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Zusammenfassung

In den meisten Industrienationen stellt Krebs heute nach Herz-Kreislauf-Erkrankungen
die zweithäufigste Todesursache dar. Trotz erheblichen Fortschritten in Diagnose und
Therapie liegt die Überlebenswahrscheinlichkeit bei kritischen Tumorarten, wie solchen
im zentralen Nervensystem, immer noch unter 30 %. Für ältere Patienten fällt diese
Wahrscheinlichkeit sogar unter 20 %.
In vielen Fällen ist die Strahlentherapie aufgrund von hohen Proliferationsraten
und dem Risiko für Metastasen die einzige oder zumindest eine unterstützende
Behandlungsmöglichkeit. Hierbei hält die sogenannte externe Strahlentherapie das
Tumorwachstum mit Hilfe von mehreren sich überlagernden Strahlen hochenergetischer
Röntgenstrahlung unter Kontrolle. Innerhalb eines Fraktionierungsschemas wird der
Patient zunächst einer Behandlungsplanung unterzogen. Danach wird der Tumor
gemäß dem Plan an mehreren Tagen pro Woche, über typischerweise 6-7 Wochen be-
strahlt. Dabei muss die Patientenposition relativ zum Iso-Zentrum des Therapiegerätes
zwischen Planung und Therapie genau übereinstimmen. Aufgrund von Patientenbewe-
gung während der Bestrahlung und Repositionierungsungenauigkeiten über Sitzungen
hinweg, fügen Strahlentherapeuten Sicherheitsbereiche um das Planungsvolumen
herum ein. Dies stellt sicher, dass das Ziel ausreichend Dosis erhält. Um diese Bereiche
jedoch so klein wie möglich zu halten und gesundes Gewebe zu schonen, ist eine sehr
präzise Lokalisierung des Tumors unerlässlich für die Strahlentherapie.
Höchste Genauigkeit ist insbesondere in der kraniellen Strahlentherapie vonnöten. Diese
wird entweder mit einer Immobilisierung des Patienten, bildgestützter Strahlenthera-
pie oder einer Kombination aus beidem erreicht. Thermoplastische Masken, welche
typischerweise zur Immobilisierung benutzt werden, unterliegen im Durchschnitt
intra-fraktionellen Ungenauigkeiten von weniger als 1 mm und inter-fraktionellen von
weniger als 3 mm. Die Masken sind unbequem und werden durchaus nicht von allen
Patienten toleriert. Darüber hinaus können die Ungenauigkeiten der Immobilisierung
erheblich größer sein, wenn der Patient im Laufe der Behandlung unter Gewichtsverlust
leidet.
Stereoskopische Röntgenbildgebung sowie Cone Beam Computertomografie (CBCT)
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Zusammenfassung

gelten als Gold-Standards für die bildgestützte Strahlentherapie. Durch sie wird mittels
hochgenauer Volumenregistrierung eine Kontrolle der Patienten-Vorausrichtung zu
Beginn jeder Sitzung ermöglicht. Die Nutzung zur Online-Überwachung ist jedoch
stark eingeschränkt. Diese Bildgebung bringt zusätzliche Strahlenbelastung mit sich
und erfordert lange Aufnahmezeiten. Im Gegensatz zur Röntgenbildgebung umfasst die
optische Bildgebung nichtinvasive und eher günstige Verfahren, welche Licht nutzen
und schnelle Aufnahmegeschwindigkeiten erlauben. Dabei stellt die markierungslose
Bewegungsverfolgung am Kopf die aussichtsreichste Variante dessen dar. Anders als
Verfahren, die auf Markierungen beruhen, zielt diese Variante direkt darauf ab, die
knöcherne Anatomie in ihrer Bewegung zu verfolgen. Das eigentliche Tumorziel wird
dabei als starr mit dem Schädelknochen verbunden angenommen. Zwei kommerzielle
Geräte sind hierzu zurzeit auf dem Markt verfügbar: die C-Rad Systeme (C-Rad,
Uppsala, Schweden) und das AlignRT® System (VisionRT, London, GB). Durch Ober-
flächentriangulierung erreichen sie Lokalisierungsgenauigkeiten von unter 3-4 mm und
2◦. Oberflächendeformationen und die Nutzung von sogenannten ”open face“ Masken
können allerdings zu deutlich höheren Fehlern führen.

Ein zentrales Problem der Oberflächenverfolgung bleibt deren Anfälligkeit gegenüber
Oberflächenveränderungen. Das gilt insbesondere, wenn stabile und hervorstechende
Landmarken fehlen. Idealerweise strebt die kranielle Strahlentherapie nach Sub-
Millimeter-genauer Lokalisierung und stellt daher höchste Ansprüche an die Qualität
dieser Landmarken. Aktuelle Studien deuten an, dass unter normalen Bedingungen
bestimmte Gesichtsregionen, wie die Stirn, stabilere Oberflächengeometrien aufweisen
und weniger anfällig gegenüber Gesichtsbewegungen sind. Dennoch kann es innerhalb
des Registrierungsproblems zu Mehrdeutigkeiten, d.h. lokalen Minima der Optimie-
rungsfunktion, kommen, wenn ein abgetasteter Oberflächenbereich zu einer Referenz
registriert werden soll. Abhängig von Kopfbewegung, anatomischen Oberflächenformen
oder der Deformation der Weichgewebeoberfläche kann das erwähnte Risiko sogar noch
größer sein. Dies bringt zum Teil niedrige Robustheit und Ausreißer mit sich, welche
insbesondere für Ziele kritisch sind, die sich weit von der Oberfläche entfernt befinden.
Das Problem der markierungslosen Bewegungsverfolgung soll in dieser Arbeit be-
handelt werden. Dafür soll zusätzliche Information ausgenutzt werden, mit der die
Oberfläche charakterisiert werden kann. Innerhalb eines interdisziplinären Teams wurde
dazu ein funktioneller Prototyp zur Oberflächenabtastung entwickelt. Er enthält einen
850 nm faser-gekoppelten Laser, welcher über eine galvanometrische Spiegeleinheit
auf das Ziel gelenkt wird. Während eine Triangulationskamera zur Rekonstruktion
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der 3D-Oberfläche genutzt wird, wird zusätzlich eine weitere Kamera mit hohem
Dynamikbereich in den Pfad des Strahls eingekoppelt. Diese detektiert Änderungen im
optischen Rückstreuverhalten von Reflexion zu Reflexion. Die Hypothese dieser Arbeit
ist nun, dass die Gewebedicke an der Stirn aus der optischen Rückstreuung des Gewebes
vorhergesagt werden kann. Darüber hinaus – so die zweite Hypothese – ergeben sich
so Hautdickenmuster auf der Oberfläche, welche zu einer verbesserten und stabileren
Oberflächenregistrierung führen.

In einem ersten Schritt wurden Monte-Carlo-Simulationen genutzt, um Licht-Gewebe-
Interaktionen in einem sieben-schichtigen Hautmodell zu untersuchen. Die Simula-
tionen dienten zur Identifikation optimaler Bedingungen, unter denen ein Maximum
an Information über die Gewebedicke gewonnen werden kann. Dies wiederum lässt
Rückschlüsse auf die entsprechend nötige Parametrisierung des funktionalen Proto-
typs zu. Im Einklang mit einschlägiger Literatur wies bei Untersuchungen für Licht
im Bereich von 400 nm bis 1000 nm vor allem Licht im nahen Infrarot (NIR) Bereich
eine hohe Eindringtiefe ins Gewebe auf. Dabei nimmt die relative Anzahl der tief
eindringenden Photonen mit der Distanz zum Zentrum des Laserpunktes zu. Für
Licht, das bereits in den oberen Hautschichten reflektiert wird, ist es wahrscheinlich,
dass es das Gewebe nahe seinem ursprünglichen Eintrittspunkt wieder verlässt. Als
am vielversprechendsten sind daher Reflexionen in mittlerer Distanz zum Laserpunkt
anzusehen. Aus späteren Experimenten konnte ein günstiges Rückstreuinterval von
2,5 mm bis etwa 7,6 mm Abstand zum Laserpunktmaximum identifiziert werden. Dieses
enthält zum Einen weniger Rückstreuung aus den oberen Hautschichten und dortige
Lichtintensitäten können auf der anderen Seite noch mit einem ausreichend hohen
Signal-Rausch-Abstand durch die 14 bit Kamera aufgelöst werden. Das Kamerabild
wurde folglich in sieben konzentrische Ringe um das Laserpunktzentrum unterteilt.
Diese dienen als sogenannte ”regions-of-interest“(ROIs), in denen die Pixelintensitäten
zu dann sieben Merkmalswerten akkumuliert werden. Die Anzahl der Regionen wurde
zugunsten höherer Merkmalsstabilität und besserem Signal-Rausch Abstand in späteren
Experimenten auf fünf reduziert.
Simulationen für Hautdicken zwischen 2,1 mm und 7,1 mm ergaben, dass die Merk-
male leicht verschiedene und nichtlineare funktionale Zusammenhänge zur Änderung
der Hautdicke ausweisen. Damit stellt die Hautdickenschätzung ein multivariates,
überwachtes Problem des statistischen Lernens dar. Stützvektorregression (SVR) wurde
genutzt, um dieses Problem zu modellieren, und war schließlich in der Lage, die
Hautdicke der Simulationsmodelle mit einem mittleren quadratischen Fehler (RMSE)
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von 16 µm vorherzusagen. Hierbei wurden Winkelabweichungen des Laserstrahls von
orthogonaler Einstrahlung als einflussreiche Störgröße identifiziert. Da beide, der Win-
kel und die Hautdicke, negativ mit den Änderungen in der Rückstreuung korrelieren,
verschlechtert sich der Vorhersagefehler, wenn veränderliche Einfallswinkel zugelassen
werden. In einem solchen Szenario werden die besten Ergebnisse erreicht, wenn der
Merkmalsraum um ein Maß für den Einfallswinkel erweitert wird (Raumkennzeichnung
A).
Die Simulationsergebnisse wurden in einer Studie mit 30 Freiwilligen validiert und er-
weitert (14 männlich, 16 weiblich, Hauttypen II bis V, Alter 24-65). Von jedem Probanden
wurden drei NIR-Abtastungen und eine hochauflösende Magnetresonanzaufnahme
(MRT) akquiriert. Letztere ergab nach erfolgter semi-automatischer Segmentierung
der Haut eine Grundwahrheit für die Hautdicke, welche nur 0,2 mm von einer ma-
nuellen Segmentierung durch geschulte Experten abwich. Um ein statistisches Modell
zu lernen, wurden die Oberflächen von NIR- und MRT-Aufnahme mit Hilfe eines
Beißschienenmarkers aufeinander registriert. Die zuvor erwähnten Korrelations- und
Störgrößeneinflüsse konnten auch praktisch mit den resultierenden Merkmalsräumen
bestätigt werden. Ein Lernverfahren analog zu den Simulationen verzeichnete Vorher-
sagefehler von im Mittel 0,2 mm. Dabei wurde die SVR durch Gaußprozesse (GPs) mit
isotropem Matérn Kernel ersetzt, da diese als probabilistische Methode, neben einem
besseren Vorhersagefehler, weitere günstige Eigenschaften aufweisen. Vorkenntnisse
über das Rückstreuverhalten in der unmittelbaren Nachbarschaft eines Laserpunktes
senkten den Vorhersagefehler im Mittel bis auf 0,12 mm (Raumkennzeichnung NBH).

Schließlich wurden die Auswirkungen auf das eigentliche Registrierproblem un-
tersucht. Dazu wurden nach 5.000 zufällig generierten Kopfbewegungen zwischen
NIR-Abtastungsoberfläche und MRT-Referenz beide Oberflächen erneut mit Hilfe einer
iterativen Bestimmung nächster Nachbarn (iterative closest points, ICP) registriert. Eine,
der dazu verwendeten ICP-Varianten, bestimmte dabei räumliche Korrespondenzen
mit Unterstützung von Hautdickenmustern auf der Oberfläche. Sogar bei kleineren
Bewegungen (< 10 mm Translation, < 10◦ Rotation) wiesen beide Alternativen lokale
Minima auf, in die der iterative Algorithmus konvergierte. Bei der Nutzung von
Hautdickenmustern waren diese Minima auf ein schmaleres Intervall verteilt. Auch
die absoluten Registrierfehler waren kleiner. Dabei wurden die Hautdickenmuster aus
verschieden Quellen erzeugt: Die MRT-Grundwahrheit verbesserte den mittleren Fehler
gegenüber einfacher Oberflächenregistrierung um einen Faktor von 29. Im Vergleich
dazu erreichten die Rekonstruktion aus dem Merkmalsraum A einen Faktor von 5,6 und
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die aus dem Merkmalsraum NBH einen Faktor von 7. Durchschnittliche Registrierfehler
pro Proband waren stets kleiner als 1 mm. Dies lässt den Schluss zu, dass die bisherigen
Vorhersagegenauigkeiten für die Hautdicke den Anforderungen genügen.
Zusammenfassend ergeben die Ergebnisse dieser Arbeit eine aussichtsreiche Bestäti-
gung des vorgeschlagenen Konzeptes für ein verbessertes Verfahren zur Bewegungs-
verfolgung am Kopf. Es ist möglich, mit ausreichender Genauigkeit Hautdickeninfor-
mationen aus dem veränderlichen NIR-Rückstreuverhalten zu extrahieren. Mit dem
vorgeschlagenen Ansatz wird eine robustere Oberflächenregistrierung erreicht. Zudem
wird Ausreißern durch die Reduktion von räumlichen Mehrdeutigkeiten vorgebeugt.
Dies wurde sogar dann beobachtet, wenn das abgetastete Gebiet klein und die Anzahl
der verfügbaren Punkte eingeschränkt war. Insgesamt etabliert diese Arbeit damit
eine vielversprechende Grundlage für weitergehende, größer angelegte klinische
Validierungen.
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Abstract

Today, cancer is ranked the second most common cause of death after cardiovascular
diseases in many industrialized nations. Despite substantial advances in diagnosis and
therapy, survival rates for critical tumors such as those in the central nervous system still
fall below 30 %. For elderly patients this rate is even less than 20 %.
In many cases, high proliferation rates and the risk for multiple metastases make
radiotherapy the definitive or at least a supportive option for treatment. Here, the
external beam therapy controls or shrinks the tumor by applying superimposed beams
of high energy X-rays. Within the scheme of fractionation a patient then undergoes
treatment planning, before he or she is treated on several days a week for typically 6-7
weeks in a row. During each treatment session the patient position with respect to the
machine isocenter has to align with the treatment plan. Due to intrafractional motion
and interfractional repositioning errors, clinicians introduce extra safety margins into
the treatment plan. This is to ensure that sufficient dose is still delivered to the target. To
keep these margins as small as possible and to spare healthy tissue, precise localization
of the tumor target is vital for radiotherapy.
High precision is particularly required in cranial radiotherapy. This is achieved with
patient immobilization, image guidance or a combination thereof. Thermoplastic masks
used to immobilize the patient’s head typically entail intrafractional errors of on average
less than 1 mm and interfractional errors of less than 3 mm. The masks are inconvenient
and are also not tolerated by all patients. Moreover, immobilization errors may be
significantly higher when patients experience weight loss in the course of the treatment.
The gold standard for image guidance is given by stereoscopic X-ray or cone beam
computed tomography (CBCT). Thus, highly accurate volume registration can be used
for pre-alignment checks at the beginning of each session. Its usage for online motion
monitoring, however, is very limited. It entails additional exposure to radiation and
typically suffers from slow imaging speed. In contrast to image guidance using X-rays,
optical imaging is a non-invasive and rather inexpensive modality that uses light and
provides fast imaging speeds. Here, marker-less optical head tracking constitutes the
most promising variant. In contrast to marker-based alternatives, marker-less tracking
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aims at tracking the bony anatomy of the patient, because tumor targets are very often
rigidly linked to the skull bone. Two commercial options, namely the C-Rad systems
(C-Rad, Uppsala, Sweden) and AlignRT® (VisionRT, London, UK), are currently avail-
able. By triangulating the skin surface, they achieve average localization accuracies of
less than 3-4 mm and 2◦. Surface deformation and the usage of open-face mask systems,
however, may lead to substantially higher errors.

A core issue for surface tracking remains its sensitivity to changes in the surface,
particularly when lacking stable and prominent landmarks. Ideally, radiotherapy aims
at sub-millimeter localization accuracy and therefore places high demands on such
landmarks. Recent studies gave evidence that under typical conditions certain regions
of the face such as the forehead provide more stable surface geometries and are less
prone to facial motion than other regions. In any of these cases, the registration problem
suffers from ambiguities, i.e. local optimization minima, when matching a scanned
surface patch to a reference. This risk can be even higher depending on the extent of
head motion, anatomical surface shapes or deformation of the elastic soft tissue surface.
This can lead to low robustness and outliers, which are particularly delicate for targets
far away from the registration site.
To tackle this problem in marker-less optical tracking, this work proposes to exploit
additional information with which the surface can be labeled. In synergy with inter-
disciplinary coworkers a functional optical scanning prototype has been developed. It
consists of an 850 nm fiber-coupled laser beam which is deflected by a galvanometric
mirror unit onto the target. While a triangulation camera is used to triangulate the
surface geometry, another, high dynamic range camera is coupled into the beam path
to detect variations in optical backscatter from spot to spot. Now, the hypothesis of
this work is that, first of all, tissue thickness at the forehead can be predicted from the
characteristics of optical backscatter on the skin. It is further proposed that this tissue
thickness compiles patterns across the forehead surface which have a supporting effect
on the registration performance.

In a first step Monte-Carlo simulations were employed to simulate the light trans-
port in a seven layer tissue model. These were used to identify optimal conditions under
which most information can be retrieved from optical backscatter and to investigate
how parameters of the prototype should be defined. In the investigated spectral range
between 400 nm and 1000 nm, particularly near-infrared (NIR) light was found to deeply
penetrate the tissue. This is in agreement with the literature. It was found that the
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relative proportion of deeply penetrating photons increases with the distance from the
spot center. Light reflected from upper tissue layers is more likely to leave the tissue close
to the location of incidence. Therefore, reflections at medium range from the spot center
are considered most promising. In later experiments a favorable backscatter interval
from approximately 2.5 mm to 7.6 mm distance from the spot center was identified.
Light reflected from this interval contains less backscatter from upper layers, but can
be still resolved with sufficiently high signal-to-noise ratio (SNR) by the 14 bit camera.
As a consequence, the camera image was divided into seven concentric rings around
the spot center. They serve as regions-of-interest (ROIs) in which the pixel intensity is
accumulated to finally form seven feature values characterizing each spot. The number
of ROIs was reduced to five in later experiments due to a higher feature stability and
better SNR ratio.
For simulated tissue thicknesses between 2.1 mm and 7.1 mm, each feature was shown
to have a slightly different and nonlinear functional relationship to the thickness. As a
conclusion, the setting resembles a multivariate supervised statistical learning problem
that maps features to the thickness target label. Support Vector regression (SVR) was
used to model this problem and was capable of predicting the thickness of the simulation
model with a root mean square error (RMSE) of 16 µm. The angular deviation of the laser
beam from orthogonality on the skin surface was identified as a strong confounding
factor. Since both, the angle and the tissue thickness, correlate negatively with the
backscatter changes, the prediction accuracy worsens when admitting varying incident
angles. Best results in this scenario were achieved by extending the feature space by the
incident angle (space label A).
The results were experimentally validated in a study with 30 volunteers (14 male,
16 female, skin types II to V, aged 24-65). From each subject, three NIR and one
high resolution magnetic resonance (MR) scan were obtained. After semi-automatic
segmentation, the latter provided a tissue thickness ground truth which deviated less
than 0.2 mm from manual expert delineation. For learning a statistical model, NIR
and MR data were matched based on a bite marker. The aforementioned correlation
and confounding effects were confirmed with the resulting feature spaces. A learning
procedure equivalent to the simulations then yielded tissue thickness prediction errors
of on average 0.2 mm. Here, SVR was replaced by Gaussian processes (GPs) with an
isotropic Matérn kernel due to its better performance and further beneficial properties
of the probabilistic framework. Prior knowledge about backscatter behavior from
the spatial neighborhood decreased the prediction error down to 0.12 mm on average
(space label NBH). In terms of prediction accuracy, the study did not indicate any sig-
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nificant differences for volunteers of different skin type according to the Fitzpatrick scale.

Finally, the benefits for the registration problem were investigated. After 5,000
random movements starting from an initial, marker-based matching, the iterative closest
point (ICP) algorithm was used to re-register the NIR scans to the MR reference. Unlike
standard ICP, the proposed registration approach supported the identification of spatial
correspondences between surfaces by the thickness patterns. Even for little motion
(< 10 mm translation, < 10◦ rotation) both alternatives exhibited local minima into
which the iterative algorithm converged. When using tissue thickness, these different
minima were spread across a smaller interval. The absolute registration errors were
smaller. Tissue thickness was used from different sources: The MR ground truth
improved the mean error of pure surface registration by a factor of 29. Compared to that,
the tissue reconstruction from space A achieved a factor of 5.6 and that of space NBH a
factor of 7. Average registration errors were below 1 mm for each subject. This suggests
that the achieved prediction accuracies meet the requirements.
All in all, the results of this work provide a promising proof of concept for the enhanced
tracking approach. Additional information about the tissue thickness can be obtained
from NIR optical backscatter with sufficient accuracy. The proposed approach yields
more robust registration results and reduces outliers by avoiding spatial ambiguities.
This was even observed when the scanned area and the number of points was limited.
Overall, this work established a promising basis for larger scale clinical validation.
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Mathematical Notation and Indices

Symbol Description

Aph absorption array of photon energy in tissue
(see subsubsection 3.2.2.2)

bj the j-th feature dimension in a D-dimensional feature space
bi the i-th feature dimension in a D-dimensional feature space
B design matrix within the feature space (see chapter 2)
C regularization constant balancing between complexity and goodness

of fit (see subsubsection 2.2.1.1)
dsi tissue thickness and target label at spot i(see chapter 2)
D dimension of input features
D′ dimension of the features transformed into high-dimensional

kernel space
D labeled data with D = {B,ds}
f(·) functional mapping from feature or kernel space to the target

labels (see chapter 2)
F polynomial degree in polynomial functions (see subsubsection 2.2.2.4)
g anisotropy factor for scattering media (see subsection 3.2.1)
k(·, ·) kernel or covariance function (see GP or SVR)
K covariance or Gram matrix (see GP models)
L∗(·) loss function or empirical risk (see Table 2.1)
L Lagrange function of an optimization problem
I identity matrix
mGP (·) mean function (see GP)
n iid noise superposing measured data and being drawn from

a specific distribution (see chapter 2)
nfld number of folds in a CV testing scheme
nrep number of repetitions in a CV testing scheme
N ,Np,Nq,Nfld number of data samples, subscripts p, q and fld may denote an
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affiliation to a specific set
p(x) probability of x
p(x|y) probability of x given y
Pcld, Qcld point clouds being finite sets of vectors in R3×1, i.e. points in 3D space
q(·) approximated probability distribution
r Euclidean difference between two feature vectors ‖b− b′‖

(see subsubsection 2.2.2.4)
r triplet of angles representing rotations around the three coordinate

axes [rx, ry, rz]
T (Tait Bryan angles in yaw-pitch-roll convention)

R orthogonal rotation matrix in 3D space with determinant 1
RD diffuse reflection (see subsection 3.2.2)
RkD diffuse reflection restricted to photons which reached at most tissue

layer k (see subsubsection 3.2.2.2)
Rsp specular reflection (see subsubsection 3.2.2.2)
sc multiplicative scaling factor for kernel functions

(see subsubsection 2.2.2.4)
sph current photon step size (see subsubsection 3.2.2.2)
t a translational offset with scalar elements [tx, ty, tz]

T

Tt total transmittance (see subsection 3.2.2)
QTP homogenous transformation matrix from coordinate space Q into P
w slope or weight vector of the general regression model

(see Equation 2.4)
u inducing variables (see subsubsection 2.2.2.7)
w0 explicit linear offset in the SVR model
α incident angle of the laser beam (deviation from orthogonality
α∗i Lagrange multipliers for the loss constraints of the SVR model

(see subsubsection 2.2.1.2)
β0 constant offset for linear kernel functions (see subsubsection 2.2.2.4)
δ(k, j) Kronecker-Delta (δ(k, j) = 1 for k = j, δ(k, j) = 0 for k 6= j)
η∗i Lagrange multipliers for the ξ(∗)i ≥ 0 of the SVR model

(see subsubsection 2.2.1.2)
γ length scale kernel parameter (see subsubsection 2.2.2.4)
ϕ functional mapping from feature to kernel space (see chapter 2)
Φ design matrix in kernel space (see chapter 2)
ε parameter of the ε-insensitive loss function: width of ε-tube used in SVR
µa absorption coefficient (see subsection 3.2.1)
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µs scattering coefficient (see subsection 3.2.1)
µt total attenuation coefficient being the sum of µa and µs

(see subsubsection 3.2.2.2)
ψph azimuth angle after a scattering event (see subsubsection 3.2.2.2)
P penalty term for regression analysis (see Table 2.1)
R structural risk (see subsubsection 2.2.1.1)
σ standard deviation
σ2 variance
Σw covariance matrix of the weights w in Bayesian regression
θph altitude or deflection angle after a scattering event

(see subsubsection 3.2.2.2)
ξ
(∗)
i collective term for slack variable in SVR
ζ uniformly distributed random variable
Γ Gamma distribution
N normal distribution
U uniform distribution

Superscript indices

x̄ mean of variable x
A−1 the inverse of matrixA
AT the transpose of matrixA
Qp a 3D vector or point that resides in coordinate space Q

Subscript indices

ds? target label prediction (see chapter 2)
b? input features from unseen data (see chapter 2)
kSoR(·, ·) SoR kernel approximation (see subsubsection 2.2.2.7)
QSoR Gram matrix of the SoR approximation (see subsubsection 2.2.2.7)
mph mean position of the beam profile distribution
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wph energy weight of a photon packet in MCML
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σ2? target label variance predicted by a probabilistic algorithm
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σ2n variance deviation of Gaussian noise
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1 Introduction

This first chapter provides a general introduction to the problem of marker-less optical
head tracking in radiation therapy (RT). It highlights the relevance and special need for
highly precise treatment of cancer in the head region. Therefore, stereotactic radiation
therapy (SRT) of the head region is first put into the broader context of other treatment
options and particularly RT (cf. section 1.1). Second, a typical workflow for SRT is de-
scribed in detail within section 1.2. This subsection also elaborates on immobilization
and motion compensation during treatment and motivates the role of marker-less optical
head tracking.
Based on weaknesses of state-of-the-art systems, section 1.3 discusses the purpose of this
work. After pointing out the main problems of the existing approaches, a new concept
for marker-less optical head tracking will be proposed which aims at tackling these weak-
nesses. The feasibility of this concept will be investigated in terms of the main research
questions presented in this subsection. Finally, section 1.4 outlines the organization of
the following chapters.

1.1 Cancer in the Head Region - Relevance and Treatment
Options

Worldwide, 8,201,575 people died as a results of cancer in 2012 [86]. According to the
International Agency for Research on Cancer of the World Health Organisation (WHO),
the same statistics reveal 14,067,894 cases of newly diagnosed cancer in the same year.
The highest rates per 100,000 people occur in more developed regions of the world
such as Australia, North America or Europe. Statistics published by the corresponding
national institutions confirm these numbers. According to the Surveillance, Epidemi-
ology and End Results (SEER) database of the National Cancer Institute, 443 per 100,000
people (men and women) were newly diagnosed with cancer in the United States
alone in 2011 [205]. In the same year, 351 females and 440 males per 100,000 people in
each case developed cancer in Germany according to the Robert Koch Institut [343].
With an absolute number of 220,914 people dying, cancer was ranked as the second
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Figure 1.1: Gender specific number of cases for cancer incidence and mortality (years 2000, 2006,
and 2011) in Germany. Data are presented for A: all types of cancer, B: CNS cancer, and C:
HN cancer (data by courtesy of the Robert Koch-Institut, Berlin, Germany [343]).

most common cause of death after cardiovascular diseases in Germany [274]. Despite
enormous research spendings, this is also the case for the United States (584,881 cases
[48]) and other industrialized nations [205].
Figure 1.1 shows the gender specific development of incidence and mortality in Ger-
many for the years 2000, 2006, and 2011. Notwithstanding ongoing research in the
field, the absolute numbers for all types of cancer increase particularly for the male
population. Similar trends are observed for brain and head and neck (HN) cancer, which
are particularly in need of highly precise and careful treatment, since they affect the head
region. Brain tumors account for 85-90 % of all central nervous system (CNS) tumors,
while HN cancer includes tumors of the mouth, lips, nasal cavity, sinuses, salivary
glands, throat, larynx, and lymph nodes in the neck [205]. Although HN cancer reaches
higher incidence rates especially for males, fig. 1.1 indicates rather low mortality. In
contrast, mortality comes quite close to incidence for brain tumors, which indicates a
lower survival rate. Table 1.1 outlines a similar picture for the five year survival rate in
2010. CNS cancer has only about half the survival rate of cancer on average and only
exceeds that of tumors in lung and liver. In addition table 1.1 illustrates the five year
prevalence rate, which describes how many per 100,000 people were newly diagnosed
with a specific type of cancer or were already under treatment in the five preceding years.
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1.1 Cancer in the Head Region - Relevance and Treatment Options

Table 1.1: Gender specific prevalence (per 100 000 people) and five year survival rate for 2010 of
different cancer types in Germany. Data by courtesy of the Robert Koch-Institute [343].

Type of cancer Prevalence rate Survival rate [%]
Male Female Male Female

All cancer types 1992.4 1867.2 60 66
Colon 293.3 237.2 64 66
Liver 18.6 7.2 16 13
Larynx 29.4 4.2 65 63
Lung 123.4 64.6 16 21
Uterus - 111.7 - 81
Prostate 699.7 - 92 -
CNS 16.9 13.6 27 29

The survival rate for CNS cancer is lower than for cancer on average within all age
groups (cf. fig. 1.2). This discrepancy strongly grows for patients of 45 years or older -
falling even below 12 % for elderly people of 65 years and older. Incidence is higher for
males and more frequent for whites than for blacks [205]. Secondary tumors in the brain,
i.e. metastases, outnumber the number of primary brain tumors 10:1 and are the most
common type of intracranial tumors in adults. Among others, metastases in the brain
are predominantly developed by patients suffering from lung cancer which has got one
of the highest incidence rates [217]. These key facts make intracranial tumors a critical
and partly delicate issue of high relevance.
A decision for a certain treatment option typically depends on histology, localization
and spread of the disease. Here, the WHO classification of tumors of the nervous
system remains a gold standard and guideline for neuro-oncology [177]. Tumors are
classified with respect to morphological as well as immunohistochemical features
and are graded according to malignancy into four groups I-IV. The grading describes
the potential for proliferation and risk of secondary tumors, and therefore provides a
guideline for treatment [293]. Further information about crucial tumor properties such as
volume, proliferation, metabolism, oxygenation or vascularization can be obtained from
advanced imaging techniques such as computed tomography (CT), magnetic resonance
imaging (MRI), single-photon emission computed tomography (SPECT), or positron
emission tomography (PET).
As one treatment option, surgical resection is generally recommended and particularly
applicable for benign tumors of group I [23, 205]. However, especially for malignant

3



1 Introduction

15−44 45−54 55−64 65−74 >75
0

20

40

60

80

100
female

age

su
rv

iv
al

 r
at

e 
[%

]

A

15−44 45−54 55−64 65−74 >75
0

20

40

60

80

100
male

age

 

 
B

all cancer types CNS cancer

Figure 1.2: Gender specific five-year survival rates for all cancer types in relation to CNS cancer
(2009-2010, A: female, B: male).

tumors of high proliferation rate and the risk of multiple metastases (grades III and IV),
irradiation constitutes the definitive or at least a supportive option for treatment. The
latter can be done in a pre- or post-operative setting, i.e. either kill residual cancer cells
or make an unresectable tumor amendable to surgery [23]. Accounting for 60 % of all
neoplasms, Astrocytic tumors, such as Glioblastomas (grade IV), are the most common
primary tumor.
For irradiation, high-energy X-rays or γ-rays are directed onto the target to evoke ion-
izing effects on molecules of the desoxyribonucleic acid (DNA), enzymes or membranes
[319]. This disturbs cell metabolism, leads to DNA mutations, and therefore loss of cell
division capabilities. Since malignant cells have higher proliferation rates than normal
tissue, repair mechanisms are not left enough time before replication. Ultimately, this
leads to cell death, i.e. tumor growth control or shrinkage [23].
Radiation is either delivered by Brachytherapy using small implanted sources of moder-
ate radiation, or by external beam radiation therapy (EBRT). The latter applies γ-rays
percutaneously from a certain distance by means of an external treatment beam. In
order to prevent normal tissue from being damaged, precise tumor irradiation is vital,
particularly for intracranial tumors such as CNS or HN cancer.
As a third treatment option, chemotherapy very often goes along with surgery and
EBRT. Here, cytotoxic agents increase tumor cell killing and moreover result in syner-
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1.2 Stereotactic Radiotherapy

A: Trilogy® System (Image by courtesy of Varian Medical
Systems, Inc., All rights reserved. [304])

B: Cyberknife® System (Image by courtesy of Accuray, Inc.,
All rights reserved. [3])

Figure 1.3: Typical examples of gantry-based, isocentric (A, from Varian Medical, Inc.) and ro-
botic, non-isocentric (B, from Accuray, Inc.) linear accelerators (LINACs).

gistic effects of chemo- and radiosensitization, mainly through increased inhibition of
DNA-repair mechanisms [23]. Particularly for HN tumors, positive effects have been
reported [225].
In this context and with respect to the fact that nearly two-thirds of all cancer patients
nowadays receive RT during their illness [6], Bernier and colleagues [23] state that
radiation oncology will surely remain a key modality in the treatment and management
of cancer during the next century.

1.2 Stereotactic Radiotherapy

1.2.1 Planning and Treatment

In the course of this work, the term conventional RT will be used for the clinically most
common type of EBRT, consisting of a planning and treatment phase. The presented
concept for tracking in this work will relate to this specific kind of clinical workflow. In
EBRT radiation is applied percutaneously through high energy photon beams. These
are generated by LINACs, which accelerate electrons using a standing microwave
within the so-called waveguide. The electron energy increases during acceleration and
typically ends up at several MeV. This energy, in the medical context often just called
Mega Voltage (MV), describes the energy an electron would absorb after going through
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Figure 1.4: Simplified sketch of volumes and margins defined during treatment planning.

the voltage of several 106 V. After passing several deflection units, the electrons hit a
target, where the impact generates electromagnetic waves (i.e. photons) of high energy.
This radiation is often named MV X-rays, but actually corresponds to γ-rays in a strict
physical sense.
Typical treatment devices are isocentric, gantry-based systems such as the Trilogy®

System (Varian Medical Systems, Inc., [304]) shown in fig. 1.3A. The isocenter is the
center of rotation for the gantry. The therapeutic beam exits the machine at the end part
of the gantry. In contrast to that, robotic LINACs such as the one used in the Cyberknife®

System (cf. fig. 1.3, Accuray, Inc. [3]) are capable of non-isocentric irradiation. The
project work presented here is part of a research partnership with Varian Medical, Inc
[304]. Consequently, all subsequent conceptual considerations and discussions of the
marker-less tracking approach will first and foremost refer to gantry-based systems
as shown in fig. 1.3A. Although these systems shall form the context, it should be
emphasized that the general concept is not restricted to them, but easily transferable to
others.

Planning

In the planning phase a specific dose is prescribed to the tumor target. Based on
that, a plan is designed describing how this dose will be delivered. For this purpose a
simulator device is used. It recreates the actual treatment machine with its isocenter and
geometry [101, 277].
For planning purposes, the simulator is typically equipped with a CT device which
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1.2 Stereotactic Radiotherapy

images the tumor target with respect to the machine isocenter. Nowadays, state-of-the-
art planning may also use other imaging modalities such as MRI or PET [223]. This
is particularly the case for treatments of the head region. Tumors in the head region
are treated by so-called cranial RT which will be the main focus here. In contrast, the
treatment of body tumors is named stereotactic body radiation therapy (SBRT).
Within the acquired planning CT, volumes and margins illustrated in fig. 1.4 are defined
[55]. In this context the Gross Tumor Volume (GTV) labels the gross visible extent
and location of malignant growth. Around this main part of the tumor, the Clinical
Target Volume (CTV) additionally covers subclinical microscopic malignant parts and
metastases, which also have to be eliminated. It is important to note that the CTV is
a purely anatomical concept [133]. This means that it is independent of the treatment
choice and defines a volume that definitely needs to be treated to achieve the aim of
therapy: cure or palliation.
In supplements to earlier reports [55, 133], the International Commission on Radiation
Units and Measurements, also defines additional safety margins resulting in the Plan-
ning Target Volume (PTV) [134]. As the union set of all safety margins, this volume takes
the net effect of all possible geometric variations and inaccuracies into account. It is
defined to select beam size and beam arrangements and ensures that the prescribed dose
is actually delivered to the CTV. This means that the volume size depends on the chosen
treatment technique, in order to compensate for effects of organ and patient motion, as
well as patient setup inaccuracies.
Two different safety margins allow for two different sources of uncertainty: First, the
internal margin (IM) covers effects that originate from physiological processes, e.g.
bladder/stomach filling or respiratory deformations. Variations in size, shape and
position of the CTV in relation to anatomical reference points are taken into account.
Second, the set-up margin (SM) accounts for technical uncertainties. This includes
variations in patient positioning and beam alignment during planning and all treatment
sessions, mechanical inaccuracies of the equipment (e.g. gantry, immobilization etc.),
human errors or beam geometry selection [134].

In the aforementioned context, accurate patient positioning with respect to the
treatment plan as well as the quality of motion detection and compensation, directly
links to the size of these margins (the SM to be precise) [307]. Margin reduction was
shown to potentially lead to a better sparing of healthy tissue and dose escalation.
As a result, patient care directly benefits from it [259]. Thus, a central motivation for
intracranial tumor tracking in general is, (1) to reduce these margins, (2) to deliver more
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Figure 1.5: Overview chart showing different extensions of conventional radiation therapy. The
extensions are sorted into three categories: (1) dose delivery schemes over time, (2) spatially
optimized dose distribution, and (3) target localization improvements. The extensions are
not mutually exclusive and overlap. The list does not claim completeness.

dose to the actual target, and (3) to spare healthy tissue from absorbing unnecessary dose.

Finally, after contouring the target along these guidelines, the treatment planning
system will model the dose distribution within these regions. Here, different extensions
of conventional RT follow different approaches as summarized in fig. 1.5. Conformal
radiation therapy (CRT) exploits the superposition of multiple beams or beam shaping
by multileaf collimators (MLCs) to achieve a dose distribution conforming to the actual
shape and size of the tumor. In a similar way, intensity-modulated radiation therapy
(IMRT) modulates the dose intensity across subregions instead of having a constant dose
level within the entire volume. This 2D or 3D dose painting allows for a better sparing
of normal tissue and higher conformity to the tumor shape.
Mainly automated treatment planning software [211] then optimizes beam positioning
according to the chosen treatment scheme. This positioning also depends on specific or-
gans at risk (OAR) which may be closely located to the tumor target. A treatment scheme
that particularly links to gantry-based LINACs is volumetric intensity modulated arc
therapy (VMAT). This fast scheme sculpts the dose distribution by going through a
minimal number of rotations (arcs) around the tumor isocenter. In each arc the gantry
stops at optimized positions and activates the beam (stop and shoot approach).
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1.2 Stereotactic Radiotherapy

A: HexaPODTM robotic couch system
(Image by courtesy of Elekta, AB, All

rights reserved. [76])

B: MillenniumTM MLC (Image by
courtesy of Varian Medical, Inc., All

rights reserved. [304])

Figure 1.6: Typical examples of a robotic couch system and an MLC which can be used to com-
pensate motion or alignment errors.

Treatment

At the beginning of a treatment session (called fraction), the patient is typically immo-
bilized and then positioned with respect to the LINAC isocenter (see sec. 1.2.2 for more
detail). Repositioning and alignment corrections that were found to be necessary, can be
carried out manually, but most often using e.g. a robotic couch or MLCs (cf. fig. 1.6).
In an ideal case, the tumor isocenter identified in the simulator during planning then
precisely coincides with the treatment device isocenter. Since this can only be achieved
with limited accuracy, the PTV adds the SM which covers this and other uncertainties.
Tryggestad and colleagues [296] found that not only positioning uncertainties, but also
small differences between the treatment and simulation device contribute to the overall
inaccuracies.

Robotic Couch The couch system is capable of automatically maneuvering in 4 or 6 de-
grees of freedom. Positioning ranges typically fall within ±4 cm and ±3◦ with accuracies
of <0.1 mm, and < 0.1◦, respectively [102, 253]. While many devices still ignore pitch
and roll rotations, recent studies confirm that state-of-the-art motion compensation ex-
tensively makes use of all 6 degrees of freedom to achieve the best possible positioning
[132, 287]. Examples are given by the 6D HexaPODTM couch from Elekta AB [76, 197] (cf.
fig. 1.6A) or the Varian PerfectPitchTM 6D couch [253, 304]. First attempts towards auto-
matic head adjusters were also made [323]. The adjustment unit makes small corrections
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to the head position without moving the entire couch.

Multi-Leave Collimators MLCs were originally employed by CRT or IMRT and can be
used to adjust the beam shape using multiple movable lead leaves (cf. fig. 1.6B). In this
way alignment errors and even intrafractional motion [152] in the low millimeter range
can be compensated. Positioning and re-positioning typically account for most of the
time during a treatment session, while actual irradiation of the target takes seconds or a
couple of minutes only [101].

Treatment Schemes Sources of localization uncertainties also arise from the treatment
scheme, i.e. the way in which dose is delivered over time. For head and spine – the tar-
gets relevant for this work – cancer was mainly treated by stereotactic radiosurgery (SRS)
in the past. Following the definition of the Swedish neurosurgeon Lars Leksell, high dose
was delivered in a single session with steep fall-off dose gradients [168]. A more modern
definition states that target tumors are inactivated or eradicated in up to five sessions
[15, 47].
This and particularly the evolution of fractionated stereotactic radiation therapy (FSRT)
(cf. fig. 1.5) in recent decades, made reproducible re-positioning and high precision loc-
alization from fraction to fraction a necessity for successful modern RT. FSRT divides the
treatment process into a sequence of fractions with dose delivery usually once a day and
five times a week. Special schemes referred to as hyper- or hypofractioning may differ
from that. With 1.8-2.0 Gy, each fraction applies only a low dose compared to SRS, which
also allows to treat larger target volumes [72]. The reasoning behind that is provided by
the four R’s: repair, redistribution, reoxygenation and repopulation [23]: Patient survival
rates are increased when normal tissue is exposed to a lower dose per fraction. Low pro-
liferation rates provide enough time for repair before replication. This is not the case for
fast proliferating tumor cells, where unrepaired damage is lethal. Further on, tumor cells
in the S phase of the cell cycle are more resistant. More dose in only that phase would
not be effective. Finally, radiation effectiveness is higher after reoxygenation of the cells.
Practically, Buatti et al. [41] found that fractioning avoids skin soreness, neurocognitive
decline or alopecia. Therefore, fractionation improves the treatment results, but also sets
new challenges for localization and positioning techniques.

Stereotaxy Improvements were achieved by the introduction of stereotaxy. The res-
ulting schemes of SRS and SRT exploit surrogates that are ideally rigidly linked to the
target in order to define a coordinate frame. Earlier on, these surrogates were markers at
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a metal frame, mask or localizer box rigidly attached to the cranium. The requirement
of a rigid attachment is never completely fulfilled. The error depends on the chosen im-
mobilization scheme as the next subsection will point out. The tumor location within
the stereotactic coordinate frame is typically acquired by X-ray based imaging during
planning. The stereotactic coordinate frame in turn can then externally be localized with
imaging modalities such as stereo X-ray, cone beam computed tomography (CBCT) or
optical imaging.
Modern SRT aims at marker-less approaches to bypass the marker and partially the im-
mobilization problem. The patient’s anatomy, e.g. the skull bone, is directly localized
as a tumor surrogate [296]. All this contributed to the advent of image guided radiation
therapy (IGRT). Marker-less optical head tracking being one of these modern localization
options will be the main focus of this thesis.

1.2.2 Tracking and Compensating Head Motion

State-of-the-art RT ensures precise target localization by two means: immobilization, im-
age guidance, or a combination thereof. Ever since, both are closely linked and are im-
portant factors in stereotaxy and IGRT.

1.2.2.1 Immobilization

Immobilization restricts target motion and provides reproducible target positioning
between planning and actual treatment. Moreover, it is very often also part of the
stereotactic concept. Immobilization devices may carry marks or tattoos that can be
used by image guidance or the clinician as an external reference for the stereotactic
coordinate system. This aids patient alignment with respect to the machine isocenter.
The simplest case is given by the room lasers. Initially aligning the isocenter marks on
the immobilization device to the room laser crosshair, is part of almost every clinical
workflow. Afterward, more sophisticated image guidance may be used.
The following paragraphs will describe four main immobilization devices in the chro-
nological order of their introduction: (1) stereotactic surgical frames, (2) relocatable
stereotactic frames, (3) thermoplastic masks, and (4) open-face masks. Except for
relocatable stereotactic frames, variants of these categories are still used in everyday
clinical practice. Examples are shown in fig. 1.7 and a summary is given in table 1.2.

Stereotactic surgical frames With the advent of cranial radiosurgery, highly precise
target localization was required. Early immobilization was therefore adopted from exist-
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A: Leksell® Coordinate Frame G
(Image by courtesy of Elekta,
AB, All rights reserved. [76])

B: Gill-Thomas-Cosman relocatable
frame (Image by courtesy of

[233], Creative Commons
Attribution 3.0 License)

C: Laitinen stereoadapter (Reprinted
from [148], Copyright (2001),

with permission from RSNA®)

D: Orfit HP thermoplastic 3-point
mask system (Image by courtesy
of Orift Industries n.v., All rights

reserved. [212])

E: Typical open-face mask for SRT
(Image by courtesy of Varian

Medical, Inc., All rights
reserved. [304])

F: Typical open-face mask used for
marker-less optical tracking

(Image by courtesy of Vision RT,
Ltd., All rights reserved. [310])

Figure 1.7: Evolution of immobilization devices from frame-based to frame-less in cranial SRT.

ing devices in neurosurgery. These were invasively attached to the skull bone by screws
or fiber glass pins and were highly robust against target dislocation [169]. Patient set-
up was only possible under local or even general anesthesia and mild sedation [339].
Common examples are the Brown-Robert-Wells [39, 123, 159, 179] or Riechert-Mundiger
frame [121, 203]. As most of them, the former consisted of a metal head ring which could
invasively be fixed to the patients head. A CT-localizer frame equipped with intersection
rods could be rigidly placed on top. With the frame center and the position of these rods
visible in each CT slice, precise stereotactic target localization was possible [159]. Apart
from these two frames and modifications thereof [179], several other frames of similar
design were adopted [27, 129, 257]. One particularly popular frame was invented by
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Lars Leksell and evolved from these early frames [169, 183, 339]. It consists of an alu-
minium frame equipped with four pins which were placed in previously drilled holes to
attach the frame to the skull. Figure 1.7A shows the metal frame with a localizer box on
top. The frame with an immobilization accuracy of less than 0.1 mm in all three dimen-
sion is still used in modern SRS. Table 1.2 provides an overview of common devices as
well as their strengths and weaknesses.

Relocatable stereotactic frames A major drawback was given by the fact that these
frames could only be worn over short time intervals [104] and that they were hardly relo-
catable. Attempts were made to use frames across several sessions by reusing previously
drilled holes and tattoos as orientation marks [257], or by simply leaving the metal frame
in place for days [119]. These were, however, accompanied by skin infections and high
patient discomfort.
An increasing number of FSRT treatments entailed the development of noninvasive and
relocatable stereotactic frames [104, 118]. Two relocatable frames compatible with the
Brown-Robert-Wells mount were introduced: the Gill-Thomas-Cosman frame [72, 104,
108, 171] and the Laitinen stereoadapter [62, 117–119, 163]. The former consists of a U-
shaped base plate to which a dental tray is attached. While the dental impression fits
to the patient’s upper jaw, occipital fixation is achieved by an adjustable head rest (cf.
fig. 1.7B). Finally three quick-release nylon straps fully immobilize the head [104]. The
frame can be combined with a localizer box, which is visible in CT images due to metallic
markers.
The Laitinen stereoadapter achieves immobilization by ear plugs and nasion support (cf.
fig. 1.7C). Ear plugs are pressed against the auditory meati and can be adjusted with mil-
limeter scales. Aluminium triangles with four transverse arms are fixated on both sides
of the head. The arms as well as localizer pins are made to show up in CT and hence to
define the stereotactic coordinate frame in which the target is defined.
Studies for both relocatable frames have shown typical re-positioning accuracies below
1 mm [62, 104, 163]. However, occasionally high positioning errors of several millimeters
render these frames inapplicable for high dose, single fraction applications such as SRS
[160]. These errors have been found to predominantly occur for patients with poor up-
per dentition [119, 160] or due to scalp motion within the frame [119]. This emphasizes
the need for a highly skilled operator and moreover comprehensive patient coopera-
tion. The latter makes this immobilization scheme not applicable to patients who are
not able to carefully follow instructions such as very young children [72]. A possibly re-
quired anesthesia is inapplicable due to the mouth bite, which is also not tolerated by all

13



1 Introduction

adults. Modifications have been proposed by Kooy et al. [160] and Dunbar et al. [72].
Both frames have been found applicable for claustrophobic patients since the head is not
covered during treatment [108].
Although the high effort entails setup times of up to 20 min [104], the general clinical
workflow has become more flexible. Imaging and planning can now be separated from
the actual treatment. With these frames the treatment could also be distributed across
several fractions.

Thermoplastic masks In modern SRT, thermoplastic masks adopt the advantages of
relocatable frames, but tackle some of the most severe drawbacks (cf. fig. 1.7D). They
nowadays constitute the most commonly used immobilization scheme. They consist of
thermoplastic material which is made moldable in a warm water bath. The mask can
then be molded directly on the patient’s face who is typically in supine position. The
material hardens within minutes and can be re-used across several fractions.
First attempts with plastic material have already been made in modifications of relo-
catable frames for treating children [72, 160] and were soon extended to thermoplastic
full masks in combination with bite bars [33, 41, 260]. In early immobilization systems,
the actual mask was fixed to a metallic horseshoe frame [198, 240, 260] for additional
stability. Recent studies, however, argue that the metallic frame increases geometric
distortions of the mask when attaching it to the treatment device [296]. Due to slight
differences between treatment and simulation device, they hence directly entail system-
atic interfractional errors (re-positioning errors from fraction to fraction compared to the
planning) [103, 241]. To separate these from random errors, El-Gayed and colleagues
[75] proposed to measure interfractional errors by the signed mean and its standard
deviation. Apart from these geometric distortions, Li et al. [173] also found random
translational shifts of up to 9 mm induced by the process of locking the mask to the
treatment table. While the way of locking varies, there are typically either three, four
or five fixation points. Five-point masks include a shoulder immobilization, which
has, however, not been found to significantly improve immobilization accuracy for
brain tumors [103]. Modern masks from manufacturers such as Orfit Inductries n.v.
[212], BrainLAB AG [35], Civco Medical Solutions Inc. [60], or others usually do not
rely on metallic frames and are hence often referred to as frame-less immobilization.
Together with modern IGRT, frame-less masks can separate target localization from
immobilization without any stereotactic localizers [41]. With short setup times and low
manufacturing efforts, these masks easily integrate into the FSRT workflow. Rotondo
et al. found on average 5 min setup time to be necessary [241]. A questionnaire also
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indicated only slight discomfort felt by most patients.
Interfractional repositioning errors mainly occur due to patient motion in the mask
and because the mask cannot identically be fitted to the head over several fractions.
Using the mask or a frame attached to the mask as a surrogate for positioning, then
results in incorrect target alignment. Common initial positioning, however, still uses the
room laser crosshair to align tattoo marks on the mask to the treatment room isocenter.
These are placed on the mask during planning. For the room lasers alone, Stephenson
reported 2 mm variance over a six months period. Even though suffering from the
similar problems, marker-based optical tracking represents another approach for initial
alignment [176, 273, 315]. Here, reflective markers are attached to the mask.
Thus, quantification of interfractional and also intrafractional errors is an essential,
yet challenging part for clinical workflow design. Nevertheless, it has not been
done consistently throughout the literature [202]. Approaches vary by patient pop-
ulation, error measure, clinical workflow protocol and imaging modality used as a
ground truth. Interfractional alignment was measured using either optical track-
ing [41, 155, 173, 273], portal imaging [103, 260, 263, 320], or CT/CBCT imaging
[31, 97, 111, 150, 176, 187, 198, 240, 296, 305]. Ideally – to only investigate errors origin-
ating from the mask itself – anatomical landmarks or internal fiducials [110, 154] are
compared to external landmarks such as mask field edges, markers on the mask or the
mask fixation frame. This is true for some studies that used portal imaging or CT/CBCT
[111, 198, 240, 260], but may not be the case for other studies [31, 41, 187, 273, 296].
Thus, the errors presented there may also include inaccuracies from the room lasers or
manual/automatic re-alignment errors using e.g. the couch system. Peng et al. [220]
measured considerably higher interfractional errors when initially aligning with the
room lasers instead of markers attached to a mouth bite. Another error source is given
by the imaging resolution. Further, portal imaging has only a limited view through the
beam’s eye and rather poor soft tissue contrast.
All this makes most studies very difficult to compare. Most errors presented in these
clinical studies are probably higher than the actual interfractional accuracy of the mask.
They necessarily include other error sources, but nevertheless reveal that positioning
according to surrogates on the mask leads to incorrect target alignment. Additional
verification is imperatively needed. Table 1.2 gives a rough overview of intervals for 3D
translational and rotational errors which were found on average in most studies. The
values in brackets include an error spread of one standard deviation. Occasionally higher
errors have been reported for some cases [103, 296, 320]. Most studies also distinguish
between superior-inferior (SI), lateral (LAT), and anterior-posterior (AP) directions.
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While some studies emphasize particularly high errors in SI direction [240], the specific
distribution of the errors across the three spatial dimensions strongly depends on the
type of mask, the material and operator skills or protocols. Errors considerably increase
when the patient experiences swellings or weight loss in the course of the treatment
[97, 107, 240, 279]. This is even more likely when RT is combined with chemotherapy
[23]. Furthermore, particularly these cases render mask shrinkage or sharp edges on the
mask problematic.
Intrafractional errors, i.e. motion within the mask during dose delivery, are lower than
interfractional errors. They have been measured by either comparing pre- and post
treatment CBCT (motion range only) or continuous optical tracking during treatment
[150, 273, 296] (cf. table 1.2).

