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ABSTRACT

Medical imaging is a vitally necessary tool of healthcare in modern medicine.

Machine leaning plays an essential role in this field, such as Computer-Aided

Diagnosis (CAD). Parkinson’s disease is one of the most common neurological

diseases. The primary symptoms of PD result from the loss of the nerve cells

that secrete dopamine in the region of the substantia nigra (SN). Although PD

is currently regarded as incurable, the neurons of the SN can be sheltered by

neuroprotective drugs when used in the early stages. Therefore early diagnosis

of PD is of great importance, and that means preclinical diagnosis before the

first parkinsonian motor symptoms occur. In 1995, Becker et al. first used

transcranial sonography (TCS) to visualize the midbrain region and found an

enlarged area of the SN (SN hyperechogenicity) in PD patients compared with

controls. At the early stages, TCS is more suitable for the diagnosis of PD than

other medical modalities, such as Computed Tomography (CT) and Magnetic

Resonance Imaging (MRI). In this thesis, a brief history of TCS applied to

the PD diagnosis will be introduced. The limitations of the TCS method that

affect the diagnosis of PD includes the accessibility of the SN in subjects, the

dependence of image quality on the experience of the sonographer, the variation

of measurements in different ultrasound systems and different laboratories, and

the standardized determination approach of the extent of hyperechogenicity.

The goal is to apply the image analysis methods onto the TCS images to detect

the pattern of PD and assist the physician during the diagnostic procedure.

The thesis combines image analysis techniques with prior knowledge from ex-

perts and anatomy of brain. The medical image analysis composes of four se-

quential stages which are image acquisition, image enhancement, image segmen-

tation, and image quantification. In each stage, we design and implement image

processing techniques that compose the CAD based on TCS images. Specifi-

cally, this system includes a segmentation approach for the area of interest (ROI)

extraction, the feature extraction methods for TCS image classification, a ROI

detection for SN hyperechogenicity, and the feature selection methods for better

performance of the classifiers. In this thesis, we collect and analyze TCS images

that were obtained from two ultrasound machines, Philips SONOS 5500 and

Siemens Sonoline Antares.

Regarding investigator dependence, a semi-automatic segmentation algorithm

is applied to extract the regions of SN in the TCS images. The main content is



to design different feature extraction methods that can be developed to describe

other distinct information contained in the images. These features aim at sep-

arating images of individuals that are genotypically or phenotypically different.

A multiple feature extraction algorithm is proposed that computes statistical

features, geometrical features, and texture features from ROIs. Afterwards, fea-

ture selection methods are used to find the best feature subset that can achieve

the best classification rate. Furthermore, a robust feature extraction algorithm

is developed by using a rotation-invariant Gabor filter and compute robust fea-

tures based on the normalized histogram.

In this thesis, the invariant scattering convolution networks is first applied on

TCS images. In order to use the scattering coefficients based on the data with

small training set, the feature dimensionality reduction methods are designed

and implemented. Combining with the feature selection method, the selected

scattering coefficients achieved even better performance for the TCS image clas-

sification. Moreover, a classification method with LDA is proposed that instead

of the PCA used in the original work to reduce the computation time, while

keeping or improving the accuracy. A shape-adapted blob detection algorithm

is presented to estimate the hyperechogenicity of SN in TCS images. This blob

detection method can supply the visible detection results to the physician in-

stead of the feature extraction results mentioned in the previous works. The

locations of all suspected areas are positioned by a scale invariant blob detection

method, and then the ROIs are estimated by using the watershed segmentation

algorithm and a shape-adapted interest area detector.

Moreover, a sequence analysis method is introduced that based on the recorded

images during the acquirement of TCS examination. Considering the identifi-

cation of the scan plane to be investigator independent, the obtained sequence

is registered and visualized in 3D space. The doctor segmentations of the mid-

brain is then used to segment the volume of mesencephalic stem. As a result,

the better diagnosis can be made with the help from 3D visualization of SN

region instead of one single 2D TCS image.
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Chapter 1

Introduction

In 1817, James Parkinson first described the clinical syndrome of Parkinson’s

disease (PD). At the present time around a quarter of all patients diagnosed

by neurologists have some other pathology at postmortem [1]. Therefore neu-

rologists ‘cannot make an accurate purely clinical definition’ of PD [1]. The

pathologists found that Lewy bodies are always present in some surviving neu-

rons in the substantia nigra (SN) in all cases of PD[2], that is the pathological

feature of PD for the clinician. But, the classical pathological features have

been found at postmortem from some cases, yet they have had no any symp-

toms in life [1]. With a compromise, the definition of PD is ‘a condition where

typical clinical features are present in life and a particular pathology is found

at postmortem’ [1]. Parkinsonism is defined as the clinical features which are

characteristic of PD. The cardinal features of PD such as Tremor at rest, Rigid-

ity, Akinesia and Postural instability [3] can be used for the diagnosis during

the ordinary clinical examination. The primary symptoms of PD result from

the loss of the nerve cells that secrete dopamine in the region of the SN [4]. In

1995, Becker et al. first used Transcranial sonography (TCS) to visualize the

midbrain region and found an enlarged area of the SN (SN hyperechogenicity)

in PD patients compared with controls. Regarding the PD diagnosis by other

medical modalities, such as Computed tomography (CT) and Magnetic Reso-

nance Imaging (MRI), TCS is more suitable for the diagnosis of PD at the early

stages [5]. In this chapter, a brief history of TCS applying on the earlier PD

diagnosis will be introduced. Our goal is to apply the image analysis methods

onto the TCS images to detect the pattern of PD and assist the physician during

the diagnostic procedure.

1



1 Introduction

1.1 Parkinson’s Disease

Parkinson’s disease is one of the most common neurological diseases with a

prevalence of 160/100, 000 in Western Europe rising to around 4% of the popu-

lation over eighty [6]. The symptoms of PD occur when neurons of the substan-

tia nigra die or become impaired, a schematic SN region in mesencephalon is

shown in Figure 1.1. Normally, these cells are responsible for the production of

a chemical messenger called dopamine, which transmits signals within the brain

to produce smooth physical movements. When these neurons cease to produce

dopamine, the communication between the brain and muscles weakens. As a

result, the brain becomes unable to control the muscle movement [7]. Most

cases of PD occur in people without apparent family history of the disorder

are classifed as sporadic. These cases are probably related to an interaction of

genetic and environmental factors, although the reason to cause sporadic cases

remains unclear [8]. Approximately 15% of PD patients have an apparent his-

tory of this disorder in their family. The genes related to the familial cases of

PD are mutations in the LRRK2, PARK2, PARK7, PINK1, SNCA, or muta-

tions in other genes that have not been identifed. Mutations in some of these

genes may also play a role in the sporadic cases. The genetic causes of PD are

not fully understood, and the influence of the risk of developing the disorder

by the genetic changes is still under investigation. The protein deposits called

Lewy bodies are found in dead or dying nerve cells in SN. However, the role of

the lewy bodies whether they are response to kill nerve cells or part of the cells’

response to the disorder, is still unclear so far.

In terms of their origin, parkinsonian disorders can be divided into four types:

primary (idiopathic) parkinsonism, secondary parkinsonism, heredodegenerative

parkinsonism and multiple system degeneration [3]. The Parkinson’s disease, as

the most common form of parkionsonism, is usually called idiopathic parkinson-

ism or primary parkinsonism to differentiate it from other forms of parkinsonism.

According to the cause, familial Parkinson’s disease and sporadic Parkinson’s

disease are used to name genetic and the idiopathic PD [6], respectively. Re-

garding the disease progress, PD can be divided into three stages [9]:

• Stage I, a disease-free state. In this stage the risk factors are present but

the nigral neuronal cell loss is still under the normal age-related decline.

• Stage II, the early stage or pre-diagnostic phase of the disease. In this

phase, the loss of neuronal cell in SN exceeds the normal age-related de-

cline. But no or only mild symptoms, such as soft motor signs (arm

2



1.1 Parkinson’s Disease

Figure 1.1: Schematic midbrain with substantia nigra, the section through su-

perior colliculus showing substantia nigra. Reuse with permission

of Wikimedia Commons, author is Madhero88.

swinging, changes in hand-writing) and non-motor signs (depression), can

be detectable.

• Stage III, the motor symptoms appear and the clinical diagnosis is ac-

cepted according to the widely accepted criteria. Where 60% of dopamin-

ergic neurons have damaged and the striatal dopamine content is deseased

by 80% or even more.

Although PD is currently regarded as incurable, the neurons of the SN can be

sheltered by neuroprotective drugs when used in the early stages and the symp-

toms can be alleviated [10]. Therefore early diagnosis of PD is of great impor-

tance and that means preclinical diagnosis of predisposed individuals before the

first parkinsonian motor symptoms occur [11]. Due to the well know difficulty

in diagnosing PD, one popular clinical criteria set was devised by the United

Kingdom Parkinson’s Disease Society Brain Bank. The first step is to diagnose

a parkinsonian syndrome, such as muscular rigidity or rest tremor. The second

step is to fill in a checklist of exclusion criteria such as a history of presence of

signs. The third step is to find prospective criteria such as levodopa response

for many years. The patient can be clinically diagnosed as ‘definite Parkinson’s

disease’ when more than three supportive criteria are present [1]. Alternatively,

the diagnosis of PD includes the medical history and a neurological examination

[3]. The histologic demonstration of intraneruonal Lewy bodies in the midbrain

3



1 Introduction

is usually considered proof for the definitive diagnosis of idiopathic PD [12], but

such demonstration on autopsy is clearly impractical. However, patients of PD

typically show only age-related changes but no distinctive imaging abnormali-

ties [13]. Conventional T1- and T2-weighted MRI shows normal brain structure

in idiopathic PD [12], only patients with advancing PD T2-weighted images

show increased signal that was found positively correlated to the deposition of

iron in the SN [14, 15]. The diffusion-weighted MRI can play a valuable role

in discriminating atypical parkinsonian syndromes from typical PD as shown in

Figure 1.2, the water-proton apparent diffusion coefficients raised in the puta-

men in most patients with multiple-system atrophy (MSA) but are normal in

PD, although the clinical diagnostic uncertainty is still present [12].

Furthermore, the function of dopamine in the brain can be measured by the

Positron Emission Tomography (PET) with tracer 18-fluorodopa (FDOPA) and

the Single-Photon Emission Computed Tomography (SPECT) with tracers 123I-

FP-CIT (DaTSCAN; GE Health care) [12, 16]. An unaffected gene LRRK2 mu-

tation carrier with PD shows low dopamine transporter binding and a mutation

carrier with the inherited form of PD is most significantly in these three subjects

as shown in Figure 1.3. The demonstrated pattern of reduced dopaminergic ac-

tivity with PET and SPECT can aid physicians in the diagnosis of PD. The

diagnostic accuracy of SPECT in parkinsonian patients was firstly studied in

University of Maastricht, the Netherlands [17]. Especially they investigated the

accuracy of transcranial duplex scanning (TCD) in the diagnosis of PD, and

the combination of both techniques was assessed. In addition, a new medical

imaging technique, high-resolution MR imaging at 7T is used to identify the

anatomy of midbrain dopamine regions [18]. They scanned the anatomic struc-

ture of the midbrain by using gradient- and spin-echo (GRASE) MR imaging

and 3D gradient-echo sequences. GRASE is a T2 and T2∗ weighted multi-shot

imaging sequence [19]. GRASE scan acquires data in 2 dimensions, the gradient-

echo technique with fully refocused transverse magnetization (balanced FFE)

[20] acquires data in 3D. The results of both GRASE and FFE scans revealed

visible contrast in the midbrain regions. Especially, ‘the FFE scan also dis-

played distinct contrast between subregions of the SN showing sensitivity to

iron-related magnetic susceptibilities’ as shown in the Figure 2 in [18].

1.2 Transcranial Sonography

In 1995, Becker et al. first described and used Transcranial sonography (TCS) in

a clinical study between a small group of Parkinson’s disease (PD) patients and

4



1.2 Transcranial Sonography

Figure 1.2: Color-coded diffusion weighted MRI images. In striatum of PD

patient the apparent diffusion coefficient is normal but raised in

(multiple-system atrophy) MSA. Reuse with permission of [21].

healthy controls [22]. Since the 1980s, transcranial color-coded duplex sonog-

raphy (TCCS) has been applied for diagnostic ultrasonography in the central

nervous system. Compared to conventional transcranial pulsed-wave Doppler

(TCD), TCCS has more decisive advantages [23]. During using TCCS and

TCD in clinical application, adult transcranial B-mode sonography, a full name

of TCS, has evolved as an extension of the experiences of sonography [23]. TCS

is permitted to assess the ventricular system at that moment. In general, TCS

is performed with an ultrasound machine attached with a phased-array using

pulse-echo technique, which provides a two-dimensional image of the butterfly-

shaped midbrain [24]. The schematic illustration of the scanning plane at the

midbrain and the corresponding MRI and TCS images are shown in Figure 1.4.

In TCS images, an enlarged area with significantly increased echogenicity of the

substantia nigra (SN hyperechogenicity) was found in PD patients compared

with controls. This finding the SN hyperechogenicity in the TCS images of PD

was confirmed by another independent group in 2002 [25]. Although CT and

MRI brain scans of PD appear normal, the SN shows a distinct hyperechogenic

pattern on TCS images in about 90% of PD patients [9]. The reason why the

signal intensity of SN is increased on TCS images of the PD patients is sug-

gested to be an increased iron concentration in the SN, causing oxidative stress

and neuronal cell damage [9]. At early stages it is possible to determine the for-

mation of idiopathic PD as well as monogenic forms of parkinsonism by means

of TCS [26]. Furthermore, the SN hyperechogenicity was found to associate

with a significant reduction of 18-fluorodopa (FDOPA) uptake in the striatum

measured with PET [5]. These studies show that the SN hyperechogenicity is

5



1 Introduction

Figure 1.3: Dopamine transporter binding on PET imaging in a healthy indi-

vidual (A), a clinically unaffected LRRK8 mutation carrier(B), and

a patient with LRRK8-related Parkinson’s disease (C). ‘The graded

and asymmetrical reduction in dopamine transporter binding, with

the greatest amount of binding in the healthy individual and the

least in the patient with LRRK8-related Parkinson’s disease.’ Reuse

with permission of [16].

a valuable marker for PD diagnosis, especially for early diagnosis [27]. How-

ever, the image resolution of TCS is limited because of the low frequency of the

transduser. The image quality mainly dependents on the acoustic bone window

of the individual. In addition, the image properties, such as the brightness and

the scale, might be affected by the experience of the examiner because of the

different settings of ultrasound machine. With increased use, a standardized

procedure is required [13] that including rating scale of SN echogenicity.

1.2.1 Scanning Protocol and Clinical setting

Compared to the other medical imaging modalities, TCS is a low-cost, nonin-

vasive and mobile method which can be performed with unlimited repetition.

This method was facilitated by the technical improvement in B-mode ultrasound

machine with phased-array probe [13]. The examination is performed with po-

sitioning of the probe through the posterior temporal bone window (less than 2

mm) that is the most commonly used. The low frequency range of ultrasound

wave is set to 1.6 to 2.5 MHz, because the high frequency (> 4 MHz) ultrasound

wave cannot penetrate to the deep brain through the bone window [29]. As a

result, the spatial resolution of TCS images is lower than for other scanning of

6



1.2 Transcranial Sonography

Figure 1.4: The illustration of the axial scanning plane and the corresponding

MRI and TCS images. (A) Schematic illustration of the axial scan-

ning plane at the level of the midbrain. (B) MRI image of axial

section at midbrain level. (C) The corresponding TCS image at

midbrain. The magnified square area at the upper right corner in-

dicates the mesencephalon and SN structures. M is mesencephalon,

Cb is cerebellum, d is dorsalare, N and R are red nucleus and raphe,

respectively. Reuse with permission of [28].

the soft tissue: the axial resolution is approximately 0.7 mm and the lateral

resolution varies between 2.2 and 3.8 mm, depending on the ultrasonic beam

[30]. The parameter of dynamic range is often set to 50-55 db with a penetration

depth of 14-16 cm [29]. The investigation by TCS is conducted according to a

standardized protocol in distinct scanning planes such as mesencephalic plane,

third ventricular plane and cella media plane, by certain landmark structures

(Figures 1-5 in [29]). The SN hyperechogenicity is assessed in the butterfly-

shaped mesencephalon on the mesencephalic scanning plane, the corresponding

MRI and TCS images of each plane can be seen in [24]. Considering the de-

creased image quality, signal-to-noise ratio with increasing insonation depth,

only the ipsilateral half of mesencephalon (HoM) which is close to the probe

is examined by the physician. Therefore, in a routine clinical examination two

TCS images from left and right side of the brain are acquired per individual

subject for the diagnosis. The regions of HoM (ROIs) and SN are subsequently

manually-marked by the physicians as shown in Figure 1.5. Compared with the

healthy controls, the size of the hyperechogenic SN area is relatively large from

the TCS image of PD patients.

The size measurement of SN hyperechogenicity is performed on individual scan

after manually marking the outer circumference of SN echogenic area. The

size of SN echogenic < 0.2 cm2 is classified as normal, the area size of 0.25

cm2 and above as markedly hyperechogenic, and size in-between as moderately

hyperechogenic [22, 25].

7



1 Introduction

(a) (b)

(c) (d)

Figure 1.5: TCS images marked by physicians, Philips SONOS 5500. The im-

ages in the upper and bottom row that were collected from a PD

patient and a healthy control subject, respectively. (a) and (c):

The butterfly-shaped midbrain images on the mesencephalic plane;

(b) and (d): The region of the ipsilateral mesencephalon wing that

is close to the probe. The red marker indicates the upper half of

mesencephalon. Yellow markers show the SN area as a bright spot.

1.2.2 Main Factors of TCS

The limitations of the TCS method that affect the diagnosis of PD include the

accessibility of the SN in subjects, the dependence of image quality on the expe-

rienced sonographer, the variation of measurements in different ultrasound sys-

tems and different laboratories, and the standardized determination approach of

the extent of hyperechogenicity. First, the propagation of the ultrasound waves

through the temporal bone window are affected by attenuation and refraction

of skull bone. Therefore, the clear TCS images are difficult to obtain through

the acoustic bone window because the thickness is too small (around 2 mm),

especially a high rate of recording failure of SN in aged female subjects [31] in

Japan. Second, only the ultrasound waves with low frequency (1-3 MHz) can
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1.2 Transcranial Sonography

penetrate through the bone window to the deep brain for obtaining the image of

midbrain. As a result, the lower frequency, which corresponds to limited resolu-

tion of the ultrasound image, affects the accuracy of the image analysis. Third,

the TCS images are obtained by a trained sonographer who can follow the stan-

dardized scanning procedure, but the probe is positioned to the head of the

subject manually and the identification of the scanning planes are also investi-

gator dependent. In addition, the lateral resolution depends on different widths

of the ultrasound beam that differs between ultrasound systems [29]. The varia-

tion of measurement in different ultrasound machines and different laboratories

needs to be taken into account. At last, although the SN hyperechogenicity is

graded according to the semiquantitative visual rating scale [24, 29], but both

the area and the brightness of SN hyperechogenicity should be considered for

the quantitative analysis [5].

1.2.3 Experimental Materials

In this study, TCS images were obtained from two ultrasound machines, Philips

SONOS 5500 and Siemens Sonoline Antares by three examiners. All study

subjects underwent a detailed neurological examination in the local movement

disorders team at Luebeck University. The assessment includes the Unified PD

Rating Scale (UPDRS) and Hoehn-Yahr stage on medication. Except subjects

with positive family history, PD was defined according to the United Kingdom

PD Brain Bank Criteria. The examiners performed TCS with Philips SONOS

5500 ultrasound machine (Philips Medical Systems, Best, the Netherlands) con-

nected with a 2.0-2.5 MHz sector transducer (S4 probe; Philips). The maximum

depth of the scan was set as 12 cm from the temporal bone window. The scan

was performed from both sides of the brain but only the ipsilateral SN was eval-

uated in the axial mesencephalic plane (landmark: butterfly-shaped midbrain).

When the midbrain was visible as clearly as possible, the image was magnified

2-fold (zoom in) and longitudinal loop comprising around 50 images of mesen-

cephalon that were recorded for the next step study, the offline image analysis.

Then, the investigators (physicians) selected two images (each from each side

of brain) from around 100 stored images and rated these two images. The area

(aSN) and/or mean brightness (bSN) of the echogenic SN were calculated man-

ually by using a public-domain graphics software tool (Scion Image, Release

4.0.2, Scion Corporation, Frederick, MD, USA). Especially, the sonographers

who acquired the TCS images were blinded to the results of the clinical inter-

views and the genetic status of these subjects. The investigators who analyzed

the recorded images had not been involved in the sonographic examination.

9



1 Introduction

The data from Philips SONOS 5500 includes two datasets from PD, Parkin

mutation carriers and healthy controls (HC). These TCS images were acquired

by different examiners of the same group in half a year. Dataset 1 and Dataset

2 were collected in two different periods and have the same group structure as

listed in Table 1.1. Totally, the data includes 66 images from 37 PD patients

(groups 1 and 3), 58 images from 33 Parkin mutation carriers (groups 1 and

2), and 46 images from 25 healthy subjects (group 4). All 74 study subjects

underwent a neurological examination by physicians, and all these 134 TCS

images were manually segmented by examiners during the diagnosis. As a result,

the half of mesencephalon and SN regions of the TCS images were marked with

the colored curves as shown in Figure 1.5, the red and yellow curves indicate

the manual segmentations of the half of mesencephalon and SN, respectively.

