of the prefix shared with the suffix above.

LCP[i] = max {k | ∀j < k : S[SA[i] + j] = S[SA[i− 1] + j]}

For instance, AAGTAAGG$ and AAGG$ have a longest common prefix of 3. This LCP value is
given in the third row in Figure 1.25. The first and the last LCP values are set to −1. Both
work as sentinels in the following algorithms.

The LCP array requires O(n) memory and can naïvely be computed in time O(n2). The
algorithm by Kasai et al. (2001) reduces the run time to O(n) but requires an additional
Θ(n) memory. It is based on the following observation. The suffix S[0..] = AAGTAAGG$ has
an LCP of 3 with its upper neighbor S[4..] = AAGG$. Thus, S[1..] = AGTAAGG$ has to have
an LCP value of at least 2. (Simply removing the first character of both suffixes leaves
the rest of the LCP intact). Therefore these characters do not need to be re-compared.
Listing 1.1 gives the algorithm in detail. As the suffixes are processed in text order, the
inverse suffix array (ISA) is required to give the position in the suffix array.

Note how the LCP values in Figure 1.25 form intervals. For instance, the suffixes at
position 1 through 4 all start with the letter A. Further, the first two of them share AAG.
Following Abouelhoda et al. (2004), I use the notation `− [i..j] to denote such an interval
where ` is the length of the shared prefix of all suffixes between SA[i] and SA[j]. So the
LCP-interval of A is 1− [1..4] and for AAG it is 3− [1..2]. Figure 1.26A displays the tree of
lcp-intervals. Note how it corresponds to the suffix tree just without the leaves. For many
algorithms traversing the suffix tree node-by-node via an lcp-tree is hence just as good.
However, fast exact matching requires more work.

The local minima of the LCP array define the boundaries of the intervals. We next use
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Listing 1.1: The Kasai Algorithm for LCP Construction (Kasai et al. 2001)
1 input S, SA
2
3 n ← size(S)
4 for i = 0 to n:
5 isa[sa[i]] ← i
6
7 lcp[0] ← -1
8 lcp[|S|] ← -1
9 l ← 0

10 for i = 1 to n - 1:
11 j ← isa[i]
12 k ← sa[j - 1]
13 while S[k + l] = S[i + l]:
14 l ← l + 1
15 lcp[j] ← l
16 l ← max(l-1, 0)
17
18 output lcp

0− [0..8]

1− [1..4]

3− [1..2] 2− [3..4]

1− [5..7]

(A) An LCP tree for S.

0

1 5

3

2 4

6 7

8

9

(B) Super Cartesian tree for S

Figure 1.26: Two tree representations of the LCP intervals on the suffix array for the
sequence S = AAGTAAGG$.
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two pointers, one for left, CL, and one for right, CR, to implicitly iterate the tree. The two
global minima in Figure 1.25 are at positions 0 and 9. These are linked in order, i. e. the
right pointer, CR, at position 0 is set to 9. There is no further minimum beyond position 9,
thus it only gets a left pointer. The left pointer, CL[9], points to the first local minimum in
the current LCP-interval 0− [0..8], namely position 1. At positions 1, 5, and 8 the LCP
values are 0. Thus, CR[1] points to 5, and CR[5] points to 8. Further, 5 and 8 also have left
pointers leading to deeper subintervals. Figure 1.26B visualizes this relationship.

This super cartesian tree (Ohlebusch 2013, Section 4.3.4) represents the structure of
the lcp-intervals and also resembles the suffix tree. This structure has even been called a
linearized suffix tree (D. K. Kim et al. 2008). It consists of only two pointers per element,
CR and CL. These two pointers can be computed from the LCP array in time O(n) with
O(n) memory (Ohlebusch 2013, Section 4.3; Frith and Shrestha 2018). Particularly, both
pointers can be stored in a single child array. The value CL[i] can be stored at CR[i− 1]
as i is the border of an interval, and thus, i− 1 cannot have a right pointer (Abouelhoda
et al. 2004). See how for every CL value in Figure 1.25 the cell above right in CR is empty.

The child table now gives us a way to iterate the enhanced suffix array (ESA) for
finding maximal matches as if it were a suffix tree. This requires two functions. Listing 1.2
contains the algorithm for get_interval, which given an lcp-interval finds the subinterval
for a certain character. For instance, for the input [0..8] and the letter G it produces [5..7]
which is the subinterval for all suffixes starting with the letter G. This method now has to
be employed recursively (Listing 1.3). The function get_match takes the first character of
the query and finds its subinterval by calling get_interval. It then checks whether the
LCP value of the interval increased by more than one. For instance the interval 1− [1..4]
has the child interval 3− [1..2]. This extra character thus gets checked in the for loop.

The function get_interval iterates all subintervals of the current one, taking time
O(|Σ|). It gets called by get_match at most once per character until the maximal match is
found. Thus, the total time to find the longest match q of a query Q in S is O(|q||Σ|). As
in our case the alphabet is small, the ESA is at par with the suffix tree.

With additional arrays the practical performance of the ESA can be improved. Re-
consider the function get_interval which iterates the super cartesian tree horizontally.
For each subinterval it has to check whether it corresponds to the currently searched
character. Like in a suffix tree these edge labels are only stored implicitly and have to be
retrieved via indexing such as S[SA[i] + l]. As the l value for each i can be computed
in advance, this expression can be replaced by a single array FVC[i]. In Figure 1.25 the
first variant character (FVC) follows immediately after the LCP and is highlighted in bold
font. If more than one character is stored explicitly they are known as the discriminating
characters or fringe (Wu 2016; Sinha et al. 2008). These methods provide a speed up of
about 16 % at the cost of O(|S|) memory (Klötzl 2015, Section 3.5 and p. 46).

The ESA is our data structure of choice to repeatedly solve the maximal match problem.
However, each new search starts at the root of the LCP interval tree (Listing 1.3, line 5).
Thus, the first few intervals are visited constantly leading to repeated work. Instead,
bucket tables can be used to flatten the first d layers of the tree (Manber and Myers
1993; Abouelhoda et al. 2004). Each bucket stores the result of searching a string Σd in
the ESA. Thereby, for a new query Q one can use the first d characters to jump to the
correct interval in the index with just one table lookup. The size of the bucket table is
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Listing 1.2: Finding a subinterval; adapted from Ohlebusch (2004, alg. 4.10 and 5.1).
1 fn get_interval
2 requires S, SA, LCP, CR, CL // ESA
3 input [i..j] // current interval
4 input char // the character to look for
5
6 if i = j:
7 if S[SA[i] + l] != char:
8 output ⊥
9 else

10 output i
11
12 m ← CL[j + 1]
13 l ← LCP[m]
14 do
15 if S[SA[i] + l] = char:
16 // found
17 output [i..m-1]
18
19 i ← m
20 if i == j:
21 break
22
23 m ← CR[m]
24 while LCP[m] = l
25
26 if S[SA[i] + l] = char:
27 output [i..j]
28 else
29 output ⊥
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Listing 1.3: Finding the maximal match; adapted from Ohlebusch (2004, alg. 5.2).
1 fn get_match
2 requires S, SA, LCP, CR, CL // ESA
3 input Q
4
5 in ← [0..|S|]
6 k ← 0
7 do
8 sub ← get_interval(in, Q[k])
9 if sub = ⊥:

10 output in
11
12 [i..j] ← sub
13 l ← min(Q, LCP[CL[j]])
14 for w = k + 1 to l:
15 if S[SA[i] + w] != Q[w]:
16 output in
17
18 k ← l
19 in ← sub
20 while k < |Q|
21
22 output in

thus determined by considering the trade-off between the speed gained by jumping an
extra level in the tree, and the space taken up by the Σd entries. I have found a value of
10 for d to be practical for andi (Klötzl 2015, p.36).

1.7 Other Applications of Maximal Matches

Maximal matches not only form the basis of anchor distances, but have long been used
by Haubold and colleagues in the analysis of genomes. Initially, Haubold et al. (2005)
noticed that in human and mouse, the shortest unique substrings were 11 bp long, while
in random 3 Gb sequences their expected length is 16 bp. Haubold and Wiehe (2006a)
proposed an index of repetitiveness based on the length of unique substrings and used it
to find that highly regulated regions in the human genome, such as the four Hox clusters
of developmental genes, have very low values of repetitiveness compared to the rest of
the genome. This makes sense as these regions are almost devoid of transposons, while
mammalian genomes are generally littered with them. By inverting this observation it
might be possibly to use complexity to find interesting genes, an idea Pirogov et al. (2019)
returned to thirteen years later.

Going from shortest unique substrings to maximal matches allowed Haubold et al.
(2009) to measure the similarity between genomes. If the probability of a substitution
per site is π, then the expected waiting time or distance to the next substitution is 1/π.
The average match length is thus the inverse of the mismatches per site. Domazet-Lošo
and Haubold (2009) implemented this measure of genetic distance in their program kr
(Section 1.4, p. 17) using a single enhanced suffix array for all sequences. In theory suffix
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Figure 1.27: Time to the most recent common ancestor (TMRCA) along a pair of se-
quences. Vertical bars indicate a substitution.

array construction scales linearly in the size of the input data, but in practice suffix array
construction can be memory intensive so this approach of placing all data into a single
suffix array was later abandoned.

DNA sequences of closely related organisms tend to recombine to form new combina-
tions of alleles. In eukaryotes, this usually takes place during mitosis, but might also be
due to introgression. In prokaryotes and viruses, recombination is called horizontal gene
transfer. Regardless of the terminology, all forms of recombination lead to a variation in
the time to the most recent common ancestor (TMRCA) along two or more sequences.
Figure 1.27A shows the case without recombination, where the TMRCA is flat and the
mutations plotted along the x-axis are uniformly distributed. In contrast, Figure 1.27B
shows the case with recombination, where the TMRCA varies along the sequence. As the
local mutation rate is proportional to the local TMRCA, recombination leads to clustering
of mutations.

In kr, match lengths were looked up at every position in the genome. This is simple and
hence fast, but has the disadvantage that a match of length l is counted almost l times,
giving greater weight to long matches than to short matches. Haubold and Pfaffelhuber
(2012) mitigate this problem by basing the estimation of π on the full distribution of
mismatch lengths rather than just the mean.

Instead of correcting for recombination, it can also be investigated directly. Haubold et
al. (2013) used the fact that the distribution of match lengths is sensitive to recombination
to devise a statistical test for recombination implemented in their program rush. Having
detected the presence of recombination, biologists are often interested in localizing the
recombination breakpoints. Horizontal gene transfer in bacteria leads to fluctuations in
the most closely related sequence when comparing a query to a set of subjects. Domazet-
Lošo and Haubold (2011) used maximal matches to reconstruct what is known as the
mosaic structure of genomes.

In humans and other mammals recombination is not uniformly distributed along a
chromosome, but instead happens at so-called hotspots. Quantifying the rate of recom-
bination can be achieved by counting allele-specific PCR-reactions across hotspots, a
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technique known as sperm typing. Sperm typing is often accompanied by enrichment of
target fragments using oligos that bind the target in all individuals but no other region in
the genome. Odenthal-Hesse et al. (2016) devised a complexity measure to pick the oligos
with the lowest microsatellite content and hence the lowest likelihood of false positives
via cross-hybridization.

Pirogov et al. (2019) implemented a sliding window version of this complexity measure
in their program macle. Macle allows separate index construction and index traversal,
because traversals are often repeated and can be orders of magnitude faster than construc-
tion in large genomes. Application of macle to genomes of human and mouse uncovered
the Hox clusters detected 13 years prior using the less efficient index of repetitiveness of
Haubold and Wiehe (2006a). In addition Pirogov et al. (2019) found that high-complexity
regions are strongly enriched for developmental genes.

Other groups have also used maximal matches to great effect in genome comparison.
For instance, in the years 1997 and 1999 two different strains of Helicobacter pylori became
publicly available (Tomb et al. 1997; Alm et al. 1999). In order to compare these sequences
Delcher et al. (1999) used maximal unique matches (MUMs). A MUM is a maximal
match that cannot be extended to either side and is unique on both sequences. These
can be efficiently found using a suffix tree (Ohlebusch 2013, pp. 184). Just like maximal
matches are used as anchors in anchor alignments, MUMs can serve as the basis for
pairwise alignments (MUMmer by Kurtz et al. 2004). Unlike andi, however, the MUMmer
suite contains a component that creates pairwise alignments including gaps (Chapter A).
Angiuoli and Salzberg (2011) chose MUMmer as one of the central components in their
multiple sequence alignment tool,mugsy. For each pair of sequences a pairwise alignment
is formed, all of which are then assembled into one big multiple sequence alignment.
Owing to the performance of MUMs and MUMmer, mugsy is fast enough to produce
alignments even for larger sets of bacterial genomes and hence I use it in this thesis to
reconstruct reference phylogenies.

1.8 Structure of this Thesis

Phylogenies are at the heart of much biological research, ranging from classical species
trees to genomic epidemiology. This chapter introduced how a phylogeny can be com-
puted from sequenced genomes: via an alignment-based method such as maximum
parsimony, maximum likelihood or using distances; or via alignment-free methods. I
explained a number of approaches falling into the latter category with a particular focus
on those employing maximal matches. I explained how maximal matches can be found
using an enhanced suffix array and how they then serve as anchors for approximate local
alignments in andi.

In Chapter 2, I explain improvements made to andi since its initial publication by
Haubold et al. (2015). This includes improved performance made possible by a deeper
analysis of the behavior of matches that do not serve as anchors. The next improvement
is the addition of support values to phylogenies computed by andi. These values measure
the uncertainty of each clade.