All these errors can be used to compute safety margins and to ensure that 95 % of
the dose will be delivered to the CTV [302]. Common margins added to the CTV are
about 2-3 mm [198].

Open-face masks One major drawback of full-head masks is the claustrophobic dis-
tress a patient is exposed to. This full coverage of the face also prevents marker-less
optical approaches from directly tracking the skin surface. By relaxing this restriction,
studies have shown that excluding the shoulders from immobilization or cutting eyes
and mouth free does not influence the overall immobilization accuracies, but reduces the
claustrophobic distress [263, 320]. Velec et al. made similar experiences with so-called
skin-sparing masks which left the jaw and lower neck free [305]. Removing parts of the
mask was further found to reduce skin toxicity. Lee et al. discovered that skin absorbs
18 % more dose when covered by the mask due to its bolus effect [167].
As a consequence, some departments [173, 215] started migrating to so-called open-face
masks. As shown in fig. 1.7E, they leave the facial area free and are highly suitable for
claustrophobic patients. Only a minor worsening of the immobilization errors was found
in recent investigations by Li et al. [173]. Rather than tracking the mask surface, they also
provide access to the face for marker-less optical tracking. Manufacturers of marker-less
tracking devices such as VisionRT, Ltd therefore recommend using these masks [215, 310]
(cf. fig. 1.7F). This is reasonable since studies indicated large differences when compar-
ing the motion of the mask surrogate with the actual motion happening inside the mask
[306].
Finally, open-face masks have raised mild concerns about a higher risk of mask twists
and geometric distortion, particularly when weight loss is experienced. Furthermore,
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1 Introduction

alignment tattoos for the room lasers are more difficult and less reliably to set on the re-
stricted mask area.
Thus, alternative approaches propose to establish a rigid link to the skull bone by cus-
tomized mouth bites. This additional fixation allows to substantially reduce the head
proportion covered by the mask. Once the mouth bite is equipped with markers, it can
also be optically tracked for positioning. Although Buatti et al. [41] revealed a reprodu-
cibility for mouth bite insertion of less than 0.5 mm on average, there is a high variance
across patients. More recently, Wang and colleagues obtained errors of less than 2 mm for
87.5 % of all patients when positioning patients with optical markers attached to a bite
block [316]. Reproducible insertion was found particularly problematic for patients with
poor dentition [215, 316]. Further disadvantages involve the bite effort and the resulting
fatigue as well as occasional oral toxicity, increased swallowing motion and incompatib-
ility with anesthesia [173].

1.2.2.2 Image Guidance

Target localization distinguishes two different cases: (1) re-positioning the patient with
respect to the LINAC isocenter at the beginning of each fraction (interfractional position-
ing), and (2) tracking target motion during the treatment (intrafractional tracking).
As mentioned earlier in this section, re-positioning is initially done by aligning marks on
the immobilization device to the treatment room lasers which intersect at the machine
isocenter. This constitutes the worst option due to interfractional inaccuracies of the im-
mobilization device, but roughly positions the tumor target within the field of view (FoV)
of more sophisticated imaging modalities used in IGRT. The imaging modalities include:
stereoscopic X-ray, CBCT, portal imaging, marker-based optical tracking and marker-less
optical tracking. These are described in the following. Note that other modalities such
as ultrasound (US) or electromagnetic imaging [250] are not described due to their minor
relevance for for cranial SRT.

X-ray-based Imaging In the context of this thesis, X-ray imaging will always refer to
kilo Voltage (kV) imaging, since it agrees with the definition of X-rays in a strict physical
sense. While classical X-ray systems still required films to obtain the images, modern
systems almost exclusively rely on flat panel detectors and fluoroscopy for fast, digital
acquisition [21]. Possible approaches include stereoscopic X-ray [145, 176], kVCBCT
[143, 210] or in rare cases CT-on-rails [180]. Most treatment systems are equipped with
the former two approaches. Widely used examples are the Cyberknife® system (cf.
fig. 1.3B, Accuray, Inc. [3]), the Varian On-Board Imager® (OBI) (cf. fig. 1.3A, Varian
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1.2 Stereotactic Radiotherapy

Medical, Inc. [304]), or the Elekta Synergy® system [76]. Some systems such as the latter
two are capable of 2D and 3D imaging.

2D imaging is accomplished by stereoscopic X-ray imaging. Here, X-ray images
from orthogonal directions (e.g. at defined gantry positions) result in two projections
that describe a 3D volume in the FoV. These images can then be registered to the
planning CT by generating 2D digitally reconstructed radiographs (DRRs) from the 3D
planning volume [222]. This is termed 2D to 3D fusion. A typical clinical workflow first
aligns the patient with respect to the room lasers. Second, X-ray images are acquired and,
third, interfractional alignment errors obtained from image registration to the planning
CT are compensated with the robotic couch system, for instance.
Since stereoscopic X-ray imaging is faster than CBCT and entails lower imaging doses,
it can also be used to compensate intrafractional motion during the treatment. Typ-
ical examples suitable for frame-less treatment are the BrainLAB Novalis® system
[35, 145, 176] or the Cyberknife® 6D skull tracking [153]. Due to the extra dose delivered
and image acquisition time, continuous tracking is typically limited to frequencies below
1 Hz. Treatment without mask immobilization is possible, but bears a risk for sudden
motion that cannot be captured by the imaging speed. Another impairing restriction
for gantry-based solutions is that they are only capable of acquiring images at limited
gantry positions, i.e. views. Mask-less treatment is therefore hardly used.

The workflow for CBCT positioning is equivalent to the one described for stereoscopic
imaging [296]. In contrast to ceiling mounted imaging equipment, these gantry-based
approaches are capable of also acquiring 3D volumetric CBCT images. Due to very
long acquisition and image reconstruction times (2-5 min according to [107, 278, 279]),
intrafractional monitoring is not feasible. Most time is spent for reconstruction [278].
The registration accuracy with CBCT images depends on three major technical factors.
First, most treatment systems provide either 3 or 6-degrees of freedom image fusion
with the planning CT. 6D fusion was found more accurate for the type of motion usually
occurring within the clinical application [176]. Second, the imaging resolution is high
(voxel size of 1 mm or better [52]), but limited. In addition, the planning CT typically
has slice thicknesses of 1-3 mm [97]. Third, the calibration to the machine isocenter.
For state-of-the-art calibration procedures, manufacturers state deviations between
imaging and machine isocenter of less than 1 mm, whereas quality assurance was shown
to achieve accuracies down to 0.3 mm [221]. For the Varian On-Board Imager®, the
calibration typically yields errors below 0.5 mm [98]. Finally, the gantry motion also
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induces isocenter shifts of up to 0.7 mm while moving [145].

Therefore, and because registration relies on volumetric, intensity-labeled fusion,
CBCT or X-ray in general is seen as a robust gold standard for localization and tracking
in FSRT and SRS [172, 215, 220]. The required imaging dose, however, is seen as one
of the central drawbacks. Studies report a common dose exposition of 3-10 mGy per
acquisition [204, 264, 272, 278]. Particularly accumulated over more than 30 fractions,
this is seen problematic [107]. Alternative guidance approaches are possibly needed to
reduce the frequency of X-ray based acquisitions required up to date [279]. Although
stereoscopic imaging requires less dose as such, intrafractional tracking with this method
can be judged along similar lines.

Portal Imaging In the context of this thesis, portal imaging refers to MV γ-ray imaging.
This type of imaging is done through the eye (named ”port”) of the therapeutic beam. In
theory this constitutes the most accurate localization technique, because the image pre-
cisely corresponds to what is actually treated. The imaging isocenter is identical with the
machine isocenter and is unaffected by gantry motion. No extra dose is delivered to the
patient, unless additional verification scans, not being part of the original treatment plan,
are acquired. This on the other hand involves high extra dose. In this context, there is
also the option for MV CBCT [64].
However, image resolution is lower when compared to CBCT [54] and the FoV is very
limited. Consequently, image registration to a kV planning CT only relies on a very small
sector. Moreover, portal imaging also suffers from poor soft tissue contrast and bad de-
tector efficiency [278]. Ideally, bony landmarks or implanted fiducials can be used for bet-
ter image registration. Internal fiducials have been proposed for cranial SRT [110, 154],
but are reluctantly used due to their invasiveness.1

While classical MV imaging was done using port films, the evolution of electronic portal
imaging using amorphous silicon flat panels now enables LINAC-integrated, fully digit-
ized image acquisition [11].

Marker-based Optical Tracking Optical tracking overcomes some of the major draw-
backs of X-ray-based tracking. The target is localized using light and does therefore not
add any additional ionizing radiation to the treatment. Marker-based tracking relies on
a small set of markers that are tracked by a ceiling-mounted camera. Markers can be

1This also makes electromagnetic, beacon-based tracking as performed by Calypso® a possible [61, 250],
but questionable choice for cranial RT.
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Figure 1.8: Integration of the Novalis® ExacTrac® system into a gantry-based treatment system.
The system consists of two ceiling mounted aSi flatpanel X-ray detectors and an optical track-
ing camera to track passive markers. (Image by courtesy of BrainLAB, AG, All rights re-
served. [35])

reflective marker spheres (”passive markers”) or light emitting diodes (LEDs) (”active
markers”), whereas the former are more widely spread. Active markers usually emit
non-visible light, e.g. in the infrared (IR) or near-infrared (NIR) range. Robust 6D
tracking becomes feasible with the use of more than three markers [315]. Using this
concept, optical tracking was also introduced to reduce cost, personnel, complexity of
SRT as well as patient discomfort [61].
There are two systems commercially available: the BrainLAB ExacTrac® system and the
Varian/Zmed RadioCameras. Both are passive marker-based tracking systems.
The ExacTrac® system can be combined with stereoscopic X-ray imaging resulting in
the Novalis® localization system. This system has been investigated by several research
groups [16, 145, 155, 176, 182, 273, 315, 340]. It consists of two IR cameras (depending on
the released version a PolarisTM [206] or other model) which are mounted onto the ceiling
(cf. fig. 1.8). The system is capable of tracking 5-7 marker spheres with a frequency of
20-30 Hz. The imaging speed is therefore faster than for X-ray-based approaches. It can
be used for both, positioning and intrafractional motion monitoring. The latter enables
gating, i.e. switching the therapeutic beam off for large deviations from the isocenter.
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A: Passive marker spheres tracked by the
ExacTrac® camera are the attached to a

thermoplastic mask [273]. (Creative Commons
Attribution License)

B: Passive marker spheres tracked by the
RadioCameras (Zmed/Varian Inc., Ashland, MA)
are attach to a mouth bite. (Image by courtesy of
Varian Medical, Inc., All rights reserved. [304])

Figure 1.9: Typical examples of marker-based tracking approaches.

The marker identification error is specified as 0.3 mm [145, 273]. The markers are not
required to be placed in a rigid regime and can therefore be attached to the chest or for
SRT to the thermoplastic mask (cf. fig. 1.9A). This compromises the overall tracking
accuracy with respect to the target. Tracking surrogate motion of the mask does not
provide reliable information about the internal target motion. This was supported by
Linthout et al. [176] and Spadea et al. [273], who both confirmed that the optical tracking
system reported less motion than actually found by 6D target fusion between planning
CT and verification X-ray images. Thus, the overall tracking accuracy is similar to the
intrafractional errors reported for thermoplastic masks and ranges between 1 mm and
3 mm [145, 273, 315].

The second system, the RadioCameras (Varian/Zmed) [304], also uses a PolarisTM

[206] IR tracking system and an array of more than three passive marker spheres
[61, 149, 189, 190, 220, 244, 292, 315]. The markers are placed in a rigid regime onto a
customized maxillary bite block. The mouth bite is then fixed to the upper jaw of the pa-
tient allowing only partial mask coverage for the rest of the head (cf. fig. 1.9B). A slightly
modified version called SonArray® can be used for US or customized applications.
The unambiguous marker constellation of the rigid regime can be stored in files for
reference. The stored geometry can then be tracked during the treatment and finally be
registered to the marker locations extracted from the planning CT. Inaccuracies of the
stored reference geometry correspond to the marker identification errors. The extraction
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accuracy from CT was found to be <0.5 mm [315]. Due to the bite block and rigid
fixation to the skull, the accuracy of the RadioCameras is higher than for the ExacTrac®

system. The reproducibility of the bite block placement was reported to be on average
below 0.5 mm [41]. Further advantages and disadvantages for using a bite block have
been discussed for the immobilization devices already. Most important, D’Ambrosio
and colleagues [61] emphasized that bite effort and fatigue made treatment times above
15 min hardly possible.

Marker-less Optical Tracking The discrepancy between surrogate and actual target
motion constitutes one of the major drawbacks in marker-based optical tracking [220].
Therefore, it is desirable to directly track the motion of the patient’s anatomy. In case of
cranial RT, tumor motion typically has a high correlation with the corresponding motion
of the skull. Therefore, X-ray-based image registration mainly relies on registering the
bony orbit from different recordings [221]. In contrast to this volumetric approach,
marker-less tracking registers surface information. The surface is usually given by the
skin surface and is assumed to be a representative for the target motion. Kim et al. [156]
showed that registering surfaces can be problematic. Limited information as compared
to volumetric fusion makes the registration more sensitive to changes in surface shape or
to large motion. The latter is even more important when the surface is smooth without
distinct landmarks. By comparing with CBCT fusion, he showed for real data from HN
patients and simulated motion that theoretical inaccuracies were on average 2.7 mm, and
can be as large as 5.2 mm. Although the situation may be better for intracranial tumors,
this finding stresses the major weakness of marker-less approaches.
On the other hand, it does not rely on additional radiation or artificial surrogates, is a
fast way to monitor even intrafractional motion and is inexpensive as far as the device is
concerned. By providing the advantages of marker-based optical tracking and tackling
its main drawback, the marker-less approach has got a high potential.

The majority of devices relies on the principle of triangulation. Alternative approaches
such as time-of-flight cameras have been proposed [227], but still remain a minority.
Triangulation can be either based on natural features of the patient (vision-based
stereo-camera photogrammetry [341]), or on projected patterns which are observed by
a camera [65, 174, 254]. An excellent overview is given by Chen et al. [56]. In FSRT,
projection methods – so-called laser triangulation – have prevailed due to their superior
robustness. Possible projections involve speckle patterns [24], scanning laser lines [213]
or single laser spots [79], and are observed by one or multiple cameras.
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A: Typical treatment scenario: two ceiling mounted
cameras image the surface geometry of the

patient’s face which is exposed for tracking by
the open-face mask.

B: The AlignRT® [310] device. A - stereo-camera
system for triangulation, B - gray-scale texture

camera, C - speckle projector.

Figure 1.10: The AlignRT® [310] marker-less optical tracking system. (Images by courtesy of Vis-
ionRT, Ltd., All rights reserved. [310])

Both, low-cost consumer products as well as dedicated tracking devices have been pro-
posed for usage in SRT. The former include the Microsoft Kinect®, for instance, which,
however, suffers from a very limited accuracy (1 cm depth resolution at 2 m) [247, 338].
Apart from that, mainly two commercially available systems have been established in
FSRT so far: (1) the SentinelTM or CatalystTM systems from C-Rad (Uppsala, Sweden)
[44], and (2) the AlignRT® system from VisionRT (London, UK) [310]. These shall be
discussed in the following.

AlignRT® The AlignRT® system consists of one to three ceiling-mounted cameras in
typical distances of 1.8 m-2.7 m to the patient [24, 254]. To avoid target occlusion during
gantry motion, and to generally increase the surface coverage, one camera is mounted
on each side, and one in front of the treatment couch. Figure 1.10A illustrates an SRT
treatment scenario with two cameras.
Each of these cameras consists of two charge-coupled device (CCD) cameras for stereo-
scopic imaging, a gray-value texture camera and a speckle generator (cf. fig. 1.10B). A
speckle pattern is either statically or dynamically projected onto the patient. The pattern
(as indicated by the light red illumination in fig. 1.7F and fig. 1.10A) consists of about
10,000 points of 1-3 mm spacing [220]. These patterns generate unambiguous landmarks

24



1.2 Stereotactic Radiotherapy

on the surface which are observed by the stereo-camera system. The identification of the
same points in both camera images forms the basis for laser triangulation and hence 3D
surface reconstruction. The gray-value camera is only used for visualization of the treat-
ment scene and not for alignment [24].
The system first generates a reference surface offline and then registers surfaces acquired
online (the so-called ”real-time mode”) to it. The reference can either be a surface refer-
ence extracted from the planning CT, or a high resolution optical scan recorded by the
camera system itself. Studies have shown, that the optical reference tends to provide bet-
ter registration accuracies with respect to target alignment [220]. Beforehand, the chosen
surface reference can be restricted to only include specific regions-of-interest (ROIs) or be
manipulated to exclude certain areas such as the eyes, the nostrils or the mouth [50]. The
acquisition frequency depends on the size of the chosen ROI and may vary in real-time
mode between 0.1 and 7.5 frames per second [24, 50, 220]. This can be exploited for res-
piratory motion compensation or gating in SBRT. It is called GateCT® or GateRT® in this
context [151, 252, 254].
Before the system can be used, a calibration with respect to the machine isocenter is per-
formed. This is carried out by acquiring images from a special calibration plate which is
aligned to the isocenter using the room lasers. The calibration errors with respect to the
isocenter were reported to be less than 0.5 mm [172] and the calibration errors among dif-
ferent cameras less than 1 mm [24]. The latter merges the surface point clouds between
all cameras and ensures small alignment errors among them. Stability tests for 57 h of
operation revealed shifts of the camera coordinate system that were below 0.5 mm [24].
The accuracy of the registration and the capability to precisely report target motion was
tested against X-ray-based imaging such as CBCT by several groups. In these, initial pa-
tient positioning was done with AlignRT® and afterward verified using CBCT [50, 172,
220]. Initial phantom tests yielded errors of less then 1 mm [49] or even down to 0.1 mm
and 0.1◦ on average [172] in all spatial dimensions.
Average alignment errors in real patient scenarios were mainly found to be less than
2.5 mm [50, 172, 220], but may, with up to several millimeters, be occasionally higher
[50, 107, 156]. Increasing errors have particularly been reported for increasing distances
to the isocenter [49, 220].
The system has also been successfully integrated into the clinical workflow [25, 173, 175,
254]. An average time for patient setup using surface scanning of 14 min was achieved
[50, 215]. Here, the total setup time of 26 min also included an additional patient align-
ment using CBCT (11-12 min) for cross-checking. Setup times with both modalities were
therefore comparable (median treatment time was 40 min for comparison [50]).
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A: C-Rad [44] SentinelTM

system consisting of one
laser line projector and a

triangulation camera.

B: C-Rad [44] CatalystTM system consisting of a laser line projector and
a triangulation camera.

Figure 1.11: Two optical marker-less tracking devices by C-Rad [44]. Images by courtesy of C-
Rad, Ltd., All rights reserved. [44]).

In terms of robustness, eye blinks have not been found to constitute a significant prob-
lem [50]. General concerns were, however, discussed with respect to deformations of the
surface geometry. Rigid registration to the reference surface might result in substantial
misalignments. Surface changes can be caused by facial expressions [50, 174], weight
loss/gain, or medication [220]. Lee et al. reported a median weight loss of 3.3 % across
the treatment time with daily weight loss between 0.15 % and 0.22 % for HN patients
[166]. In fact, studies, which stated average errors below 2.5 mm, also reported cases
with alignment errors between 3 mm and 10 mm [50, 107, 220]. These outliers may ori-
ginate from the aforementioned error sources. Indeed, Gopan and colleagues confirmed
that some ROIs such as the cheek bones or the forehead give more stable registration per-
formance than others [107]. Further issues compromising the robustness of the system
are suboptimal camera calibration, poor definition of the body contour as extracted from
the CT scan, insufficient structure information within the ROI or the availability of only
one camera due to occlusion [50].

C-Rad Systems The Swedish company C-Rad [44] developed two marker-less track-
ing systems: the SentinelTM and the newer CatalystTM system. Until recently [43], the
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1.2 Stereotactic Radiotherapy

SentinelTM system was also distributed by LAP GmbH Laser Applikationen [164] under
the brand name Galaxy system [34, 201, 202]. Due to a dispute about malfunctions, the
cooperation was canceled. Being competitors for AlignRT®, the devices have recently
been ordered by a couple of clinics [77, 137–140]. Both systems work in a similar manner
as compared to the AlignRT® system, but in contrast rely on the projection of a scanning
laser line instead of a speckle pattern [213].

The SentinelTM system shown in fig. 1.11A consists of a complementary metal-
oxide-semiconductor (CMOS) BCi4 LS camera (C-Cam Technologies [42]) and a 690 nm
laser line sweeping across the target. The galvanometric deflection unit is calibrated
relative to the camera which enables laser triangulation of a 3D surface. The laser scans
40 cm, i.e. 30 contours in 2 s time with a nominal resolution of 0.2 mm (for earlier versions
Moser et al. mention a deviating lateral resolution of 0.5 mm [202]). The scanner weighs
8 kg [213]. Similar to AlignRT® the motion tracking can either rely on a CT surface or
high resolution optical reference. The latter has been found to be of higher accuracy
[213, 214]. For long operation times a baseline drift for the system of up to 3 mm was
measured by Moser et al. [201].
Phantom tests revealed accuracies below 1.5 mm in all spatial dimensions [201, 213] and
a calibration accuracy with respect to the machine isocenter of less than 0.5 mm [201].
In scenarios with real patients suffering from HN or brain cancer, the system yielded
positioning errors below 4 mm and 2.1◦ in all spatial dimensions [278]. In another study,
Moser et al. found 75 % of all 3D errors below 3.2 mm and deviations in the roll angle
of below 2◦ [202]. Both studies, however, may be compromised by the fact that they
scanned the mask surface and not the face directly. This, on the one hand, does not
reflect the real internal target motion as corrected for by the CBCT gold standard, and
also only provides an uneven and suboptimal surface for the laser scan.

The CatalystTM system shown in fig. 1.11B represents the successor to the SentinelTM

system. In contrast to the latter, it consists of three cameras positioned similarly to the
AlignRT® system with respect to the treatment couch. For each camera, integration time
and camera gain can be adjusted by the user to cope with different lighting conditions,
surface shapes and colors. This was successfully tested by Stieler et al. [279]. He also
confirmed reproducibility and tracking accuracy of less than 1 mm with a phantom
as well as less than 3.5 mm and 2◦ average deviation from a CBCT ground truth for
positioning three HN cancer patients [279]. As for earlier studies on the other system,
these results may also be compromised by scanning the mask surface and not the
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patient’s face.
The CatalystTM system provides laser projection with blue (minimal skin penetration -
used for laser triangulation), red and green lasers. With the latter two, certain parts of
the body can be illuminated to indicate correct and incorrect alignment or to guide the
operator.
Finally, large errors of up to 13.4 mm were recorded with patients experiencing notable
weight loss. Scanning the mask surface has surely contributed to these high values.
However, similar problems with surface reproducibility were also reported by Pallotta
et al. [214] for thoracic regions when treating overweight patients.

Summary

Table 1.3 presents the localization approaches discussed in the last paragraphs in an over-
view chart. The approaches are compared according to eight main categories, whereas
the color-coding (from red, orange, yellow to green) indicates a rating (with red being
most negative and green most positive). The categories are as follows.

Imaging Modality This category is weighted neutral and lists the general concept
which is used for imaging.

Imaging Dose The imaging dose indicates the extra amount of dose which is used for
imaging only. The optimal case corresponds to no extra dose for the patient.

Detection Capability It is described what kind of motion can sufficiently be monitored:
interfractional, intrafractional or both.

Registration The planning reference can be registered to data recorded online in vari-
ous ways. The most reliable approach is given by volumetric fusion, which exploits in-
tensity changes across a large number of points. Surrogate and surface motion only use
limited information and the target may be quite distant to the registered region. It is more
favorable to track patient anatomy (e.g. the skin surface) directly instead of external sur-
rogates.

Accuracy Related to the previous category this indicates the uncertainty with which
the registration can be performed and the target be located.
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1 Introduction

Imaging Speed Ideally, new information about target motion can be acquired continu-
ously and in real-time. The latter term describes a case in which the imaging speed is
faster than typically expected target motion.

Operating Expense On the one hand, this covers the cost for the device and all
necessary components. Some components may be already available at the treatment site.
Further on, the impact on the clinical workflow is rated: necessary personnel, needed
manual interventions or additional steps, necessary patient or marker preparation,
manufacturing of customized components etc.

All in all, a general tendency can be seen. While X-ray-based imaging is the most
accurate and is used as a gold standard, optical tracking approaches on the other hand
are capable of flexible and fast monitoring. They require no extra dose and are typically
inexpensive compared to X-ray devices. In fact, marker-less tracking potentially reduces
the workflow overhead, since preparation or even the need of immobilization devices
can be reduced. However, one of the major drawbacks is given by their limited reliability,
robustness and hence accuracy with respect to target localization.

1.3 Purpose of this Work

The previous sections set this work into its broader context. In a nutshell, all subsequent
investigations will relate to fractionated external beam therapy of intracranial targets
only. This mainly refers to FSRT. In order to ensure precise irradiation in compliance
with the treatment plan, localization of the target and tracking of its motion is vital. Sec-
tion 1.2.2.2 pointed out strengths and weaknesses of different ways for tracking head mo-
tion. This thesis will exclusively focus on marker-less optical surface registration, which
overcomes some severe drawbacks of other methods such as slow tracking speed or the
exposure to additional radiation. Concretely, the work being presented will be dedic-
ated to the main limitation of optical surface tracking: moderate accuracy with respect to
target alignment and – along with that – the risk of occasional misregistrations.

Problem Statement Registering surfaces bears the risk of higher tracking errors when
in fact targets underneath the surface need to be aligned. Unlike typical volume registra-
tion, surface registration separates target and registration site. Therefore, high accuracy
demands and a low risk for outliers is required. The two core problems for head tracking
and an intuition for the proposed solution are illustrated in fig. 1.12.
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1.3 Purpose of this Work

Figure 1.12: Core problems of pure surface registration and the intuition for a possible solution.
A: A patch scanned from a sphere needs to be registered to the reference (gray object).
In this extreme case, any possible alignment on the sphere is a local minimum (e.g. blue
location) with the same registration error as the global one, i.e. the correct alignment (red).
Additional information denoted by the color patterns is the only way to tell the minima
apart. B: A patch scanned from a non-rigid surface needs to be registered to the reference
(gray object). Deformation of the surface prevents a perfect match. Moreover, the correct
alignment (red) has a slightly higher spatial registration error than the (misleading) global
optimum (blue). Again the color helps to identify the correct choice. (Reprinted from [331],
Copyright (2015), with permission from Springer).

First of all, the registration process is iterative and, depending on the surface character-
istics, a highly non-convex optimization. Globally, there may be more than one good fit
of a scanned patch to the reference surface. Depending on the initial pose, i.e. the head
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motion, the iterative registration may converge into local minima and end up trapped in
them. In an extreme case, the problem is ambiguous, in that there are several solutions
which are equally good (cf. matching patches to a sphere in fig. 1.12A).
Second, the registration is not rigid for a human head. The soft tissue surface may de-
form, e.g. after weight loss or even slight changes in the facial expression. The two
surfaces to be registered may also come from different modalities. This entails differ-
ent systematic and random acquisition errors. Therefore, it is very likely that a perfect
match does not exist. These influences could even transform the correct alignment into
a local minimum and generate a global one somewhere else. This means that the align-
ment having the lowest surface registration error may not coincide with the correct target
alignment anymore. This is illustrated in fig. 1.12B.
This scenario worsens, if the surfaces include only very little landmarks or if the land-
marks can only insufficiently be resolved by the scanning process. The forehead region
has been recommended for surface tracking since motion artifacts are less severe than in
other facial regions [107]. On the other hand, surface scans from that region may still suf-
fer from the aforementioned ambiguity problems due to the lack of landmarks. In FSRT,
the thermoplastic mask may also only allow limited access to the patient’s face.
This work proposes to use additional surface information for fixing degrees of freedom
poorly defined in the registration process. This is denoted by the color overlay in fig. 1.12.
This additional dimension rules out ambiguities and introduces additional landmarks.
This supports the registration process and increases the likelihood for identifying the
correct alignment.

Proposal Figure 1.13 presents a general proposal of how this can be achieved in a
clinical scenario. The key idea is to exploit variations in the optical backscatter returned
by the optical scan of the skin surface. These changes should contain information about
changing optical properties of the skin across the forehead region. One of the sources for
backscatter variations is the variation of tissue thickness. One may imagine that thicker
skin would reflect less light due to absorption and scattering than very thin skin. The
thickness measure also entails the advantage of being available from cranial magnetic
resonance (MR) or CT after segmentation, too. Knowledge about this measure would
therefore allow to support registration to the planning reference (absolute tracking) and
between online optical scans (relative tracking).
This work proposes to generate a model during treatment planning, which can infer
tissue thickness from optical backscatter. Using this model, tissue thickness can also
be obtained for scans during treatment later on. The tissue labeled scans or the tissue
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1.3 Purpose of this Work

Figure 1.13: Proposal of the enhanced marker-less tracking concept. The additional information
in fig. 1.12 will be extracted from recorded optical features. These contain information about
the tissue thickness, which can also be segmented from CT or MRI scans. The left orange ar-
row shows the desired transformation between online scans and planning reference, while
the right arrow illustrates how this transformation is computed. The “A” path denotes clas-
sical, pure surface registration, and “B” the enhanced proposal. A model which predicts
tissue thickness from optical information is generated during planning and applied during
treatment. This gives rise to corresponding structural information on reference and online
scan, which is then exploited for tracking. (Reprinted from [331], Copyright (2015), with
permission from Springer).

labeled planning reference can then be used for enhanced registration and therefore
motion tracking.

This work is exclusively concerned with the evaluation of this concept: How can
information be retrieved from optical backscatter? What are optimal conditions for this
retrieval and what are challenges? How does this information affect the registration
process?
The development of optical or related hardware is beyond the scope of this work. Details
about this distinct topic are the main concern of the work of Patrick Stüber [281–283, 285]
and can be found elsewhere. Insights will only be given and referenced where necessary
for the understanding. The same applies for the triangulation software framework. The
concept of how to obtain the 3D surface geometry is the main concern of the thesis of
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Benjamin Wagner [312] and equivalently beyond the scope of this work.
The main concern here is information retrieval. For enhanced tracking, only a proof of
concept will be given. The goal is not to develop dedicated tracking algorithms, but to
demonstrate the concept with state-of-the-art surface registration algorithms.

Research Questions This work will approach the proposal in terms of three main re-
search questions. These are summarized with their corresponding sub-questions below.
First, RQ 1 will deal with the theoretical basis for the concept. It will investigate optimal
specifications of an optical assembly for acquiring optical features with high information
content. Based on simulations, it will be investigated how information is encoded in the
backscatter, which disturbance factors have to be considered, and finally how the inform-
ation can be converted into a tissue thickness scalar.
Second, RQ 2 will evaluate the transfer of these findings into practice. Challenges in a
real world scenario will be discussed and the agreement with theoretical findings evalu-
ated. Central to this point is the question of how accurate tissue thickness patterns can
be reconstructed and which factors have an influence on this accuracy.
Third, RQ 3 looks into the link between accurate prediction of tissue thickness patterns
and the actual benefit for the registration accuracy.

34



1.3 Purpose of this Work

RQ 1 Is there a valid basis for extracting information about tissue
thickness from optical backscatter?

RQ 1.1 What are the most suitable hardware parameters for an
optical setup?

RQ 1.2 How is information encoded in backscattered light and
how can it be optimally translated into informative fea-
tures?

RQ 1.3 What are possible disturbance quantities?

RQ 1.4 How can informative features be used to retrieve a repro-
ducible pattern to support surface tracking?

chapters
3, 6

RQ 2 To which extent does the theoretical basis hold for real data
recorded from the forehead?

RQ 2.1 How are the simulation results reflected in real data?

RQ 2.2 Which statistical learning approach is most suitable for
retrieving information about tissue thickness from optical
features?

RQ 2.3 Which disturbances have an influence on the estimation
accuracy and how can they be handled?

RQ 2.4 Are there indications of gender, age or skin type affecting
the learning outcome?

chapters
4, 6

RQ 3 Does head-tracking gain from incorporating tissue thickness
information?

RQ 3.1 Where are concrete benefits for standard matching al-
gorithms?

RQ 3.2 Which impact has imperfect data on these benefits?

chapters
5, 6
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1.4 Organization

Following this introductory chapter, there will be five further chapters. At the beginning
of each chapter the main content will be summarized and the structure will be outlined.
In turn, the end of each chapter will conclude the main ideas discussed in more detail
within the actual chapter. Conclusions will be given as answers to the aforementioned
research questions. This directly interprets the main findings with respect to the object-
ives set above.

Chapter 2: Generally, methods and materials will be presented in their correspond-
ing chapters. Apart from that, this second chapter will outline the key methodology of
this work. These methods are central for the understanding and appear across multiple
sections. A general data processing pipeline will be introduced first, to illustrate the
main modules involved in any proposed concept. Subsequently, algorithms for statist-
ical learning namely Support Vector regression and Gaussian processes as well as surface
registration algorithms will be introduced. These are options for the modules of the pro-
cessing pipeline.

Chapter 3: This part will be concerned with answering RQ 1. After reviewing the ana-
tomy and physiology of the forehead and the human skin, approaches for simulating
light-tissue interactions will be described. Special focus is directed to Monte-Carlo sim-
ulations, which will be used to analyze how information about the tissue thickness is
encoded in the optical backscatter. The chapter will define optimal conditions for in-
formation retrieval and propose how statistical learning can be used to convert it into a
thickness measure. Main disturbance factors will be taken into consideration. Parts of
this chapter have been published in [324] and [325].

Chapter 4: The theoretical findings will be investigated on real world data. This will
answer RQ 2. Therefore, this chapter starts with describing the optical assembly and
framework for data acquisition. Further on, the design of a subject study involving 30 vo-
lunteers will be pointed out. This includes an elaboration on the tissue thickness ground
truth and how it is obtained from MRI scans.
After investigating general aspects of light-tissue interaction in practice, they will be com-
pared to the simulations. Based on that, the accuracy for predicting tissue thickness from
optical features will be studied. Unlike the simulated data, which were exclusively pro-
cessed with Support Vector regression, convenient properties of Gaussian processes will
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also be discussed here. This discussion is extended to remaining challenges, e.g. how to
handle larger amounts of data. First light is shed on possible solutions.
Overall, this chapter will cover one of the two major requirements for the enhanced track-
ing concept: The optimal reconstruction of tissue labeled surfaces from optical backs-
catter information. Variations and influencing factors within the subject group such as
gender, age and skin type will be taken into account as far as possible. Parts of this work
have been published in [327–332].

Chapter 5: The second major point of the proposed concept is treated in chapter 5. It
answers RQ 3 by investigating the benefits tissue thickness has on the registration per-
formance. A test concept will be introduced which will use a standard algorithm for
surface registration and simulated motion on real data. This way, an exhaustive analysis
of possible subject motion can be made. A reliable comparison between pure surface
tracking and tissue supported tracking can be obtained. Special concern is directed to the
question of how prediction errors of the tissue thickness affect the registration perform-
ance. In conclusion, it will be discussed in which scenarios tissue support is particularly
useful and how it influences the registration process. Parts of this work have been pub-
lished in [335].

Chapter 6: The final chapter summarizes the main findings and links back to the mo-
tivation of this first introductory chapter. It concludes the results in terms of the research
questions risen above and assesses the outcome of this work. Remaining challenges will
be taken into consideration and directions for future work will be suggested. Alternative
fields of application will be indicated.
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The following chapters will be kept as self-contained as possible for the sake of readab-
ility. That means that materials and methods are only discussed within the chapter they
are actually used in. This chapter, however, will make an exception. It will describe and
discuss key methodology in detail. Key methods are those being used throughout the
entire manuscript and hence being of highest relevance. Almost all subsequent chapters
will require background knowledge about the techniques described here. Such an un-
derstanding will also facilitate understanding implications of later findings and experi-
mental outcomes.
First, the general processing chain from raw data to informative features and finally tis-
sue thickness predictions is discussed. This will review general conventions and terms
of statistical learning and artificial intelligence. The data processing chain is not neces-
sarily unique for the optical data processed here, but will discuss general steps such
as pre-processing, feature extraction, feature transformation, regression and interactions
thereof.
The second section will detail two specific techniques for statistical learning: Support
Vector regression and Gaussian process regression. The subsections will present both,
the weight-space as well as the Bayesian view on the regression problem1. Finally, the
last part will discuss testing methods, error measures and how to estimate the generaliz-
ation error of a specific technique on given data.
The third and last section will elaborate on point cloud registration. Its relevance is
given by the central motivation of this work: how to improve tracking approaches which
merely rely on 3D spatial information by incorporating additional information such as
tissue thickness distributions. In particular, the Iterative-Closest-Point algorithm will be
discussed as the most widely used algorithm for point cloud registration and tracking.
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Figure 2.1: General data processing chain. Raw data is first pre-processed, before informative
features b can be extracted. Raw data input provided by measurements are underlined and
highlighted in blue italics. Regression Analysis relates these to the tissue thickness ds - pos-
sibly after implicitly transforming the features b into a high dimensional space using ϕ(·)
(dotted box). The regression output is finally used to support point cloud registration.

2.1 Data Processing Chain and Notation

Machine Learning, as it will be used to approach the main goal of this work, typically
entails a general processing chain. The chain will take raw measurement data as an
input, extract useful information from it, and learn statistical dependencies within the
data. In the context of this work the raw data will be twofold: (1) a 3D point cloud
Pcld := {pi ∈ R3×1|pi = [pxi, pyi, pzi]

T }i=1...N , and (2) N 2D images containing optical
backscatter data for each point in Pcld. Then, the aim of the machine learning is to take the
information extracted from backscatter data, combine it with prior information possibly
obtained from the experimental conditions, the hardware setup or the point cloud Pcld,
and finally to relate it to a physiological measure such as tissue thickness. This physiolo-
gical measure can then be overlaid onto Pcld. This overlay is then used for improved
and more robust point cloud registration with a reference point cloud P refcld . Figure 2.1 il-
lustrates these general interrelations. The raw data inputs are highlighted in underlined
blue italics. The main blocks of this chain will be briefly discussed in the following.

Pre-Processing This step ensures data consistency and validity before it is used as an
input for the next step of the chain. Missing or distorted data are detected and artifacts
removed. Data which do not comply with the expected standards are hence discarded.

1The distinction between these general categories has been chosen in agreement with [237].
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2.1 Data Processing Chain and Notation

Apart from rejecting invalid data, this step may also provide first data conditioning. In
case of the given NIR data, the image is centered around the centroid of the spot and
image dimensions are adjusted by appropriately cutting the image size. Details will be
discussed in subsequent chapters.

Feature Extraction The pre-processed raw data contains relevant information as well
as overhead which is irrelevant for the target quantity. The target quantity in this work
is the tissue thickness ds ∈ R. It will be referred to as target label. Extracting informa-
tion from pre-processed raw data will break it down to D quantities per target label i.
These quantities carry information relevant with respect to the target label and are called
features b ∈ RD×1. Depending on their information content, features may differ in their
relevance.
With features from N data samples the entire input can be summarized with design mat-
rix B ∈ RD×N and target label vector ds ∈ R1×N . This gives rise to the input data set
D

D = {(bi, dsi)}i=1...N = (B,ds) with D{∈ RD×N × R1×N}. (2.1)

The N samples are distributed in an D dimensional feature space in this case. Parts of
the variance in this feature space are due to covariation with the target label.

Feature Transformation Very often it is possible to transform these samples into an-
other – in most cases higher dimensional – space. This may facilitate modeling a func-
tional relationship between features and labels, particularly when this relationship is
complex and highly nonlinear. For reasons explained later on, this new space will be
called kernel space of new dimension D′ with typically D < D′ [255]. The transforma-
tion is as follows:

ϕ : RD 7−→ RD
′

(2.2)

Earlier definitions can be extended to an adapted design matrix Φ ∈ RD′×N . The trans-
formation is hardly ever done explicitly, but implicitly by the statistical learning approach
using the so-called kernel trick [255]. This is indicated by the dotted box in fig. 2.1.

Statistical Learning Statistical learning has two categories: classification and regres-
sion. While classification maps the input features to a finite set of classes, regression tries
to learn a continuous function f mapping features to labels.
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f : RD
′ 7−→ R (2.3)

Thus, regression generalizes classification as it maps to an infinite number of classes.
Function f is learned by minimizing the deviation between given target labels ds and
the target label predictions d?s obtained from the current hypothesis for f . This is called
supervised learning. In the context of supervised learning, target labels are also referred
to as ground truth. Predicted target labels d?s and input features b? for this prediction will
be labeled with a star ?.
Various regression techniques have been published up to date [122]. Most of them can be
traced back to a data model, where each measurement of a target label ds is corrupted by
noise n ∈ R and where the underlying function f can be expressed in terms of a weighted
superposition of basis functions ϕ. The weight vector is given by w and assumptions
about the nature of n may vary by learning technique.

ds = f(b) + n = wTϕ(b) + n = 〈w, ϕ(b)〉+ n (2.4)

Here 〈·, ·〉 denotes the inner product of two vectors. This work will employ two regression
techniques namely Support Vector regression (SVR) and Gaussian processes (GPs). This
choice is not exclusive and there are other approaches which may work equally well.
Nevertheless, both regression techniques are quite explicit in modeling the data and their
optimization aims at a complexity-accuracy tradeoff. Further on, it will be shown that
GPs can be understood as a non-parametric generalization of many other approaches.

General Notation As done in this first part of the chapter, notation of mathematical
terms will be kept as follows. Scalar values or functions with a scalar output, i.e. values
in R1, are denoted by small letters in normal font. Bold font and small letters are used
for vectors or functions with a vector output in Rn×1, n > 1. Finally, matrices e.g. in
Rn×m, n > 1,m > 1 are labeled by capital letters and bold font. Let f be a function with
scalar output, then f(bi) is the functional value of f at bi and f(B) withB = [b1, . . . , bN ]

are the functional values of f at all bi concatenated into a vector. Furthermore, let ϕ be
a function with vector output, then ϕ(bi) is the vector output of ϕ at bi and Φ(B) with
B = [b1, . . . , bN ] are the vector outputs of ϕ at all bi concatenated into a matrix.
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2.2 Statistical Learning Techniques

Table 2.1: Overview of common regression techniques. SVR together with other regression ap-
proaches is categorized in the context of loss and penalty functions.

Approach Loss Function L∗ Penalty Term P

Least-Squares Fit L2 =
∑
i

(dsi − dsi?)2 none

Least Absolute Deviations [30] L1 =
∑
i
|dsi − dsi?| none

Ridge Regression [126] L2 =
∑
i

(dsi − dsi?)2 ‖w‖22

LASSO [290] L2 =
∑
i

(dsi − dsi?)2 ‖w‖1

Elastic Net [345] L2 =
∑
i

(dsi − dsi?)2 ‖w‖1 and ‖w‖22

SVR Lε ‖w‖22

2.2 Statistical Learning Techniques

2.2.1 Support Vector Regression

2.2.1.1 The Weight-space View.

The weight-space view on regression looks for a function f which fits the labeled data D
best under certain assumptions. This is achieved by constructing an optimization prob-
lem or, more precisely, by minimizing a structural risk functional R. This functional
consists of two parts: (1) the empirical risk expressed by a loss function L∗, and (2) a
penalty term P for regularizing the complexity of the solution:

min
f

(R) = min
f

(C · L∗(f) + P(f)) (2.5)

whereC is the regularization constant which balances the optimization problem between
loss and complexity penalty, i.e. the larger C, the more weight is put on minimizing the
distance between the function f and the given data set D. A small C, on the other hand,
leads to very smooth functions. In the simplest case P is a function of the weightsw and
penalizes high values within w.
The loss function is a function of the differences between predicted labels ds? and the cor-
responding ground truth ds. Its choice varies by regression technique and may depend
on the expected noise distribution or on whether a sparse set of basis functions is desired
or not. Typical examples are shown in fig. 2.2A such as L2-loss (used by least-squares
or ridge regression), L1-loss (used by least absolute deviations), or ε-insensitive loss Lε
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(used by SVR). Table 2.1 compares common regression techniques according to their
structural risk approach and sets SVR into their context.

Just like ridge regression, SVR employs the data model given in eq. 2.4 combined with
ε-insensitive loss and an L2 penalty on the weights w. As illustrated in fig. 2.2A, the
loss function Lε would assign zero loss for samples within an ε-tube around the fitted
function f . This implies that the deviation of a predicted value from the ground truth
label is at most ε. These deviations are handled in terms of slack variables ξ(∗)i . While the
slack for deviations smaller than ε is zero, it grows linearly with this deviation, starting
with zero at deviation ε (cf. eq. 2.6 and fig. 2.2B). Here ξ(∗)i is a collective term for both
ξi and ξ∗i , which refer to cases where either the prediction was larger or smaller than the
ground truth, respectively.

ξ
(∗)
i :=

{
0 if |dsi − 〈w,ϕ(bi)〉 − w0| ≤ ε
|dsi − 〈w,ϕ(bi)〉 − w0| − ε otherwise

(2.6)

Here w0 is the explicit constant offset originating from f(bi) = dsi? = 〈w,ϕ(bi)〉 + w0

(eq. 2.4 absorbed the offset into w). The overall loss Lε for a function f fitted to N data
samples then corresponds to:

Lε(f) =
N∑
i=1

(ξi + ξ∗i ) (2.7)

2.2.1.2 The SVR-Model

The Lε loss is not a smooth function. Therefore, the resulting structural risk

R = C · Lε(f) + P(f)

needs to be expressed in terms of a constrained optimization problem.

min
w

[
C

N∑
i=1

(ξi + ξ∗i ) +
1

2
‖w‖22

]
(2.8)

subject to


dsi − 〈w,ϕ(bi)〉 − w0 ≤ ε+ ξi

〈w,ϕ(bi)〉+ w0 − dsi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

This problem is convex and equivalent to a quadratic programming (QP) problem. There
are no local minima and the same parameter set will always result in the same solution
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Figure 2.2: Data model and concept of SVR.

irrespective from the initial seed. The solution, i.e. minimum, to this primal convex
problem is equivalent to the maximum of the Lagrange function L(w, w0, ξ

(∗)
i , α

(∗)
i , η

(∗)
i )

which joins the objective function and constraints of the primal into one objective [268].

L =
1

2
‖w‖22 + C

N∑
i=1

(ξi + ξ∗i )−
N∑
i=1

αi(ε+ ξi − dsi + 〈w,ϕ(bi)〉+ w0) (2.9)

−
N∑
i=1

α∗i (ε+ ξ∗i − 〈w,ϕ(bi)〉 − w0 + dsi)−
N∑
i=1

(ηiξi + η∗i ξ
∗
i )

The Lagrange multipliers2 or dual variables need to fulfill a positivity constraint
αi, α

∗
i , ηi, η

∗
i ≥ 0. Furthermore, the derivatives of the Lagrangian with respect to the

2The Lagrange multipliers can be interpreted as positive scaling factors needed to achieve equality between
the gradients of the objective and the corresponding constraint at optimality.
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primal variables vanish for optimality:

∂L
∂w0

=
N∑
i=1

(αi − α∗i )
!

= 0 (2.10a)

∂L
∂w

= w +
N∑
i=1

(αi − α∗i )ϕ(bi)
!

= 0 (2.10b)

∂L
∂ξ

(∗)
i

= C − α(∗)
i − η

(∗)
i

!
= 0 (2.10c)

Inserting eq. 2.10b and eq. 2.10c into eq. 2.9 yields the dual description of the the QP
problem.

max
α
(∗)
i

1

2

∑
i,j

(αi − α∗i )(αj − α∗j ) 〈ϕ(bi),ϕ(bj)〉 − ε
N∑
i=1

(αi + α∗i ) +

N∑
i=1

dsi(αi − α∗i )

 (2.11)

subject to
N∑
i=1

(αi − α∗i ) = 0

Since the primal optimization problem has no equality, but inequality constraints, the
Karush-Kuhn-Tucker (KKT) conditions have to be met when applying the Lagrangian3.
These require that the products of dual variables αi, α∗i , ηi, η

∗
i ≥ 0 and the primal con-

straints have to be zero. The reason is that the multipliers need to vanish for points lying
not at the constraint boundary, i.e. for which the problem is locally unconstrained [208].

αi(ε+ ξi + 〈w,ϕ(bi)〉+ w0 − dsi) = 0 (2.12a)

α∗i (ε+ ξ∗i − 〈w,ϕ(bi)〉 − w0 + dsi) = 0 (2.12b)

(C − αi)︸ ︷︷ ︸
ηi

ξi = 0 (2.12c)

(C − α∗i )︸ ︷︷ ︸
η∗i

ξ∗i = 0 (2.12d)

The dual problem and these conditions finally directly give rise to the following import-
ant observations.

1. Due to η(∗)i = C − α(∗)
i and η(∗)i > 0 we obtain the box constraints α(∗)

i ∈ [0, C].

3Strictly speaking the KKT conditions generalize the concept of Lagrange multipliers to inequality con-
straints.

46



2.2 Statistical Learning Techniques

2. The function ϕ(bi) only occurs within the inner product 〈ϕ(bi),ϕ(bj)〉.

3. For samples outside the ε-tube we have ξ(∗)i 6= 0 and hence α(∗)
i = C from eq. 2.12c

and eq. 2.12d.

4. From eq. 2.12a, eq. 2.12b and ξiξ∗i = 0 follows αiα∗i = 0.

5. αi ∈ (0, C) and ξi = 0 yield w0 = dsi − 〈w,ϕ(bi)〉 − ε.

6. α∗i ∈ (0, C) and ξ∗i = 0 yield w0 = dsi − 〈w,ϕ(bi)〉+ ε.

2.2.1.3 Kernel Trick

Sinceϕ(bi) appears only in form of an inner product with itself, kernel functions k(bi, bj)

can be introduced [255].

k(bi, bj) = 〈ϕ(bi),ϕ(bj)〉 with k : RD × RD 7−→ R (2.13)

This means it is not necessary to know ϕ(bi) explicitly. It suffices to have an analytic
expression of how to compute the inner product in its output space. This implicit feature
transformation, i.e. without explicitly computing it, is efficient and saves storage space.
Valid kernel functions have to fulfill Mercer’s theorem [196] which requires symmetric
and positive definite functions k. While for some k the corresponding ϕ can be obtained,
this is not necessarily possible for all k. One example is the radial basis function (RBF)
kernel function which will be described in the next section. Here ϕ can be expanded into
an infinite series, which would correspond to a mapping into an infinite dimensional
space. This property is called non-degenerate.

For a finite set of data samples bi the Gram matrixK can be defined as

K(B,B) = [k(bi, bj)]i=1...N,j=1...N =


k(b1, b1) . . . k(b1, bN )

...
. . .

...
k(bN , b1) . . . k(bN , bN )

 . (2.14)

This matrix is also called kernel or covariance matrix in the context of GPs.

2.2.1.4 Support Vectors

Either αi or α∗i is always zero. Both are zero only for samples which fall within the ε-tube.
Further follows that samples exactly located on the tube have corresponding multipliers
in the open interval α(∗)

i ∈ (0, C). Samples outside the tube always have α(∗)
i = C (see
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fig. 2.2).
All samples bi for which α

(∗)
i 6= 0 are called Support Vectors (SVs). With eq. 2.10b the

weight vectors equals:

w =
N∑
i=1

(αi − α∗i )ϕ(bi) (2.15)

The final prediction formula can be obtained based on the relationship between the coef-
ficients α(∗)

i ∈ [0, C] and the SVs, eq. 2.4 and eq. 2.15.

f? = f(b?) =
∑
i∈SV

(αi − α∗i ) 〈ϕ(bi),ϕ(b?)〉+ w0 =
∑
i∈SV

(αi − α∗i )k(bi, b?) + w0 (2.16)

Equation 2.16 is called Support Vector expansion, since the output of function value f? for
an unknown sample b? is expressed by a weighted sum of its similarities to the samples
bi from the set of known SVs. The inner product described by the kernel function can
thus be interpreted as a (possibly nonlinear) similarity measure in a high dimensional
space. As mentioned before, input features b? with unknown target label are labeled by
a star ?, since they are subject to prediction.

2.2.1.5 Optimization

The optimization problem can be solved with any QP solver. A stopping criterion for
these iterative algorithms is given by the duality gap (difference between L and R which
vanishes for optimality) or the fulfillment of the KKT conditions.
In this work the sequential minimal optimization (SMO) algorithm introduced by Platt
[228] has been used. This sequential solver is dedicated to the problem at hand and
iterates through the coefficients α(∗)

i and optimizes L for a pair of two coefficients in a
step-wise manner. The implementation was adopted from [53]. There also exist solvers
which can adapt an existing model by adding new data to it [181].

2.2.2 Gaussian Process Regression

2.2.2.1 The Bayesian View

Section 2.2.1 introduced the weight-space view on regression. This subsection will
show how a probabilistic – so-called Bayesian – point of view generalizes the concept
of structural risk minimization with loss and penalty term. This will finally lead to the
definition of GPs.
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The Bayesian view relies on not more than three fundamental equations for the
probabilities of some events a and b: p(a, b) (”a and b”), p(a ∪ b) (”a or b”), and p(a|b) (”a
given b”):

p(a, b) = p(a) · p(b) (product rule) (2.17)

p(a ∪ b) = p(a) + p(b) (sum rule) (2.18)

p(a|b) =
p(b|a) · p(a)

p(b)
=

likelihood× prior
marginal likelihood

(Bayes’ rule) (2.19)

The product rule is valid for statistical independence between a and b. In Bayes’ rule, the
prior expresses the prior belief into how a may be distributed. The likelihood describes
how a behaves given b4 and the marginal likelihood gives the likelihood where b has
been integrated (”marginalized”) out. The term ”integrating out” refers to the fact, that
a variable can be eliminated from a distribution by integrating this distribution over all
possible values for this variable.