Table 1.1: The group structure of Dataset 1 and Dataset 2. The subjects in

group 1 are PD patients, meanwhile, they are the Parkin mutation

carriers. The subjects in group 4 are the healthy controls.

TCS images

Group PD Parkin mutation Dataset 1 Dataset 2

group1
√ √

23 13

group2 × √
19 3

group3
√ × 28 2

group4 × × 38 8

In addition, the third dataset (dataset 3) includes Parkin mutational analysis in

27 subjects. There are 16 images from eight healthy controls with familial PD,

28 images from 14 healthy subjects without PD, and 10 images from five PINK

mutation carriers. These subjects were screened for Parkin mutations using

a comprehensive protocol mentioned above and were tested the entire coding

region.

Actually, the properties of the TCS images, such as the gray values, the bright-

ness, and the contrast, could be possibly affected by the different settings of the

ultrasound machine used by different examiners. The considerable variability

among different datasets was illustrated in the previous work [32]. The statisti-

cal features, the mean and variance of the region of interest (ROI) in each TCS

image, were calculated and shown in Figure 1.6. The variation between each

dataset can be seen from TCS images in Figure 2.1 of Chapter 2.

We also collected TCS images for the study by using a different ultrasound

system, Siemens Sonoline Antares (Elegra, Siemens). A small study on TCS in
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Figure 1.6: The illustration about mean and variance of ROI (half of mesen-

cephalon) of 138 TCS images. (a) 38 subjects of Parkinson’s Dis-

ease. (b) 39 subjects of healthy control.

seven subjects used both Philips SONOS 5500 and Siemens Sonoline Antares

ultrasound systems. This study aimed to analyze the difference between the

images obtained from different ultrasound systems. Except for the same subjects

study, the data collected from Siemens Sonoline Antares includes 36 subjects,

15 PD patients and 21 healthy control subjects, in total of 72 TCS images.

1.3 Methods of Parkinson’s Disease Computer

Aided Detection

Medical imaging is a vitally necessary tool of healthcare in modern medicine.

In this field, machine leaning plays an essential role which includes Computer-

Aided Diagnosis (CAD), medical image analysis, image-guided therapy [33].

The first commercial product of Computer-Aided Detection approved by the

U.S. Food and Drug Administration is the system for breast imaging [34]. Be-

sides breast imaging, computer-aided diagnosis (CADx) systems are also applied

in the area of thoracic imaging, abdominal imaging, brain imaging, and body

imaging. Suzuki described major technical advancements and research findings

in the field of CAD and collected more 20 examples of CAD systems in his book

[33]. Although CAD systems have been applied as commercial products, the

study and research still continue, such as computer-aided detection of breast
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1 Introduction

cancer using ultrasound images [35]. CAD system has been developed to aim at

helping physicians to evaluate medical images and detect lesions, in the mean-

time to increase the detection and diagnosis accuracy and save labor [35].

The aim of this thesis is to employ computers to assist neurologists in the diag-

nosis of PD with TCS images. The thesis combines biomedical image analysis

techniques with prior knowledge from anatomy of brain and experts. Biomedical

image analysis is a highly interdisciplinary field, which is related to computer

science, physics, medicine, biology, and engineering [36]. In general, biomedical

image analysis is to apply image processing techniques to biological or med-

ical problems. Biomedical image analysis composes of four sequential stages

which are image acquisition, image enhancement, image segmentation, and im-

age quantification. In each stage, we design and implement image processing

techniques that compose the CADe based on ultrasound images. Specifically,

with increased use of TCS during routine examination, a standard clinical set-

ting including rating scale of SN hyperechogenicity is required. However, this

technique is still based on manual evaluation by the physicians. In oder to re-

duce the investigator dependence, we design and develop the computer aided

system for the PD detection. This system includes a segmentation approach for

the area of interest (ROI) extraction, the feature extraction methods for TCS

image classification, a ROI detection for SN hyperechogenicity, and the feature

selection methods for better performance of the classifiers. The main structure

of this system is illustrated as a diagram in Figure 1.7.

In this study, a large TCS dataset is analyzed that is relevant to clinical prac-

tice and includes the variability that is present under real conditions. A major

difficulty of TCS image classification comes from the variability within TCS im-

ages and the influence of the user settings for the ultrasound machines. First,

a semi-automatic segmentation method is applied on the midbrain region and

the ROIs are extracted for further processing in following steps. Second, mul-

tiple features are extracted from ROIs, including statistical, geometrical, and

texture features for the early PD risk assessment [37, 38]. Another challenge of

the classification using Gabor filters is that the orientations and shapes of the

mesencephalon vary from one PD patient to another. We have two solutions

for this problem, one is the rotation-invariant Gabor filter with a robust feature

extraction based on entropy [39], another is the shape normalization of the half

of mesencephalon by a designed image warping technique. Furthermore, a lo-

cal feature analysis method is proposed to detect the distinct pattern of SN in

half of mesencephalon region with the localization and the quantity analysis of

the interesting areas. This approach is based on blob detection and watershed

segmentation [32] and that can indicate the suspected blobs in midbrain region
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1.3 Methods of Parkinson’s Disease Computer Aided Detection

Figure 1.7: The main structure of Parkinson’s Disease Computer Aided Detec-

tion system.

with a quantitative analysis.

1.3.1 Image Segmentation

The segmentation of the midbrain and SN is the crucial part for the diagnosis of

PD by means of TCS. The first automatic segmentation of the midbrain and SN

in 2D TCS was proposed in 2008 [40]. This method combined active contour

models with a complex finite element model of midbrain anatomy. However,

this method was only evaluated on ten datasets and compared with manual

segmentations of the expert. The first semi-automatic midbrain segmentation

from 3D TCS was implemented in 2011 [41]. But this approach did not consider
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the segmentation of SN. The accurate and robust segmentation of the mesen-

cephalon and SN from TCS images is an extremely difficult task because of

the poor image quality. Hence, another automated segmentation based on the

B-scan sequence of 2D TCS was proposed, which applied a complicated pre-

processing for the suppression of the speckle noise to improve the active contour

segmentation [42]. The first automatic SN echogenicity analysis in 3D TCS was

proposed based on random-forest in 2012 [43]. In their method, the volumetric

SN echogenicity detection depends on the quality of the reconstructed volume

from the obtained B-scan sequences of the 2D TCS images. In this thesis, we fo-

cus on the robust image analysis method for the SN echogenicity detection from

2D TCS images. Therefore the regions of half of mesencephalon in TCS images

were segmented by physicians manually and/or the applied semi-automatic seg-

mentation method. Then the ROIs (half of mesencephalon) were analyzed for

the detection of PD and the estimation of the SN hyperechogenicity.

1.3.2 Feature Extraction

Since the effective segmentation method of SN is a challenge task currently, the

robust feature extraction for the TCS classification is rather more promising

solution for PD detection. In our previous studies, one solution to detect PD

from TCS images was to apply feature analysis on the region of the ipsilateral

mesencephalon wing, which is close to the ultrasound probe. First, the moment

of inertia and Hu1-moment of manually segmented half of mesencephalon were

used for separating control subjects from Parkin mutation carriers [27]. Sec-

ond, a hybrid feature extraction method which included statistical, geometrical,

and texture features for the early PD risk assessment was proposed [37], which

showed good performance of texture features (especially Gabor features). Then,

a texture-analysis method that applied a bank of Gabor filters and gray-level

co-occurrence matrices (GLCM) on TCS images was investigated [38]. Gabor

features and GLCM texture features were combined as a feature subset with

sequential forward floating selection (SFFS). The feature subset showed good

results with the cross validation method.

The scattering transform is a cascade of wavelet decompositions, complex mod-

ulus operators, and local averaging. Scattering coefficients are computed with

a convolution network [44], they provide much richer structure information and

multi-scale texture variations [45]. We apply the invariant scattering convo-

lution networks on TCS images and demonstrate experimental results on the

classification between images from PD patients and healthy controls. However,
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the scattering image representation is much larger than the original one. There-

fore, the dimensionality-reduction methods on the scattering coefficient vector

are investigated in this thesis. By using the scattering coefficients as feature

vector, the computation time for classification is large, even if a simple classifier

is used. Hence we propose to use linear discriminant analysis (LDA) instead

of principle component analysis (PCA) used in the original work to reduce the

feature vector for classifier while trying to keep or improve the accuracy.

Furthermore, a large dataset is analyzed with a local feature analysis method

that is based on the blob detection and watershed segmentation [32]. One

of the experimental results show that these local features from the detected

blobs and watershed regions are largely invariant to the image normalization.

Moreover, a shape-adapted interest area detector is implemented to estimate

the hyperechogenicity with a large data set. This detection method is invariant

to scale and affine transformation.

1.3.3 Image Sequence Analysis and Visualization

TCS is a dynamic scanning that a sonographper moves a transducer to the po-

sitions and orientations with the scanning procedure. Apparently it is difficult

for a sonographer holding the transducer in a fixed position and to decide the

proper images for the diagnosis. In addition, the features mentioned in above

sections that were extracted from 2D TCS images cannot supply the volume in-

formation of the mesencephalon and SN. Using the current ultrasound machine,

the sonographer could capture a sequence of B-scans (TCS images) from both

sides of each subject. The TCS images used in this experiment were acquired

with Siemens Sonoline Antares. This algorithm is designed for the analysis of

TCS sequence and visualization of mesencephalon and SN region.

1.4 Outline

During the diagnosis of PD, TCS had been shown a distinct hyperechogenic

pattern in images of most of PD patients. The combination of clinical charac-

teristics and the ultrasound pattern assists in establishing the correct diagnosis

of a specific movement disorder. Monogenic forms of parkinsonism may be clini-

cally indistinguishable from PD. We and others described SN hyperechogenicity

even in asymptomatic carriers of single heterozygous Parkin mutations with or

without PET abnormalities. This interesting finding leads to the hypothesis
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that SN ultrasound patterns may be a potential preclinical marker to detect

PD susceptibility. To date, for quantitative analysis of SN hyperechogenicity,

only the area of SN (aSN) but not other signal characteristics have been con-

sidered.

The original assignments of this doctoral thesis are: First, can SN hypere-

chogenicity serve as a preclinical marker? Second, is the ultrasound investi-

gation useful to screen a large population for genetic and other forms of PD,

thereby reducing the need for expensive genetic tests? Third, is there informa-

tion other than SN hyperechogenicity in the ultrasound signal from the mes-

encephalic and diencephalic ultrasound images to characterize distinct forms of

parkinsonism/PD?

In order to remove investigator dependence in quantifying the hyperechogenicity,

we develop a semi-automatic segmentation algorithm to extract the regions of

interest in the ultrasound image (SN and the surrounding mesencephalic brain

stem). In addition, an image sequence analysis method has been implemented

for the visualization of all the recorded images during the acquirement of TCS

examination. The main content is to design different feature extraction meth-

ods that can be developed to describe other distinct information contained in

the images (e.g. based on the theory of moments, regional descriptors, etc.).

These features aim at separating images of individuals that are genotypically or

phenotypically different.

The first chapter is the introduction about the medical background of PD and

the history of TCS applying for diagnosis. The chapter 2 has given an overview

of the related works on this topic, the midbrain region segmentation methods.

Especially, the applied semi-automatic half of midbrain segmentation algorithm

is briefly explained and the segmented results for the TCS images are compared

with the manual segmentation of physicians in this thesis. In addition, the pre-

processing techniques are applied before the feature extraction algorithms. The

motivation of using these pre-processing methods and the details are mentioned

in this chapter.

In the third chapter, a multiple feature extraction algorithm is described that

compute statistical features, geometrical features, and texture features from

ROIs. Afterwards, feature selection methods are used to find the best feature

subset which can achieve the best classification rate. Furthermore, we develop

a robust feature extraction algorithm by using a rotation-invariant Gabor filter

and compute robust features based on the normalized histogram.
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In the forth chapter, we first apply the invariant scattering convolution networks

on TCS images. This new technique was introduced by Professor Stéphane

Mallat in 2010. Based on the convolution output, the scattering coefficients, we

design and develop the feature dimension reduction methods, the classification

method with LDA replaces the PCA used in the original work.

In chapter 5, the hyperechogenicity of SN is estimated by a shape-adapted blob

detection algorithm. The motivation is to supply the visible detection results to

the physician instead of the feature extraction results mentioned in our previous

works. The locations of all suspected area are positioned by a scale invariant

blob detection method, and then the ROIs are estimated by using a shape-

adapted interest area detector. The comparison between the estimation results

and the evaluation of the doctor is given in the experiment section.

The sixth chapter considers that the identification of the scan plane is investi-

gator independent, then the sequence obtained during the TCS examination is

utilized to visualize hundreds of B-scans in 3D space by MeVisLab software. Due

to unexpected movements during the acquisition procedure, the registration of

each image in a sequence become very important. Therefore a local descriptor,

SIFT, is used to align all images in a sequence. Moreover, the doctor marker

of the midbrain is used to segment the region of mesencephalic stem in the se-

quence, as a result, the better performance of the visualization of SN region can

be achieved.
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Chapter 2

Transcranial Sonography Image

Segmentation

2.1 Summary of Segmentation Methods for TCS

Image

In general, the upper half of mesencephalon and the SN region are marked

by physicians during a clinical examination of PD [22, 25, 9, 26]. The size of

hyperechogenicity in SN area and/or the brightness of SN region are then used

for the PD diagnosis. The segmentation algorithm of the midbrain and SN based

on TCS images is still under investigation. In this chapter, I first review the

existing segmentation methods. Then, a semi-automatic segmentation approach

is applied to extract the ROIs for the further feature analysis.

2.1.1 Manual Segmentation by Physician

Based on the prior knowledge, for instance, the anatomic structure of the brain,

a physician marks the area of whole or half of mesencephalon from TCS images

as shown in Figure 2.1. From the view of image analysis, the mesencephalon is

manually segmented. Then, several feature analysis methods are implemented

[27, 37, 38, 46] using these manual segmentations from doctors. The SN hyper-

echogenicity is estimated by the scale-invariant blob detection method in [32].

According to this experiment, the SN area is consisted of a number of blobs in

most TCS images. As a result, the SN area cannot be segmented simply just

by one single curve. To date, the segmentation approach of SN area based on
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(a) (b) (c)

Figure 2.1: Manually segmented TCS images from Philips SONOS 5500. The

images in the first and second row are collected from PD patients,

and healthy control subjects, respectively. The red marker indicates

the upper half of mesencephalon. The images in each column are

selected from different datasets. Yellow/green markers show the SN

area as a bright spot.

one 2D TCS image is very difficult and still under investigation. Hence, only

ROIs (half of mesencephalon) are considered and used in the image analysis and

feature analysis algorithms for the PD detection. In this thesis, the manually

segmented TCS images from Philips SONOS 5500 are used for image analysis,

six of them are shown in Figure 2.1.

2.1.2 The Existing Segmentation Techniques

In order to reduce the investigator dependence, several semi-automatic algo-

rithm were developed to segment mesencephalon or SN area [47, 40, 48, 41]. The

first automatic segmentation of the midbrain and SN in 2D TCS was proposed

in 2008 [40]. This method combines active contour models with a complex finite

element model of midbrain anatomy, the two-component shape model [49]. This

model represents the structure of the midbrain by discrete shapes as illustrated

in Figure 2.2. The global model T (2) (Figure 2.2 (c)) represents the butterfly-

shaped midbrain, the local models T (1)
i , i = 1, 2, represent the stripe-like SN on

each wing of mesencephalon [49]. However, the evaluation of this method was
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(a) (b) (c) (d)

Figure 2.2: Illustration of applying the two-component shape model into the

TCS images for the midbrain segmentation. (a) Midbrain region

in a TCS image. (b) Schematic midbrain with stripe-like SN. (c)

The corresponding two-component shape model. (d) The bound-

ary finite element nodes of the SN-modes and the created active

contours. Reuse permission of [49].

only tested on ten data sets with manual segmentations by the expert.

The accurate and robust segmentation of the mesencephalon and SN from TCS

images is an extremely difficult task because of the poor image quality. Hence,

another automated segmentation of 2D TCS was proposed, which applied a

complicated pre-processing for the suppression of the speckle noise to improve

the active contour segmentation [42]. After pre-processing of the sequence of the

TCS images, a modified active contour was applied. With the assistance of the

expert, all manually marked areas were averaged, and then the initial contour

of the midbrain was created as shown in Figure 2.3 (a). In addition, an ellipse

was selected as the initial contour for SN segmentation as shown in Figure 2.3

(b). Technically the parameters of the contour were chosen based on the prior

anatomical knowledge about the SN, such as the size and the rotation.

The first semi-automatic midbrain segmentation from 3D TCS was implemented

in 2011 [41]. The interesting and important step in their work is the data ac-

quisition as sequences of 2D TCS images. They combined a medical ultrasound

machine at 3 MHz with a navigation system that can record the position of the

freehand probe in 3D. The scans were performed bi-laterally, as a result, the

entire midbrain area can be constrained with the images obtained through the

left and right temporal bone window. Based on the two sequences obtained from

both sides of the brain, a 3D freehand US volume was reconstructed by using a

backward-warping compounding technique [41] at resolution of 0.45 mm. The

segmentation result of one 3D freehand US volume data are shown in Figure 2.4.

But this approach did not consider the segmentation of SN. The first automatic
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(a) (b)

Figure 2.3: The initial contours of midbrain and SN. (a) TCS image with the

approximated initial contour. (b) The defined ROI of the TCS

image with a placed initial contour for the segmentation of the SN

area (intensity-weighted centroid marked as *). Reuse permission

of [42].

SN echogenicity analysis in 3D TCS based on random-forest was proposed in

2012 [43]. In their method, the volumetric SN echogenicity detection depends

on the quality of the reconstructed volume from the obtained B-scan sequences

of the 2D TCS images.

2.2 Applied Segmentation Method

Medical image interpretation is a difficult task due to the inter- and intra-

personal variability existing in biologic structures [50]. A shape-based model

matching algorithm, such as an active shape model (ASM), uses deformable

models or atlases to match the boundaries of the object or structure in medi-

cal images. An appearance-based algorithm, such as active appearance model

(AAM) [51], can represent not only the information near the landmarks but

also the texture in the whole image region covered by the target object. AAMs

are commonly applied to model faces [52] and they have also been used for

medical image analysis [50]. In this work, the regions of half of mesencephalon

in midbrain images are segmented mainly based on AAMs and the ROIs are

subsequently used for feature analysis.

The idea of the segmentation is to create a ‘golden’ image of midbrain (anatom-
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(a) (b) (c) (d)

Figure 2.4: Illustration of the midbrain segmentation in transcranial 3D ultra-

sound. (a) The slice with visible midbrain. (b) and (c) Segmenta-

tion without and with data term localization, respectively. (d) The

mesh surface distance map between result and ground truth. With

kind permission of Springer Science+Business Media [41].

ical atlas), an initial contour, by using all TCS images labeled by experts as

the training set, then match the atlas to a target image to interpret the half of

mesencephalon. The advantage of AAM is that it can represent both the shape

and texture variability in midbrain region in the training set. Giving such a set,

a statistical model of shape variation can be generated, for details see in [53].

The labeled points on the upper half of mesencephalon in a TCS image describe

the shape of half wing of the mesencephalon, which is similar to an ellipse. The

shape of an AAM can be defined as a vector s, the vertex locations of the 2D

triangulated mesh:

s =

(

u1 u2 · · · un

v1 v2 · · · vn

)

. (2.1)

We then align the sets of vectors into a common co-ordinate frame [52] and

generate the model of shape variation by applying principal component analysis

(PCA). Mathematically, the shape s is represented as a mean shape s̄ with a

linear combination of m shape parameter si:

s = s̄+
m
∑

i=1

pisi, (2.2)

where p is a set of orthogonal modes of variation [52].

The gray-level appearance model is built by warping every labeled image into

the base mesh s̄. The control points of each image are matched to the mean

shape s̄ by using a triangulation algorithm [50]. After the matching, the intensity

values of the pixels are sampled from the shape-normalized image over the region

covered by the base mesh s̄. The resulting samples are normalized to reduce
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the effect from the global lighting variation. Actually, obtaining the mean of

the normalized data is done recursively. The details are given in [51]. The

appearance of the AAM, g, is defined by the mean normalized appearance ḡ

with a linear combination of l appearance images gi:

g = ḡ +
l
∑

i=1

λigi, (2.3)

where λi are the appearance parameters. Further details of AAMs can be found

in [51, 50]. How to generate an AAM model instance was described in [54].

Two examples of the initialization of AAM on TCS images are demonstrated in

Figures 2.5 (a) and (c), the finally generated contours are superimposed on the

original images, shown in Figures 2.5 (b) and (d), respectively.

2.3 Preprocessing Techniques

2.3.1 Simulated Data

Considering the affections from user setting of ultrasound machine defined by

different examiners, such as the brightness and contrast adjustment applied to

the original TCS images, we applied four methods to TCS images to simulate

the settings of the examiner. The first method is to rescale the TCS image to

the range [0, 255], for each image the intensity values are rescaled as given by

Inew =
I − Imin

Imax − Imin

· 255, (2.4)

where Imin and Imax are the minimum and maximum gray values in the patch

image, respectively. The TCS image and the histogram are shown in Figure 2.6

(a).