Chapter 3 focuses on the new program developed in my dissertation, phylonium. It first
gives a broad overview and then explains individual steps in more detail. Particularly, it

29



1 Introduction

shows how maximal matches can serve as anchors for approximate multiple sequence
alignments, called anchor alignments. These anchor alignments then allow applications
previously not possible with alignment-free methods such as complete deletion. Further,
this chapter describes some technical advances made to sequence comparison on the
implementation level.

In Chapter 4 phylonium is compared to the most important alternative alignment-free
and alignment-based approaches with respect to phylogeny reconstruction accuracy and
run time. For that, I use simulated and real data commonly used in benchmarking.

Finally, in Chapter 5 I discuss the limitations of phylonium and explain how it might
be further improved. I also point to additional applications of the anchor alignment
underlying phylonium.
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DNA is source code for the most complex machine in the
known universe. Each chromosome contains a staggering
amount of information, and the interaction between
DNA and the cell machinery around it is incredibly
complicated, with countless moving parts and
Mousetrap-style feedback loops. Even calling DNA
“source code” sells it short—compared to DNA, our most
complex programming projects are like pocket
calculators.

Randall Munroe

The traditional wall to statistical knowledge is blocked,
for most, by a formidable wall of mathematics.

Bradley Efron

2.1 Faster Matching

Reconsider the matching framework from Section 1.6. Given an indexed subject sequence
S and a query Q, we look for the longest prefix of Q that appears anywhere in S. If this
match is long, it is likely to arise from common evolutionary descent. If the sequences
are unrelated, however, or the homology is broken by a mutation early on Q, the match
will be short. Peter Pfaffelhuber summarized this relation in the following equation
(eq. (4) Haubold et al. 2009). It is the limit for increasing divergence d of Equation 1.2 in
Section 1.4.

P(X∗ > l) = 1−
l

∑
k=0

2l
(

l
k

)
pk
(

1
2
− p

)l−k
(

1− pk
(

1
2
− p

)l−k
)|S|

(2.1)

Here, P(X∗ > l) gives the probability that a random maximal match is longer than
l. By default, we use the 97.5 % quantile of this distribution as the minimum length, t,
of an anchor. Conversely, an anchor of this length has a p-value of 2.5 % of not being
homologous. For example, for a 100 kb sequence (twice if the reverse complement is
included), and a GC-content of 0.5, the threshold t is 12 nucleotides.

Figure 2.1 visualizes the distribution of match lengths for different substitution rates
on simulated sequences. As sequences become more related, the peak becomes less
pronounced and more mass of the distribution is in the long tail. Conversely, given
a sample distribution of match lengths, one can estimate the substitution rate. This
approach was taken by kr (Haubold et al. 2009, Section 1.4).
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Figure 2.1: The Distribution of Match Lengths. Simulated were two 100 kb sequences,
repeatedly matched one against the other, with match lengths counted. If the
plot were not based on simulated sequences, but on Equations 2.1 and 1.2, it
would look virtually identical. Figure 2.2 proves how well the theory models
the behavior of anchor distances.

Equation (2.1) approximates the length of maximal matches for unrelated sequences.
Analog to Equation 1.2, this can be adopted to related sequences with an average substi-
tution rate of d. I write M to distinguish it from the unrelated case.

P(M = m) = (1− e−dm)P(X∗ ≤ m)− (1− e−d(m−1))P(X∗ ≤ m− 1) (2.2)

Consider a region flanked by two equidistant anchors which is thus homologous. After
the left anchor, all subsequent maximal matches are too short to serve as a right anchor
until one is found, eventually. Calling the flanked region a gap and its length g, I sum
over all possible combinations of too short matches to calculate the probability of such a
gap.

P(G = g) =
t

∑
i=0

P(M = i)P(G = g− i) (2.3)

Using Equation (2.2), the initial value P(G = 1) = P(M ≥ t), and a dynamic program-
ming scheme, one can compute the theoretical distribution of gaps between anchors.
Figure 2.2 depicts the virtually indistinguishable theoretical distribution and measure-
ments on simulated sequences side by side. The peak at G = 1 shows that a pair of
anchors commonly flanks only a single mismatch. For lower substitution rates this is
even more pronounced.

As anchor pairs tend to flank only single mismatches, it makes sense to optimize for
this configuration: I decided to relax the uniqueness criterion for right anchors. A left
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Figure 2.2: The Gap of Anchor Pairs. Two 100 kb sequences with a substitution rate 0.1
were used. At a p-value of 0.025 the minimum length t is 12 nucleotides.
Approximately 30 % of anchor pairs span just one intermediate nucleotide.

anchor always ends in a mismatch, however, one could continue comparing characters
beyond it and, with a reasonable probability, find at least t more matching characters.
The anchor matching procedure of andi (Listing B.1) references a function, lucky_match,
which does exactly that: given the position of the last match, it checks whether the next
match starts immediately beyond the terminating mismatch, leading to a lucky anchor. If
the search fails, andi falls back to a new search using the ESA. For two 100 kb sequences
with a 0.1 substitution rate the quick check is viable 30 % of all anchor pairs (Figure 2.2).
With this new trick, andi is about 15 % faster.

2.2 Limits

Since its initial release, andi has become faster through repeated optimization such as the
lucky anchors. However, the design of andi limits its performance. For instance, to estimate
the evolutionary distance between two sequences, one first has to find the homologous
regions. Andi does that by using anchors for gap-free local alignments. It has to do so
for every pair of input sequences, in both directions. Thus, for a dataset of n sequences,
n full-text indexes need to be built and n2 − n comparisons have to be made. So andi
inherently scales quadratically with the number of input sequences. To improve this
design, I reduced the quadratic part of andi’s algorithm. The result of this redesign is the
program phylonium, which is much faster than andi, while retaining most of its accuracy.
Perhaps surprisingly, phylonium is not only faster than andi, it also uses less memory. The
central concepts of phylonium are given in Chapter 3.

With andi sequence comparison is always strictly pairwise, thereby maximizing the
local homology between the two sequences. However, as the gene content can differ
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greatly in bacterial species, distances estimated will be based on different sections of the
genome, similar to measuring with different scales. In MSA, this problem is often solved
via complete deletion (Stecher et al. 2016). If a column contains a gap, that whole column is
ignored for phylogeny reconstruction (Section 1.2). As andi only computes approximate
pairwise alignments, it cannot carry out complete deletion. Section 3.2 explains how the
complete deletion is implemented in phylonium.

Phylogenies usually come with support values (Felsenstein 2004, ch. 20). These support
values represent the reliability of a node or split when recovering it on an independent but
identically distributed set of characters. In alignment-based methods this can be achieved
via resampling the columns of an alignment (Section 1.2). As andi is alignment-free that
same method cannot be applied here, and other techniques have to be used to express
the uncertainty in phylogeny reconstruction as explored in the following sections.

2.3 Support Values

There are many ways to compute a phylogenetic tree with Chapter 1 giving an overview
of the most commonly used methods. Maximum likelihood approaches guarantee to
recover the most fitting tree given the data and a suitable model of sequence evolution.
This confidence, however, only applies to the phylogeny as a whole and not to individual
clades. Particularly, individual splits might only be supported by a small number of
segregating sites, or worse, artifacts such as sequencing errors (Md Mukarram Hossain
et al. 2015). Even the most likely tree might not be a good fit.

Where in classical statistics one would give a confidence interval of an estimated
parameter to express the uncertainty, the same is not that easy with phylogenies. Instead,
phylogenies are usually annotated with support values. A high support value implies a
high confidence in the reconstructed clade or branch. Conversely, a low support value
indicates that there exist alternative topologies that could also explain the data. The
bootstrap, the most commonly used method for support values, can only be applied to
phylogenies based on an MSA (Felsenstein 1985). In the wake of andi we developed the
pairwise bootstrap that can be applied to alignment-free methods (Klötzl and Haubold
2016). In the following I compare these two, and two additional methods based on
quartets, for computing support values.

2.4 Classical Bootstrap

The bootstrap is a method to estimate the distribution of a random variable, X, given
a sample of size n from which X can be calculated (Efron 1979). New samples can be
generated from the original by redrawing n elements with replacement, followed by
recomputing X.

Consider a six-sided die of which one is interested in the expected roll. By way of
example, when rolled five times, it produces the sequence 1, 2, 3, 5, 5 the mean of which
is 3.2. Using the bootstrap, instead of rerolling the die, one resamples from the above
sequence with replacement, for instance 1, 1, 2, 2, 5, giving a mean of 2.2. Repeating this
many times gives a distribution of means that is centered close to the expected value, 3.5.
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Figure 2.3: Bootstrapping a Multiple Sequence Alignment by Resampling the Columns;
Taken from Klötzl and Haubold (2016, CC-BY-4.0).

In the context of phylogeny reconstruction, the bootstrap is applied to the columns of
a multiple sequence alignment (Felsenstein 1985). Figure 2.3 shows the method in action:
From one original alignment, columns are repeatedly resampled with replacement to
give new alignments. These are then subjected to the same phylogeny reconstruction
algorithm as the original.

For every clade in the original tree it is then checked how many times they also appear
in any of the bootstrapped phylogenies. This support value is then written next to the node.
A support value of 75 % thus means that one quarter of the bootstrapped replicates do
not reproduce that particular clade. In contrast to p-values, support values are generally
desired to be large. A high support value thus inspires confidence in the phylogeny.

The bootstrap has the important property that if the original sample is representative
and many bootstrap samples were generated, the estimated null distribution of the
random variable investigated, in our case the phylogeny, will be accurate in many cases
(Singh 1981; Bickel and Freedman 1981). Additionally, the bootstrap is computationally
simple and fast for small data sets.

However, the bootstrap was introduced into phylogenetics in the mid 1980s when
genetic data was scarce and trees were small. To overcome the computational require-
ments for whole genome phylogenies, faster variations were invented. These make the
process of bootstrapping and subsequent tree computation faster, but do not change the
underlying methodology (Stamatakis et al. 2008; Hoang et al. 2017).
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Table 2.1: Six artificial sequences. The nucleotides are visually split into logical blocks.

11111 11
123 456789 01234 56

A AAA CAAAAA CAAAA AA
B AAA ACAAAA CAAAA CC
C AAA AACAAA ACACC CC
D AAA AAACAA ACCAC AA
E AAA AAAACA ACCAC AA
O CCC AAAAAC AAAAC AA

1
0.55

0.94 E
D

C
0.7 A

B
O

Figure 2.4: A phylogeny with support values computed via bootstrapping.

To explore the bootstrap further, consider six nucleotide sequences, each sixteen
residues long (Table 2.1). Sequence O is an outgroup, distantly related to the others.
Each sequence has a singleton mutation specific to that sequence (columns 4 through 9)
giving a star phylogeny, (A,B,C,D,E,O). Columns 10 to 14 group clades (C,D,E) and (A,B,O)
to give the tree (((A,B), O), (C, (D,E))). However, the substitutions in columns 15 and 16 are
shared only by B and C. Under the infinite sites model, where each site may only be hit
by a mutation once, such homoplasies can arise only by recombination.

Figure 2.4 shows the result of bootstrapping this artificial data set with one hundred
replicates. Each split is labeled by the frequency with that it appeared in the replicates;
i. e. in 94 replicates, the two sequences D and E were grouped together. In 70 cases A and
B came together. In only 55 cases, C was grouped with D and E. This low support value is
caused by the homoplasy.

2.5 Pairwise Bootstrap

The classical bootstrap requires an MSA, which is not given in alignment-free sequence
comparison. However, in andi we have pairwise approximate alignments. One example of
such an alignment is shown in the top panel of Figure 2.5. In Klötzl and Haubold (2016)
we showed how the bootstrap can be extended to this kind of alignments. A similar
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Original
S1 TTCAACCCGTAGTCCGAGCCGTCTCATGATCGCTTACCCG
S2 ......................T.................

Replicate 1
S1 ACATTAGCCGCTTATTGGCATTTCAGCTCCCCCCGGTGAA
S2 ........................................

Replicate 2
S1 TGTCTCCCCCCCCAAGACCAGCTTAATAACAGACACCGAG
S2 .................T...T..................

Replicate 3
S1 TCAGCGTGTGCTTGCGGAGCTCCACCCATTACAACACGCG
S2 ...................T....................

Figure 2.5: Pairwise Bootstrap. Identical nucleotides are represented by a dot.

method had previously been used for rearrangement data (Y. Lin et al. 2012).
Figure 2.5 depicts a situation as it would commonly arise in andi or phylonium: two

anchors are separated by a single mismatch. This approximate alignment can be boot-
strapped. Figure 2.5 features three bootstrapped replicates created via resampling the
columns.

The original pairwise alignment has 40 matching nucleotides, with one mismatch in
between. During the bootstrap procedure, there is a one in 40 chance of drawing the
mismatch from all homologous columns. After creating the replicates, one again is only
interested in the number of mismatches for each to be used in phylogeny reconstruction.
Thus, the pairwise bootstrap simplifies to a Bernoulli process and can be modeled—
without explicit drawing and redrawing—by the binomial distribution.

For each pair of sequences one first needs the number of homologous nucleotides h, and
the number of mismatches m. In our example h = 40 and m = 1. The pairwise bootstrap
thus simplifies to the binomial distribution B(h; m/h), where the number of samples
is h and m/h the success probability. For a new replicate we just draw a new sample
from this distribution. In andi and phylonium we implement this using the Gnu Scientific
Library (Galassi et al. 2016). This process can also be extended to more complex models
of sequence evolution such as Kimura two-parameter with a multinomial distribution
(Kimura 1980).