Bayesian regression adopts the data model from eq. 2.4 with the special case of
noise n drawn from a Gaussian distribution N with zero mean and standard deviation
σ2n:

ds = f(b) + n = wTϕ(b) + n (2.20)

n ∼ N (0, σ2n) (2.21)

Since the distribution of ni = dsi − wTϕ(bi) is known, the probability for a value dsi
given input data B = [b1, . . . , bN ] and some weight vector w can be obtained as follows
(being the likelihood for w):

p(n) =
1√

2πσn
exp

(
−(dsi −wTϕ(bi))

2

2σ2n

)
:= p(dsi|bi,w) (2.22)

and given all (statistically independent) training dataB:

p(dsi|B,w) =
N∏
i=1

p(dsi|bi,w) =
1

(2πσ2n)
N
2

exp

(
−|dsi −w

TΦ(B)|2

2σ2n

)
(2.23)

4Although the probability expresses the event b given a, the term likelihood always denotes a function
a = f(b) for such a distribution.
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In addition to this likelihood, the belief about the prior distribution of the weights is also
assumed to be a Gaussian distribution:

w ∼ N (0,Σw) (2.24)

This assumes that the weights are normally distributed around zero and that large
weights are very unlikely. The prior is equivalent to regularization or a penalty term.
The prior belief can vary for different regression techniques, different data or require-
ments.
Applying Bayes’ rule results in the posterior distribution p(w|dsi,B), i.e. the belief about
which values for w are how likely after having seen the data.

p(w|dsi,B) =
p(dsi|B,w) · p(w)

p(dsi|B)
(2.25)

The marginal likelihood in the denominator does not depend on the weights and con-
stitutes a constant normalization factor. Since the posterior is subject to optimization
in order to find an optimal w, this constant factor can be dropped. It does not change
the optimization result. Using eq. 2.23 and eq. 2.24, the product in the numerator there-
fore yields (after rearranging by ”completing the square” and dropping further constant
factors) [237]:

p(w|ds,B) ∝ exp

(
−1

2
(w − w̄)T (σ−2n ΦΦT + Σ−1w )(w − w̄)

)
(2.26)

where w̄ = σ−2n (σ−2n ΦΦT + Σ−1w )−1ΦdTs . Equation 2.26 corresponds to a standard
normal distribution with mean w̄ and covarianceA−1:

p(w|dsi,B) ∝ N (w̄,A−1) = N (σ−2n A
−1dTs Φ,A−1) (2.27)

whereA = σ−2n ΦΦT +Σ−1w . The distribution above is fundamental, since many common
regression techniques can be derived from it. To obtain a regression model such as eq. 2.4
most approaches approximate the weight vector w by its maximum a posteriori (MAP)
estimate w̄. This estimate is computed by maximizing the negative logarithm of eq. 2.27
with respect to w.
Setting Σw to the identity matrix I yields the analytic solution for ridge regression. Note
that the regularization constant C then corresponds to the inverse of the noise variance
σ−2n . Further, setting it to a diagonal matrix the elements of which approach infinity yields
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Table 2.2: Bayesian view of common regression techniques. By re-interpreting the columns of
table 2.1 the table shows how common regression techniques derive from the Bayesian frame-
work.

Approach Likelihood Prior

Least-Squares Fit Gaussian noise flat
Least Absolute Deviations [30] Laplacian noise flat
Ridge Regression [126] Gaussian noise Gaussian
LASSO [290] Gaussian noise Laplacian
Elastic Net [345] Gaussian noise sum of Laplacian and Gaussian
SVR ∝ exp(−Lε) Gaussian

the least squares solution. The latter case is equivalent to assuming a flat, i.e. uninform-
ative prior distribution over the weights in eq. 2.24: w ∼ U(−∞,+∞).
Table 2.2 demonstrates that all regression techniques from table 2.1 can be derived as
special cases from the Bayesian framework by assuming distributions for the noise/like-
lihood in eq. 2.23 or prior distribution over the weights in eq. 2.24.
Parameters such as the variance of the measurement noise σ2n as well as parameters of
the kernel function k(·, ·) or Gram matrix K(·, ·) are called hyperparameters. The belief
about their values could be expressed by further priors, i.e. priors on the priors. Along
these lines further techniques can be derived as by Tipping et al. [291]. He set a Gamma
distribution prior on the variance of weightsw and obtained the so-called Relevance Vec-
tor machine.
With the MAP estimate, techniques such as ridge regression select only one possible solu-
tion for the weight vector: the most likely one given the data. In contrast, GPs average
across all possible solutions for w according to their probability. The equations above
yield the predictive distribution, i.e. the probability distribution p(f?|b?,B,ds) for an
unknown functional value f? associated to features b?. The following consideration uses
eq. 2.20 to define f? = wTϕ(b?). Given b? and w, f? can only take one possible value the
probability of which is one. The predictive distribution is hence obtained by scaling the
argument w in eq. 2.27 by ϕ(b?).

p(f?|b?,B,ds) =

∫
p(f?|b?,w)p(w|B,ds)dw (2.28)

= N
(
σ−2n ϕ(b?)

TA−1Φds,ϕ(b?)
TA−1ϕ(b?)

)
= N

(
f̄?, var[f?]

)
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The Gram matrix K(·, ·) = ΦTΣwΦ is introduced analogously to sec. 2.2.1. Thus, the
kernel trick can be used here as well to avoid computing the feature transformation ϕ(b)

explicitly.
This is done by noting thatA = σ−2n Φ(K + σ2nI)Φ−1Σ−1w and replacingA in eq. 2.29. As
a shorthand ϕ(b?) = ϕ? is used.

p(f?|b?,B,ds) = N
(
ϕT? ΣwΦ(K + σ2nI)−1ds,

ϕT? Σwϕ? −ϕT? ΣwΦ(K + σ2nI)−1ΦTΣwϕ?
)

(2.29)

= N
(
k?(K + σ2nI)−1ds,

k(b?, b?)− k?(K + σ2nI)−1k?
)

(2.30)

The last expression provides the full predictive distribution, i.e. indicates how likely a
specific prediction output f? is. In this work the mean f̄? of this distribution will be used
as the prediction output. The predictive variance var[f ]? then provides an uncertainty
measure for this prediction. The mean f̄? can finally be written analogously to SVR as a
weighted superposition of similarities between the training data and the desired predic-
tion output. Note that a kernel takes the features as an input, but outputs the covariance
between the corresponding target labels.

f̄? = k? (K + σ2nI)−1ds︸ ︷︷ ︸
α=[α1,...αN ]

f̄? =
N∑
i=1

αi · k(bi, b?) (2.31)

For the computation of the prediction above, the inverse of K ∈ RN×N needs to be
computed. The computational effort is of order O(N3), which becomes prohibitive for
large data sets, i.e. large N . The framework above has been implemented in the gpml
toolbox [238], which has also been adopted for this work. Note that for computing the
error measures, it will be assumed that d̄s? = f̄?. This is true for any noise distribution
with zero mean and enables to compare predictions f? with a possible noisy ground truth
ds. On average there is no difference between them.

2.2.2.2 Function Space View and Gaussian Processes

A different view on the previous considerations is the function-space view. For complete-
ness it will be briefly described in the following. According to the data model, each dsi can
be interpreted as a sample from a Gaussian distribution with some mean and variance.
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Having more than one sample ds ∈ RN results in a multivariate Gaussian distribution
with a mean vector and the Gram matrix K as the covariance matrix, i.e. the behavior
of one sample relates to the behavior of others. Increasing the number of samples N to
infinity lets the vector change into a function f . The multivariate Gaussian distribution
then turns into a Gaussian process – a distribution over functions with mean function
mGP (·) and covariance function k(·, ·).

f(b) ∼ GP(mGP (b), k(b, b′)) (2.32)

This is often called non-parametric regression, since there exists no explicit weight vec-
tor. The process above describes the prior belief about how the desired function might
look like and which properties it has. The mean function is typically set to zero and all
variation is modeled by the covariance.
If dataB and ds are observed, information of f at certain points is received. Other points
f? at position b? are not known and need to be predicted. This scenario, with interest in
only a finite set of samples from f , can be expressed as a multivariate Gaussian distribu-
tion again.

p(ds, f?) = p

([
ds

f?

])
= N

(
0,

[
K(B,B) + σ2nI k? = k(B, b?)

k? = k(B, b?) k(b?, b?)

])
(2.33)

After re-arranging the exponent of this multivariate distribution and integrating out f
(see the appendix in [237] for details), it is possible to show that eq. 2.30 and eq. 2.31
follow from these assumptions.

2.2.2.3 Linear Example

A small linear example in 1D shall illustrate the aforementioned framework. Measure-
ment units will be omitted for simplicity. Let the true underlying function f be linear
with slope w1 = 0.5 and offset w0 = 1.

f(b) = w1 · b+ w0 = 0.5 · b+ 1 (2.34)

Now, N = 23 measurements ds ∈ R1×N at positions b ∈ R1×N are acquired. The bi are
sampled equidistantly within [−1, 10] in steps of 0.5. The corresponding target labels dsi
have been obtained by computing f(bi) and corrupting it with Gaussian noise (σ2n = 3).
Figure 2.3 illustrates the true function as a black line and the data samples in green.
The prior distribution on the weights in eq. 2.24 was chosen as a 2D Gaussian centered
at the origin with variance 1. The iso-contours of equal probability are thus concentric

53



2 Key Methodology

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

b

d s

 

 
samples (b, d

s
)

true function
GP(f∗ ,var[f∗ ]

Ridge Regression

Figure 2.3: GP example with a linear function. The plot shows (1) the true linear function as a
black solid line, (2) measured data samples in green, (3) the ridge regression MAP solution
in blue circles, and (4) the GP predictive distribution with mean and standard deviation in
red.

circles around the origin and there is no covariation between both weights.

w =

[
w1

w0

]
∼ N

(
0,

[
1 0

0 1

])
(2.35)

This corresponds to the linear kernel as a covariance function k(b, b′) = b · b′. Given the
data, eq. 2.27 can be used to compute the posterior distribution on the weights. The 2D
posterior distribution and the marginal distributions for each single weight are shown
in fig. 2.4. It can be seen, that the prior with circular contours turned into ellipses with
covariation between the weights. The MAP estimates for each weight, i.e. mean and
standard deviation, can be read from the marginal distributions in the figure. The most
likely estimates given the data were w1 = 0.483± 0.14 and w0 = 0.821± 0.69. The mean
estimates are also the weights obtained as the optimal solution by ridge regression. For
the GPs, the computation of the weight posterior is not necessary and also not recom-
mended for more complicated covariance functions.
Instead, the predictive distribution from eq. 2.30 is computed directly. The predictive
distribution has been obtained at unknown positions bi + 0.25. Figure 2.3 illustrates the
predictive distribution with mean and standard deviation in red error bars. It also shows
the solution for ridge regression in blue circles. Both solutions have been computed as-
suming that the noise variance σ2n = 3 was known. This is one reason why the solution
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Figure 2.4: GP example - posterior distribution on the weights. The posterior of the weights is a
2D Gaussian. After integration out the other weight, 1D marginal distributions are shown
for each weight separately.

for ridge regression and the GP solution coincide. In a real scenario this quantity needs
to be estimated (for the GPs as discussed later) or guessed (for ridge regression). Further
on, ridge regression for more complex functions would require a precise model ϕ and a
good guess for its parametrization.
In addition, the predictive distribution – particularly the standard deviation bars – show
that the predictions in the central part are more reliable than the predictions at the mar-
gins of the data set. This is reasonable, since these cases are lacking informative covariates
(training data) to their left or to their right. Overall, the solutions only slightly deviate
from the true underlying function despite the noise. The deviations originate from the
fact that only a finite and very limited number of data samples was available to carry out
the inference. With more or differently sampled training data, the outcome may vary.
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2.2.2.4 Kernel Functions

Kernel functions are analytic expressions for inner products in potentially high dimen-
sional spaces. A valid kernel has to fulfill Mercer’s theorem [196]. The simplest case is
given by the polynomial kernel given in eq. 2.36,

kP (b, b′) = sc ·
(
β0 + bTΣwb

′)F (2.36)

where F is the polynomial degree, sc a general scaling factor, Σw the covariance matrix
parameter for scaling the variation in certain input dimensions, and β0 an offset para-
meter. The case β0 = 0 is called homogeneous polynomial kernel. The linear example
earlier made use of this kernel with:

β0 = 0, F = 1, sc = 1, and Σw =

[
1 0

0 1

]
.

This kernel is not translationally invariant, since its output changes for increasing argu-
ments. Stationary kernels, as they will be used in this work, only depend on the dif-
ference r between input vectors r = ‖b− b′‖. Functions having this property are also
called RBFs. However, in a less strict sense the term RBF is also used synonymously for
the squared exponential (SE) kernel, especially in the SVR community. Equation 2.37 lists
the SE kernel function.

kSE(b, b′) = sc · exp

(
− r

2

2γ

)
(2.37)

The SE kernel is a infinitely differentiable function and is hence very smooth. It is defined
by a scaling parameter sc and a length scale parameter γ. The latter indicates the average
distance between samples in the input space beyond which the correlation between these
samples drops dramatically. The SE or RBF kernel is the most widely used kernel in the
field of machine learning.
However, Stein and colleagues [276] argue that the strong smoothness assumption is not
realistic for real world scenarios. He therefore introduced the so-called Matérn kernel
class which has a higher local flexibility. This kernel takes a simpler form when paramet-
rized with half integers ν = p+ 0.5 [237]:

kMatν (b, b′) = sc · exp

(
−
√

2νr

γ

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

γ

)p−i
(2.38)

Here Γ denotes the Gamma function and p an arbitrary integer. The Matérn kernel is
at most ν times differentiable and thus rougher than the SE kernel. The roughness can
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Figure 2.5: Prior and posterior samples from a Gaussian process with different covariance func-
tions. The solid blue line corresponds to the mean function, the dashed to the upper and
lower standard deviation bounds, the red lines to exemplary samples from the GP and the
shading denotes the probability for a data residing in that area. Observed experimental data
is indicated by black dots.
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Figure 2.6: Kernel output for different kernel functions and parametrization. The similarity out-
put of the SE and three Matérn kernels is shown in dependency of r.

be controlled by ν. While ν → ∞ gives the SE kernel in the limit, this work here will
make use of the most widely-used parametrization ν = 1.5. The kernel then simplifies as
follows.

kMat(b, b
′) = sc ·

(
1 +

√
3r

γ

)
exp

(
−
√

3r

γ

)
(2.39)

The left column of fig. 2.5 illustrates typical functions that were sampled from GPs char-
acterized by different covariance functions. While these functions represent examples
from the prior belief, the right column shows samples from the posterior distribution
once data has been observed. It can be seen that the prior belief covers many different
functions up to a certain complexity. A bound for the latter is defined by the covariance
function. Once data is observed, the set of likely functions given the data is narrowed
down to a subset. The algorithm is more certain about the true underlying function.
Both the SE as well as the Matérn kernel express similarities between samples b and b′.
Figure 2.6 illustrates the differences between different Matérn kernels and the SE kernel.
The higher ν, the higher is the similarity output for samples being close together. On the
other hand, samples far from each other are evaluated to be more similar for smaller ν.
Overall, this defines the smoothness properties discussed earlier.
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Figure 2.7: Isotropic and automatic relevance detection (ARD) weighting of feature dimensions.
The data bi (black) is sampled from a Gaussian distribution (cf. iso-probability-lines). In the
right plot of the same data, the vertical axis is always scaled by γ2 = 0.25 and the horizontal
axis by γ1 = 1. The behavior of the ARD kernel for arbitrary data would change after apply-
ing some rotation matrix R to bi or reordering the feature dimensions. The data would look
different from the kernel’s perspective due to the axis-dependent scaling.

2.2.2.5 Automatic Relevance Detection (ARD)

For many applications, different features can be differently important for making pre-
dictions. One may wish to ensure that more relevant features have more impact on the
prediction – particularly if some features contain very little information, but a lot of noise.
The kernel functions presented in eq. 2.37 and eq. 2.39 are isotropic. This means the ker-
nel behaves in an identical way irrespective of the feature dimension. Rotations in the
input space have no impact. In order to provide so-called ARD, both kernels can be
generalized in the way shown below.

kSE(b, b′) = sc · exp

(
−
|G−1

(
b− b′

)
|2

2

)
(2.40)

kMat(b, b
′) = sc ·

(
1 +
√

3|G−1
(
b− b′

)
|
)

exp
(
−
√

3|G−1
(
b− b′

)
|
)

(2.41)
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where

G =


γ1 0 . . . 0

0 γ2 . . . 0

0 0
. . . 0

0 0 . . . γD

 .
The scaling for each dimension can be changed by introducing individual length scale
parameters γi. This can be used to weight the relevance of specific dimensions by
assigning a higher or lower weight to them. Figure 2.7 compares the isotropic case
described earlier on with the ARD case. In the latter, one dimension is assigned a small
weight. This reduces the impact of the feature’s variance on the total sum in the | · |
operator and hence also its relevance. The isotropic case can be constructed by setting
γ1 = γ2 = . . . = γD = γ yielding eq. 2.37 and eq. 2.39.

All kernel parameters such as the length scale parameters are considered as hyper-
parameters and can be learned from the data or just be assigned fixed values.

2.2.2.6 Optimization and Hyperparameters

The noise variance σ2n and the parameters of the covariance function k(·, ·) such as scaling
value and length scales are unknown. They can be set to fixed values or be optimized
within the Bayesian framework.
A convenient way is given by minimizing the negative log marginal likelihood (NLML)
p(ds|B). The expression for this probability already occurred in the upper left element
of the matrix shown in eq. 2.33. As a function of the hyperparameters, this probability
indicates the likelihood that the measured target labels ds were generated from the input
features B under the current model. The model is defined by the hyperparameters. The
NLML can be derived as:

log p(ds|B) = −1

2
dTs
(
K + σ2nI

)−1
ds −

1

2
log
∣∣K + σ2nI

∣∣− N

2
log 2π (2.42)

For minimization, conjugate gradient descent was used [208]. The gradient descent has
been repeated 20 times with randomly sampled starting points for the set of hyperpara-
meters. The optimal set of hyperparameters was selected as the one having the smallest
NLML of all 20 gradient descent solutions. Note that this optimization is unbiased and
only based on the training data. Unlike for SVR, the hyperparameter optimization is
non-convex and can suffer from local minima. This issue is eased by the repetitive pro-
cedure. However, all parameters can be optimized in this manner, whereas SVR employs
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convex optimization for the Lagrange multipliers, but requires grid search for others like
the kernel parameters.

2.2.2.7 Sparse Approximations

The evaluation of eq. 2.30, i.e. the predictive distribution, requires to compute the inverse
of the Gram matrix K ∈ RN×N . The computational cost for this scales with O(N3).
Therefore, the computational time grows cubically with the number of data samples. For
a few thousand samples this becomes prohibitive. Two approaches evolved to tackle this
shortcoming [209]:

1. The application of sparse approximation methods approximating the full predictive
distribution and involving matrices of lower rank.

2. Matrix-vector multiplication methods for optimizing the computation of the inver-
sion problem itself.

The following considerations will focus on the first approach only. Further on, the ap-
proximations will only use inductive methods [258], which exploit information from the
training data only.

Subset of Data (SoD) The simplest way to reduce computational effort is achieved by
discarding some of the training data. Selecting only a subset of sizeM from allN samples
decreases the size of the Gram matrix to M ×M with M < N . This very crude way is
the baseline against which more sophisticated approximation methods are compared.
Although the assumption that some of the training data contains redundant information
may be true for many cases, the actual selection of the subset is still of importance.

The Concept of Inducing variables More sophisticated sparse approximation meth-
ods generally rely on the following assumption: Unknown data of the underlying func-
tion f can be fully described by a finite subset of so-called inducing variables u ∈ R1×M at
input feature vectors Bu ∈ RD×M . These variables can be part of the training set of size
N > M or can be completely unknown data. In the following it will be assumed that the
training data has sufficiently captured these variables.
The general idea is that the number of inducing variables M is smaller than the size of
the training set N . Computations such as in eq. 2.30 can be expressed in terms of the
inducing variables, which saves computational time and data storage demands.
Since the inducing variables fully describe the unknown data from f , it can be assumed
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Figure 2.8: The concept of inducing variables. A: Fully connected model without approximation.
Functional values fi = f(bi) of the training data set statistically relate to each other and
also to the desired test target label f?. The observations are obtained from the correspond-
ing functional values after adding iid noise. B: The general sparse approximation scenario.
Training and test labels can only communicate via the inducing variables. Given u they are
independent [209]. C: This case extends case B. It shows the dependencies for fully inde-
pendent training conditional (FITC) approximation.

that the known training data withB and ds is statistically independent from the test data
f? given u. Figure 2.8 illustrates this schematically. Edges in the graph denote statistical
dependencies among the data. Case A on the left shows the general scenario and case B
the approximation using the independence assumption. Mathematically, the transition
can be expressed by introducing latent variables u in the joint distribution of eq. 2.33:

p(ds, f?) =

∫
p(ds, f?|u)du ≈

∫
p(f?|u)p(ds|u)p(u)du

!
= q(ds, f?) (2.43)

with p(u) = N (0,K(Bu,Bu))

where q(ds, f?) is the approximated, i.e more efficient, joint distribution, from which the
new predictive distribution is derived. The distributions p(f?|u) and p(ds|u) are the test
and training conditional, respectively:

p(ds|u) = N (K(B,Bu)K(Bu,Bu)−1u,K(B,B)−QSoR(B,B) + σ2nI)

p(f?|u) = N (k(b?,Bu)K(Bu,Bu)−1u, k(b?, b?)− kSoR(b?, b?)) (2.44)

where QSoR(bi, bj) = k(bi,Bu)K(Bu,Bu)−1k(Bu, bj) can be shown to be the approx-
imation of the full Gram matrix K resulting from the subset of regressors (SoR) approx-
imation method (see below). An intuitive way of understanding eq. 2.44 is as follows. As
illustrated by case B in fig. 2.8 there is no mutual dependency of ds and f? in eq. 2.44. The
general structure of mean and variance is similar to eq. 2.30. The variance is the full Gram
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matrix K minus the variance proportion which is explained by u, since the distribution
is conditioned on u. Assuming that u would comprise the entire training set Bu = B,
matrices in the expression would cancel out. In the training conditional the mean would
turn into the functional values f and the variance into the noise term σ2nI only. For u
being the empty set the prior for the target labels in eq. 2.33 is obtained.
Sparse techniques now aim at finding approximations q(ds|u) and q(f?|u) for p(ds|u)

and p(f?|u), respectively.

Subset of Regressors (SOR) The SoR assumes that the predictive sample f? is de-
terministically described by a weighted sum of similarities (the regressors) between the
test input b? for the desired f? and the subset Bu. Unlike for other approaches, there is
no uncertainty involved. Similarities are defined by the kernel function. The approxima-
tions for qSoR(ds|u) and qSoR(f?|u) can hence be derived as follows.

qSoR(ds|u) = N
(
K(B,Bu)K(Bu,Bu)−1u, σ2nI

)
(2.45)

qSoR(f?|u) = N
(
k(b?,Bu)K(Bu,Bu)−1)u, 0

)
With eq. 2.43, this yields a joint distribution which contains the SoR Gram matrix from
above.

qSoR(ds, f?) = N

(
0,

[
QSoR(B,B) + σ2nI qSoR(B, b?)

qSoR(b?,B) qSoR(b?, b?)

])
(2.46)

Detailed descriptions are given in [51, 209, 232].

Fully Independent Training Conditional (FITC) Among other techniques such as SoR,
FITC was recommended as the best choice by Quiñonero-Candela et al. [209]. It was
hence adopted in this work.
As the name suggests, the method assumes a second approximation for the training con-
ditional, while the test conditional is qFITC(f?|u) = p(f?|u). The approximation was first
proposed by Snelson [271] and is given in eq. 2.47 [209].

qFITC(ds|u) = (2.47)

N (K(B,Bu)K(Bu,Bu)−1u,diag (K(B,B)−QSoR(B,B)) + σ2nI)

Given u, the target labels of the training set ds are fully independent, i.e. the covari-
ance matrix of the training conditional is a diagonal matrix with zeros off the diagonal.
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Table 2.3: Storage demands, computational time for training the GP model as well as computing
the predictive mean and variance are compared for the full model, SoD and FITC (cf. [51]).

Method Storage Training Predictive Mean Predictive Variance

Full Model O(N2) O(N3) O(N) O(N2)

SoD O(M2) O(M3) O(M) O(M2)

FITC O(MN) O(M2N) O(M) O(M2)

Schematically this is illustrated in case C in fig. 2.8. This gives rise to the approximate
joint distribution, which is the FITC replacement for eq. 2.33:

qFITC(ds, f?) = (2.48)

N

(
0,

[
QSoR(B,B)− diag (K(B,B)−QSoR(B,B)) + σ2nI qSoR(B, b?)

qSoR(b?,B) k(b?, b?)

])

Equation 2.48 shows that the SoR approximation is taken for the training conditional,
where the diagonal is replaced with the true diagonal of K(B,B). The matrix part
related to the desired test label in the lower right is not subject to approximation. Thus,
strictly speaking, due to different treatment of training and test data, FITC does not
count as a proper GP anymore.

After generalizing the SoR Gram matrix QSoR to a kernel function kSoR(bi, bj) :=

k(bi,Bu)K(Bu,Bu)k(Bu, bj), FITC can be implemented by just replacing the original
kernel function k(·, ·) in eq. 2.31 by the adapted kernel function kFITC(·, ·).

kFITC(bi, bj) = kSoR(bi, bj) + δij [k(bi, bj)− kSoR(bi, bj)] (2.49)

where δ(k, j) is the Kronecker-Delta (δ(k, j) = 1 for k = j, δ(k, j) = 0 for k 6= j). FITC
reduces the computational complexity from O(N3) to O(M2N), Table 2.3 finally lists the
savings in storage as well as training and prediction time for the full model, subset of
data (SoD) and FITC. For the complexity of the predictive quantities, it is assumed that
the inverse of the Gram matrix has been computed during training and is stored for
prediction.

Determining the Inducing Variables The quality of the approximation is related to
the choice of the inducing variables. The problem of selecting the best subset from
the training data can be approached in different ways. The easiest way is to define
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Algorithm 1 k-Means

1: Initialize
2: Set mean vectorsm(1)

1 , . . .m
(1)
M randomly to M training vectors bj , j ∈ [1, N ]

3: Set i = 1

4: for i = 1 : NIter

5: S
(i)
k =

{
bj :

∥∥∥bj −m(i)
k

∥∥∥ ≤ ∥∥∥bj −m(i)
k∗

∥∥∥∀k∗ = 1, . . . ,M ; k∗ 6= k
}

6: m
(i+1)
k = 1

S
(i)
k

∑
bj∈S

(i)
k

bj

7: endfor
8: Su = {bj : ‖bj −mk‖ ≤ ‖bl −mk‖ ∀l = 1, 2, . . . N ; ∀k = 1, 2, . . .M}

M and then to randomly sample data from the training data. This approach does not
incorporate knowledge about how information is distributed across training samples.
A second way is given by unsupervised learning e.g. via k-means. This method clusters
the training data and selects a set Su consisting of the M training samples closest to the
M cluster centers. From this set of vectors the matrix Bu can be composed. Overall, this
aims at an evenly sampled feature space maintaining an optimum of information.
Here, SoD and FITC are tested with both approaches. Methods with random initial-
ization will be denoted SoDR and FITCR. K-means initialization is labeled SoDK and
FITCK .

The k-means procedure is summarized in algorithm 1. Essentially, k-means iter-
ates between two steps. First, it assigns all N samples to M sets Sk. Each sample bj is
assigned to the set corresponding to the closest centroid mk. The initial centroids are
randomly chosen samples from the data. Second, new centroids are computed with this
new set assignment.
The variables u can also be treated as hyperparameters and estimated during training.
This, however, significantly increases the search space dimension for the conjugate
gradient descent. The optimization results would be less stable, unless the number of
repeated optimization runs with varying starting points is increased. This will again
affect the computation time required for training the GP model. More sophisticated ap-
proaches have been proposed by Smola et al.[269], who approximated the posterior over
the weights α from eq. 2.31 and then selected the u by a greedy algorithm maximizing
the NLML.
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Figure 2.9: Visualization of the cross-validation (CV) testing scheme. This scheme will be used for
testing based on a single frame. The data samples are randomly assigned to one of nfld folds
(illustrated above for nfld = 5). One fold is used for testing and the remaining for training
a regression model. The scheme then iterates through all folds for assigning the test set, i.e.
each sample will exactly once be treated as an unknown test sample.

2.2.3 Considerations on Testing

Testing Schemes The supervised learning techniques described earlier handle labeled
data. Each data set consists ofN feature vectorsB (e.g. optical features, input) and target
labels ds (tissue thickness, output). Experimentally speaking, these data may comprise
different cases:

1. One single frame from one measurement with up to 1024 scanned laser spots

2. Up to three different measurements with 1-3 frames each à 1024 laser spots

The term frame will relate to one forehead scan with a 32 × 32 laser spot grid. A
measurement refers to a collection of one or more frames for the same head pose
without voluntary head motion. Different measurements relate to different head poses
with voluntary head motion in between. The testing scheme will depend on this case
distinction.

To get an estimate for the generalization error, the data will be separated into training
data and test data. The training set is used by the statistical learning algorithm to learn a
model. In order to evaluate how well the model generalizes on unseen data, the test set
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will be used to compute the generalization error. Overfitting and biased error measures
are avoided since the test set contributes no information during model training.

Cross-Validation (CV) In the first case there is only one frame available. Repeated
cross-validation (CV) will be used to estimate the generalization error. As illustrated in
fig. 2.9, the N data samples in B are randomly assigned to one of nfld so-called folds.
Each fold is a data subset comprising N

nfld
data samples. The fraction will be rounded to

the next smaller integer Nfld and remaining samples will be distributed across the exist-
ing folds. Therefore, the number of samples per fold is either Nfld or Nfld + 1.
For testing, one fold is chosen as the test set and all other nfld− 1 folds are used for train-
ing the model. The CV scheme will then iterate the test set through all folds to cover the
entire data set. Thus, each sample turns into an unknown test sample exactly once. This
results in a fair and reproducible estimate for the generalization error.
The error estimate will depend on the random assignment of the data samples to a spe-
cific fold. Therefore, the CV procedure described before will be repeated nrep times with
different random assignments. By taking the mean over all repetitions, the random vari-
ance will be averaged out. The final scheme is called nrep-times-nfld-fold-CV. For all tests
discussed hereafter a 5-times-10-fold-CV scheme was employed.

Evaluation across Measurements (AM) If the data set comprises more than one meas-
urement, no CV scheme will be applied. Instead, the training can contain several frames
from more than one measurement. One measurement not included in this set will be
used for testing. Two different scenarios will be distinguished:

1. AM1 set - test set and training set contain data from at most one measurement each

2. AM2 set - the test set is a single measurement, the training set contains all remaining
measurements (typically two)

Grid Search and Hyperparameters Section 2.2.2.6 described how hyperparameters of
a GP are estimated by minimizing the NLML. This results in unbiased estimates for the
parameters, since the NLML only depends on the training data. Initial parameter values
for the gradient descent were set at random.
In SVR the testing schemes above were used to optimize the SVR parameters C, ε and γ.
This is done by computing the generalization error for a ”grid” of parameters and then
selecting the parameters corresponding to the lowest generalization error. This is called
grid search.
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Strictly speaking, this will result in too optimistic estimates of the generalization error,
since the parameters are optimized with the test set. This data is not available in a real
scenario. An unbiased optimization would make use of additional CV runs on the train-
ing data. This is called nested CV and introduces an additional test set within the training
data set – called validation set [170]. This was however found to be computationally pro-
hibitive. Instead, all SVR evaluations will optimize the generalization error in two steps.
First, a 2D grid for γ and ε is tested. Meanwhile, C is set to 200 being an initial guess
in the medium range. The optimal parameter set for the two parameters is then used to
optimize C in a 1D grid.
To account for the bias, the difference between nested CV and the CV scheme just de-
scribed will be shown and discussed for a single data set. This provides insight into the
extent of the bias and allows to judge about later results accordingly [326].

Error Measures The error will be computed as the difference between a predicted tar-
get label (the tissue thickness) ds? or, more precisely, d̄s? and the corresponding ground
truth for this data sample ds, i.e. ds − ds? . Note that SVR and GPs estimate the under-
lying functional value f̄? and not the noise corrupted d̄s? . The error, however, computes
the difference with respect to the noise corrupted ground truth measurement ds. This is
still valid, since the noise distributions assumed in both regression models are of zero
mean. On average, there is f̄? = d̄s? as explained in eq. 2.31. By further averaging across
multiple data samples, the noise superposing the ground truth is averaged out.
All subsequent error measures will make use of the absolute error (AE), because there is
no special penalty on exceeding or falling below the ground truth.

AE = |ds − ds? | (2.50)

The 90 % error bound (I90) then indicates the value which is only exceeded by 10 % of
all absolute errors in the data set. 90 % of the data have an absolute error below the I90
bound.

p(AE ≤ I90) = 0.9 (2.51)

For a data set containing N data samples the absolute errors {AEi}i=1...N can be com-
puted. The mean absolute error (MAE) is then obtained as follows.

MAE =
1

N

N∑
i=1

AEi =
1

N

N∑
i=1

|dsi − dsi? | (2.52)
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Equivalently the root mean square error (RMSE) can be defined.

RMSE =

√√√√ 1

N

N∑
i=1

(dsi − dsi?)
2 (2.53)

Both the MAE and the RMSE will be computed for error evaluation. They may range
from zero to infinity and are measured in [mm]. As a linear score, the MAE indicates
where most of the error mass is located. The RMSE constitutes a more conservative
measure. Due to its quadratic dependency on individual errors, it penalizes outliers with
a higher weight. Generally, MAE ≤ RMSE is true. Both are only equal if all error values
have the same magnitude.

2.3 Point Cloud Registration

2.3.1 Point Clouds and Homogenous Transformations

A set of vectors in 3D space R3 can be interpreted as a set of points in this space. This
set of points will be named point cloud or surface. Without an explicit calibration of
any kind, the relationship between two different point clouds Pcld := {pi ∈ R3×1|pi =

[pxi, pyi, pzi]
T }i=1...Np and Qcld := {qi ∈ R3×1|qi = [qxi, qyi, qzi]

T }i=1...Nq is unknown.
These point clouds may correspond to different views from the same object or can be
acquired using different sensor modalities and coordinate spaces. For this work, we as-
sume Pcld to be a point cloud triangulated from a laser scanning device, and Qcld to be a
high resolution surface from an MRI scan. We typically have Np << Nq.
Finding a spatial relationship between the two clouds is called registration. Two point
clouds are said to be registered, if they can be brought into coincidence by one rigid5

transformation [59]. This registration is hardly ever perfect, since the two surfaces rep-
resent noisy measurements from different modalities and were recorded from deformable
soft tissue. This makes registration a (typically non-convex) optimization problem.
The optimization aims at finding a transformation matrix that transforms Pcld into the
coordinate space of Qcld, where both coincide:

Qp =P TQ · Pp =

[
R t

0 1

]
·

[
Pp

1

]
= R · Pp+ t (2.54)

where the left upper case letter denotes the coordinate space in which the 3D point p
resides. Further on, PTQ ∈ R4×4 is the transformation matrix from space P to Q, t =

5A rigid transformation includes only three translational and three rotational degrees of freedom. There is
no shearing or zooming.
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Figure 2.10: Iterative Closest Point Algorithm. The plots illustrate one ICP iteration: A: Two point
clouds need to be registered. In a first step point-to-point correspondences are estimated.
B: A transformation matrix can be computed using the correspondences from the last step,
C: After several iterations, convergence, i.e. a registration of the point clouds, is achieved.

[tx, ty, tz]
T ∈ R3 is the translational offset and R ∈ R3×3 an orthogonal rotation matrix

with determinant 1:

R =

 cos ry cos rz − cos ry sin rz sin ry

cos rx sin rz + sin rx sin ry cos rz cos rx cos rz + sin rx sin ry sin rz − sin rx cos ry

sin rx sin rz − cos rx sin ry cos rz sin rx cos rz + cos rx sin ry sin rz cos rx cos ry


With the triplet of angles r = [rx, ry, rz]

T ∈ R3, it describes the rotation that can be
decomposed into three subsequent rotations around the coordinate axes of spaceQ (yaw-
pitch-roll or ZY’X” convention according to the Tait Bryan group for order of rotations).

2.3.2 Iterative-Closest-Point (ICP) Algorithm

For finding the transformation matrix as described above, two optimization problems
have to be solved. Figure 2.10 illustrates both of them. First, the two point clouds con-
tain different numbers of points and are arbitrarily orientated with respect to each other.
To compute a transformation matrix which registers both surfaces, point-to-point corres-
pondences have to be known. That means, knowledge is required about which point pi
in Pcld corresponds to which point qj in Qcld. After the correspondences have been de-
termined, a transformation matrix can be found, which minimizes some error measure
between the point pairs.
Since it is hard to solve both problems at once, the iterative closest point (ICP) algorithm
solves the overall problem iteratively in two steps. Algorithm 2 outlines the general idea
of ICP in pseudo code, where P ∈ R3×N is a matrix that contains all points pi as column
vectors and k is the iteration index.
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Algorithm 2 Iterative Closest Point Algorithm

1: Initialize
2: Find initial correspondences (e.g. at random)
3: Set T 0 to be the identity matrix
4: Set P 0 = [pi]i=1...N

5: Set k = 1

6: loop until: registration error < εthreshold

7: (1) Matching step: compute T k by minimizing the error between corresponding
points

8: Set P k = T k · P k−1

9: (2) Correspondence step: compute correspondences to find the closest neighbors
after transformation

10: Compute the remaining registration error ε betweenP k and the corres-
ponding points in Qcld

11: k ← k + 1

12: end loop
13: Compute the final transformation PTQ =

∏
k

T k

This optimization is typically non-convex, but guaranteed to converge into a local min-
imum [243]. The possibility of finding the global optimum depends on the characteristics
of the surfaces, the number of points in each surface, and on the initial spatial relation
between the two surfaces.
As stated in the purpose of this work, all considerations in the subsequent chapters aim
at facilitating the search for the global optimum by providing additional information.
Irrespective of this, it should be emphasized that algorithmic improvements may supple-
ment this additional information to achieve optimal registration results.

2.3.2.1 Matching Step

Given a set of correspondences between each point in Pcld and one corresponding point
in Qcld, the matching step aims at minimizing an error functional between both surfaces.
The output will be the optimal transformation matrix. Several error functionals have
been proposed with the most popular ones being the so-called point-to-point algorithm
[12, 26, 243], the point-to-plane algorithm [19, 22, 59], and point-to-projection algorithms
[29, 216]. This work will focus on the first two approaches. The third relies on additional
projections of points onto an image plane, and has been shown to yield similar matching
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A B

Figure 2.11: The ICP matching step. A: The point-to-point algorithm minimizes the Euclidean
distances between corresponding point pairs. B: The point-to-plane algorithm minimizes
the orthogonal distance between a point and the tangent plane of the corresponding point.

results.

Point-to-Point Matching Point-to-point matching takes all points Ppi and the corres-
ponding points Qqi and constructs an error functional E which minimizes the sum of
Euclidean distances ‖ · ‖2 between the point pairs as illustrated in fig. 2.11A. Note that
the optimization problem is solved with the Np correspondence pairs only.

E =

Np∑
i=1

∥∥R · Ppi + t− Qqi
∥∥2 (2.55)

To get the optimal translational offset t, the centroids of both point clouds (p̄ and q̄) and
their shifted versions can be defined:

p′i = pi − p̄ with p̄ =
1

Np

Np∑
i=1

pi (2.56)

q′i = qi − q̄ with q̄ =
1

Np

Np∑
i=1

qi (2.57)

By inserting the above into eq. 2.55 the optimal translational offset results in:

t = R · p̄+ q̄ (2.58)
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With the offsets eliminated and the optimal translational solution above, eq. 2.55 yields

E =
N∑
i=1

∥∥R · p′i − q′i∥∥2 (2.59)

=

N∑
i=1

∥∥p′i∥∥2 − 2tr

(
R

N∑
i=1

p′iq
′
i
T

)
+

N∑
i=1

∥∥q′i∥∥2 (2.60)

whereRRT = I has been used and tr(·) is the trace of a matrix. The minimization of the
term above reduces to maximizing

tr

(
R

N∑
i=1

p′iq
′
i
T

)
= tr (RH) (2.61)

where H ∈ R3×3 can be interpreted as the spatial covariance matrix of the points in the
cloud. With the singular value decomposition (SVD) ofH

H = UΛV T (2.62)

and the general matrix lemma tr(V ΛV T ) ≥ tr(RV ΛV T ) Arun et al. [12] proved that

R = V UT (2.63)

maximizes eq. 2.61 and yields the optimal rotation matrix.

Point-to-Plane Matching Given corresponding point pairs, the point-to-plane al-
gorithm minimizes the sum of orthogonal distances between points Ppi and the tangent
planes at the corresponding points Qqi. This is illustrated in fig. 2.11B. This optimization
goal makes it possible that reference points by which the Ppi are attracted may slide
along the tangent plane and are not restricted to the grid sampling of Qcld. Therefore,
point-to-plane optimization reduces the influence of the discrete sampling grid in Qcld.
To a minor extent, however, this effect can be still observed, particularly for very coarse
sampling of curvy surfaces.

E =

N∑
i=1

[(
R · Ppi + t− Qqi

)
· ni
]2

(2.64)

Equation 2.64 lists the error functional for the point-to-plane goal. Essentially, the Ppi are
inserted into the Hesse normal plane equation at Qqi, where ni = [nxi, nyi, nzi] is the nor-
mal vector at that point. Finding the error minimum is a hard nonlinear problem which
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can be greatly facilitated by the assumption that incremental rotations from iteration to
iteration are small. This leads to an approximation of the full general rotation matrix
given in sec. 2.3.1 as follows:

R ≈

 1 −rz ry

rz 1 −rx
−ry rx 1

 (2.65)

Substituting this approximation matrix into eq. 2.64 yields

E =

N∑
i=1

[(pxi − rzpyi + rypzi + tx − qxi)nxi+ (2.66)

= rx(pyinzi − pzinyi) +

= ry(pzinxi − pxinzi) +

= rz(pxinyi − pyinxi)]2 .

With c = pi × ni, this can be rewritten to

E =

N∑
i=1

[(pi − qi)ni + t · ni + r · ci] . (2.67)

For this expression the partial derivatives with respect to t and r, i.e. in total six un-
knowns, can be obtained and set to zero. These can be re-arranged into a linear matrix
equation.

N∑
i=1

[
cxici cyici czici nxici nyici nzici

cxini cyini czini nxini nyini nzini

][
r

t

]
= −

N∑
i=1

[
ci 〈pi − qi,ni〉
ni 〈pi − qi,ni〉

]
(2.68)

This equation can be solved by any linear solver, preferably using Cholesky decompos-
ition, since the large matrix on the most left is symmetric. The rotation matrix R and
hence the entire transformation matrix can be computed by using r.
Finally, the normal vector computation was done based on linear interpolation between
the 3D surface samples. Linear interpolation has been found to be sufficient due to the
very high resolution of the MR surface sampling. Moreover, spatial variations across the
scanned forehead region exhibit rather low frequencies. For the normal at point qj two
orthogonal tangent vectors along the surface have been computed. The normal vector is
obtained by computing the outer product of the two vectors such that the normal is al-
ways directed away from the forehead. From the perspective of qj the surface slope may
locally depend on the direction along which one would travel on the surface. Therefore,
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the tangent vector combinations have been obtained for tangent vectors of different ori-
entation on the surface. By averaging across the slightly varying normal vector outputs,
a more robust estimate is achieved. In addition, this procedure eliminates extrapolation
problems at the boundary of a surface where qj may not have neighboring points in all
directions.
Finally, note that the approximation in eq. 2.65 is a heuristic which is not always true.
Errors may occur if the surfaces have substantially differing poses with respect to each
other. In the ICP, a decrease of the registration error for increasing iteration numbers is
hence not guaranteed. In many cases, this can entail longer time until convergence, and
in some cases the algorithm would not converge to the correct alignment. In these cases a
pre-registration using rough surface landmarks or other approaches should be taken into
consideration.

2.3.2.2 Correspondence Step

The optimization problem discussed above requires known correspondences. In the gen-
eral case they are however unknown and need to be estimated. A second optimization
problem arises as follows:

∀pi ∈ Pcld : ∃qj ∈ Qcld |min
j

∥∥R · pi + t− qj
∥∥ (2.69)

This aims at finding for each point pi ∈ Pcld the closest point qj in Qcld such that the
distance given the optimal transformation R and t is minimal. Since the optimal trans-
formation is unknown by itself, the iterative ICP process described earlier needs to be
adopted.
It should be mentioned that for the general case of this mathematical problem, a cor-
responding point qj is not necessarily member of the discrete set Qcld. The problem in
eq. 2.69 can be generalized to any point qj which would lie on the spatially sampled
full surface. Various point-to-plane approaches do so by trying to approximate the pen-
etration point of the surface normal with the second surface [19, 59, 216]. Solving this
efficiently adds another challenging problem to the framework for which several propos-
als have been made. The work presented here will only make use of the problem defined
in eq. 2.69.
A simple but highly inefficient solution is the brute force approach. This approach would
merely go through all possible choices in Qcld and finally select the closest one. A more
efficient way, which has been adopted here, is given by so -called k-d trees.
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Figure 2.12: Simplified 2D k-d tree example. The red circles denote some data given in 2D space.
The line intersections within the plane represent the k-d tree. A new point (green aster-
isk) can easily be assigned to a corresponding red circle without using a computationally
expensive brute force approach.

k-d Trees Similar to Voronoi regions, k-d trees define subregions in a space which are
uniquely assigned to given data points [122]. Any new sample residing in that subregion
will be assigned to the data point hosting that region. Figure 2.12 gives a simplified
illustration of a k-d tree constructed in 2D space.
The partitioning of the full coordinate space can be achieved in various ways. A common
approach cycles through all k dimensions, takes the median or mean of all samples with
respect to the current dimension and splits the space at the median/mean. In 3D space
this split corresponds to a plane where the current coordinate axis is the normal on that
plane.
Thus, each node of the binary tree is a decision in one of the k dimensions: If the new
sample is smaller than the boundary on this dimension then the sample is assigned to
the left child node and otherwise to the right child node. The next decision is then made
with respect to a split in the next dimension within the current subregion. The number of
cycles through all dimensions depends on the total number of points the k-d tree is built
from. The more samples, the finer the space partitioning.
Compared to the brute force search the complexity for finding a corresponding point
among N points for a new sample is reduced from O(N) to O(log(N)).

2.3.3 Incorporating Additional Knowledge

While the matching step is restricted to the three spatial dimensions, the correspondence
step is capable of exploiting additional information. Additional information may be of
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any kind – most often including color [71, 105] or directional information locally defined
via normal vectors [256]. Extension have also made use of color transformations from
RGB to other spaces [194]. This rules out influences of lighting conditions and camera
position. The additional information is incorporated into the k-d tree by increasing the
search space dimensions. This means that the similarity metric is changed to include
more than just spatial information.
This can be achieved in two ways. First, a rejection method can be implemented to
eliminate false correspondences. A corresponding pair would be rejected, i.e. not be
involved in the matching step, if the similarity in terms of the additional information
does not comply with the spatial closeness [71].
As a second option, the most common technique constructs a new distant metric as a
weighted sum of different kinds of information [146, 195, 256]. The weighting is an
essential normalization to balance the relevance between different pieces of information
and to allow for quantities measured in different units.

This work will add scalar tissue thickness information as a fourth dimension to
the Euclidean distance. The similarity metric given in eq. 2.69 changes to:

∥∥R · pi + t− qj
∥∥ →

√
fac1 ·

∥∥R · pi + t− qj
∥∥2 + fac2 · ‖dsi − dsj‖2

∼
√∥∥R · pi + t− qj

∥∥2 + fac · ‖dsi − dsj‖2 (2.70)

where fac =
fac2
fac1

Here fac is a weighting factor that balances the relevance between tissue thickness and
spatial closeness. It joins the two weighting factors fac1 and fac1 into a single number
which can control the entire relevance weighting. An alternative method to incorporate
color information into the registration process has been proposed by Men et al. and other
groups [127, 130, 194]. They introduced a variant to so-called extended Gaussian images,
which correlate surface normal distributions in the Fourier space to get a crude estimate
of the rotation matrix [128, 186]. Color information transformed to the Hue space is used
to filter the surface information by rejecting points outside a defined subregion of the
Hue color space.
Since the ICP algorithm is the most widely used registration algorithm, this work will
focus on ICP rather than on alternative methods.
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2.3.4 Variants and Extensions

For the ICP algorithm various variants have been proposed to improve speed and pre-
cision. A review is given by Rusinkiewicz et al. [243]. The variants include different
techniques for point sampling from the surfaces, sample weighting, accelerated match-
ing techniques, or rejection methods. The latter may focus on the rejection of outliers
[89, 231, 344] or allow for point cloud registration of limited overlap [243].
Finally, non-rigid ICP extensions should be mentioned as proposed by Amberg et al. [5].
To account for slight deformations in the surface or for noise corruption, the algorithm
models locally affine transformations. This means the point clouds are not required to be
exactly the same but only similar under certain restrictions. This is achieved by extend-
ing the matching objective E by stiffness or landmark terms. All terms are weighted and
the weights may be changed dynamically. This allows to put a higher weight on a rough
landmark based registration at the beginning and to rely on affine transformations only
when the optimum is already quite close.
This work will not make use of these non-rigid variants, since benefits of tissue thickness
support should be judged in a simple scenario. Using the rigid ICP is also practically
more relevant, since it is employed in most clinical devices so far. Therefore, weaknesses
of current approaches can be demonstrated and compared to the procedure proposed
here. Nonetheless, non-rigid approaches have to mentioned here, since they may con-
stitute the next step. Their dynamic parameter adaptation and their changing methodo-
logical states could further serve as an inspiration for a final, universal tracking concept
including pre-registration, tissue thickness and non-rigidness.
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Interaction

This chapter establishes the theoretical basis for all investigations conducted later on. The
main focus is directed to the underlying basis of the proposed concept: the interaction of
light with human tissue. The dependency of these interactions on the anatomy is the
central requirement for – and actually gives rise to – the novel imaging concept proposed
in chapter 1.
After giving general insights into the anatomy and physiology of the human forehead
and skin in sec. 3.1, sec. 3.2 formalizes optical properties in terms of a physical skin model
and describes how it can be used for simulating the interaction between light and tissue.
Section 3.3 then discusses general aspects of how variations in the tissue model result
in changes of the backscatter pattern that can be observed by a camera. As the main
focus, the effects of changing tissue thickness will be addressed. In sec. 3.4 statistical
learning will be presented to model the inverse problem: to predict variations in tissue
thickness given its observed effects on optical backscatter. Finally, sec. 3.5 will draw
conclusions from the results and discuss how a hardware setup should be specified to
optimally measure the relevant effects.
Parts of this chapter have been published in [324] and [325].

3.1 Anatomical and Physiological Background

Knowledge about the anatomy of the head and human skin is vital for a complete under-
standing of strengths, weaknesses and potential challenges for different head tracking
approaches. As indicated in the purpose of this work, the anatomy as well as clinical
constraints set up the context a tracking approach has to cope with. Its accuracy and ro-
bustness is directly linked to this context and how this context is handled.
Section 1.2.2 outlined that current immobilization devices rely on covering large parts of
the head. Access to the head anatomy is mainly given by the patient’s face or forehead.
The next two subsections are to provide a basic understanding about (1) which parts of
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A: Bones of the human skull with the frontal bone accounting
for most of the forehead.

B: Muscles covering the bony structures. For the forehead
special focus lies on the (a) Musculus frontalis, (b)
Musculus corrugator supercilii, and (c) Musculus

procerus.

Figure 3.1: Bony structures and muscles of the human head including the forehead (images from
[109]).

the skull are to which extent covered by elastic soft tissue, (2) which parts of the head are
very likely subject to motion or deformation, and (3) the anatomy and physiology of the
soft tissue itself.

3.1.1 Anatomy of the Human Forehead

Bone At the forehead region the skull consists of a homogeneous vertical plate – the
frontal bone (cf. fig. 3.1A). In caudal direction it connects with the coronal suture to the
parietal bone and is mainly bordered by the bony eye orbita in the rostral part of the
skull. At the temples, the smooth surface geometry abruptly bends to the back on both
sides and only continues with narrow zygomatic processes. On the cheeks, these connect
to the zygomatic bones and these finally to the maxilla. The latter further includes the
upper jaw and therefore rigidly connects to the upper dentition. In the middle part of
the face, the nasofrontal suture connects to the short nasal bone which then ends with
the nasal cavity.
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A: Extracranial arteries of the human skull. For the forehead
the focus is directed to the (a) anterior branch of the

superficial temporal artery, (b) supraorbital artery, and
(c) supratrochlear (frontal) artery.

B: Detailed frontal circulation: (a) supratrochlear (frontal)
artery, (b) supraorbital artery and vein, (c) angular artery
and vein, (d) anterior branch of the superficial temporal

artery and vein.

Figure 3.2: Arteries (red) and veins (blue) relevant for the forehead region (images from [109]
where full labeling is available).

Muscles The frontal bone is widely covered by the musculus frontalis which is part
of the musculus epicranius (cf. fig. 3.1B). This muscle is thickest above both eyes and
thinner between them. With about 1 mm thickness the muscle is generally rather thin.
On the upper part of the forehead it then connects to the galea aponeurotica - a fibrous
connective tissue that is connected to the skull. As part of the mimic musculature,
the musculus frontalis is used for lifting the eyebrows and causes wrinkles of the skin
covering the forehead. Above the root of the nose, the muscle mixes with the musculus
procerus, a small muscle covering the nasal bone. It pulls the eye brows in caudal
direction. Similar to the musculus frontalis it is grown together with the dermis such that
the skin follows the muscle movements. In this specific case the procerus is responsible
for the frown and laugh lines between the eyebrows. Finally, wrinkles are also generated
by the musculus corrugator supercilii which pulls the eye brows down and inwards.
Both, sensation and muscle movement are achieved by branches of the trigeminal
(mainly facial sensation) and facial (facial expressions) nerve [246]. Particularly the
supraorbital and supratrochlear nerve have to be mentioned [157] as nerves that run
withing the subcutis of the forehead.
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Vascular System Various vessels ensure sufficient blood supply for the skin as well as
muscles. Figure 3.2 provides an overview of the artery (colored in red) and vein (colored
in blue) system as well as their interrelations. The arterial oxygen saturation of a healthy
adult is generally above 95 % [346]. The saturation of veins in contrast ranges typically
between 60 % and 70 % [116]. The saturation defines the number of oxygenated hemo-
globin molecules relative to deoxygenated ones, which is lower for veins. Transport-
ing blood to and from the destination, many of them occur in corresponding pairs (cf.
fig. 3.2B).
As one of the larger arteries, the superficial temporal artery runs up the temporal part
of the head and bifurcates into a frontal and a parietal part. The former of these reaches
across the temples to the forehead. Figure 3.2B illustrates that the corresponding vein be-
haves in a similar way. Apart from these terminals reaching the forehead from the side,
there are two further vessels arising from the bony eye orbit: (1) the supraorbital, and
(2) the supratrochlear (also frontal) artery and vein. From both orbits they run more or
less symmetrically upwards on the forehead and terminate roughly at the hairline. The
latter is located more medially, i.e. closer to the root of the nose. The supraorbital artery
springs from the ophthalmic artery at the optic nerve. Besides the dorsal nasal artery, the
supratrochlear artery then represents one of two further terminal branches of the oph-
thalmic artery. The dorsal nasal artery joins the angular artery on the side of the nose.
Similar locational considerations can be made for the corresponding veins (cf. fig. 3.2B).