A considerable difference between the original and the normalized images is

illustrated in Figure 5.1 in Chapter 5. The second method is zero mean and

unit variance normalization, each image is normalized by

Inew =
I − µ

σ
, (2.5)

where µ and σ are the mean and the standard deviation of the patch image,

respectively. As the third alternative, the shape of the image histogram is

changed by the contrast-limited adaptive histogram equalization (CLAHE) [55].
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(a) (b)

(c) (d)

Figure 2.5: The illustration of the semi-automatic segmentation of midbrain.

The upper row and the bottom row are the images of a PD patient

and a healthy control subject, respectively. (a) and (c): The initial

contours are put on the region of the ipsilateral mesencephalon

wing manually; (b) and (d): The segmented results of the proposed

segmentation method.

As a results, the histogram of each image is transformed to match with a de-

sired shape. The Rayleigh and exponential distributions are used as the target

shapes in this work. The example TCS images are processed by a MATLAB

function ‘adapthisteq’ in Image Processing Toolbox, and the results are shown

in Figures 2.6 (b) and (c).

2.3.2 Normalization of the Segmented Region

Regarding the variation of the orientation and shape of the midbrain from one

subject to another, one solution is using the rotation-invariant Gabor filter which

was investigated in [39], for which the performance was better than the conven-
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Figure 2.6: The original TCS image and the simulated image to the user setting.

The upper row are TCS images and the corresponding histogram

are in the bottom row. (a) The original TCS image. (b) The shape

of histogram is transformed to the bell-shape, Rayleigh distribution.

(c) The curved histogram transformed by exponential distribution.

tional Gabor filter for the TCS image classification. Another solution is to align

the direction of half of mesencephalon before applying a texture analysis method

as mentioned in [32]. Learning from the prior knowledge of the anatomic loca-

tion of half of mesencephalon and SN [27], a mask is created from the ellipse

then fitted onto the ROI. This mask is used for the exclusion of the detected

blobs that are outside of the half of mesencephalon region in one previous work

[32]. Here, in order to align the half of mesencephalon region of each subject

for the same orientation, each manually segmented boundary of half of mes-

encephalon is fitted with an ellipse and then transformed onto a target ellipse

with the affine transformation. The centers of the ellipses and the eight control

points on the ellipses are used to calculate the transition matrix of the affine

transform. The target ellipse and one fitted ellipse with a ROI are shown in

Figures 2.7 (a) and (b), respectively.

Using the transition matrix, the half of mesencephalon and SN areas of the

manual segmentations are transformed onto the target ellipse (Figures 2.8 (a)

and (c)). The original image of the half of mesencephalon region and its affine

adaptation result can be seen in Figures 2.8 (b) and (d), respectively.
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(a) (b)

Figure 2.7: The target ellipse and the fitted ellipse. (a) Two green lines are

parallel to the minor ellipse axis and across the two ellipse focuses

in the target ellipse, respectively. (b) The fitted ellipse with the

ROI. Eight green points on the ellipse are used to transform the

fitted ellipse into the target ellipse with the affine normalization.

2.4 Experimental Results and Discussion

2.4.1 The Evaluation of The Applied Segmentation Method

The common strategy of evaluating the segmentation methods is using quali-

tative and quantitative analysis based on the comparison with a gold standard

such as the manual segmentation results by experts. Engel et al. evaluated

their model-based midbrain and SN segmentation with ten data sets of TCS

images [40] and also 30 data sets from cerebral MRI images [48]. The mean

of the Hausdorff distance, mean squared distance and region overlap were cal-

culated for comparison with manually segmented data sets by an expert [40].

Sakalauskas et al. applied the same strategy to evaluate their automated mid-

brain and SN segmentation approach by comparing the segmented contours with

the manually marked contours by two experts in 40 images. The calculation of

the Hausdorff distance between the contour obtained by their proposed method

and the contour outlined by experts was given in [42]. The quantitative results

for both midbrain and SN regions were computed for the segmentation method

reliably. For 3D data, Ahmadi et al. evaluated their midbrain segmentation al-

gorithm by computing the mesh surface distance map between the output of the

proposed method and a ground truth which contains the manually segmented

regions, midbrain, SN left and SN right by expert in 11 diagnosed PD patients

and 11 healthy controls.

Our aim is to provide a reliable segmentation method for the ROI extraction.

The ROIs will be used for feature extraction methods in the next step. Here, we

compare the classification results that are based on the feature vectors extracted
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(a) (b)

(c) (d)

Figure 2.8: Affine normalization of half of mesencephalon region using a target

ellipse. The ellipses and eight control points are superimposed on

the segmentations and the original images. (a) manually segmented

half of mesencephalon with the fitted ellipse and SN area. (b) The

original TCS image of half of mesencephalon with the fitted ellipse.

(c) The transformed result with the target/standard ellipse. (d)

The affine adaptation result of the original image.

from the labeled data by physicians and the segmented ROIs by the proposed

segmentation method. The details about how to calculate these features will

be given in Chapter 3 Section 3.1.1. The applied segmentation method was

evaluated based on the two datasets that were obtained from Philips SONOS

5500, and the description of these TCS images was mentioned in Section 1.2.3.

First, we combined the images of group 1 and group 3 as PD data for the

comparison with the healthy controls (group 4). Second, the TCS images in

groups 1 and 2 were combined as Parkin mutation data to separate Parkin mu-

tation carriers from the healthy controls. In addition, TCS images obtained with

Siemens Sonoline Antares were used to demonstrate the segmentation results as

Figure 2.10.

Basically, the idea is to characterize the ‘content’ of an image histogram using

some descriptors. Therefore, the following statistical features [56] of the his-

togram were calculated for quantitative analysis of the gray-level distribution

in the ROI as listed in Table 2.1. The features F (1, 2, 12, 13, 14) were calcu-

lated from the intensity values of the original images. To minimize the effect

the brightness and the contrast variation due to different user settings, we nor-

28



2.4 Experimental Results and Discussion

malized the TCS images by scaling the gray-level images to a certain range

[0, 64]. Considering the different values of the window and level adjustment on

the ultrasound machine, the ground pixels (gray value 0) were excluded from

the calculation of the other features. The motivation and the details will be

given in Chapter 3, Section 3.2.

Table 2.1: The statistical features used for the evaluation of the segmentation

method.

Feature vector Feature name

F(1,2) Mean, variance of ROI

F(3,. . .,7) the 3rd ∼ 7 th order moment

F(8,9) Normalized value of mean and variance

F(10,11) Skewness, kurtosis of ROI histogram

F(12) Root mean square (RMS) contrast [57]

F(13,14) Skewness, Kurtosis of ROI

F(15,16) Energy, Entropy of ROI

F(17) Gray mode, the global max in a histogram

Three feature vectors, PD (66 × 17), Parkin mutation (58 × 17) and the healthy

control (46×17), are computed from the manually labeled and segmented ROIs,

respectively. The performance of these features is evaluated by the sequential

feature selection method SFFS. The forward floating search strategy is used

to establish the best feature subset by optimizing the criterion function. For

SFFS, the criterion function is set as the support vector machines (SVMs) with

leave-one-out cross validation method. Regarding the parameters of SVM, the

sequential minimal optimization method (SMO) was specified to find the sepa-

rating hyperplane and the linear kernel function was selected in order to easier

analysis of the relationship between the selected features rather than the Gaus-

sian radial basis functions (RBF). The performance of each feature for the two

classification tasks are illustrated in Figure 2.9. The classification rates of each

feature based on the labeled and segmented ROIs are not exactly similar. We

then use the labeled data as the ground truth to evaluate the performance of

the applied segmentation approach.

The features extracted from the labeled data were used for the two classification

tasks with the four optimal feature subsets (dimension from one to four) that

were obtained by SFFS as listed in the second and fourth column in Table 2.2.

The same procedure was implemented on the segmented data, and the classifi-

cation results for four optimal feature subsets are shown in the third and fifth

column in Table 2.2. The classification rates for the selected features that were
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Figure 2.9: The percentages of the classification rates for each statistical fea-

ture. Datasets: (a) PD and healthy control; (b) Parkin Mutation

and healthy control. The red circles indicate the features calculated

from the images labeled by the physicians. The blue squares indi-

cate the classifications based on the applied segmentation method.

calculated from the segmented data are slightly lower than the accuracies of the

features computed from the labeled data on each dimension of feature subset.

The differences between the labeled and segmented ROIs resulted in a quite

similar classification performance based on the feature analysis algorithm. Only

one disadvantage of the semi-automatic segmentation is that we need to locate

the initial contour manually.

Table 2.2: Feature selection results and the corresponding classification rates

(%). ‘Physician’ indicates the images labeled by physicians and

‘Computer’ describes the segmentations.

Size of PD and control data Mutation and control data

Feature subset Physician Computer Physician Computer

1 82.14 80.36 84.62 78.85

2 84.82 83.04 85.58 83.56

3 85.71 83.93 86.54 83.65

4 87.50 83.04 86.54 84.62

After successfully applying the semi-automatic segmentation on the TCS images

from Philips SONOS 5500, we then use this segmentation tool to segment the

TCS images obtained with Siemens Sonoline Antares. The illustration of the
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(a) (b)

(c) (d)

Figure 2.10: The illustration of the semi-automatic segmentation of midbrain

on TCS images from Sonoline Antares. The first row and the

second row are the images of a PD patient and a healthy control

subject, respectively. (a) and (c): The doctor markers on the

region of the mesencephalon wings; (b) and (d): The segmented

results of the applied segmentation method.

segmentation results are given in Figure 2.10.

2.5 Conclusions

This chapter has given an overview of the segmentation approaches that were

applied on TCS image. Actually, due to the property of ultrasound image, it

is very difficult to implement a segmentation method that can yield a very ac-

curate output as based on other medical image, such as MRI. Our solution is

more suitable for the reduction of the investigator-independence problem than

others. We applied a semi-automatic segmentation method to extract the half

of mesencephalon, and based on the extracted ROIs, the multiple features were

31



2 Transcranial Sonography Image Segmentation

computed for classification. Then, these features were evaluated by feature se-

lection methods. The best feature subset can be used for the classification of

TCS images afterwards. Therefore, we avoid the difficulties of accurate segmen-

tation, such as the size of SN hyperechogenicity, meanwhile, we can achieve very

good performance of classification by selected features. The details about how

to extract multiple features and the feature selection methods will be introduced

in next chapter.

32



Chapter 3

Multiple Feature Extraction From

TCS Image

Early diagnosis of Parkinson’s disease is of great importance, since clinical symp-

toms do not occur until the substantia nigra (SN) neurons in the brain stem

have been irreparably damaged [27]. Early diagnosis of PD may have two differ-

ent meanings: the earliest possible PD diagnosis when first motor symptoms are

present or preclinical diagnosis of predisposed individuals before first parkinso-

nian motor symptoms appear [11]. Nowadays, it is possible to determine the

formation of idiopathic PD as well as monogenic forms of parkinsonism at an

early state by means of TCS [9].

However, this finding is still subject to manual evaluation of the examined im-

ages. For quantitative analysis of SN hyperechogenicity, only the area of SN

rather than the other image characteristics have been considered. Our goal is

to reduce investigator-dependence of the diagnosis by extracting multiple fea-

tures from the manually segmented ipsilateral mesencephalon wing, which is

close to the Ultrasound probe as shown in Figure 3.1. The moment of iner-

tia and Hu1-moment were found by Kier et al. [27] as good parameters for

separating control subjects from parkin mutation carriers. In this chapter, we

propose hybrid feature extraction methods which include statistical, geometri-

cal and texture features for the early PD risk assessment. These features are

used with an SVM classifier. The performance of SVMs often does not increase

with the growth of the feature set, therefore the feature selection methods such

as sequential backward selection (SBS) and sequential forward selection (SFS)

are applied to obtain the best feature subset.
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3 Multiple Feature Extraction From TCS Image

(a) (b)

Figure 3.1: Manually segmented upper half of the mesencephalon (red) in (a)

a healthy subject and (b) a PD affected subject, SN region is indi-

cated by a yellow contour.

3.1 Multiple Feature Extraction

The feature extraction is used to reduce the dimension of the input data and

minimize the training time taken by the classifier. Multiple features which

include geometrical moments, statistical moments and texture moments are

extracted from the region of interest (ROI). The ultrasound images of the upper

half of the mesencephalon, ROIs, are shown in Figure 3.3 (a) and (c), which are

manually segmented from Figure 3.1 by physician. The difference of gray value

distributions between these two class images can be seen more clearly in the

surface plot (Figure 3.2) than in a gray image.

3.1.1 Statistical Features

Feature-specific measurements in images can be divided into four general classes:

size, shape, brightness, and location [58]. Within each class, a variety of specific

measurements and operations can be performed. Normally a numeric output

produced by measurements is suitable for statistical analysis. The first-order

statistics measure the likelihood of a gray value at a random location in image. It

can be calculated from the histogram of pixel intensities [59]. The basic idea is to

characterize the ‘content’ of an image histogram using some descriptors. The two

histogram-related features, energy E and entropy H can be defined. The energy
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Figure 3.2: Surface plot of the ROI in (a) Healthy subject and (b) PD affected

subject. (two same subjects with Figure 3.1)

assumes its maximum value close to one if the image has a histogram with only

one bin. The value of the energy deceases when the image has a broader intensity

variations. The entropy is a measure of information content which is inversely

related to the energy in a qualitative manner. For example, a predominantly

random distribution has a high entropy and uniform distribution has a low

entropy. Moreover, two shape-descriptors of a probability distribution, skewness

and kurtosis are used to characterize the shape of the histogram. Skewness is a

measure of the extent of the asymmetry to probability distribution around the

mean. Kurtosis is a measure of how outlier-prone a distribution is, compared

to the normal distribution (kurtosis value is 3). In this section, the histograms

that are more outlier-prone than the normal distribution have kurtosis values

higher than 3. In addition, the gray mode is a measure of the peak, the global

maximum of a histogram.

Therefore, the following statistical features [56] of the histogram are calculated

for quantitative analysis of the gray-level distribution in the ROI as listed in

Table 3.1.

3.1.2 Geometrical Features

In the fields of pattern recognition and computer vision, a variety of approaches

have been implemented for recognizing and matching objects by their attributes

and geometrical feature [60]. Instead of shape descriptors perimeter, such as area
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Table 3.1: 15 statistical features are extracted from ROIs.

Feature vector Feature name

F(1,2) Mean, variance of ROI

F(3) the 3rd order moment
...

...

F(10) the 10 th order moment

F(11,12) Energy, Entropy of ROI

F(13,14) Skewness, Kurtosis of ROI

F(15) Gray mode, the global max in a histogram

and compactness, moment analysis represents a systematic method. Moment

analysis based on region-interior pixels, such as the evaluation of central mo-

ments, normalized central moments, and moment invariants. The quantities are

suitable for object recognition due to the shape attributes that are independent

of object size and orientation [60].

Given a binary image, region-interior pixels are the value 1, and the moments

mpq of a region can be defined as:

mpq =
∑

R

xpyq, (3.1)

where the sum runs over all region-interior pixels. The expressions of the mo-

ments mpq can be found in Chapter 4 in [60]. The moments mpq simply represent

measurements of area, but the area cannot be scale invariant because the objects

may depend on the scale of the image. One solution is the normalization by the

area, the central moments µpq are defined in terms of the centroid location:

µpq =
∑

R

(x− xc)
p(y − yc)

q. (3.2)

The central moments are usually divided by the zeroth moment to generate

the normalized central moments. A list of the central moments and moment

invariants is given in the chapter 4 in [60].

Christian Kier et al. found both the moment of inertia and Hu1-moment could

be used to separate control subjects from parkin mutation carriers [27]. Seven

moments defined by Hu [61] were computed based on the segmented ROIs. Hu

moments have been proven to be invariant to object scale, position and orien-

tation. The moment of inertia is adapted to image processing by interpreting

intensity values as inertia values and varies strongly between a uniform and a

centrical distribution of the ROI [27]. The geometrical moments used here are

listed in Table 3.2:
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Table 3.2: A total of 8 moment features are extracted from ROIs.

Feature vector Feature name

F(16) Moment of inertia

F(17) the 1st order Hu moment
...

...

F(23) the 7th order Hu moment

3.1.3 Texture Features

Looking at a picture of real objects, we can use our vision system to connect

regions having a certain similarity, such as similar gray or color value, into

objects. But, these images of objects often do not show uniform intensities in

regions. For example, a grass image or a brick wall image. We can recognize

that these regions are not uniform but contain variations of intensities, these

certain repeated patterns can be called visual texture.

While it is hard to give a formal definition of texture, such as the repetition

of a pattern or patterns over a region [62], a region in an image has a con-

stant texture if a set of local statistics or other local properties are constant

or approximately periodic [63]. Texture analysis is an important area of study

in practical machine vision applications [59]. Texture analysis methods have

been implemented in a variety of applications, such as automated inspection

and medical image analysis. The analysis techniques include extraction proce-

dure of features from the medical image, the classification tasks based on the

extracted features. Depending on the specific application, the extracted features

capture morphological properties and textural properties of the image [59].

An often used wavelet in image analysis is the Gabor wavelet, G(x, y). In 2D,

it is the product of a Gaussian with a plane wave [60]. Gabor wavelet analysis

produces images over many orientations for a single spatial frequency, it localizes

features in the spatial domain compared with frequency domain analysis. In

this chapter, we propose to use Gabor filter for the texture analysis of TCS

image. The illustration of the responses of Gabor filter on TCS images are

shown in Figure 3.3. Another texture analysis method characterizes the region

properties in its gray levels by computing the co-occurrence matrix. Grey-

Level Co-occurrence Matrix (GLCM) texture measurements were proposed by

Haralick [64], who formulated 14 texture metrics based on the co-occurrence

matrix [65]. The details about GLCM will be given in Section 3.1.3.

37



3 Multiple Feature Extraction From TCS Image

(a) (b)

(c) (d)

Figure 3.3: The two TCS images are selected from a healthy and a PD affected

subject and the corresponding filtered image by Gabor filter (scale

0, orientation 1). (a) Half of the mesencephalon (ROI) in TCS

image of a healthy subject and (c) PD affected patient. (b) and (d)

are the corresponding Gabor filter processing results.

Gabor filter

In this section, texture features that are extracted by a bank of Gabor filters

from the region of interest (ROI) are shown in Figures 3.3 (a) and (c), which

were manually segmented from Figure 3.1 by physicians. The Gabor filter (scale

0, orientation 1) processing results are given in Figures 3.3 (b) and (d).

Given an image I(x, y) with size P ×Q, its discrete Gabor wavelet transform is

then defined by a convolution:

Gmn(x, y) =
∑

ξ

∑

η

I(x− ξ, y − η)g∗
mn(ξ, η), (3.3)

where ∗ indicates the complex conjugate of gmn [66]. The filter mask size is
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indicated by ξ and η. The two dimensional Gabor function g(ξ, η) is:

g(ξ, η) =
1

2πσξση

exp[−1

2
(
ξ2

σ2
ξ

+
η2

σ2
η

)] · exp[2πjWξ], (3.4)

where W is called the modulation frequency, and ξ and η range from -30 to 30,

the filter mask size is 61 × 61. The generating function is

g(ξ, η) = a−mgmn(ξ̃, η̃), (3.5)

and

ξ̃ = a−m(ξcosθ + ηsinθ); η̃ = a−m(−ξsinθ + ηcosθ), (3.6)

where m and n specify the scale and orientation respectively, a > 1 and θ =

nπ/N . N is the total number of orientations. Moreover,

a = (Uh/Ul)
1

M−1 ; Wm,n = amUl; (3.7)

σξ =
(a+ 1)

√
2 ln 2

2πam(a− 1)Ul

; ση =
1

2πtan( π
2N

)

√

U2

h

2 ln 2
− ( 1

2πσξ
)2

. (3.8)

It is assumed that the SN region in the ROI (half of mesencephalon) has homo-

geneous texture, therefore the mean µmn and the standard deviation σmn of the

transform coefficients’ magnitudes are used to represent the texture features:

µmn =

∑

x

∑

y | Gmn(x, y) |
P ×Q

, (3.9)

σmn =

√

∑

x

∑

y(| Gmn(x, y) | −µmn)2

P ×Q
. (3.10)

The Gabor feature vector f is composed by µmn and σmn as feature components

[67]. Five scales and six orientations have been used in the experiments:

f = (µ00, σ00, µ01, σ01, ..., µ45, σ45). (3.11)

Based on the designed Gabor filter bank, the extracted Gabor features are listed

in Table 3.3. The other two texture features, average gray level and average

contrast, are computed as in [68].
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Table 3.3: The Gabor filter bank designed with five scales and six orientations.

Two conventional Gabor features, mean and standard deviation are

extracted based on the magnitude of each filter response. A total of

60 Gabor features.

Feature vector Feature name

F(24) Average gray level

F(25) Average contrast

F(26) Mean of the magnitude f(1)

F(27) Standard deviation of the magnitude f(2)
...

...

F(84) Mean of the magnitude f(59)

F(85) Standard deviation of the magnitude f(60)

GLCM features

A region has a particular texture in an image, the properties of the variation

in its gray levels can be used to identify the region [69]. Then a texture mea-

surement is required to reflect the property about the repeating nature of the

texture in the image, such as repeating horizontal and/or vertical lines with

similar widths and separations. A gray-level co-occurrence matrix is suitable

to provide the information about the positions of pixels with similar gray-level

values. The idea is to scan the image and record the information about how

often a pixel pair in value appears that differ by a fixed distance in position. A

definition of GLCM Cθ
d(i, j) is given as how often different combinations of a

pixel pair (i, j) occur in an image, that located at a distance d and direction θ.