This pairwise bootstrap process is simple and fast. Unfortunately, its usefulness de-
clines with the sequence length n. Let X be a random variable representing the amount
of mismatches in a new bootstrap replicate with the distribution X ∼ B(n; p)/n. Then
the variance is Var(X) = p(1− p)/n. So with increasing sequence length the data will be
less perturbed and the support values approach 1.

Figure 2.6 depicts the result of pairwise bootstrap on the running example. For this
small data set the numbers are very similar to the classical bootstrap. As already noted in
Klötzl and Haubold (2016), pairwise support values tend to be lower than those derived
from classical bootstrap.
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Figure 2.6: A phylogeny with support values computed via pairwise bootstrapping.
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Figure 2.7: For four taxa, there are three possible topologies.

2.6 Quartet Analysis

Alignment-free methods use a distance matrix as an intermediate step in phylogeny
reconstruction (Chapter 1). Guénoche and Garreta (2001) invented the quartet analysis to
detect how well a tree fits the associated distance matrix. A quartet is the topology of
four leaves. Figure 2.7 shows the three possible quartets for the leaves a, b, c, d on a tree.
Here a tree is defined as a connected, cycle-free graph with nodes of degree one or three,
i. e. an unrooted tree.

Given an unrooted tree T and a distance matrix M, of the three topologies for any quar-
tet only one will be embedded in the tree. Consider Figure 2.8, each internal edge divides
all leaves into four sets. Picking one leaf per set gives a quartet, i. e. a ∈ A, b ∈ B, c ∈ C,
and d ∈ D. This quartet supports the edge if e is its best configuration.

Mab + Mcd < min{Mac + Mbd, Mad + Mbc}
Iterating over all possible quartets one can compute a support value for that particular
edge (Guénoche and Garreta 2001). I here use an indicator variable 1 that has the value 1
if a quartet shows support for an edge, otherwise 0.

Re =
∑a,b,c,d 1(a, b, c, d support e)

|A||B||C||D|
We implemented a simple O(n5) algorithm to compute the quartet support values

(Klötzl and Haubold 2016): For each edge of the tree, iterate over all possible induced
quartets and count how many of them are supporting. This implementation computes the
support values for a tree of the 2681 E. coli in 12 minutes. An alternative to enumerating
all quartets per edge is to only take a random sample. On the same data set, at a sample
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e

A

B

C

D

Figure 2.8: Each internal edge splits a tree into four disjunct sets of leaves.
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Figure 2.9: A phylogeny with support values computed via quartet analysis.

size of 100, that reduces the runtime to 20 seconds at a negligible change in support
values.

Figure 2.9 shows the result of quartet analysis on the running example. It correctly
gives low support for the branch separating C, D, E from A, B. As this example contains
only six taxa, the value of 0.5 means that two of four quartets support this split. It should
be noted, that where bootstrapping can give a support value in quantities of the number
of replicates, quartet analysis inherently scales with the number of quartets formed by an
edge.

2.7 Quartet Concordance

In the previous section I defined Re as the fraction of supporting quartets per edge. In
a recent paper the following alternative was proposed (Pease et al. 2018): given a tree
and an MSA, sample up to N = 200 quartets per edge. For each quartet compute the
likelihood of all three possible topologies (Figure 2.7). A quartet is said to agree with
an edge if that topology has the highest likelihood. Let n1 be the number of quartets
agreeing with an edge and n2, n3 the alternative topologies. The quartet concordance is
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Figure 2.10: A phylogeny with support values computed via quartet concordance.

then defined as
QCe = 1 + ∑

i∈{1,2,3}

ni
N

logz

(ni
N

)
.

Here z is the number of non-zero counts out of n1, n2, n3. Additionally, if there is more
support for an alternative edge (n1 < max{n2, n3}), the sign of QCe is inverted. Thus,
QCe is a value in the range [−1, 1]. A positive value indicates support for the given edge,
values around zero prefer none of the three topologies, and negative scores indicate
support for an alternative topology. The quartet concordance thus has the unique feature
of differentiating between low support and counter evidence.

For the running example the quartet concordance does not detect the recombination
in the data set (Figure 2.10). However, there is another value computed in parallel, the
quartet informativeness. A quartet is only included in QCe, if its likelihood is a few orders
of magnitude larger than the next best arrangement. The QIe measures the amount of
quartets contributing to the QCe value. For the edge separating C, D, E and A, B, O this
value is 0.5. So half of the quartets agree with the given topology and for the other half
the best two options were equally likely and thus considered non-discriminatory.

2.8 Comparison

To further explore the usefulness of the different ways to compute support values, I
applied them to a data set of 29 Escherichia coli/Shigella genomes. Figure 2.11 shows
the phylogeny as computed by andi annotated with the support at three branches. The
support values are given in the order of the classical bootstrap, pairwise bootstrap,
quartet analysis and quartet concordance, respectively. For the top most given branch,
labeled A), only the quartet methods produce a support value less than 1.

The second set of support values, B), splits the cluster of the K12 strain. These genomes
are particularly closely related with the number of substitutions varying from 11 to 130.
This is one or two magnitudes lower compared to the rest of the data set. Out of one
hundred replicates in the classical bootstrap, none produced an alternative topology. The
pairwise bootstrap is less certain and gives a support value of 0.73. The quartet analysis
finds no deviating topology. However, the quartet concordance, is very low with just
10−5. This near-zero value can be interpreted such that no topology is favored, all are

40



2.8 Comparison

A)	1/1/0.8/0.24
Shigella	boydii	Sb227
Shigella	boydii	CDC	3083-94

Shigella	sonnei	Ss046
Escherichia	coli	IAI1

Escherichia	coli	SE11
Escherichia	coli	E24377A

Shigella	flexneri	2a	str.	2457T
Shigella	flexneri	2a	str.	301

Shigella	flexneri	5	str.	8401

B)	1/0.73/1/1e-5 Escherichia	coli	BW2952
Escherichia	coli	str.	K12	substr.	DH10B

Escherichia	coli	str.	K12	substr.	MG1655
Escherichia	coli	str.	K12	substr.	W3110

Escherichia	coli	ATCC	8739
Escherichia	coli	HS

Escherichia	coli	O157:H7	str.	Sakai
Escherichia	coli	O157:H7	EDL933
Escherichia	coli	O55:H7	str.	CB9615

Shigella	dysenteriae	Sd197
Escherichia	coli	UMN026

C)	0.63/0.6/0.69/0.45
Escherichia	coli	APEC	O1
Escherichia	coli	UTI89
Escherichia	coli	S88
Escherichia	coli	ED1a

Escherichia	coli	536
Escherichia	coli	CFT073

Escherichia	coli	0127:H6	E2348_69
Escherichia	coli	SMS-3-5

Escherichia	coli	IAI39

0.001

Figure 2.11: A Phylogeny for 29 E. coli/Shigella genomes. Support values are given in the
order of classical bootstrap, pairwise bootstrap, quartet analysis and quartet
concordance, respectively. Note that the branch lengths have been extended
to make room for the labels. Particularly branch B) is very short.

equally likely. This is a reasonable answer, as any topology is supported by only very
few substitutions.

For the bottom set of support values, C), all methods produce a mediocre support value.
This is correct, as that branch is a known site of recombination. For instance, the two
sequences of E. coli 536 and E. coli ED1a are prone to be relocated to different splits on the
tree depending on the reconstruction method. Comparing the two sequences using rush I
found a strong indicator of recombination, p < 4.4 · 10−120 (Section 1.7; Haubold et al.
2013).

After evaluating the four methods for computing support values on simulated and
real data, I cannot claim that one is better than the other. There seems to be no generally
applicable solution. The classical bootstrap proves to be insensitive on whole genomes
(see the K12 branch, above). Quartet concordance produces the most meaningful results.
For the K12 strain, it hints that no topology is favorable, showing that the optimum is
a star, not a tree. However, it is also the computationally most expensive method. Not
only does it require an MSA, for each branch the likelihood for numerous topologies is
recomputed. Where the other methods only took a few seconds, the quartet concordance
took 45 minutes to produce results for the 29 E. coli genomes.

With its initial publication, andi was almost as accurate as alignment-based methods
albeit being much faster (Haubold et al. 2015). Both was mainly due to the approximate
pairwise alignments based on an efficient implementation of maximal matches (Sec-
tion 1.6). Since then, the program has been further optimized (Section 2.1) and extended
with features such as the pairwise support values (Section 2.3). However, the amount of
sequence data continues growing and andi will be considered slow when compared to
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newly developed, faster but less accurate methods. Thus, in the next chapter I explain
our new approach phylonium, which keeps the ideas of anchors, but computes only a
single approximate alignment for multiple sequences.
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3 Implementing Phylonium

During the last few years, rapid sequencing of DNA has
become feasible, and data on nucleotide sequences of
various parts of the genome in diverse organisms have
started to accumulate at an accelerated pace.

Matoo Kimura

When we had no computers, we had no programming
problem either. When we had a few computers, we had a
mild programming problem. Confronted with machines a
million times as powerful, we are faced with a gigantic
programming problem.

Edsger Dijkstra

With andi we knew that anchor distances accurately estimate evolutionary distances
(Haubold et al. 2015). However, the run time of andi scales inherently quadratic with
the number of sequences. For a data set of n sequences, n indices are built and n(n− 1)
pairwise comparisons performed. A tool that builds only one index and piles all other
sequences on this reference would be much faster. That idea is implemented in phylonium
(Klötzl and Haubold 2019).

This chapter covers the implementation of phylonium in detail. First, a broad overview
of the algorithm is given. The remaining sections then cover more individual aspects and
optimizations down to instruction levels.

3.1 An Overview of Phylonium

Figure 3.1 is a flow chart depicting the algorithm of phylonium in seven steps. First, the
sequence data is read and stored in memory (A). The data is also normalized as files may
contain residues such as an N, indicating an unidentified nucleotide as opposed to just
the four canonical bases ACGT. Characters other than ACGT are removed from the data.

The old program, andi, now would create an index for each sequence and continue
with pairwise comparison. In contrast, phylonium builds only a single index for one of
the sequences in the whole data set (B). This particular input sequence is called the
reference. If no reference is explicitly set by the user, a sequence of median length is picked
by default (Section 4.4). For this reference an ESA is built using the libdivsufsort library
(Fischer and Kurpicz 2017). Going from n indices to just one not only makes the program
faster, it also provides a common system of coordinates for the pairwise comparison step.

Next, all other sequences are aligned against the reference (C), producing an anchor
alignment (Figure 3.2). Note that, to save memory, a homologous segment does not retain
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read genome files
and normalize

build index
for reference

stream queries
against reference

filter for
orthologies

optional
complete deletion

compare homol-
ogous segments

print
distance matrix

A B

CD

E F

G

Figure 3.1: A flow chart presenting the seven central steps of phylonium.

2a 2b 2c

1a 1b

Reference

Figure 3.2: An Anchor Alignment. Each homologous segment begins and ends with an
anchor, an exact match to the reference sequence.

the information where anchors, and thus, exact matches are located. Hence, the many
exact matches contained in anchors are again compared during distance computation
(Section 3.3). In contrast, in andi anchors could be skipped and only the gaps in between
needed to be compared.

Distance estimation should ideally be based on orthologous regions. The homologies
found by phylonium thus need to be filtered for duplications (D): If homologous segments
from the same query sequence overlap on the subject, all but one instance are removed
(Section 3.2).

At this point all homologous segments from all queries are ordered with respect to the
same coordinate system, the reference sequence, as depicted in Figure 3.2. This allows
an implementation of complete deletion similar to MSAs, introduced in Section 1.2 (E).
Instead of explicitly scanning each column for gaps, with phylonium I can use a sweeping
line approach (Section 3.2).

Once the set of homologous segments has been determined, with or without complete
deletion, the next step is the pairwise comparison (F). For this, phylonium looks at all
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Q

R

Figure 3.3: An Anchor Alignment. The blocks represent anchors. Spanning from left to
right these anchors form a homologous segment.

overlapping segments from two sequences and compares them nucleotide by nucleotide.
At this point it needs to decide whether one or even both of the segments match the
reference in reverse. Phylonium calls the optimized routines for the comparisons to count
the number of mismatches between all pairs of sequences (Sections 3.3 and 3.5).

As a final step, the number of mismatches for each pairwise comparison are trans-
formed into evolutionary distances via the Jukes-Cantor correction (Jukes and Cantor
1969). This method corrects for hidden substitutions (e. g. A→ T→ A, Section 1.2). Finally,
phylonium prints the distance matrix in Phylip format (G).

3.2 Anchor Alignment

Phylonium is categorized as alignment-free as it does not require an MSA as one of its inputs.
However, it builds a similar structure internally that can be considered an approximate
gap-free MSA, the anchor MSA. Figure 3.3 depicts the reference R and a query sequence
Q. Using the ESA, phylonium detects the longest prefix of Q that also appears in R
(Section 1.6 and Listing 3.1). If this match is unique and longer than the threshold t, it is
an anchor (Section 1.5). The next nucleotide is guaranteed to differ between Q and R and
is skipped. If the match starting right after it is another anchor, this right anchor and the
previous left anchor form a pair if they are equidistant. Thus, an anchor pair consists of
two exact matches with the same amount of intermediate nucleotides on both sequences.
Similarly, Figure 3.3 depicts three equidistant anchors, which then form a single local
alignment.