3.1.2 Anatomy, Physiology and Characterization of the Human Skin and its
Adjacent Structures

With an area of up to 2 m2 the skin constitutes the largest human organ [294]. Containing
various nerves and vessels, it is responsible for sensation and thermal regulation of
the body. By bordering the human body it grants protection with respect to physical,
chemical or radiation influences. On average, it can reach thicknesses of up to 2-3 mm
[142, 242, 294] and as histological evidences suggest may vary by 30-40 % from body
region to body region [193]. Skin found at the head and particularly on the forehead is
typically thinner. On the forehead, studies found maximum thicknesses from 1.5-2 mm
[114, 219]. The subcutis including adipose tissue adds significantly to the overall
thickness down to the cranial bone. It can reach a thickness of several millimeters [193].
All anatomical layers, including skin and subcutis, between the outer surface and the
cranial bone will be summarized with the term ”tissue” in this work.

The skin can be separated into several layers according to thickness, composition
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Figure 3.3: Cross section through different layers of the human skin. While the left illustrates
content and morphology of the layers and their interfaces, the right subsumes the detailed
structure into seven distinct layers (image from [109]).

and morphology. The layering can be defined in different stages of detail, whereas in
practise there are only partly sharp transitions between them [294]. The layers of the skin
(cutis) can be roughly organized into epidermis (collective term for the upper layers) and
dermis (collective term for the lower layers). The subcutis being located below the cutis
contains mainly subcutaneous fat, but also muscles and the periosteum, a thin tissue
layer covering the bone. For the distinction of further layers, this work will mainly refer
to the definitions of Bashkatov and colleagues [17]. Figure 3.3 illustrates the layering
which will be discussed in the following.

Epidermis The epidermis is about 100 µm thick and consists of viable and non-viable
tissue. The most outer layer, the stratum corneum, consists of flattened, non-living ker-
atinocytes and is about 20 µm thick. The dead cells have a high lipid and protein, but
very low water content [17]. It functions as a protective barrier against mechanical injury
as well as uncontrolled passage of water, toxic substances or microorganisms. In case
of darkly pigmented or tanned individuals, the kertinocytes may contain finely grained
melanin dust [142]. Melanin is a high molecular weight polymer that is attached to a
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structural protein. It is one of the most dominant pigments or chromophores of the hu-
man skin and in parts responsible for the skin color [142]. There are two types of melanin:
the brownish-black eumelanin and the reddish-yellow pheomelanin [288]. Both may
vary from individual to individual, whereas the proportion of the former is increased in
dark skin and the latter in red-haired northern European phenotypes. Due to the nature
of melanin production, constitutive (gens, hormones) and facultative pigmentation (tan-
ning, radiation) are distinguished.
Melanin is produced in cytoplasmic organelles of the melanocytes called melanosomes.
Melanocytes are dendritic cells whose dendrites reach out to the kertinocytes. Melano-
soms are transported upwards through the dendrits and then form a mass or clumps in
the stratum corneum.
The melanocytes themselves reside among epithel cells in the living epidermis (stratum
germinativum) which consists of the sublayers: stratum lucidum, stratum granulosum,
stratum spinosum and startum basale. It is about 80 µm thick. As cell growth happens
in the lower epidermal layers, older basal cells migrate upwards to the stratum corneum
and meanwhile underlie the process of cornification. At the very surface, dead cells form
a rough, plate-like structure and are pushed off.

Dermis The stratum basale forms a rather sharp transition to the underlying dermis.
These basal lamina are a relief of contiguous, branching ridges, valleys, crevices, and
craters. Oriented in a roughly perpendicular manner, fine elastic fibers from the dermis
connect to them [193, 200]. Due to its morphology this 100-150 µm thick layer is called
papillary dermis.
A further distinction of layers within the dermis is given by the distribution of blood
vessels. The upper blood net plexus is 80-100 µm thick and contains fine capillaries and
microcirculation [200]. Underneath the reticular dermis – the main part – follows the
deep blood net plexus (100-200 µm). The latter contains larger veins and arteries, while
the largest reside in the subcutis. Compared to arteries, veins rather tend to run in upper
instead of deeper layers of the skin.
The reticular dermis considerably varies in thickness and can reach between 1 mm and
occasionally 4 mm [17]. Typical thicknesses – also for the forehead – region are about
1.5 mm [193]. The dermis is equally thick in black and white individuals [142]. It consists
of interwoven bundles of collagen and elastic fibers and hence mainly contributes to
maintaining the tensile strength and elasticity of the skin. Collagen constitutes 77 % of the
fat free skin weight [142]. Additional components include interfibrillar gel, water, nerves,
sweat glands, the pilosebaceous complexes of hair follicles and sebaceous glands.
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Subcutaneous fat The adipose tissue mainly contains adipocytes which contain lipids
in small droplets. Lipids account for about 95 % of a single fat cell. Arterial and venous
capillaries, nerves and reticular fibrils reside in the intercellular spaces. Subcutaneous fat
is rich in its water content. As for the dermis, oxygenated and deoxygenated hemoglobin
represent the dominating chromophores. At the forehead, the fat layer is typically the
thickest layer and can vary from individual to individual.

Cranial Bone Cranial bone consists of a highly mineralized inorganic and organic mat-
rix. The former contains calcium hydroxyapatite and osteocalcium phosphate. This mat-
rix is hence responsible for the physical strength and the rigidness of the bone. The
organic matrix consisting of collagen, proteins, blood cells and lipids makes the bone
strong. The amount of the bone mineral matrix corresponds to 15 %, the lipid content to
54 %, the protein content to 16 %, and water contribution to 16 % [100].

Aging and Gender Influences on the Skin Various studies confirmed correlations
between skin thickness or thickness changes with age and gender [36, 265]. While the
thickness of the human skin was reported to be stable between the age of 15 and 70, it
increases for individuals younger, and decreases for individuals older than that range
[81]. Epidermal degeneration was found to happen faster for men than for women [36].
Males generally have thicker skin than females mainly due to a larger amount of elastin
and collagen within the dermis. This also entails better mechanical strength for men.
Frenske et al. reported atrophy in the dermis increasing with age [85]. A reduction of
the collagen fibers and integrity of the elastic fibers leads to degenerated elasticity, while
there was no dependency with age found for skin extensibility [81].
With age, the skin also starts loosing its capability for binding water which leads to a
generally dryer skin. The number of hair follicles, sebaceous and sweat glands decreases
[294]. Blood microcirculation is destroyed and disorganized, while the endings of sensing
elements stay intact. All these changes and moreover also the progressive flattening of
the papillary structures due to changes in the elastic fiber connections cause wrinkles on
the macroscopic scale [200].
Since the number of melanocytes decreases as well, melanin production is reduced for
elderly individuals leading to paler skin [85]. However, particularly for the face, age
spots may occur where melanin production is partially increased [294].
Subcutaneous fat also reduces with age. In addition, considerable site to site variations
in the thickness of the fat layer have been found. The extent of variation depends on the
age and has its highest state of communality during adolescence. More changes in the
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subcutaneous fat have been reported for women [266]. Generally, the loss of body weight
also mainly affects the fat layer and thickness changes thereof. The physiology of other
layers is rather affected by a possibly related reduction of the water content. Furthermore,
drastic weight changes can also have indirect, physical effects on tissue layers. For the
forehead region this effect is, however, mainly negligible.
Finally, it should be mentioned that aging does not only include the biological age, but
also aging by exposure to radiation [142].

Skin Type Classification Older qualitative measures of skin type mainly relied on
the color of skin. The simple von Luschan scale [142, 311] matches tiles of different
colors and hues to the color of unexposed skin. Going one further step, clinical medicine
traditionally and up to date relies on skin phototypes or sun-reactive types for fast skin
as well as skin sensitivity classification [106, 218, 245].
This so-called Fitzpatrick scale consists of six general skin types and categorizes ac-
cording to medical interrogation or questionnaires [93, 94]. Criteria covered in the
questioning procedure are related to eye color, natural hair color, freckles, constitutive
skin color (unexposed areas), skin sensitivity, tanning habits and tanning history [95].
It thus involves genetic, environmental and habitual influences. Scores result in the
following typing.

Skin Type I Always burns, never tans (pale white skin)

Skin Type II Always burns easily, tans minimally (white skin)

Skin Type III Burns moderately, tans uniformly (light brown skin)

Skin Type IV Burns minimally, always tans well (moderate brown skin)

Skin Type V Rarely burns, tans profusely (dark brown skin)

Skin Type VI Never burns (deeply pigmented dark brown to black skin)

For categorizing purposes in ths project, a questionnaire was designed according to [95]
and [230]. Although the Fitzpatrick scale is a measure acquired very fast, it is subjective
and does not correspond well to constitutive skin color. It has shown limited applicability
to moderately or deeply pigmented skin [142]. One further weakness is that it is strongly
biased to skin properties in the visible and particularly ultraviolet (UV) light.
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3.2 Simulation Approach and Skin Model

3.2.1 Optical Properties and Models of Human Skin

An advantage of qualitative skin typing as described before is that it is fast and does
not require any instrumentation. However, it involves subjective measures possibly
inducing a high inter-operator and inter-patient variance. To a certain extent there is also
intra-operator and intra-patient variance. Therefore, quantitative measures of optical
tissue properties are obtained by in vitro experiments using spectrophotometers with
integrating spheres [17, 100, 295]. The actual parameters are then obtained by applying
the inverse version of one of the approaches briefly described in sec. 3.2.2.2.
Although morphology and anatomy of the human skin are quite inhomogeneous, it is
still possible to define regions, where the gradient of skin cell structure, chromophores
and blood amount roughly equals to zero [17]. Referring to the definitions used by
Bashkatov et al. [17], Meglinksi et al. [193] as well as Petrov et al. [224], a seven layer
skin model is adopted in this work. It was extended by cranial bone as an eighth
layer. Location and order of the tissue layers are illustrated in fig. 3.3. The following
wavelength-dependent parameters have been defined for each layer to obtain a full
descriptive model of the layered skin [68, 70, 191–193, 224].

Refractive Index

The refractive index n describes a dimensionless number relating the light wave’s
phase velocity to the speed of light c. It therefore describes how light propagates through
a medium and under which angle the light path changes when entering another medium.
The latter is described by Snell’s law [63]. Here, the relationship of the refractive indices
of two adjacent media is of importance. For the skin model, the refractive indices cover
a range between 1.3 and 1.6, while that of the ambient medium is 1 (cf. table 3.1). The
wavelength dependence of the refractive index for soft tissue was considered negligible
as compared to the variation across layers [192].

Absorption Coefficient

The absorption coefficient µa [ mm−1] equals the average number of absorption
events per unit path length of photon travel [17]. When light hits chromophore particles
and the photon energy corresponds to the distance between atomic or molecular energy
levels, then the photon gets absorbed. After this excitation process of the atom or
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Table 3.1: Parameters of the standard Caucasian skin model at 850 nm. This model was used for
evaluating general aspects of the backscatter characteristics. Data taken from [68, 192, 193,
224].

layer n µa [ mm−1] µs [ mm−1] g d [ mm]

stratum corneum 1.53 0.031 38.34 0.87 0.02
living epidermis 1.34 0.106 26.72 0.87 0.08
papillary dermis 1.40 0.056 23.13 0.87 0.10
upper blood net dermis 1.39 0.075 19.08 0.88 0.08
reticular dermis 1.40 0.063 15.36 0.87 1.62
deep blood net dermis 1.39 0.105 7.43 0.88 0.20
subcutaneous fat 1.44 0.066 3.85 0.87 2.90
bone 1.56 0.048 16.55 0.90 5.00

molecule, the energy gained during this process is – in most cases – transformed into
thermal energy. The re-emission of energy in terms of photons such as in fluorescence
is also possible. This will, however, not be modeled by subsequent simulations, since
it only constitutes an extremely rare scenario for the problem at hand. Finally, an
absorption shadow occurs behind the particle, which is not necessarily the size of the
chromophore. Thus, the absorption coefficient can also be viewed as the cross-sectional
area of these shadows per unit volume of medium. The coefficient is wavelength
dependent.

Scattering Coefficient

The scattering coefficient µs [ mm−1] equals the average number of scattering events per
unit path length of photon travel [17]. When light hits chromophore particles, its path
changes due to deflection. Due to this deflection a scattering shadow is formed behind
the particle which is not necessarily the same size as the particle. Thus, the scattering
coefficient can also be viewed as the cross-sectional area of the shadows originating from
scattering per unit volume of medium. The coefficient is dependent on the geometrical
particle size (relative to the wavelength), shape and concentration in the medium. It also
depends on the wavelength.
Light can be scattered at irregularities within the medium or at boundaries between
media. If the nature of the backscatter from a surface is random and single scattering
events are averaged out, the process is termed diffuse reflectance RD. This is in contrast
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to specular or regular reflectance Rsp which originate from rather smooth surfaces. For
skin, regular reflectance is about 4 % to 7 % of the incident light [7].
Scattering in tissue is mainly described by two different types: Rayleigh and Mie
scattering [7]. Rayleigh scattering happens with particles sizes less than 10 % of the
incident wavelength. It is a weak and isotropic process which decays with the fourth
order of the wavelength. Mie scattering, in contrast, happens with larger spherical
particles and is strongly directed forward, i.e. non-isotropic. As shown in eq. 3.1, it only
weakly depends on the wavelength and hence dominates longer wavelengths.

µlayers (λ) = F · (2.2 · 1011 · λ−4︸ ︷︷ ︸
Rayleigh

+ 11.74 · λ−0.22︸ ︷︷ ︸
Mie

) (3.1)

In this equation F denotes a coefficient ranging from 1 to 10 and defines the layer-specific
extent of scattering [7, 192, 224].

Anisotropy Factor

The anisotropy factor g (cf. table 3.1) describes the probability distribution p over
possible scattering directions. A direction is defined by angle θph, whereas θph = 0 gives
the forward direction of the traveling photon. The functional relationship goes back to
Henyey and Greenstein [124] who devised a function p(cos(θph)) that is parametrized by
g (cf. eq. 3.2).

p(θph) =
1− g2

2 (1 + g2 − 2g · cos θph)
3
2

(3.2)

The function is chosen such that the expected value for cos(θph) according to this
probability function is exactly g. It thus expresses dominant directions in the scattering
process, where g = 1 gives the forward and g = −1 the backward direction. For
biological tissue such as skin and for bony structures, g has been found to be between
0.7 and 0.9 [100, 295, 301]. It smoothly increases with the wavelength [192]. Together
with the anisotropy factor g, the scattering coefficient is often turned into the reduced
scattering coefficient µ′s = µs(1− g).

Layer Thickness

The absolute thickness of a skin layer is denoted by d [mm] and the full tissue
thickness by ds [mm]. Typical mean values mentioned in sec. 3.1.2 were taken from
various sources (cf. table 3.1).
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Figure 3.4: Absorption coefficients per wavelength for different chromophores of the human skin.
(data according to [224])

Parametrization of Individual Skin Layers The behavior of the aforementioned para-
meters is substantially different among the skin layers. This is mainly due to a different
morphology as well as differences in: the distribution, amount, and concentrations of
the most important chromophores contained in each layer.
Anderson et al. [7] state that in the epidermis scattering is due to the refractive surface
and – on a smaller scale – particle scattering. Large melanin particles such as melano-
somes have diameters of more than 300 nm and cause Mie scattering. Melanin dust with
diameters below 30 nm is rather described by Rayleigh scattering. In a darkly pigmented
or tanned epidermis the cell compound is more dense and the number of scatterers
higher [142]. Overall, the optical properties of this layer are, however, dominated by
absorption. While absorption at nucleic acids, peptide bonds or aromatic molecules such
as urocanic acid is relevant for low wavelengths (particularly below 400 nm), melanin
is the main absorber within the UV and visible light range. It naturally protects the
skin from too much UV exposure. As illustrated in fig. 3.4, the absorption coefficient
for both melanin types decreases in the visible range. Especially above 1100 nm NIR
absorption of melanin is negligible [7]. While most chromophores occur more or less
in similar quantities across individuals, there is a substantial individual variation in the
distribution and amount for melanin, which is related to the skin type described before.
The dependencies for these and other chromophores are shown in fig. 3.4. They are the
result of a comprehensive meta-study conducted by Meglinski et al. [191]. The plot also
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Figure 3.5: Resulting absorption coefficients per wavelength for different layers of the human skin
(data according to [224]).

shows that water absorption increases with the wavelength. Above 1000 nm light is
mainly blocked by water. This is essential since the water content of the skin is high and
moreover sweat, which also contains urocanic acid, will significantly change the optical
properties of the skin.
Main absorbers within the dermis are oxy- and deoxy-hemoglobin, β-carotine, biliru-
bin and water. As illustrated in fig. 3.4, oxy- and deoxy-hemoglobin predominantly
absorb light of lower wavelength, whereas the coefficient rapidly decreases with the
wavelength. This renders the location and occurrence of blood vessels within different
skin layers important and distinguishes their properties from other layers. All aforemen-
tioned chromophores, which are not shown in fig. 3.4, are summarized within the term
”baseline”.
Due to its properties and thickness, the dermis also dominates and determines most of
the skin’s scattering behavior [7]. It contains very thin collagen and elastin fibrils of size
60-100 nm as well as bundles thereof reaching 1-8 µm in size [7]. Due to the domination
of Mie scattering in the dermis – particularly in the NIR and IR range – there is only a
weak wavelength dependence for scattering in this layer.
Absorption within the subcutaneous fat is mainly determined by hemoglobin, lipids and
water. Spherical droplets of lipids are also the main scatterers. The average size for the
adipocytes containing these droplets ranges from 50 to 150 µm, whereas the mean size of
adipose scatters within them has a diameter of 0.8 µm [7].
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The optical properties of the bone are dominated by its water content, collagen fibers
and carbonated apatite nanocrystals of about 30 nm length [100].

All in all, the behavior of the chromophores leaves a therapeutic window from
600 nm to 1300 nm for the clinical context where the penetration depth of light into
skin is maximal. Anderson et al. state that around a wavelength of 1000 nm the optical
penetration depth (energy decay to 37 % of its incident power) reaches 3.5 mm and that
1 % of the light penetrates the entire chest wall between 605 nm and 850 nm.

Taking all these considerations together, Meglinski et al. [192] were able to ap-
proximate functional relationships of the absorption coefficient, scattering coefficient
and anisotropy factor with respect to the wavelength. These equations also stated in
earlier articles [68, 70, 191, 224] depend on the following parameters: the concentration
of blood and melanin, the water content, oxygen saturation, the volume fraction of the
blend between the two melanin types, the hematocrit index (volume fraction of cellular
content in blood), the volume fraction of hemoglobin and the fraction of erythrocytes.
These are used as weighting factors for the graphs shown in fig. 3.4 to result in layer
specific graphs for the absorption coefficient presented in fig. 3.5. The anisotropy factor
moreover reveals a dependency on correction factors which take the vessel size into
account. For large vessels the hemoglobin content in the central vessel part is hardly
reached and does hence not affect the scattering as much [192]. The weighting factors
F for the general graphs of the scattering coefficient described in eq. 3.1 correspond
to [11.04, 7.73, 6.61, 5.51, 4.41, 2.20, 1.10] (skin layers from superficial to deep). The
properties of the cranial bone have been taken from references [88, 99, 100, 224, 299].
Finally, note that these properties are valid only for average Caucasian skin of medium
age and are different for other skin types. The values found in the literature also underlie
certain variations which may be due to the natural dissipation of tissue properties,
differences in tissue preparation and storage methods. Further on, temperature con-
ditions during in vitro experiments influence the outcome. A variability of properties
due to temperature in vivo is negligible because of the thermal regulation of the body
temperature and homeostasis.

3.2.2 Simulation of Light Transport in Soft Tissue

The theory of radiation transfer provides a rich framework to model the flow of energy
in terms of photons in tissue. In this context, Bashkatov et al. [18] distinguish direct and
indirect approaches for modeling the light transport through a specimen of tissue. Direct
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methods employ fundamental rules and simple analytic expressions such as the Beer-
Lambert law. These approaches are however very specific and require a strict fulfillment
of the experimental conditions set.
Indirect methods utilize a theoretical model for light propagation in a certain medium.
These models are very often based on or related to the radiation transfer equation. This
is a differential equation describing the radiance L with respect to the spatial position,
its direction and unit time. The general form of the equation has six degrees of freedom
and has no general closed-form solution. The following subsection gives an overview of
several indirect methods that can be used to simulate light transport through tissue. They
all solve the forward problem, i.e. computing measures such as diffuse reflection RD or
total transmittance Tt1 from given optical parameters of the tissue. They can readily be
used to tackle the inverse problem, i.e computing the optical parameters discussed in
sec. 3.2.1 from measured diffuse reflection RD or total transmittance Tt.

3.2.2.1 Approaches for Modeling Light Transport in Tissue

Kubelka-Munk Theory The two-flux Kubelka-Munk model [161] describes the atten-
uation of a light beam caused by scattering and absorption. It assumes two fluxes that
counter-propagate a slab of tissue. As the incident flux, the optical flux propagates down-
wards, i.e. into the tissue, and is attenuated by absorption and scattering. It superposes
with the counter-propagating flux caused by backscatter from the tissue. The model gives
rise to differential equations which can be solved with respect to two parameters describ-
ing absorption and scattering. Together with an approximation of the radiation transfer
equation that results from diffusion theory, measures for the coefficients µa and µs can be
obtained [18].
The results are only valid given that scattering is significantly dominant over absorption,
i.e. µa << µs [17, 18]. Further limitations are that all fluxes are assumed to be diffuse
and that radiation lost at the edges of the tissue sample is required to be negligible. The
model does not account for reflections at boundaries with mismatched refractive index.
To resolve the restriction to diffuse fluxes, extensions to a four, or multi-flux model have
been proposed [67, 185]. These also introduce collimated or directional fluxes. The ap-
proach was widely used during the last decades [7, 74, 84, 207, 303] before the evolution
of more sophisticated methods described below. The Kubelka-Munk model is still used
as an initial guess for these iterative methods [18].

1Total amount of light passing through a sample or material.
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Adding-Doubling Method The adding-doubling method considers the transport equa-
tion for plane-parallel layers. It is based on the idea to solve the radiation transfer equa-
tion for a very thin tissue slab. This provides a simplified setting for which the solution
is relatively easy [300]. This general idea was introduced to tissue optics by Prahl et al.
[229]. Mainly used in its inverse adding-doubling version, it can be used to obtain accur-
ate estimates for µa, µs and g [248]. Internal reflections at sample boundaries are taken
into account.
Having the solution for a very thin slab, the term doubling refers to the idea that transmit-
tance and reflectance of a thicker slab – twice as thick as the initial one – can be computed
from the transmittance and reflectance of the thin slab. By iteratively superimposing thin
layers, reflectance and transmittance are consecutively joined to their final approxima-
tion.
The term adding allows for heterogeneous multi-layerd tissue. Taking the variation of
refractive indices between the layers into account, the solution for more complex layered
tissue is computed by ”adding” their contributions. The adding doubling method re-
mains a popular method for solving the one-dimensional transport equation for a slab
geometry [17, 100, 295]. The method is limited as it cannot account for a finite beam size
or side losses of light at the sample boundaries. It also lacks the model flexibility Monte-
Carlo methods can provide [18]. However, this numerical solution to the steady-state
transfer equation is still valid for cases in which scattering and absorption are equally
important.

Diffusion Approximation Diffusion theory introduces assumptions to approximate the
radiation transfer equation and to reduce the number of degrees of freedom. The most
essential assumption is, that the medium is highly scattering but only weakly absorbing,
i.e. µa << µs [275]. This remains a good approximation for most biological tissue types,
but represents a source of inaccuracy. It approximates the temporal properties of light
transport well and provides a solution with high computational efficiency.
Apart from being restricted to highly scattering media, studies have argued and shown
that diffusion theory is not valid for very thin media [112, 193]. In multi-layer setups,
poorest results are obtained for layers close to the surface. Guo et al. showed that in-
accuracies occur for samples up to 4 mm thickness. There is still an ongoing discussion
about the correct definition of the diffusion coefficient [112]. No ballistic photon trans-
port can be modeled.
Finally, Wang and colleagues [318] identified the conversion from the desired narrow
laser beam to an isotropic point source (as required by the theory) as one of the main
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factors for inaccuracies.

Monte-Carlo Methods Monte-Carlo methods are capable of simulating settings, where
(1) the geometry of the experiment, and (2) the actual tissue structure is complicated. It
efficiently joins both, the functional description of light propagation in tissue as well as a
specialized object geometry the light is supposed to interact with. This ensures a highly
flexible tool for versatile investigations. Interactions with special geometries and dis-
tributed optical properties have also been studied using diffusion theory in combination
with finite-elements methods [144, 249, 262].
The functional description of light transport is given by the radiation transfer theory
as described in more detail in sec. 3.2.2.2. Using this theory, single photon trajectories
through the tissue can be simulated. The term Monte-Carlo thereby refers to the prob-
ability distributions that govern the path of an individual photon. Simulating a large
number of photons (typically > 105) provides the complete tissue response. The entire
simulation considers one point in time only. Therefore, it corresponds to the impulse
response for an infinitely short dirac pulse of light. Convolution with a time signal can
provide the response for arbitrary light exposure over time. Spatially speaking on the
other hand, the simulation of a single pencil beam in laterally homogenous tissue can be
seen as the impulse response.
Monte-Carlo simulation of light transport in multi-layered tissue (MCML) was first in-
troduced by Jacques and Wang [317]. It takes several optical properties such as scattering
and absorption coefficient, refractive index or anisotropy factor into account, allows for
reflections on tissue boundaries, sideways loss from the tissue sample and most import-
ant is valid for arbitrary relationships between µa and µs [18].
The random sampling of many photon trajectories entails one severe drawback: It re-
quires extensive calculations [17]. However, given that each photon is subject to the same
functional framework, there is a high potential for parallelization and computational op-
timization. Recent research directed special focus on outsourcing computational load to
the graphics processing unit (GPU) using e.g. the compute unified device architecture
(CUDA) [4, 68, 69]. This significantly speeds up the computational part by paralleliza-
tion and usage of dedicated and specialized hardware components.
Since this relaxes the efficiency problem and time was not essential, the MCML approach
was adopted for this work, because (1) it is valid for arbitrary combinations of absorption
and scattering coefficients, (2) it straightforwardly allows for modeling complex multi-
layered tissue, (3) it is accurate for thin and thick media, (4) boundary effects at interfaces
between the layers and between a finite sample and the ambient medium are accounted
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for, and finally (5) it provides an ideal framework for customization, extracting various
measures of interest and dedicated investigation in general.

3.2.2.2 Monte-Carlo Simulation of Light Transport in Multi-Layered Tissue

This work made use of the functional framework described by Wang et al. and others
[68, 193, 317]. The implementation built up on the basic CUDA accelerated framework
from Alerstam and coworkers [4] which is provided as an open source code package
called gpumcml. It was extended and customized for the application at hand as will
be outlined in the following. All computations where performed on an Intel® CoreTM

i5-2500K CPU @ 3.30 GHz, 16 GB RAM with an Nvidia GeForce GTX 470. For similar
graphic cards Alerstam et al. [4] showed speed-ups of up to factor 800 compared to
normal central processing unit (CPU) execution. The following paragraphs will review
the functional framework and discuss the changes and extensions made to the program.

The general MCML framework The Monte-Carlo principle is based on random uni-
form sampling. The random variable ζ is sampled from a uniform distribution U .

ζ ∼ U(0, 1) i.e. ζ ∈ [0, 1] (3.3)

Random sampling is involved in the determination of the photon step size per iteration,
the decision whether a photon is reflected at a boundary, azimuth and altitude determin-
ation for particle scattering as well as Russian roulette for very low weight photons. The
MCML simulation runs in iterations and threads on the GPU. One thread corresponds to
one photon packet, which will be treated as one simultaneously acting photon object of
specific energy, i.e. photon weight wph. This weight is dimensionless and is initialized
with wph = 1 at photon launch. An iteration on the other hand corresponds to the com-
putation of one random photon step in the tissue and possibly the occurrence of several
interaction events discussed hereafter.

A photon is equipped with the following properties:

1. current photon weight wph

2. 3D photon location [xph, yph, zph]

3. photon moving direction in terms of directional cosines [uxph, uyph, uzph]

4. photon step size sph

5. number of steps taken so far(∗)
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Figure 3.6: Conceptual comparison between two experimental setups. A: spectroscopy: light
source and detector are probes directly attached to the medium; B: laser scanning setup:
the setup treated in this work applies a laser beam of certain profile from a distant source to
the medium, likewise a camera observes the scene from a distance. (© 2013 OSA. Reprinted,
with permission from [325]).

6. distance traveled so far(∗)

7. time traveled so far taking the refractive index into account(∗)

8. the current layer the photon resides in

9. the history of layers visited so far(∗)

Properties such as location, direction, step size and energy are tracked and constantly
used by the simulation. The properties labeled with an asterisk have been added in this
work for tracking extra properties such as the total number of steps taken, which gives a
rough impression of polarization changes while traveling. More sophisticated work on
polarization tracking has been published by Ramella-Roman et al. [235, 236]. Further
on, it can be measured how far an individual photon has traveled and for how long,
before leaving the tissue. The latter accounts for the dependency of photon velocity on
the refractive index of the current layer medium. Finally, it can be identified which layers
the photon has visited.

Photon Launching The original simulation also assumes cylindrical symmetry
[4, 68, 317]. This has been adapted to a Cartesian coordinate frame, which allows
simulating customized beam profiles instead of pencil beams only. It also makes it
possible to observe changes in the 2D shape of the backscatter distribution on the
surface. The beam profile for the simulations was set to a Gaussian beam profile with
variance σ2 = 0.01 cm2.
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3 The Simulation of Light-Tissue Interaction

At photon launch, i.e. at the start of one thread, the photon was equipped with initial
properties being appropriate to model the experimental setup outlined in fig. 3.6B. In
contrast to typical setups for spectroscopy (cf. fig. 3.6A), the proposed laser scanning
setup does not consist of a detector and a source probe that are directly attached to
the tissue surface. Instead, a laser beam emits photons under a certain angle α onto
the surface. This happens contactlessly and from a distance of more than 40 cm. The
angle is zero for irradiation orthogonal to the surface and 90◦ parallel to it. In this work
α = 0 was considered the default case, but generally scenarios covering α ∈ [0, 45◦] were
investigated.
The initial start position for a photon is sampled randomly from a 2D Gaussian distri-
bution with mean mph = [mx,my] and variance Σbeam = [σ2x, σ

2
y ]I , where I is the unit

matrix

[xph, xph] ∼ N (mph,Σbeam) (3.4)

The directional cosines are initialized according to the chosen α, i.e. α = 0

yields [uxph, uyph, uzph] = [0, 0, 1] and an arbitrary α yields [uxph, uyph, uzph] =

[sin(α), 0, cos(α)]. The weight of the photon packet is initially set to one, before a
proportion according to specular reflectance is subtracted. This lost proportion equals
the specular reflection Rsp resulting from the Fresnel equations [4, 317]:

Rsp =
1

2
·
[

sin2(α− αt)
sin2(α+ αt)

+
tan2(α− αt)
tan2(α+ αt)

]
(3.5)

The equation corresponds to the average across the two polarization states, since this
MCML implementation does not model polarization states for photon packets. The angle
αt is the transmission angle into the new medium and is defined by Snell’s law relating
the refractive indices of the first layer and the ambient medium. All other photon prop-
erties are reset to zero.
For the laser scanning setup the detector is a camera observing the scene from a similar
distance. It has a fixed spatial relationship to the light source.
After the photon launch, the trajectory through the eight layer model starts. A sketch
of this simulation space is shown in fig. 3.7A. While the final results are only stored for
a finite array on the surface or cross-section through the medium, photon travel during
simulation is not limited to the sides. Photons leaving the tissue outside the array bounds
on the surface are simply not stored.

Photon Step Size At each iteration the free path sph, i.e. the photon step size is ran-
domly sampled. The probability of traveling sph or less is given by the definition of
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A: Simulation model of multi-layerd soft tissue.
The incident beam, the absorption array Aph
and diffuse reflection array RD are labeled
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Roulette
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B: MCML program flow chart for the life circle of one photon. A new
iteration always starts at sampling a new step width. Blue boxes

indicate new contributions to the simulation software

Figure 3.7: Tissue geometry and program flow chart for the MCML simulation software. (© 2013
OSA. Reprinted, with permission from [325]).

µt = µa + µs, the total attenuation coefficient [317]. It describes the average free path
length before an interaction occurs.

P (s < sph) = 1− exp(−µtsph) (3.6)

Setting the area under the probability density curve to a uniformly sampled random
number yields the final equation for the step size [317].

sph = − ln(ζ)

µt
(3.7)

Since the medium has several layers of finite thickness, the sampled path length might
reach across more than one layer k. The actual path length depends on the attenuation
coefficient of the medium. Therefore, the dimensionless step size sph·µt is typically stored
instead. The simulation then checks during photon travel, whether a photon would hit a
boundary. This is achieved by comparing the current z coordinate with the stacked layers
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3 The Simulation of Light-Tissue Interaction

depths. This may cause the total path length to be segmented into parts skph:

∑
k

skphµ
k
t = − ln(ζ) (3.8)

Interaction with Boundaries In case its path length would interfere with a layer trans-
ition, the photon travels until it reaches the boundary. Then the remaining path length
is stored and two events may happen: reflection or transmittance. The probability for
reflection is obtained from eq. 3.5. By sampling another random number ζ, the photon
packet is reflected at the boundary if ζ ≤ R(αi), otherwise it transmits. Here, αi is the
angle under which the photon hits the boundary and can be determined from the direc-
tional cosines.
In case of reflection the sign of the directional cosine in z direction is flipped. For trans-
mittance, Snell’s law provides the updates of all three directional cosines according to
the refractive indices at the boundary [317]. A special case is given, if the photon packet
leaves the surface of the medium. In this case, it is stored in terms of a reflected quantity
as described later on. After a photon has traveled the sampled path length – possibly by
hitting several boundaries – an interaction occurs: (1) energy absorption, and (2) scatter-
ing.

Photon Absorption At an interaction site a proportion ∆wph of the photon weight wph
is absorbed and stored at the local element of the absorption array Aph. The extent of
absorption is given by

∆wph =
µa

µa + µs
wph (3.9)

Photon Scattering After decreasing the photon weight, the scattering event is de-
scribed in terms of altitude θph ∈ [0, π] (also deflection angle) and azimuth ψph ∈ [0, 2π].
The cosine of the altitude follows the Henyey-Greenstein equation in eq. 3.2. Assuming
again that the area under this density function equals a uniformly random number yields
after integration (see [317] for derivation):

cos θph =

 1
2g

{
1 + g2 −

[
1−g2

1−g+2gζ

]2}
if g 6= 0

2ζ − 1 if g = 0
(3.10)
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The azimuth is uniformly sampled in its interval with ψph = 2πζ. Given azimuth and
altitude the directional cosines are updated as follows.

ux′ph = sin θph · (1− uz2ph)−0.5 · (uxphuzph cosψph − uyph sinψph) + uxph cos θph

uy′ph = sin θph · (1− uz2ph)−0.5 · (uyphuzph cosψph + uxph sinψph) + uyph cos θph

uz′ph = − sin θph cosψph ·
√

1− uz2ph + uzph cos θph (3.11)

Termination and Data Storage A photon packet would travel along its random path
until it either dies or leaves the surface of the medium. In the first case, the thread of the
photon packet is terminated because its weight reached zero due to absorption within
the tissue. However, due to eq. 3.9, it only slowly approaches, but never reaches zero.
Therefore, the way of photon dying is given by Russian roulette. If a photon weight
falls below a threshold of 10−4, it is subject to random roulette. It has a 10 % chance of
surviving, otherwise it terminates. Below this threshold, photon propagation would add
very little new information, but would add unnecessary computational load. In order
to conserve energy despite terminating photons of non-zero weight, the survival chance
needs to be linked to a gain in energy [317]: If a photon should survive by chance, its
weight is multiplied by 10 and it continues its trajectory until it once again enters the
Russian roulette. Thus, this gain can be understood as the pooled energy of photons
eliminated due to the thresholding. The entire program flow is illustrated in fig. 3.7B.
Data storage is accomplished using arrays in the global GPU memory. Therefore, a grid
of bins is distributed on the medium surface and along a cross-section of the medium
as indicated in fig. 3.7A. The surface grid is located around the origin of the coordinate
system and coincides with the x − y plane. The grid on the cross-section is used to store
absorption and coincides with the x− z plane.
Each bin has a certain width and height and there is also a maximum number of bins.
Each bin corresponds to one global memory address.
If a photon terminates at a location [xph, 0+, zph], the location is discretized into the
corresponding bin. The absorption value in that memory cell of the cross-section array is
then increased by the weight loss of the photon packet. The term 0+ indicates the finite
bin width around zero. Equally, if a photon leaves the surface at location [xph, yph, 0+],
its remaining weight is stored at the corresponding memory address of the surface
array. For the surface array the following information can be stored: the total diffuse
reflectance RD, the specular reflectance Rsp, or the diffuse reflectance of photons having
traveled to layer k RkD. The latter records only photons where layer k was the deepest
layer they had at least one interaction with. Furthermore, a third array can store photons
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3 The Simulation of Light-Tissue Interaction

which have traveled for time tph, a total path stotal, or had a certain number of scattering
events, respectively (first array dimension). The second dimension is provided by the
distance r =

√
x2 + y2 from the coordinate origin where the photon left the surface.

Since a camera with certain aperture is recording the backscatter from the medium, not
all backscattered photons will be sensed. Therefore, the backscatter distribution can be
restricted to photons backscattered within a certain altitude and azimuth range only.

All simulations presented hereafter were carried out with a total number of
Nph = 200 · 106 photons. The numerical noise variance of the results relates to the
inverse square root of this number. The bin size was 20 µm × 20 µm with a grid of
750×750 bins on the surface and 750×1000 along the cross-section. This corresponds to a
field of view of 15 mm×15 mm on the surface and absorption recording down to 20 mm
depth. If not denoted otherwise, no restrictions with respect to the aperture were made
in default case.

3.3 General Aspects of Light-Tissue Interactions

3.3.1 Determination of General Simulation Parameters

The simulation results of light-skin interactions are subject to some general parameters.
These need to be set before effects of a changing skin model on the optical backscatter
can be studied. The subsequent paragraphs will present and discuss the initial choices
made.

Number of Simulated Photons The MCML simulations do not provide analytic, but
iteratively approximated solutions to light-skin interactions. Thus, the number of itera-
tions, which is equal to the number of photons, determines the accuracy of the results.
These are subject to random processes which sample from probability distributions. For
infinitely many photons, the solution is correct. For any finite number, some numerical
noise will remain. The less photons are chosen, the less random effects can be averaged
out – the higher is the noise. The computational time increases approximately linear with
the number of photons.
Figure 3.8A illustrates different noise levels for 106 (blue), 2 · 108 (red), and 109 (green)
number of photons. In this experiment, the 2D position on a surface patch with 750×750

bins was uniformly sampled at random. Each bin will contain the same amount of
photons, if the total number of photons Nph approaches infinity. The variation from bin
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Figure 3.8: Analysis of the numerical stability for different numbers of photons. A: Approxim-
ated uniform distribution on a patch with 750 × 750 bins with 106 (blue), 2 · 108 (red), and
109 (green) number of photons. The number of photons per bin number is normalized by
the patch mean and plotted sequentially. B: The same three numbers of photons as used in
A were sampled from a zero-mean 2D normal distribution. The plot visualizes the smooth-
ness of the cross-section along one coordinate axis. The data were normalized by the total
number of photons. C: The standard deviation (STD) along the approximated uniform distri-
butions was computed for various numbers of photons. A perfectly approximated uniform
distribution would have a STD of zero.

to bin will vanish. The figure shows the varying number of photons across bins. For sim-
plicity, the bins are plotted sequentially and not in a patch. To compare different cases,
the number of photons per bin has been normalized by the mean number over all bins. It
can be seen, that the noise level decreases rapidly for an increasing number of photons.
Figure 3.8C plots the STD across all bins for various Nph ∈ [106, 109]. The red dotted line
marks the red case (Nph = 2 · 108) from fig. 3.8A. Beyond that number the decrease in
the noise level does not justify the increase in computational time. For this Nph, which
has been chosen for all further experiments, the computational time on an Intel® CoreTM

i5-2500K CPU @ 3.3GHz, 16GB RAM with a GeForce GTX 470 graphics card took about
1− 2 min.
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Figure 3.9: Comparison of the absorption profile for the multi-layered tissue model (ds = 5 mm, A)
and the two-layer silicone phantom (B) at 850 nm2. The laser orthogonally hits the target at
the surface center (top part of the plot) and penetrates the medium moving downwards. The
color indicates the logarithmic number of photons absorbed at a certain coordinate. C: Log-
arithmic difference between diffuse surface reflections of the 8-layer model and the phantom
(at α = 45◦ and α = 60◦).

Finally, for fig. 3.8B positions in the 2D patch (the x−y plane) were sampled according to
a 2D Gaussian distribution (σbeam = 1 mm). In this way the beam profile of the incoming
laser beam is approximated later on. The plotted cross-section of the spot (at y = 0) was
normalized by Nph. The colors again correspond to the cases in fig. 3.8A. The red case
giving a Gaussian of minor noise corruption corresponds to the chosen Nph = 2 · 108.
Note that this only corresponds to one line in the 2D grid. Summation in subregions
will further reduce the noise. The grid has 750 × 750 bins with each bin representing a
20 µm× 20 µm square. This means the complete patch, i.e. the simulated camera image,
covers an area of 15 mm× 15 mm.
The previous investigation demonstrated that the input profile is well approximated with
Nph = 2 · 108 photons. To evaluate the numerical approximation of the backscatter im-
age, i.e. the diffuse reflection RD, a typical 8-layer skin model (ds= 5 mm, λ=850 nm, cf.
fig. 3.9A) has been simulated. Out of all photons, 51.9 % were absorbed in the tissue,
41.7 % diffusely and 4.4 % specularly reflected. The rest left the model at the boundaries
of the acquisition grid. Figure 3.8C confirms that even if only half of the Nph = 2 · 108

photons are reflected, the approximation accuracy is still close to that of the input profile.

2This wavelength in the NIR range has been found of high relevance during later experiments. For details
see subsequent sections.
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Table 3.2: Parameters of silicone-plastic phantom at 850 nm.

layer n µa [ mm−1] µs [ mm−1] g d [ mm]

silicone 1.4 0.12 21.8 0.88 5
plastic 1.56 0.2 20 0.9 5

Multi-Layer Model versus Silicone Phantom The justification for the rather com-
plex 8-layer tissue model is indicated in fig. 3.9. The figure compares the absorbed light
energy along the cross-section (z − x plane at y = 0) of the tissue between the 8-layer
model of skin (fig. 3.9A) and a silicone rubber phantom (fig. 3.9B). The latter mimics hu-
man skin with the optical properties given in table 3.2 [178]. The difference is that the
layer structure is not as detailed as in the more sophisticated 8-layer model, but rather
averaged. The comparison gives an impression of how the backscattered reflection at
the surface is influenced even by thin, but highly scattering and absorbing layers. In the
skin model particularly the upper layers containing water and the chromophore melanin
among other substances, absorb and scatter the medium directly after penetrating the
surface. The cone-shaped beam is widened and the distribution of scattered photons is
more widely spread – particularly with increasing depth. For the phantom, in contrast,
there is a higher proportion of light absorbed at short path lengths and scattering leaves
the penetrating beam more narrowly shaped. In comparison with the values in the last
section, 59.9 % of the light were absorbed by the phantom, 2.8 % specularly and 37.3 %
diffusely reflected. The specular reflection seems to fall below typical values for human
skin as they were mentioned earlier. For the diffuse reflection pattern (fig. 3.9C) at dif-
ferent incident angles the surface of the silicone phantom therefore exhibits less photons
at the site of incidence and more photons at the exit site of the beam. Thus, it can be
expected that for skin the information from deeper layers is rather weak, blurred and
superposed by prominent reflections from the upper layers. The silicone rubber model is
therefore insufficient for simulating small changes in the surface reflectance pattern.

Wavelength Dependencies The diffuse and specular reflection was simulated for the
number of photons chosen above. This reflection can be observed at the surface of the me-
dium as a simulated camera image. The simulation was repeated 13 times with changing
optical properties for wavelengths λ ∈ [400, 980] nm. The photons reaching the surface
were labeled by the deepest layer they traveled to. This made it possible to decompose
the full reflection at the surface into reflection components originating from a particu-
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Figure 3.10: Proportion of light returning from the eight model layers for different wavelengths
(ds = 5 mm). Photons were counted for a layer if the layer represents the deepest one
reached by that photon. A zoom into the region between 750 nm and 980 nm is shown on
the right. (© 2013 OSA. Reprinted, with permission from [325]).

lar layer. Figure 3.10 gives a stacked bar diagram which shows the proportions of light
(accumulated across the entire 2D area) coming from the different skin layers at certain
wavelengths.
In agreement with the theory, most light is reflected at the upper layers for smaller wave-
lengths being close to the UV. This effect is mainly caused by the optical properties of
melanin. This effect quickly weakens above 650 nm, where the structures and contents
of the dermis dominate the reflection. In the NIR range, but particularly between 750 nm
and 950 nm, light exhibits the deepest penetration depth. This is part of the therapeutic
window. As shown in the magnification of that region in fig. 3.10, about 3 % of the re-
flected light arrive from the subcutaneous fat or bone. As discussed before, these layers
provide most information about the tissue thickness, since they traveled along the whole
thickness. For the simulation only these 3 % give the information about changes in the
thickness, since the fat was the only layer varied in this conservative scenario.
Due to the results for the penetration depth, all further simulations used a wavelength of
850 nm.

3.3.2 Analysis of the Reflected Laser Spot

After setting the wavelength to 850 nm and knowing how much light is reflected from
fat and bone, it is important to know how the backscattered light is distributed across the
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Figure 3.11: Relative light intensities across a simulated camera image. Plots A to H show the
spatial distributions of the light backscattered from each of the eight model layers. Each
pixel is normalized by the pixel intensity it has got in the full reflection. The color bars are
in percent of the full reflection. (© 2013 OSA. Reprinted, with permission from [325]).

surface. Therefore, the described layer-wise components of the full reflection were nor-
malized by the full reflection. Figure 3.11 plots these normalized layer-wise components.
It can be observed that the first four layers account for most of the intensity in the laser
spot center. The photons do not travel deep enough to be capable of reaching the outer
regions of the spot. In contrast, the depth of the dermis and even lower layers allows
photons to travel further out to the spot margins. Since this is not likely for photons
backscattered from the upper layers, only the dermis and the deep blood layer reveal
ring-shaped relative distributions.
The same argument applies for the subcutaneous fat and the bone. They are responsible
for most of the photons reflected from regions further away from the spot center – at the
outer borders. This means, for a noise-free environment that the most dominant informa-
tion about the tissue thickness can be found in the outer regions. Due to the high relative
proportions, it is less likely that other effects from other layers superpose this informa-
tion. In a relative sense the information is purest in these regions
This is also confirmed in fig. 3.12A where the light at each radius r has been accumulated
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Figure 3.13: Relative proportions of backscattered light for two different spot sizes: σbeam =

0.2 mm (A) and σbeam = 2.5 mm (B).

along a circle concentric around the spot center. The relative proportion of light returning
from the last two layers increases with the radius. Particular dominance is given beyond
the dotted red line (4 mm from the spot center). The problem with this fact is illustrated
in fig. 3.12B which plots the absolute intensity profile along the radius. Beyond the dot-
ted line, there is only very little backscatter in an absolute sense. Although the last two
layers are dominant here, the absolute signal is very weak. In a real scenario, noise is su-
perposing this information and may corrupt the purity. The extent needs to be evaluated
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practically. Overall, the intensities found at the medium range radius r may provide the
best compromise between the dominance of the desired information within effects ori-
ginating from other layers, and the signal-to-noise ratio (SNR). The radius at which this
optimal regions ends will depend on the hardware specifications later on.

Changing Laser Spot Size Although of less importance for the simulation outcome,
the size of the laser spot may play an essential role in practice. The spot size is defined
by the STD of the isotropic Gaussian beam profile σx = σy = σbeam (cf. eq. 3.4). For
σbeam = 0.2 mm and σbeam = 2.5 mm, fig. 3.13 illustrates analogously to fig. 3.12A the
relative proportions of light returned from each of the eight layers. A comparison of both
cases shows that a smaller spot size is preferable over a wide spot diameter. Optical ele-
ments such as objective and size of the image sensor should be specified to cover as much
new information about the behavior of the deeper layers as possible. Looking at the wide
spot reveals that the image plane recorded very similar proportions of light across the
area. Segmenting and accumulating pixel intensities in subregions would yield pretty
much the same behavior for all subregions. Furthermore, a wider spot would cover a
larger area on the skin and it would be difficult to assign the recorded light changes to a
specific spot on the surface. The effects of a larger region are averaged.
For the smaller spot size, fig. 3.13A indicates substantially differing light proportions
across the area of the image plane. Subregions may hence record different functional
behavior making it possibly easier to model a highly predictive functional relationship
between tissue thickness and backscatter. This is particularly true if smaller changes that
occur in the thickness of the upper layers are correlated to the change in the total tissue
thickness to some extent. A change in the dermis or epidermis thickness, for instance,
may also indicate that other layers and the total thickness became thicker. For the sim-
ulation we omitted these effects. A smaller spot also enables a more precise localization
and better lateral resolution of the point grid across the surface. Nonetheless, the SNR ar-
gument also applies here. The dotted red line in fig. 3.12B would be shifted to the left and
possibly large areas of the sensor image plane might be scarified to the noise. Therefore,
a spot size of σbeam = 1 mm was chosen as a compromise for all further experiments.

Camera and Laser Source Orientation In order to optimally record the optical backs-
catter from the tissue, the camera is required to highly resolve each spot on the surface.
Therefore, only a small patch (here 15 mm×15 mm) will be visible to spatially distinguish
parts of the reflection pattern. This necessitates that the optical axis of the camera will
always coincide with the laser beam. This approach can be realized using beamsplitters
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Figure 3.14: Schematic comparison of an in-beam approach (A & C) and an off-beam setup (B &
D) for two different angles (α = 0◦ & α = 45◦).

and mirror-based scanning as discussed later on. Such a setup will be termed in-beam
setup and is illustrated in fig. 3.14A & C. For so-called off-beam cases, i.e. where both
axes do not coincide, it may happen that the surface spot leaves the FoV of the camera.
Changes in the 3D surface geometry, i.e. a differing spot to laser distance, easily yields
such a scenario. Off-beam examples are shown in fig. 3.14B & D.
Simulations for all four cases as presented in fig. 3.14 were conducted. In order to model
the pose of the camera the azimuth was restricted to the interval [170◦, 190◦] and the
altitude to the interval [40◦, 50◦]3. Only photons leaving the surface in this interval were
recorded. The angle αwas set to either 0◦, 45◦, or−45◦. The results are plotted in fig. 3.15,
where the coloring of the layer proportions is identical to all previous plots.
It can be observed that for the same angles the in-beam and the off-beam approach lead
to a very similar outcome. Differences between non-orthogonal and orthogonal irradi-
ation in fig. 3.15B are similar to the ones obtained for a changing spot size. For α = 0◦

the spot is smaller and not stretched to an ellipse as for α 6= 0. For the latter, parts of
the reflection pattern, which can be still recorded for the orthogonal case, would leave
the image plane. Thus, proportions for the last two layers at the same radius are higher
in the α = 0◦ case. For the orthogonal in-beam case (fig. 3.15A) proportions from the
dermis down to the bone are slightly higher (∼ 1 − 2 %) than in the off-beam case, since
the backscatter directions are not uniformly distributed across the unit sphere, but have
a bias for the direction of incidence. Photons that penetrate more deeply were subject to
more scattering events. This will smooth out this bias.

3Except for case A, where the azimuth was within [0◦, 360◦] and the altitude within [85◦, 90◦]. As described
earlier, both are the spherical coordinates corresponding to the Cartesian coordinate system shown in
fig. 3.7A.
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Figure 3.15: Relative proportions of backscattered light for different camera settings: A: in-beam
setup, α = 0◦, B: off-beam setup, α = 0◦, C: in-beam setup, α = 45◦, C: off-beam setup,
α = −45◦. For the in-beam setup, the laser beam always coincides with the optical axis of
the camera, while this is not the case for the off-beam setup. Layer proportions are colored
analogously to all previous plots.

3.3.3 Backscattered Light and Changes in Tissue Thickness

To evaluate the effects of changing tissue thicknesses, the thickness of the fat layer df
was varied from 0 mm to 5 mm and therefore the total tissue thickness ds from 2.1 mm
to 7.1 mm. The changes were investigated in steps of 50 µm. Changes in accumulated
light intensity at radius r were investigated. Variations of the relative diffuse reflection
∆RDnorm were computed as follows:

∆RDnorm(r, ds) =
RD(r, ds)−RD(r, 2.1 mm)

RD(r, 2.1 mm)
(3.12)

Figure 3.16 shows ∆RDnorm(r, ds) as a function of the radius for three different tissue
thicknesses. A superposition of two effects can be observed. First, the thicker the tissue,
the longer are the distances of photon travel and therefore the likelihood for a photon
of being absorbed before leaving the medium. Therefore, ∆RDnorm(r, ds) decreases for
thicker skin and in particular for larger radii. At these distances the returned photons are
more likely to travel longer distances anyway. Second, the thicker the tissue, the more
capable are photons of reaching the outer borders of the sensor area after being reflected
and scattered in the deeper layers. This scattering effect superposes the absorption effect
and even leads to an increase of ∆RDnorm(r, ds) for larger radii r. At very large r and
moderately thick skin, the effect causes a positive ∆RDnorm(r, ds) because it dominates
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Figure 3.16: Relative changes in the light profile ∆RDnorm with changing tissue thickness ds. The
concentric accumulation of light intensities at radii r for different tissue thicknesses is nor-
malized by the accumulation at radii r observed for ds = 2.1 mm. The red region denotes a
bin which can be used for summarizing subregions.

the loss of photons due to absorption. For thinner skin, photons were hardly able to reach
these areas and can only do so for thicker skin.
To exploit this information and to convert it into a tissue thickness measure using regres-
sion, the information needs to be encoded in a small set of numbers of reduced noise. A
small set of features will tackle the so-called curse of dimensionality [309], which makes
processing in high dimensional spaces challenging. This can be achieved by accumulat-
ing pixel intensities in radial subregions as denoted by the red box in fig. 3.16. Looking
at all the backscattered light from the camera’s perspective, these ROIs look like ring-
shaped concentric circles around the spot center as illustrated in fig. 3.17A. An analytic
expression for this set of numbers b ∈ RD – the so-called optical or NIR features – is given
by:

bi(ds) =
∑

x,y∈ROIi

Ix,y(ds) and b = [b1, b2, . . . , bD] (3.13)

where Ix,y(ds) is the thickness dependent pixel intensity at pixel location (x, y) on the
sensor image plane. Each ROI is defined by a radius interval ∆ri = riend − ristart with
r =

√
x2 + y2. For the simulation, the distance from the spot center to the outer bound-

ary of the image plane was divided in 7 equally spaced intervals with ∆r = 2.14 mm.
Figure 3.17B plots the changes of these features across the entire thickness range tested.
This is an illustration of the feature space for orthogonal irradiation. Effects similar to
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Figure 3.17: Feature space for orthogonal irradiation (α = 0). A: Definition of seven concentric,
ring-shaped bins around the spot center. The accumulation within each bin represents one
feature. B: Changing feature values for varying tissue thickness: the feature space.

the ones discussed for fig. 3.16 can be observed: the features decrease with increasing ds
resulting in a negative correlation. The last feature (ROI 7) for the outer regions again
shows the superposition behavior for the mentioned absorption and scattering effects.
The features have again been normalized by the feature vector b at ds = 2.1 mm. The fea-
ture for ROI 7 gets positive for thicknesses from 2.1 mm to about 4 mm and then decays.
It therefore exhibits a nonlinear relationship with ds.