The term Cθ
d(i, j) is a two-dimensional histogram of gray values i and j, and the

element at (i, j) is the probability of this pixel pair. Furthermore, Gray level

co-occurrence probability is defined as the number of times this combination

occurs, divided by the total number of possible outcomes. The normalization

equation reads:

Pi,j =
Vi,j

∑N−1
i,j Vi,j

, (3.12)

where i, j are row and column number, respectively, Vi,j is the combination oc-

curs. For example, for an image with 256 gray levels, the size of the GLCM

matrix Cθ
d(i, j) is 256 × 256. In the experiment, the multiple GLCMs were cre-

ated with four directions (θ = (0◦, 45◦, 90◦, 135◦)), the window size was chosen

as 3 by 3 (offset size is one). An illustration regarding a patch image and the

pixel of interest with four direction is shown in Figure 3.4 (a). The correspond-

40



3.1 Multiple Feature Extraction

17

16

14

12

11

10

10

13

12

11

9

10

9

8

10

10

9

9

9

9

9

10

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

8

9

9

9

9

9

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

8

9

8

9

9

9

9

11

10

8

9

9

9

9

11

13

10

11

13

15

19 90° 45°

0°

135 °

P

(a) (b)

Figure 3.4: The illustration of creating a Gray-Level Co-Occurrence Matrix.

(a) A patch image describes the spatial relationships of pixels that

are defined by offset (the distance from the pixel of interest P ,

set as 3) and four directions. (b) A part of the GLCM matrix,

the elements contain the appeared times of the instances, such as

(13, 10), (11, 11), and (9, 10) in the patch image (a).

ing GLCM matrix with θ = 0◦ and some elements are shown in Figure 3.4 (b).

The values of the combinations V13,10, V11,11, and V9,10 are 1, 1, and 3, respec-

tively, which are the numbers of times these three instances appear in the patch

image.

Haralick et al. have defined 14 global metrics to classify the texture, and only

four key measures are introduced in this section. The GLCM feature vector

g is composed by four features, such as contrast (inertia), correlation, energy

(angular second moment), and homogeneity. The contrast and homogeneity are

approximately the inverse of each other.

The GLCM feature, energy, measures the uniformity in the GLCM matrix. The

definition is given as

glu1 =
N−1
∑

i,j=0

P 2
i,j. (3.13)

The GLCM feature, contrast, is a measurement of the local variations in the

GLCM matrix:

glu2 =
N−1
∑

i,j=0

Pi,j(i− j)2. (3.14)
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Correlation measures linear dependency of gray levels pairs. In another words,

it measures the joint probability occurrence of the specified pixel pairs:

glu3 =
N−1
∑

i,j=0

Pi,j

(i− µi)(j − µj)
√

σ2
i σ

2
j

. (3.15)

Homogeneity, inverse difference moments, measures the inverses of the contrast.

In another words, it measures the closeness of the distribution of combination

Vi,j to the GLCM diagonal:

glu4 =
N−1
∑

i,j=0

Pi,j

1 + (i− j)2
. (3.16)

After creating the GLCMs, the four statistical features are computed which

provide information about the texture of an image. The GLCM feature vector

g consists of 16 GLCM features gluv with four directions u and four features v

at each direction.

g = (gl11, gl12, ..., gl43, gl44), (3.17)

Until now, the feature vector F created by multiple feature extraction method

has 101 dimensions, the features from GLCM are listed in Table 3.4.

Table 3.4: Final feature vector has 101 features, which includes 16 GLCM fea-

tures with four directions.

Feature vector Feature name

F(86) Energy with direction 1, g(1)

F(87) Contrast with direction 1, g(2)

F(88) Correlation with direction 1, g(3)

F(89) Homogeneity with direction 1, g(4)
...

...

F(98) Energy with direction 4, g(12)

F(99) Contrast with direction 4, g(13)

F(100) Correlation with direction 4, g(15)

F(101) Homogeneity with direction 4, g(16)
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3.2 Robust Feature Extraction

3.2 Robust Feature Extraction

In feature extraction, the invariance property means the extraction process does

not vary based on the specified conditions [70]. In this section, the robust feature

extraction should yield the features reliably and robustly whatever the value of

the parameters of the input images. The properties of the TCS images, such as

the contrast and brightness, are affected by different settings of the US machine

used by different examiners. Furthermore, the challenge of the TCS images

classification by using Gabor filters is that the orientations and shapes of the

half of mesencephalon are different from one PD patient to another, as shown

in Figure 3.5.

Figure 3.5: Manually segmented TCS images by physicians from PD patients

and the healthy control as illustrated in the upper and bottom row,

respectively. All images are collected from Philips SONOS 5500.

3.2.1 Features of the Normalized Histogram

Observing the TCS images, the range of the gray levels is different from one im-

age to another due to the different user settings, such as the parameters of the

window level and window center. Therefore, the ROIs need to be normalized be-

fore the feature extraction procedure. The histogram of each ROI is normalized

or equalized from the range of [0, 255] to [0, 64], then the histograms that belong

to the same group are added up and the mean of each summation is illustrated

in Figure 3.6. The histograms of healthy controls in Dataset 1 (group 4) are

obviously different from others. Moreover, the background (pixel values close to
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3 Multiple Feature Extraction From TCS Image

(a) (b)

Figure 3.6: The illustration for the averaged histograms that are calculated

from ROIs in (a) Dataset 1 and (b) Dataset 2, respectively. The

histograms for every group are individually shown in each row.

zero) in a gray level image is not stable when a contrast adjustment is applied to

the image. Thus, the bin of zero in the normalized histogram is ignored during

the feature calculation. As a result, these features of the normalized histogram

are less sensitive to the contrast changes than the statistical features in Section

3.1.1.

3.2.2 Rotation-invariant Gabor Features

As shown in Figure 3.5, the orientation and the shape of each ROI (half of

mesencephalon) are different. In this section, our goal is to develop Gabor

features that are invariant to the direction of ROI, the brightness, and the
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3.2 Robust Feature Extraction

contrast changes. Therefore, we propose a texture analysis method that applies

a rotation-invariant Gabor filter bank on the half of mesencephalon area and

computes the histogram features from the filtered images for the TCS image

classification. Two methods are implemented for solving the rotation-invariant

problem. The first one is to combine all the Gabor filter response linearly with

different orientations, but at each scale level [71]. Another method was proposed

in [72] which shifting circularly the filtered image at same scale to achieve the

rotation-invariance property.

Rotation-invariant Gabor Filter Bank Design

Han et al. claimed that the summation of the filter responses with different

orientations could yield a rotation-invariant Gabor filter [71]:

g(R)
m (ξ, η) =

K−1
∑

n=0

gm,n(ξ, η),m = 0, 1, ..., S − 1. (3.18)

The illustrations of the summation method with four scales and six orientations

are shown in Figure 3.7.

(a) (b) (c) (d)

Figure 3.7: Summing all the Gabor filter response with different orientations at

the same scale level. From left to right, the Gabor filter responses

are summed at scale 1, 2, 3, and 4, respectively.

Second, The Gabor features can be sorted by the total energy of the corre-

sponding filtered images over the orientation at the same scale. Therefore, the

Gabor features shifted by the dominant direction could be independent to 2D

rotation. The dominant direction [72] at each scale is defined as the direction

with the highest energy. An illustration of the dominant direction in the energy

map is given with an example texture image in Figure 3.8. The energy of each

filtered image is calculated for the circularly shifting. The filtered image Gij

with the dominant direction j is moved to be the first position at scale i, and

the other filtered images at scale i are circularly sifted accordingly. While, the

45
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(a) (b) (c) (d)

Figure 3.8: The energy maps of the texture image and the rotated image. The

dominant direction is indicated as red color in energy maps (b) and

(d). (a) The example grass image and (b) the corresponding energy

map. (c) The rotated grass image (90◦) and (d) the corresponding

energy map.

feature elements µij, σij (in Equation 3.9 and Equation 3.10, respectively) of Gij

are put at the beginning in the Gabor feature vector f at scale i. At last, a

rotation-invariant Gabor feature vector fr is obtained until all filtered images

shifted at their corresponding scales. As a result, the feature elements µij, σij

in conventional Gabor feature vector f are shifted as in the rotation-invariant

Gabor feature vector fr. For example, if f is (A,B,C,D,E,F) and (C) is the

dominant direction, then fr is (C,D,E,F,A,B).

Contrast-invariant Gabor Features

In general, the conventional Gabor features, the mean and the standard devi-

ation are calculated from the intensity values of the filtered image directly. In

this section, we compute the entropy from the histogram of the filtered image.

The Shannon entropy can be used to measure the randomness from the image

histogram [73]. In other words, the entropy measures the uniformity of the

filtered image.

The Shannon entropy is given by:

HX =
n
∑

i=1

p(xi) logb p(xi), (3.19)

where Pr[X = xi] = p(xi) is the probability mass distribution of the signal

[74]. Actually, the symbol alphabet of filtered image is in general not finite.
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Therefore, a proper measurement of entropy is differential entropy. The entropy

of the histogram image is given as:

H(X) = −
∑

x∈S

histnorm(x) log2(histnorm(x)), (3.20)

where S is the support set of the random variable x and histnorm(x) is the

histogram properly normalized to fit a probability density function [73]. The

summation of the probability density function histnorm(x) is one.

3.3 Feature Selection

For the classification, the motivation of feature selection is to make a prediction

of unknown data by a hypothesis constructed from a certain number of training

instances [75]. A hypothesis is a pattern that predicts classes based on learning

from given data/instances. The key factor is the number of features that de-

termines the hypothesis space. In other words, feature selection is an essential

task to remove redundant features. Redundant features are a type of irrelevant

feature [76] that can be removed without influencing learning performance. The

selection can be achieved by ranking features according to criterion functions

and then selecting the top k features. The other way is to select a minimum

subset of features without learning knowledge [75]. The aspects of feature se-

lection include models, feature performance measures, and search strategies.

The three typical models are embedded models (an example, the decision tree

induction algorithm), filters, and wrappers. In a wrapper model, one uses a

learning algorithm, and based on the performance, determines the quality of se-

lected features. The filter models use an approximate measure, such as mutual

information, to replace the accuracy to rank the selected features. Compared

to the wrapper models, which are computationally intensive, the filter models

are faster to compute. In this chapter, the goal of feature selection is to select

the best feature subset automatically for TCS image classification purpose by

given a feature vector. The SVM classifier has been chosen to evaluate the ef-

fectiveness of feature subsets. The feature selection detects an optimal feature

subset based on the feature vector F .

3.3.1 Sequential Feature Selection

A general feature selection method, sequential feature selection includes two

components. One is a criterion function, which is used to minimize over all
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possible feature subsets. In this work, the misclassification rate of SVMs is set

as the criterion. Another component is a sequential search strategy, which eval-

uates the criterion to establish the best feature subset. Search strategies include

forward, backward, floating, branch-and-bound, and randomized selection [77].

For the sequential forward selection (SFS), features are selected successively by

adding the locally best feature, which is the one that provides the lowest crite-

rion value, to an empty candidate set. The SFS technique starts from the best

individual feature (BIF) by identifying the first feature that has the highest

discrimination power. The SFS stops until the further features do not decrease

the criterion. The procedure of SFS is explained in a flow chart as shown in

Figure 3.9.

Figure 3.9: The illustration of the sequential forward selection method.

The sequential backward selection (SBS) method is the ’bottom up’ counterpart

to SFS. In SBS, starting from a full candidate set, one sequentially removes the

feature which has the highest criterion until the removal of any further features

may lead to an increase of the misclassification rate.
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3.3.2 Floating Search Selection

Sequential feature selection is a common feature selection method which includes

two search algorithms, SFS and SBS. However these two methods are generally

suboptimal and have a disadvantage, the ’nesting effect’ [78]. In the case of

SFS, the selected features cannot be discarded afterwards. Similar to SFS,

the discarded features cannot be re-selected in the case of SBS. As a result,

the optimal feature subset might be only suboptimal [78]. Therefore Pudil et

al. proposed the floating search methods and found that the performance of

the floating search method was better than of others, and the computational

complexity was reduced. The procedure of SFFS is explained in a flow chart as

shown in Figure 3.10.

Figure 3.10: The explanation of sequential forward floating selection method.

The character of ‘floating’ means the selected features can be flexibly changed

instead of being fixed. According to the dominant search direction, the floating
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3 Multiple Feature Extraction From TCS Image

search methods consist of sequential forward floating selection in the forward

direction and sequential backward floating selection (SBFS) in the opposite di-

rection. Considering the computation time, SFFS characterized by a dynamical

changing of features at each step was implemented in this thesis. In this chapter,

the misclassification rate of SVMs was set as the criterion, the Gaussian radial

basis functions (RBF) was used to map the training data into the kernel space.

The sequential minimal optimization method (SMO) was specified to find the

separating hyperplane. SFFS was shown to give good results and to be more

effective than the SBS and SFS in the Section 3.4.

3.4 Experimental Results and Discussion

We aim at developing the features that can be used to recognize the TCS images

(half of mesencephalon) of two different classes called ‘healthy controls’ and

‘Parkin mutation carriers’. The experiment steps are explained in the flowchart

in Figure 3.11.

Figure 3.11: The workflow for the TCS images classification based on multiple

features.

A clinical study has been conducted to evaluate whether the image features can

be used as an early PD indicator. The study consisted of 36 images from 21

healthy controls (subjects without mutation and symptoms of PD) and 42 image

from 19 Parkin mutation carriers. All these 40 subjects underwent a detailed

neurological examination. Therefore the diagnosis result can be considered as
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the ground truth to compare and evaluate the classification. In each image the

half of mesencephalon (ROI marked by red contour) and even the SN (yellow

contour) area were manually segmented by two individual physicians as shown

in Figure 3.1.

3.4.1 Performance of Multiple Features

The multiple features composed of statistical moments, geometrical moments

and Gabor texture features that extracted from the ROIs. The SVMs classi-

fication has been cross-validated by the leave-one-out method. This gives the

accuracies of 79.49%, 79.49% and 76.92% when statistical features, geometrical

features and Gabor texture features are added successively into the feature vec-

tor. The feauture vector increased while the classification rate did not increase

accordingly. Then the SBS and the SFS were used, respectively, to minimize the

best feature subset. Comparatively, the feature subset obtained by SFS gives

the highest classification rate of 96.15%. In this feature subset, the Gabor fea-

tures f(1), f(2) have the best individual performance of 88.46%. The detailed

results of implementation of these feature sets are given in Table 3.5. Except

for the comparison of SFS and SBS, the performance of the individual feature,

the first Hu mement, contrast, and two Gabor features are also shown in Ta-

ble 3.5. Due to the good performance of Gabor features, more texture features

(GLCMs) will be computed in next experiment.

Table 3.5: Feature selection results based on multiple features (85 dimensions),

classification rates (%) of SVMs with cross-validation. The perfor-

mance of each feature in the subset seleted by SFS are compared

individually [37].

Feature sets Accuracy Specificity Sensitivity

F (1, ..., 15) 79.49 66.67 90.48

F (1, ..., 23) 79.49 66.67 90.48

F (1, ..., 85) 76.92 83.37 71.43

SBS,F (12, 27, 80, 82, ..., 85) 92.31 86.11 97.62

SFS,F (17, 25, 26, 27, 29) 96.15 94.44 97.62

Hu1,F (17) 83.33 80.56 85.71

Contrast,F (25) 58.97 61.11 57.14

Gabor,f(1), f(2) 88.46 80.56 95.24

Gabor,f(4) 87.18 77.78 95.24
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3.4.2 Evaluation of Texture Features

The hybrid feature extraction has shown very good performance of TCS clas-

sification, especially Gabor features were better than the others in last Sec-

tion 3.4.3. Therefore, the GLCM texture features are computed and combined

with Gabor features. They are then evaluated by feature selection SFFS. The

study includes 36 images from 21 controls (subjects without mutation and symp-

toms of PD) and 42 images from 19 Parkin mutation carriers. All these 40 sub-

jects underwent a detailed neurological examination. In this study, the feature

vector F has 85 dimensions, which consists of Hu moments, average gray level,

average contrast, Gabor feature vector f and GLCM feature vector g. The

features F1 to F85 were extracted as listed in Table 3.6:

Table 3.6: A total of 85 features for the texture analysis, which includes Hu

moments, Gabor features, and GLCM features.

Feature vector Feature name

F(1) the 1st order Hu moment
...

...

F(7) the 7th order Hu moment

F(8) Average gray level

F(9) Average contrast

F(10) Gabor texture feature 1, f(1)
...

...

F(69) Gabor texture feature 60, f(60)

F(70) GLCM texture feature 1, g(1)

F(85) GLCM texture feature 16, g(16)

The performance of texture features were compared with other features, such

as Hu moments. The SVMs classification was cross validated by the leave-

one-out method. This gave the accuracies of 90.91% and 92.73% when SFS

and SFFS were used, respectively, to minimize the best feature subset. We

could not obtain a small feature subset by SBS. The feature subset F (12, 77)

obtained by SFFS gave the highest classification rate of 92.73% (F (17), Gabor

feature f(3) and F (77) is GLCM feature g(8)). In this feature subset, the

GLCM features F (73, 77) had a good preformance of 90.91%. The detailed

results of the implementation of these feature sets are given in Table 3.7. The

performance of the optimal feature subset F (12, 77) seperating the TCS image

into two classes are illstrated in Figuire 3.12.

52



3.4 Experimental Results and Discussion

0 5 10 15 20 25 30
0

50

100

150

200

250
The best two features: F(12,77)

Gabor feature f(3), scale 0, orientation 30°

G
LC

M
 H

om
og

en
ei

ty
 g

(8
),

 o
rie

nt
at

io
n 

45
°

 

 

PD
Control

Figure 3.12: Illustration of the two selected features, Gabor features f(3) and

GLCM features g(8).

Table 3.7: Feature selection results based on texture features, classification

rates (%) of SVMs with cross-validation [38].

Method Feature set Accuracy Specificity Sensitivity

Without F(1,...,85) 65.45 1 0

SBS - - - -

SFS F (73, 77) 90.91 88.89 94.74

SFFS F (12, 77) 92.73 91.67 94.74

3.4.3 Feature Selection with 101 Features

All features that were mentioned in Sections 3.4.1 and 3.4.2, in total 101 fea-

tures, were evaluated using the same data. The feature selection SFS worked out

an optimal feature subset that includes three features F (12, 78, 76), which yield

an accuracy of 93.59%. The performance of SFFS is even better than of SFS,

the optimal subset consists of five features F (12, 5, 77, 15, 11), which gives the

best classification with 97.44% accuracy. The confusion matrix of the feature

subset selected by SFFS is

(

35 1

1 41

)

. The feature selection and classification

results are shown in Table 3.8.
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Table 3.8: Feature selection results based on multiple features (101 dimen-

sions), classification rates (%) of SVMs with cross-validation. The

feature subsets are selected by SFS and SFFS.

Selection Features Accuracy(%)

Without F(1,...,101) 61.54

SFS F(12,78,76) 93.59

SFFS F(12,5,77,15,11) 97.44

3.4.4 Robust Feature Analysis

Evaluation of Rotation-invariant Gabor Filter

For a preliminary validation of the rotation-invariant Gabor filter, we chose

the University of Illinois at Urbana-Champaign (UIUC) texture database [79]

to compare two implementations of the rotation-invariant Gabor filter. The

texture images were collected at UIUC by Shivani Agarwal et al. and grouped

as 25 different textures, each group consists of 40 samples. We selected two

different textures, T01 (bark1) and T15 (brick2) from UIUC image database,

which are rotated texture sets.

We then applied three differently designed Gabor filter banks on these data, the

extracted Gabor features were used for the classification by the SVM classifier.

The classification was cross-validated by leave-one-out method, and the results

are given in Table 3.9. The performance of the work by Zhang et al. [72] shows

76% classification rate, which is better than the method of Han et al. [71] and the

conventional Gabor filter method. According to this result, we then applied the

rotation-invariant Gabor filter [72] onto TCS images and compute the proposed

Gabor feature, entropy, afterwards. The comparison of the conventional Gabor

features and the proposed entropy feature will be given in next section.

Performance of the Proposed Gabor Feature

In this experiment, the feature vector F has 90 dimensions: F (1, ..., 60) are 60

conventional Gabor features µij, σij in feature vector f(1, 2, ..., 60); F (61, ..., 90)

are 30 features of entropy fe(1, 2, ..., 30). The feature vector F is listed in Ta-

ble 3.10.

The normalization process was used to simulate different user settings such as

brightness and contrast changes, applied to the TCS images by sonographer.
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Table 3.9: The performance of each Gabor filter bank based on the public image

data base, UIUC [79].

Gabor Filter Accuracy Confusion Matrix

Convention [66] 72

(

39 1

21 19

)

Summation [71] 72

(

38 2

20 20

)

Shifting [72] 76

(

40 0

19 21

)

Table 3.10: The feature vector includes 60 conventional Gabor features and 30

proposed entropy features.

Feature vector Feature name

F(1) Conventional Gabor feature 1, f(1)
...

...

F(60) Conventional Gabor feature 60, f(60)

F(61) Gabor entropy feature 1, fe(1)
...

...

F(90) Gabor entropy feature 30, fe(30)

In this section, three normalization methods were tested on the TCS images.

The first normalization was to rescale all TCS images to full gray level range

[0, 255]. The second method was the zero mean and unit variance (X−µ

σ
). Third,

we applied the contrast-limited adaptive histogram equalization (CLAHE) [55]

to match the histogram of ROI with a desired shape. The exponential and

Rayleigh distributions were used in this experiment. As a result, the normalized

data were obtained by these normalization methods. Furthermore, the Gabor

features were evaluated by the feature selection SFFS method. According to

the result in Table 3.11, the feature entropy is less sensitive than others features

to the brightness changes of a gray level image.