The algorithm in Listing 3.1 makes use of the techniques developed in Section 1.6
for quickly finding maximal matches. In particular, it always finds the longest exact
match starting from any position q. In line 39 q gets increased by the length of the
current match plus one for the substitution at its end. Finding such a match takes time
O(|P||Σ|) where |P| is the length of the maximal match. In total the run time per query
thus is O(|Q||Σ|). The memory requirement is small as only a single ESA and the list
of homologous segments need to be stored. The ESA computation consumes O(|R|)
memory, the homologous segments O(|Q|).

Streaming a query against the reference results in many of these local alignments
(Figure 3.2). Of these segments phylonium only stores the beginning and end points on
both sequences. Implicitly this also encodes the direction of homology as is necessary for
reverse matches such as segment 1c in Figure 3.4. All the segments from one query are
then piled onto the reference. The evolutionary model built into our anchors guarantees
that the segments are homologous, i. e. they arise from common descent. However,
homologies may also arise within a sequence. Figure 3.4 depicts a situation that can easily
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Listing 3.1: Matching a query Q against a reference R in phylonium producing a list of
homologous segments h. The enhanced suffix array is denoted by E.

1 fn anchor_alignment
2 requires R, E
3 input Q
4
5 let t ← threshold(R)
6
7 let last_pos_q ← 0
8 let last_match ← ⊥
9 let last_was_right_anchor ← false

10
11 let current ← segment(0,0) // pos and length
12 let q ← 0
13 while q < |Q| do // Stream the complete query
14
15 // Find the next maximal match
16 m ← lucky_match(R, Q, last_match, q) or get_match(E, Q[q. . .])
17 if m.is_unique and m.length ≥ t then
18 // m is an anchor
19
20 if q > last_pos_q and q - last_pos_q = m.pos - last_match.pos then
21 // Found a pair
22 current.length ← current.length + q - last_match.end + m.length
23 last_was_right_anchor ← true
24 else
25 // new anchor but breaks current segment
26 if last_was_right_anchor then
27 h.append(current)
28 end
29
30 current ← m
31 last_was_right_anchor ← false
32 end
33
34 // Save values for later
35 last_pos_q ← q
36 last_match ← m
37 end
38
39 // Skip the mutation
40 q ← q + m.length + 1
41 end
42
43 output h
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2b 2c

2a 2d

1b

1a 1c

Reference

Figure 3.4: Multiple segments of each query align to the same region on the reference
leading to ambiguous orthology.

crop up in sequence comparison. The reference contains a segment that appears twice
in each query. If one were to compare all five homologous segments, that would be six
comparisons: 1a×2a, 1a×2b, 1a×2c, 1b×2a, 1b×2b, and 1b×2c. Making all comparisons
would bias the overall estimation. As copy number variations of transposons are common
in prokaryotes, the local alignments have to be cleaned.

To remove the repeats and limit analysis to a single ortholog, Gao and Miller (2020)
pick the copy with the longest maximal match as the primary ortholog. For phylonium
we instead focus on chains of non-overlapping segments. Only segments on the chain
with the maximum number of aligned nucleotides are kept. For instance, in Figure 3.4
the chain 1a-1c aligns more nucleotides than 1b-1c. Thus, the former is kept and 1b
is removed. The algorithm to compute the best chain is given in Listing 3.2. For each
homologous segment a score and a predecessor value is kept. An initial chain is set to
contain only the leftmost homology. With the next element, one checks whether it can
extend the first one without overlap. If so, the chain is extended and the score increased.
Otherwise, a new chain is started. Iteration continues until all homologous segments are
processed.

The highest value in score now gives the end of the chain with the most aligned
nucleotides. Iterating through the pred array, one can visit all segments in the chain.
The elements not visited are removed from the list of homologous segments for this
query. This algorithm is related to the algorithm for determining the heaviest increasing
subsequence and runs in time O(m2) where m is the number of homologous fragments
(Ohlebusch 2013, Section 8.3). Even though O(m log m) algorithms exist, as m is usually
much smaller than the sequence length, a quadratic algorithm is acceptable. As a result,
all remaining homologous segments of a single query are now free of overlaps. Figure 3.5
depicts the situation after chaining.

Listing 3.3 gives the algorithm for complete deletion used in phylonium. The input is
H, a list of homologous segments, and Hi is the list for sequence i. Each homologous
segment has a start and an end point on the reference. First, they are sorted by the
starting point. Then for each sequence one counter fi is initialized to zero. These counters
represent the segments to be checked for overlap and initially, this front is the leftmost
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Listing 3.2: Chaining of homologous segments
1 input h // a sorted list of homologous segments
2
3 m ← size(h)
4 for i = -1 to m:
5 pred[i] ← -1
6 score[i] ← 0
7 vis[i] ← false
8
9 score[0] ← h[0].length

10
11 for i = 1 to m:
12 j ← argmini {score[i] | h[j].end < h[i].start }
13 pred[i] ← j
14 score[i] ← score[j] + h[i].length
15
16 s ← argmaxi(score[i])
17 while s >= 0:
18 vis[s] ← true
19 s ← pred[s]
20
21 output [h[i] if vis[i]]

2b 2c 2d

1a 1c

Reference

Figure 3.5: An anchor alignment with resolved duplications after chaining.
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Listing 3.3: Complete deletion on sets of homologous segments
1 input Hi
2
3 for i = 0 to n:
4 sort (Hi)
5 fi ← 0
6
7 while each fi < size(Hi) do
8 common_start ← maxi(Hi[ fi].start)
9 e ← argmini(Hi[ fi].end)

10 common_end ← He[ fe].end
11
12 if start < end:
13 for i = 0 to n:
14 Di.append( trim(Hi[ fi], common_start, common_end))
15
16 fe ← fe + 1
17 done
18
19 output D

2b 2c 2d

1a 1a 1c

Reference Reference Ref.

Figure 3.6: An anchor alignment after complete deletion.

segment per sequence. For instance, in Figure 3.2 the front consists of 1a, 2b and the
Reference.

Among the segments of the front, the algorithm looks for the ones with the right-most
start and the leftmost end. These values give the overlap of all segments in the front.
If there is an overlap, a trimmed copy of all homologous segments is appended to the
output alignment Di.

The element e with the leftmost end limits the front to the right. It thus gets removed
from the front and is replaced by its right neighbor (2b by 2c). This new front is then in
turn checked for an overlap. Iteration continues until all segments of one sequence are
processed.

The result of applying complete deletion to the example is given in Figure 3.6. Given
n sequences and at most m homologous segments per sequence, the sorting step takes
time O(nm log m). In each iteration of the while-loop, the maximum and minimum of n
elements are found. Further, if there is an overlap, all n homologous segments need to be
trimmed. Thus, each loop iteration is O(n). In the worst case, there is one overlap per
iteration. As there are at most mn homologous segments to consider, the total run time of
this algorithm is O(n2m), assuming already sorted homologous segments. In practice,
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Listing 3.4: Comparing two sequences
size_t mismatches(const char *seq1, const char *seq2, size_t length)
{
size_t num_mismatches = 0;
for (size_t k = 0; k < length; k++) {
if (seq1[k] != seq2[k]) {
num_mismatches++;

}
}
return num_mismatches;

}

the algorithm is very fast and does not impact the run time of phylonium.

3.3 Fast Sequence Comparison

As explained in Section 3.2, phylonium, unlike andi, does not record which parts of
a homologous segment are made up of exact matches. This saves memory, but as a
consequence, phylonium counts the mismatches in much longer regions for all O(n2)
comparisons where n is the number of sequences. To ensure performance, I optimized
the mismatch counting.

A number of libraries exist for computing a pairwise alignment, or for calculating the
edit-distance between two sequences including mismatches and indels. Among these
are seqan (Döring et al. 2008), biopp (Dutheil et al. 2006), and edlib (Šošić and Šikić 2017).
However, for anchor pairs we assume they are already aligned and contain no indels.
Thus, for phylonium, we need a quick method to count only the mismatches. Listing 3.4
shows such a function written in C (adapted from Seemann 2018).

The code compares the two sequences seq1 and seq2 byte by byte and increases a
counter whenever two nucleotides mismatch. This code is simple but comes with a few
performance problems. Firstly, byte-by-byte comparison is suboptimal, and secondly,
branch misprediction can lead to an additional slowdown. Both issues can be overcome
at the cost of higher code complexity.

A modern central processing unit (CPU) has so-called single instruction multiple data
(SIMD) capabilities, allowing it to process multiple input data simultaneously. Compilers
with auto-vectorization leverage the SIMD instructions for improved throughput. For
the code from Listing 3.4, an optimizing compiler creates a vectorized version, which
greatly improves the performance with no additional work required by the programmer.
However, manual intervention still pays off: using compiler intrinsics, one can increase
the throughput significantly (Fiori et al. 2017). Listing B.2 shows code two times faster
than the machine code produced by the compiler for Listing 3.4. The new code loads
16 bytes from both sequences and then compares them for equality. This results in another
16 byte value containing a byte with all bits set to one for equal and all zeros for unequal
nucleotides. Leveraging the _mm_movemask_epi8 function from the Intel SSE2 instruction
set, this long value is reduced by copying just the highest bit from each byte into a 16 bit
value. The result is a mask containing a 1 for each equal nucleotide and a 0 for a mismatch.
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Figure 3.7: Run times for Comparing two
Sequences of a Million Nucleotides. Each
number is the average of a few thousand
runs measured using the Google Bench-
mark library. The new method uses SSE2
instructions on 16 bytes at once. AVX2 and
AVX512 operate on 32 and 64 bytes, respec-
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Figure 3.8: Run times for Computing the
Reverse Complement of a Million Nu-
cleotides. Each number is the average of
a few thousand runs measured using the
Google Benchmark library.

Inverting this using a bitwise not (~) and then counting the 1s (popcount) computes the
number of mismatches in the 16 byte chunks. All of these counts get accumulated and
finally, for sequence lengths not divisible by 16, any remaining bytes are checked.

Depending on the CPU, its supported instruction set, and the length of the sequences,
the new code is up to two times faster than the auto-vectorized version (Figure 3.7).
Further improvements can be made by loop unrolling or using more advanced instruction
set extensions such as AVX2 (Intel Corporation 2018). Even wider registers using AVX512
instructions can further reduce the number of loop iterations but also reduce the clock
speed of the CPU. Thus, using AVX instructions slows down the regular code. Hence,
they only make sense for workloads with large compute-to-memory ratios and have
small advantage for sequence comparison (Tiwari et al. 2018). With this new method,
two sequences from the same strand can be compared at 13.1 GB/s, 60 % faster than the
8.0 GB/s without these optimizations.

3.4 Computing the Reverse Complement

DNA is a double helix consisting of two strands. In a sequencing experiments reads
may come from either of them. Thus, we also have to consider the opposite strand when
looking for homologous regions (remember the homologous segment 1c in Figure 3.4).

To compute the reverse complement, some programs iterate the given sequence in
reverse order and complement individual bases using a switch statement, for instance
mash and mummer (Ondov et al. 2016; Kurtz et al. 2004). This approach is simple and
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Listing 3.5: Computing the reverse complement
void revcomp(const char *sequence, size_t length, char *dest)
{
for (size_t i = 0; i < length; i++) {
char nucl = sequence[length - 1 - i];
int sum = nucl & 2 ? ’G’ + ’C’ : ’A’ + ’T’;
dest[i] = sum - nucl;

}
}

works on nucleotides in the common IUPAC notation (NC-IUB 1985). Another method
uses an explicit data table for complementing (e. g. Altschul et al. 1990), which is ap-
proximately ten times faster (Figure 3.8). An even faster way to compute the reverse
complement was created for BWA (Li and Durbin 2009): At first nucleotides are mapped
to small integers.

A 7→ 0 C 7→ 1 G 7→ 2 T 7→ 3

These values are chosen so that the simple function c(x) = 3− x complements the nu-
cleotides. BWA uses a value of 4 to represent non-canonical bases. While this approach
is very fast, one first has to bring the sequences into this encoded format, which inter-
feres with debugging as the strings are no longer human-readable. Thus, I created a
new method for computing the reverse complement that works directly on unencoded
sequences and is almost as fast as BWA.

The new method works by distinguishing between two cases of complementation:
A ↔ T and C ↔ G. For each case the subtraction approach from BWA can be used. For
instance, f (x) = 149− x complements between A and T with ASCII values. Assuming the
input data contains only canonical bases, the second lowest bit can be used to load the
correct constant for subtraction (Table 3.1). If the bit is set, load 158, which complements
C and G, otherwise load 149.

Table 3.1: The Ascii Representation of Nucleotides

Nucl. Bits
8765 4321

A 0100 0001
C 0100 0011
G 0100 0111
T 0101 0100

Listing 3.5 shows the code employing this new idea. It is both simple and SIMD-friendly.
Furthermore, it is almost as fast as the method from BWA, but more convenient.

To complement a sequence of a million nucleotides the switch-based method took
6057 µs (Figure 3.8). The table method is much faster at just 534 µs. This difference is due
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to every fourth instruction being a branch in the switch-method of which every fifth is
mispredicted. The constant rollbacks stall the CPU, which reduces the executed number
of instructions per cycle to 0.45. For comparison, the table based method manages a great
4.57 instructions per cycle.

The new method described here requires only 75 µs to reverse-complement a million
nucleotides. Even though it only executes 1.06 instructions per cycle, each instruction
handles multiple bytes. The numbers for the BWA approach are very similar. So both are
about ninety times faster than the switch-based method at the expense of generality.