Gray Value Resolution A camera in an experimental setup needs to be specified such
that the light intensity changes per pixel, which are generated by a certain change in
tissue thickness, can be resolved by the image sensor. This requires a possibly high gray
value resolution per pixel. To investigate this issue, the range between zero and the maxi-
mum peak of the expected beam profile was quantized with Nq = 2q quantization levels,
where q denotes the number of bits for a gray value code. Since the absolute intensity
change at a certain thickness variation gets smaller with growing radius, the analysis has
been performed in dependency of the r.
Figure 3.18 shows an example analysis for N14 = 214 = 16384 quantization levels for
the whole range. Figure 3.18A and Figure 3.18B show how many quantization levels
would correspond to a tissue thickness variation of ∆ds = 50 µm. The intensity change
triggered by ∆ds also depends on the initial thickness, i.e. the same thickness variation
at ds = 5 mm will have a weaker response than at ds = 2.1 mm. Therefore, graphs are
plotted for the minimum, mean and maximum pixel intensity change across the entire
range from 2.1 mm to 7.1 mm. It can be seen, that even for larger r the thickness change
of ∆ds = 50 µm can be resolved for some cases. In fact, for radii below 4 mm, most of the
changes can be resolved. For comparison, fig. 3.18D illustrates that the entire thickness
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Figure 3.18: Analysis of resolvable light intensity changes at 14 Bit discretization. Quantization
is considered for light at radius r along half the spot cross section. A & B: Quantization
levels for minimal, mean and maximal light intensity changes for ∆ds = 50µm starting
from differently thick skin. C: Quantization levels for the whole tested thickness interval
of length 5 mm (from 2.1 mm to 7.1 mm). D: Quantization levels for the full reflection (spot
profile). E: Tissue thickness change on average required to exceed one quantization level at
radii r.

interval of width 5 mm can be resolved at any radius with many or at least a few quant-
ization levels.
This is also confirmed by fig. 3.18E, which shows how much variation ∆ds would be
necessary per radius for triggering one quantization level of a 14 bit camera. For the con-
servative scenario chosen here, it is obvious that at larger distances from the spot center
only more coarse changes in tissue thickness can be resolved. A similar observation can
be made from fig. 3.18D.
So far, the maximum of the quantization range was set to the expected maximum of the
beam profile. Now, driving the laser power beyond the saturation level of the camera
sensor would place the quantization range in a better position to resolve smaller vari-
ations at the outer boundaries. Due to saturation, some information at the spot center
would be lost. The likewise increased sensitivity to the noise level can be tackled by
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averaging intensities across many pixels in subregions.

3.3.4 Incident Angle of the Laser Beam

In a real experimental setup it is unrealistic to assume orthogonal irradiation. The laser
beam scans an uneven surface which necessarily leads to changing incident angles. As
denoted in fig. 3.14, the incident angle α is defined as the angle between the incident
laser beam and the surface normal. For orthogonal irradiation, we have α = 0◦. To
investigate the influences of the angle on the backscattered light and finally on the
feature space, α was varied between 0◦ and 45◦ in steps of ∆α = 3◦. The left column
in fig. 3.19 shows the variation of three measures in dependency of a changing incident
angle: A: the shift of the spot centroid, C: the maximum likelihood estimate of the STD
of the beam profile, and E: the scale of the maximum peak of the beam profile.
As expected, it was observed that the centroid shifts away from the image center with
increasing angle. On the other hand, the STD gets larger, i.e. one spot axis stretches out
and the spot becomes elliptical. The stretching effect is caused by a larger spread of the
photon distribution for higher α. Therefore, less photons reach the same pixel at the
surface and the number of photons at the maximum peak drops.
This means there are ambiguities with respect to the tissue thickness. On the one hand,
there are more than one possible backscatter pattern for each tissue thickness. On
the other hand, the effect may reverse, i.e. for one backscatter pattern several tissue
thicknesses could be possible. This renders the problem more difficult for regression
models.
There are two ways to possibly tackle the problem: (1) angle compensation from the
raw data, or (2) increasing the amount of data to also cover reflections from differently
thick tissue at several angles of incidence. The right column of fig. 3.19 presents a com-
pensation approach. Initially, fig. 3.19B plots the beam profile for α = 0◦ and α = 45◦.
All aforementioned effects are visible. Figure 3.19D corrects for the centroid shift and
the increased STD. This σ − µ compensation uses a maximum likelihood approach to fit
a Gaussian into the profile and to estimate µx and σx. Re-interpolation on a new grid
using cubic splines leads to the compensated result shown in the figure. Finally, different
intensity scales can be corrected as shown in fig. 3.19F. Such compensation approaches
aim at fully eliminating angle effects, i.e. mapping the observation for arbitrary angles
to its equivalent at orthogonal irradiation.
A possible problem of compensation approaches is illustrated in fig. 3.20. The measures
presented in fig. 3.19 depend on the tissue layer. What the camera observes on the
surface is not necessarily the case for the backscatter from the bone. Figure 3.20 shows
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Figure 3.19: Spot properties changing with increasing incident angle. The plots show: A: changes
in spot centroid, C: STD of the beam profile, and E: number of photons at the maximum
peak. Plot B compares the beam profile at α = 45◦ and α = 0◦. Plots D and F illustrate
compensation approaches by σ − µ normalization or re-scaling, respectively.

that the centroid shift is more distinct at the bone surface as compared to the skin surface.
On the other hand, the ratio between the long and the short half axis of the spot ellipse
grows faster on the surface. This indicates that the ellipse observed on the surface is
mainly due to scattering in the upper layers, while the reflection from deeper layers
tends to be more circular in shape. The compensation result may therefore be misleading.

The reflected beam profile is not precisely Gaussian due to the different optical
properties of the eight layers. Therefore, the Gaussian fit is never perfect and informa-
tion about the changing thickness of one layer will survive compensation. Furthermore,
although the profiles in the right column of fig. 3.19 seem to be equal, fig. 3.21 shows
that there are still remaining effects caused by the incident angle. The figure plots the
cumulative photon energy obtained from the diffuse reflection. After compensation, the
intensities are summed up for each radius r. Starting from r = 0, the intensity is then
stepwise accumulated until r = 7.5 mm giving rise to fig. 3.21. The energy is normalized
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Figure 3.20: Spot properties for the total surface and the bone reflection at certain incident angles.
A: Centroid shifts of the spot recorded at the bone and skin surface. B: Change of the ratio
between small and big spot half axis recorded at the bone and skin surface.

Figure 3.21: Starting from the spot center, the photon energy was accumulated with the growing
radius r until all intensities (normalized to ”1”) are summed up. Images for two tissue
thicknesses (ds = 3.1 mm & ds = 4.1 mm) and several angles were considered.

by the total energy sum across the entire patch. It follows that the angle as well as the
tissue thickness lead to changes in the shape of the quasi-Gaussian backscatter profile.
The plot also indicates that this effect is larger for angle changes than for varying tissue
thickness.
This is confirmed in fig. 3.22 which plots the full feature space including features
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Figure 3.22: Feature space including varying incident angles after applying σ − µ normalization.
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Figure 3.23: 2D intensity look-up tables for α = {12◦, 24◦, 36◦, 45◦} (from left to right). Each look-
up table is the pixel-wise ratio between images at the aforementioned angles and the image
for α = 0. The ratios were averaged across several thicknesses (from 2.1 mm to 7.1 mm).
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originating from varying angles. To generate the plot, the tissue thickness was varied
for each of the tested angles from ds = 2.1 mm to ds = 7.1 mm in steps of ∆ds = 50 µm.
Strictly speaking, fig. 3.22 is a concatenation of feature spaces like the one in fig. 3.17B
for different angles. The individual feature space sections look similar, but globally
viewed, a strong angle influence is still visible despite compensation. Features are again
normalized by the features b at ds = 2.1 mm and α = 0◦. Up to angles around 10◦

the behavior is rather stable, before it increasingly reveals impact of the angle on the
features.
By pixel-wise relating the diffuse reflection of arbitrary angles to the one obtained for
orthogonal irradiation one can visualize the remaining effects in a 2D look-up table
(LUT). Averaged across the tested tissue thickness range, the LUTs for four angles are
shown in fig. 3.23. Generally, all values are below one, since no re-scaling has been
applied. The ratio in the LUT drops in the spot axis where the angle affected the
backscatter pattern. This means, that the compensated backscatter image had lower
pixel intensities than the one at orthogonal irradiation. This is in line with observations
in previous plots. It indicates that the estimation of the STD σ′x tends to overestimate
the spread of the backscatter profile and squeezes the stretched spot too much during
normalization.
Compensation factors and techniques beyond the described scheme do not seem very
reasonable in the context of other disturbance factors probably faced in a real-world
scenario. The underlying interactions are simply too complex. Surely, two of these are
the uneven nature of the surface or lateral skin heterogeneity.

3.3.5 Impulse Response and Time Shift

Another perspective on light-tissue interactions is given by temporal considerations.
These may provide a completely different approach for retrieving information about the
tissue thickness. A brief insight is given in the following.
All simulations so far did not take the time into account. Although photons are simu-
lated sequentially by the hardware, the results add up to an observation integrated over
time. Therefore, the investigated reflections can be interpreted as the integrated tissue
response on an infinitely narrow light pulse, where all photons hit the surface at the
same time.
Due to probabilistic scattering and reflections, each photon travels another distance.
Together with the refractive index and the speed of light it is possible to compute the
time a photon needs for its traveling. Figure 3.24A plots this time for all photons which
have reached and left the surface at a certain radius r from the spot center. Most photons
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Figure 3.24: Travel time for backscattered photons. A: Travel time per photon is plotted against
the radius r where they leave the tissue surface. The color codes the logarithmic number of
photon for a certain time-versus-radius bin. B: Impulse response of the multi-layered skin
model for a Dirac excitation.

left the surface close to the spot center having traveled only a short time in the range of a
few ps. Nevertheless, there are photons which traveled longer, particularly at larger r.
The assumption that a sensor like a photodiode captures all the photons without spatial
information gives rise to fig. 3.24B. This normalized plot shows how many photons are
delayed to which extent. In signal processing this is called the (Dirac) impulse response
of the system. The response is equivalent to a low-pass filter which smears the input
signal, i.e. attenuates and delays its harmonics.
However, the lowpass filter only affects high frequencies as the time scale of the impulse
response indicates. An example signal is given in fig. 3.25A. The red input signal u[k]

was selected to be the first five harmonics of a 315 MHz rectangular signal, i.e. a pulsed
laser beam. The sampling rate is 50 GHz. The system response y[k] for this input signal
can be computed by convolving the input with the impulse response h[k].

y[k] =
∞∑
i=1

h[i] · u[k − i] (3.14)

The system response is the green triangularly shaped signal in fig. 3.25A. The magnitudes
of the harmonics of the rectangular signal follow a sinc function. This function has a
slower decay compared to the magnitudes of the harmonics from the triangular function.
Therefore, the harmonics of the system response are expected to be smaller than those of
the input signal. Figure 3.25B shows this attenuation for the first harmonic. Changes in
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Figure 3.25: System response of the skin for a pulsed laser. The incident light beam is modeled
by the rectangular function plotted at the top with its first five harmonics. The laser is
pulsed with 315 MHz and the signal sampled with 50 GHz. The same plot also shows the
system response. The bottom plot illustrates the ratio (in dB) changes for varying tissue
thickness between the magnitudes for the first harmonic of the system response and the
exciting rectangular signal.

the tissue thickness cause also changes in the impulse response. Thus, a dependency of
the attenuation coefficient on the tissue thickness ds is observed. This finding could also
be used to estimate the thickness at a given spot. Challenges of this approach however
include: (1) working with very high frequencies in the MHz and GHz range, (2) repro-
ducibly generating the pulse sequence and (3) precisely measuring the system response.

3.4 Estimating Tissue Thickness using Statistical Learning

All findings presented in sec. 3.3 can be used to prepare the raw data for the statist-
ical learning. They give rise to the processing chain shown in fig. 3.26. After acquiring
the raw images of the optical backscatter, pre-processing will be applied to compensate
for angle effects. The compensation module may be skipped if alternative approaches
for handling the incident angle are chosen. As discussed before, the alternative to pre-
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Figure 3.26: Processing chain for a camera image of backscatterd light. After acquiring the raw
images, different modules for compensating angle effects can be applied. Subsequently,
optical NIR features are extracted from ring-shaped ROIs, before statistical learning namely
SVR converts them into a tissue thickness measure.

processing-based compensation is given by increasing the amount of training data, i.e. to
incorporate the angle effects into the feature space and learn from more examples. This
may be accompanied by adding the incident angle for an individual spot as an additional
feature space dimension.
In case of compensation, the following sub-modules will be evaluated: (1) σ − µ normal-
ization, (2) re-scaling, and (3) LUT-based corrections. The latter divides the final image
pixel-wise by the reference pixels of a LUT, which was obtained as a pixel-wise ratio
between images for arbitrary angles and α = 0. The ratios were averaged across a range
of different tissue thicknesses. The following regression analysis will evaluate different
scenarios for handling the incident angle.
After pre-processing, the features are extracted according to eq. 3.13. In a further pre-
processing step the mean of the features is subtracted and they are scaled to unit variance.
In terms of unbiased testing, the necessary pre-processing parameters (mean and scale)
are only computed from the training data and applied to the test data. The resulting data
are used by SVR as input data. The following considerations will only use the RBF kernel
and evaluate the MAE and RMSE after 5-times-10-fold CV. Parameters are obtained via
grid search.
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Table 3.3: SVR estimation results for different pre-processing and feature spaces.

Data Angle Range RMSE [mm] MAE [mm] STD [mm]

• no compensation α = 0◦ 0.019 0.013 0.013
• σ − µ normalization α = 0◦ 0.038 0.026 0.024

•
σ − µ normalization
(nested CV)

α = 0◦ 0.043 0.030 0.029

• re-scaling α = 0◦ 0.060 0.039 0.037

• σ − µ normalization α ∈ [0◦, 45◦] 0.057 0.042 0.040

•
no compensation
+ angle feature

α ∈ [0◦, 45◦] 0.016 0.010 0.012

•
σ − µ normalization
+ angle feature

α ∈ [0◦, 45◦] 0.034 0.023 0.024

• LUT α ∈ [0◦, 45◦] 0.033 0.023 0.023
• LUT + angle feature α ∈ [0◦, 45◦] 0.027 0.018 0.020

Orthogonal Irradiation Table 3.3 lists the generalization errors made by SVR during
CV. The upper part compares different angle compensation techniques on data recorded
for orthogonal irradiation. Since there is no angle influence to compensate, this gives an
impression how much information about the tissue thickness is destroyed by applying
the pre-processing techniques. The baseline for all comparisons is given by features that
were not subject to compensation. With an error of 19 µm the SVR yielded an accurate
and promising prediction accuracy. Feature changes for thickness variations at thicker
skin are generally smaller. Thus, slightly higher errors were observed when predicting
these thicknesses rather than thin skin. After σ − µ normalization, the error worsens due
to two effects. First, the Gaussian fit is not perfectly reproducible. Numerical variations
in the simulations due to the finite number of photons and a profile which is not exactly
Gaussian lead to minor uncertainties in the fit. This explains the noise showing up in
fig. 3.22 after normalization. Second, information of the tissue thickness is also encoded
into a changing variance of the backscattered light. This information is destroyed by nor-
malization.
Further on, re-scaling the maximum peak leads to a further increase of the error4. Since
there is more absorption for thicker skin, the maximum peak will decrease for growing
ds. Since the changing angle may have the same effect, one effect may mimic the other

4Each new compensation module builds up on all previous ones.
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Figure 3.27: Drop of the SVR tissue thickness prediction error for growing incident angles. After
training the SVR model with data originating from orthogonal irradiation, the learned
model has been applied to data of growing incident angle. The analysis was carried out
for different pre-processing options. Each legend entry for a compensation approach also
includes the methods listed on its left as pre-steps. The estimation result at α = 0◦ corres-
ponds to a biased test on the training data.

and ambiguities may arise. Eliminating the angle influence on the intensity of the ma-
ximum peak hence also destroys information about the thickness. SVR can now only
retrieve information from a changing shape of the backscattered profile. This is caused
by the distinct contributions different tissue layers will add too an overall change in tis-
sue thickness. Nevertheless, it also prevents ambiguities.
For completeness, a result for nested CV at σ−µ normalization is added. Computing this
error is very time consuming, but is capable of finding the parameters of SVR without the
test data. They are obtained by an additional (nested) CV loop on the training data. The
error value for nested testing shall show that the other results will slightly underestim-
ate the real generalization error. The impact is however small and the discussions made
remain still valid.

Generalization to Changing Incident Angles The compensation approaches aim at
making the SVR model applicable to data from other angles. Figure 3.27 illustrates how
this aim is achieved for the proposed compensation modules. Note that again each new
module always includes all previous ones. This means the LUT approach gets a σ − µ
normalized and re-scaled image as an input.
In Figure 3.27, the prediction error on data of higher angles was computed, after training
a model with data from α = 0 only. SVR makes predictions according to eq. 2.16, i.e.
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3.4 Estimating Tissue Thickness using Statistical Learning

it exploits a weighted sum of similarities between the test and the training data plus a
constant offset. For angles up to 10◦, all compensation methods outperformed cases of
no compensation. For higher angles, the kernel then outputs very low similarities such
that the weighted sum does not predict the true thickness well. In fact, no compensation
showed better generalization properties than other methods. However, for α > 18◦ the
features become so dissimilar, that the kernel outputs zero and only the constant offset
remains. For σ−µ normalization or re-scaling this happens only for higher angles. While
these two methods keep the data in the length scale range γ of the kernel, they do have
no overall positive effect on the prediction error. Only the LUT approach generalizes well
to other angles (with an RMSE roughly below 0.1 mm). It nicely maps the feature space
for higher angles into the space obtained for orthogonal irradiation. Nevertheless, this
approach is not realistic and feasible in practice. It would require recording images for
a fine grid of defined angles and average them across different skin thicknesses. This is
tedious or just infeasible in terms of measurement time, hardware effort and accuracy.

Learning from Data with Arbitrary Incident Angles A more practical solution is given
in the lower part of table 3.3 [325]. Data for angles α ∈ [0◦, 45◦] have been simulated
for different thicknesses and all the data were passed to the SVR. This case is practically
simple, since just any data needs to be acquired and then passed to the regression step for
training. A drawback is that more data will be required, because the interaction between
features, thickness and incident angle is more complex. Again, it was found that the LUT
approach works best among all compensation methods. Apart from that, two observa-
tions were made. First, data not subject to angle compensation (”no compensation”) yiel-
ded better results. This is because the effect of destroying information by pre-processing
is more harmful than the increase of training data for arbitrary angles is positive. As a res-
ult, refraining from compensation techniques seems more promising. Second, adding the
incident angle as an eight feature, i.e. generating a new vector b′ ∈ R8, leads to improve-
ments. It adds a new dimension to the feature space, which makes it easier for SVR to tell
ambiguities apart (e.g. where different thicknesses look similar due to differing incident
angles). Finally, it has to be mentioned that the mean difference between ”no compens-
ation” (α = 0) and ”no compensation + angle feature” (α ∈ [0◦, 45◦]) is hard to evaluate.
The corresponding STD values show that the error distributions substantially overlap.
However, a reason for a possible RMSE difference is that the second approach had only
one more dimension, but 16 times as much data to sample the feature space. For the best
result (no compensation with additional angle feature) the optimal SVR parameters were
obtained as ε = 0.0022, γ = 0.5 and C = 600.
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3.5 Conclusions and Hardware Specification

This section elaborated on three parts. First, background about the anatomy and
physiology of skin, and the simulation of light-tissue interactions was discussed. Further
steps were justified. Second, general considerations were made about the nature of the
expected backscatter patterns from human skin. These gave rise to recommendations for
possible hardware specifications of an experimental setup. Third, a theoretical proof of
concept was given for predicting tissue thickness from optical NIR feature by means of
statistical learning.
Therefore, the section answered RQ 1. A concise conclusion on the four main challenges
raised by RQ 1 is given in the following.

• RQ 1.1: What are the most suitable hardware parameters for an optical setup?

The results demonstrated that due to its penetration depth, NIR light, e.g. wave-
lengths around 850 nm, are most suitable for getting information about the tis-
sue thickness. To sufficiently resolve the brightness changes triggered by small
changes of the tissue thickness, an high dynamic range (HDR) with at least 14 bit
gray value resolution and high sensitivity in the NIR range is recommended.
Lenses and optical elements should be chosen such that an at least 15 mm ×
15 mm large patch of the spot is visible to also extract backscatter further away
from the spot center. An image of this spot needs to be of sufficiently high res-
olution, since accumulating many pixels will average out random pixel noise
particularly for low intensities of the informative backscatter signal. In fact,
this is a tradeoff which needs to be evaluated in practice for a concrete camera
device. A Gaussian beam profile with 1 mm STD was found to be a good com-
promise. Nevertheless, a finer spot size with a higher laser power might also
be a promising option. Adjusting laser power and aperture in a way that drives
the spot center into the saturation limit of the camera, could provide a better
dynamic range coverage for light changes at the spot margins.
No objections with respect to an in-beam setup were found.

• RQ 1.2: How is information coded in backscattered light and how can it be
optimally translated into informative features?

For a Gaussian profile the relative proportion of light reaching the surface from
deeper tissue layers was found to grow with the radius r from the spot center.
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This includes the bone surface and the subcutaneous fat layer. Light from both
layers will provide valuable information about the tissue thickness. Extracting
features as accumulated luminance from ring-shaped ROIs, concentric around
the spot center would be a natural choice. Other options may be possible as
well. Many effects – also from the upper tissue layers – are superposing each
other at the spot center. The acquisition noise however will have a considerable
effect on the weak information signal recorded further away from the spot
center. The latter implies that the SNR decreases with the distance from the spot
center. Thus, light from regions of medium distance from the spot (∼ 2− 4 mm)
is the most promising compromise between the two effects. However, the upper
bound of this interval will depend on the hardware. A low pixel noise of the
camera and an accumulation of many pixel intensities from a high resolution
image of the area could make information further away from the spot center
well extractable. Noise reduction may also be achieved by trading the number
of ROIs for their size, i.e. the number of pixels used for averaging the noise out.

• RQ 1.3: What are possible disturbance quantities?

The incident angle of the laser beam was found to be one highly relevant
disturbance. It may generate ambiguities and mimic misleading changes of the
tissue thickness. While compensation approaches were found to handle angles
up to 10◦ well, they are not the recommended choice. The preferable choice is
given by measuring the actual incident angle and adding it as an additional
dimension to the feature space.
Nevertheless, many questions about disturbances remain and need to be evalu-
ated with real-world data from an experimental setup. This includes the impact
of issues that were not modeled by the current MCML approach: non-planar
boundaries between tissue layers, photon-photon interactions, muscle tissue,
changing perfusion, oxygenation or pulse, or lateral tissue inhomogeneities
such as freckles, moles, sweat, hair etc. Finally, the influence of skin type,
gender and age have to be evaluated, since the simulation is only valid for
average Caucasian skin.
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• RQ 1.4: How can informative features be used to retrieve a reproducible
pattern to support surface tracking?

Optical backscatter patterns may be influenced by several factors such as the
tissue thickness, but also by disturbance quantities such as the incident angle
of the laser beam. Therefore, these patterns cannot directly be used to support
surface tracking as additional landmarks. Instead, it is proposed to make use
of statistical learning. This will build models that relate the backscatter features
to a tissue thickness measure and separate this information from other influ-
ences. Based on the simulations, a proof of concept was presented that SVR can
predict the tissue thickness with very high accuracy. Nevertheless, to tackle ex-
ternal disturbances, large data sets may be required. This is even more relevant
with respect to the aforementioned disturbances in a real scenario. These have
not been covered by the simulation. Further on, supervised learning requires
a ground truth for the tissue thickness. Several options for that will be presen-
ted, but the effect of having a limited accuracy for the ground truth needs to be
evaluated with real experimental data.
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4 Experimental Validation - Tissue
Thickness Estimation on Real-World
Data

The previous chapter has used Monte-Carlo simulations to demonstrate that tissue thick-
ness can theoretically be predicted from optical backscatter. The key finding was that
light with wavelengths around 850 nm penetrates the skin deepest. The reflected spot
can be analyzed by a camera to extract additional information. The analysis evaluates in-
tensity changes in subregions of the backscatter images and aims at estimating the local
tissue thickness from that information.
This subsequent chapter shall experimentally validate this approach on real-world data.
The first section describes the experimental setup. It summarizes necessary work in-
cluded in the PhD theses of Patrick Stüber who designed the optical hardware setup
[281, 283, 285], and Benjamin Wagner who contributed a software approach for laser
triangulation using a galvanometric deflection unit [312–314]. Section 4.2 then outlines
general aspects of the volunteer study. Special focus is directed to the ground truth ac-
quisition for the tissue thickness as well as the registration thereof to the optical surface
scans. A general overview about all data characteristics and its fusion across several
modalities and coordinate systems is given. Linking back to chapter 3, sec. 4.3 discusses
general aspects of the light-skin interactions, before sec. 4.4 evaluates the results of the
statistical learning used to estimate the tissue thickness. Parts of this work have been
published in [327, 329, 330, 337]. The section will particularly address the incorporation
of prior knowledge such as the incident angle of the laser beam [328] or the exploitation
of local neighborhoods in the scanning grid [330, 331] to improve the estimation quality.
Finally, sec. 4.5 will give first insights into sparse approximation techniques for GPs to
enhance the learning and estimation efficiency for larger data sets [332]. Section 4.6 will
draw final conclusions from the findings presented.
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A: Simplified sketch of the optical hardware design. B: Image of the hardware implementation of the design.

Figure 4.1: Experimental setup for acquiring NIR surface scans. A galvanometric deflection unit
deflects a laser beam onto the target. Reflections are then observed by a triangulation camera,
and – coupled into the laser path – an HDR camera to evaluate the NIR optical backscatter
(© 2015 IEEE. Reprinted, with permission from [335]).

4.1 Experimental Setup

4.1.1 Optical Hardware Design

The experimental setup for the laser scanning hardware consists of two parts. The
general design is shown in fig. 4.1A. First, surface information is obtained by laser
triangulation. Therefore, an 830 nm fiber-coupled NIR laser (LPS-830-FC with CFC-2X-B
collimator, Thorlabs, Inc. [289]) was directed onto a cage cube-mounted pellicle beam-
splitter (CM1-BP145B2, Thorlabs, Inc. [289]). The laser was driven with a bias current
of 27.5 mA generating an output power of 1.27 mW. The beamsplitter directed 45 % of
the light onto a galvanometric, mirror-based deflection unit (ASX-V20, Laserwinkel
[165]). The remaining 55 % of light were absorbed by a customized beam dump. The
motors of the galvanometric unit were equipped with two silver-coated square mirrors
(ME05S-P01, 96.5 % reflectance at 830 nm, Thorlabs, Inc. [289]) as illustrated in the upper
right corner of fig. 4.1B. Each of these mirrors either controlled the horizontal or vertical
direction in the rectangular 32 × 32 scanning grid. Light with a power of about 0.5 mW
finally reached the object. Requirements for laser safety Class 1 were fulfilled.
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4.1 Experimental Setup

A: Image of a subjects forehead recorded by the triangulation camera.
A grid of 1024 points was projected onto the surface for

illustration purpose. True scanning was done interleaved and
row-wise to avoid overlapping spots.

B: Laser spot image recorded by the HDR
camera.

Figure 4.2: Images from the two main cameras of the system: the triangulation camera and the
HDR camera. (Left image reprinted from [331], © (2015), with permission from Springer).

The triangulation camera (IDS UI-3340CP-NIR-GL, CMOS, 60 fps, 1280× 1024 [135, 136])
used a Pentax C2514-M objective [239] with 25 mm focal length. The latter was chosen
such that the FoV of the camera at 40 cm distance would cover a subject’s forehead (cf.
fig. 4.2A). The exposure time of the camera was chosen to cover half a row of the laser
spot grid. Furthermore, the sequential scanning process was adjusted such that first all
odd and then all even spot numbers in one row were projected (interleaved scanning).
Thus, each camera image contained 16 spots. One row of the grid required two, and a full
grid 64 images. This procedure avoids overlapping laser spots and ensures a precise spot
localization in the image. Projected spots were typically 2-3 mm apart from each other
when projected onto a typical forehead.
The second part of the hardware design is dedicated to measuring the NIR backscatter.
An HDR camera (ANDOR Zyla 5.5 [8, 9]) was coupled into the beam path to record the
light which is backscattered from the forehead – through both deflecting mirrors and the
beamsplitter. Such a design is called in-beam setup as already discussed in chapter 3.
This scientific CMOS (sCMOS) camera joins advantages from standard CMOS cameras
(fast acquisition, no blooming) and CCD cameras (high resolution and dynamic range).
The list below summarizes the most important key facts.

• 2560 × 2160 pixel (5.5 Mpix) resolution
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• 16.6 × 14.0 mm (21.8 mm diagonal) sensor with pixel size 6.5 µm

• max. 30 fps scanning speed @ full resolution

• 1.2 e− readout noise (RMS) and 30,000 e− well depth

• 16 Bit resolution for analog-to-digital conversion, ∼ 25 % quantum efficiency at
830 nm

The camera was equipped with a Computar M7528-MP objective having 75 mm focal
length [46]. The width of one pixel then corresponds to 28.2 µm on the object at 40 cm
distance to the target. A 1000 px × 1000 px area-of-interest was selected from the full
image size (cf. fig. 4.2B). The laser spot center was aligned with the center of this area.
Finally, the aperture of the objective was tuned such that the pixel intensities of the laser
spot center drove the 16 bit quantization into saturation (at 5 ms exposure time on skin).
In this way, the image sensor could exploit the entire dynamic range for resolving the
beam profile as suggested in sec. 3.3.3.
Analogous to the simulation study (cf. fig. 3.17), features were extracted as pixel intens-
ities accumulated within concentric, ring-shaped ROIs around the laser spot center. For
each ring a width of 90 px, i.e. 2.54 mm, has been chosen. Defining five of such ROIs
results in a total diameter of 2 × 5 × 90 px = 900 px, i.e. 22.8 mm. The remaining 100 px
were left as a buffer for cases where the spot center of gravity is not exactly in the middle
of the 1000 × 1000 px area-of-interest. Later on, angle compensation methods may also
require this buffer after re-scaling. Note that the number of ROIs has been reduced from
seven to five with respect to the simulation study. Each ROI also covers a larger area and
also larger number of pixels. For the experimental validation, this provides a better SNR
even for weak backscatter. A lower dimensional feature space is also beneficial for the
performance of a machine learning algorithm as will be discussed in more detail later
on. As a result, the ROI indices from simulation and experimental evaluation do not dir-
ectly correspond to each other. For the experimental evaluation, ROI i covers locations at
distances r ∈ [(i− 1) · 2.54 mm, i · 2.54 mm] from the spot center.

4.1.2 Laser Triangulation

Laser triangulation is used to compute positions in 3D space given a laser spot in a 2D
camera image. This requires a known spatial relationship between the laser source and
the triangulation camera. For the optical setup described in sec. 4.1.1, however, the ori-
entation of the laser beam with respect to the camera is controlled by a galvanometric
deflection unit. This enables a fast scanning speed, but also renders the triangulation
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A: Illustration of the triangulation problem. Coordinate systems
for the camera and one laser beam are indicated in blue and

green respectively.

B: A pre-defined grid of 32 × 32 points is
projected onto planes at different distances

from the camera for calibration.

Figure 4.3: General concept of the laser triangulation used for 3D surface imaging (© 2015 IEEE.
Reprinted, with permission from [336]).

problem very complex [336]. A simplified sketch of the problem is presented in fig. 4.3A.
Although the author of this work has shown in a separate study that data-driven learn-
ing can tackle this challenge in a generalized manner [336], the data acquired for all sub-
sequent experiments was recorded using the LUT approach outlined by Wagner et al.
[312, 314]. The approach is briefly described in the following.

Calibration of the Triangulation Camera First, the camera itself is calibrated accord-
ing to the pinhole model to obtain a projection matrix from the 3D camera space onto
the imaging plane [120]. This is achieved by recording images of a checkerboard in sev-
eral different poses within the calibration space. The calibration optimizes parameters
of a model which relate the known spacings of the checkerboard squares to their meas-
ured pixel coordinates in the camera images. The parameters consist of intrinsics (pixel
coordinates of the optical camera axis, the focal length as well as radial and tangential dis-
tortion coefficients) and extrinsics (translational and rotational parameters of each check-
erboard pose with respect to 3D camera coordinate system). The origin of the camera
coordinate system coincides with the location of the aperture.

Calibration of the Mirror System and Triangulation Now, the LUT approach
for calibrating the scanner setup relies on the idea of calibrating each ray of a fixed
32 × 32 grid. This means 1024 fixed spatial relationships between laser beam and camera
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are considered. The system is only capable of triangulating along these pre-defined
rays. The calibration data is recorded by stepping a checkerboard board through the
calibration space and projecting the laser spot grid onto each of them. By using the
camera calibration above, the extrinsic parameters of these poses can be obtained.
Finally, 3D coordinates of the projected grids are computed by exploiting homography
matrices [314, 336]. The result is illustrated in fig. 4.3B.
For each ray a line is fitted through the 3D points (in a least-squares sense), resulting in
an estimate of a 3D description for all 1024 rays. Each ray is considered as the optical axis
of a virtual camera coordinate system, where the z-axis coincides with the ray pointing to
the target. This orthonormal system is known in coordinates of the triangulation camera,
since the 3D laser points were estimated from the extrinsics of the camera. Therefore, the
orthonormal system of each ray corresponds to a projection matrix. The inverse of this
matrix projects from the 3D coordinate system of the triangulation camera into that of
the virtual camera. The output of the scanner calibration yields 1024 projection matrices
linked to specific rays representing certain mirror positions.

For triangulation, the mirror position i.e. the ray number needs to be linked to the
pixel coordinates of the laser spot in the triangulation camera image. Two systems of
equations can be set up: (1) Projecting the unknown 3D location into the virtual imaging
plane yields the origin of the plane [0, 0], and (2) projecting the unknown 3D location
with the intrinsic parameters to the imaging plane of the triangulation camera results in
the measured pixel coordinates. To obtain the 3D location, the equations are solved with
the direct linear transformation (DLT) algorithm [2]: Since both equation systems result
in the same 3D vector, the cross product of the equations’ left hand sides has to yield the
null vector. After joining the equations this way, different optimization techniques, e.g.
involving SVD, can be used to get the solution.
Since one image of the triangulation camera contains more than one spot, the correct
correspondence between a projection matrix and the imaged spot needs to be identified.
Therefore, a sequence of images is acquired from the same grid, where each spot is
switched ”on” and ”off”. The sequence of these two states in the images provides a
binary code being unique to each projection matrix. For 1024 spots a 10 bit, and for 16
spots a 4 bit code is required. After a ”burn-in” phase for this sequence, a unique spot
identification can be done after each incoming bit, or image [312, 314].
The process of acquiring one full 3D surface scan à 1024 spots including all NIR
backscatter information took about 20 s. This includes the exposure time for both
cameras, driving the mirrors, laser switching times and safety delays to ensure a stable
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Table 4.1: General characteristics of the subject cohort (total & skin type specific): number of sub-
jects, gender, age and questionnaire score (Fitzpatrick scale, cf. sec. 3.1.2 and [95]).

total type II type III type IV type V

subjects 30 6 8 13 3
male 14 5 4 5 2
female 16 1 4 8 1
age (mean) 31.7 28.2 32.8 33.7 27.0
age (range) 24-65 24-34 24-53 27-65 24-29
score (mean) 19.4 9.0 16.3 23.7 30.0
score (range) 7-31 7-13 14-20 21-26 29-31

measurement situation.

4.2 Data Acquisition

4.2.1 Volunteer Study

Experimental data was acquired from 30 healthy volunteers. The cohort comprised 14
male and 16 female subjects aged between 24 and 65. Full characteristics are listed in
table 4.1. Using the aforementioned skin typing questionnaire, each subject was assigned
a score. This score classifies into one of the in total 6 different skin types of the Fitzpatrick
scale (cf. sec. 3.1.2) [95]. The mean score among female subjects was 18 (range: 7-30), and
male subjects 21 (13-31).
All procedures were in accordance with the ethical standards of the responsible commit-
tee on human experimentation (institutional1 and national) and with the Helsinki Declar-
ation. Informed consent was obtained from all subjects for being included in the study.
Per subject the collection of the experimental data was conducted in three steps which
are outlined below. They will be detailed in the following subsections.

Fabrication of a Dental Cast First, an informed consent form was filled by each vo-
lunteer2. Afterward, an individual dental cast was fabricated for the upper dentition of

1Ethics committee of the University of Lübeck, Germany, file number 13-112, https://www.

uni-luebeck.de/forschung/kommissionen/ethikkommission.html
2See sec. 7.1. The author acknowledges the help of Dr. med. Benjamin Sack, Department of Neurology,

University Hospital Schleswig-Holstein, Lübeck for informing all volunteers about the process of MR
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A: Individual dental cast for subject one (S1)
fabricated from PMMA material.

B: Dental cast attached to a marker construction with MRI visible
capsules and an active optical marker.

Figure 4.4: Subject specific marker construction for experimental steps two and three. The NIR
scans were transformed into the reference space of the MR ground truth.

each subject (cf. fig. 4.4A)3. The cast was made from Poly(methyl methacrylate) (PMMA)
and was used as a mouth bite in all subsequent steps. Through the upper jaw, the cast
was rigidly linked to the cranium.
The cast was then attached to an Acrylonitrile butadiene styrene (ABS) base plate pro-
duced with a 3D printer. The base plate was equipped with an active optical marker
geometry. This geometry contained four 850 nm LEDs. These can be tracked by a marker-
based tracking system (accutrack 250, Atracsys LLC [13, 14]). A marker extension as il-
lustrated in fig. 4.4B was only attached to the ABS part for MRI. It was made from PMMA
and was equipped with MR visible capsules (Nitrolingual®). Section 4.2.3 will describe
how the marker was used to pre-register the NIR scans to the MR ground truth.

Tissue Thickness Ground Truth Recording from MRI In a clinical scenario, CT ima-
ging (e.g. from planning) constitutes the easiest way to record and segment a ground
truth for the tissue thickness from the forehead. However, due to the required exposure
to radiation, this was not feasible for the group of volunteers in this study. Optical coher-
ence tomography, on the other hand, is an accurate approach, but difficult to handle for

scanning.
3The author appreciates the help of Ms. Annika Klaus, Dr. Christin-Sophie Deutz, and Dr. Dr. Hans

Christian Jacobsen from the Clinic of Oral and Maxillofacial Surgery, University Hospital Schleswig-
Holstein, Lübeck.
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a rather large surface. The skin penetration depth is also roughly limited to 2 mm [199].
The usage of pressure-compensated US results only in moderate accuracy [80]. Here,
main challenges and error sources occur when registering single measurements into the
same space. In addition, skin deformation caused by the contact force of the US probe
corrupts the outcome.
After compensating for this force, US results have been shown to agree with the seg-
mentation from MRI. The latter has been chosen as a gold standard for obtaining a highly
precise tissue thickness measure4. Section 4.2.2 will detail the developed procedure (pro-
cessing chain and validation published in [333, 334]).

Optical NIR Scans Scans were acquired with the subject in supine position. For stable
positioning a head rest (F35758-MD, Orfit Industries n.v.[212]) as typically used in SRT
was placed on the couch. The projected laser grid was positioned on the subject’s fore-
head. The laser was exclusively switched on when the subject’s eyes were covered by
protective goggles. The latter as well as the scanning setup were shielded from the ac-
cutrack system and the flashing LEDs by a black curtain. In this way, the HDR images
were not corrupted by their strong NIR light capable of passing the bandpass of the HDR
camera. Note that the optical tracking system is only required for the experimental val-
idation of the concept. It matches the MR ground truth to any of the optical scans (cf.
sec. 4.2.3) and is also used to compensate head motion from spot to spot for this rather
slow functional prototype. For the clinical application (where a model is only built once
during planning) as well as faster clinical prototypes, the tracking system will not be ne-
cessary.
Three subsequent scans in each of three different head poses (nine scans in total) were
recorded for every subject. Photographs of the skin on the forehead were taken.

4.2.2 Tissue Segmentation from MR-Scans

To serve as a ground truth, high resolution MR images (0.1025 mm× 0.1025 mm× 1 mm)
of the forehead region were acquired with an Ingenia 3.0 T MR scanner (Philips Health-
care [158]). Figure 4.5 indicates the volume-of-interest (VOI) in a low resolution T1 scan
of the head. The imaging sequence was a gradient echo (FFE-T1) with a 15◦ flip angle to
rapidly record the VOI (210 mm × 210 mm × 70 mm). The echo time TE was turned as
low as possible (TE/TR = 5/17 ms) to minimize susceptibility artifacts at tissue-air/bone

4The author is grateful for the support of Dr. Uwe Melchert, Christian Erdmann, Armin Herzog, and Dr.
Georg Schramm, Institute for Neuroradiology, University Hospital Schleswig-Holstein, Lübeck.
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Figure 4.5: Clinical T1 contrast scan of a subject’s head. The VOI is marked in green. It contains
the forehead region and MR-visible marker spheres for registering the volume into other
coordinate spaces. A: frontal view (Reprinted from [334]), B: view from the left.

interfaces [82]. The volume was aligned in parallel to the AC-PC line and then individu-
ally adjusted to be approximately orthogonal to the forehead surface [284].

Tissue Segmentation Pipeline The segmentation chain had nine major steps. It was
performed slice-wise. First, the software package SPM8 was used to initially segment five
main components of the anatomy (gray matter, white matter, cerebrospinal fluid (CSF),
meninges and skull/skin) [96]. The output corresponds to probability maps, which in-
dicate the likelihood for each voxel of belonging to a particular component. Second, the
first four components were joined into a negative and the last component (extra-cranial
tissue and skull) into a positive mask. The term positive mask refers to an image which,
by pixel-wise multiplication with the data image, sets pixels to zero which do not belong
to the object of interest (i.e. the skin). A negative mask is an approximations of the in-
verse counterpart. In order to cut out the interior of the skull, the original image was
masked with both of them. Voxel intensities were reset to zero, when their probability of
belonging to component five fell below 25 % and the chance of belonging to one of the
other components exceeded 68 % (cf. fig. 4.6A-D). The VOI was then selected to contain
the forehead only (fig. 4.6E).
Manual inspection in a third step allowed to correct for rare drops in local contrast or
large vessels. In rare cases the latter could lead to holes in the tissue region which cannot
be closed by previously applied morphological closing operators or a median low-pass
filter.
Fourth, the largest, connected tissue segment was extracted using a 2D region grow-
ing algorithm (fig. 4.6F). Fifth, 2D snakes were applied to obtain a smoother tissue-bone

138



4.2 Data Acquisition

Figure 4.6: Illustration of the segmentation pipeline. A: raw volume slice, B: negative mask of
intra-cranial sites, C: positive mask of likely extra-cranial tissue sites, D: raw slice after mask-
ing, E: forehead region from D, F: region growing output, G: active bone contour detection
using snakes (blue: initial contour, red: output contour), H: snake output segment, I: output
from F and H after Canny edge detection (Reprinted from [334]).

Figure 4.7: 3D point clouds for the skin (green) and bone (red) surface. Tissue thickness is com-
puted by normal vector (black) penetration through both surfaces. The orthogonality con-
dition holds for the skin surface (Reprinted from [334]).

boundary [147] (200 support points, 150 gradient descent steps, weights for tension and
stiffness were 0.03 and 0.005, respectively). The active contour also employed a balloon
force as well as gradient vector flow as an external force. The initial contour and the
optimized result are illustrated in fig. 4.6G for one slice. Figure 4.6H shows the segment
enclosed in this optimized contour. Sixth, Canny edge detection [45] yields the air-tissue
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Figure 4.8: Segmentation result and histogram of the tissue thickness for subject 1 (left, reprinted
from [334]). The 3D skin surface is overlaid with color-coded tissue thickness. Surface plots
for the remaining subjects are given on the right (color bars were set to the same range).

boundary (cf. fig. 4.6I). Finally, agglomerative clustering rejects smaller contour frag-
ments (e.g. surrounding vessels) and collects the point clouds for the skin and bone
surface.
The actual tissue thickness was computed from these two clouds as the distance between
each point on the skin surface and the penetration point of the corresponding normal
vector at the bone surface (cf. fig. 4.7).

Expert Segmentation The algorithmic segmentation was validated based on the seg-
mentation results of five skilled human experts. Each of them manually delineated the
skin and bone surfaces for one slice per subject. As a representative subset, data from
five subjects (S1, S3, S16, S17 & S19: 3 male, 2 female, aged 25-64) were selected. Rep-
resentative slices for a forehead region were chosen, which is most likely scanned by
the marker-less tracking system. To evaluate the segmentation error propagation to the
skin thickness measure, the experts were also asked to segment five slices for S1. The nor-
mal vector penetration procedure was applied to these five slices. The resulting thickness
measures were compared with the tissue thickness output of the segmentation algorithm.
The deviation of the algorithmic from the expert segmentation was computed as the av-
erage 3D distance between point-to-point correspondences. These were identified via
Euclidean nearest-neighbor search. Finally, expert five segmented one slice of S1 five
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Table 4.2: Mean and standard deviation of the absolute differences (in mm) (Data taken from
[334]):

A: Between expert and algorithmic segmentation for
skin and bone contours.

Subject Skin [mm] Bone [mm]

S1 0.101± 0.082 0.154± 0.126

S3 0.095± 0.078 0.185± 0.118

S16 0.102± 0.071 0.155± 0.095

S17 0.082± 0.072 0.199± 0.128

S19 0.093± 0.081 0.168± 0.098

B: Between the computed tissue thickness from the expert and algorithmic segmentation (in
mm). Tissue thickness was computed from five volume slices.

Subject Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

S1
0.161

±0.123

0.183

±0.151

0.162

±0.145

0.154

±0.128

0.205

±0.159

times. This gave an impression of the intra-operator reproducibility.

Validation Results Figure 4.8 shows the algorithmic segmentation result for all five
subjects. The top left part shows the 3D skin surface for S1, overlaid with color-coded tis-
sue thickness. The surface shows smooth subcutaneous and cutaneous variations which
originate from subcutaneous vessels, facial muscles or changes in the subcutaneous fat
layer. The histogram at the bottom left reveals that tissue thickness on the forehead of
S1 mainly ranged between 3.4 mm and 5.6 mm. This interval corresponds to 80 % of the
histogram area. Corresponding ranges for the other subjects were 3.35 mm (S19, 70 %),
3.87 mm (S17, 70 %), 2.60 mm (S16, 80 %), and 1.98 mm (S3, 80 %).
The first investigation was dedicated to the accurate determination of the skin or bone
contour as such. The deviation of the algorithmic from the expert segmentation is listed
in table 4.2A. Figure 4.9 illustrates that the tissue/air boundary was always segmented
with an average error of less than 0.1 mm and the bone with less than 0.2 mm. This is
on average less than twice the in-plane voxel size. With regard to the theoretical limit of
half the voxel size and the thickness ranges across the forehead (here the structures were
varying in ranges of 1.98 mm or more), this is acceptable. From the standard deviations
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Figure 4.9: Deviations of the algorithmic from the expert segmentation for all subjects averaged
across all experts.

shown in table 4.2A, an average inter-operator variability of 0.077 mm for the skin and
0.114 mm for the bone surface was computed (root-mean-square across all subjects).
The error values for individual subjects may vary due to motion during the acquisition
process (as it was the case for S3 and S17). The acquisition lasted approximately 16 min.
The motion causes a lower SNR and blurs tissue boundaries. Intense motion entails
halo-like noise patterns around the head. Generally, segmentation of the bone was more
prone to errors due to a poorer contrast with respect to the adjacent cranium or meninges
structures. Therefore, errors and variability were higher for the bone than for the skin
contour across all subjects and experts.
In the second experiment, the stack of five slices taken from S1 was used to evaluate how
the segmentation error on the skin and bone boundaries translate to the tissue thickness
measure. The results are given in table 4.2B. The MAE on the tissue thickness in that
region was found to be 0.173 mm and for all experts less than 0.21 mm. Thus, the mean
boundary deviations do not additively translate to the skin thickness measure. One
possible reason for this is that the thickness was extracted along the forehead normal
direction, while the slice orientation was not precisely orthogonal.
In the third investigation part, expert five reproduced his results with mean deviations
(MAE) of 0.084 mm for the skin and 0.086 mm for the bone. This suggests that significant
parts of the aforementioned deviations between algorithmic and expert segmentation
may be due to intra-operator variability.
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Tracker Space
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Ref SpaceMR Space
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MTCT

CTTMR

MTMR
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NIRTRef

Figure 4.10: Calibration chain of the marker based pre-registration between the MR reference and
the triangulation camera space. Single calibrations were fused to obtain the overall trans-
formation denoted in red color.

4.2.3 Ground Truth Registration

After recording the MR tissue thickness ground truth, a registration with the NIR scans
from the optical setup is required. Only by mapping NIR features to a corresponding
tissue thickness, training data D can be generated. This will then be used for building
a regression model. Exclusively applying ICP to obtain this matching is challenging,
since the iterative algorithm may converge into local minima, i.e. spatial similarities.
Misregistration may originate from different sources such as: general ambiguities across
the reference surface, deformation of the soft tissue surface, the fact that the surfaces
were recorded with different modalities, measurement noise or limited spatial resolution.
Some of these points were somewhat kept under control since both scans were recorded
in temporal proximity. The matching was performed in two steps, to ensure accuracy.

1. marker-based pre-registration (seed)

2. point-to-plane ICP refinement

The calibration chain for the pre-registration process is shown in fig. 4.10. This chain and
the reusable bite marker allow for repeated NIR scans and, due to the tracking system, for
spot-wise motion compensation during each scan. This is reasonable for the experimental
evaluation of the functional prototype, but not required for the clinical application later

143



4 Experimental Validation - Tissue Thickness Estimation on Real-World Data

Table 4.3: Listing of the mean and STD for different measures across all 30 subjects: subject mo-
tion (STD from mean position; averaged across all scans; translations listed as the length
of a 3D vector, and rotations as the angle from an axis-angle representation of the rotation
matrices), pixel re-projection errors for the NIR-to-tracker calibration, registration error of the
optical marker as seen by the accutrack 250 system and its optical geometry file, registra-
tion error between optical geometry file and segmented geometry from CT, registration error
between segmented geometry from MR and segmented geometry from CT, marker-based
pre-registration and refined registration error between NIR scans and MR ground truth.

total male female
mean STD mean STD mean STD

motion |t| [mm] 0.14 0.08 0.16 0.10 0.12 0.05
motion r [◦] 0.06 0.05 0.07 0.06 0.05 0.03
reprojection x [px] 0.18 0.14 0.22 0.17 0.14 0.10
reprojection y [px] 0.18 0.10 0.19 0.10 0.18 0.10
ĒT−to−M [mm] 0.19 0.10 0.22 0.12 0.17 0.08
ĒM−to−CT [mm] 0.26 0.09 0.27 0.11 0.24 0.08
ĒCT−to−MR [mm] 0.29 0.06 0.29 0.06 0.30 0.07
ĒNIR−to−Ref (marker) [mm] 3.42 2.22 3.42 2.30 3.41 2.23
ĒNIR−to−Ref (ICP refined) [mm] 0.23 0.04 0.24 0.04 0.22 0.04

on. Chapter 6 will propose disposable and non-reusable alternatives for initial landmark-
based pre-registration. They would only be used once during planning.

Calibrating NIR– to Tracker–Space The triangulation of the NIR scan has a nominal
accuracy of 0.16 mm [314] and is obtained in the coordinate system of the triangulation
camera.
The NIR point cloud was transformed into the coordinate space of the accutrack 250
system [13, 14]. To compute the necessary transformation matrix NIRTT , the marker was
tracked for 30 s by the accutrack system, while simultaneously recording images from
the triangulation camera. The transformation matrix was then obtained as the product
of the average tracked marker pose and the extrinsic parameters of the marker geometry
with respect to the camera. For the latter, the camera calibration computed earlier and
the geometry stored in the optical marker reference file were used. Re-projection errors of
the marker pose onto the imaging plane of the camera were on average less than 0.23 px
(cf. table 4.3).

144



4.2 Data Acquisition

1330 1335 1340 1345
112

113

114
x 

[m
m

]

t [s]

Mean: 112.74mm , Std: ±0.137mm

1330 1335 1340 1345
−109

−108.5

−108

y 
[m

m
]

t [s]

Mean: −108.59mm , Std: ±0.0907mm

1330 1335 1340 1345
1185.5

1186

1186.5

z 
[m

m
]

t [s]

Mean: 1186.12mm , Std: ±0.0858mm

1330 1335 1340 1345
59

60

61

r x [°
]

t [s]

Mean: 59.98° , Std: ±0.104°

1330 1335 1340 1345
8

10

12

r y [°
]

t [s]

Mean: 9.42° , Std: ±0.134°

1330 1335 1340 1345
35

36

37

r z [°
]

t [s]

Mean: 35.98° , Std: ±0.161°

Figure 4.11: Head motion traces for subject one, head pose one, scan one. Temporally filtered
position (green) with respect to the tracking camera and the unfiltered deviation from this
mean are shown. These deviations include all six degrees of freedom: three translational
(red) and three rotational (blue) degrees. Rough orientations of the shown directions: x :
LAT, y : SI, z : AP.