The classification results were based on three datasets of TCS images, which

were obtained using Philips SONOS 5500. Dataset 1 includes 36 TCS images

from 21 healthy subjects and 42 TCS images from 23 PD patients. Dataset 2

includes eight control TCS images from four healthy subjects and 15 PD TCS

images from 10 patients. The last dataset consists of 27 control TCS images

from 14 healthy subjects and ten PD TCS images from five patients. Totally,

this dataset includes 67 PD images from 38 PD patients and 71 control images
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from 39 healthy subjects.

First, the Gabor filter bank was applied to the ROI of TCS images. Second, the

rotation-invariant Gabor features were extracted and shifted by the dominant

direction. The feature extraction was based on the manual segmentation of half

of mesencephalon, marked by the physicians. Third, the feature selection was

implemented on each normalized data, respectively. The criterion function was

set as SVMs, the classification rates of SVMs were cross validated by leave-one-

out method. The feature analysis results in Table 3.11 show that the entropy

features F (61, 77) (the second column) were more stable than the conventional

Gabor features, mean and the standard deviation, F (1, 5, 7) (the first column).

The combination of features entropy fe(6) and mean f(3) performed even better

as shown in the third column.

Table 3.11: The performance of conventional Gabor features and the proposed

entropy features based on four normalized datasets. Classification

rates (%) of feature selection results by SFFS.

Normalization Conventional Feature Entropy Feature Optimal subset

method F(1,5,7) F(61,77) F(66,3)

[0, 255] 65.94 61.59 70.29
x−µ

σ
67.39 60.08 70.29

Exponential 63.76 60.14 78.26

Rayleigh 30.43 68.84 77.53

Based on this data without any normalization, the features of the conventional

Gabor filter in [38] achieved 69.56% accuracy. The features F (66, 3) obtained

by SFFS yield a better classification rate of 81.88%.

3.5 Conclusions

This chapter concentrates on selecting good combinations of features and a

classifier which suits for the Parkinson’s disease risk assessment based on TCS

images. We proposed a hybrid feature extraction method which includes sta-

tistical, geometrical and texture features for the early PD risk assessment. The

SVMs separate the input images into two classes by image characteristics other

than the manual segmentation of substantia nigra. The SFS is implemented and

five features including RMS contrast, Hu1-moment and other three Gabor tex-

ture features were found being the best parameters to separate control subjects

from Parkin mutation carriers.
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3.5 Conclusions

Regarding the texture analysis using Gabor filters and GLCMs for PD detec-

tion, SFFS was implemented and two features including Gabor f(3) and GLCM

g(8) texture features were found to be the best parameters to separate control

subjects from Parkin mutation carriers.

Furthermore, the classification results show that the rotation-invariant Gabor

filter is better than the conventional Gabor filter. In particular, the entropy

feature is more stable than the conventional Gabor features, mean and standard

deviation, in the monotonic change of the gray scale.
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Chapter 4

Texture Analysis of TCS Images

with Scattering Operators

4.1 Scattering Convolution Network

A scattering transform computes local image descriptors by convolution with

wavelet filters. With images as input, it yields scattering coefficients with mod-

ulus operators, and local averaging[45]. Similar to the local image descriptor

SIFT [80], the local averaging reduces the feature variability and provides local

translation invariance. Scattering coefficients are computed with a convolu-

tion network [44], they provide much richer structure information and multi-

scale texture variations [45]. A combined scattering representation and a com-

bined windowed scattering estimator were introduced to preserve the informa-

tion while being invariant to rotations [81].

We first apply the scattering transform for TCS images classification. Com-

pared to the original image, the scattering image representation is much larger

than the original one. As a result, the computation time for classification is

large without a feature dimension reduction, even if a simple classifier is used.

After obtaining the scattering coefficients, we investigate several dimensionality-

reduction methods on the feature vector, the scattering coefficients, while trying

to achieve rotation invariance and keep or improve the accuracy. Furthermore,

we propose to use linear discriminant analysis (LDA) instead of principal com-

ponent analysis (PCA) for the classification using scattering vectors. After the

verification of the proposed methods based on the public image databases, we

apply the dimensionality reduction methods and the classification methods by
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using LDA on TCS images and demonstrate experimental results on the classi-

fication between images from PD patients and healthy controls.

4.2 Texture Analysis with Scattering Operators

Texture analysis has been used in many applications from satellite to medical

images. The scattering network computes an image representation that is stable

with respect to local translations and deformations.

4.2.1 Scattering Coefficients

Scattering coefficients are computed with a convolution network which cascades

contractive wavelet transforms and modulus operators [82]. This way, the image

information is re-transformed into co-occurrence coefficients at multiple scales

and orientations [45].

Let the multi-scale directional wavelet filters be defined for any j ∈ Z and

rotation r ∈ G by

ψ2jr(x) = 22jψ(2jr−1x), (4.1)

where G is a discrete rotation group on R [83]. Let φJ(x) = 22Jφ(2Jx) be a low-

pass filter. The representation of an image f at a position x for scales 2j < 2J

is a vector of wavelet coefficients [45]

WJf(x) =

(

f ? φJ(x)

f ? ψ2jr(x)

)

. (4.2)

Then, the averaged wavelet coefficients are defined as [45]

|f ? ψ2jr| ? φJ(x). (4.3)

The reason why computing the feature vectors by averaging the amplitudes of

wavelet coefficients because of the investigation of Tola et al. in [84]. They

observed that, more efficiently, the SIFT features can be approximately by av-

eraging partial derivative amplitudes of f along r direction with a low-pass

filter φJ(x). Therefore, the averaged coefficients can be nearly invariant to local

deformations or translations.

Furthermore, the high frequencies eliminated in (4.3) by the averaging with φJ

can be recovered by the convolution with another wavelet at higher layer in the
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convolution network. Here, the averaged wavelet coefficients can be written as

[45]

||f ? ψ2j1 r1
| ? ψ2j2 r2

? φJ(x). (4.4)

The scattering coefficients get their name, because they supply interference in-

formation in f for any pair of wavelets which have different scales and orienta-

tions. Coefficients are only computed for 2j2 ≤ 2j1 , because coefficients can be

negligible at scales 2j2 ≥ 2j1 [82]. According to the convolution network theory

[44], this procedure can be applied q times iteratively, resulting in a vector of

scattering coefficients Sq,Jf(x). A vector of scattering coefficients with m layers

is then defined as [45]

SJf(x) = (Sq,Jf(x))0≤q≤m
. (4.5)

From the experimental results of Mallat et al. in [82], the energy of ‖SJf‖2

decays quickly as the co-occurrence order q increases. Based on the Caltech101

image database, 98% of the energy ‖SJf‖2 is carried by scattering coefficients

of order 0, 1, and 2 [45]. In this chapter, we therefore limit the scattering order

to m = 2.

4.2.2 Dimensionality Reduction of the Feature Vector

Using the scattering coefficients, even though a simple classifier is used for the

classification, the computation time is still considerable because of the big fea-

ture vector. Another more important question is whether each coefficient or each

feature contributes to the classification rate. The vector size of the scattering

coefficients for one image with N pixels is [45]

NJ = 2−2JN
m
∑

q=0

Kq

(

J

q

)

, (4.6)

where K is the number of considered directions, J is the number of scales, and m

is the maximum layer of the convolution network. For example, given an input

image with size of 128 × 128, if we choose the Morlet wavelet with four scales

and six orientations, and the output of one scattering operator is a resulted

‘image’ with size of 16 × 16, after the averaging with φJ and downsampling at

intervals 2J . The number of scattering operations is 1 + 24 + 216 = 241, totally

the size of the feature vector is Nf = 16 × 16 × 241 = 61696.

First, an integral approach is applied on the vector of the scattering coefficients

SJf(x) to reduce the size of the feature vector. The summation of the coefficients
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4 Texture Analysis of TCS Images with Scattering Operators

are calculated along K orientations at a certain scale:

S ′
Jf(x) = α

ri=K
∑

ri=1

SJf(x), (4.7)

where α is a weight parameter. We set α =
√
K in the experiment. Now the

scattering coefficients S ′
Jf(x) are invariant to rotations. We call this method

the integral approach I. In addition, the size of the feature vector Nf is reduced

to 10496 with K = 6.

Furthermore, all the scattering coefficients at the same convolution layer are

integrated together (the integral approach II):

S ′
Jf(x) = β

m
∑

q=1

SJf(x), (4.8)

where β is inversely related to the numbers of the scattering coefficients at

each layer, for example β = (
1

24
,

1

216
). The size of the feature vector is Nf =

16 × 16 × 3 = 768.

In this approach, similar to the conventional Gabor feature ‘mean’, a scattering

representation SJf(x) is approximated with the expected value of each resulted

image:

S ′
Jf(x) = (E{Sq,Jf(x)})0≤q≤m

. (4.9)

In this case, the size of the feature vector Nf is reduced from 61696 to 241 with

K = 6 and J = 4. The method will be referred to as ‘mean’ in the following.

The size of scattering features and the reduced feature vectors based on the

MNIST database and the CUReT texture database are given in Table 4.1. The

size of one resulted image for them are 4 × 4 and 32 × 32, respectively.

Table 4.1: The feature vectors computed by the dimensionality reduction meth-

ods. The figures between the brackets are the number of feature

subset in each convolution layer.

Feature Scattering features

Subsets MNIST CUReT

Original [1][24][216] 3,856 162,916

Integral I [1][4][36] 656 41,984

Integral II [1][1][1] 48 3,072

‘mean’ [1][24][216] 241 241

Resulted image 4 × 4 32 × 32
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4.2 Texture Analysis with Scattering Operators

4.2.3 Verification of Feature Reduction Methods

The proposed dimensionality reduction methods were performed on the MNIST

database and the CUReT texture database. The MNIST database of hand-

written digits is a good database for learning and testing pattern recognition

methods. It consists of a training set of 60,000 training samples and a test

set of 10,000 samples. An example of digit ‘6’ and ‘9’ with the corresponding

normalized scattering vectors are shown in Figure 4.1. The scattering feature

are displayed as 4-by-4 array at convolution layer 1 and 2, as shown in the

second and third row of Figure 4.1, respectively.

(a) (b)

Figure 4.1: The images of digits (a) ‘6’ and (b) ‘9’, and the corresponding

scattering vectors. The second and bottom row contains arrays of

scattering vectors for m = 1 and m = 2, respectively.

For the validation of the feature vector reduction methods, the computations are

implemented on Scattering toolboxes for MATLAB [85] with the PCA model

at the maximum orders m = 2. Using the PCA affine selection model, the

performance of the original coefficients vector SJf with the two integral vectors

S ′
Jf are compared. Three different sizes of training sets are tested, and the

percentages of errors are shown in Table 4.2. The sizes of the feature vectors

reduced by PCA with different training sets are 83, 44, and 133, respectively.
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4 Texture Analysis of TCS Images with Scattering Operators

Table 4.2: Percentage of errors (%) on the MNIST database. The ‘Integral I’

and ‘Integral II’ approaches are shown in 4.7 and 4.8, respectively.

Training PCA Integral 1 Integral 2 mean

200 1.46 1.89 13.23 5.41

300 1.54 1.68 11.71 5.05

2000 0.78 1.19 11.00 3.58

Texture image classification with scattering operators is tested on the Columbia-

Utrecht reflectance and texture database (CUReT)[86]. The CURet includes

61 classes of image textures of N = 2002 pixels, and each texture class with

the same material but over different combinations of viewing and illumination

conditions [45]. Two examples and the corresponding scattering vectors are

shown in Figure 4.2.

(a) (b)

Figure 4.2: Texture images from class (a) ‘sample01’ and (b) ‘sample03’ in the

CURet database and their scattering vectors for m = 1, 2.

The database is separated into a training and a test set randomly. The training

set consists of 23 or 46 images and the results are averaged over ten different
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4.3 Classification Using Scattering Vectors

groups. The percentages of errors with the original scattering feature vector

and the reduced features based on the CURet database are listed in Table 4.3.

Table 4.3: Percentage of errors (%) on the CUReT database.

Training PCA Integral 1 Integral 2 mean

23 1.67 0.97 1.67 1.25

46 0.72 0.36 0.43 1.30

The first integral method achieved better accuracy than the whole scattering

vector on CUReT database due to the rotation invariance as shown in Table

4.3. The possible reason that for the MNIST database the first integral method

performs worse than the full scattering vector may be the fact that both digits ’9’

and ’6’ are included in the MNIST database, which are indistinguishable with

a rotation invariant feature set. As the Tables 4.2 and 4.3 show, the second

integral method, which produces the shortest feature vector, cannot yield a

classification rate as good as the original feature set.

4.3 Classification Using Scattering Vectors

Based on the scattering transform, a distance between two images f and g can

be defined as [45]

‖SJf − SJg‖2 =
∫

|SJf(x) − SJg(x)|2dx, (4.10)

where |SJf(x)|2 is the squared Euclidean norm of the coefficients SJf(x).

Classifier based on PCA Affine Space Selection

Let SJFc be the family of the coefficient vectors in the class c, and E{SJFc} be

their expected values. The difference between them is given as

Xc = SJFc − E{SJFc}. (4.11)

Xc can be represented by its projection Vd,c computed by principal component

analysis (PCA) onto a lower dimensional (d � NJ) linear space [82]. The

dimension d is obtained by cross validation in the training stage [45].

A simple generative classifier based on the scattering distance was introduced

in [83]. It approximates the scattering distance from a sample image It(x) to
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4 Texture Analysis of TCS Images with Scattering Operators

class centers by affine-space models computed with PCA. Let Wd,c be the weight

matrix of PCA for the class c with the d biggest eigenvalues, the classifier based

on the PCA affine space selection is

ĉ(It) = argmin
c≤n

(

‖ Xt ‖2
2 − ‖ (Xt)

T ·Wd,c ‖2
2

)

, (4.12)

Xt = SJIt − E{SJFc}, (4.13)

where n denotes the number of classes, SJIt are the scattering coefficients of a

test image It.

4.3.1 Classification by LDA

In general, the data projected by PCA approximates the original data in a least-

square sense. The first principal component, the eigenvector with the largest

eigenvalue of the covariance matrix, is corresponding to the direction with the

largest variance of data. The objective of LDA is to project the data onto

a space in which one can maximize the separation between data in different

classes. Compared to PCA, LDA projects and separates the data in a least-

squares sense.

Assume a set of m-dimensional samples x = [x1, x2, ..., xm]T of which n1 belong

to class ω1 and n2 belong to class ω2. We seek to calculate a linear combination

of the components of x using a weight matrix W = [w1, w2, ..., wm]T , to project

the samples x onto a space (a line in a two-classes case) in which one can

maximize the distance between the centers of classes. In other words, a scalar

y is obtained by the dot product

y = W Tx. (4.14)

The mean and the scatter matrix are given as

µi =
1

ni

∑

x∈wi

x, Si =
∑

x∈wi

(x− µi)(x− µi)
T , (4.15)

respectively. The Fisher linear discriminant takes into account the standard

deviation within the classes, the distance between the projected means is nor-

malized by a measure of the within-class variability, the criterion function is

defined as [87]

J(W ) =
|µ̃1 − µ̃2|2
σ̃2

1 + σ̃2
2

. (4.16)
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For the case of two classes, the within-class scatter and the between-class scatter

are computed as SW = S1 + S2 and SB = (µ1 − µ2)(µ1 − µ2)
T , respectively. We

differentiate J(W ) with respect to W to obtain the maximum of J(W ), the

solution is the eigenvector with the biggest eigenvalue as given [87]

W ∗ = argmax
W

J(W ) = argmax
W

(

W TSBW

W TSWW

)

= S−1
W SB. (4.17)

For the c-class problem, multiple discriminant analysis, the within-class scatter

and the between-class scatter are computed as [87]

SW =
C
∑

i=1

Si, SB =
C
∑

i=1

ni(µi − µ)(µi − µ)T , (4.18)

respectively, where µ is mean of the total samples x. As in the two-class case, for

c classes we still seek a weight matrixW that maximizes the ratio of the between-

class scatter to the within-class scatter, a simple measure is the determinant of

the scatter matrix [87]. The criterion function for c-class problem is given by

this measure [87]:

J(W ) =
|S̃B|
|S̃W | =

|W TSBW |
|W TSWW | . (4.19)

The simple solution to maximize J(W ) is to find an optimal W that consists of

the generalized eigenvectors with the largest eigenvalues in [87]

SBwi = λiSWwi. (4.20)

In order to avoid the case in which SW is singular and the unnecessary compu-

tation for the inverse of SW , one can obtain the eigenvectors by solving [87]

(SB − λiSW )wi = 0. (4.21)

Because SB is of rank c−1 or less the weight matrix W consists of c−1 projection

vectors

W ∗ = [w∗
1w

∗
2...w

∗
c−1]. (4.22)

Thus, the weight matrix W can be used to project the original data from d

dimensions onto c−1 dimensions. Then, a Bayes classifier is designed for finding

a threshold separating the projected data.

In practice, the computation problem would arise that the scatter matrices are

difficult to obtain when the observations are much less than the features. Here,

three solutions are presented to apply LDA on the scattering features. As two
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4 Texture Analysis of TCS Images with Scattering Operators

examples shown in Figure 4.3, that are the digits ‘6’ and ‘9’ taken from the

MNIST database. The scattering features obtained from each sample with size

3856 (16×241) are displayed in 2D. The resulting images with size of 4×4 pixels

obtained from each scattering operator is rearranged as a vertical line, in total

of there are 241 operators. As a simple solution, LDA can be applied onto the

scattering features vertically, line by line, as the illustration in Figure 4.3. It

starts from the evaluation of the feature subset corresponding to each operator,

and a selection can be followed afterwards. The method will be referred to as

‘operator selection’ in the following. Similarly, LDA can be implemented hori-

zontally on scattering features that can evaluate the performance of each pixel

along all resulted images. This method will be referred to as ‘pixel selection’ in

the following.
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Figure 4.3: The scattering coefficients of the digit ‘6’ (upper) and ‘9’ (bottom)

are displayed in 2D. The output of each operator is rearranged as

a vertical line with 16 pixels, in total of 241 scattering operators.

Evaluation on Each Operator

First, LDA is applied on each feature subset that contains coefficients obtained

by the scattering operators to evaluate the individual performance. Assume yi is

a feature subset of SJf(x) that consists of 16 features, i = 1, 2, ..., 241. Let ŷ be

the classification results based on 241 scattering feature subsets, each classifier

votes for one class ŷi. Based on ŷ, the final classification of one test sample is
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4.3 Classification Using Scattering Vectors

done by the maximum voting

ĉ(It) = argmax
c≤n

(Pc), (4.23)

where Pc is the probability of class c, in other words, how many classifiers classify

It as class c in ŷ.

The performance of each feature subset using a LDA-based classifier with 300

training samples in the MNIST database is shown in Figure 4.4 a. The features

are selected sequentially by adding the local best feature subset, which provides

the lowest error rate, to a candidate set. As shown in Figure 4.4 b, the can-

didate set achieved the lowest error rate with 64 feature subsets. That means

only 64 selected scattering operators instead of the total 241 operators can be

implemented on the test set.

Figure 4.4: The performance of each feature subset and the operator selection.

The error rate (vertical axis) of each feature subset by LDA with

a training set of 300 samples (upper), in total of 241 classifications

(horizontal axis). The lowest error rate can be achieved by 64 se-

lected feature subsets (bottom).
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Evaluation of the Pixel Selection

Second, LDA is applied on the feature subset that contains the same pixel along

all obtained images. In this case, assume yj contains the values of the same pixel

in the output of each operator, j = 1, 2, ..., 16. The similar procedure as in the

previous section is implemented on each feature subset yj. The performance of

each feature subset with 300 training samples is shown in Figure 4.5 a. After

the pixel selection, the selected features that are corresponding to a ROI consist

of seven pixels that yield the best classification as shown in Figure 4.5 b.

Figure 4.5: The performance of the pixel selection. (a) The error rate (vertical

axis) of yj by LDA with training set of 300 samples, in total of 16

pixels in each resulted image (horizontal axis). (b) The illustration

of the pixel selection, the lowest error rate is achieved by seven

feature subset that are corresponding to seven pixels.

4.3.2 Feature Selection for LDA

One problem using scattering coefficients for the classification is that the features

SJf(x) are much more than the samples. For example, with a training set of

300 samples in the MNIST database, the size of the scattering coefficients for

one sample is 3856 (3856 � 300). In this section, the strategy is to select

features from SJf(x) that can achieve better perfromance of the LDA-based

classifier. According to the criterion function of LDA( 4.16), the features with

bigger distances between the centers of classes, while with smaller variances,

might support the maximization of J(·). Let F̂ be the selected features

F̂ = argmin
l≤L

(
∑C

i=1 σ
2
l,i

∑C
i=1 nl,i|µl,i − µl|2

)

, (4.24)
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where L indicates the size of the feature vector, C is the number of classes, and

σl,i is the variance of class i for the feature l.

For instance, given a 3-class training set with 300 samples of each class that were

randomly selected from the MNIST database. Then, the weight matrix W T of

LDA is obtained based on 300 features that are randomly selected from 3856

features. The weight matrix W T consists of c− 1 projection vectors. The data

projected by the first two vectors with the biggest eigenvalues are displayed in

Figures 4.6, the upper row. In addition, 50 features were selected by using the

criterion function( 4.24). The data projected by the weight matrix computed

with the selected features is shown in Figure 4.6, the bottom row. Apparently,

the projection vectors were computed based on the selected features provided

higher discrimination power than the features without selection.
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Figure 4.6: The illustration of the data projected by the first two weight vectors

(a) w1 and (b)w2. (c) 2D display of the projected data. The weight

matrices were computed with 300 features (top row) and 50 selected

features by equation 4.24 (bottom row), respectively.