3.5 Comparing with the Reverse Complement

In Section 3.3 I explained how special CPU instructions can be leveraged to quickly count
the number of substitutions between two sequences. However, that technique requires
both sequences to be in the same orientation, either both forward or both backward. If one
is forward and the other backward, more care needs to be taken. For instance, consider
the homologous segments 2b and 1a from Figure 3.6. To compare those two, one strategy
would be to first compute the reverse complement of either sequence and then get the
substitution rate using the procedures from the previous sections. Unfortunately, this
requires temporary memory for the reverse complement. While that could be avoided
using a static fixed-size buffer, a fast method exists that compares a sequence directly to a
complementary one.

Table 3.1 shows the bit representation of nucleotides. Note how for complementary
nucleotides the second bit is equal, but the third bit has to differ. Thus, XORing the two
nucleotides and selecting only bits two and three, enables checking for the complement
with just one comparison.

int is_complement(char x, char y)
{
int value = x ^ y;
return (value & 6) == 4;

}

Equipped with this branchless way of testing for the complement one can quickly count
the number of substitution for two sequences on opposite strands (Listing B.3). The two
sequences are again processed with SIMD instructions: A chunk from the beginning of one
sequence and one from the end of the other are loaded. The second one is then reversed
using a special shuffling instruction. Next, the idea from is_complement is applied: The
two chunks are XORed, bit-masked, and compared. Analogously to Section 3.3, I leverage
a popcount to quickly count substitutions. Any remaining bytes are processed via simple
scalar code.

Comparing across different strands should ideally be as fast as comparing on the same
strand. Thus, as a target I here use the code from previous sections (Listing B.2). As
a baseline, I use a composition of the fast reverse complement and the fast counting
method (Figure 3.9). Again, the simulated sequences are one megabase long and every
one hundredth position is mutated.

As in the previous sections, simply comparing two sequences with a million nucleotides
takes 71 µs; reversing and then comparing 128 µs. Directly comparing the forward with
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lion Nucleotides on Opposite Strands.
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sand runs measured using the Google
Benchmark library. The forward compari-
son was explained in Section 3.3. The sec-
ond method is a reverse complement fol-
lowed by forward comparison. The new
method combines the two steps.

the reverse strand as explained takes 77 µs per run. Thus, it is at par with the direct
comparison.

With the new functions, two sequences from the same strand can be compared at
13.1 GB/s, from different strands with 12.9 GB/s. At this speed, two whole human
genomes can be compared in less than half a second. For comparison, the maximum
memory bandwidth of the used CPU is 85.3 GB/s. It thus might be of interest to find out
if phylonium is bound by that limit when running on multiple cores.

A Library of Bioinformatics Routines

In the previous sections I covered three routines central to bioinformatics: mismatch
counting, the reverse complement, and counting mismatches across strands. Further,
I outlined three implementations with superior performance compared to common
approaches. As these could also benefit third-party software apart from phylonium, I
created a library containing described routines and more (libdna in Chapter A).

Usually, when a program is compiled, it is optimized for the system it was compiled on.
With libdna multiple versions of the same function are provided. That way the optimal
implementation can be chosen at run time depending on the instruction set provided by
the CPU. The same method is used in phylonium.

3.6 File Parsing

The input to andi and phylonium are assembled DNA sequences. These come in the
text-based Fasta format (Pearson 1990).

>AE005174 Escherichia coli O157:H7 EDL933, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTCTCTGACAGCAGC
TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA
TATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACC

A Fasta file contains multiple sequences each starting with a header line. The header is
denoted by a ‘>’ (greater than) followed by the sequence name and an optional comment.
All the following lines, not starting with a ‘>’, are the sequence. Back, when sequences
were short, it became custom to insert a line break after 70 characters to improve legi-
bility. However, the complete genome of Escherichia coli O157:H7 EDL933 is 5.5 million
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nucleotides long, interspersed by almost 79 000 line breaks. For proper processing in
phylonium, sequences need to be concatenated with all line breaks removed.

While parsing a Fasta file is easy, doing so efficiently is not. Many bioinformatics pro-
grams use kseq.h, a parser that also handles sequence read data (Li 2012). Unfortunately,
it does not validate the input properly. For instance, every non-empty Fasta file should
start with a ‘>’. However, kseq.h just reads the file until it finds the first ‘>’, thereby accept-
ing malformed files and producing garbage. For phylonium I wanted to provide a better
user experience. Thus, I wrote pfasta, a new parser that specifically checks this condition
and produces an appropriate error message if necessary. Extensive error checking implies
a small run time cost, but at the same time improves the security. The latest version of
kseq.h can parse data at 2.16 GB/s. My own parser runs at 2.05 GB/s or about 1.7 cycles
per input byte. This small slowdown is due to the additional checks required for error
handling. I validated my parser using a static analyzer, as well as fuzzing in conjunction
with the address sanitizer (Stallman and DeveloperCommunity 2009).

In this chapter, I introduced anchor distances in general and my new implementation,
phylonium, in particular. I gave an overview of the used algorithms and data structures. I
explained how we estimate the evolutionary distance and mentioned some techniques
used to make phylonium fast. In the following chapter, I explore phylonium with respect
to accuracy and computational performance.
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The second thing is this ‘gut feel’ that true things are
simple when you understand them really (in my view)
excludes a massive amount of biology where it’s basically
‘all about the details’. There are some big sweeping truths
in biology but . . . so much baroque insanity.

Ewan Birney

The easiest way to be at the top of your field is to choose a
very small field.

Simone Giertz

In Chapter 3 I introduced a new tool for alignment-free distance estimation, phylonium.
In the following I evaluate it under a variety of different conditions with respect to
accuracy and computational performance. For that I use a number of simulated and
real data sets similar to those used in the AFproject, a recent thorough assessment of
alignment-free phylogeny reconstruction methods (Zielezinski et al. 2019). The AFproject
covered 74 tools, of which I include in my analysis the five most accurate programs
already covered in Section 1.4: cophylog was one of the first k-mer based tools to give
accurate distance estimates; fswm, an acronym for filtered spaced word matches, is very
accurate up to high substitution rates (but slower than cophylog); mash is very fast
by hashing sequences to a fixed size sketch; andi and phylonium have been covered
extensively in Chapters 2 and 3, respectively. Additionally, I use the MSA program mugsy
for computing alignment-based reference phylogenies.

4.1 Accuracy

One essential test for alignment-free tools is the estimation of distances on simulated data:
For two sequences of the same length, separated by a specific number of substitutions, a
good tool should accurately recover the number of substitutions. This task is simple in
the sense that the sequences contain no gaps and are free of structural rearrangements
such as duplications or transversions.

To verify that all tools pass this basic test, I simulated a 200 kb sequence with uniform
nucleotide composition. A second sequence was derived from the first one by introducing
a fixed number of substitutions. A hundred of these pairs were compared per tool for
one data point in Figure 4.1. It is apparent that all programs accurately estimate the
evolutionary distance. Mash shows some variation at both ends of the spectrum. For
distances above 0.3 substitutions per nucleotide, estimation becomes more difficult for
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Figure 4.1: Estimation of substitution rates on perfect data. Shown are the mean and
standard deviation of 100 runs.

all programs and their results start to fluctuate. This is understandable, as every third or
fourth residue is mutated and their homology begins to fade.

4.2 Limits

With an increasing substitution rate, it becomes more difficult to accurately estimate the
evolutionary distance for unaligned genomes. Figure 4.2 shows the accuracy of mash
and phylonium at the high end of substitution rates. The estimates of phylonium stay very
close to the ideal, represented by the dotted line, up to a substitution rate of 0.5. Mash,
on the other hand, tends to underestimate distances starting at 0.3. Beyond these two
points, 0.5 and 0.3, the estimates of both tools start to vary significantly. Furthermore,
a comparison can fail if mash detects no overlap between the sketches, or if phylonium
finds no anchor pairs. The dashed lines in Figure 4.2 represent the fraction of successful
comparisons. At small substitution rates all, comparisons are successful, but from 0.25 on
for mash and from 0.55 for phylonium the numbers drop rapidly.

For substitution rates above 0.3, phylonium underestimates the evolutionary distance,
though not as strongly as mash. Furthermore, the fraction of the sequence contributing to
the distance estimates, called the coverage, becomes less and less (Figure 4.3). Already
at a substitution rate of 0.3 the coverage is almost down to half the sequence. At even
higher rates, the estimated distance is based on only a tiny fragment of the sequences. To
alert the user when this happens, phylonium prints a warning once the coverage drops
below 20 %.

The minimum length, t, for an anchor is chosen such that at most 2.5 % of random
matches pass this threshold. As the threshold is an integer, the actual number of random
matches passing is noticeably lower. For instance, for two 100 kb sequences only 1.2 %
of random matches are longer than the threshold, t = 12, regardless of the substitution
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Figure 4.2: The distances estimated from highly divergent sequences. Simulated were a
hundred 100 kb sequence pairs. The dashed lines show how many successful
comparisons contribute to each data point.
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Figure 4.3: With increasing divergence, the estimates from phylonium are based on ever
smaller regions. The main reason for this is that matches become shorter and
harder to distinguish from non-homologous matches.
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rate. So the number of non-homologous background anchors is the same for all pairwise
comparisons. However, as the substitution rate increases, the proper, homologous anchors
become shorter (Section 2.1). Thus, as the number of matches passing the threshold
decreases, the proportion of homologous anchors also decreases (Figure 4.3). So with
an increasing substitution rate the probability of finding an anchor pair decreases until
estimation becomes impossible.

On simulated sequences, substitutions are typically distributed uniformly across the
length of the sequences for simplicity. However, the same is not true for real sequences,
as genomes are subject to highly variable functional constraints. Introns mutate faster
than exons, and intergenic regions faster than regulatory regions. Some regions, like the
genes encoding ribosomal RNA, are so conserved, they can be aligned across the whole
tree of life (Woese and Fox 1977). All this leads to local changes in the substitution rate
(Section 1.7). This is a significant challenge in alignment-free phylogeny reconstruction.
For instance, Röhling et al. (2020) found that distances computed by mash started to
diverge when a sequence was surrounded by unrelated random sequence. Phylonium
does not exhibit this behavior and instead limits its analysis to the homologous regions
(Klötzl and Haubold 2019, Fig. S2). This is an effect of the coverage as shown in Figure 4.3:
as the divergence in a region increases, it will contribute less to the estimated distance.
Thus, for mosaic genomes the more closely related regions are covered better and the
overall substitution rate is underestimated. So on real data, as sequences become more
divergent, phylonium has the tendency of limiting its analysis to conserved regions. We
thus recommend to mainly use phylonium on closely related sequences, for example
sequences from a bacterial outbreak.

4.3 Benchmark Data

In the AFproject, Zielezinski et al. (2019) compared 74 methods for alignment-free phy-
logeny reconstruction. To this end, they used various real and simulated data sets. They
ran each tool on every data set, computed a phylogeny, and compared that to a reference
tree. For the tree comparison they used the Robinson-Foulds distance (RF), a measure of
topological similarity (Robinson and Foulds 1981).

It was a design goal to make phylonium accurately estimate evolutionary distances, so
that a resulting tree not only had the correct topology, but also correct branch lengths.
RF distances are based solely on tree topology. However, phylonium produces a distance
matrix. The relationship between tree and distance matrix is not straightforward. To
illustrate this, Figure 4.4 depicts three rooted trees of five taxa, T1, . . . , T5. Assume tree A
reflects their true phylogeny. For tree B the taxa T2 and T3 were swapped. This leads to
the two clades {T1, T2} and {T3, T4} that appear in A but not B. In the other direction it
is {T1, T3} and {T2, T4}. These four clades exclusive to either tree correspond to a rooted
RF-distance of 4 between A and B.

Between A and C the taxa T2 and T5 are swapped. This leads to two clades unique
to either tree: {T1, T2} and {T1, T5}. However, as the outgroup changed, that again
corresponds to a rooted RF-distance of 4. So C, just like B, has an RF-distance to A of 4,
but C represents a much more drastic departure from A than B.
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Figure 4.4: Three trees. Analog to Klötzl and Haubold (2019).

A
T1 T2 T3 T4 T5

T1 0 2 4 4 34
T2 2 0 4 4 34
T3 4 4 0 2 34
T4 4 4 2 0 34
T5 34 34 34 34 0

B
T1 T2 T3 T4 T5

T1 0 4 2 4 34
T2 4 0 4 2 34
T3 2 4 0 4 34
T4 4 2 4 0 34
T5 34 34 34 34 0

C
T1 T2 T3 T4 T5

T1 0 34 4 4 2
T2 34 0 34 34 34
T3 4 34 0 2 4
T4 4 34 2 0 4
T5 2 34 4 4 0

Figure 4.5: Three matrices.

Figure 4.5 shows the distance matrices from which the trees in Figure 4.4 were com-
puted. In Klötzl and Haubold (2019) we used a variant of the Hausdorff-metric to compare
two distance matrices D and d:

∆(D, d) = max{|Dij − dij| : 1 ≤ i, j ≤ n} .

For the running example ∆(A, B) = 2 and ∆(A, C) = 32. The new measure thus
captures the difference between the matrices, and in extension, the trees, where RF sees
none. We consider the ∆-score a complementary measure to the topological RF-distances.

The ∆-score can also be used to detect differences that are lost in the tree representation.
Consider the two distance matrices in Figure 4.6. The entries differ by up to 0.125, the
∆-score. However, using neighbor-joining, they both produce the same phylogeny. Not
only is the topology identical (RF = 0), but so are the branch lengths. So there can be a
significant difference between two matrices that is lost after tree reconstruction.