Tracker– to Marker–Space and Subject Motion The forehead surface is assumed to
be rigidly linked to the cranium, the upper dentition, and therefore to the optical marker
shown in fig. 4.4. The active optical marker part is tracked with the mentioned marker-
based tracking system, which has a 3D marker identification RMSE of 0.14 mm for targets
in a distance of 1.05 m to 2 m [13]. The optical geometry file for each marker is internally
used to track all six degrees of freedom. On average, the registration error between this
geometry model and the online recording was 0.19 mm. Variations across the subject co-
hort arose from a re-positioning of the marker-based tracking system. This was done for
each subject to guarantee an optimal FoV. The marker pose from the accutrack system
was recorded with 80 Hz during the experiment and was hence available for each tri-
angulated spot. Such a pose corresponds to

(
TTM

)−1 in fig. 4.10, i.e. the inverse of the
transformation from the tracking system into the coordinate space of the stored marker
geometry file. This was used to compensate for subject motion at each triangulated 3D
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A: 3D rendering of the marker
geometry.

B: Slice 250 of the CT scan rendered on the
left.

Figure 4.12: CT scan (0.31 mm × 0.31 mm × 0.2 mm resolution) of the marker geometry which
was used to link the coordinate space of the accutrack 250 system to that of the MR-space.
Copper wires in the optical marker produced only minor artifacts.

point. Before compensation, the motion traces were smoothed with a fourth order Butter-
worth lowpass filter with a cut-off frequency at 1 Hz (cf. fig. 4.11). Filtering and averaging
of rotations was done in the tensor space suggested by Brun et al. [40].
Table 4.3 lists the subject motion recorded with the marker during the experiment. The
values give the STD around the mean head position during a scan. Translations are given
as the length of the corresponding 3D shift and rotations as the angle from the axis-angle
representation of the rotation matrix. With the head rest, subjects were able to move in
a very limited range only (20 s of approximate scanning time). Significant indications
(translation: p = 0.039, rotation: p = 0.076) were found that male subjects tended to
move more than female subjects.

Calibrating Marker– to MR–Space While the optical geometry file only stores the spa-
tial relationships within the LED part of the marker, CT imaging (0.31 mm × 0.31 mm
× 0.2 mm resolution) was used to measure the geometric relations between the active
LEDs and the MR visible capsules. An example CT scan is shown in fig. 4.12. Both, the
LEDs and the center of the capsules were manually segmented. The capsules, for in-
stance visible in fig. 4.5, were also segmented within the MR scan. With known marker
correspondences between the modalities and the SVD step from the ICP described in
sec. 2.3.2.1, the transformations MTCT and CTTMR were computed. These yield MTMR.
The registration errors for both SVD steps are listed in table 4.3.

146
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Final Pre-registration and Refinement The transformation MRTRef arises from the
VOI definition and further pre-set transformations in the segmentation procedure. Here,
Ref denotes the reference space into which the MR scan was transformed before tissue
thickness segmentation (cf. sec. 4.2.2). The transformation is not corrupted by any errors.
Finally, the desired transformation NIRTRef can be obtained from the calibrations above
as shown in fig. 4.10 and eq. 4.1.

NIRTRef =NIR TT ×T TM ×MTCT ×CT TMR︸ ︷︷ ︸
MTMR

×MRTRef (4.1)

This matrix is used as a seed for a subsequent point-to-plane ICP refinement. The re-
gistration errors before and after ICP refinement can be seen from table 4.3. The ICP
refinement transformations were averaged across all scans from all head poses to obtain
a more robust estimate. During all these scans, the subjects did not remove the dental
cast from their upper dentition, i.e. the refinement would ideally result in the same mat-
rix. The listing shows, that marker-based pre-registration had an accuracy within the low
millimeter range. This partly originates from the calibration errors discussed above, but
was also found to be due to a limited insertion accuracy of the dental cast. The cast was
fabricated very tight and stiff. Therefore, it was experienced as challenging or worrisome
for some subjects to reproducibly attach the marker to their upper dentition.

4.3 General Aspects of Light-Tissue Interactions

NIR scans have been recorded for all 30 subjects. A typical result for the backscatter
features is shown for subject one (S1) in fig. 4.13. The features correspond to intensities
accumulated within one of the five ROIs. ROI 1 generates only weak structures. Partly,
this is influenced by the laser spot power being tuned to drive the spot center into the
saturation level of the HDR camera. Therefore, some pixels of ROI 1 are saturated and
do not contribute to variations across the surface. This is weaker at the boundaries of the
grid, where the reflected laser power drops since the laser hits the surface under relat-
ively flat angles (cf. fig. 4.13F). This increases the amount of non-saturated pixels. The
saturation however only affects very few pixels (for S1 <1 %). Another reason for the
weak patterns in ROI 1 was indicated by the MCML simulations: the proportion of light
reflected from upper tissue layers, e.g. from the epidermis, is substantially higher close to
the spot center. Therefore, many photons in this ROI will have a low penetration depth.
The experimental observation supports this finding.
All ROIs show dark red regions for spots at the grid boundary (in fig. 4.13A-E in the up-
per and left grid part). This drop in intensity is caused by flatter incident angles, where
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Figure 4.13: Backscatter patterns from the forehead patch of subject one (S1). The plots illustrate
variations in NIR backscatter recorded from the five ROIs (A-E: ROIs 1-5) across the scanned
surface area. F: The distribution of the incident angle for this optical scan.

the circular spot shape turns into an ellipse. The behavior is in line with simulations
conducted in sec. 3.3.4. Besides, regions of smaller angles exhibit also other patterns.
These originate from changing optical properties of the skin, which are linked to the tis-
sue thickness. Figure 4.14 confirms this impression and sets the scanned NIR pattern in
relation to the MR tissue thickness ground truth after transforming both into the Ref -
space. In these plots, the eyes are at lower, and the hairline at higher z-coordinates of
the Ref -space. Figure 4.14 compares typical cases of a male and a female subjects with
Caucasian skin type. It can be seen that cutaneous structures are more prominent for
the male subject, while tissue thickness varies smoothly, with smaller gradients, for the
female subject. This is, for instance, caused by variations in the fat and muscle tissue
and, most important, by subcutaneous vessels. The latter comprise the supraorbital and
supratrochlear arteries and veins as discussed in sec. 3.1. It was observed that they are
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A: Subject 1 (male, aged 27, skin type IV). B: Subject 5 (female, aged 33, skin type III).

Figure 4.14: Tissue thickness patterns segmented from the MR ground truth (top) are compared
with patterns of NIR backscatter features from ROI 2 (bottom). Both surfaces reside in
the Ref -space as introduced in fig. 4.10. The blue dots mark interesting locations within
the forehead patterns. They are the identically located in both plots and provide therefore
better orientation.

more distinct for many male subjects and hence have more impact on the tissue thick-
ness for them. Unlike the pattern in fig. 4.14B, the NIR backscatter in fig. 4.14A shows
this effect. Apart from increased thickness, higher absorption and scattering caused by
the increased blood content lead to an even higher drop in backscatter intensity. In the
MCML simulations of sec. 3.2.2, a corresponding skin model which contains a large ves-
sel would be subject to a substantial increase in oxy- and deoxy-hemoglobin and most
relevant: water. This would cause a high absorption according to fig. 3.4. This is what
the reduced backscatter intensity along vessels in fig. 4.14 and fig. 4.15 also reflects.
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A: Subject 17 (male, aged 65, skin type
IV).

B: Subject 24 (female, aged 54, skin type
IV).

C: Subject 21 (male, aged 24, skin type V,
Indian).

D: Subject 27 (male, aged 29, skin type
IV, Asian).

Figure 4.15: MR-to-NIR comparison for elderly subjects and particular skin types. As in fig. 4.14,
blue dots again mark individually chosen and interesting locations within the patterns to
better identify similarities.
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The smooth patterns are best visible for ROIs 2, 3 and to some extent ROI 4. ROIs 2
and 3 cover distances from 2.54 mm to 7.61 mm from the center. This supports the con-
clusions from MCML simulations which indicated that backscatter at medium distances
from the spot center is characterized by a good SNR. For higher ROIs, particularly ROI 5,
the tissue-related effects are much smaller and more prone to noise corruption. This
comprises measurement noise from the hardware such as the quantization process, and
external disturbances (cf. the shiny effects in ROI 5 in fig. 4.13). This suggests that in-
formation retrieval becomes more and more challenging and in fact critical within ROI 4,
i.e. at 7.61 mm to 12.7 mm distance from the spot center. The scales of the color bars also
confirm the decreasing magnitude of the recorded effects: The average number of quant-
ization levels per pixel can be obtained by normalizing the ranges in fig. 4.13 by the total
number of pixels in each ROI. The decrease of the normalized values and the width of
the min-max variation range reflect this trend for S1.

ROI 1: 1900 - 5265 levels
px (25285 px in total)

ROI 2: 176 - 423 levels
px (76052 px in total)

ROI 3: 142 - 177 levels
px (126976 px in total)

ROI 4: 138 - 147 levels
px (177824 px in total)

ROI 5: 136 - 140 levels
px (228780 px in total)

Distinct subcutaneous structures and prominent NIR patterns where also observed for
elderly subjects as shown in fig. 4.15A and fig. 4.15B. Wrinkles and vessels tend to aug-
ment the structural information for aged skin. Finally, fig. 4.15C and fig. 4.15D show that
even for dark and Asian skin types such structures were discovered. Visual inspection
did not reveal differences between these types and typical Caucasian skin. This is in
line with earlier simulations and the optical properties of human skin. The Fitzpatrick
skin type and its visual appearance is mainly influenced by pigmentation and hence the
melanin content. Melanin, however, plays only a very minor role for wavelengths in the
NIR range. A higher impact is given by the skin water content, which is hardly related
with the skin type according to the Fitzpatrick scale.

Feature Space Analysis The ROI feature space is a five dimensional coordinate space
which maps to a scalar value, namely the tissue thickness. Each laser spot in the scanning
grid corresponds to one data sample in that space. For illustration purposes, fig. 4.16 pro-
jects all the data onto one dimension of the space. This is done for all five ROIs resulting
in plots similar to fig. 3.17 obtained from MCML simulations. The plots were generated
for S4 (male, aged 35, skin type III). His rather large head size and a relatively wide and
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Figure 4.16: Functional relationship between features and target labels (tissue thickness) projec-
ted onto one dimension of the feature space for plotting (A-E: ROIs 1-5, subject 4). F: The
distribution of the incident angle is shown with the forehead in Ref -space coordinates.
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Figure 4.17: Angle influences within the feature space illustrated on the scanned surface patch.
A: The scanned laser spot grid is overlaid on top of the MR surface with colored incident
angle information. B: The angle influence introduces (dark) red regions at the grid margins
due to flat angles. This mimics thicker skin which is in fact not there as it can be seen on the
left plot (data from S3).

flat forehead limited the impact of the incident angle. This data set therefore suggests
itself for an analysis of tissue related features. Compared to the simulated feature space,
the functional relationship between optical backscatter and tissue thickness is much more
complex and noisier for the real case in fig. 4.16. This is due to many effects in the real
data, which also have an influence on the reflected light intensity. Lateral heterogeneity
across the forehead is caused by freckles, vessels, moles and others. However, one of the
main disturbances is given by the incident angle of the laser beam. Its effect on the data
is encoded in the color of each data sample.
The following can be observed: Both, the incident angle, as well as the tissue thickness
are negatively correlated with the ROI intensities. A decrease in optical backscatter may,
therefore, be caused by a flatter incident angle (departure from orthogonal irradiation at
α = 0◦), or and increase in tissue thickness. The plots also suggest, that the angle effect is
stronger, i.e. it decreases more rapidly for increasing ROI intensities than the tissue thick-
ness. Finally, this also means that one effect may mimic the other. Figure 4.17 illustrates
this effect for a forehead scan of subject 3.
The behavior of the backscatter (i.e. the extent of its increase or decrease) for a defined
step in tissue thickness mainly depends on two effects: the absolute tissue thickness at
which this change happens or local skin characteristics, respectively. In this context, the
effect on the backscatter can be smaller, if (1) the skin is already very thick at the location
of interest, (2) there is a vessel underneath the surface, or (3) other things such as hair
follicles occur. On the other hand, if two spots were recorded at locations with a slight
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Figure 4.18: A: Relationship between incident angle and the features for ROI 3 of S4. B: The linear
correlation coefficient between all ROI features, the incident angle, and the tissue thickness
ground truth for S4 is illustrated as a color-coded matrix.

difference in thickness, but one is located on a vessel and one is not, then the related
change in backscatter intensity will be amplified.

Angle Influence Figure 4.18A addresses the problem of angle influences on variation
in the data for S4. Now, the color coding represents the tissue thickness. Clearly, a strong
negative correlation can be observed. The dependency on the tissue thickness is also
apparent, however less strict in its negative correlation. Nonlinear effects, as discussed
above, influence the behavior. Figure 4.18B illustrates the mutual Pearson correlation
coefficients between NIR features, the incident angle and the tissue thickness ground
truth from MRI. This coefficient captures only the linear correlation, and is related to the
slope of a linear function fitted to the data. The plot confirms that both, tissue thickness
and incident angle are negatively correlated to the optical backscatter features, whereas
the coefficients for the angle are higher in an absolute sense. As expected, there is a high
positive correlation among the optical features. Their joined behavior in the 5D feature
space will provide much clearer information about the changing tissue thickness than the
single 1D projections in fig. 4.16 do.
To evaluate the correlation of both, the angle and the tissue thickness with the optical
backscatter, the following analysis has been conducted (across a grid of Np spots): Let bi
be a vector joining all entries from the i-th dimension of all available feature vectors B.
First, the mean was removed from each ROI feature bi, the tissue thicknesses ds, and the
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Figure 4.19: Pearson correlation coefficient for the relationships between the five ROI features and
tissue thickness (A) or incident angle (B), respectively. Data shown for S1, S2, S3, S4, S6, and
S7.

incident angles α. Afterward, the tissue thickness was fitted (in a least-squares sense, cf.
eq. 4.2) to each feature:

bi = kreg · ds + εres with kreg =
(
dTs ds

)−1
dTs bi (4.2)

Here, εres is the residual after a linear least-squares fit. Then, the fitted proportion has
been regressed out from the feature signals. Finally, the Pearson correlation coefficient
was computed between the residual εres and the angle α. This ensures a conservative
estimate of the correlation between angle and features. It is conservative, because the
proportion of the feature signal which correlates with the tissue thickness has been
removed. This also removes parts of the feature signal which may be explained by
either angle or tissue thickness simultaneously. The latter originates from unwanted
correlation between angle and thickness. The extent of this correlation depends on (1)
the nature of the cutaneous structures across the forehead, (2) the head shape, and (3)
the head pose under the laser scanner. For example, imagine the following scenario:
For a subject the tissue thickness is lowest at the center of the forehead. From there it
increases with a small gradient to all sides. Now, when the laser scanner is placed above
the head such that the ray in the center of the scanning grid hits the tissue thickness
minimum orthogonally, then the incident angle would also grow to all sides due to the
deflection-based scanning procedure. This scenario entails high positive correlation
between angle and thickness by coincidence. There are practical cases where this
scenario becomes true to a certain extent (cf. fig. 4.18).
A similar procedure leads to a conservative estimate for the correlation between tissue
thickness and features after regressing out the angle. The results for subjects S1-S4,
S6, and S7 are presented in fig. 4.19. This analysis assumes that a linear model would
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Table 4.4: Pearson correlation coefficient between incident angle and features. The table lists the
mean correlation computed with the Fisher transform [90], as well as the minimum and ma-
ximum value across all 30 subjects.

measure ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

mean -0.783 -0.721 -0.661 -0.700 -0.676
min -0.894 -0.837 -0.812 -0.814 -0.831
max -0.525 -0.468 -0.385 -0.361 -0.251

fully explain the relationship between the correlates and the features. It does not
account for nonlinear behavior. The simulations in fig. 3.17 show that this is only a
rough approximation. Practically, this is even more true, since vessels, for instance,
observed in the NIR signal do not necessarily affect the tissue thickness obtained from
MRI. The same applies to other heterogeneity effects or the incident angle. Therefore, a
thorough analysis across all subjects is challenging, since nonlinearities would need to be
accounted for. However, the subset of subjects mentioned above has been found suitable
for getting an impression of the underlying processes. Figure 4.19A shows several
effects: (1) the correlation between thickness and backscattered intensity is negative.
Thicker skin means less reflected light. Further on, this correlation tends to be stronger
for higher ROIs. The findings agree with results obtained in an early case study with
a robotized laser scanner [327]. Depending on the subject, correlation may get slightly
weaker for ROIs 4 and 5, while it is strongest for ROI 3. Irrespective of a concrete ROI
number, this general trend is in line with the expectations arising from earlier MCML
simulations: The relative proportion of light deeply penetrating the tissue increases for
ROIs further away from the spot center. This entails a stronger correlation coefficient.
However, the information signal also gets weaker with lower SNR and may also exhibit
a more nonlinear relationship to the thickness. This weakens the linear correlation
coefficient, such that practically the clearest correlation can be obtained from ROIs at
medium distance from the spot center. The saturation of some pixels in ROI 1 and a high
proportion of light from upper tissue layers also affect the correlation coefficient.
On the other hand, fig. 4.19B reveals that the negative correlation between angle and fea-
tures is highest in the inner ROIs and decreases for the outer ones. This is in agreement
with the simulations (cf. fig. 3.23) which gave rise to the conclusion that scattering in
the tissue reduces the impact of the beam direction (”blurring” effect). Interestingly, the
correlation coefficients between angle and features are higher in an absolute sense if the
thickness effects are not regressed out beforehand (cf. table 4.4). This indicates that parts
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Table 4.5: Proportions of the feature variance which (in a linear sense) account for different cor-
relates. For a scan of S3, the signal variations for all five ROIs have been analysed. The table
lists the proportion of the total signal variance that can be linearly explained by the different
correlates. Variations of the incident angle, which linearly correlate with the tissue thickness
have been removed.

measure ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

prop. tissue [%] 2.7 17.1 24.7 18.9 4.4
prop. angle [%] 40.0 12.0 7.9 13.7 36.9
residual [%] 61.3 72.2 68.2 68.8 62.5

of the variation in the feature signals could be (linearly) explained by either the angle
or the thickness. Given the data, there is no indication to distinguish between the two.
The correlation between angle and thickness leads to covariation effects between the
two: For the subjects in this case study 1.5% (S1), 0.3% (S2), 10.1% (S3), 0.4% (S4), 0.9%
(S6), 18.4% (S7) of the tissue thickness variance could be linearly explained by variations
of the angle. It is straightforward to see that this specific conclusion is flawed, but the
uncertainty about the origin of variations in the backscatter features on the other hand
remains. To which extent the angle mimics effects that may also arise from thickness
changes is not clear from the data. Misinterpretations from the machine learning side
can only be fully avoided by acquiring more data from different views. Finally, it can be
expected that for nonlinear models this ambiguity becomes more challenging.
Table 4.5 assumes that this uncertainty is clarified in favor of the thickness. It lists
the proportions of the total feature variance which can be explained by thickness or
angle variations. The thickness is regressed out first, and then the angle. In ROI 3
the proportion of thickness-related variation is with 25% highest. For the inner and
outer ROIs this proportion drops, while the proportion for the angle increases up to
40%. This is in agreement with fig. 4.19. While trends are similar for the other subjects,
absolute values for the tissue thickness proportion partially reach more then 50%. High
proportions for the residual can be explained by the restrictions to a linear model not
fully describing the functional relationship.

Finally, the procedure of regressing out the angle shall be mentioned as an option
to partly get rid of the angle influence. It will be investigated in more detail later
on. Figure 4.20 shows the remaining feature variation when regressing the angle out.
This regression is conservative: In contrast to the previous processing, all ambiguous
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Figure 4.20: Backscatter patterns from the forehead patch of S1 with the angle regressed out from
the features. The plots A-E illustrate variations in NIR backscatter of ROIs 1-5 which have
no correlation with the incident angle, but still with the tissue thickness (cf. with original
data in fig. 4.13).

variations are implicitly postulated to be due to the angle influence. In the worst case
some of the actual information is removed from the features. It can be seen, that the red
shadings at the margins (cf. fig. 4.13) disappear and structural information also found in
the MR is emphasized.

4.4 Tissue Thickness Estimation and Prior Knowledge

The simulation studies in chapter 3 were conducted to identify optimal conditions for
retrieving information about the tissue thickness from optical backscatter. Although a
direct, quantitative comparison between the average Caucasian skin model and experi-
mental in-vivo measurements is hardly feasible, general trends and a qualitative evalu-
ation give valuable information for specifying the setup. The simulation model always
remains a simplified approximation of the real world which cannot take all impact factors
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or variations within a subject cohort or even within the restricted forehead region into ac-
count.
The previous subsections found evidences in the real data that are in agreement with the
aforementioned simulation results and therefore support the earlier conclusions:

• Features and tissue thickness are negatively correlated.

• Backscatter features at medium distance from the spot exhibit the best SNR
(roughly 4-8 mm from the spot center).

• The mapping between features and tissue thickness is a nonlinear one.

• The incident angle correlates negatively with the features and is the main confound-
ing factor.

• Angle influence is highest close to the spot center and decreases with increasing
distance to it.

• The impact of the angle tends to be higher than that of the tissue thickness on the
backscatter characteristics.

Based on these findings, this section will now investigate the prediction of tissue thick-
ness from the ROI features via machine learning. As a general goal, it has to be evaluated
how the more challenging real-world conditions and the limited accuracy of the ground
truth affect the prediction errors. Therefore, the next two subsections will start with ini-
tially discussing two ideas for incorporating prior knowledge: Based on the simulation
study, sec. 4.4.1 conducts a case study to investigate promising approaches of how to
handle the incident angle. The goal is to get a beneficial effect on the prediction perform-
ance. Then sec. 4.4.2 discusses an approach that aims at incorporating spatial neighbor-
hood information into the learning problem. Finally, sec. 4.4.3 takes the core findings
of both subsections and evaluates them on the entire subject cohort. A comparison to
merely using backscatter features is made.

4.4.1 Handling Changes of the Incident Angle

Section 4.3 suggests that separating relevant information from disturbances is expected
to be challenging. The following paragraphs will evaluate two general approaches for
tackling the major disturbance factor: changes in the incident angle of the laser beam.
These are:

1. Compensation of angle effects by pre-processing the backscatter data.
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Figure 4.21: Visualization of different approaches to compensate for effects of the incident angle.
The top row marks the reference measure for the spot size on a raw spot image (α = 45◦):
A: fixed values irrespective of the spot profile (fix), B: the short half axis of the spot (sha), C:
the long half axis of the spot (lha), D: the actual beam radius estimated with eq. 4.3 from the
incident angle and the length of the long half axis (inc). The bottom row (E-H) shows the
spot image after compensation (scaled image dimension marked with red arrows).

2. Extension of the feature space by a measure of the incident angle as an additional
sixth feature. The originating feature space will be labeled with A.

Figure 4.21 introduces the first four of the in total five compensation approaches under
consideration. These rely on pre-processing the images from the HDR camera. This is
done independently for each image. First, the spread of the logarithmic spot profile
along both half axes of the elliptical contours is estimated by the STD of a fitted Gaussian.
The orientation of the main axes in the camera image is determined using weighted
Principal Component Analysis (PCA).
Second, a reference value for the spot profile spread is selected. This distinguishes the
first four approaches: The reference is either (1) some pre-defined fixed value σfix5 (fix),
(2) the length of the shorter half axis σsha (sha), (3) the length of the longer half axis σlha
(lha), or (4) a STD estimate σnew of the original spot STD σbeam (inc). The latter estimate
is computed by eq. 4.3 which can be trigonometrically derived as illustrated in fig. 4.21
on the top right.

5The choice of this fixed constant was based on the STD values of logarithmic spot images which have only
been subject to minor or none angle influence. A value of σfix = 340px was selected.
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Figure 4.22: Prediction results for different compensation methods (fix, sha, lha, inc, and reg) and
the feature space extension approach (add) (yielding space A). A: All approaches are com-
pared with the outcome obtained with no compensation and no extension (none). They are
compared using the RMSE of the tissue thickness prediction by SVR (data from subjects
S1-S5, mean value in red). B: RMSE for feature space extension by the incident angle as a
sixth dimension: The impact of the angle feature relevance is changed by varying its scaling
factor. The RMSE at scale 0 marks the none case and the red line at scale 1 the add case from
the left plot.

σnew = σbeam ≈ σinc · sin(90− α) (4.3)

The reference is then used to scale one or both of the half axes to this reference value
(cf. bottom row in fig. 4.21). This yields a circular shape for the pre-processed spot
from which the ROI features can then be extracted. A fifth compensation approach (reg)
follows the procedure illustrated in fig. 4.20. As for the inc estimate, the fifth approach
also exploits a measure of the incident angle. The latter is computed as the angle between
the normal on the triangulated surface and the incident laser beam. The beam position
in triangulation coordinates is known from the calibrations described in sec. 4.2.3. Using
a least-squares fit, the coefficients for a linear regression model are estimated. With
this model, the linear angle effect is subtracted (”regressed out”) from all ROI features.
Therefore, the approach does not work in an image-wise manner like the alternatives,
but considers the entire scan at once. This yields the reg estimate.
All five approaches aim at removing all effects possibly caused by the angle, irrespective
of whether it may actually originate from thickness changes or not. In contrast, the
extension approach termed add uses the computed angle estimate mentioned above and
adds it as a sixth feature to the five ROI features. Note that it is pre-processed like the
other features by subtracting the mean and scaling it to unit variance. The approach add
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yields feature space A as a result.

All approaches have been evaluated on the data of S1 to S5 using SVR. SVR used
the isotropic RBF kernel and was evaluated analogously to the simulations in a 5-times-
10-fold CV scheme. The main results are shown in fig. 4.22A and have been published in
[328]. The fix approach which was also used in the simulation chapter yielded only poor
results. One reason is, that scaling to fixed values will also destroy changes which affect
the entire spot and not only one half axis.
Similarly, the lha scales the short half axis up to the long one. The latter axis is the
orientation actually affected by the angle. This may accidentally amplify the angle
effects. Thus, the RMSE of the thickness prediction was poor for this approach as well.
This is in contrast to sha which tries to reverse the angle effect by down-scaling the long
half axis.
Generally, all approaches are affected by the fact that the reflected beam profile is not
perfectly Gaussian. Changes in thickness and angle may influence the nature of this
non-Gaussianity. This is because thickness changes may have different reasons and may
therefore affect distinct skin layers differently. This could provide an explanation why
the inc and reg approaches failed. The backscattered beam profile may just be subject to
much more complex deformations.
Adding the incident angle as an additional feature achieved the best results on average.
The RMSE was found to be better than for the sha approach, which was the best
compensation method. However, the angle may be differently relevant relative to the
backscatter features. Therefore, different scaling factors have been applied after standard
pre-processing and before SVR testing. Indeed, fig. 4.22B shows that the RMSE is worst
for a scaling factor of zero (no angle included), but also not best for a scaling factor of
one. Since the RBF kernel for SVR treats the feature space isotropically, an individual
scaling factor for the angle would need to be determined externally by grid search as
done for fig. 4.22B.

The findings give rise to the following conclusions: Compensation approaches in-
volving additional pre-processing gave poor results. Promising approaches such as
sha were not consistent in their results across the subjects of this case study. The best
approach is given by extending the feature space by an additional sixth dimension
being the appropriately scaled angle. This is in agreement with the simulation results
presented in table 3.3, where this approach also outperformed its alternatives.
Finally, SVR is not optimal for meeting the requirements of e.g. efficiently incorporating
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Figure 4.23: Definition of a local neighborhood. Apart from the ROI backscatter features of the
central spot, the NBH approach also uses the ROI features from four of its neighbors (A, B,
C and D). (Reprinted from [331], Copyright (2015), with permission from Springer).

the relevance of the angle feature. In contrast, GPs and their more efficient ARD
capabilities are expected to be more performant.

4.4.2 Local Neighborhoods

All feature spaces considered so far map from a space of backscatter intensities to the
scalar tissue thickness ds. They do not take into account that tissue thickness varies
smoothly across the forehead. Abrupt changes and steep gradients between spatial
neighbors in the spot grid are not expected. The current solution ignores this fact and
may result in noisy reconstructions when plotting the thickness estimates across the
surface.
Therefore, prior knowledge about the local neighborhood of a spot may improve the
estimation accuracy. A local neighborhood is defined as illustrated in fig. 4.23. In addi-
tion to the five ROI features of the central spot, ROI features from the four closest spatial
neighbors (the upper, lower, left and right) are added to the feature space. Depending
on which and how many ROIs are selected from them, the feature space dimension may,
however, increase dramatically. Assuming that a ROI feature is only added for all four
closest neighbors together, the dimension D of the space for NROI = 5 ROIs is given as:

D = NROI + 1 +NROI · 4 = 5 ·NROI + 1 (4.4)

Adding all ROIs from all neighbors and the incident angle yields D = 26 dimensions.
Investigations of the neighborhood effect based on a case study with subjects S1-S5 have
been published in [330, 331].
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Figure 4.24: Tissue thickness estimation results for CV testing. CV has been performed in a scan-
wise manner. Results are shown with mean and STD across all 30 subjects for all considered
machine learning approaches (SVR & GPs).

4.4.3 Overall Results

The simulations as well as the considerations and findings in the last two subsections
give rise to three different feature spaces. These will be investigated for the entire subject
cohort throughout the remaining parts of this chapter:

1. Space ROI: A feature space which only contains five backscatter features computed
from accumulated pixel intensities in five ROIs of the HDR image (D = 5).

2. Space A: A feature space which contains the five backscatter features and the incid-
ent angle as an additional sixth feature (corresponds to the ang approach, D = 6).

3. Space NBH: Apart from all aforementioned features, this space also contains all
ROIs from all four neighbors (D = 26).

All 30 subjects got scanned in three different head poses à 3 scans each (i.e. 3× 3 = 9
scans in total). These form the basis for the three testing schemes defined in sec. 2.2.3.
They will be evaluated in the following: (1) CV (unbiased testing within each scan), (2)
AM1 (training on frames of one head pose and testing on one of the other poses), (3)
AM2 (training on frames of all but one head pose and testing on the remaining one).
The RMSE will be given as the average across all possible combinations for a subject. The
testing was done for all three feature spaces.
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Table 4.6: Tissue thickness prediction RMSE for all considered machine learning approaches (SVR
& GPs) under CV testing scheme. Results are listed for all three feature spaces (ROI, A, NBH)
with the best as well as best compromise marked in bold. The first three rows mark the
number of data points Np in each feature space (averaged across all NIR scans used).

gender skin type
total male female II III IV V

Np (ROI) 870.6 923.6 824.1 804.5 908.8 888.6 822.6
Np (A) 866.9 920.4 820.1 800.4 905.4 885.0 819.0
Np (NBH) 679.6 749.9 618.1 594.7 728.4 703.8 614.8
RMSEGP :SEiso (ROI) [mm] 0.221 0.218 0.223 0.223 0.205 0.224 0.246
RMSEGP :SEiso (A) [mm] 0.215 0.201 0.228 0.224 0.196 0.214 0.255
RMSEGP :SEiso (NBH) [mm] 0.125 0.120 0.129 0.128 0.114 0.121 0.159
RMSEGP :SEard (ROI) [mm] 0.215 0.213 0.216 0.216 0.201 0.221 0.223
RMSEGP :SEard (A) [mm] 0.206 0.197 0.213 0.213 0.191 0.208 0.219
RMSEGP :SEard (NBH) [mm] 0.119 0.114 0.123 0.122 0.109 0.118 0.147
RMSEGP :Matiso (ROI) [mm] 0.212 0.211 0.212 0.215 0.198 0.217 0.218
RMSEGP :Matiso (A) [mm] 0.203 0.194 0.212 0.210 0.186 0.205 0.228
RMSEGP :Matiso (NBH) [mm] 0.120 0.116 0.124 0.124 0.109 0.117 0.154
RMSEGP :Matard (ROI) [mm] 0.207 0.206 0.208 0.209 0.194 0.213 0.215
RMSEGP :Matard (A) [mm] 0.196 0.189 0.202 0.202 0.182 0.199 0.211
RMSEGP :Matard (NBH) [mm] 0.114 0.110 0.118 0.117 0.103 0.114 0.141
RMSESV R:RBFiso (ROI) [mm] 0.225 0.224 0.227 0.227 0.211 0.232 0.230
RMSESV R:RBFiso (A) [mm] 0.217 0.206 0.228 0.224 0.201 0.219 0.242
RMSESV R:RBFiso (NBH) [mm] 0.155 0.159 0.152 0.172 0.130 0.160 0.167

Cross-Validation within Single Scans An unbiased estimate for the generalization
RMSE was obtained with the CV testing scheme (averaged across scan-wise results). This
scheme has been applied to all three scans, for all head poses. Figure 4.24 plots the mean
and STD for both, GPs and SVR. The GPs were tested for the isotropic and ARD variants
of the SE and Matérn kernel. SVR was only used with the isotropic RBF kernel. The STD
includes the variance across samples within single scans, the variance across scans and
head poses for one subject, and finally inter-subject variability.
The plot as well as table 4.6 reveal that the prediction accuracy increases the more addi-
tional information is added. Adding the incident angle led to moderate improvements.
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This was the case for all subjects and was statistically significant (p<0.005) for all ap-
proaches except for GPs with the isotropic SE kernel (p=0.04). Most decrease in RMSE
was observed when including local neighborhood information, where the mean error
fell below 0.125 mm for all methods (significant for all approaches with p<0.001). Nev-
ertheless, table 4.6 shows in its first rows that several data samples were dropped. A
sample was discarded if the incident angle could not be computed reliably (e.g. at the
grid corners), or some neighbors were missing (e.g. at the grid boundary). The latter ef-
fect was considerably larger. In these cases a full description of this sample in the chosen
feature space was not possible.
Interestingly, the GPs outperformed SVR. This could be caused by a better optimization
procedure, in which hyperparameters are directly optimized by gradient descent within
a probabilistic framework. SVR optimizes its parameters one after the other using grid
search. This search has only a very limited resolution in the parameter space.
Nevertheless, this finding remains remarkable, since SVR was optimizing the generaliz-
ation error estimate from CV directly. The results might hence be slightly biased, i.e. too
optimistic (cf. sec. 2.2.3). However, very often this bias was less influential than the lim-
ited grid resolution as well as the sequential parameter optimization. For instance, the
compromising procedure outlined in sec. 2.2.3 achieved an RMSE of 0.262 mm for head
pose one of S1 for the ROI space. In contrast, nested CV which optimized all parameters
simultaneously with a step-wise grid refinement (5 steps) yielded an even better RMSE
of 0.257 mm. The computation time, however, amounted to several hours compared to
minutes for the other scheme. GPs optimize the NLML which is computed only from the
training data.
Finally, SVR is more tuned toward sparsity. The optimization of ε-insensitive loss is not
optimal for achieving a minimum RMSE which is rather linked to a quadratic loss func-
tion where outliers would more severely affect the result.
Generally, ARD approaches outperformed the isotropic kernel versions. This indicates
that features are differently relevant for predicting the thickness. However, the rather
small difference in RMSE hardly justifies preferring ARD, due to their high computation
time on the other hand. Furthermore, the functional relationship between features and
thickness is rather rough than smooth, since the Matérn kernel always outperformed the
SE kernel.
No significant correlation of the RMSE was found with respect to age (p > 0.14) or
Fitzpatrick score (p > 0.42) for any feature space. Thus, the results indicate that tissue
thickness prediction works equally well for any skin type. The Fitzpatrick score seems
not to group according to skin types which are relevant for the application: Since this
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Figure 4.25: Tissue thickness estimation results for AM1 and AM2 testing scheme. Results are
shown with RMSE and STD across all 30 subjects for all considered machine learning ap-
proaches. The white mark in each bar denotes the MAE error level, which is generally lower
than the RMSE.

score and the visual appearance of skin is highly related to the Melanin content (the tan),
it seems to hardly affect the tissue interaction of the NIR laser used here. This highly
absorbing chromophore primarily affects wavelengths below 600 nm or in the ultraviolet
(UV). The 830 nm NIR laser lies within the therapeutic spectral window and is hardly
influenced by Melanin.
Moreover, no generally significant difference in RMSE was found between males and fe-
males. However, the RMSE tended to be higher for subjects exhibiting more prominent
structures due to muscles, wrinkles or just more thicker vessels which locally increased
the total tissue thickness. This entailed steeper gradients, i.e. more feature change at a
defined change in thickness, and possibly a higher SNR. In particular, young females
with brighter skin had slowly varying thickness gradients and hence slightly higher
RMSEs (cf. table 4.6, skin type II). This was not the case for all female subjects, and
thus not causing any significant gender difference.

Validation across head poses (AM1 & AM2) Training on one head pose and testing
on another is a realistic scenario for tracking. The perspective on the scanned surface
changes due to motion. Motion between the three recorded head poses ranged between
a few millimeters and several centimeters. This led to a varying extent of surface overlap
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Table 4.7: Tissue thickness prediction accuracies for the isotropic Matérn GP kernel under AM1
and AM2 testing scheme. The results are listed for all feature spaces. The first three rows for
each testing scheme list the statistics for the mutual overlap (ov) of point clouds corresponding
to the different head poses (samples from the scan remaining for the ROI feature space). For
each scheme a test for the entire cloud and one considering only points in the mutual overlap
set is presented. The latter results are labeled with the overlap mark ov. The best results are
marked in bold.

gender skin type
total male female II III IV V

Across Measurements 1 (AM1)
Mean OverlapAM1 [%] (ROI) 86.2 85.1 87.3 90.0 79.6 89.0 84.6
Min OverlapAM1 [%] (ROI) 25.8 25.8 28.4 64.5 25.8 59.8 67.0
Max OverlapAM1 [%] (ROI) 100.0 100.0 100.0 100.0 99.4 100.0 99.6
RMSEGP :Matiso (ROI) [mm] 0.463 0.457 0.469 0.444 0.471 0.453 0.525
RMSEGP :Matiso (A) [mm] 0.454 0.443 0.464 0.438 0.460 0.440 0.533
RMSEGP :Matiso (NBH) [mm] 0.392 0.388 0.396 0.354 0.416 0.385 0.437
RMSEovGP :Matiso

(ROI) [mm] 0.411 0.410 0.413 0.391 0.389 0.437 0.400
RMSEovGP :Matiso

(A) [mm] 0.408 0.403 0.413 0.391 0.384 0.433 0.400
RMSEovGP :Matiso

(NBH) [mm] 0.355 0.348 0.360 0.323 0.342 0.382 0.333
Across Measurements 2 (AM2)

Mean OverlapAM2 [%] (ROI) 93.1 92.1 94.0 96.0 89.1 94.4 92.8
Min OverlapAM2 [%] (ROI) 32.3 32.3 54.3 85.8 32.3 66.3 79.6
Max OverlapAM2 [%] (ROI) 100.0 100.0 100.0 100.0 99.4 100.0 99.6
RMSEGP :Matiso (ROI) [mm] 0.440 0.446 0.435 0.395 0.456 0.438 0.503
RMSEGP :Matiso (A) [mm] 0.428 0.426 0.429 0.384 0.445 0.422 0.493
RMSEGP :Matiso (NBH) [mm] 0.354 0.357 0.351 0.313 0.369 0.357 0.379
RMSEovGP :Matiso

(ROI) [mm] 0.411 0.408 0.413 0.387 0.401 0.424 0.426
RMSEovGP :Matiso

(A) [mm] 0.403 0.396 0.410 0.379 0.392 0.419 0.414
RMSEovGP :Matiso

(NBH) [mm] 0.338 0.337 0.339 0.307 0.337 0.355 0.326

between the scanned grids. The general problem is illustrated in fig. 4.26A. This overlap
was on average 86.2 %±14.5 % and ranged between 25.7 % and 100 % of the data samples
remaining for the ROI feature space. A sample was defined a member of the overlapping
set of samples, if there is a sample from the corresponding second point cloud within at
most 2 mm distance. The proportion of overlap was then computed as the number of
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4.4 Tissue Thickness Estimation and Prior Knowledge

Figure 4.26: Illustration of the main two problems for prediction across different head poses: A:
Surface overlap. When different parts of the forehead are scanned, the triangulated surfaces
may only partially overlap (marked in black). B: Scanner-to-forehead perspective. Chan-
ging NIR backscatter patterns arise from different perspectives under which a surface is
scanned. The influence of the incident angle on the recorded features changes, while the
thickness related content remains rather stable.

points in the overlap set divided by the total number of points in the test set. The average
overlap between all mutual head pose combinations is listed in table 4.7. As expected,
the overlap is generally higher for the AM2 than for the AM1 set. The average point
cloud overlap for the other feature spaces was similar to the values shown in table 4.7
(AM1: 86.1 % for A, 85.0 % for NBH, and AM2: 92.2 % for A, 93.2 % for NBH).
The RMSEs for both testing schemes (AM1 & AM2), all feature spaces and machine
learning techniques are plotted in fig. 4.25 and listed in table 4.7 (for completeness, full
detail is given in sec. 7.2). Similar trends to fig. 4.24 can be observed. The NBH space
yields the best performance, with the Matérn kernels outperforming the others. The
improvements observed from the A to the NBH space were statistically significant for
all approaches (p<0.01). The A space has significantly lower RMSEs than the ROI space
only for the isotropic GP kernels (p<0.05). The ARD kernels may have adapted to well
to the training set and hence did not generalize as well as the isotropic kernels.
Note that SVR outperformed the GPs for the feature spaces ROI & A (cf. sec. 7.2). This
may be due to the fact that the regression problem is harder than for CV. Often, however,
less knowledge is available about important regions in the feature space. This is caused
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by smaller point cloud overlaps. The testing set may request predictions from regions of
the feature space which are poorly sampled during training. Due to its objective function
with the smoothness term, SVR tends towards less flexible and more biased models. This
may be beneficial for extrapolating into poorly sampled regions of the feature space. The
chosen GP models tend to adapt to close to the training data in some cases.

Further observations from fig. 4.25 are:

• Larger mean errors in general due to a more complex regression problem

• Larger STD on the mean RMSE due to effects like varying point cloud overlap or
forehead-to-scanner positions

• Larger differences between MAE and RMSE indicating high errors from a few out-
liers, but moderate ones for the majority of samples

• Errors for the AM1 scheme are larger than for the AM2 one

The last point supports the reasoning that larger errors and error variations are mainly
due to different forehead-to-scanner positions. While the AM1 scheme used only a scan
from a single head pose for training the model, AM2 included scans from an additional
head pose. Thus, the likelihood of sufficiently sampling regions of the feature space
which might be requested during testing is generally higher. Therefore, the errors are
lower. Indeed, the correlation between RMSE and overlap was -0.246 (p = 0.0009) across
all subjects. On a subject-wise level, six subjects had correlations below −0.85 (p < 0.05).
These results suggest that the smaller the spatial overlap between two point clouds, the
larger is the RMSE. This is in agreement with the arguments above.
The RMSEs for the isotropic Matérn kernel were also computed when discarding all
samples from the data that were not in the overlap set (superscript ov in table 4.7).
With p < 0.003 the RMSE was significantly lower than for cases where testing was al-
lowed to request samples outside the overlap set (on average ∆ RMSE < −0.04, min-
imum ∆ RMSE = −0.228 for all feature spaces and AM1). The same, yet to a weaker
extent, is true for the results from the AM2 scheme. This again suggests that having more
head poses in the training set, increases the likelihood of a more representative sampling
of the feature space and finally a good performance on the test set. This is supported
by the fact, that the more additional information is added to the feature space (e.g. local
neighborhoods), the smaller is the RMSE difference between (1) testing on all data and
(2) testing on the overlap set only.
Incomplete point cloud overlap is only one factor for worse RMSE prediction errors. A
second factor is due to the fact that the laser scanner may look at the target surface from
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a different perspective. Thus, the same area may be scanned, but from a different angle.
Although the area is contained in the training set, an attempt to make correct predictions
may fail, since the features for these thicknesses look different from another perspective.
The problem is illustrated in fig. 4.26B. The model lacks training examples for this angle
case. On average, the absolute angle difference in the overlap sets was |∆α| = 11.6◦±3.6◦

ranging between 5.4◦ and 27.4◦. Overall, the correlation between this angle difference
and the RMSE of the AM1 scheme was 0.23 (p = 0.002). The larger the absolute angle
difference in the overlap set, the larger the RMSE. For four subjects this correlation was
higher than 0.80 (p < 0.05) on a subject-wise level.
These two relationships and the results in fig. 4.25 suggest, that training data in a couple
of representative poses is necessary to achieve errors in the AM1/AM2 set which are
comparable to those in the CV set.

Tissue Thickness Reconstruction under CV and AM2 Scheme Finally, fig. 4.27 com-
pares the NIR features for ROI 2, the tissue thickness ground truth from MR and thickness
reconstructions from different feature spaces. Comparing the reconstruction from the A
and NBH space, shows that introducing local neighborhood knowledge has a smoothing
effect on the reconstructed structures. This is reasonable since the feature space ties local
neighbors together. Local neighborhoods have a regularization effect, since they enforce
that spatial neighbors should have similar thickness values. That this is not the case for
the A space, can be seen from its rather noisy reconstruction.
Finally, fig. 4.27F shows a reconstruction under the AM2 scheme with NBH feature space
(95.0 % surface overlap, 0.76◦ average angle difference). Although the RMSE is with
0.269 mm higher than for the A case (CV scheme) in fig. 4.27C (0.230 mm), the recon-
struction looks qualitatively smoother. Having a large surface overlap, a small average
angle difference, and a small RMSE supports the above argument and shows that de-
cent prediction accuracies can be obtained across scans, if the training data is selected
carefully.

Sequential Forward Selection (SFS) Sequential forward selection (SFS) was used
to evaluate the importance of certain features for the prediction accuracy. Results are
partly published in [331]. SFS is a so-called wrapper method for feature selection. An
introduction to feature selection is given in [113]. Starting from an empty set, features are
added step-wise. In each step the feature which causes the highest increase in prediction
accuracy is added to the set. This increase is determined with the desired machine
learning method (here GPs with isotropic Matérn kernel). The usage of a particular
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Figure 4.27: Tissue thickness reconstruction for different feature spaces compared to the MR
ground truth of S1. A: backscatter feature for ROI 2, B: MR tissue thickness ground truth,
C: tissue reconstruction from feature space A, D: tissue reconstruction from feature space
NBH, E: thickness error for feature space NBH (all previous plots under CV scheme), F: tis-
sue reconstruction from feature space NBH under AM2 scheme (all data from S1, head pose
one).

machine learning technique distinguishes wrapper from so-called filter methods which
do not rely on a specific learning technique [113].

Two different tests were conducted:

1. SFS: ROI - Treats only NIR backscatter features and performed SFS only on the five
ROIs. It tests whether certain ROIs are given higher priorities than others.

2. SFS: NBH - Assumes a space of all five ROIs and the incident angle and performs
from there SFS on the neighborhood features. It tests whether certain ROIs from
the neighborhood are given higher priorities than others.
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Figure 4.28: Mean RMSE decrease for tissue thickness prediction after step-wise adding backs-
catter and neighborhood features by sequential forward selection. Black lines refer to the
entire subject cohort, red lines to female, and blue lines to male subjects. A: SFS results
for adding NIR backscatter features from the central spot. B: SFS results for adding NIR
backscatter features from neighboring spots.

Figure 4.28 illustrates the results for both experiments. Generally, the RMSE decreases
the more features are added to the system. This happens more steeply for the ROI fea-
tures and reaches almost saturation when adding too many neighborhood features. For
some subjects the RMSE even increases when adding the full neighborhood (SFS step
one here corresponds to feature space A and step five to space NBH). When averaging
across many subjects such as in fig. 4.28 the effect is not as prominent. Nonetheless, the
error decrease levels off and remains stable before it would probably increase again for
more features. This is due to the curse of dimensionality [309]. The neighborhood search
already starts with a six dimensional space and adds four dimensions in each step (cf.
eq. 4.4). With each new dimension it is harder to have a sampling of the space which
is sufficient for the learning algorithm to robustly model a function from the same data.
The amount of data required to ensure the same sampling density within the space grows
exponentially with its dimension D. Example cases for individual subjects are provided
in the appendix (fig. 7.1), which illustrate a differently strong influence of the curse of
dimensionality.
Therefore, there is a tradeoff between the increasing dimension and additional informa-
tion added with a feature. At some point the negative effect of higher dimensions domin-
ates the benefit from new features. When this happens depends on the amount of training
data, the complexity of the functional relationship to be learned, and the information con-
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Table 4.8: Evaluating the relevance of features by SFS. The upper part lists the mean and STD of
the step number in which the backscatter feature, corresponding to ROI i, was added to the
feature space. Moreover, the prediction error RMSEROI i for single ROI features is given. The
lower part shows the same step information for the ROIs from the neighboring laser spots. In
addition, mean and STD of the RMSE gain for adding a neighborhood ROI and the RMSENBH i

for a single neighborhood ROI are shown.

ROI 1 ROI 2 ROI 3 ROI 4 ROI 5

SFS: ROI
selection step (mean) 2.5 2.7 3.2 3.2 3.3
selection step (STD) 1.3 1.4 1.5 1.6 1.2
RMSEROI i [mm] 0.425 0.419 0.419 0.424 0.431

SFS: NBH
selection step (mean) 3.0 2.1 2.3 3.1 4.5
selection step (STD) 0.9 1.2 1.5 1.2 0.9
∆RMSE [mm] (mean) -0.007 -0.030 -0.037 -0.012 -0.001
∆RMSE [mm] (STD) 0.007 0.031 0.041 0.019 0.005
RMSENBH i [mm] 0.156 0.144 0.143 0.148 0.162

tent provided by the new feature.
It is important to note that the decrease in RMSE is highest when the first neighborhood
feature is added. This indicates that it is more important whether this novel informa-
tion is added to the system at all, rather than how much of it is provided. Generally,
the graphs look similar for female and male subjects, whereas the RMSE for females is
slightly higher. Further on, ARD behaves similarly to the isotropic case, but tends to
achieve increasingly better results for higher dimensions. This was expected from its al-
gorithmic nature: The more features exist in total, the more likely is it that a weighting
for relevance reveals an impact on the prediction errors. Nevertheless, each feature di-
mension adds new parameters and therefore increases the computational load and com-
plexity. More degrees of freedom entail a harder optimization problem. As stated before,
the low decrease of the prediction error does not justify all these difficulties. This is also
why the neighborhood SFS has not been computed for the ARD.
Finally, SFS on the ROI features showed that all ROIs have similar accuracies in the first
step (cf. table 4.8). This is reasonable since they are highly correlated as it was shown in
fig. 4.18. Therefore, table 4.8 shows no clear pattern across subjects concerning the order
in which the ROI are added. The high STD confirms this. ROI 1 has a slight tendency to
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be selected earlier. This may be caused by the fact, that it is less correlated to the other
ROIs.
In contrast, ROIs 2 and 3 are clearly preferred in the neighborhood SFS. They provide
the highest gain in accuracy and the lowest rank for the step in which they were selected
on average (cf. table 4.8). This is strictly in agreement with previous findings on real
data as well as simulations. These two ROIs provide the best SNR of all ROIs. At the
same time they achieve higher proportions of photons from deeper tissue layers and also
have a higher magnitude in their information signal with respect to the acquisition noise.
They are less prone to external disturbances. Thus, spatially speaking, they give rise to
the clearest and smoothest spatial pattern. They are therefore preferred as neighborhood
features.

4.5 Enhanced Learning using Sparse Approximation
Techniques

The results presented in the last section suggest that the required machine learning
technique ideally needs to handle data from many different scanning perspectives.
This entails an increase in N , i.e. the total number of samples in the training set. GPs
provide a couple of very promising properties for the regression problem at hand, but as
discussed in sec. 2.2.2.7, suffer from an increasing computational complexity (by O(N3))
if the training data exceeds a few thousand samples.
The following paragraphs evaluate the SoD and FITC sparse approximation techniques
to tackle this problem. The results have been published in [332]. The evaluation will be
done in terms of a case study with subjects S1 to S5. From each subject two subsequent
scans from the first head pose are taken. The number of data samples amounts to
1447 (S1), 1764 (S2), 1612 (S3), 1790 (S4), and 1557 (S5). For selecting the inducing
variables u from the training set, SoD and FITC methods will be evaluated with random
choice (subscript R) and k-means clustering (subscript k). The tested subset sizes
were M = {25 %, 33 %, 50 %, 66 %, 75 %, 100 %} · N inducing points. All timings were
measured on an Intel® CoreTM i7-4770S CPU @ 3.1 GHz, 32 GB RAM. Implementations
were done in MATLAB® (Mathworks, Inc. [188]).

Figure 4.29A shows all results for S1. From the top plot it can be seen that FITC
outperforms SoD when restricting the methods to the same M . FITC maintains reas-
onably low errors even for only 50 % of the data. Both converge to the same RMSE for
N = M , which is the full GP. For N < M the error worsens faster for SoD than for
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Figure 4.29: Tradeoff between computation time and prediction error for different sparse approx-
imation techniques. A: Results for S1: RMSE (top) and computation time (bottom) are
shown for all four methods. The horizontal and vertical lines denote the time for the full GP
and the FITC result requiring the same time. B: Efficiency plot comparing all five subjects.
RMSE versus time is compared for SoDK (blue) and FITCK (green). Subject associations are
indicated by the same marker. Each mark on a graph corresponds to one specific setting for
M . (© 2015 IEEE. Reprinted, with permission from [336]).

FITC. Similar behavior was observed for the other subjects (plots not shown). This is not
surprising, since SoD simply throws data away, whereas FITC keeps all the information
and approximates the GP model assumptions. It just assumes the training samples to
be statistically independent, given the inducing points u. Nevertheless, there is still an
RMSE increase – yet less steep than for SoD – since this assumption is not fully true.
The full GP model yielded an RMSE of 0.195 mm in 118 min. The FITC equivalent for the
full model at M = N requires longer computation times. It involves a higher number
of operations, e.g. matrix multiplications, which entail an increased overhead. Within
the same time window, FITC is able to handle at most 40 % of the data. In this setting
the RMSE reaches approximately 0.215 mm or more (i.e. worsening by > 10 %, setting
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Table 4.9: Computation time and RMSE for different sparse GP approximations. Results are
shown for the first five subjects. The GP was trained with either 100 % or 33 % of the avail-
able data. Time is given as a proportion of the time required by the full GP. (© 2015 IEEE.
Reprinted, with permission from [336]).