In addition to the equation( 4.24), other criterion functions can also be used to

select features for LDA, such as the total distance of classes dM =
∑C

i=1 ni(µi − µ)2

or the total variance of classes vM =
∑C

i=1 σ
2
i . The data projected by the two

weight vectors were displayed in Figure 4.7, the weight matrices were computed

based on the selected features by vM and dM , respectively.
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Figure 4.7: The illustration of the data projected by the first two projection

vectors (a) w1 and (b) w2. (c) 2D display of the projected data.

The weight matrices were computed based on 50 features selected

by the criteria vM (top row) and dM (bottom row), respectively.

4.3.3 Verification of Classification by LDA

Results for the Selected Operator

The LDA-based classifier was tested based on the training sets with 300, 1000,

and 2000 samples in the MNIST database. The results for the maximum voting

output among all 241 feature subsets were given in the first column in Table 4.4.

The classification results based on the selected feature subsets were better than

using all features. For example, with 300 training samples, 64 feature subsets

were successively selected that yield the error rate of 5.18%. It is lower than

5.24% with all 241 feature subsets. As a result, only the corresponding operators

that yield the selected feature subsets need to be implemented for the test

set. That might reduce almost 3/4 computation involving the convolutions and

classifications, while keeping or improving the accuracy.

Furthermore, the selected feature subsets were combined into one feature vector

and applied with PCA to reduce the dimensionality. The best dimension d

was obtained by cross-validation during the training. The results based on one

LDA-based classifier were given in the third column. As example with 300

training samples, 64 feature subsets were firstly selected and then composed of

one feature vector, the size is 1024 (16×64). By using PCA the data was mapped
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Table 4.4: Percentage of errors (%) based on all 241 feature subsets and the

selected feature subsets on the MNIST database. The performance

of the selected features with PCA was the best and shown in the

third column. ‘d’ indicates the obtained best dimension.

Training All 241 Selected Selection Affine model

size feature subsets feature subsets and PCA selection [45]

300 5.24 5.18(64) 2.47(50 d) 6.05

1000 4.98 4.81(86) 1.90(80 d) 2.39

2000 4.90 4.66(98) 1.60(130 d) 1.71

from 1024 onto 50 dimensions, on which the best classification was achieved

during the training. Compared with the previous work (Mallat et al.) in 2011

[45] (the last column), the proposed method achieved better performance.

Results for Selected Pixels (ROI)

In order to find out which pixels or ROI provide higher discrimination power, the

scattering coefficients were grouped into 16 feature vectors by the pixel selection

approach, each feature vector consists of 241 features. The classification with

the maximum voting among 16 feature vectors were shown in the first column,

referred as ‘All pixels’ in Table 4.5. The results for the selected feature subsets

were better than those without selection. For example, with 1000 training sam-

ples, the selected feature subsets corresponding seven pixels (ROI) contributed

2.72% error rate, which is lower than 2.83%.

Table 4.5: Percentage of errors (%) of the scattering coefficients grouped by the

pixel selection approach on the MNIST database.

Training All pixels Selected pixels Size of ROI

1000 2.83 2.72 7

2000 1.98 1.91 11

Furthermore, discrete cosine transform (DCT) is applied on scattering coeffi-

cients and the original images, respectively. The results are given on the first,

third row in Table 4.6. The second and forth row list the results for the selection

method, the figures between parentheses are the number of the selected pixles or

the size of ROI. Mallat et al. found that applying DCT on scattering coefficients

cannot affect any linear classifier in [82]. Our experiment results approved their
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finding. For example, the results for the feature subsets with or without the

selection were quite similar as listed in the first two columns.

Table 4.6: The experiments with DCT. ‘DCT Coeff’ and ‘DCT Image’ indicate

that applying DCT on scattering coefficient and the original image,

respectively. ‘DCT4’ means 2 × 2 block-wise DCT.

Training DCT Coeff DCT4 Coeff DCT Image DCT4 Image

1000 3.11 2.92 5.30 4.36

2.97(11) 2.88(13) 4.66(3) 4.05(5)

2000 2.34 2.04 3.79 3.63

2.24(3) 2.04(16) 1.98(11) 2.47(7)

Moreover, as the previous work in last section, PCA is applied on the 16 feature

vectors grouped by the pixel. The classification results and the best dimension

d are listed in the second column in Table 4.7. The error rates are similar

to the results obtained by the operator selection as listed in the third column

in Table 4.4. The classification given by 2 × 2 block-wise DCT on coefficient

(denoted as DCT4 Coeff) were better than others.

Table 4.7: The feature vectors were reduced by PCA for classification. The

figures between parentheses are the best dimension d.

TrainingOriginal DCT Coeff DCT4 Coeff DCT Image DCT4 Image

300 2.37(50) 2.24(40) 2.28(50) 2.79(50) 3.75(50)

1000 2.04(80) 1.95(60) 1.87(60) 2.21(80) 3.06(100)

2000 1.67(110) 1.70(130) 1.57(60) 2.06(70) 2.79(110)

In addition, PCA was firstly applied on 16 feature vectors individually on the

dimension d, and the pixel selection was followed afterwards. The results in

Table 4.8 were even better than the previous works in this section. For example,

based on 2000 samples the error rate 1.65% was achieved by the selected features

without DCT, compared with the error rate 1.67% and 1.91% in Table 4.7 and

Table 4.5, respectively.

More interestingly, the pixel selection is applied on the data that only contains

the digit ‘6’ and ‘9’. Based on 1000 training samples, the LDA-based classifier

achieved 0.05% error rate with all 16 feature vector grouped by the pixel. The

selection method worked out the ROI consists of pixel number 2, 6, 8, 13, 14 as

shown in Figure 4.8 c. The corresponding feature subsets could achieve perfect
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Table 4.8: The feature vectors were applied by PCA before and the selection

followed afterwards.

Training Original DCT Coeff DCT4 Coeff DCT Image DCT4 Image

1000 2.04(16) 1.85(12) 1.78(15) 2.19(7) 2.87(5)

2000 1.65(7) 1.68(7) 1.52(13) 1.98(11) 2.47(7)

classification with zero error. These areas can provide higher discrimination

power than other area on separating the classes ‘6’ and ‘9’.
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Figure 4.8: The ROI has dominant contribution for separating the digit (a) ‘6’

and (b) ‘9’. (c) The ROI selected by the pixel selection. (d) and (e)

show the selected pixels from (a) and (b), respectively.

Results for Selected Features

This experiment was designed to evaluate the performance of the selected fea-

tures by the criterion function for LDA-based classifier. First, the criterion

values were calculated based on the scattering features, such as the proposed

selection criterion function( 4.24), i.e., the total distance of classes. Second,

features were selected sequentially by adding the local best feature which pro-

vides the lowest criterion value to a candidate set. At last, the dimension d

can be obtained by the cross-validation in the training stage. For example, 64

features with the biggest values were selected with 200 training samples, the

classification was achieved 6.15% based on this feature subset.

Considering that the big difference of distances between each two classes might

affect the calculation, we introduced a new parameter τ into the criterion func-

tion:

τ =

argmin
i,j≤C

|µi − µj|2

argmax
i,j≤C

|µi − µj|2
. (4.25)

The results for the selected features are listed in Table 4.9. From our experi-

ments, we found the perfromance of the distance of classes dM was more stable
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and better than others as shown in the last column.

Table 4.9: The results for the the selected features by the criteria based on

LDA. The figures between parentheses are the best dimension d

obtained by cross-validation.

Training
vM

dM

4.24
vM

τdM

dM

200 6.15(64) 5.50(64) 5.04(50)

300 5.06(77) 3.90(73) 3.43(66)

1000 3.27(221) 2.77(113) 2.44(80)

2000 2.61(191) 2.50(133) 2.04(110)

Furthermore, the scattering features were reordered with respect to the criterion

dM . Based on the results in Table 4.9, the ranked feature vectors were splited

into separate segments, the size of each segment was set as 80 elements. In other

words, the features are grouped based on the criterion dM , then implemented

classification on individual feature subsets. The final decision was made by the

maximum voting among these classifications.

For example, the size of the scattering features for one sample is 3856, with one

subset containing 80 features, the total number of the classification is around

3856/80 ≈ 38. The results including the experiments with DCT are given in

Table 4.10.

Compared with the previous works [45, 82], with the selection, the LDA-based

classifier achieved better classification than the original works based on the PCA

affine selection model [45, 82]. But with the training set increasing, the latest

work [82] can yield even lower error rate. For example, with 2000 training

samples, the percentage of accuracy 98.7% in [82] was marginally better than

the proposed method with 98.4%.

Table 4.10: The results for the feature selection based on LDA. Classification

based on 38 feature subsets, each subset includes 80 ordered fea-

tures. The criterion function is the distance of classes dM .

Training Original DCT Coeff DCT Image Mallat[45] Mallat[82]

300 2.40 2.27 3.79 6.05 4.70

1000 1.95 2.07 2.95 2.39 2.30

2000 1.61 1.59 2.71 1.71 1.30
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4.4 Experimental Results for TCS Images

Classification

The experiments of classification with scattering coefficients were implemented

with TCS image data. The illustration of two TCS images and the corresponding

scattering coefficients are shown in Figure 4.9.

The experimental materials include two datasets with the structure of four

groups. The first group consists of 21 patients with both PD and Parkin muta-

tion; Group 2 consists of 12 patients with the Parkin mutation; Group 3 includes

16 patients who were diagnosed as PD patients without the Parkin mutation;

The last group only contains TCS images from healthy control subjects without

the Parkin mutation. Here, a study has been conducted to evaluate whether

these scattering features can be used as a PD indicator and/or a genetic muta-

tion indicator. First, we combined the images of group 1 and group 3 as PD data

for the comparison with the healthy controls (group 4). Second, the TCS images

in groups 1 and 2 were combined as Parkin mutation data to test whether the

local features can separate Parkin mutation carriers from the healthy controls

(group 4).

The scattering representations of TCS images were computed with a Morlet

wavelet. For testing the dimensionality reduction methods, the classification

results were obtained with the PCA affine model classifier [82] and support vec-

tor machine (SVM) classifier with the sequential minimal optimization (SMO)

method. For the evaluation of the feature selection methods, the classifications

were implemented by the LDA-based classifier. In addition, the pre-processing

of the input images was necessary and introduced as following.

In the previous work [32], from the prior knowledge of the anatomic location

of HoM and SN, the mask was created from the ellipse which was fitted onto

the ROI as mentioned in [27]. This mask was used for the exclusion of the

detected blobs which are outside of the HoM region. Here, in order to align the

HoM region of each subject for the same orientation, each manually segmented

boundary of HoM is fitted with an ellipse and then transformed onto a target

ellipse with the affine transformation. The centers of the ellipses and the eight

control points on the ellipses are applied to calculate the transition matrix of

the affine transform. The target ellipse and one fitted ellipse with a ROI are

shown in Figure 2.7. The center point and eight control points are indicated in

Figures 2.7 (a) and (b). Using the transition matrix, the HoM and SN areas of

the manual segmentations are transformed onto the target ellipse (Figures 2.8
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(a) (b)

Figure 4.9: A TCS image from (a) a PD patient and (b) a healthy control

subject (Philips SONOS 5500). The scattering coefficients for m =

1 and m = 2 were shown on the second and third row, respectively.

(a) and (c)). The original image of the HoM region and its affine adaptation

result can be seen in Figures 2.8 (b) and (d), respectively.

4.4.1 Performance of Feature Reduction Methods

The results with the scattering coefficients for the TCS image classification were

obtained by the PCA affine model classifier [82] and are shown in Tables 4.11

and 4.12. First, the rotation normalization worked better on Parkin mutation

and control data than on other data. Second, the first integral method did not

achieve better performance than the original feature vector.

According to the classification rates in Tables 4.11 and 4.12, the scattering

coefficients did not supply better accuracy than the previous works [32, 39].

To improve the performance, the forward sequential feature selection (SFS)
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Table 4.11: Percentage of errors (%) on the original and normalized TCS data:

PD and control data.

Data PCA Integral I mean

Original 27.52 32.11 26.61

Normalized 28.44 33.03 33.03

Table 4.12: Percentage of errors (%) on the original and normalized TCS data:

Parkin mutation and control data.

Data PCA Integral I mean

Original 31.68 30.99 25.74

Normalized 26.73 26.73 38.61

method was used on the scattering ‘mean’ features. The criterion function

of SFS was SVMs with the leave-one-out cross validation method. The input

of SVM classifier were the mean values of the coefficient sets Sq,Jf(x). The

Gaussian radial basis functions (RBF) were selected as the kernel function. The

classification results of TCS images based on the selected features are shown in

Table 4.13.

Table 4.13: Percentage of errors (%) with the selection method on the normal-

ized TCS data: PD and control data (data 1), Parkin mutation

and control data (data 2). The scattering coefficients used as the

‘mean’ features.

Data Feature subset Error

data 1 F (93, 5, 133, 22, 1, 82) 11.01

data 2 F (130, 71, 188, 11, 64, 110, 4, 111) 9.90

The feature vector F (1, 2, ..., 240, 241) consists of mean values of the coefficient

sets Sq,Jf(x), SFS selected six features that are corresponding to six coefficients

based on the PD and control data. The error decreased from 28.44% to 11.01%.

In another data subset, Parkin mutation and control data, the selected fea-

ture subset includes seven features (coefficients) and decreased the error rate

from 26.73% to only 9.90%. The selected scattering coefficients provide better

classification rates than the previous works [32, 39] on the large datasets.
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4.4.2 Classification Results Based on LDA

Based on the verification on the MNIST database, three classification methods

are applied on TCS images based on the LDA-based classifier, which are the

scattering operator selection, the pixel selection, and the feature selection. The

first step was to compute the scattering coefficients with the TCS images from

PD and healthy control subjects. In the second step, three selection methods

are implemented based on the obtained scattering features. Particularly, the

training set of TCS data is much smaller than the MNIST database. We there-

fore applied PCA on the input features for the dimensionality reduction in order

to compute the weight matrix for LDA in each classification. The final decision

was obtained by the maximum voting procedure based on classifications.

The results for separating PD from the control were given in Table 4.14. The

performance of the scattering operator and pixel selection methods were quite

similar, the error rate was 12.5%. For the feature selection by the criterion

function, the results were calculated with the feature subset which size of 200

features. In this experiment, the criterion was chosen as the distance of classes

dM .

Table 4.14: Percentage of errors (%) on the original and normalized TCS data:

PD and control data.

Coefficient selection Pixel selection Feature selection

Without selection 18.27% 14.42% 20.19%

Selection 12.5% 12.5% 18.27%

Number of All 241 256 205

Number of Selected 33 60 30

4.5 Conclusions

A scattering transform provides co-occurrence coefficients that contain more

information than the conventional Gabor filters. The scattering coefficients ob-

tained in the first convolution layer are similar to the Gabor filter bank that

was mentioned in Chapter 3. But the size of the scattering features is much

larger than for the Gabor features. Although the complexity of the PCA affine

selection classifier is lower than for SVMs, the computations for the convolu-

tions and the classifications are really heavy. Hence, we then implemented the

methods for the dimensionality reduction and the classification approaches with
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LDA-based classifier to avoid heavy computation using the affine space selec-

tion. With the integral approach, the size of the scattering vector was reduced

and rotation invariance was achieved. With the selected scattering features, the

proposed classification methods based on LDA-based classifier were much faster

than the PCA classifier while resulting in a similar accuracy.

After the verification by the two image databases, the scattering operators were

applied on TCS images. Based on the integral approach, with the feature selec-

tion method SFS, the selected coefficients performed significantly better than

the whole scattering-coefficient vector. The similar performance was achieved

by the proposed classification methods based on LDA.
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Chapter 5

Local Feature Analysis for

Hyperechogenicity Estimation

5.1 Motivation of Local Feature Analysis

In this chapter, a large experimental data is analyzed while taking into account

the affection from the different settings on the properties of the TCS images,

such as the gray values, the brightness, and the contrast. The considerable

variability among different datasets was illustrated in the previous work [32].

Our goal is to develop local features that are invariant to the illumination and

contrast changes. The proposed local feature analysis method applies invariant

blob detection to localize the hyperechogenicity area in ROI and extracts local

features based on watershed regions for the hyperechogenicity estimation. Com-

pared to the statistical and texture features, the local features could provide the

visual characters of ROI for neurologist, such as the location and area of the

hyperechogenicity.

In order to study the influence of a brightness and contrast changes, three nor-

malization methods are applied to TCS images to simulate the different user set-

tings. First, for each image the intensity values were rescaled to the range [0, 255]

as given by Inew = (I − Imin)/(Imax − Imin) · 255, where Imin and Imax are the

minimum and maximum gray values, respectively. A considerable difference be-

tween the original and the normalized images is illustrated in Figure 5.1. Second,

each image is normalized to zero mean and unit variance by Inew = (I − µ)/σ,

where µ and σ are the mean and the standard deviation, respectively. Third,

the contrast-limited adaptive histogram equalization(CLAHE) [55] is used to

83



5 Local Feature Analysis for Hyperechogenicity Estimation

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 Mean of roi

 V
ar

ia
nc

e 
of

 r
oi

 65 Philips TCS images of PD

 

 

Original
Rescaled

(a)

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

 Mean of roi

 V
ar

ia
nc

e 
of

 r
oi

 44 Philips TCS images of controls

 

 

Original
Rescaled

(b)

Figure 5.1: The illustration of the mean and variance of ROI (half of mesen-

cephalon) of 109 TCS images. (a) 33 subjects of Parkinson’s Dis-

ease. (b) 25 subjects of healthy control. Red plus and blue circle

indicates the original images and the rescaled images, respectively.

(the intensity values are rescaled to [0, 255]).

match the histogram of the image with a desired shape such as the Rayleigh

and exponential distributions.

5.2 Invariant Scale Blob Detection

The first automatic SN echogenicity analysis in 3D TCS based on random-forest

was proposed in 2012 [43]. In their method, the volumetric SN echogenicity

detection depends on the quality of the reconstructed volume from the obtained

video sequences of the 2D TCS images. In this section, we focus on the robust

image analysis method for the SN echogenicity detection from 2D TCS images.

Therefore the regions of ROI segmented manually by physicians and then are

analyzed for the estimation of the hyperechogenicity. In order to extract the

features of TCS images that are not sensitive to this influence from the different

settings, a local feature analysis method is proposed which applies invariant

blob detection to ROI and extracts local features for the hyperechogenicity

estimation.

In a clinical examination of PD using TCS, the size of the hyperechogenicity

in SN area is used for the diagnosis.The hyperechogenicity of SN area consists

of several bright spots in TCS image. The blob detection algorithm is stable
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under the monotonic changes in gray scale. The goal of this section is to localize

the hyperechogenicity in ROI by the invariant scale blob detector. Based on

space-scale theory, a multi-scale blob detector was proposed by Lindeberg [88],

which could automatically select the appropriate scale for an observation. The

scale space can be built using Laplacian of Gaussian (LoG) and difference of

Gaussians (DoG) filters. A brief framework for the invariant scale blob detector

based on LoG is given by

52
normg = σ2 · 52g(x, y;σ), (5.1)

where σ is the standard deviation of the Gaussian g(x, y;σ), and the scale-space

representation L(x, y;σ) of the image f(x, y) is defined as

L(x, y;σ) = 52
normg ∗ f(x, y), (5.2)

(x̂, ŷ; σ̂) = arg[extremum(x,y;σ)L(x, y;σ)], (5.3)

where (x̂, ŷ) corresponds to the center vector and σ̂ to the scale vector of the

detected blobs on each scale level. We suppose that one blob center (x̂1, ŷ1) is

stable through the scale space, and a unique maximum over scales is given by

∂σ(L(x̂1, ŷ1;σ)) = 0. (5.4)

The evolution of blobs along scales was studied based on the idealized model

patterns [88]. In practice, the amount of detected blobs on each scale level is

different, and the centers of the same blobs might not be found at the same po-

sition on corresponding levels. One common solution is that a blob is detected

if a local 3D extreme is present and its absolute value is higher than a threshold

[89]. However, same blobs at different scales are not related and can be detected

many times. Our strategy is to link the trajectory of the same blobs along scale

space and select the scale and center at the unique maxima that best represent

each blob. A phantom image as shown in Figure 5.2 (c) that is created for the

presentation and the verification of this method. The linked pipelines for each

detected blob from the phantom are shown in Figure 5.2 (a). The correspond-

ing local maxima of each pipe through scales are illustrated in Figure 5.2 (b).

Figure 5.2 (c) shows the final scale selection by equation 5.4.

In addition, the DoG is a close approximation to the scale normalized LoG,

52
normg, given by

g(x, y; kσ) − g(x, y;σ) ≈ (k − 1) 52
norm g, (5.5)

where the factor (k − 1) is constant over all scales and has almost no impact

on the stability of extrema localization [80]. In this work, DoG is applied for
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Figure 5.2: Blob scale selection from their trajectories along scale-space rep-

resentation with LoG. (a) Pipes through three filtered images at

scale σ = 4, 15, and 30 in scale space. (b) Four global maxima at

scales 4, 15, 20, and 25 are found from the connected trajectories.