A B C D
A 0 3.1 4 4
B 3.1 0 3 3.5
C 4 3 0 3
D 4 3.5 3 0

A B C D
A 0 3.1 3.875 4.125
B 3.1 0 3.125 3.375
C 3.875 3.125 0 3
D 4.125 3.375 3 0

Figure 4.6: Two different matrices implying the same phylogeny.
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Yersinia	pseudotuberculosis	IP32953
Yersinia	pestis	Pestoides	F
Yersinia	pseudotuberculosis	IP31758
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Figure 4.7: An alignment-based phylogeny of eight Yersinia species.

Yersinia

One of the data sets in the AFproject contains eight whole Yersinia genomes, a bacterial
genus including the cause of the plague. Their length varies from 4.5 to 4.7 million
nucleotides, amounting to a total size of 36 Mb. Aligning these with mugsy takes about
6 minutes. From that I computed a reference phylogeny using Jukes-Cantor distance
estimation and neighbor-joining (Figure 4.7).

Phylogeny reconstruction on this particular data set is very sensitive to small changes
in the estimated distances. Except for the outgroup, all other sequences are very closely
related. Thus, a small estimation error can lead to a different topology and hence to an
increase in the RF-distance. Table 4.1 shows the accuracy of results produced by different
tools when compared to the reference.

On this data set, mash produces a surprisingly bad tree, topology wise (RF = 12).
Phylonium is almost as accurate on the Yersinia data as andi but much better than mash
(Table 4.1). While fswm and cophylog have a small RF-value of 2, both their ∆-values are
even bigger than that of mash.

In the following I used seq-gen to simulate sequences along the true Yersinia phylogeny
with varying degrees of divergence (Rambaut and Grass 1997). Initially, the scale is
the same as in Figure 4.7. On these 200 kb sequences mash is much better and gives an
RF-distance of only 2 (Figure 4.8A). Its estimates vary just a bit up to the point of 0.03,
beyond which some comparisons fail and no correct distance is estimated. Phylonium,
like andi, stays very accurate until 0.04.

Table 4.1: Reconstruction accuracy on the Yersinia tree.

Tool RF ∆-score
andi 6 0.0011913
phylonium 8 0.0014488
mash 12 0.0023069
fswm 2 0.0023171
cophylog 2 0.0033996
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Figure 4.8: Reconstruction accuracy on simulated Yersinia sequences. The leftmost point
represents the original scale of the tree. A The RF-value of the estimated tree
to the simulated tree. B The ∆-value between the simulated sequences and
the distance matrix estimated by the different tools. As noted in Section 4.6,
cophylog and fswm are rather slow, so they were excluded from this analysis.

Escherichia coli and Shigella

Another data set commonly used in the benchmarking of alignment-free distance estima-
tion consists of 29 whole Escherichia coli and Shigella genomes (Yi and Jin 2013; Haubold
et al. 2015). These are more distantly related than the Yersinia with an average substitution
rate of 0.02 compared to 0.002 for the Yersinia. Figure 4.9 shows their phylogeny computed
using mugsy.

Again, I ran the same set of tools on this data set (Table 4.2). Phylonium, with a ∆-score
very close to andi, produces a slightly different topology. Mash is worse for both the RF
and the ∆-score, but can be improved by using ten times bigger sketches: RF = 6 and ∆ =
0.007394 for mash10k which comes with a 20 % increase in run time. Fswm and cophylog
produce mediocre results despite taking more than a minute to compare the sequences.
As the other tools are much faster, these two are henceforth excluded from the analysis
(see the run times in Section 4.6).

As with the previous data set, I simulated sequences along the original tree. However,
instead of stretching the tree, it was compressed so that the distances between sequences
are reduced. At the original scale all tested tools produce a small RF and ∆-score (Fig-
ure 4.10). As the branch lengths shrink, the estimated distances start to vary. For all tools,
as the number of mutations decreased, the reconstructed trees became less accurate, and
the RF-distance grows (Figure 4.10A). Phylonium is on a par with andi. Mash with default
parameters is less accurate, but improves by increasing the sketch size. This, however,
does not hold for the ∆-score where both mash variants are less accurate than andi and
phylonium (Figure 4.10B).
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Figure 4.9: A phylogeny of 29 E. coli/Shigella genomes computed using an MSA.
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Figure 4.10: Reconstruction accuracy on simulated E. coli/Shigella sequences. The right-
most point represents the original scale of the tree. A The RF-value of the
estimated tree to the simulated tree. B The ∆-value between the simulated
sequences and the distance matrix estimated by the different tools.
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Figure 4.11: The distance estimation accuracy for each possible reference as a function of
reference length.

4.4 Choice of Reference Sequence

In Section 3.1 I explained that phylonium picks a single reference sequence from the data
set. For this reference an index is built and all other sequences are aligned against it. The
choice of reference thus influences the accuracy of the estimation.

For the data set of 29 E. coli/Shigella, I ran phylonium once with each sequence set as
reference. Figure 4.11 summarizes the results of this experiment. The ∆ values fluctuate
between 0.0046 and 0.0057. Thus, the best reference is at par with andi, while the worst
reference is still better than mash (∆ = 0.008, Table 4.2).

While the plot suggests that there is a negative correlation between sequence length
and reconstruction accuracy, this is a property of this particular data set. (For instance on
the Yersinia the correlation is slightly positive.) In the absence of a user-supplied reference,
we choose a sequence of median length as the reference. This is more robust than picking
one of the extremes as they might be misassemblies or outgroups (Section 4.6). Instead,
our analysis is based on a common representative of the sample. The automatically
determined reference is highlighted in Figure 4.11 and is indeed among the better choices.

Table 4.2: Reconstruction accuracy on the Eco29 tree.

Tool RF ∆-score
andi 2 0.004674
phylonium 6 0.004940
mash 8 0.008284
mash10k 6 0.007394
fswm 6 0.006398
cophylog 4 0.012042
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Figure 4.12: Run times for sequences of varying length.

4.5 Complete Deletion

Internally, phylonium aligns all sequences against the reference. However, this anchor
alignment is approximate in that it does not contain gaps at nucleotide resolution but on
a larger scale. Due to variation at sequence level and gene content, the aligned segments
do not begin and end at the same sites for all queries. Specifically, some parts of the
reference may only be covered by a subset of sequences. In order to restrict distance
estimation to segments common to all sequences, phylonium supports complete deletion
(Section 3.2).

Given the data set of 29 E. coli/Shigella, I ran phylonium and a reference MSA both with
complete deletion. Compared to previously, phylonium only has an RF-distance of 1 to
the new reference phylogeny (6 to the old reference). The ∆-score however increased to
0.0061, thereby exceeding the range of values from the previous section (0.0046 – 0.0057).

4.6 Resource Consumption

Alignment-free distance estimation should ideally be as accurate as alignment-based
methods, only faster. To explore to what extent this is true for phylonium, I first explore the
time and memory consumption on simulated data, particularly the length of sequences.
To this end I simulated two sequences of varying lengths with a fixed 0.01 substitutions
per site. Figure 4.12 shows the run time for 2 kb sequences up to 1.6 Mb sequences.
The tools exhibit diverse behavior for short sequences, but all grow linearly for long
sequences. As andi does calculated distances in both directions, it is two times slower
than phylonium.
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Table 4.3: Run time and memory consumption on the Eco29 data set.

Tool Run time (s) Memory (MB) CPU utilization
mugsy 6647.24 2877 101 %
andi 15.17 1374 668 %
cophylog 67.14 1876 550 %
fswm 196.24 2576 790 %
mash 0.70 86 722 %
mash10k 0.85 104 708 %
phylonium 2.21 357 250 %

In previous sections we saw that accurately estimating distances on real data is much
harder than on simulated data due to the presence of duplications, indels etc. One might
expect that the additional complications of real data also slow down the analysis. For
instance, the string algorithms employed in phylonium are sensitive to long repeats. Older
suffix array construction methods have been particularly sensitive to repeats (Manzini
and Ferragina 2004). To test this hypothesis, I a) simulated sequences, and b) took a prefix
of an E. coli genome and mutated it with the same substitution rate. Comparing the run
times of tools on these two kinds of data gave no significant difference even at varying
sequence lengths (p-value = 0.9801, two-sample Kolmogorov-Smirnov test).

One other variable at play is the number of sequences. As already noted at the be-
ginning of this thesis, studies can contain thousands of bacterial isolates (Tang et al.
2017). Since the output of all alignment-free tools is a distance matrix, the computational
demand grows quadratically in the size of the data set. It thus is crucial to reduce the
run time for each individual comparison to a minimum. In the following I explore the
efficiency of different tools on real data sets of varying size.

Eco29

At first I measured the resource consumption on the set of 29 E. coli and Shigella already
explored in Section 4.3. All tests were executed under real-world conditions: Tools could
use eight of the twelve virtual cores of an Intel Xeon W-2133 CPU clocked at 3.6 GHz.
The data set itself is 145 Mb in size but was stored in RAM to avoid disk latency.

As a baseline, computing an MSA for this data set using mugsy takes almost 2 hours
and 2.9 GB RAM (Table 4.3). Andi is much faster, taking 15 s to compare all sequences,
requiring 1.4 GB of RAM. Mash is again much faster with just 0.7 s for the comparison.
Since mash converts sequences to sketches as they are read, it never has to hold the whole
data set in memory, thus using only 86 MB of RAM. Phylonium is in between with 2.2 s
and 360 MB of RAM. However, as this is such a small data set and the computation of
the ESA for the reference cannot be parallelized, on average it utilizes only 2.5 CPUs of
the eight available.
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Table 4.4: Run time and memory consumption on 297 E. coli.

Tool Run time (s) Memory (MB) CPU utilization
andi 771.52 2841 755 %
mash 6.22 114 790 %
mash10k 7.81 150 789 %
phylonium 28.63 1924 355 %

Table 4.5: Run time and memory consumption on 2681 E. coli.

Tool Run time (s) Memory (MB) CPU utilization
andi 59 256.04 15 545 722 %
mash 68.36 153 801 %
mash10k 145.95 442 799 %
phylonium 794.52 14 358 462 %

297 Ensembl E. coli

Next, we analyzed larger data sets that are unfeasible to align. As in Klötzl and Haubold
(2019), I downloaded all sequences labeled Escherichia coli from the Ensembl database
release 45 (Yates et al. 2016). Of the whole data set I sampled 297 sequences equally
across the length spectrum, thereby getting a uniformly distributed sample including
the outliers. These amount to 1.5 Gb of sequence data, roughly ten times bigger than the
previous data set. As the number of sequences grows tenfold, the number of comparisons
grows a hundredfold. This superlinear increase is most apparent in andi (Table 4.4). On
this data it takes 771 s, which is a 51-fold increase to the previous data set. The mash run
time is dominated by the work spent hashing each individual sequence. Thus, with 6.2 s
it is about nine times slower than previously. Coming from andi, with phylonium I tried
to reduce the quadratic component. Its run time increased twelvefold to 27 s. Thus, it is
slower than mash but has much better scalability than andi.

While the run times increase dramatically, memory does not. Andi requires 2.8 GB,
mash 114 MB and phylonium 1.7 GB. Essentially, mash needs only a bit more memory
than previously, phylonium needs space for the bigger data set, whereas andi’s data usage
doubles. However, all tools stay well below the maximum of 31 GB available on the test
machine.

2681 Ensembl E. coli

As a final challenge I ran the tools on all 2681 E. coli sequences from Ensembl. The number
of sequences grows ninefold compared to the subsample above, as does the data size,
which now is 14 GB. Mash took only 68 s and 442 MB for the comparison (Table 4.5). It
thus requires much less resources than phylonium with 795 s and 14 GB. While this seems
slow, phylonium is still very fast on such a big data set. Particularly it is much faster than
andi (59 256 s ≈ 16 hours).
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Figure 4.13: A phylogeny of all 2681 sequences in Ensembl labeled E. coli.

From these numbers it is apparent that andi scales strictly quadratically with the
number of input sequences. With mash each pairwise comparison is very fast and thus
it scales roughly linearly. Phylonium also grows quadratically, but with much better
coefficients than andi.

Figure 4.13 shows the phylogeny of all E. coli as computed by phylonium. Most se-
quences cluster nicely into groups but some taxa stick out as they are far more distantly
related to the rest. As it turns out, these are not E. coli at all but simply mislabeled in
the database: Blasting parts of them against NCBI they are identified as Enterobacter
hormaechei, Klebsiella pneumoniae and Citrobacter freundii (Boratyn et al. 2013).

In this chapter, I evaluated phylonium with respect to phylogeny reconstruction accu-
racy as well as run time performance. Accuracy was measured using the common RF
distance as well as the new ∆-value. In most settings, phylonium proved to be as accurate
as andi while almost as fast as mash. This makes it useful for even the largest data sets.
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So for us there is no longer a fundamental mystery about
life. It is all the process of extraordinary eruptions of
information. And it is information that gives us this
fantastically rich, complex world in which we live. But at
the same time that we have discovered that, we are
destroying it at a rate that has no precedent in history.
Unless, you go back to the point that we were hit by an
asteroid.

Douglas Adams

Phylogenies are so widely used, it might seem self-evident that the relationships
between organisms are best depicted by a tree. Perhaps, the most famous evolutionary
tree was drawn by Darwin in a sketchbook, captioned “I think” (Figure 5.1). Later,
Haeckel also used the tree metaphor to depict his Pedigree of Man (Figure 1.1) and
trees are still the central metaphor in evolutionary biology (Ragan 2009). Trees are also
widely used in genomic epidemiology to visualize evolutionary relationships (Tang et al.
2017). In population genetics, random trees, or coalescents, are used to infer population
statistics (Wakeley 2009). Trees also serve as a tool in computational biology. For instance,
Kelleher et al. (2019) use trees to succinctly represent data on genetic variation. Their tree
representation not only leads to compression, it also simplifies subsequent calculations.