S1 S2 S3 S4 S5

Full GP t [min] 118 175 148 175 129
RMSE [mm] 0.195 0.193 0.176 0.172 0.084

SoDb
R33 t [%] 9.3 9.1 9.7 9.0 8.9

RMSE [mm] 0.256 0.233 0.2257 0.223 0.108
SoDb

K33 t [%] 9.4 10.1 10.6 9.3 9.1
RMSE [mm] 0.246 0.228 0.221 0.213 0.104

FITCb
R33 t [%] 71.4 78.5 78.1 79.9 75.6

RMSE [mm] 0.225 0.211 0.202 0.200 0.095
FITCb

K33 t [%] 73.1 77.5 75.5 78.9 76.3
RMSE [mm] 0.221 0.206 0.199 0.192 0.095

b Values given for 33 % of the data.

marked with dash-dotted red lines in fig. 4.29A). If the computation time for the full
GP model needs to be reduced, the horizontal line in fig. 4.29A (bottom) will be shifted
downward. Now, to prefer FITC over SoD, the RMSE for FITC at e.g. 30-40 % would
need to be lower than that of SoD at 80-90 %. This was not the case for any subject given
the characteristics of the experimental data treated in this work.
An example case is listed in table 4.9 for 33 % of the data. The values indicate that
FITCK is capable of maintaining an RMSE which comes closest to the full model. The
worsening amounts to 13.3 % (S1), 6.7 % (S2), 13.1 % (S3), 11.7 % (S4), and 13.1 % (S5)
of the original RMSE only. However, at the same time the savings in computational
cost are only about 30 %, while SoD approaches are by factor 7-9 faster for this M . The
computation time for testing on unseen data (excluding training and optimization)
followed a similar qualitative trend. The full GP, for instance, required 1.32 ± 0.02 s

for predicting thickness values of the test set, while FITC (with 50 % of the data being
inducing variables) required 1.76± 0.04 s.
The latter argument concerns efficiency, i.e. the accuracy-vs.-time tradeoff. A more
detailed statement can be made from fig. 4.29B. The plot illustrates this tradeoff for all
subjects and k-means-based techniques. Efficient settings tend towards the lower left
corner of the plot, where neither computation time, nor the error are reaching extreme
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values. Irrespective of the M chosen (points on the graph), SoD approaches can be
considered more efficient on subject level, and for certain cases even when comparing
across subjects. When reducing the data to the most relevant 66 % of all samples, the
RMSE drops only by 6.5 % (S1), 6.1 % (S2), 6.9 % (S3), 8.2 % (S4), and 8.4 % (S5). As before,
the RMSE for S5 (female) was lower than for the others. For her, the tissue thickness
variance across the forehead was smaller than for subjects. In an absolute sense, using
FITC with small subset sizes (33-50 %) was more justifiable for her than for the other
subjects.
However, generally speaking, the computational effort of FITC does not justify favoring
it due to the slower increase in RMSE. These results are in line with similar findings of
Chalupka et al. on completely different data [51]. Confirming theory, the results also
show that the computational complexity of FITC has a scaling which is worse than that
of SoD (O(NM2) vs. O(M3) for M < N ). Therefore, the difference in computation time
between both approaches grows with M

N the more data is taken. Likewise, the argument
applies to the storage demands.
In particular for FITC, the RMSE does not increase rapidly enough for our data when
dropping parts of it. This indicates that similar information is shared between training
samples. Spatial proximity of the laser spot images on the forehead may be one explana-
tion. Each spot has eight neighbors (cf. fig. 4.23). Their feature vectors share information
about their corresponding tissue thickness values, because spatial frequencies for thick-
ness variations across the forehead are rather low. The thickness varies rather slowly
compared to the sampling step width of the grid (a few millimeters). Thus, discarding a
few samples will still keep related information. This is in agreement with the findings
about local neighborhoods in sec. 4.4.3. Possibly noisy data can be recovered from the
neighbors, since tissue thickness is required to be similar among them.
Finally, an informed choice of the inducing variables via k-means clustering was found of
advantage. The computational overhead with respect to a random selection is negligible.
Clustering induces a more homogenous coverage of the feature space. K-means was
used such that, if a cluster would loose all its members, a new cluster is created with the
data sample farthest away from the existing centroids. It therefore avoids cases where all
inducing variables are massed in one place. More sophisticated unsupervised learning
methods such as farthest point clustering [51] may extend the aforementioned principle.
Other promising approaches may look at similarities in the kernel space, since this is
the space in which the actual GP will model dependencies. A greedy algorithm was
proposed by Smola et al. based on this idea [270]. SoR methods work along similar lines.
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4.6 Conclusions

This chapter treated four main parts. First, it was described how findings from the
simulation studies were implemented in an experimental optical setup. Special focus
was directed to the generation of 3D surface information via laser triangulation, and
to how a tissue thickness ground truth is obtained from high resolution MR images.
To test the concept of tissue thickness estimation, a volunteer study with 30 subjects
was prepared and conducted. Second, general aspects of light-tissue interactions were
evaluated on these data and set into the simulated context discussed earlier. Third, the
prediction accuracy for tissue thickness from different feature spaces was tested. In par-
ticular, disturbances and the incorporation of prior knowledge was addressed. Fourth,
sparse approximations for GPs were investigated to tackle the increasing computational
complexity – a technical limitation of GPs for future applications.
Thus, this chapter answered RQ 2. Conclusions on the four main challenges raised by
RQ 2 will be given in the following.

• RQ 2.1: How are the simulation results reflected in real data?

The negative correlation between NIR backscatter and tissue thickness was
confirmed. Moreover, influences of changing incident angles were similarly
found to superpose the information signal. Particularly for smaller incident
angles subcutaneous structures were qualitatively visible. This is in agreement
with earlier simulations. For increasing angles the disturbance effects then
dominate the signal variations. Since separating both effects is challenging,
only a limited analysis of the information signal was possible for some subjects.
Due to measurement noise and the heterogeneity of the human skin (e.g.
due to freckles, blood vessels, or moles) the feature spaces exhibited much
nosier and more complex behavior compared to MCML simulations. This
again indicates that simulations will simplify the real world, especially when a
complex system such as human skin is concerned and the information is carried
in only weak effects. Nonetheless, the average Caucasian model was vital to
derive qualitative trends to be expected from the data, which led the design
of an experimental setup to optimal acquisition conditions. The mentioned
discrepancy between the simplified model and the real world is also apparent
from the prediction accuracies. They were indeed substantially higher for the
simulated case.
Finally, as speculated based on the simulations, ROIs 2 and 3 were found to
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provide information most robustly (about 2.5 mm to 7.6 mm from the spot
center). Patterns were most prominently visible in them, wherefore they were
preferably chosen during SFS of neighborhood features. Nevertheless, high
linear correlation was found among the NIR features. This fact could render
methods for dimensionality reduction by e.g. matrix transformation interesting
for future research. Particular focus should be directed to this extension when
also including many of the NIR features from spots in the local neighborhood.

• RQ 2.2: Which statistical learning approach is most suitable for retrieving
information about tissue thickness from optical features?

While SVR again achieved reasonable results, GPs were found to be more prom-
ising for future applications. Hyperparameter optimization can be efficiently
carried out by minimizing the NLML instead of time consuming grid search.
This also facilitates explicit relevance weighting for individual features. This is
of particular interest when incorporating prior knowledge in terms of additional
features. Their characteristics and importance may deviate from the highly cor-
related optical features. Best accuracies were achieved with the ARD Matérn
kernel, which has a higher functional complexity than exponential kernels and
can model rougher functions. Nevertheless, the isotropic Matérn kernel along
with a GP constitutes the recommended choice. The prediction errors of on
average 0.21 mm are only slightly higher than for its ARD variant. However,
particularly for model building, computation time is a lot lower.
A technical challenge for GPs remains the handling of larger data sets with a
few thousand samples. A simple pre-selection of a subset of data (SoDK) with
k-means clustering was found to be the most efficient solution to tackle this
problem. It outperformed more sophisticated methods such as FITC and still
achieves reasonable results when cutting the data from two scans in half. For
very large data sets, however, the time for training a model may still become
prohibitive.

• RQ 2.3: Which disturbances have an influence on the estimation accuracy and
how can they be handled?

The main disturbing influence is given by changing incident angles of the laser
beam. All compensation methods (relying on pre-processing the raw HDR im-
ages) did not yield consistent and therefore satisfying results. This includes the
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approach termed fix which was also tested on simulated data earlier. While re-
gressing the angle effect out from the data improved the qualitative appearance
of the subcutaneous pattern, it did not reveal promising effects on the prediction
accuracy. The recommended approach adds the incident angle as an additional
sixth feature to the set of ROI values. Further improvements on the prediction
error were obtained when weighting the angle according to its relevance in the
current data set.
Further on, skin heterogeneity across the forehead surface was found to influ-
ence the appearance of the feature space. Measurement noise and variability
of the tissue thickness ground truth (on average < 0.2 mm) add to this rather
complex behavior of the data in the NIR feature space. Considerable improve-
ments of the prediction error were achieved by including backscatter informa-
tion from the local neighborhood. This means one spot will be also labeled with
information of the backscatter behavior from its neighboring spots. This has a
regularizing effect on the regression problem and helps tackling the aforemen-
tioned disturbances. Linking a spot to its spatial neighbors implicitly enforces
the target label to be similar as well. This rules out effects which are not conform
with this prior knowledge. The smoothing effect on the reconstructed thickness
pattern is expected to have a positive effect on the surface registration perform-
ance.
Finally, investigations of prediction accuracies across different head poses re-
vealed that a comprehensive training data set is required to sufficiently cover
the feature space. Otherwise, incomplete overlap between point clouds of the
training data and the requested test data would leave certain regions of the fea-
ture space for extrapolation. This negatively affects the prediction accuracy.
Moreover, training scans ideally need to be recorded from different perspect-
ives of the laser scanner with respect to the forehead. Angle differences between
training and testing – even when the same surface patch is scanned – have been
found to be positively correlated with the prediction error.
The latter effect may require larger sets of training data. This makes sparse
approximation techniques for GPs relevant for future research. Alternatively,
other regression techniques such as classical neural networks, deep belief net-
works or autoencoder networks could be taken into consideration. Special con-
cern should be directed to this field when aiming at universal regression models
which are required to predict tissue thickness across subjects or different skin
types.
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• RQ 2.4: Are there indications of gender, age or skin type affecting the learning
outcome?

The data set of 30 volunteers did not show any evidences for a correlation with
the prediction error of the tissue thickness. A gap between the RMSE of male
and female subjects was consistently identified, but no significance at p = 0.05

was found. The gap may also arise from the fact that most female subjects were
young and had a tendency towards slowly varying and low thickness gradients
across the forehead. Therefore, the informative part of the signal was weaker
in magnitude and harder to learn from data corrupted with the mentioned ex-
ternal disturbances. Many male and elderly subjects exhibited rather prominent
structures which stood out more clearly. Final validation of this reasoning can
only be obtained based on a more comprehensive clinical study. This especially
applies to statements about dependencies with respect to the age. The presented
subject cohort mainly focused on subjects in their twenties or beginning of their
thirties. Furthermore, it should be considered that skin age and chronological
age of a person may not coincide [37, 38].
No correlation was also found with the skin type as defined by the Fitzpatrick
scale. Thus, the concept seems to work equally fine for bright and dark skin
colors. This is reasonable, since this skin typing mainly relies on the Melanin
content and UV sensitivity of skin. Therefore, this kind of grouping may be
rather irrelevant for light-tissue interactions in the NIR range. The presented
results cannot exclude that there is a relevant typing for the proposed concept.
Further investigation is required based on a more comprehensive study com-
bined with a careful characterization of the skin.
The results of this volunteer study imply two things for the clinical application.
First, the results suggest that the proposed procedure of generating patterns on
a scanned forehead surface works for individuals irrespective of skin type, age
or gender. No volunteer exhibited a behavior which is prohibitive for this ap-
proach. Therefore, the preliminary outcome does not exclude any specific group
of patients. This is of special importance for countries of high ethnical diversity
such as the United States. Second, the lack of correlation between prediction er-
ror and Fitzpatrick score does not preclude the possibility that there are groups
of patients, who could share similar models after all. Larger clinical validation
will have to provide more detailed insight into this. Grouping and model us-
age across subjects has a great potential for facilitating the work load within the
clinical work flow.
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Proof of Concept

All previous chapters were mainly concerned with the estimation of the tissue thickness
measure from NIR backscatter. The solution to this problem ensures high quality of the
structural information which is available for tracking. High structural quality is the cru-
cial foundation for higher tracking accuracy. This chapter will take the next step to link
back to the original motivation of this work. It will exploit the findings for predicting
tissue thickness and explore the benefits for tracking. It treats the central question of
whether structural information leads to a better registration of two surfaces for the ap-
plication at hand.
Note that these considerations only aim at a general proof of concept. Standard ICP
without any sophisticated variants will be used. The development and optimization of
a dedicated tracking algorithm is beyond the scope of this work. With simple means it
will be evaluated whether the original claim of this work is true: that surface registration
is more accurate and robust against outliers when additional information in the form of
cutaneous structures is used. Parts of this chapter have been published in [335].
Therefore, sec. 5.1 will first define the experimental setting, the testing procedure as well
as the comparative quality measures. Next, sec. 5.2 will first of all consider the optimal
case. This optimal case corresponds to a perfect prediction of tissue thickness from NIR
backscatter. Therefore, pure surface matching will be compared with structure-supported
registration, where the structures are taken from the ideal ground truth. The second part
of this section will then comment on how the tissue thickness prediction error will influ-
ence these optimal results, i.e. how it will translate to tracking accuracy. Finally, sec. 5.3
will provide conclusions based on these findings.

5.1 Point Cloud Registration and Evaluation Procedure

A core question of this work is, whether the use of tissue structures yields any improve-
ment for surface registration. To investigate this issue, a ground truth for motion between
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A B C

Figure 5.1: Determining possible tumor targets: segmentation of the brain. A: High resolution
MR scans are used to get possible CNS tumor sites. B: Therefore, the space withing the
cranial bone is segmented (orange). The skin-air boundary (gray) on the forehead is used
as a reference surface for registration. C: The segmentation results for all slices show the
reference for surface registration (gray) and possible tumor targets (orange) which need to
be tracked.

two poses is required. The transformation matrix output from surface registration can
then be compared against this ground truth. There are two possibilities. Either known
motion is applied to an object experimentally, or motion is simulated offline based on a
single pair of scans. The first option entails two substantial drawbacks.
First, motion cannot be applied to an object without any errors. The ground truth itself
will comprise errors, since the desired motion and the one actually applied will differ
from each other. Hardware uncertainties in robot kinematics constitute only one ex-
ample. This is unfortunate, since the registration errors under consideration are expected
to be rather small. They may be easily corrupted by errors of the ground truth.
Second, the extent of possible motion that can be tested experimentally is limited. A
small number of trails will have difficulties to provide generalizing conclusions.
Therefore, all subsequent tests will make use of simulated motion. Here, the ground truth
is exactly known and an exhaustive number of random transformations can sufficiently
cover the motion space. Details will be described in the following.

Tumor Target Sites The registration error can be computed for the forehead surface,
where the registration takes place. However, for clinical applications the localization
of possible targets is more relevant. These targets are typically tumor sites within the
cranium. For surface registration, the tracking errors of these targets can be higher than
the one on the surface. Only considering surface errors would hence underestimate the
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5.1 Point Cloud Registration and Evaluation Procedure

matching error. To compute so-called target registration errors (TREs)1, possible tumor
sites within the cranium have been defined as shown in fig. 5.1: A volume of possible
targets within the cranium has been segmented using morphological operators followed
by a region growing algorithm. The area originally covered by the brain has then been
sampled with a 3D grid (5 mm spacing) of points (cf. fig. 5.1B). For each subject, this
results in a known spatial relationship between the skin-air boundary at the forehead
(reference surface to which all NIR scans will be registered) and a volume of possible
tumor targets (cf. fig. 5.1C). For each of these targets the TRE can be computed.

Simulated Motion and Testing Scheme Section 4.2.3 described how a NIR scan is
registered to the MR ground truth. This is achieved by an ICP-refined, marker-based
matching. This initial registration is assumed to be exact and will be used for (1) learning
a supervised model between NIR features and tissue thickness, and (2) the registration
ground truth for any simulated motion. The setting is illustrated in fig. 5.2A.
Under the assumption that the ground truth registration is exact, it follows that the tar-
gets (segmented from the MR scan) are also the target locations with respect to the NIR
patch. Motion is therefore simulated by applying random transformations Trnd to the
registered NIR patch as well as the targets (fig. 5.2B). This simulates subject head motion
away from this ground truth position. The transformation matrix is generated from the
three translational and three rotational degrees of freedom. These are randomly sampled
from a uniform distribution.

tx,y,z ∼ U [−20 mm, 20 mm] (5.1)

rx,y,z ∼ U [−20◦, 20◦] (5.2)

Now, the point-to-plane ICP algorithm with (W) and without (WO) tissue thickness
support is required to re-register the NIR to the MR reference surface. This means an
estimate TICP−W/TICP−WO for T −1rnd has to be computed. The tissue supported ICP
has been used as described in sec. 2.3.3. In total, Nrnd = 5, 000 random transforma-
tions are applied and re-registered with both approaches. The surface registration error
RMSEICP−W/WO is computed as the mean point-to-point distance between the original

NIR patch
{
pgtj

}
j=1...Np

(red, fig. 5.2) and the re-registered version of the randomly trans-

formed NIR patch
{
pre−regj

}
j=1...Np

(cyan, fig. 5.2). The errors are also averaged across

1Definition in the glossary according to [115]. Note that the target region is not required to be involved in
the registration process. For surface tracking, the transformation matrix is always computed without any
knowledge about internal targets.
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5 Tissue-Supported Head-Tracking – A Proof of Concept

Figure 5.2: Testing scheme for comparing surface registration with and without tissue support. A:
Initial registration between MR surface reference (dark gray) and an optical NIR scan (red).
This registration is achieved using the aforementioned ICP-refined, marker-based matching.
This matching establishes a link between the NIR scan red) and the targets from fig. 5.1 (light
gray). B: Starting from this registration, random subject motion is simulated. Therefore,
random transformations are applied to the NIR scan (red to cyan) and the targets (light gray
to orange). The transformed targets yield an accurate estimate of how the rest of the cranium
will have moved with the NIR scan. The algorithm under test needs to re-register the cyan
NIR patch to the dark gray MR reference. The error is computed as the mean point-to-point
distance between the original red, and the re-registered cyan NIR patch.

all random transformations.

RMSEICP−W/WO =

Nrnd∑
i=1

Np∑
j=1

∥∥∥pgtj − pre−regij

∥∥∥
2

(5.3)

The TRE is computed point-wise for all target locations
{
τ re−regj

}
j=1...Ntargets

. The aver-

age is taken across all Nrnd random transformations.

TREjICP−W/WO =

Nrnd∑
i=1

∥∥∥τ gtj − τ re−regij

∥∥∥
2

(5.4)

Note that there are random and systematic error sources. Random error sources involve
the random jitter around a 3D point. They describe the uncertainty of how well a single
point on a surface can be identified. The correct location is typically blurred by a random
noise distribution. This identification error links to the total surface registration error as
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well as to the TRE. However, there is no statistical relationship between surface regis-
tration error and TRE directly as discussed by Fitzpatrick and colleagues [91, 92]. This
means, the random aspect of the surface registration error cannot be used to infer the
uncertainty on the TRE.
The testing scheme described above, excludes these random identification errors from in-
vestigation. The simulated motion always uses the same NIR patch. There is no random
variation from registration to registration in terms of 3D point identification. It is always
the same sample from the uncertainty distribution. The probability distribution in terms
of [91] therefore corresponds to a Dirac pulse – all the probability mass is gathered at one
instance.
The testing scheme rather investigates systematic registration errors. These can be de-
scribed as centers of accumulation. This refers to areas where misregistrations tend to
end up due to prevailing circumstances rather than random effects. For these, the stat-
istical dependency statement between surface registration error and TRE does not apply
[91]. Both errors are directly linked by the connecting lever between the two locations
under consideration. The errors are not subject to any random acquisition effects, but
rather due to local registration minima, geometric deformations, ambiguities and spatial
similarities across the surface. These are the challenges which should be tackled by ex-
ploiting supportive cutaneous structures. Therefore, the tests will focus on how robust
the registration algorithms can handle them.

5.2 Tissue-Supported Registration

Table 5.1 lists the test results which were obtained under the scheme described above.
The evaluation involves the entire subject cohort. The rows labeled with MR denote tests
that used the MR ground truth as supportive structures on the surface. Comparing re-
gistration with (W) and without (WO) these structures, reveals that additional structural
information had a considerably positive effect. On average, conventional surface regis-
tration was outperformed by more than a factor of 29.5. The 90 % error bound I90 was
almost twice the average registration error for the conventional method. For tissue sup-
ported registration, this bound was quite close to the average value. This implies that
the latter method is more robust against outliers. It is less prone to getting stuck in local
registration minima on the surface.
Both, the spatial coordinates as well as the tissue thickness are given in millimeters. Nev-
ertheless, the spread of the data in each of the four dimensions is different. Point-to-point
correspondences between two surfaces are identified via Euclidean distances in this 4D
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Table 5.1: Comparison of ICP registration errors with (W) or without (WO) tissue thickness sup-
port. RMSE and I90 are given as an average across all 30 subjects and also distinguished ac-
cording to gender and skin type. Tissue support was generated from (1) the MR tissue ground
truth, (2) predictions from feature space A, and (3) predictions from feature space NBH.

gender skin type
total male female II III IV V

RMSEICP−WO (MR) [mm] 2.889 0.978 4.561 3.592 6.084 0.932 1.444
I90ICP−WO (MR) [mm] 4.551 1.482 7.236 4.907 9.955 1.626 2.100
RMSEICP−WO (A) [mm] 2.884 0.950 4.577 3.768 5.982 0.970 1.153
I90ICP−WO (A) [mm] 4.556 1.378 7.337 4.875 9.967 1.645 2.105
RMSEICP−WO (NBH) [mm] 3.380 1.200 5.287 4.435 6.209 1.609 1.401
I90ICP−WO (NBH) [mm] 4.437 1.521 6.988 5.335 8.119 2.352 1.853

RMSEICP−W (MR) [mm] 0.098 0.075 0.118 0.154 0.162 0.050 0.022
I90ICP−W (MR) [mm] 0.101 0.085 0.114 0.245 0.143 0.025 0.027
RMSEICP−W (A) [mm] 0.510 0.429 0.582 0.673 0.363 0.491 0.661
I90ICP−W (A) [mm] 0.577 0.521 0.625 0.678 0.486 0.564 0.670
RMSEICP−W (NBH) [mm] 0.478 0.431 0.520 0.559 0.465 0.402 0.683
I90ICP−W (NBH) [mm] 0.521 0.487 0.551 0.511 0.563 0.455 0.718

space. Thus, dimensions with higher data variance have a higher impact on these point-
to-point assignments. The median value of the tissue thickness STD across the forehead
scan was 0.465 mm (minimum 0.264 mm, maximum 0.774 mm). To analyze the spread
within the spatial coordinates, PCA was used, since the subject pose under the scan-
ner varied across subjects and measurements. The median STDs along the three prin-
cipal components of the scanned patches were [3.4 mm, 7.69 mm, 21.9 mm] (minimum
[2.4 mm, 6.0 mm, 17.1 mm], maximum [4.6 mm, 13.9 mm, 23.9 mm]). For finding point-to-
point correspondences, the tissue thickness values were given a higher relevance. Scaling
it generally by fac = 15 lifts its magnitude approximately to the order of the second spa-
tial principal component.
It is interesting to note that pure surface registration was harder for female than for male
subjects. Average errors (WO) for females were found to be dramatically higher than
for men. Reasons are related to the smaller forehead area for female volunteers. The
likelihood is higher for discarding triangulated points due to exceeding the hairline or
sampling the eye brows or laser goggles. Available forehead regions for males were ob-
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served to be larger on average. They also exhibited more distinct surface variations,
while scanned surfaces from females tended to have rather bowl-shaped characteristics.
The risk for local registration minima was thus higher. No significant correlation (p > 0.1)
between the registration error and the skin type score have been found.

Registration Errors versus Prediction Errors Table 5.1 further shows the impact of
tissue thickness prediction on the re-registration results. Experiments analogous to the
ones above were conducted after replacing the tissue ground truth by predictions from
backscatter data. Predictions were generated by a single run of 10-fold CV on the scanned
patch. This generated unbiased predictions from (1) feature space A, and (2) feature space
NBH.
These predictions deviate from the ground truth as they contain the prediction errors dis-
cussed in sec. 4.4. Thus, the reference for registration is still the MR ground truth, but the
triangulated NIR patch is labeled by the prediction output.
For both feature spaces the registration errors increase compared to the earlier case,
where labels from the ground truth were used. This is reasonable, since prediction errors
on the tissue thickness prevent reaching an optimal agreement with the ground truth.
The tissue label on the reference surface and the corresponding label on the NIR patch
may differ from each other. This effect, observed across the whole scanning patch, could
lead to misleading or globally contradicting point-to-point correspondences with the ref-
erence surface. Nevertheless, table 5.1 shows that registration errors finally remained
below 0.6 mm for both feature spaces. Qualitative statements with respect to gender and
skin type are equivalent to the ones made above.
With these findings on the re-registration error, conclusions about the tissue thickness
prediction error can be drawn. Since re-registration errors were satisfying for both, the
A and the NBH space, the corresponding prediction errors can be assessed as sufficient.
For the A space, the majority of subjects had a prediction error below 0.25 mm, and for
the NBH space below 0.15 mm. Thus, both values can be considered as a rule of thumb
for desirable prediction errors. The latter value is of particular interest for small scanning
grids. The prediction error bound recommended for a specific subject may, however, de-
pend on the STD of the corresponding target labels. Figure 5.3 shows a re-registration
case study for the first five subjects, where the MR ground truth thicknesses have been
superimposed by a Gaussian noise distribution of increasing STD. The noise shall sim-
ulate the prediction error of a regression algorithm. The green line denotes the STD for
the tissue thickness at σn = 0 (MR-label STD). Satisfactory re-registration errors were
achieved for the 0.15 mm and the 0.25 mm threshold as well as noise STDs close to the
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Figure 5.3: Behavior of the re-registration error for an increasing STD of random noise superim-
posing the tissue thickness labels. The re-registration errors averaged across 5,000 simulated
movements have been evaluated for the first five subjects. Tissue thickness labels were taken
from the MR ground truth, where artificial Gaussian noise of increasing STD σn was added.

MR-label STD. To achieve sub-millimeter accuracy for S5, however, the noise STD was
required to fall below 0.1 mm (37.8% of the MR-label STD). For her, the MR-label STD
was smaller than for the others. Therefore, it is reasonable to express the rule of thumb in
terms of a proportion of the subject-specific MR-label STD. With the isotropic Matérn ker-
nel, median prediction errors were 43.0% of the MR-label STD (min. 29.0%, max. 54.0%)
for space A and 27.3% of the MR-label STD (min. 15.9%, max. 36.1%) for space NBH.
Figure 5.4 illustrates a typical result for subject 2 with data from the A feature space. This
space discards less 3D points than space NBH during tissue thickness estimation and also
constitutes a more conservative scenario in terms of the prediction error. Therefore, it has
been chosen for illustration here. Each mark in the scatter plot indicates one of the 5,000
random movements. The axes are labeled by re-registration errors with (W) and without
(WO) tissue support. Apart from the fact that re-registration errors were smaller when
using structural information, it can be seen that the marks are not randomly scattered.
There are certain areas where they pile up. This suggests the existence of local registra-
tion minima. The locations of these minima differ between cases which do or do not use
tissue thickness patterns. Using the 4D instead of the 3D space for finding point-to-point
correspondences, narrows the range for local minima down to a tighter error interval.
Moreover, this interval also contains smaller errors. This can be seen as evidence for
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Figure 5.4: Scatter plot comparing registration with and without tissue support (subject 2, fea-
ture space A). The RMSE with (vertical axis) and without (horizontal axis) tissue thickness
is plotted for 5,000 random transformations. Yellow asterisks denote cases of little motion
(tx,y,z ≤ 10 mm, tx,y,z ≤ 10◦), and blue dots larger motion (tx,y,z > 10 mm, rx,y,z > 10◦).
The histograms show accumulated case counts across one of the two coordinate axes. Re-
gions where the surface supported method outperformed the conventional one are colored
in green, the opposite is colored in red.

more robust registration.
Interestingly, the location of local minima is hardly influenced by the extent of motion.
The yellow asterisks denote re-registration errors, where translational motion was less
than 10 mm, and rotational motion less than 10◦ in each dimension. The scattering pat-
tern across the plotted plane remains quite stable. The number of points within the ac-
cumulation centers did not generally change in favor of smaller re-registration errors.
Similar effects were observed for other subjects. This suggests that less motion does not
provide a guarantee for avoiding local registration minima.

Overall Discussion of the Results The interaction of different effects influencing the
registration performance can be seen from the box plots in fig. 5.5. Note that subjects 8
and 19 were not included in the plot for illustration purposes. Both exceeded an average
error of 10 mm for pure surface registration. Both were female.
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Figure 5.5: Box plots comparing the main results for tissue thickness prediction and surface re-
gistration across all 30 volunteers. A: number of points Np within the tested point cloud, B:
tissue thickness prediction error (both plots for all three feature spaces), C: ICP registration
error with, and D: without tissue support (both plots for structures from the MR ground
truth or predicted from the last two feature spaces). The green line denotes the 1 mm RMSE
limit.

The number of 3D points for registration depends on the feature space used. When
using the MR ground truth as a fourth dimension, all points that hit the forehead were
used. Triangulation may have failed for some points in the grid. Therefore, there are
rare cases where a point in the grid is missing all its neighbors. This predominantly
happens at the grid borders. For these, no reliable estimate of the incident angle could be
computed. This led to a minimal drop in the number of points for case A, since its feature
space requires an angle estimate. Nevertheless, re-registration errors without tissue
information were hardly affected by this drop and were very similar for the MR and
A case. For the NBH case, this reduction in the total number of available samples was
larger. Samples were discarded if no complete local neighborhood as defined in fig. 4.23
was available. While this may be handled differently in the future, it also constitutes an
interesting case for now.
The re-registration errors for pure surface registration increased due to this loss of
samples. This effect may have been intensified by the fact that loosing 3D samples at the
grid margins also reduces the surface coverage in regions of higher spatial gradients.
Areas around the temples constitute a typical example.
The corresponding errors with tissue support from the NBH space were on average
slightly, but not thoroughly, better than those of the A space. This demonstrates, how-
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ever, that the worsening effect due to the reduction of surface samples was compensated
by additional information about cutaneous structures. The registration error is hence
less sensitive to the size of the scanned patch.
The NBH case shall be discussed in more detail. For 90 % of the simulated head
movements, re-registration was possible with an error of 0.52 mm or less. This bound
increased to 4.56 mm if no tissue support was provided. On average, 46.1 % of all
movements were re-registered with an error of less than 1 mm for both registration ap-
proaches simultaneously. With cutaneous features 0.52 % and without 53.8 % of all cases
exceeded the error limit of 1 mm. Generally, 98.9 % of all cases that had an re-registration
error above 1 mm for pure surface registration, fell below an error of 1 mm after adding
support from the tissue thickness reconstruction of the NBH space. When using the
MR ground truth instead, this value increases to even 99.96 %. In fact, 35.3 % fell even
below 0.5 mm afterward. Again, no clear trend of the registration error with respect to
the skin type was observed. However, the re-registration error without tissue thickness
tended to be higher for females as compared to males (p = 0.06). When adding structural
support, this was only the case for the A space reconstructions (p = 0.041). This space
was also subject to the lowest prediction RMSEs among the cases tested for tracking. The
trend was least significant when using the MR ground truth as tissue thickness label (p =
0.266).

Convergence If the correspondence problem can be resolved more efficiently, the con-
vergence rate of the algorithm may be affected as well. All experiments used a point-to-
plane surface registration. In contrast to the point-to-point alternative, a strict decay of
the registration error, i.e. the evaluation of the objective function, is therefore not guar-
anteed. During the iterative process, the registration error can increase or decrease. One
reason for this is the validity of the linearized transformation matrix. The required ad-
justments of the six motion parameters may not be small enough for every iteration step
– particularly at the beginning of the iterative process. Thus, the fundamental assump-
tion of the algorithm may be violated. Moreover, the algorithm occasionally oscillates
between two sets of correspondence assignments when it is already quite close to an op-
timization minimum. This is due to the limited sampling resolution of the grids.
For the presented data, this kind of ripple was found to be only a minor problem. For
most cases the registration error decreases and converges to its final value. The remain-
ing ripple then typically stays within 10 % of this final value.
The ICP convergence rate with and without for all 30 volunteers was compared for an
exemplary head movement (tx = 10 mm, ty = −10 mm, tz = 10 mm, rx = −8◦, ry = 8◦,
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Table 5.2: ICP convergence rate with and without tissue thickness support for an exemplary head
movement. The median, minimum and maximum ICP iteration number are given for the
group of 30 subjects. Tissue thickness was either taken from the MR ground truth, or the
prediction of one of the two feature spaces A or NBH.

Median Minimum Maximum
space WO W WO W WO W

MR 12 17 3 2 - 64
A 11 7 4 5 - 64
NBH 13 9.5 3 6 - 77

rz = −8◦). Each registration was done with 1,000 ICP iterations. Then, the last 100 evalu-
ations of the objective function, i.e. the registration error, have been averaged. This mean
was multiplied by 1.1 to obtain a rough threshold for defining an optimization state as
settled (when 110 % of the final value is reached). The resulting statistics for the result-
ing iteration numbers across all 30 subjects are given in table 5.2 (without tissue thickness
(WO) and with tissue thickness (W)). Except for the MR case, tissue thickness support led
to faster convergence for most subjects. Maximum values are not given for pure surface
registration. This is because the error did not settle well for subjects 5, 19, 22 and 25 (all
female) resulting in a high number of iterations for them. Nevertheless they constitute
interesting case studies. An example shall be given for subject 19 and the NBH feature
space: After optimization, the evaluation of the ICP objective function yields an error of
0.60 mm without, and 0.92 mm with tissue thickness support. However, looking at the er-
ror measure defined in eq. 5.3 gives 28.96 mm without and 0.70 mm with tissue support.
The other subjects show similar behavior. This indicates that these were subjects where
pure surface registration had substantial problems to identify the correct alignment. The
optimization was switching back and forth between several local minima. It also shows
that alignments with good spatial fit are not necessarily the best guess for actually cor-
responding surface sites.
In terms of the median across subjects, thickness-based registration settled approximately
at its final result at less than 10 iterations. Across all subjects, less than 100 iterations were
sufficient. This is not the case when using the MR ground truth for the thickness overlay.
Since there is no prediction error on the thickness in this case, very accurate registration
was possible. After getting the rough alignment right, the refinement tended to require
more iterations than pure surface-based registration. This is also reflected when looking
at the number of subjects for which the thickness supported registration was faster: 13 of
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30 for the MR, 26 of 30 for the A, and 22 of 30 for the NBH case. It seems that the higher
the prediction accuracy, the more iterations are required to reach the final solution.
This suggests that there are two effects. First, tissue thickness information helps to get the
rough alignment faster, and, second enables a more accurate registration when admitting
more iterations for refinement. It seems reasonable that the latter effect can only have an
effect if the prediction error is low enough and does allow for this.

Relevance and Scaling of the Tissue Thickness Tissue thickness was weighted by
a factor of fac = 15 for registration exploiting the MR ground truth. For the A and NBH
cases, factors fac = 8 and fac = 15 were tested first. If they did not achieve satisfactory
results, fac was then increased in steps of 10 (i.e. 25, 35, 45 . . .) until the average error on
a small subset of transformations fell below 1 mm. If this was the case, fac was set to this
number for final evaluation. Then the full evaluation across 5,000 random movements
was carried out. The average weighting factor for the A case was 24.2 (minimum 8, ma-
ximum 125), and for the NBH case 44.8 (minimum 8, maximum 125). This indicates that
for the NBH case a higher weight on the tissue thickness was required to achieve similar
errors. This supports the earlier argument. The higher prediction quality for this space
allowed for a higher weight on the prediction output to achieve better registration results
even on a smaller patch.
For the first five subjects, fig. 5.6 shows how the registration error for the feature spaces
behaved when changing the scaling factor. Several observations can be made. First of all,
the reduction in the total number of data samples is visible for pure surface registration
with the remaining points from the NBH space. Second, when directly using the MR seg-
mentation for tissue support, the registration error converges to zero for higher scaling
factors. This is not necessarily the case at fac = 15 already. The predicted thickness does
not show this behavior due to the prediction errors. For all subjects there are larger scal-
ing factor intervals, for which the registration errors fall below 1 mm. For four of them,
there are also regions where the NBH error undercuts that of the A space. This happens
due to the more accurate thickness estimate and in spite of having less points in the 3D
cloud. For subjects 2, 4 and 5, tissue support outperformed pure surface registration. For
the other two, the error was at least similar and in any case was found to fall below 1 mm
for a wide interval of scaling factors.
On average, tissue support led to an improved registration error for 29, 23, or 28 of all
30 subjects (cases MR, A, and NBH). For all subjects with a mean registration error of
more than 1 mm before, tissue support pushed the error below this limit (MR: 14 , A: 13,
and NBH: 20 subjects). Note that there is a higher number of subjects for the NBH case,
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Figure 5.6: Scaling the tissue thickness for changing its relevance in the registration process – case
study on five subjects. For each subject the scaling factor fac was varied between 0 and 150.
The behavior of the RMSE for these different factors is presented in one plot per subject. The
green line denotes the 1 mm RMSE limit and illustrates for which scaling intervals the red
graphs fall below this threshold.

because the feature extraction method required discarding many points from the point
cloud. This makes surface registration more difficult as mentioned before. As a result,
more volunteers exhibited mean registration errors above 1 mm, which were however all
pushed below this limit by using tissue thickness patterns.
Overall, satisfactory results were achieved with scaling factors between 30 and 50 in most
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Figure 5.7: TRE comparison for subject two (male, skin type II). A: surface registration without,
and B: surface registration with tissue support.

cases. The choice, however, should depend on the prediction errors for the tissue thick-
ness. For most subjects higher scaling factors (up to 100 or more) can be considered a
good choice, once a low prediction error can be achieved as for the NBH space. The
more 3D points are available, the more the requirements for the prediction error can be
relaxed.
Finding the optimal scaling for each subject can be time consuming, but can be con-
sidered as a question of computational power available.

Target Registration Errors (TREs) Finally it will be investigated how the surface re-
gistration error translates to targets in the brain. Figure 5.7 and fig. 5.8 illustrate the TREs
for subject 2 and subject 5 (male and female, respectively). The registration errors were
computed for the A feature space and equivalently for pure surface registration. Space
A has been used for the same reason as before: It constitutes a conservative scenario in
terms of tissue thickness prediction error, and does not reduce the number of points in
the point cloud due to the way features are extracted as much.
The registration process happens at the forehead, which is the bottom part of each plot.
The TREs depend on the distance from this forehead site (acting as a “lever”). In ad-
dition, misregistrations occur along the frontal skin-to-air transition. This frontal part
describes a curved surface. It therefore spans a circle in each slice resulting in something
like a blurred rotational center in the middle of the brain (in fact it has a cylindrical shape
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Figure 5.8: TRE comparison for subject five (female, skin type III). A: surface registration without,
and B: surface registration with tissue support.

along the longitudinal body axis). All connecting lines between the registration site at
the forehead and the intracranial target (the levers) roughly intersect here. The location
of this center depends on the shape of the head. It is the location where the lowest TREs
reside. These can in fact be lower than the actual registration error on the surface. Isolines
for the TRE form ellipses around this area. Irrespective of misregistrations on the surface,
voxels in the center would not suffer from large deviations from their true position. The
opposite is the case for targets at the back of the head, where misregistrations are sup-
posed to have the highest impact. This is apparent in the plots.
When comparing the results with and without tissue thickness, it is obvious that the error
interval for the former, covers only a limited area in the plot of the latter. Most regions
suffer from by far larger errors the extent of which depends on the subject.

5.3 Conclusions

This chapter was concerned with the interaction between the acquisition of supportive
structural information, one the one hand, and its benefits for surface registration, on the
other hand. The findings of the two previous chapters were used to provide a first proof
of concept for the central motivation of this work: Accuracy and robustness of surface
registration can be improved by providing additional tissue thickness information.
In the first subsection, a testing concept was introduced. By using simulated motion on
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real world data, an exhaustive analysis for the space of possible motion trajectories was
made. The actual motion parameters for each random movement were exactly known
for reference. Thus, the registration performance can be compared by average point-to-
point distances between the original, i.e. the desired, and the re-registered position of
the scanned patch with respect to the reference surface. Note that this overcomes the
requirement of somehow comparing entire transformation matrices without decoupling
translational and rotational effects. Errors in one of them may entail deviations in the
other, since they are all optimized simultaneously. The chosen RMSE and TRE errors are
capable of covering both, translational and rotational errors in one measure.
Finally, pure surface registration was compared to structure-supported registration. Be-
nefits were evaluated and discussed. Special concern was directed to the interaction
between imperfect tissue thickness prediction and the registration error. This was in-
vestigated based on registration experiments which exploited predicted tissue thickness
measures from the spaces A and NBH. The results were compared to the ideal case, where
prediction would be perfect, i.e. directly yields the MR ground truth. Discussions were
extended to possible intracranial tumor sites by introducing the TRE.
Overall, the findings of this chapter answer RQ 3: Does head tracking gain from incor-
porating tissue thickness information? The answer is yes. Detailed conclusions on the
two sub-challenges raised by RQ 3 will be given in the following.

• RQ 3.1: Where are concrete benefits for standard matching algorithms?

Most importantly, additional structural information helps to resolve the corres-
pondence problem in the registration process. This is to identify corresponding
pairs of points between two surfaces before performing the least-squares op-
timization on the transformation matrix. In the 3D space of spatial coordinates,
ambiguities may arise if the surfaces are lacking prominent landmarks which
can be resolved with sufficient detail. Points with the smallest Euclidean dis-
tance are not necessarily the best guess for corresponding points.
Tissue thickness was found to tackle this problem. It adds a fourth dimension
to the 3D space. Therefore, spatial similarity as a criterion is qualified by addi-
tionally considering the conformity in terms of local patterns of tissue thickness.
Two points can only be considered as corresponding if they also agree in terms
of their thickness value. The presented results confirm this effect. For pure
surface registration, the registration error has not been found to be randomly
scattered in an interval. Instead, centers of accumulation, i.e. local minima,
were identified over a certain interval. This interval may cover several milli-
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meters and for some subjects even errors in the low centimeter range. This was
mainly the case for female subjects, whose scans had a tendency to exhibit less
prominent spatial characteristics.
For tissue supported registration, these effects were less dominant. The registra-
tion errors were smaller and the aforementioned error intervals were narrowed
down. Local minima do still exist, but tend to be closer to the correct match.
This is also explicit in the quantitative results of table 5.1. Registration errors
were lower with than without tissue thickness. Moreover, the I90 was always
close to the average error. This was not the case for pure surface registration.
This confirms the discussion about the error interval. Pure surface registration
is more prone to outliers in the registration error, while outliers are reduced to
a minimum when providing thickness information. It was also shown, that less
head motion does not necessarily protect from these outliers.
These evidences show that tissue support not only leads to smaller errors in
an absolute sense, but also improves the robustness of the registration process.
Elaborations on the TRE demonstrated that these positive effects are even more
important for tumor sites at the back of the head or generally far away from the
registration site at the forehead. Nevertheless, intracranial regions have been
found where misregistrations have minimal impact. Registration errors may
partly even undercut those on the surface.
Finally, the convergence rate for a rough alignment was in most cases found
to be faster when considering tissue thickness rather than only spatial informa-
tion. If the accuracy of the thickness prediction error also allows a more precise
alignment, extra iterations will lead to a refined registration. The number of it-
erations may then slightly exceed these for pure surface registration as it was
the case for roughly half of the volunteers here.

• RQ 3.2: Which impact has imperfect data on these benefits?

It was shown that tissue thickness predictions always generate imperfect recon-
structions of the thickness patterns. These prediction errors could – in the worst
case - lead to misleading correspondence assignments. These, in turn, could
have delicate effects on the optimization of the best-fit transformation matrix.
The registration process is typically iterative in its nature. Flaws in the optim-
ized transformation matrix of previous steps may therefore corrupt the entire
process of convergence. This is particularly the case for the rotational paramet-
ers.
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Nevertheless, thickness reconstructions from the two feature spaces A and NBH
were still found to provide sufficient support for the registration error. The av-
erage of the error was always below 1 mm. For all subjects with an error of more
than 1 mm before using tissue support, the average was pushed below that limit
after using it. On the level of all random transformations, more than 98 % of all
cases were on average pushed below 1 mm.
The MR ground truth case improved the mean error of pure surface registration
by a factor of 29. Compared to that, the reconstruction of space A achieved a
factor of 5.6 and that of space NBH a factor of 7. This leads to the conclusion,
that the benefit is still there but less pronounced. To achieve optimal results,
the scaling factor was required to adjust the relevance of the thickness measure
within the registration process. Particularly for space A, a smaller range of scal-
ing factors led to improvements. They tended to fall below those identified for
the NBH space data.
Depending on the given thickness gradients of a subject, prediction errors of
less than 0.25 mm would be recommended as a rule of thumb. Ideally, errors
would fall below 0.15 mm as for the NBH space, where registration also benefits
from a smoother reconstruction of the thickness pattern. Nevertheless, subjects
exhibiting only little thickness variation on the forehead, may require more ac-
curate predictions than subjects with substantial variation within the pattern.
This dependency is somewhat covered when relating the prediction errors to
the STD of the corresponding MR target labels. For the isotropic Matérn kernel,
the median value of this relative prediction error across all subjects was 43.0%
for the A space, and 27.3% for the NBH space.
Neighborhood features led to very promising results when considering that the
total number of points available on the surface was substantially reduced. For
pure surface registration, on the contrary, this led to a decrease of the registra-
tion performance.
A direct comparison to the state-of-art scanning systems described in sec. 1.2.2
has not been made yet. This direct comparison would be essential and neces-
sary, once the functional characteristics of the prototype used here have been
transferred into a faster clinical prototype. Furthermore, the commercial device
from a clinical cooperation partner is required. Nonetheless, the literature re-
view in sec. 1.2.2 demonstrated that surface tracking can be reliable on average.
However, also registration outliers have been reported. As a matter of fact, this
has also been observed and reproduced for pure surface tracking here. For these
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outliers, it was demonstrated that tissue thickness support provided a remedy.
This promising indirect comparison suggests that the method proposed in this
work could hence also tackle the outliers reported in those studies.
Overall, tissue thickness support is most promising when (1) unambiguous spa-
tial characteristics of the scanned surface are rare, (2) available landmarks can-
not be sufficiently resolved to achieve the desired registration performance, or
(3) the scanned patch is rather small with only very little points available. Al-
though this has not been tested, the findings suggest that registration may also
be more robust, if facial movements slightly deform the surface. The best case
scenario for registration involves many points per surface and a smoothly re-
constructed pattern of tissue thickness, which was predicted with an error of
less than 0.15 mm.
Tissue thickness support has benefits for several clinical scenarios. It can either
provide a cross check or a refinement for pure surface matching, even if the
scanning approach used a full head scan in first place. Moreover, the proposed
method would be ideal for cases where limited access to the patient’s head sur-
face is given. Many scenarios are imaginable here, whereas the most relevant
is probably given by different preferences for thermoplastic mask systems from
different clinics. Many hospitals and guidelines still prefer the conservative ap-
proach of having as much of the patient’s head as possible covered by the mask.
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This final section will conclude the main outcome of the presented work. It will link back
to the conceptional proposal described in sec. 1.3 and assess the findings in the context
of this overall goal.

The proposal suggested to extend common surface registration from purely spatial
matching by additional information about the surface. Since the surface is scanned
optically with collimated laser light, backscattered light is an obvious source for this
additional information. Tissue thickness on the forehead can serve as such information
under the assumption that changes in tissue thickness will influence the local character-
istics of reflected light. Given this relationship, the local tissue thickness can be inferred
from the reflected light. As a label for each 3D point, it can support registration between
scans. The key is that an alignment has not only to agree in terms of spatial geometry,
but also in terms of the tissue labels.
Thus, the goal was to identify optimal conditions and a processing framework which can
generate these labels for incoming scans during a treatment session. Label prediction
will be based on a model obtained from data in the treatment planning phase (cf.
fig. 1.13). Tissue thickness could be extracted from the planning modalities such as CT
or MR. By mapping online scans in the planning data, the enhanced tracking concept
will hence help to ensure that irradiation during the treatment is always conform to the
planned dose distribution.

The three previous chapters studied the feasibility of this proposed concept in
terms of research questions defined in sec. 1.3. Chapter 3 presented simulations of
interactions between laser light and skin of varying thickness. Optimal parameters of
an optical systems were investigated which can be used for this purpose. Chapter 4
then evaluated data which was recorded with an accordingly designed first functional
prototype. The study encompassed 30 volunteers of different age, gender and skin type.
Processing methods suggested by the simulations were validated on real data. The final
achievement of this fourth chapter was a framework which uses feature extraction and
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statistical learning to accurately predict tissue thickness from optical backscatter. Finally,
chapter 5 investigated how this thickness affects the tracking performance when using
state-of-the-art ICP. The ideal benefit in case of ”perfect” prediction was addressed, and
based on that, how prediction errors would affect this result.

The following three sections will address conclusions for each of the general three
research questions. Afterward, an overall assessment within a broader context will be
given. Finally, ideas and challenges for future work will be discussed in the last section.
This includes suggestions for alternative fields of application for this method.

6.1 Optimal Conditions for Backscatter Analysis – Findings
from Simulation (RQ 1)

Wavelength The most important parameter is the wavelength of the laser light. To re-
ceive a maximum of information about the thickness of tissue, light is required to deeply
penetrate the skin. In this way, even changes in deeper tissue layers will affect a certain
proportion of photons. This includes substantial changes which may occur in the subcu-
taneous fat. In agreement with evidences in the literature, MCML simulation confirmed
that light in the NIR range is well suited for this purpose. This spectral band avoids the
high water absorption at higher wavelengths and constitutes a good compromise with
respect to the absorption caused by melanin, oxy- and deoxy-hemoglobin. Therefore, a
wavelength of 830 nm was chosen for experimental validation.

Tissue Thickness and Optical Backscatter Changes in tissue thickness were found
to have two main effects on the optical reflection. First, thicker tissue will reflect less light
than thinner tissue. This was also observed when changing the incident angle of the laser
beam, which due to the anisotropy factor similarly prolongs the path length of photons
in the tissue until they hit the bone. Second, a global change in tissue thickness typic-
ally originates from a superposition of different changes in different layers. Therefore
photons with dissimilar penetration depths are differently affected relative to some ref-
erence thickness. This will change the shape of the reflected beam profile on the surface.
The simulation results also reflect that. In the conservative approximation, only the fat
layer, but no other layer changed in thickness.
This gives rise to different behavior of backscatter intensities at different areas in a cam-
era image when tissue thickness is changing. It suggests that for orthogonal irradiation,
pixel intensities in ROIs concentric around the spot center show different behavior along
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the radius from the spot center to the sides of the image. Contributions to this effect also
arise from the fact that light which does not deeply penetrate the tissue will hardly reach
areas far away from the spot center. In contrast, photons reaching the bone surface are
more likely to be scattered to these areas.

Informative Features Thus, seven or later five ROIs in the form of concentric rings
have been defined around the spot center. Features have been defined as the accumu-
lated pixel intensities within each region. Their behavior for changing thickness is highly
correlated due to the aforementioned global intensity changes and similar trends. Never-
theless, the feature space in fig. 3.17 also shows that the detailed functional relationship
with respect to the thickness is different. This supports the argument about the second
effect from the last paragraph. Nonlinear behavior is particularly seen for ROIs further
away from the spot center. This was found to be a superposition of two effects. First, the
thicker the skin, the more light is likely to be scattered into the outer regions. At the same
time, the likelihood for absorption grows, since the traveling distance of the photon is
longer. The first effect is dominant for ranges of thinner tissue. The second effect seems
stronger for tissue which is already quite thick (thicknesses starting from 2-3 mm). The
expected tissue thickness range on the forehead suggests that the second effect will be
more dominant.
A general conclusion from this is, that nonlinear models are required to predict thickness
from backscatter. This is even more true when effects of changing incident angles have to
be considered as well. Features may of course be extracted from differently shaped ROIs
such as stripe-shaped regions or when only taking half of the image due to artifacts. Nev-
ertheless, it should be considered that this will tend to mix up effects from light reflected
from upper as well as deeper layers. So, although the behavior is strongly correlated,
the function in the feature space may turn into something more complicated. This may
favor slightly different learning models and/or more training data. Nonetheless, such a
consideration may be relevant when changing the light source to e.g. line lasers.
The relative proportion of photons with large tissue penetration depth is higher in the
outer ROIs (cf. fig. 3.11). This means, there is also more information about a global
change in tissue thickness available. Other ROIs are expected to contain more effects
actually originating from regions near the surface. This finding may be compromised
in practice. While the relative information content is higher further out, the signal also
rapidly becomes weaker and more sensitive to noise. Considering both factors, SNR and
relative information content, suggests that ROIs at intermediate distance will show the
most promising tradeoff.
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Imaging Sensors and Laser Power To fully exploit the information content and to op-
timize the SNR, laser power should be adjusted such that it drives the camera sensor into
saturation at the center peak of the spot. This will allow the analog-to-digital convert-
ers of the sensor to assign as many quantization levels as possible also to small intensity
changes in the spot profile. High NIR sensitivity of the sensor element is recommended.
In the conservative scenario of having only thickness variance caused by the subcu-
taneous fat layer, it was shown that 14 bit converter resolution can resolve most of the
expected thickness changes. To observe these changes with low noise, averaging across
many pixels in one ROI is also beneficial. That has to be taken into account when defining
the number of ROIs. Practically, it was one reason for selecting five instead of the simu-
lated finer ROI spacing. It is always a tradeoff between averaging out information and
doing the same with noise. This also implies that a highly resolved spot image is prefer-
able to a large image that maybe contains several spots. This can be achieved with an
in-beam setup, where the optical camera axis and the laser beam coincide. Simulations
have not shown any prohibitive disadvantages for using in-beam instead of off-beam
assemblies.