(c) Four corresponding blobs are detected and superimposed on the

phantom image.

the construction of scale space. Actually, the analysis of scale-space maxima

presents severe complications in TCS image, but the possible hyperechogenicity

areas are localized by the proposed extrema selection method.

5.2.1 Local Feature Extraction

The mesencephalon is a butterfly-shape-like structure from the transverse view.

The TCS image is obtained from the temporal acoustic bone window in a stan-

dardized axial mesencephalic imaging plane [27]. Only the half of mesencephalon

that is close to the probe is analyzed because of a decreased signal-to-noise ra-

tio with increasing insonation depth. As a result, two TCS images from both

sides are acquired per individual. It is better for this study not to include un-

certainties that are attributed to the segmentation algorithm. Therefore ROIs

are manually segmented by physicians and then analyzed for the estimation of

the hyperechogenicity. The hyperechogenicity area is indicated with the blob

detection as shown in Figure 5.3. In the next step, a local image descriptor is

needed to label the detected blob. The watershed algorithm [90] works on the

gradient of an image, which is invariant to the brightness changes of the image.

The watershed regions are thus segmented with the input of the detected blobs

to estimate the hyperechogenicity in ROI.

Firstly, the blobs are detected with DoG operators in the ROI using the proposed
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Figure 5.3: The Detected maxima using DoG in (a) 26 neighbors or (b) through

pipe in scale space from control images (top row) and PD (bottom

row) of Philips SONOS 5500. (c) Watershed segmentation results

based on the detected blobs.

extrema-selection method. The detection results of TCS images from Philips

SONOS 5500 are shown in Figure 5.3. The same blobs are prevented from being

detected many times and the appropriate scales for each blob are indicated

around the blob center as shown in Figures 5.3(a) and (b). Secondly, based

on the input of the detected blobs, the watershed regions are segmented and

labeled by different color as shown in Figure 5.3(c). Then, a selection procedure

for the blob and watershed region is implemented with an ellipse mask filtering

the false positives as shown in Figure 5.4(a). From the prior knowledge of the

anatomic location of SN, this mask is created from the ellipse which is fitted

onto the ROI as mentioned in [27]. The values of the ellipse mask are calculated

from their distance d to the minor ellipse axis. For d < f (with f the distance

between the focus point and the minor axis) the mask value is one. For d ≥ f

the mask value is zero. Only the blobs that have big scale (for example, σ ≥ 3)

are taken into account as shown in Figure 5.4(b). The watershed regions that

are entirely within the ROI are considered as interesting areas. As a result, the

selected blobs (indicated by green plus signs) and watershed regions are shown

in Figure 5.4(c).
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(a) (b) (c)

Figure 5.4: The workflow of the interesting area segmentation. From left to

right: an ellipse mask is created with the ROI; the blobs are se-

lected by the ellipse mask; the watershed region grows based on the

selected blobs. (a) Ellipse mask, two green lines are parallel to the

minor ellipse axis and across the two ellipse focuses, respectively.

(b) The selected blobs (green sign) and (c) the selected watershed

regions which are inside of the ellipse mask.

For the estimation of the hyperechogenicity, nine local features F1...F9 were

extracted based on the selected blobs and watershed regions in ROI. Entropy

was used to measure the randomness of a local region. The parameters shape

and scale of a Weibull approximation [91] of the gradient distribution were

determined by maximum likelihood estimation [90] and used as local image

features. The calculation of entropy and the estimation of Weibull distribution

parameters were obtained from the gradient images after Gaussian smoothing.

Considering the image scaling, the features F1 and F2 were normalized by the

corresponding ROI. The local features are shown as follows:

F1,F3: Area and entropy of all selected watershed regions

F2,F4: Area and entropy of all selected blobs

F5,F6: Weibull parameters (a,b) of all selected watershed regions, blobs

F7: The scale of the biggest detected blob

F8,F9: Entropy of the biggest blob and ROI

The performance of these local features will be presented in the following.

5.2.2 Experimental Results

The experiments were implemented on three data sets which were obtained with

Philips SONOS 5500 by different examiners. Dataset 1 includes 42 TCS images
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from 23 PD patients and 36 TCS images from 21 healthy controls. Dataset 2

includes 15 PD TCS images from ten PD patients and eight control images from

four controls. The last dataset consists of ten PD TCS images from five PD

patients and 27 TCS from 14 controls. Totally, this large dataset includes 67 PD

images from 38 PD patients and 71 control images from 39 healthy subjects.

The outline of the framework: First, the dataset was classified using the selected

feature subsets F(17, 25, 26, 27, 29) from [37] and F(17, 77) from [38]. Secondly,

based on the manually segmented ROIs which were marked by the physicians,

the suspicious hyperechogenicity areas were localized by the invariant scale blob

detection method. Then, the watershed-segmentation algorithm was applied

to the gradient image after Gaussian smoothing. At last, local features were

extracted based on the selected blobs and the watershed regions. These local

features were evaluated by the feature-selection method SFFS. The criterion

function of SFFS was the accuracy of the SVM classifier. The training of SVMs

was carried out with sequential minimal optimization (SMO) and a linear ker-

nel. The SVM classification results were cross validated with the leave-one-out

method.

The feature analysis results are shown in Table 5.1. Based on this dataset,

the features found in [37] and [38] achieved 76.81% and 48.55% correct rate,

respectively. Five local features F (3,7,8,1,9) were selected with SFFS. Using

the selected local featrues, the classification accuracy reached 72.46%, which was

better than the Gabor feature and GLCM feature from [38]. To test how the

feature sets perform when standard operations such as brightness and contrast

normalization are carried out, for each image the intensity values in the ROI

were normalized to the range [0, 255]. The results in the right column show that

the local features are invariant to illumination changes in the simulated images

and outperform the other features under such conditions.

Table 5.1: Feature analysis and SVMs cross-validation results on the large

dataset.

Dataset Original data Normalized data

1, 2, 3 Accuracy Confusion matrix Accuracy

F (17, 25, 26, 27, 29) [37] 76.81%

(

63 4

28 43

)

71.01%

F (17, 77) [38] 48.55%

(

40 27

44 27

)

58.70%

Local feature F (3, 7, 8, 1, 9) 72.46%

(

52 15

23 48

)

72.46%
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In another experiment, a SVM classifier was used to evaluate the performance

of the three selected feature subsets when the training was carried out on other

datasets than the test. We used Datasets 1 and 3 for Training and Dataset

2 for test. The classification results are listed in Table 5.2. They show that

the classifier with the selected local features works better than the others when

training and test conditions are different.

Table 5.2: Classification results of the three selected feature subsets.

Training data(Dataset 1,3) Accuracy Confusion

Test data (Dataset2) matrix

F (17, 25, 26, 27, 29) [37] 65.22%

(

15 0

8 0

)

F (17, 77) [38] 60.87%

(

14 1

8 0

)

Local feature F (3, 7, 8, 1, 9) 78.26%

(

14 1

4 4

)

5.3 Shape-Adapted Blob Detection

The two previous works [37, 38] analyzed data from only one ultrasound ma-

chine, and the selected features turned out to be sensitive to user settings and

the ultrasound machine itself. The work in [32] did not discuss the compari-

son between the detected area and the SN area labeled manually by physician.

Therefore, a shape-adapted interest area detector is implemented to estimate

the hyperechogenicity with a large data that is invariant to scale and affine

transformations.

Our goal is to extract robust local image descriptors that are invariant to the

illumination and contrast changes from the different settings, even invariant

to different ultrasound machines. The outline of this algorithm is illustrated

with a flow chart in Figure 5.5. The proposed invariant scale blob detection

method [32] is applied to localize the echogenicity area in midbrain region. Then

the windowed second moment matrix (WSMM) [92] is applied to calculate the

parameters of the anisotropic blobs. At last, the interest areas are grouped by a

fitted ROI mask with the normalized SN regions that are created according to

the prior knowledge of the anatomic location of SN. The extracted local features

from the grouping interest areas are used for the hyperechogenicity estimation.
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Figure 5.5: The flowchart of image analysis for hyperechogenicity estimation.

The blob detection and watershed segmentation in [32] have been shown to be

suited to the TCS images classification. The local features extracted based on

that are robust to brightness changes. According to our observations of the data,

the hyperechogenic SN area consists of several bright spots in TCS image.

To consider the variety of TCS datasets, an interest area detector must fulfill

a number of requirements. First, the detector should be scale invariant so that

the bright spots of different size can be localized and extracted. Second, the

algorithm should not be sensitive to the different settings of the examiners, such

as contrast adjustment and magnification. The invariant scale blob detector

used in [32] is stable under the monotonic changes in gray scale. In addition,

the blob detector is capable to extract geometric and radiometric attributes, the

extracted local features based on that can be used for the classification of TCS

images. As a result, in this work, the invariant scale blob detector is applied to

localize the echogenicity areas in ROI of TCS image. However, the interest areas

could not be surrounded or cut properly with this blob detector. Because the

interest areas in ROI are not isotropic based on our observation and it only can

be cut with circular boundary edge in [32]. Then the shape information supplied

with WSMM is utilized for the edge detection of the anisotropic blobs.
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(a) (b)

Figure 5.6: Results of the invariant scale blob detection and the shape adap-

tation for Gaussian-like blobs. (a) Invariant scale blob detection

results. (b) Anisotropic blob detection results with the shape esti-

mation by WSMM.

5.3.1 Shape-Adapted Interest Area Detector

Experiments in Section 5.2 show that the analysis of the scale-space maxima

presents severe complications in TCS images, but the possible echogenicity areas

could be localized with the blob detector [32] as shown in Figure 5.7 (a). How-

ever, the edges of some anisotropic blobs did not mark properly with the blob

detector as found from Figure 5.6(a) and Figure 5.7(a). Therefore, the shape

information of the elongated blobs must be obtained with other measurement.

Here, a local image descriptor is needed to represent the detected blob. If case

the elongated blob has two different characteristic lengths σx and σy, the unique

maximum of L(x, y;σ) is obtained at the scale σ that is proportional to
√
σxσy.

Lindeberg introduced the WSMM to estimate the parameters of a local shape

because it fits naturally within the scale-space framework [92].

Let 5L = (Lx, Ly)T denote the gradient of an image. Given a symmetric and

normalized window function w, the windowed second moment matrix µL(q) can

be defined as [92]

µL(q) =
∫

(x,y)∈R2

(5L)(5L)Tw(qx − x, qy − y)dxdy, (5.6)

where q = (qx, qy) denotes the pixel at which WSMM is computed. An averaging

operator Eq describes the integration with w centered at q:

µL(q) = Eq((5L)(5L)T ) = Eq

(

L2
x LxLy

LxLy L2
y

)

. (5.7)
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Computation of the WSMM from an image involves two scale problems. The

first problem concerns the scale (local scale t) at which to calculate the maxima

in the scale-space representation of the image. The second scale problem con-

cerns the size of the region over which to collect the shape information. This

scale (integration scale s) controlling the size of the window function (here is

selected as a Gaussian function) [92]. Then, the multi-scale WSMM is given

by

µL(q; t, s) =
∫

(5L)(t)(5L)T (t)w(qx − x, qy − y; s)dxdy. (5.8)

In this work, q is the center of the detected blob, t is the selected scale according

to the experiment in [92]. In practice, the integration scale s at a given point

q is selected as s = γt (γ = 1,
√

2, 2). At each pixel, µL(q; t, s) is a 2 × 2

symmetric positive semi-definite matrix [93]. The shape information of the

blob can be easily obtained in terms of the eigenvectors and eigenvalues of

the WSMM. Consider a pixel location q, the center of a detected blob with a

local scale t, let λ1 and λ2 (λ1 > λ2) be the eigenvalues of the WSMM, the

local neighborhood possesses a dominant orientation (u2, v2) [93] which is the

eigenvector corresponding to λ2. When λ1 and λ2 are comparable, there is

no preferred orientation of this region. Apparently, an ellipse can be defined

with the eigenvalues and eigenvectors of the WSMM. The orientation of the

major semi-axis of the ellipse is given by (u2, v2) corresponding to the smallest

eigenvalue λ2 [94]. Thus, the aspect ratio of the lengths of the semi-axes ρ and

the orientations of the detected blobs are defined as [94]:

ρ =

√

λ2

λ1

, θ = arctan(
v2

u2

). (5.9)

In the previous work [32], the size of the blob area was set to be proportional to

local scale t. For the elongated blob, as similar settings in [94], the width of the

elongated blob ω is set to be proportional to t, and the length of the elongated

blob is defined by l = ρ · ω, (l > ω). As the results detected by the invariant

scale blob detector in Figure 5.6 (a) show, the circular boundary calculated

with the local scale t was used to mark the detected blobs. Based on the shape

estimation, the elongated blob was segmented with an ellipse boundary, the

result is shown in Figure 5.6 (b). Obviously, the ellipses created with the shape

information are more suitable to mark the anisotropic blobs than the circles.

The comparison of the detected results without and with the shape information

from a TCS image is shown in Figure 5.7.
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(a) (b)

Figure 5.7: Illustration of shape-adapted interest area detector. (a) Detected

maxima by the invariant scale blob detector from PD image of

Philips SONOS 5500. (b) Interest area detector results with shape

estimation.

5.3.2 Interest Area Grouping

As the blobs are detected from midbrain region with the shape-adapted interest

area detector in Section 5.3, a selection procedure for the blobs is implemented

with an ellipse mask of the ROI and SN areas filtering the false positives. The

grouped blobs inside of the SN region and their normalized areas are used for the

hyperechogenicity estimation. As the right part of the flowchart in Figure 5.5

shows, first, an ellipse is fitted with the manually marked boundary of ROI for

each TCS image (Figure 5.4 (b)). Then, the fitted ellipse is mapped to the

target ellipse (Figure 5.4 (a)) with the affine transformation. The results of the

affine transform applied to the ROI and manual segmentation are illustrated in

Figure 2.8. Using the parameters of the affine transform a mask includes the

manual segmentations of ROI, and SN is mapped into the target ellipse as shown

in Figures 2.8 (a) and (c). At last, the manually segmented SN regions of TCS

images from the group 1 in Dataset 1 are superimposed on the target ellipse

mask (Figure 5.8 (a)). This normalized SN mask is applied for the purpose of

grouping blobs inside of SN region as shown in Figure 5.8 (b).

Midbrain Mask

In the previous work [32], from the prior knowledge of the anatomic location of

midbrain and SN, the mask was created from the ellipse which was fitted onto the

ROI as mentioned in [27]. This mask was used for the exclusion of the detected

blobs which are outside of the half of mesencephalon region. Furthermore, the

window (SN mask) was calculated according to the distance of the pixel location
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5.3 Shape-Adapted Blob Detection

(a) (b)

Figure 5.8: The normalization of SN region inside a standard ellipse mask. (a)

23 manually segmented SN regions of PD images are superimposed

on the target ellipse mask. (b) The normalized mask (red ellipse) of

SN region inside of the half of mesencephalon mask (green ellipse).

d to the minor ellipse axis. For d < f (with f the distance between the focus

point and the minor axis) the mask value is one. For d ≥ f the mask value is

zero. Only the blobs that are within this SN mask were taken into account for

the local feature extraction.

Although the window was calculated according to the observation of these TCS

images, relative to the anatomic structure of the midbrain, the location of the

created SN mask is not accurate. In our study, the strategy is to map each

fitted ellipse of each manually segmented boundary of ROI onto a target ellipse

with the affine transformation. The centers of the ellipses and the eight control

points on the ellipses are applied to calculate the transition matrix of the affine

transform. The target ellipse and one fitted ellipse with a ROI are shown in

Figure 2.7. The center point and eight control points are indicated in Figures 2.7

(a) and (b). Using the transition matrix, the half of mesencephalon and SN areas

of the manual segmentations are transformed onto the target ellipse (Figures 2.8

(a) and (c)). The original image of the half of mesencephalon region and its

affine adaptation result can be seen in Figures 2.8 (b) and (d), respectively.

Normalized SN Mask

In order to group the detected blobs, we utilized 23 manually segmented SN

regions of PD images from Dataset 1 and mapped them onto the target ellipse

mask. Then, 23 affine transformed SN regions were superimposed to create a

normalized SN mask. The result is shown in Figure 5.8 (a), and the masks of
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(a) (b)

(c) (d)

Figure 5.9: Illustration of the grouping of the interest areas with the normal-

ized SN mask. (a) The detected blobs (blue plus) inside of the

manual segmentation of ROI (white region), the manual segmenta-

tion of SN (blue curve), and the mapped SN mask (green ellipse)

are superimposed in the ROI. (b) The detected interest areas (red

curves) inside of ROI are superimposed on the original image. (c)

Interest areas inside of the manual segmentation of SN. (d) The

interest areas within the mapped SN mask.

the normalized ROI and SN area are illustrated in Figure 5.8 (b). So far, the

detected interest areas can be grouped with the normalized SN mask.

First, the transition matrix M of the affine transform from the target ellipse to

the fitted ellipse is calculated. Then, the normalized SN mask is transformed

onto the ROI of the current TCS image with M . The transformed SN mask

and the corresponding manual segmentation of SN are superimposed on the ROI

as shown in Figure 5.9 (a). At last, the interest area with the biggest size in

the mapped SN mask is selected to estimate the hyperechogenicity as shown in

Figure 5.9 (d).

Compared to the manual segmentation of SN, the similar echogenicity are de-

tected with the normalized SN mask from PD TCS images as shown in Fig-

ure 5.10. The similar echogenicity can also be found from the TCS images of

the healthy controls as illustrated in Figure 5.11.

96



5.3 Shape-Adapted Blob Detection

(a) (b)

Figure 5.10: Illustration of the interest areas grouping on the TCS images of

PD from Dataset 2. (a) Interest areas (red curves) inside of the

manual segmentations of SN (green curves) or (b) selected by the

mapped SN mask (green ellipses).

Local Feature Extraction

For the estimation of the hyperechogenicity, five local features Fl1, ..., Fl5 were

extracted from the midbrain region, SN region, and the selected interest areas

within the normalized SN mask. Considering the image scaling, the local fea-

tures were normalized by the corresponding ROI areas. Entropy is calculated

from the gradient images after Gaussian smoothing in order to measure the ran-

domness of a local region. The local features are shown as follows:

Normalized area of manually segmented SN region (Fl1), the selected interest

regions (Fl2), and the biggest interest region (Fl3); The entropy of manually

segmented ROI (Fl4), the selected interest regions (Fl5).

5.3.3 Experimental Results

The experiments used two datasets which include four groups. The group 1

consists of 21 patients with both PD and Parkin mutation; The group 2 consists

of 12 patients with the Parkin mutation; The group 3 includes 16 patients

who were diagnosed as PD patients without the Parkin mutation; The group 4

only collects TCS images from the healthy control subjects without the Parkin

mutation. Here, a study has been conducted to evaluate whether these local

features can be used as a PD indicator and/or a genetic mutation indicator.

First, we combined the images of group 1 and group 3 as PD data for the

comparison with the healthy controls (group 4). Second, the TCS images in

groups 1 and 2 were combined as Parkin mutation data to test whether the
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(a) (b)

Figure 5.11: Illustration of the interest areas grouping on the TCS images of

the healthy controls from Dataset 1 (upper row) and Dataset 2

(bottom row). (a) Interest areas (red curves) inside of the manual

segmentations of SN (green curves) or (b) selected by the mapped

SN mask (green ellipses).

local features can separate Parkin mutation carriers from the healthy controls

(group 4). In addition, we collected all manually segmented SN areas and then

normalized each one with the corresponding ROI area. The histogram of the

normalized SN area for each TCS image is shown in Figure 5.12 (a). Similarly,

the selected interest areas are normalized with the corresponding ROI area, and

the histogram is shown in Figure 5.12 (b).

In the first experiment we compared the diagnosis accuracy between using the

manually segmented SN area with the examiners and the interest areas selected

by our algorithm. The receiver operating characteristic (ROC) curves were com-

puted as shown in Figure 5.13. If only the SN hyperechogenicity in the manual

segmentation of SN was taken into account for the diagnosis of PD, the highest

accuracy was 79.82%. The experimental results showed that the performance

of the interest areas (77.98%) was not as good as the segmentation of the ex-

aminer, the main reason was that the interest areas within the normalized SN

mask cannot be as accurate as the marker of the physician.

In the second experiment the normalized SN mask was applied to the PD data,
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Figure 5.12: Illustration of the manually segmented SN areas and the selected

interest areas on the TCS images of PD and controls from three

datasets. (a) Histogram of the normalized SN area of each TCS

image with the crosponding ROI area. (b) Histogram of the nor-

malized areas of the selected interest areas.

the mutation data, and the control data. For each TCS image five local fea-

tures were extracted with the proposed approach. The performance of the local

features was evaluated by the feature-selection method SFFS. The criterion

function of SFFS was set as the SVM classifier. The parameter setting of the

SVM: a linear kernel, the training was carried out with sequential minimal opti-

mization (SMO), and the cross validation was carried out with the leave-one-out

method.

The feature analysis results were shown in Table 5.3 and Table 5.4. Regarding

the separation between PD and control data, the selected local feature Fl(2, 4, 5)

achieved 84.4% classification accuracy as listed in the first row in Table 5.3. The

same feature subset Fl(2, 4, 5) was found to classify the Parkin mutation from

the control images, the correct rate is 88.19% as metioned in Table 5.4.

Table 5.3: Feature selection and cross-validation results. Datasets: PD (groups

1 and 3) and control (group 4) data.