The high level of lateral gene transfer in microbials breaks the tree metaphor (Dagan
and Martin 2009). No single phylogeny can capture the changing evolutionary rela-
tionships along genomes caused by horizontal gene transfer, and they would be better
represented by a network. However, trees remain popular as they are by and large cor-
rect and easy to interpret. They can even be annotated with support values to reflect
uncertainty about their topology.

These examples illustrate that trees remain a central organizing principle in biology.
However, computing phylogenies has become difficult for the large genomic data sets
produced by high-throughput sequencing. Which brings me to the topic of this thesis,
fast estimation of distances for phylogeny reconstruction.

5.1 Accuracy and Limits

In this thesis, I introduced phylonium, a fast and accurate program for phylogeny recon-
struction from genomic data. It is classified as an alignment-free method because it does
not require an MSA as one of its inputs. Instead, phylonium maps parts of each sequence
onto a common reference. These homologous segments can then be compared between
sequences to estimate the substitution rate (Chapter 3).
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Figure 5.1: The sketch of an evolutionary tree by Darwin (1837). The text states: I think
case must be that one generation should have as many living as now. To do
this and to have as many species in same genus (as is) requires extinction.
Thus, between A + B the immense gap of relation. C + B the finest gradation.
B + D rather greater distinction. Thus, genera would be formed. Bearing
relation [next page] to ancient types with several extinct forms.

72



5.1 Accuracy and Limits

In Chapter 4, I explored the accuracy of phylonium in many different applications.
First, I checked whether it could correctly estimate the substitution rate on simulated
sequences. Phylonium is accurate from virtually no substitutions up to 0.5 substitutions
per nucleotide. This test is simple in that the simulated data is free of noise. There is no
recombination, no insertions or deletions, no rearrangements of regions. Correctly passing
this basic test is necessary, though not sufficient, for accurately estimating substitution
rates from real data. A number of tools referenced in the Introduction were excluded from
my comparison simply because they were inaccurate (e. g. d2). Others were excluded
because they were too slow, for instance missmax (Pizzi 2016). Being accurate up to
0.5 substitutions per base is good enough to compare sequences in the family of great
apes (Lynch 2007, p. 85). Note, however, that phylonium was designed for closely related
prokaryotes where an average nucleotide identity of 95 % has been proposed as the
border between species (M. Kim et al. 2014). Thus, in outbreak data, which consists of
many clones from one strain, the substitution rate should be well below 0.05.

When only two simulated sequences are compared, it is easy to check whether the
estimated distance is the same as the simulated distance. If more sequences are analyzed,
it has been common practice to infer a tree from the estimated distances and to compare
it against a reference tree, which is often based on an MSA. Of the many methods to
quantify the similarity of two trees, the Robinson-Foulds distance is the most popular.
For our work on phylonium we additionally used the largest difference between two
distance matrices, the ∆-score (Klötzl and Haubold 2019). It is useful for two reasons.
First, it is simple. The resulting values are on the same scale as the estimated distances
and thus, can be easily interpreted. Second, directly comparing the distance matrices
avoids any noise introduced by the tree reconstruction method (Section 4.3). One major
disadvantage of the ∆-score is that the current definition only includes a single difference,
the maximum, into the result. The Mantel test is a classic way to assess the association
between two distance matrices (Mantel 1967). However, it only quantifies a correlation,
which in our case is always given. Further research is needed to find a way of directly
comparing distance matrices that incorporates all values and calculates useful scores.

To compare two trees, I used the Robinson-Foulds distance (Robinson and Foulds
1981). As explained in Section 4.3, it is a measure of topological distance. The values
taken by this measure, however, are difficult to interpret, because a change at a short
branch contributes just as much as a change at a long branch. An alternative, the branch
score, incorporates branch lengths (Kuhner and Felsenstein 1994). However, despite using
floating-point values, it is discontinuous in that for two trees T1 and T2 with a distance of,
say, 0.1 there might be no intermediate tree T′2 that has a smaller distance to T1 (Kupczok
2010). There is a more recent topological distance, which can be interpreted as a lower
bound on the number of necessary reticulation events, such as lateral gene transfer, to
transform one tree into the other (Whidden et al. 2013). However, it is computationally
expensive and in order to keep my results comparable (particularly to the AFproject),
I settled for the RF-score and ∆-value to compare phylogenies and distance matrices,
respectively.

Equipped with these two distance measures, I ran a number of experiments on phy-
lonium and other tools. Overall, phylonium is very precise. For the Yersinia and E. coli/
Shigella data sets its RF-value is between those of andi and mash. The ∆-value of phylo-
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nium is usually much smaller than that of mash. This behavior is most apparent on the
simulated data sets. Consider Figure 4.10, where increasing the sketch size of mash helps
to reconstruct the correct tree topology. However, the ∆-values of phylonium are a few
order of magnitudes better, particularly for very closely related sequences (Section 4.1).

Unfortunately, there is a limit to how far sequences can be separated so that phylo-
nium can still estimate a distance. In Section 4.2 starting from 0.3 substitutions per site,
phylonium slightly underestimates distances. This is due to the coverage dropping to
about 60 %. At substitution rates above 0.55 the number of anchors has dropped so
low, that often no estimation is possible. Hence phylonium is biased towards anchors in
regions of low substitution rates. In real sequences, the substitution rate varies along
the genome. Thus, phylonium is biased towards the conserved parts. Röhling et al. (2020)
drove this to the extreme by adding unrelated regions to two otherwise homologous
sequences. Where the mash distance started diverging with the fraction of unrelated
sequence, phylonium limits its analysis to only the homologous part, and thus remains
accurate. A warning is printed if for a pair of sequences the homologous part covers
less than 20 % of either sequence. This warning can also help to find contaminations,
for instance, the mislabeled sequences in the Ensembl database (Section 4.6). The only
alignment-free tool to accurately estimate distances beyond 0.5 substitutions per position
is fswm as it utilizes inexact matching with many don’t care positions (Leimeister et al.
2017).

5.2 Advancing Phylonium

Alignment-free phylogeny reconstruction methods aim to be as accurate as methods
based on an MSA albeit being much faster. I made the direct comparison between
alignment-free approaches and MSA based ones on the set of 29 E. coli/Shigella genomes
(Section 4.6). Table 4.3 summarizes the resource consumption of the six tools investigated.
Mash is the fastest tool and also uses the least memory. Phylonium is only a bit behind in
both categories. To achieve this performance I have optimized the performance-critical
code in both tools down to the instruction level. Section 3.3 covers the advanced sequence
comparison techniques used in phylonium. For mash, I have suggested the optimization
of the reverse complement (Section 3.4) as well as contributed changes that reduce the
run time by a factor of 3.5 (Chapter A): Without these changes mash would take 2.5 s on
this data set, compared to 2.2 s for phylonium.

The biggest data set explored in this thesis consists of 2681 E. coli genomes from the
Ensembl database. It demonstrates the usefulness of alignment-free methods on huge
amounts of data. Assuming that the run time of mugsy scales strictly quadratically, it
would take 1.9 years to compute an alignment. Phylonium and mash are much faster
with just 795 s and 68 s, respectively. Remember, that my comparisons were done on
a desktop-grade computer rather than on a dedicated computation server as they are
common in research institutions.

By design, phylonium stores the whole data set in memory, which requires one byte per
nucleotide. For larger data sets this is problematic as memory is a hard limit. Either no
more memory can be allocated, or the computer starts swapping and thereby significantly
reduces throughput. Phylonium stores all sequences in RAM, because they have to be
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cleaned before their comparison (Figure 3.1A). For instance, to aid readability, files
containing genetic data are commonly split into lines of sixty or seventy characters.
My Fasta parser removes these as the sequences are read into memory (Section 3.6). If,
instead of parsing the files upfront, they are loaded raw when needed (e. g. via direct
memory mapping) these newlines prove a serious challenge. For instance, the comparison
functions become significantly more complex. Instead, new formats for storing sequences
need to be explored. For instance, the recent Nucleotide Archival Format (NAF) is a
stricter file format for storing genetic sequences that resolves problems such as the
newlines. Further, it compresses sequences by a factor of four (Kryukov et al. 2019).
This saves disk space, but sacrifices performance. NAF can be decompressed at about
650 MB/s where my Fasta parser runs at 2 GB/s (Section 3.6). Thus, there is a clear
disk-space v. run time trade-off.

The run time of phylonium for small data sets is dominated by the index creation for
the reference sequence (Figure 3.1B). Phylonium already uses the fastest available library
for suffix array creation, libdivsufsort. Unfortunately, the parallel version of libdivsufsort
provides only a minor performance improvement of 28 % even when using four threads
(Klötzl 2015, p. 43). A parallel implementation that leverages both multi-threading and
SIMD could significantly speed up index creation (Labeit et al. 2016). As the size of the
data set grows, looking up matches in the index becomes more important (Figure 3.1C).
For instance, for the 297 E. coli about 40 % of the run time is spent finding matches. As
explained in Section 1.6, the enhanced suffix array, an assortment of big tables, needs to
be accessed to find a corresponding match. These memory accesses occur in a seemingly
unpredictable order. As the ESA is too big to fit into a CPU cache, a lot of these accesses
go to the main memory. With each cache miss, the program stalls execution, waiting
for the data. This extra time can be reduced in different ways. One, which I already
implemented in phylonium, is to reduce the amount of lookups (Sections 1.6 and 2.1). A
potential way to further reduce the number of lookups is to use a suffix tree, instead of a
suffix array.

Suffix arrays were introduced as an alternative to suffix trees but with reduced memory
requirements (Manber and Myers 1993; Abouelhoda et al. 2004). Initial findings also
suggested that suffix arrays were faster. However, computer architecture has changed
significantly in recent years. While CPUs have become increasingly faster, memory has
been lagging behind and thus, a whole hierarchy of caches has been added. Each node
from a suffix tree corresponds to many entries across multiple tables in the ESA. So where
a cache miss in a suffix tree will add one memory round-trip latency, depending on the
state of the caches, a suffix array may add many such waiting times. Thus, it might be
beneficial to develop a new suffix tree implementation that is tailored to low run times
at the expense of memory. This is the opposite of succinct data structures such as the
FM-index that reduces the size of the index at the cost of searching time (Ferragina and
Manzini 2000). As phylonium builds only one index, but makes a lot of searches, it is on
the opposite end of the space-time trade-off.

A more experimental way to improve the run time is to reduce the impact of each
cache miss. Consider an expression such as array[i]. If i is unpredictable, the CPU has to
stall the execution of the program while the requested data is loaded from memory. CPU
manufacturers have addressed this problem by introducing simultaneous multi threading
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(branded as hyperthreading). It allows a single CPU to execute multiple programs at once
so that it continues working even while one or several programs are stalled. There have
been proposals to implement this behavior in software, which could also be adapted
to suffix arrays (Jonathan et al. 2018). The expression array[i] loads from a memory
address and blocks until that data is available. Unfortunately, there is no asynchronous
equivalent in the sense that it would load the data, but keep the program running and
notify it once the load has been completed. There is, however, prefetch(&array[i]), upon
which the CPU will load data into its cache, but not stall execution. When the program
then asks for the data later on, it is available without extra latency. Replacing the lookups
into the suffix array with prefetches thus, would allow interleaving the matching of
multiple queries at once. For each query issue a prefetch and then, as the data is loaded
in the background, process other queries using regular loads. A critical parameter would
be the number of interleaved queries. For too few queries the additional programming
overhead would negate any performance benefits. For too many queries, data would
be flushed from the caches again, before getting processed. Further, this method would
require a large refactoring to handle multiple simultaneous queries.

A simpler way of speeding up phylonium would be to reduce the number of compared
nucleotides (Figure 3.1F). As explained in Section 3.1, phylonium does not store the start
and end points of anchors but only more general homologous segments. Remember, an
anchor is an exact match with respect to the reference (Section 1.5). So if two queries
have overlapping anchors, the overlap is also a mutual exact match and hence, can be
skipped when counting mismatches. This, however, requires additional memory and
additional memory management to store the positions of anchors. Further, the code to
compare sequences will become more complex as anchors now have to be incorporated.
To investigate whether such an optimization would be promising, I measured how many
nucleotides in a homologous segment come from the anchors within. Figure 5.2 shows
the fraction of nucleotides stored in anchors as a function of the substitution rate. For
closely related sequences anchors are long and gaps are very short (Section 2.1) and
thus, most nucleotides are known to be identical to the reference. For instance, at a
substitution rate of 0.025, about 92 % of nucleotides are within anchors. Hence, for two
queries, nucleotides at the same site with respect to the reference have an 85 % chance of
being identical as they are both in anchors. At a substitution rate of 0.1 this drops to 25 %.
For comparison, the largest substitution rate in the set of 29 E. coli/Shigella genomes is
0.027 (Section 4.3). Thus, potentially a large amount of nucleotide comparisons could be
avoided in real data sets, making this optimization feasible.