Limitations Simulations are valuable in that general disturbances such as the incident
angle can be studied one by one. It has been found that this superposing effect will
require compensation and a carefully chosen, most likely multivariate, feature space
which possibly exploits prior knowledge in addition to optical features.
Nonetheless, simulations never perfectly cover the real-world scenario. As a short-
comings of the performed simulations, the following things have not been considered:
non-planar boundaries between tissue layers, photon-photon interactions, muscle tissue,
changing perfusion, oxygenation or pulse, or lateral tissue inhomogeneities such as
freckles, moles, sweat, hair etc. Strictly speaking, the simulation is also only valid for
average Caucasian skin. No influences arising from skin type, age or gender have
been modeled. Some of these points can surely be integrated in more sophisticated
simulations. However, directly proceeding to experimental validation seemed more
reasonable, given that many central intuitions were already obtained from the chosen
simulation approach.

6.2 Tissue Thickness Estimation (RQ 2)

Ground Truth The supervised learning problem of inferring tissue thickness from op-
tical features requires a reliable ground truth. For this purpose, MRI scans have been
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obtained from all 30 volunteers in the study. The scans had an in-plane resolution of
0.1025 mm, which is also approximately the resolution of the tissue thickness as the slices
were chosen to provide cross sections through the skin. Prediction errors of the machine
learning can only be reliably estimated down to this threshold. Smaller quantities might
be obtained, but should be understood such that the error is indistinguishable from the
resolution of the ground truth.
Furthermore, the segmentation for the thickness measure accuracy was estimated to fall
below 0.2 mm from manual expert delineation. However, a large proportion from that
may arise from intra-operator variability. Moreover, systematic instead of completely
random segmentation errors may not be noticed by the machine learning. Instead, sys-
tematic errors might be included into the model in case of any spurious correlation with
the features. Since the segmentation algorithm is based on rules, those systematics can-
not be ruled out.
This may particularly have relevance when including neighborhood features as they rely
on smooth changes within the tissue. Strictly speaking, these may also originate from
systematic errors. Nevertheless, surface matching to the planning ground truth will rely
on the same segmentation which definitely relativizes this argument.
Finally, ethical standards did not allow using CT in this volunteer study. Neverthe-
less, CT images are much more common and available for treatment planning in FSRT.
Therefore, it is worth exploring the possibility of employing clinically used CT or MR
sequences as a ground truth. Technically speaking, automatic segmentation of CT data
may be easier then processing MR data which is typically richer in textures. Lower voxel
resolutions could however act as a restriction. Note that lower resolutions are not neces-
sarily a problem. They lead to a more coarse, smoothed view on the thickness patterns.
As long as a reproducible pattern can be observed, it may serve as an additional land-
mark. A predictive model might even require a less complex functional hypothesis.

Backscatter Features and Disturbances The negative correlation seen between
features and tissue thickness in the simulations was experimentally confirmed. Skin
heterogeneity caused by blood vessels or disturbances such as the incident angle were
found to influence this correlation. Thus, the correlation could only be shown as long as
the forehead anatomy of the volunteer permitted it. Generally, the incident angle was
also found to be negatively correlated with the backscatter features. This implies lower
features at higher angles, i.e. the further the incidence deviates from the orthogonal case.
This changes the feature space appearance in that thin skin could still correspond to low
backscatter if the angle was far from orthogonal. This blurs the correlation coefficient
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between features and thickness.
In agreement with the argument before, ROIs 2 and 3 (about 2.5-7.6 mm from spot center)
tended to exhibit the most prominent thickness patterns and were preferably chosen by
SFS. Signals in ROI 5 were weaker and more prone to external influences such as light
sources or artifacts. In contrast, ROI 1 provided only minor information, since pixels
were driven into sensor saturation and huge parts from the backscatter originate from
upper tissue layers.

Investigations on angle compensation techniques led to the conclusion that its ef-
fects cannot be fully removed by pre-processing methods. The interaction is too complex
and pre-processing options did not result in consistent improvements. Most promising
was the extension of the feature space to six dimensions. This adds an estimate of the
incident angle as prior knowledge to the backscatter features.

Prediction Error and Prior Knowledge The error for predicting tissue thickness was
tested for three feature spaces: (1) only backscatter features (ROI), (2) ROI features
plus the incident angle (A), and (3) all of before plus the backscatter information from
neighboring spots (NBH). For all of them, SVR worked well as a learning algorithm and
confirmed the impression obtained from earlier simulations. However, as a conclusion
from the results in chapter 4, GPs should be recommended as an alternative learning
algorithm. They showed superior performance in terms of prediction error and exhibit
several convenient properties:

• Unbiased hyperparameter determination using maximum a posteriori estimates
from the NLML.

• Avoidance of time consuming grid search.

• straightforward ARD by introducing scaling factors as additional hyperparameters.

• As for SVR, there is a kernel-based tuning of the functional complexity to fight
overfitting.

• Uncertainty measures for every prediction given by the probabilistic output.

While indeed the ARD approaches yielded the lowest errors, isotropic alternatives of the
same kernel did not stay far behind. Since the computational complexity is lower for
isotropic approaches, the isotropic Matérn kernel was identified as the best comprom-
ise overall. On average, tissue thickness was predicted with an RMSE of 0.21 mm (ROI),
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0.20 mm (A), and 0.12 mm (NBH). In a pair-wise comparison, the incident angle led to
better prediction errors than only using ROIs. There were only very few exceptions such
as subject 30 (female, skin type V), whose RMSE worsened for some frames. This was
caused by rather poor triangulation results leading to a corrupted angle estimate.
Substantial improvements were then achieved when adding neighborhood features. This
adds spatial information of the scanning grid to the feature space. With only ROI features,
the GP maps from an intensity space to the thickness and is not aware of spatial prox-
imity among the triangulated spots. The reconstructed tissue thickness pattern from the
NBH space appears smoother and without abrupt changes between close by samples.
Prediction accuracy did not significantly depend on the skin type. Most likely this is
due to the skin type not being tied to the underlying problem. The classical Fitzpatrick
scale rather aims at UV light and therefore distinguishes between tissue characteristics
relevant for lower wavelengths. There was also no significant gender difference. Nev-
ertheless, an existing gap between errors of male and female subjects still suggests that
investigations on a larger subject group are needed to further explore this.
Finally, it was found that predicting tissue thickness across different head poses is a
harder problem. Errors are typically higher than for CV validation on the same scan.
Evidence was found for two possible reasons. First, the overlap between the two surface
patches may be too small in some cases. So, model training on one patch does not result
in a sufficient coverage of the feature space to properly predict the second patch. The data
from the second patch would partly be perceived as unknown behavior. Second, even if
the same area on the forehead was scanned, errors can still be elevated. Different views
of the scanning unit onto the surface were found to possibly cause this difference. Dif-
ferences of the incident angle were correlated to increased errors. Both evidences require
more training examples – from different scanning perspectives – to sufficiently sample
the feature space. Investigations of this kind were not possible with the functional proto-
type used in this work (one scan required 20 s with a couple of minutes ”burn-in” phase
preceding for initializing triangulation [312]). They will be feasible with the currently
developed clinical prototype (4 s per scan, without triangulation ”burn-in”, status sept.
2015).

6.3 Surface Registration using Tissue Thickness (RQ 3)

Testing Scheme The testing scheme started from marker-based registration between
NIR scan and MR ground truth. The same matching was used for GP model building.
Therefore, it constitutes a reasonable choice as the reference position for tests on registra-
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tion performance (cf. fig. 5.2). From there, 5,000 head movements were simulated within
intervals of ±20 mm translation and ±20◦ rotation in each axis. The re-registration per-
formance with and without tissue thickness then constitutes a good measure to evaluate
a proof of concept for registration exploiting tissue thickness. Since the design of soph-
isticated tracking algorithms was beyond the scope of this work, state-of-the-art point-
to-plane ICP was used for this. Advantages of the simulated motion concept include
that:

• The ground truth is known by means of the marker-based reference registration.

• A comprehensive space of possible movements can be easily covered.

• Both, translational and rotational errors of the transformation matrix can be covered
in a single error measure as defined by eq. 5.3.

Enhanced Surface Registration Results of the registration experiments supported the
claim that surface registration is prone to local minima, i.e. geometric ambiguities due to
similarities on the surface. The iterative process of registration was found to get trapped
in them – even when the upper bounds for the random motion were reduced. As a matter
of fact, this is in line with relevant background literature, where studies – even when us-
ing full-face scans – also reported registration outliers. Spatially, these local minima were
more widely spread for pure surface registration than for the tissue enhanced alternat-
ive. This indicated better robustness against outliers when tissue structures are available.
This is also supported by the corresponding I90 values, which were relatively close to the
mean registration error. This is not the case for pure surface registration.
The tissue thickness used for registration was generated from either (1) the MR segmenta-
tion, or cross-validated predictions arising from (2) the A, or (3) the NBH space. Averaged
across all transformations and subjects, an improvement of factor 29, 5.6, and 7, respect-
ively, was achieved. With regard to the results for pure surface registration, this implies
on average sub-millimeter accuracy on subject level (cf. fig. 5.5). This is in agreement
with the overall goal of this work. While outliers with average errors above 1 mm were
observed for pure surface registration, in fact not a single subject had average registration
errors above this threshold when switching to the enhanced concept proposed here.
Setting the registration errors into the context of the prediction error, permits recom-
mendations of how accurate the statistical learning should ideally be. Generally, predic-
tion errors of less than 0.25 mm are recommended as a rule of thumb. Depending on
the prominence of the forehead patterns, this may of course slightly vary. For a subject
having very prominent gradients due to muscles, head shape or vessels, higher errors
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can be acceptable. This dependency can be somewhat included into the rule of thumb
by expressing the prediction error as a proportion of the corresponding MR-label STD.
The median of this measure was 43.0%, when applying the isotropic Matérn kernel to
data from the A space. Equally, it is also important how the error is spatially distributed.
The rule of thumb is based on randomly scattered errors across the forehead. In case of
very clustered errors, i.e. some systematic misinterpretation, the impact on the registra-
tion performance could be more negative. Therefore, lower prediction errors are always
desirable, particularly if the scanned area or the number of scanned points is small. This
can be seen in the NBH case where most errors were below 0.15 mm. Here, the isotropic
Matérn kernel yielded RMSEs corresponding on average to only 27.3% of the MR-label
STD.
Conditions in which tissue thickness provides particularly valuable benefits are:

• The lack of unambiguous spatial characteristics of the scanned surface.

• An insufficient capability to resolve available landmarks within the desired track-
ing accuracy.

• A small area or only a few hundred points are available from the scan.

Although not directly investigated here, one may speculate that especially the compens-
ation of rotational head motion may benefit from these additional landmarks. For the
head, rotations belong to the rather poorly fixed degrees of freedom, particularly when
only a forehead patch is scanned.

6.4 Overall Assessment of this Work

The last three sections explicitly discussed the results obtained in this work in detail
and with respect to the research questions. The next paragraphs will provide an overall
assessment in a broader context. A central question is to which extent the presented
results already fulfill the requirements of the proposal illustrated in fig. 1.13. Which
criteria of a clinically applicable concept are already met and what are open issues.
Naming these will then lead to the next section presenting future work.

The goal was to develop a concept for monitoring head motion during treatment –
marker-less and based on surface registration. This surface registration should be
made more robust and accurate by measuring additional landmarks from the optical
backscatter to support the spatial information. This has been achieved. As a concept,
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it was shown, that NIR optical backscatter from tissue can be used to train a statistical
model. This model can then be used to predict patterns of tissue thickness which have a
positive effect on the tracking performance. With prediction errors of mainly less than
0.25 mm, it was shown that the number of outliers is reduced and surface registration
errors fall into the sub-millimeter range. Convincing results were obtained for CV where
the training data was capable of sufficiently modeling the function within the feature
space. This demonstrates the feasibility for small deviations, i.e. little motion, from the
head pose in which the model was trained.
In a clinical scenario the training data will be obtained during planning and maybe
within the simulator. The model is then applied during treatment later on to estimate
thickness patterns and to use them for tracking. The agreement between planning and
treatment in terms of patient and device alignment would ideally render the tested CV
scenario as realistic. One can imagine a setting where the patient and the optical tracking
device are aligned to the isocenter of the LINAC as defined during planning. Then
deviations from these positions need to be detected.
Nevertheless, alignment may not be perfect in all cases and larger motion may also be
relevant. An example would be the initial repositioning of the patient during treatment.
Therefore, prediction errors between head poses were also explored in this work.
Between the three head poses of each volunteer, head motion mostly in the centimeter
range and rotations of several degrees occurred. The results suggest, that insufficient
overlap of the data within the feature space makes it harder to keep the prediction errors
in the aforementioned range.
Nonetheless, the results obtained were very promising as they indicate that including
more relevant samples into the training set might resolve the problem. This was
indicated by prediction errors across poses which improved, when the same area under
a similar scanning angle was covered within the training data.
As a conclusion, strong evidences were given that the concept works under little
deviation from the training pose (a few millimeters and degrees). For larger deviations,
promising results and recommendations were developed. To further strengthen the
evidence (1) a large scale clinical study with real patients will be necessary, and (2) more
training data has to be acquired for model building on patient level. Both points will be
possible with the currently developed clinical prototype having a faster scanning speed.

Another important aspect is given by the MR ground truth. The tracking concept
relies on supervised learning and requires target labels, i.e. a tissue thickness reference.
In this work, a possible approach was presented, implemented and validated. It consists
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A: Example marker spheres that contain liquid and can
be observed by volume imaging and the scanning

prototype.

B: Five possible placements for at least 3 markers which
are unlikely to interfere with the scanning process.

Figure 6.1: Suggestion for replacing the initial registration between MR and NIR based on bite
markers. Since the marker is only needed once, sticky spheres could be used instead.

of high resolution MR scans and a bite-marker-based matching thereof to optical scans.
This approach is feasible, but more practical solutions may exist. The MR sequence
is not clinical standard and would entail more costs and additional time effort in the
clinic. Possible alternatives include the clinical CT or in some cases T1 MR scans used
for treatment planning. For model adaptation the On-Board Imager® CBCT can also
be considered. The resolution is generally lower, but can be increased – particularly
in-plane. As for CT scans, this always entails a tradeoff between accuracy, radiation
dose and time for acquisition. Nevertheless, the usage of lower resolution images is not
precluded and needs to be evaluated.

The bite marker was used for initial registration to match thicknesses and NIR fea-
tures. Head motion could also be tracked and removed from the data. This bite block
marker and the tracking camera (Atracsys accuTrack 250) are not necessary at faster
scanning speeds. They are of course not part of the marker-less tracking concept in
any way. Here, it was only used for better experimental validation. Therefore, the bite
marker can be replaced by simple sticky marker spheres as shown in fig. 6.1A. These
are chosen such that they are visible within the reference volume scan and can be seen
by the triangulation camera of the scanning prototype. This allows for an easy and less
complex initial registration. The transformation pipeline in fig. 4.10 and an additional
CT scan of the marker would be obsolete. The sticky markers are only required once for
model building. The patient would be equipped with at least three of them (cf. example
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Table 6.1: Comparative overview of different target localization approaches updated by including
the concept presented in this work.

CBCT &
stereoscopic X-ray

marker-less
optical tracking

enhanced marker-less
optical tracking

Imaging
Modality

kV X-rays optical optical

Imaging Dose low-medium none none
Detection
Capability

inter- and limited intra-
fractional

inter- and intra-
fractional

inter- and intra-
fractional

Registration volumetric surface
structured

surface
Patient
Comfort

mask immobilization
potentially without

immobilization
potentially only

head rest
Accuracy high medium medium-high
Imaging speed slow-medium real-time real-time
Operating
Expense

costly, but minimal im-
pact on workflow

inexpensive and low
impact on workflow

inexpensive and low
impact on workflowa

a Potentially. Further evaluation on that has to be included in future work. See next section.

in fig. 6.1B) before he undergoes the planning CT. After CT and/or maybe another
reference image, the NIR scans for model building are acquired. After this, the markers
can be removed. There is no need to wear them again.

Overall, the feasibility of a novel tracking concept in radiotherapy was success-
fully demonstrated. To the author’s knowledge, it is the first of its kind. Similar to
table 1.3 at the very beginning, table 6.1 gives a comparative overview, now updated
by including the new concept. Main concern and also major contribution of this work
was the key feature of this concept: the exploitation of optical information to obtain
supportive patterns of tissue thickness for enhanced tracking. A proof of concept has
been presented. As a main conclusion, it can be said that the concept is promising for
related applications like gating and/or online motion compensation. It is capable of
reducing outliers and to generally decrease the surface registration error.
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A: Data acquisition for building individual patient
models.

B: Patient model assignment according to skin type
related data pool.

Figure 6.2: Two future recommendations involve the process of model building. On patient level
data should be recorded by sweeping the setup around the head while scanning. A work-
around for individual models would involve unsupervised learning and subject classifica-
tion into one set of available models.

6.5 Future Work

To fully validate the concept such that it efficiently adapts to a typical clinical setting,
more detailed insights are required. First of all, the study conducted here comprises
only 30 volunteers. More comprehensive investigations are only possible on a larger and
more realistic data basis. Thus, a larger study in a typical clinical environment would
be required. Apart from the advantage of realistic surroundings, data will also be re-
corded from real patients who underwent treatment planning. Further on, the proposed
prototype could be compared with commercially available surface tracking systems in
the clinic. This would also include a comparison between the tissue supported forehead
scanning and the classical full-face scan. Immobilization using an open-face mask would
serve this purpose. Only such an investigation, where both systems run simultaneously,
allows for a definitive statement about whether outliers of the classical approach (as re-
ported by peer studies) can be reduced with the proposed concept. For this investigation,
scanning speed and data acquisition have to be faster. Issues discussed in the previous
section need to be taken into account. This also involves a prototype to isocenter calibra-
tion.
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Data Acquisition First, the results for predicting tissue thickness across different head
poses have shown, that data for building the statistical model needs to be carefully ac-
quired. More data from different scanning perspectives is required. Figure 6.2A illus-
trates a possible workflow where the scanner is swept around the forehead and N scans
are acquired: A patient would be equipped with sticky markers as described before.
Then he would undergo CT or possibly MR imaging. Before removing the markers, the
patient is placed on the simulator couch and the scanning device is swept around the
head while acquiring optical scans. These are then registered to the volume reference
and the statistical model between tissue thickness and NIR features can be built. For this
model building, sparse approximation or clustering techniques will be of importance to
reduce computational complexity.
Second and beyond patient level, one may think about using statistical models across pa-
tients. This would save time and costs in the clinic, since no individual model is required
for a patient. As illustrated in fig. 6.2B, the patient will be classified into one existing
model class and the most suitable model will be selected and can be employed off-the-
shelf. Reference scans are not required from new patients, once the data base has been
generated. No marker equipment of any kind would be necessary.
Different strategies are imaginable. The data pool can be viewed as a dictionary, where
each patient model in the data base is one class. A new patient is assigned the model from
another patient which is closest to the characteristics of the current patient. The other ex-
treme would be a unified model. One model is trained across all patients in the data
base. To cover all possible variations across patients this would require large amounts of
data. Finally, a compromise can be found. The data base can be clustered into groups of
similar models, e.g. according to their relevant skin type. Then, the patient is classified
into one of these groups and the group model will be used. This would require less data,
but might be still challenging for GPs.
Depending on the amount of data, artificial neural networks would also constitute an op-
tion [28]. They are capable of more efficiently dealing with large amounts of data. Only a
few weights instead of the entire covariance matrix need to be stored. The idea could then
be extended to deep learning architectures which require larger amounts of data. These
would also provide ways to optimize feature extraction and to identify more appropriate
data representations. Autoencoders constitute one example here [20]. Generally, the field
of deep learning has encountered several breakthroughs in the last decade [125], which
makes it usable and promising for this kind of application.
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Subject Classification Findings in this work have provided evidence that the
Fitzpatrick scale is not a suitable, yet very subjective measure for a relevant skin type.
Relevance is linked to the goal of distinguishing model characteristics in the context of
the work presented here. Other skin types and characteristics need to be explored and to
be assessed with respect to their relevance. This may involve optical, mechanical or other
physiological properties of the skin. Weyrich et al. built a huge skin reflectance data base
including 149 subjects of different skin types [322]. They further presented a setup [321]
which, in a similar or simpler way, could be used along with standard dermatological
means to characterize the human skin. Corresponding data based on skin reflectance
could be mapped to the statistical models which were acquired here. Correlations and
relationships can be evaluated to enable subject classification or to define a ”closeness
measure” with respect to existing models. Several studies in many different fields have
already investigated possibilities to model skin [10] or how to extract physiologically
relevant features for classification [286, 297, 342]. This includes spectral features and a
decomposition into components which partly resemble physiological characteristics such
as hemoglobin or melanin content. This may be interesting for monitoring quantities
other than tissue thickness – in other application fields – with the presented setup.

Feature Extraction Autoencoders have already been mentioned as a tool to optimize
feature extraction from the camera images. They are capable of taking a high dimensional
data input and of learning a compression to encode the most relevant information. Thus,
they can learn an optimal transformation between raw data and extracted features. Other
improvements may be closer to the current processing chain and can tackle its existing
weaknesses. One of them is given by the fact that the neighborhood features are not com-
putable for every point. For some points of the grid, some neighbors are missing which
would require them to be removed from feature set as well as the point cloud. This gives
away a lot of information and there is surely potential for improvement.
As one possibility, standard imputation methods from statistical learning can be evalu-
ated [66, 83, 267]. These tackle cases where feature entries in some feature vectors are
missing. Essentially, it is aimed at guessing optimal replacement entries to be still able to
use the entire vector. A large number of the approaches relies on various ways of inter-
polation.
A second alternative is given by extending GPs to a so-called multi-task Gaussian process
(MTGP) [32, 73]. So far, the GPs treated a single stream of multivariate feature vectors
to predict the tissue thickness. This is a problem once feature entries are missing. As a
workaround, MTGPs define several tasks, which are less strongly tied together but still
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correlated. The covariance matrix is extended by a correlation matrix. The tasks share
similar parameters for their properties, but are not required to be sampled at the same
feature instances. Therefore, missing values are not a problem. This would replace a
single feature vector with synchronous entries of ROI and NBH features by two or more
tasks. One task is given by the variation of the tissue thickness according to the ROI
features of the central spot. The second or the other tasks model the variation of the
neighborhood features in dependency of the ROI features at the central spot.
This is the analogue to recordings of two non-synchronized sensors over time. Time is
replaced by the ROI features of the central spot and the sensor outputs are the tissue
thickness and the neighborhood features (e.g. one task per neighbor location). Thus,
correlation between tissue thickness and neighborhood is modeled by the task interac-
tion and no strict availability of a neighborhood for each spot is required. In fact, the
correlation between tasks could be seen as a way of imputation as well.

Enhanced Tracking Concept This work did not aim at developing a dedicated track-
ing algorithm. This will be a matter of future work. It has to be investigated whether there
are better ways for incorporating the tissue thickness into the registration problem. The
elimination of the thickness weighting factor would be one desirable goal, for example.
Further on, a multi-step algorithm is imaginable. This could, for instance, allow for using
vessels or moles as artificial landmarks for pre-registration, if available. Enhancements
can also be attained by admitting further portions of the face with properties similar to
the forehead: Including e.g. the cheek bones could add more spatial information and
may also be eligible for the tissue thickness concept. Furthermore, the feasibility of hy-
brid approaches could also be explored. These may use both, surface information with
and without thickness information in a single registration problem. This would make
full face scans applicable.
Beside the exploitation of different options on the algorithmic side (e.g. non-rigid regis-
tration as done by Amberg and colleagues [5]), the concept as such could also be adjusted.
Motion monitoring over weeks may involve challenges induced by changes of the patient
anatomy. These changes may include long-term effects such as extreme weight loss or in-
stantaneous effects such as facial expressions during treatment. The first could be tackled
by online adaptation of the tissue model. This would also tie the model closer to the pa-
tient in case a general model was used. A possible modality, which can act as a reference
for the tissue thickness in this context, is the CBCT if used for re-positioning check. These
checks are not required in each session, since marker-less tracking could take over. They
are, however, useful as occasional, e.g. weekly, checks as some clinics suggest [202, 220].
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Furthermore, the tracking concept can be designed such that the bone surface is com-
puted from skin surface and tissue thickness. The thickness patterns can then be projec-
ted onto the bone surface, which is then, in turn, used for tracking. This can be more
robust against slight surface deformations and in parts also against facial expressions.
Comparisons between the bone and skin surface, possibly over time, could also detect
facial expressions such as frowning etc. A detection of these strong deformations can be
used for gating or to switch between bone and skin surface. A minor disadvantage of the
bone surface is that triangulation errors and tissue thickness prediction errors can add up
and compromise the accuracy.

Further Applications The idea presented in this work can be adopted in other fields
of application. First, the recovery of thickness patterns on the forehead could be used in
biometry. Benefits are imaginable in many fields. First of all, this would make it possible
to identify the FSRT patient on the treatment couch by comparing the thickness patterns
of the NIR scan and the tissue thickness from the planning CT or MR. This can at least
make the doctor aware of any discrepancy and help to avoid severe mistakes.
Second, the principle can be used for general contact-less patient monitoring. The backs-
catter does not only contain information about the tissue thickness, but also about other
vital parameters. These include heart rate, blood oxygenation, blood pressure all the
way to more abstract parameters such as arousal. Similar work has already been done by
other groups, e.g. for contact-less monitoring in the MR scanner [184] or in other scen-
arios [261, 308].
Another similar application is given by neonatal monitoring of newborns. In particular
for premature babies, contact-less monitoring is of high importance. First applications
for infrared thermography exist and there is a strong need for remotely recording other
parameters such as the aforementioned ones [1, 58]. Studies on measuring the blood
oxygenation of newborns via optical reflection have been shown to be remote but not
yet contact-less [57]. In this context, the developed data processing chain may be a good
start. The 3D surface reconstruction would not necessarily be required, but can have
advantages when dealing with motion. Contact-less monitoring is always sensitive to
motion, since it is not ensured that data comes from the same spot. Therefore, informa-
tion retrieval is aggravated. The knowledge about tracked 3D surfaces could solve this
challenging problem (known as bulk motion sensitivity [184]).
Finally, a last application is given in material testing. There are several applications where
products have to be checked with respect to cracks, pores etc. Among others, this is done
optically using e.g. optical coherence tomography or other means [131, 251, 280]. Ana-
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lyzing reflectance patterns could serve as a promising complement. This particularly
applies to the food industry where non-destructive and contact-less testing is required
[141]. In this context one can imagine that a manufacturer wants to detect irregularities
within his production line. Products can be classified into classes, quality parameters can
be predicted, but also one-class classification is imaginable. This would be related to the
field of novelty detection, where anomalies are detected if a set of features is unlikely to
be conform to the ”normal” standards [226].
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7.1 Volunteer Study

Table 7.1 lists the detailed subject information from all 30 volunteers. Subject numbers
agree with the ones used within the rest of this work.
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Table 7.1: Summary of the subject information. Age and skin type (I-VI) are given for the time of
the study.

subject age gender scorea skin type eye colorb hair color comment

1 27 m 24 IV 3 brown Caucasian
2 34 m 13 II 1 blond Caucasian
3 30 m 22 IV 2 brown Caucasian
4 35 m 14 III 1 brown Caucasian
5 34 f 14 III 0 blond Caucasian
6 34 m 14 III 2 dark blond Caucasian
7 31 m 23 IV 1 dark blond Caucasian
8 30 f 8 II 2 red Caucasian
9 32 m 26 IV 1 brown Mexican

10 29 m 16 III 2 dark blond Caucasian
11 29 m 22 IV 2 dark blond Caucasian
12 53 m 18 III 1 dark blond Caucasian
13 27 f 18 III 3 dark blond Caucasian
14 28 f 9 II 3 red Caucasian
15 29 f 7 II 0 red Caucasian
16 26 f 7 II 1 blond Caucasian
17 65 m 24 IV 2 brown Caucasian
18 28 f 29 IV 3 brown Caucasian
19 27 f 16 III 0 dark blond Caucasian
20 27 f 24 IV 4 black Chinese
21 24 m 31 V 4 black Indian
22 28 f 26 IV 3 brown Indonesian
23 25 f 10 II 0 blond Caucasian
24 54 f 21 IV 2 dark blond Caucasian
25 28 f 26 V 4 black Nepalese
26 30 f 23 IV 3 brown Arabic
27 30 m 21 IV 2 black Chinese
28 25 f 20 III 3 light brown Caucasian
29 29 m 26 IV 3 black Thai
30 29 f 30 V 4 black South African

mean 31.9 14/16 19 0/6/8/13/3/0

a Skin typing score according to the Fitzpatrick scale (cf. [95, 230]).

b Eye color as grouped within the questionnaire according to the Fitzpatrick scale (cf. [95, 230]).
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7.2 Tissue Thickness Prediction Accuracy

7.2.1 Statistical Learning

The following table supplements the data shown in sec. 4.4.3. For real data obtained
during the subject study, the tables list the accuracies for the remaining machine learning
approaches.

Table 7.2: Tissue thickness prediction accuracies for the SVR and GP approaches under AM1 test-
ing scheme. The results are listed for all feature spaces. For SVR a test for the entire cloud
and one considering only points in the mutual overlap set is presented. The latter results are
labeled with the overlap mark ov.

gender skin type
total male female II III IV V

RMSEGP :SEiso (ROI) [mm] 0.471 0.459 0.481 0.459 0.475 0.463 0.512
RMSEGP :SEiso (A) [mm] 0.465 0.449 0.480 0.453 0.468 0.451 0.548
RMSEGP :SEiso (NBH) [mm] 0.400 0.392 0.408 0.372 0.411 0.392 0.463
RMSEGP :SEard (ROI) [mm] 0.464 0.451 0.475 0.456 0.467 0.457 0.503
RMSEGP :SEard (A) [mm] 0.457 0.442 0.471 0.451 0.462 0.450 0.488
RMSEGP :SEard (NBH) [mm] 0.376 0.361 0.389 0.350 0.395 0.369 0.411
RMSEGP :Matard (ROI) [mm] 0.453 0.444 0.461 0.437 0.460 0.444 0.503
RMSEGP :Matard (A) [mm] 0.445 0.432 0.456 0.433 0.453 0.436 0.484
RMSEGP :Matard (NBH) [mm] 0.368 0.354 0.381 0.332 0.407 0.356 0.393
RMSESV R:RBFiso (ROI) [mm] 0.436 0.428 0.442 0.435 0.428 0.435 0.458
RMSESV R:RBFiso (A) [mm] 0.432 0.424 0.440 0.432 0.431 0.428 0.453
RMSESV R:RBFiso (NBH) [mm] 0.411 0.404 0.417 0.414 0.406 0.412 0.411
RMSEovSV R:RBFiso

(ROI) [mm] 0.396 0.395 0.398 0.391 0.373 0.417 0.380
RMSEovSV R:RBFiso

(A) [mm] 0.396 0.391 0.400 0.395 0.376 0.413 0.378
RMSEovSV R:RBFiso

(NBH) [mm] 0.375 0.377 0.373 0.376 0.353 0.394 0.346

223



7 Appendix

Table 7.3: Tissue thickness prediction accuracies for the SVR and GP approaches under AM2 test-
ing scheme. The results are listed for all feature spaces. For SVR a test for the entire cloud
and one considering only points in the mutual overlap set is presented. The latter results are
labeled with the overlap mark ov.

gender skin type
total male female II III IV V

RMSEGP :SEiso (ROI) [mm] 0.447 0.450 0.445 0.409 0.458 0.446 0.498
RMSEGP :SEiso (A) [mm] 0.437 0.432 0.442 0.400 0.450 0.431 0.505
RMSEGP :SEiso (NBH) [mm] 0.365 0.366 0.364 0.329 0.378 0.366 0.398
RMSEGP :SEard (ROI) [mm] 0.441 0.442 0.441 0.402 0.454 0.441 0.486
RMSEGP :SEard (A) [mm] 0.434 0.429 0.438 0.403 0.449 0.430 0.470
RMSEGP :SEard (NBH) [mm] 0.349 0.355 0.344 0.306 0.377 0.347 0.369
RMSEGP :Matard (ROI) [mm] 0.433 0.436 0.430 0.392 0.448 0.431 0.479
RMSEGP :Matard (A) [mm] 0.424 0.421 0.426 0.387 0.443 0.419 0.466
RMSEGP :Matard (NBH) [mm] 0.340 0.345 0.336 0.292 0.379 0.336 0.349
RMSESV R:RBFiso (ROI) [mm] 0.413 0.416 0.411 0.389 0.414 0.421 0.429
RMSESV R:RBFiso (A) [mm] 0.410 0.407 0.413 0.390 0.418 0.414 0.417
RMSESV R:RBFiso (NBH) [mm] 0.380 0.380 0.381 0.384 0.379 0.382 0.368
RMSEovSV R:RBFiso

(ROI) [mm] 0.396 0.394 0.397 0.379 0.385 0.409 0.397
RMSEovSV R:RBFiso

(A) [mm] 0.397 0.392 0.401 0.385 0.387 0.409 0.394
RMSEovSV R:RBFiso

(NBH) [mm] 0.371 0.374 0.368 0.372 0.361 0.382 0.346
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7.2.2 Sequential Forward Selection

The plots below present different RMSE characteristics after SFS for different subjects.
They provide example cases for the averaged behavior shown in fig. 4.28. From left to
right the influence of the curse of dimensionality has an increasing impact. The extent of
this impact depends on the complexity of the manifold in the subject’s feature space as
well as the number of data points.
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Figure 7.1: Increasing the dimension of the feature space corresponds to a tradeoff between an
information gain and the curse of dimensionality [309]. Depending on the feature space
characteristics, one of the two factors dominates. This leads to a decrease, or particularly
for higher dimensions, an increase of the prediction error. The plots show SFS examples for
different subjects, whereas the negative impact of the number of feature space dimensions
is increasingly visible from left to right. Subject gender and skin type are given in paren-
theses. Top: SFS on the ROI backscatter features. Bottom: SFS on the NBH features from
neighboring spots. Plots are analogous to fig. 4.28.
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Glossary and List of Abbreviations

Symbols

γ-ray

Electromagnetic radiation with a wavelength λ ≤ 0.01 nm. In the medical context
used for radiating tumors or MV imaging and often inconsistently referred to as
(high energy) X-rays in the medical context.

A

A

Label for items that are related to a feature space with additional incident angle
feature. In addition to five NIR backscatter features, the incident angle is added as
a sixth feature.

ABS

A common thermoplastic terpolymer with chemical formula (C8H8)x · (C4H6)y ·
(C3H3N)z .

AC

The anterior commissure in the brain consists of a nerve fiber bundle which con-
nects the two cerebral hemispheres. It is located in front of the columns of the
fornix.

AE

Absolute value of the difference between the estimated and true result.

AM1

Testing scenario ”Across Measurements 1”. Three measurements corresponding to
three different head poses are used for testing. With one measurement à two frames
in the training set and equivalently one measurement in the test set, there are six
mutual combinations. The overall error is averaged across all combinations.
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AM2

Testing scenario ”Across Measurements 2”. Three measurements corresponding to
three different head poses are used for testing. With two measurements à one frame
in the training set and one measurement à two frames in the test set, there are three
combinations. The overall error is averaged across all combinations.

Anterior-posterior (AP)

Axis along the human body - from the front surface to the back.

Automatic Relevance Detection (ARD)

A property of kernel functions, which may assign and learn different weights per
feature dimension according to their relevance. This is achieved by introducing one
length scale parameter per feature space dimension.

C

Central Nervous System (CNS)

Brain region and in the narrow sense an anatomical term to classify cancers includ-
ing brain stem glioma, craniopharyngioma, medulloblastoma, and meningioma.

Central Processing Unit (CPU)

Main microprocessor of a computer.

Cerebrospinal Fluid (CSF)

A clear and colorless liquid surrounding the brain. It is produced in the choroid
plexuses of the ventricles which are also filled with the fluid. It acts as a protective
buffer.

Charge-coupled Device (CCD)

A semiconductor device used as a camera sensor in which charges accumulate on
each pixel due to light incidence. Charges are shifted along these capacitive bins
(”bucket chains”) to sequentially read out the pixel intensities.

Clinical Target Volume (CTV)

Tissue volume that contains a GTV and/or subclinical microscopic malignant dis-
ease, which has to be eliminated. The CTV has to be treated adequately in order to
achieve the aim of therapy: cure or palliation. It is a purely anatomical concept and



needs to be defined before the choice of treatment techniques is made. (definition cf.
[133]).

Complementary Metal-Oxide-Semiconductor (CMOS)

Semiconductor element where n- and p-channel semiconductors are both attached
to a substrate. In a light-sensitive version it can be used as a camera sensor. In
contrast to CCD pixels are typically read out in parallel.

Compute Unified Device Architecture (CUDA)

A programming technique introduced by the Nvidia Corporation (Santa Clara, CA,
USA). Code can be distributed on the CPU as well as GPU. The latter provides
possibilities for parallelizing work load and to exploit additional, dedicated and
specialized hardware and processing power.

Computed Tomography (CT)

Anatomical imaging method to reconstruct 3D volumes using multiple X-ray im-
ages.

Cone Beam Computed Tomography (CBCT)

Medical imaging technique based on X-ray CT and often used for onboard imaging
during radiotherapy. Emitted X-rays diverge and therefore form a cone.

Conformal Radiation Therapy (CRT)

Extension of conventional RT that aims at dose distributions which are spatially
conform with the tumor. Using different irradiation directions and a superposition
of multiple beams, irregular shaped volumes can be treated and safety margins can
be reduced.

cross-validation (CV)

Testing scheme for supervised learning. The data is separated into nfld folds. A
model is trained on nfld − 1 folds and tested on the remaining one.

D

Desoxyribonucleic Acid (DNA)

Nuclei acid in form of a double helix that carries genetic information.



Digitally Reconstructed Radiograph (DRR)

Artificial 2D images similar to standard X-ray images, but digitally reconstruc-
ted from acquired 3D CT volumes by summing up voxel intensities along a well-
defined spatial direction.

Direct Linear Transformation (DLT)

The algorithm solves a system of similarity relations where left and right hand side
are equal up to an unknown multiplicative scaling factor.

E

External Beam Radiation Therapy (EBRT)

In contrast to brachytherapy radiation is percutaneously delivered in form of an
external treatment beam from a certain distance using a LINAC.

F

Field of View (FoV)

Area or volume in the real world that can be accessed and imaged by a particular
imaging modality, e.g. a camera in the simplest case.

Fractionated Stereotactic Radiation Therapy (FSRT)

Special type of SRT in which low dose is delivered temporally distributed across
several treatment sessions (fractions). The accumulated dose controls the growth
of malignant cells.

Fully Independent Training Conditional (FITC)

Sparse approximation method for GPs. The covariance matrix of training condi-
tional (labels ds given the inducing variables u) is approximated by a diagonal
matrix. This means the training data are mutually independent given u (see
sec. 2.2.2.7).

G

Gaussian process

A Gaussian process is probability distribution over functions where each subset
follows a multivariate Gaussian distribution. Here, the term is used in the context of
GP models. These constitute a supervised learning method for regression problems.



Graphics Processing Unit (GPU)

Main microprocessor located on a graphics card. In contrast to a CPU, it is optim-
ized for matrix, vector and floating point operation. Workload can be parallelized.

Gross Tumor Volume (GTV)

Gross palpable or visible/demonstrable extent and location of malignant growth.
(definition cf. [133]).

H

Head and Neck (HN)

Anatomical term used to classify tumors of the mouth, lips, nasal cavity, sinuses,
salivary glands, throat, larynx, and lymph nodes in the neck.

High Dynamic Range (HDR)

The dynamic range is the relation between the brightest and darkest luminance of
a scene. For a camera it refers to the luminance range which can be resolved with
the available quantization levels, i.e. gray value resolution. High dynamic range
cameras typically have a depth resolution of more than 8 bit.

I

I90

For a given set of absolute errors only 10 % or all errors are larger than this bound
(definition sec. sec. 2.2.3).

iid

Independent and identically distributed means that a random variable has the same
probability distribution as the others, while they are all mutually independent.

Image Guided Radiation Therapy (IGRT)

Extension of conventional RT that uses image guidance for target localization, pa-
tient positioning, verification or motion compensation. OAR can be identified and
the high nominal precision of state-of-the-art treatment machines can be brought
to the actual target. Common modalities are X-ray based (CBCT, stereo X-ray) or
optical techniques (marker-based, marker-less). Additional modalities such as US
or MRI have also been investigated.



Infrared (IR)

Light of the electromagnetic spectrum between 780 nm and 1 mm [162].

Intensity-Modulated Radiation Therapy (IMRT)

Extension of conventional RT without a constant dose distribution across the target
volume. In contrast, dose intensity is spatially modulated by defining sub-fields of
differing dose intensity. This technique is also called dose painting (in 2D or 3D
space) and allows better sparing of normal tissue and increased conformity to the
tumor shape.

Internal Margin (IM)

Additional safety margin that takes into account variations in size, shape and po-
sition of the CTV in relation to anatomical reference points (e.g. bladder/stomach
filling, respiratory deformations). The variation sources are exclusively physiolo-
gical processes. (definition cf. [134]).

Iterative Closest Point (ICP)

The iterative closest point algorithm aims at finding a rigid transformation to bring
two sets of 3D points (point clouds or surfaces) into coincidence. This is called
registration and can be done using several variants of the algorithm. (for details see
sec. 2.3.1).

K

Karush-Kuhn-Tucker (KKT)

Karush-Kuhn-Tucker multipliers extend the concept of Lagrange multipliers,
which are only valid for equality constraints. If the optimization problem has
inequality constraints the (necessary) Karush-Kuhn-Tucker conditions have to be
met, which state that the product of dual variables and primal constraints has to
vanish. This is due to the fact that the problem may have a solution not located at
the constraint boundary (the equality case). The problem is locally unconstrained
in these regions and the multipliers need to vanish.

kilo Voltage (kV)

Voltage in the range of 103 Volts that is used to accelerate electrons (also keV).

L



Lateral (LAT)

Axis along the human body - from left to right.

Light Emitting Diode (LED)

Semiconductor element that emits light when driving a current through it.

Linear Accelerator (LINAC)

Device used in RT to accelerate electrons onto a target to generate γ-radiation.

Look-up Table (LUT)

A table which hard-codes the assignments of a specific output value to a fixed set
of input values.

M

MAE

Mean absolute value of the differences between the estimated and true results
(definition sec. sec. 2.2.3).

Magnetic Resonance (MR)

See MRI.

Magnetic Resonance Imaging (MRI)

Anatomical imaging method based on principles of nuclear magnetic resonance.

Matérn

Function which only depends on the absolute distance r between a point b and
a reference point b′, with r = ‖b− b′‖. Strictly speaking, it is hence an RBF. The
function depends on the Gamma function and modified Bessel functions (definition
sec. sec. 2.2.2).

maximum a posteriori (MAP)

An estimation technique which computes the maximum of the negative logarithm
of a posterior distribution. In Bayesian regression it can be used to derive ap-
proaches such as ridge regression or least squares from a probabilistic framework.

ME

Mean of the signed differences between the estimated and true results (definition
sec. sec. 2.2.3).



Mega Voltage (MV)

Voltage in the range of 106 Volts that is used to accelerate electrons (also MeV).

Monte-Carlo Simulation of light Transport in Multi-Layered Tissue (MCML)

Light transport in a multi-layered tissue model is accomplished by radnom
sampling of photon trajectories. The functional framework underlies the radiation
transport theory (see sec. 3.2.2.2).

Multi-Task Gaussian process (MTGP)

Multi-task extension of a GP which can be used to model multiple feature-series
simultaneously.

Multileaf Collimator (MLC)

Device used to shape the beam of an RT treatment device. It consists of multiple
moveable lead leaves for beam shadowing.

N

NBH

Label for items that are related to a feature space with additional incident angle
feature and neighborhood information. In addition to five NIR backscatter features,
the incident angle is added as a sixth feature. The full neighborhood (all ROIs from
all four closest neighbors) results in a feature space dimension of D = 26.

Near-Infrared (NIR)

Light of the electromagnetic spectrum between 800 nm and 2500 nm [162].

Negative Log Marginal Likelihood (NLML)

The negative logarithm of the probability p(ds|B), i.e. of the labels given the fea-
tures. Since this probability depends on the hyperparameters it can be minimized
to obtain optimal estimates for these parameters.

O

Organs at Risk (OAR)

Normal tissue with increased radiation sensitivity. It may significantly influence the
planning and definition of the prescribed dose distribution. (definition cf. [133]).



P

PC

The posterior commissure in the brain consists of a nerve fiber bundle which con-
nects the two cerebral hemispheres. It is located at the dorsal part of the upper
end of the cerebral aqueduct. The AC-PC line is the connecting line between both
commissures in midline sagittal images.

Planning Target Volume (PTV)

Volume that takes the net effect of all possible geometric variations and inaccuracies
into account. It is defined to select beam size and beam arrangements and ensures
that the prescribed dose is actually delivered to the CTV. The overall volume size
includes the CTV and also depends on the treatment technique, in order to com-
pensate effects of organ and patient motion, as well as patient setup inaccuracies.
It is computed by the union set of CTV, SM and IM (definition cf. [134]).

PMMA

A transparent thermoplastic which can be used as a casting resin. Among others it
is known under the trademark Plexiglas.

portal imaging

Imaging techniques that uses MV photons (γ-rays) to generate a 2D image directly
through the eye of the therapeutic beam.

Positron Emission Tomography (PET)

Functional imaging method which is based on nuclear injected tracers that emit
positrons.

principal component analysis (PCA)

A component analysis which computes the covariance matrix across all dimensions
of the data space. From that it estimates the main orientations of scatter within the
data. These orientations are required to be mutually orthogonal and are computed
by an eigenvalue analysis.

Q



quadratic programming (QP)

A mathematical optimization problem with linear inequality constraints. The ob-
jective function contains first and second order terms of the variables to be optim-
ized.

R

radial basis function (RBF)

Function which only depends on the absolute distance r between a point b and a
reference point b′, with r = ‖b− b′‖. In the context of SVR it refers to the special
case of the Gaussian kernel function (definition sec. sec. 2.2.2).

Radiation Therapy (RT)

General term for a therapy using ionizing radiation (γ-rays) to treat cancer by
killing or controlling the growth of malignant cells. Often also named radiotherapy.

region-of-interest

Subregion within a larger area to which a higher interest and the main focus is
directed. The acronym is also used as a label for the basic feature space in sec. 4.4
which uses only NIR features accumulated from different regions-of-interest in a
high resolution camera image of backscattered light.

RGB

The RGB color space defines any color by a superposition of three values: a red,
green and blue component.

RMSE

Root of the mean of the squared errors (definition sec. sec. 2.2.3).

S

Scientific CMOS (sCMOS)

A CMOS sensor element with a special pixel structure and read-out circuits. High
resolution, high dynamic range as well as fast imaging speeds are achieved by si-
multaneously converting the pixel signal with two 11 Bit analog-to-digital convert-
ers (one rough and one fine scale conversion. Joining the information results in
high dynamic range sensors.



sequential forward selection (SFS)

A wrapper method for feature selection that sequentially selects the next most in-
formative feature (see sec. 4.4.3).

sequential minimal optimization (SMO)

An algorithm introduced by Platt [228] to efficiently solve the dual problem for
SVR optimization. The algorithm sequentially iterates through pairs of Lagrange
multipliers and solves the optimization problem by assuming that the others are
constant.

Set-up Margin (SM)

Additional safety margin that takes into account uncertainties in patient position-
ing and beam alignment during planning and all treatment sessions. Uncertain-
ties include mechanical inaccuracies of the equipment (e.g. gantry, mask etc.), hu-
man errors, beam geometry selection and expected variations in patient positioning
(definition cf. [134]).

Signal-to-Noise ratio (SNR)

The ratio of the information signal power and the power of the overlaying noise.
The higher the SNR the more prominent is the signal in the measurement.

Single-photon emission computed tomography (SPECT)

Functional imaging method which is based on nuclear injected tracers that emit
γ-rays.

Singular Value Decomposition (SVD)

The singular value decomposition factorizes a real matrix H ∈ Rm×n into UΛV T

where U ∈ Rm×m and V ∈ Rn×n are real unitary matrices, and Λ is an m × n

rectangular diagonal matrix with non-negative real numbers on the diagonal.

SPM8

Statistical Parametric Mapping 8 - a software package for Matlab to analyze brain
imaging data sequences.

squared exponential (SE)

Strictly speaking, a special case for an RBF, but practically sometimes used syn-
onymously with the RBF. In the SVR community, the latter is similarly used for



a function that depends on a squared argument in the exponent of a exponential
function (definition sec. sec. 2.2.2).

STD

Square root of the average deviation from the mean value of a data sequence.

Stereotactic Body Radiation Therapy (SBRT)

EBRT that uses stereotaxy with the focus on tumors outside of the CNS.

Stereotactic Radiation Therapy (SRT)

Special type of RT which uses the principle of stereotaxy aiming at high precision
treatment. It is used to treat HN and CNS cancer. Stereotaxy relies on a coordinate
frame in which the position of the tumor is fixed. The frame can be defined by dif-
ferent means such as stereotactic frames, thermoplastic masks or patient anatomy
(e.g. skull bone) and can be located externally using medical imaging techniques.

Stereotactic Radiosurgery (SRS)

Special type of SRT which destroys target tissue while preserving adjacent normal
tissue. In contrast to general SRT or FSRT, high dose is delivered in one or, in the
modern sense, up to five fractions.

Subset of Data (SoD)

One of the simplest sparse approximation methods for GPs. It relies on discarding
a proportion of the training data and thus reducing the number from N to M < N

(see sec. 2.2.2.7).

Subset of Regressors (SoR)

A sparse approximation method for GPs. It assumes that each test label f? can be
fully described by a weighted sum of similarities between the inducing variable
input Bu and the test input b?. Similarities are expressed by the kernel function k.
(see sec. 2.2.2.7).

Superior-inferior (SI)

Longitudinal axis along the human body - from the soles to the vertex of the head.

Support Vector (SV)

In SVR samples bi for which α
(∗)
i 6= 0 are called Support Vectors. Only these con-

tribute to the final regression output f .



Support Vector Regression (SVR)

A supervised learning method which can be used for regression problems. It is
based on an ε-insensitive loss function leading to a convex optimization problem.

T

T1

In MR imaging a T1 weighted sequence demonstrates the differences in the T1
(spin-lattice) relaxation times of tissues in the voxels of the corresponding output
image.

Target Registration Error (TRE)

Apart from registration errors directly at the registration site (e.g. the surface used
for surface registration), the target registration error denotes the alignment error
for a defined target location after applying the estimated transformation matrix to
it. This target might be far away from the registration site and its localization error
can be substantially different from that of the registration site (definition according
to [115]). For surface tracking, internal targets are typically never involved in the
process of registration, i.e. the computation of the transformation matrix itself.

TE

In MR imaging the echo time refers to the time between the radiofrequency excita-
tion pulse and the peak of the response signal induced into the coil.

TR

In MR imaging the repetition time refers to the time between two subsequent radi-
ofrequency excitation pulses.

U

Ultrasound (US)

Imaging method based on ultrasound.

Ultraviolet (UV)

Light of the electromagnetic spectrum between 100 nm and 400 nm [162].

V



Volume-of-Interest (VOI)

3D subregion within a larger volume to which a higher interest and the main focus
is directed.

Volumetric Intensity Modulated Arc Therapy (VMAT)

Special type of IMRT that increases treatment efficiency by generating different irra-
diation directions in a step and shoot procedure. The gantry of the treatment device
goes through a minimal number of rotations (arcs) around the tumor isocenter. In
each arc the gantry stops at optimized positions and activates the beam. Most ef-
ficient irradiation is achieved by RapidArc® (Varian Medical Inc.) which sculpts a
3D dose distribution in a single 360◦ rotation.

W

World Health Organisation (WHO)

Agency of the United Nations that is specialized in international public health.

X

X-ray

Electromagnetic radiation used for medical imaging with a wavelength
λ ∈ [0.001, 10] nm. In the medical context kV and MV imaging is distinguished
depending on the energy used to generate the radiation. From a strict physical
point of view, the medical term MV X-rays actually refers to γ-rays.
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einer anderen Prüfungsbehörde vorgelegt.
Ich versichere an Eides Statt, dass ich nach bestem Wissen die reine Wahrheit gesagt und
nichts verschwiegen habe.

(Ort, Datum) (Unterschrift)


	Mathematical Notation and Indices
	Introduction
	Cancer in the Head Region - Relevance and Treatment Options
	Stereotactic Radiotherapy
	Planning and Treatment
	Tracking and Compensating Head Motion

	Purpose of this Work
	Organization

	Key Methodology
	Data Processing Chain and Notation
	Statistical Learning Techniques
	Support Vector Regression
	Gaussian Process Regression
	Considerations on Testing

	Point Cloud Registration
	Point Clouds and Homogenous Transformations
	Iterative-Closest-Point (ICP) Algorithm
	Incorporating Additional Knowledge
	Variants and Extensions


	The Simulation of Light-Tissue Interaction
	Anatomical and Physiological Background
	Anatomy of the Human Forehead
	Anatomy, Physiology and Characterization of the Human Skin and its Adjacent Structures

	Simulation Approach and Skin Model
	Optical Properties and Models of Human Skin
	Simulation of Light Transport in Soft Tissue

	General Aspects of Light-Tissue Interactions
	Determination of General Simulation Parameters
	Analysis of the Reflected Laser Spot
	Backscattered Light and Changes in Tissue Thickness
	Incident Angle of the Laser Beam
	Impulse Response and Time Shift

	Estimating Tissue Thickness using Statistical Learning
	Conclusions and Hardware Specification

	Experimental Validation - Tissue Thickness Estimation on Real-World Data
	Experimental Setup
	Optical Hardware Design
	Laser Triangulation

	Data Acquisition
	Volunteer Study
	Tissue Segmentation from MR-Scans
	Ground Truth Registration

	General Aspects of Light-Tissue Interactions
	Tissue Thickness Estimation and Prior Knowledge
	Handling Changes of the Incident Angle
	Local Neighborhoods
	Overall Results

	Enhanced Learning using Sparse Approximation Techniques
	Conclusions

	Tissue-Supported Head-Tracking – A Proof of Concept
	Point Cloud Registration and Evaluation Procedure
	Tissue-Supported Registration
	Conclusions

	Conclusions
	Optimal Conditions for Backscatter Analysis – Findings from Simulation (RQ 1)
	Tissue Thickness Estimation (RQ 2)
	Surface Registration using Tissue Thickness (RQ 3)
	Overall Assessment of this Work
	Future Work

	Appendix
	Volunteer Study
	Tissue Thickness Prediction Accuracy
	Statistical Learning
	Sequential Forward Selection


	Bibliography
	List of Figures
	List of Tables
	Glossary and List of Abbreviations