Code complexity is already an issue for phylonium. While I tried to avoid premature
optimization, the implemented string algorithms are inherently complex to guarantee
adequate performance (Knuth 1974). Particularly, the indexing and its usage are heavily
optimized and no longer resemble their textbook counterparts, even containing a harmful
goto (Dijkstra 1968). This complexity is necessary to achieve nucleotide precision; k-mer
methods tend to be simpler. For instance, the most complex data structure in mash is
a heap. This simplicity attracts others to build upon it. For example, sourmash is an
application of mash to metagenomes (Brown et al. 2020). Metagenomes arise when cells
cannot be cultured individually so that a sequencing experiment contains a mixture of
various species. It thus becomes difficult to assign a read to a single species.
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Figure 5.2: Simulated were two 100 kb sequences at a fixed substitution rate. Each homol-
ogous segment consists of anchors and gaps. As the substitution rate grows,
anchors shorten and gaps widen.

With the advent of high-throughput-sequencing, individual sequencing reads became
as short as 150 nucleotides. Working on these unassembled reads is fine for k-mer meth-
ods if their k is smaller than the read length. However, string-based methods, such as
phylonium, require long contigs for homology detection. While this is currently a disad-
vantage, it might disappear in the future. Upcoming long-read-sequencing technology
yields reads up to a hundred kilobases long from a single DNA molecule. With this
technology, both the assembly and the discrimination of reads from different species in
metagenomes may become less critical in the future as it will be easier for assemblers to
produce long contigs (Ruan and Li 2020).

Phylogenies are usually annotated with support values, traditionally computed via
bootstrapping. However, as the classical bootstrap requires an MSA, it cannot be applied
to alignment-free methods. However, phylonium forms an approximated MSA, thus, it
can be extended to calculate classical bootstrap values. In Chapter 2 I described three
alternative ways to compute support values even in the absence of an explicit alignment:
pairwise bootstrapping, quartet analysis, and the quartet concordance. The pairwise
bootstrap is specific to andi and phylonium, as they approximate pairwise sequence
alignments. Two other methods focus on quartet analysis. Of these uncommon methods,
the pairwise bootstrap as implemented in andi has already been used in a couple of
analyses, for instance in a comparison of wheat pathogens by McDonald et al. (2018).
As the popularity of alignment-free methods and mash in particular is rising, it will be
interesting to see how the computation of support values will change in the future.

Despite falling into the category of alignment-free genome comparison tools, phylonium
internally builds approximated alignments. These alignments are not as precise as those
produced by proper MSA methods, but good enough for distance estimation. They might
also be good enough for usage outside of phylogeny reconstruction. For instance, phylo-
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nium could be adapted for population genetics: A column containing a polymorphism
is called a segregating site. The number of segregating sites, S, is proportional to the
mutation parameter θ (Watterson 1975).

θ =
S

∑n−1
i=1

1
i

Here, n is the number of sequenced samples, equivalent to the number of rows in an
alignment. Already, phylonium counts the number of mismatches between two sequences
m(S, Q). As there are (n

2) pairs in a data set, the average is

π =
2

n(n− 1) ∑
S,Q

m(S, Q) .

Under a neutral model of evolution, at constant population size, these two values
should be equal, θ = π (Tajima 1989). Tajima suggested the test statistic D to check for
significant deviation from the null model,

D =
π − θ√

Var(π − θ)
.

Under neutrality D ≈ 0. Deviations of D can be attributed to different biological forces.
For instance, a positive D can be the result of a recent population expansion or a selective
sweep. Conversely, a negative D hints at balancing selection or population contraction.
Tajima’s D is widely used in population genetics (Hartl and Clark 1997, pp. 303–304).
With a future version of phylonium, it would be possible to calculate this statistic quickly
for large samples of genomes.

This dissertation introduces phylonium, a new alignment-free tool that estimates evo-
lutionary distances for phylogeny reconstruction. I explained its algorithm, the opti-
mizations in the ESA structure, as well as the advances made to speed up sequence
comparison. In Chapter 4 I noted that phylonium is as fast and accurate as competing
alignment-free approaches even when applied to large data sets. Further, I showed how
phylogenies reconstructed by phylonium can be annotated with support values, which
was previously restricted to alignment-based methods. Phylonium demonstrates that in
the case of closely related genomes, an approximated alignment is good enough to be
useful and can be quickly computed. This approach might influence other alignment-free
tools in the future.
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It takes a minimum of two to three years for a piece of
scientific software to become mature enough to publicize.

Titus Brown

While the bulk of this thesis describes phylonium, a lot of auxiliary software had to
be created in its wake. Further, I worked with a lot of 3rd party code fixing bugs and
improving performance. In the following I outline my contributions to different projects.

Afra Section 2.3 describes different ways to compute support values for phylogenies.
As a replacement for the classical bootstrap in the case of alignment-free distances we
developed afra (Klötzl and Haubold 2016). While Bernhard and I developed the concept
together, the code is mostly mine.
GNU Public License https://github.com/evolbioinf/afra

Andi Anchor distances and their implementation andi have been the subject of my
Master’s thesis. Since then, I added some new features (file-of-filenames-parameter,
zsh autocompletion), fixed bugs (wrong anchor threshold) and sped up computation
(lucky anchors, see Section 2.1).
GNU Public License https://github.com/evolbioinf/andi

Biozsh With the 2019 release of macOS Catalania the default shell changed from bash
to zsh. The latter features improved autocompletion, among other things. My project
biozsh bundles bioinformatics related functionality in one place. It already has attracted
attention from the community, including other users providing completion scripts.
MIT License https://github.com/kloetzl/biozsh

Cophylog As one of the first alignment-free tools cophylog produced accurate evolution-
ary distance. It was sufficiently fast on small data sets but the performance on large data
sets suffered as it was purely single-threaded. Born out of the need to experiment with it,
I created a multi-threaded version of cophylog. The change has been merged upstream.
GNU Public License https://github.com/yhg926/co-phylog

GeoMeTree One of the most commonly used tools in bioinformatics is Phylip (Felsen-
stein 2005). It contains routines to compute the symmetric distance between two phy-
logenies among many other methods. Unfortunately, it is by design Unix unfriendly
and does not work in pipes. GeoMeTree on the other hand is a Python program that can
also compute various tree distances (Kupczok et al. 2008). I took the source and slightly
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changed its command line interface to fit my needs. The original authors were happy
that an updated version is now on GitHub.
GNU Public License https://github.com/kloetzl/geometree

Hotspot In a collaboration with two colleagues we created the hotspot project. It bundles
four applications for the analysis of recombination hotspots. I helped with packaging the
project across different operating systems.
GNU Public License https://github.com/EvolBioInf/hotspot

kseq.h The original kseq.h could parse Fasta files at 930 MB/s. While comparing its
performance with my own parser, I created a simple patch that boosted throughput the
throughput of kseq.h to 1.9 GB/s; the patch has since been merged upstream. Unfortu-
nately, clients tend to copy the file kseq.h into their own code base. Thus, many projects
use old versions and do not benefit from the patch.
MIT License https://github.com/lh3/seqtk/commit/
ba10dad8a5cc983c6d26fb4bb47251defe286d24
#diff-1f9bb017a5df245ad6173ad820932566

Libdna During the development of phylonium I wrote a number of high-throughput
string processing functions (Sections 3.3 and following). Particularly, I spent some time
engineering the code so that at run time the fastest available implementation depending
on the instruction set would be chosen. As other tools could also benefit from these
implementations, I bundled them in a project called libdna. It contains a number of
highly-specialized and generic functions including documentation.
GNU Public License https://github.com/kloetzl/geometree

Maf2dist In order to compute a distance matrix from the multiple sequence alignments
produced by mugsy I wrote maf2dist. It contains a particularly fast way to count substitu-
tions in the presence of gaps. Further, it also features complete deletion.
ISC License https://github.com/kloetzl/maf2dist

Mash Mash is probably phylonium’s closest competition in both accuracy and speed
(Section 4.3). While looking at the code, trying to figure out how it works, I realized that
parts of it were unnecessarily slow. I proposed a few changes which made mash faster by
a factor of 3.5.
3-Clause BSD License https://github.com/marbl/mash

Mat Tools The output of most alignment-free tools is a distance matrix. To compare
them, for instance with our new ∆-value, I created the mat tools. It is an assortment of
tools to manipulate and compare distance matrices.
GNU Public License https://github.com/EvolBioInf/mattools
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MUMmer Maximal matches, which appear only once in the subject and the query
sequence are called maximal unique matches, MUMs for short. MUMmer is a suite of
programs for pairwise sequence alignments making use of MUMs as alignment anchors.
Between the anchors an alignment is formed using a dynamic programming scheme.
To this end it created a matrix of nodes, however each node was also made up of three
scores, each requiring additional memory for padding. Rearranging the data inside a
node reduces the memory usage by a third while also making the program 20 % faster
due to better caching behavior.
Artistic License 2.0 https://github.com/mummer4/mummer/pull/30

Pfasta The most used parser for Fasta files, kseq.h, had insufficient error handling
for my taste. So I created pfasta which is slightly slower by gives much better error
messages (see Section 3.6). The parser now comes with a number of convenient tools for
the manipulation of sequence files.
ISC License https://github.com/kloetzl/pfasta

Phylonium The subject of this thesis.
GNU Public License https://github.com/evolbioinf/phylonium

Snp-Dists This tool also counts substitutions but only for already aligned sequences
and gives the absolute counts instead of a substitution rate. I fixed a few bugs and made
the code cleaner.
GNU Public License https://github.com/tseemann/snp-dists
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B Source Code

B.1 Anchor Distance

This algorithm computes the uncorrected asymmetric anchor distance of Q with respect
to the subject S as implemented in andi. Adapted from (Klötzl 2015).
1 fn dist_anchor
2 requires S
3 input Q
4
5 let E ← ESA(S)
6 let L ← threshold(S)
7 let mismatches ← 0
8 let homo_nucl ← 0
9 let last_pos_q ← 0

10 let last_match ← ⊥
11 let last_was_right_anchor ← false
12 let q ← 0
13 while q < |Q| do // Stream the complete query
14
15 // Find the next match
16 m ← lucky_match(S, Q, last_match, q) or get_match(E, Q[q. . .])
17 if m.is_unique and m.length ≥ L then
18 // m is an anchor
19
20 if q - last_pos_q = m.pos - last_match.pos then
21 // Found a pair
22 mismatches ← mismatches + count_diff(Q[last_pos_q. . .q], S[last_match.pos

. . .m.pos])
23 homo_nucl ← homo_nucl + q - last_pos_q
24 last_was_right_anchor ← true
25 else
26 // Correctly count the nucleotides from right anchors
27 if last_was_right_anchor then
28 homo_nucl ← homo_nucl + last_match.length
29 end
30
31 last_was_right_anchor ← false
32 end
33
34 // Cache values for later
35 last_pos_q ← q
36 last_match ← m
37 end
38
39 // Skip the mutation
40 q ← q + m.length + 1
41 end
42 output mismatches/homo_nucl
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B Source Code

B.2 Fast Sequence Comparison

A fast function for counting the number of mismatches.

1 size_t mismatches(const char *seq1, const char *seq2, size_t length)
2 {
3 size_t num_mismatches = 0;
4
5 typedef __m128i vec_type;
6 size_t num_bytes = sizeof(vec_type);
7 size_t vec_offset = 0;
8 size_t vec_length = length / num_bytes;
9

10 for (; vec_offset < vec_length; vec_offset++) {
11 vec_type seq1_vec;
12 memcpy(&seq1_vec, seq1 + vec_offset * num_bytes, num_bytes);
13 vec_type seq2_vec;
14 memcpy(&seq2_vec, seq2 + vec_offset * num_bytes, num_bytes);
15
16 vec_type comp = _mm_cmpeq_epi8(seq1_vec, seq2_vec);
17
18 unsigned int vmask = _mm_movemask_epi8(comp);
19 unsigned int lower_bits = (1 << num_bytes) - 1;
20 num_mismatches += __builtin_popcount(~vmask & lower_bits);
21 }
22
23 size_t offset = vec_offset * num_bytes;
24 for (; offset < length; offset++) {
25 if (seq1[offset] != seq2[offset]) {
26 num_mismatches++;
27 }
28 }
29
30 return num_mismatches;
31 }
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B.3 Comparing with the Reverse Complement

B.3 Comparing with the Reverse Complement

A function for counting the number of mismatches quickly when two sequences come
from opposite strands.

1 size_t
2 cmprevcomp(
3 const char *seq1,
4 const char *seq2,
5 size_t length)
6 {
7 size_t substitutions = 0;
8 size_t num_bytes = sizeof(__m128i);
9 size_t vec_offset = 0;

10 size_t vec_length = length / num_bytes;
11
12 for (; vec_offset < vec_length; vec_offset++) {
13 __m128i b;
14 memcpy(&b, seq1 + vec_offset * num_bytes, num_bytes);
15 __m128i o;
16 size_t pos = length - (vec_offset + 1) * num_bytes;
17 memcpy(&o, seq2 + pos, num_bytes);
18
19 __m128i mask = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15);
20 __m128i reversed = _mm_shuffle_epi8(o, mask);
21
22 __m128i v1 = _mm_xor_si128(b, reversed);
23 __m128i mask6 = _mm_set1_epi8(6);
24 __m128i v2 = _mm_and_si128(v1, mask6);
25 __m128i mask4 = _mm_set1_epi8(4);
26 __m128i v3 = _mm_cmpeq_epi8(v2, mask4);
27
28 unsigned int vmask = _mm_movemask_epi8(v3);
29 unsigned int lower_bits = (1 << num_bytes) - 1;
30 substitutions += __builtin_popcount(~vmask & lower_bits);
31 }
32
33 size_t offset = vec_offset * num_bytes;
34
35 for (; offset < length; offset++) {
36 if (!is_complement(seq1[offset], seq2[length - 1 - offset])) {
37 substitutions++;
38 }
39 }
40
41 return substitutions;
42 }
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