Feature subset Accuracy Confusion matrix

Fl(2, 4, 5) 84.40% ( 50 15
3 41 )

Fg(28, 12, 27, 92) 88.99% ( 59 6
6 38 )

In addition, all 101 global features in our previous works [37, 38] were evaluated
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Figure 5.13: The ROC curve of the PD diagnosis accuracy. The red curve

with the symbol of circle indicates the manually segmented SN

area with the examiners. The blue curve with the symbol of star

indicates the selected interest areas.

by SFFS to compare the local features. The selected global feature subset

Fg(28, 12, 27, 92) achieved 88.99% to seperate PD images from control images

as listed in the second row in Table 5.3. The global features Fg(27, 28) are Gabor

features, Fg(12) is the root mean square (RMS) contrast, and Fg(92) is a feature

of Gray-Level Co-Occurrence Matrix (GLCM). Similarly, the performance of

another global feature subset Fg(48, 1, 95) for the seperation between Parkin

mutation and control subjects is 87.13%. Feature Fg(1) is the mean of intensity

values of the ROI, the features Fg(48, 95) are one of Gabor features and one of

GLCM features, respectively.

Table 5.4: Feature selection and cross-validation results. Datasets: Parkin mu-

tation (groups 1 and 2) and control (group 4) data.

Feature subset Accuracy Confusion matrix

Fl(2, 4, 5) 88.19% ( 48 9
3 41 )

Fg(48, 1, 95) 87.13% ( 55 2
11 33 )
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5.4 Conclusions

To test how the feature subsets perform when standard operations such as

brightness and contrast normalization are carried out, we applied four normal-

ization methods to each image as mentioned in Section 5.1. The results in

Table 5.5 and Table 5.6 show that the local feature Fl(2) is invariant to illumi-

nation changes from the image normalization and outperforms the other features

under such conditions. The classification rate of the global features decreased

to 66.97% from 88.99% with the zero mean and unit variance normalization in

Table 5.5. Similarly we also can find the accuracy of the global features dropped

from 88.19% to 78.22% in Table 5.6.

Table 5.5: The performance (the percentage of accuracy %) of the feature sub-

set on the simulated data. Datasets: PD and control data.

Simulated data Fg(28, 12, 27, 92) Fl(2, 4, 5) Fl(2)

[0, 255] 88.07 78.90 75.23
I−µ

σ
66.97 70.64 73.39

Rayleigh 86.24 77.98 75.23

Exponential 86.24 82.57 73.39

Table 5.6: The performance (the percentage of accuracy %) of the feature sub-

set on the simulated data. Datasets: Parkin mutation and control

data.

Simulated data Fg(48, 1, 95) Fl(2, 4, 5) Fl(2)

[0, 255] 84.16 84.16 78.22
I−µ

σ
78.22 78.22 76.24

Rayleigh 80.20 76.24 76.24

Exponential 80.20 88.12 76.24

5.4 Conclusions

We have analyzed the selected features from two previous works and nine new

local features based on a large dataset of TCS images. In particular, the local

features are invariant to the monotonic changes in gray scale. Almost all possi-

ble locations of hyperechogenicity in half of mesencephalon could be indicated

by the proposed invariant scale blob detection. Moreover, the watershed seg-

mentation was applied to segment the ROI for PD detection. Of course, the

current results depend on the manual segmentation of ROI by physician. Even
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though the appearance of mesencephalon can vary considerably across subjects,

the prior knowledge of anatomic shape and location of SN can be utilized for

the improvement of the selection strategy.

In this work, a large dataset including TCS images of PD patients, Parkin

mutation carriers and healthy controls was analyzed with the shape-adapted

interest area detector. The elongated blobs on TCS images can be detected

with the shape information provided by the WSMM. Moreover, we learned the

prior knowledge of anatomic shape and location of SN from the manual seg-

mentations of SN of the physicians and created a normalized SN mask with the

affine transform. The possible regions of echogenicity in half of mesencephalon

area could be estimated with the normalized SN mask. Based on the detection

results, the local features in ROI were extracted and evaluated by the feature

selection method SFFS. We have compared the selected feature subsets between

the global features in two previous works and the local features based on this

large dataset. Regarding the separation between PD and control, Parkin muta-

tion and control, the local features achieved as good performance as the global

features. In particular, local features are more stable to the monotonic changes

in gray scale and the changes of the histogram shape. Compared to the sta-

tistical features, the local feature Fl(2) can provide more information, such as

the visual characters (location and area of the echogenicity) on TCS images of

PD. However, the detected interest areas depends on the normalized SN mask

which varies across subjects. The selection strategy of the interest areas might

be improved for the more robust and precise local image descriptors of hypere-

chogenicity.
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Chapter 6

Analysis of TCS Sequence Images

The sequence of ultrasound images known as B-scans are recorded within a fan-

shaped region by a movable probe. During the routine examination by TCS,

the 2D images than contain the midbrain are chosen by physician for the further

diagnosis. In order to reduce the investigator-independence, a 3D image can be

reconstructed with a sequence 2D images. The 3D image includes the mesen-

cephalon region can provide more information than a 2D image. In addition,

the hyperechogenicity could also be estimated with frames in the sequence that

resulted in an automated 2D images selection method for the diagnosis.

6.1 Pre-processing of A Sequence of TCS Image

Reconstruction of volume from a sequence of ultrasound images is an important

problem of recent interest [95, 96]. The probe is held by a sonograhper and

can be moved and rotated in arbitrary direction. Therefore the probe position

and the angular velocity changes slightly during the scanning [95]. The frames

need to be registered before the reconstruction, and the similar frames should be

combined or merged to avoid the repeated frames affect the quantitive analysis

in the next steps.

6.1.1 Alignment of the Individual B-scans

The first step is to align the individual B-scans, which are ordered in time do-

main. We use the SIFT keypoint detector [80], because of its invariance to
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image translation and scaling. The keypoint detection and matching of individ-

ual B-scans are implemented by VLFeat [97], which is an open source library

that implements computer vision algorithms, such as maximally stable extremal

regions (MSER) and SIFT. SIFT provides a local descriptor for each keypoint in

a pair of TCS images, and then the keypoint descriptors of the pair are matched

with the `2 norm of the difference between them. The matches of the pairs of

adjacent TCS images are shown in Figure 6.1(a). Next, the fundamental matrix

for the matches are estimated using Random Sample Consensus (RANSAC),

and the inliers of the matches that are computed and shown in Figure 6.1(b).

At last, the similarity of the pair of images is calculated as the ratio of the inliers

to all matches.

(a) 909 tentative matches in a pair of TCS images

(b) 894(98.35%) inlier matches out of 909

(c) The inlier matches inside of masks

Figure 6.1: The SIFT keypoints and the matches between a pair of the adjacent

TCS images.
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6.1 Pre-processing of A Sequence of TCS Image

According to the similarity, the adjacent images can be merged using the image

mosaicing technique. Image mosaic is to combine two or more B-scans into a new

image based on the homograhpy matrix which are computed with RANSAC.

Actually, the size of the merged image might be different from the original one.

The alignment strategy is to adjust all others images to the first B-scan.

6.1.2 Segmentation of Midbrain in A Sequence

In general, doctors mark the mesencephalon and the SN area on the TCS im-

ages for the PD diagnosis. These TCS images are obtained from both sides of

the brain as shown in Figure 6.2. Based on the manual segmentation of the

physician, the label of mesencephalon in the current B-scan is extracted as a

mask (Figure 6.3(a)). Then this mask could be applied to the segmentation of

the successive TCS images using the mentioned SIFT features in Section 6.1.

The matches inside of the mask are shown in Figure 6.1(c). The matched key-

points in both the current B-scan and the next B-scan (which is adjacent to

the current B-scan in time space) are used to calculate the parameters of the

affine transformation. Using the similar method as in [80], the mask for the

next B-scan is computed from the original mask using the affine parameters.

Figure 6.2: TCS image includes midbrain which is indicated by the yellow line.

The affine transformation of a keypoint [x1y1]
T in the current B-scan to the

matched keypoint [u1v1]
T can be written as

[

u1

v1

]

=
[

m1 m2

m3 m4

][

x1

y1

]

+
[

tx
ty

]

, (6.1)

where the affine rotation, scale, and stretch, are represented by parameters mi,

[txty]T is the translation parameters. The affine parameters [m1m2m3m4txty]T

are calculated by solving equation (6.1). Therefore, the new mask of the next
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B-scan can be transformed from the original mask using the affine parameters.

The original mask and the generated mask with the affine transform are shown

in Figure 6.3. And then the same processing is implemented to the rest of the

B-scan sequence. As a result, the mesencephalon is segmented in all B-scans

only based on one manual segmentation from the doctor.

(a) (b)

Figure 6.3: The current mask and the next mask obtained with the affine trans-

form. (a) The current mask. (b) The mapped mask.

6.2 Visualization of Midbrain

Recently, 3D sonography was applied for the diagnosis of PD [98]. The 3D image

also shows the hyperechogenicity at SN area, the illustration figure (Abb.4 in

[98]) shows the segmentation for the mesencephalon and SN in 3D. In this

section, the sequence of B-scans can be reconstructed as a 3D volume data after

the pre-processing. An example image is shown in Figure 6.4 that is created

based on a sequence images of a healthy control subject.

Figure 6.4: The volume rendering result of TCS images after the image fusion

and alignment of the frame sequence.
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6.2 Visualization of Midbrain

6.2.1 Volume Rendering

After the merging of the similar, adjacent TCS images and the alignment of the

sequence, a volume data is reconstructed based on the processed B-scans with

the time label. The 3D data is then visualized by the volume rendering, which

is supplied with MeVisLab [99]. MeVisLab is a development environment for

medical image processing and visualization. The mesencephalon as a butterflyer-

shaped structure can be found around the center of Figure 6.4.

Furthermore, in order to obtain a more clear image that mainly includes the

midbrain region, the sub-volume of mesencephalon region is clipped from the

entire volume as shown in Figure 6.5(a). Obviously the big picture could pro-

vide more details in midbrain region. In addition, the volume data build by

the segmented frames is visualized in Figure 6.5(b). This 3D image roughly

displays the mesencephalic stem, the size of the region will be used for the

hyperechogenicity estimation in the next step.

(a) (b)

Figure 6.5: The volume rendering result of (a) the sub-volume of midbrain and

(b) the segmented mesencephalon which obtained from one seg-

mented TCS image by the doctor.

6.2.2 Maximum Intensity Projection

According to the standard clinical setting [29], TCS images are acquired at the

scanning planes from both sides of the brain. Apparently, 3D images can supply

more information than a 2D image of the midbrain. Here, 3D volume images
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of the midbrain are created using the mentioned method in section 6.1.2. It is

possible to obtain the volume information of mesencephalon and even SN from

the 3D image to assist the diagnosis of PD. MeVislab also supplies another two

volume rendering methods, the illuminated mode and the maximum intensity

projection (MIP). The rendering results are shown in Figure 6.6.

(a) (b)

Figure 6.6: The volume visualization using two volume rendering methods. The

rendering methods are referred as (a) illuminated and (b) MIP

mode from MeVisLab.

Although different parameters can be chosen for the visualization methods in

order to obtain better visual image, but the 3D image of mesencephalon in

Figures 6.5 and 6.6 show that the intensity values of the SN region are similar

to the surrounding area. In other words, the SN region in the upper half of

mesencephalon does not show any abnormal in this healthy subject image.

6.3 Analysis on Obtained Sequence

Considering the identification of the scan plane to be investigator independent,

consequently, the selection of a 2D TCS image from a sequence of B-scans for the

diagnosis also depends on individual physician. Therefore, a sequence analysis

method is presented based on the sequence obtained by proposed methods in

the previous section. This analysis method aims at selecting 2D images for the

diagnosis automatically from the obtained sequence and then the selected images

can be used for the estimation of hyperechogenicity. By given a video sequence
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from a PD patient, the sequence can be registered by using the SIFT features

computed from every two adjacent frames in Section 6.1.1. After merging the

similar frames, the resulting sequence is reconstructed into a volume data as

illustrated in Figure 6.7 (a). Moreover, the midbrain region on each frame in

the obtained sequence can be segmented based on the doctor segmentations

as mentioned in Section 6.1.2. The volume data including mesencephalic stem

is reconstrcuted based on the frames with the segmented midbrain region and

shown in Figure 6.7 (b). As a result, the better diagnosis can be made with the

help from 3D visualization of SN region instead of one single 2D TCS image.

(a) (b)

Figure 6.7: The 3D visualization for a PD data after the image fusion and

alignment. (a) A data with the whole view of TCS images. (b) A

3D image presets the segmented frames that include upper half of

mesencephalon region.

6.3.1 Interest Area Detection

The sequence obtained in last section can be used for the suspect area detection,

the hyperechogenicity estimation. In the previous work [32], from the prior

knowledge of the anatomic midbrain, the two normalized masks are created from

the ellipses as mentioned in Chapter 5 in Section 5.3. One mask is used for the

exclusion of the detected blobs which are outside of the half of mesencephalon

region. These blobs are detected by the shape-adapted interest area detector

that was introduced in Section 5.3.1. Next, the possible areas of echogenicity

in this region could be estimated with the normalized SN mask presented in

Section 5.3.2. The procedure is implemented on each obtained frame, one by
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one, and the two masks are generated by the mapped segmented regions of the

midbrain.

The illustration of this processing is given in Figure 6.8. The blobs found by

the shape-adapted interest area detector are selected with the mask of half

of mesencephalon, that are indicated as red curves and superimposed on the

images. The rest blobs are further picked out with the SN mask and the resulting

ROIs are displayed as green curves in Figure 6.8. The detected ROIs from all

frames in the obtained sequence will be used for selecting proper 2D images for

the further diagnosis.

(a) (b) (c) (d)

Figure 6.8: The illustration of the blobs detection results on the obtained

frames that are adjacent in time space. The interest areas (red

curves) are detected within the mapped masks of half of mesen-

cephalon. The ROI selected by the SN masks are indicated as

green curves. From (a) to (d), the obtained frames in time space.

6.3.2 Identifying of the Scanning Plane

Based on the detection results, the local features in ROI are extracted and then

used for the evaluation of each image. The local features show the discriminant

power for separating TCS images from PD to the healthy subjects as mentioned

in Section 5.3.2. For the estimation of the hyperechogenicity, three local features

F1F2F3 are calculated based on the regions of the half of mesencephalon and

ROI. Considering the image scaling, the feature F3 is normalized by F1. The

local features are shown as follows:

F1: Area of the mapped HoM mask

F2: Area of ROI within the SN mask

F3: ROI normalized by area of HoM mask, the Ratio of F2/F1

The performance of these local features will be presented in the following.
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6.4 Experimental Results and Discussion

6.4 Experimental Results and Discussion

The data was obtained from the Siemens Sonoline Antares machine, it can

output the sequential B-scans as a video file. The video data consists of three

healthy control subjects and three PD patients. The sequences are reconstructed

in 3D as a volume image. With the help from 3D visualization of SN region,

the better diagnosis can be made instead of one single 2D image.

The outline of the framework is: First, every frame including mesencephalon is

read out from a video file. Then the image area is extracted from each frame

and other information such as text in ultrasound images is erased. Second,

the SIFT features are calculated from each image using the software VLFeat.

As a result, the keypoints and their corresponding local descriptors are ready

for the alignment of the resulting images. In order to reduce the size of the

sequence, the similar images are merged according to the similarity between the

adjacent frames, which are calculated using RANSAC based on the obtained

SIFT features. For example, the current frame is compared to its first neighbor

frame in time space, and then compared with its second neighbor frame. The

process will be succeeded until the stop condition is fulfilled. In this experiment

a threshold of the similarity (96%) is set as the stop condition. The similarity

between every two adjacent images of a healthy control is shown in Figure 6.9.

The details about the image-merge method are mentioned in Section 6.1.
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Figure 6.9: The similarity between every two adjacent TCS images in the

sequence.
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6 Analysis of TCS Sequence Images

Until this step, the images in the sequence of the healthy control were aligned

and the size was reduced from 357 frames to 73 frames. Another example of

a PD data, the obtained frames were 69 images that were reduced from 293

original frames. Third, based on the obtained frames and the SIFT features,

the manual segmentation of physician on the first frame is mapped by the affine

transform from one frame to another. The mapped segmentations are resulted

in an atlas for each frame. As a result, the half of mesencephalon region in each

frame is extracted as shown in Figure 6.10.

(a) (b)

Figure 6.10: The volume estimation using two volume rendering method, (a)

illuminated and (b) MIP mode from MeVisLab.

Next, each obtained frame is analyzed by the shape-adapted interest area detec-

tor. The detection results, the blobs, are selected by the normalized SN mask

as shown in Figure 6.8. The local feature F3 of the ROIs is evaluated and the

frames with the large values can be selected for the diagnosis of PD, such as the

calculation of the SN area. The feature F3 of each obtained frame from the PD

data is presented in Figure 6.11.
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Figure 6.11: The local feature F3 for every obtained frame in the sequence.
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6.5 Conclusions

This procedure could be implemented automatically instead of the manual se-

lection by physician. The comparison between the 2D image selected by doctor

and the images selected by the proposed method are shown in Figure 6.12.

(a) (b) (c) (d)

Figure 6.12: The results of the hyperechogenicity estimation. (a) The B-scan

selected by physician, the yellow curve marks the hyperechogenic

in SN area. From (b) to (d): The frames (No: 3, 6, and 32)

selected by the local feature F3. The detected ROIs shown as

brighter blobs are overlayed on the original images.

6.5 Conclusions

In this chapter, we apply the local feature SIFT to analyze and process ultra-

sound image. The keypoints can be matched between a pair of adjacent TCS

images. And then the matches are used for the alignment and the image mosaic.

Based on one manually segmented TCS image from physician, the segmentation

of mesencephalon is implemented sequentially through the sequence of TCS im-

ages. As a result, the 3D volume of brain is constructed and the 3D image can

be used for the diagnosis of PD. The hyperechogenicity of SN can be evaluated

on midbrain region based on the shape-adapted interest area detector. With

help of the SN mask, the normalized feature of ROIs is used for the interest-

ing images selection. This automatical selection method could assist physican

to recheck whether the scanning plane was proper indentified or the selected

images for the diagnosis were suitable.

However, the process of the similarity calculation and the image fusion is time

consuming. The accurate measurement of the distance between each frame

is still a difficult problem. The hyperechogenicity has been estimated on the

limited videos, the accuracy of the quantitative analysis will be improved with

a large datasets. With help from physician, the strategy of the images selection

for the diagnosis would be more robust.
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Chapter 7

Summary and Outlook

Medical imaging plays an essential role in clinical diagnosis. Technical improve-

ments, especially the development of ultrasound device, allowed for the appli-

cation of transcranial sonographay in the examination of Parkinson’s disease.

After the revolutionary finding 13 years ago that the ultrsound can penetrate the

intact skull with a Doppler system, Becker et al. discovered that the abnormal

structure can be detected in the SN region using transcrnial sonography.

This dissertation aims to employ computers to aid neurologist in the diagnosis

of PD by using the SN hyperechogenicity as a preclinical marker. With prior

knowledge from experts and brain anatomy, this dissertation combines image

analysis techniques, machine learning, pattern recognition, and computer vision

for the development of computer-aided detection system. Three algorithms have

been proposed: a multiple feature extraction, a shape-adapted blob detection,

and a sequence analysis approach for PD detection. Especially, the invariant

scattering convolution networks is applied on TCS images for the first time

and a classification method is proposed that based on the obtained scattering

features. In addition, a semi-automatic segmentation tool is applied on the

images to reduce the investigator dependence. The results of these algorithm

have been given and discussed at the end of the corresponding chapters.

This dissertation firstly continues the work of a previous PhD candidate, Chris-

tian Kier, on the feature extraction direction. The features include statistical

features, geometrical features, texture features, local features, and scattering

features. All these features are extracted from ROI and then used for the classi-

fication. The features selected by the feature selection methods provide higher

discrimination power on separating PD images from the healthy controls. It is

believed that the features combined with the information from the image ac-

quisition stage would be more robust on separating data from different sources.
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7 Summary and Outlook

Valuable information, such as the parameters of user settings, that cannot be

obtained from ultrasound machines currently, so that they needs to be treated

as unknown parameters.

Actually, the physicians are not fully satisfied with the numbers or percentages

provided by the features. Therefore, the shape-adapted blob detector is imple-

mented to find and mark the suspect areas. A series of experiments have demon-

strated that the possible hyperechogenic areas can be located based on the TCS

images that were obtained from two ultrasound machines, Philips SONOS 5500

and Siemens Sonoline Antares. Moreover, the video data obtained by Siemens

Sonoline Antares can be visualized as a 3D image based the sequence analysis

method. This tool also could be used by neurologist to recheck the selected 2D

images for the quantitative diagnosis. Recently, 3D sonography is applied for

the PD diagnosis while 2D imaging techniques are still being used.

Overall, it is believed that one day the neurologist will have a ultrasound device

that is provided with a specific probe for TCS, meanwhile a particular designed

brain imaging technique is built inside that only focuses on imaging the midbrain

region. All PD patients will benefit from the early diagnosis using transcranial

sonography.
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Appendix

1 The Experiment of Applying DCT on the

Scattering Coefficients

Table 1: Percentage of errors (%) of all coefficients and the selected coefficients

on the MNIST database. The third column shows the error rates for

the selected coefficients with PCA.

Training DCT Coefficient DCT4 Coeff DCT Image DCT4 Image

A 5.23 5.23 12.24 7.60

300 B 4.82(105) 4.89(62) 9.20(141) 6.46(50)

C 2.36(70 d) 2.34(50 d) 2.87(60 d) 3.41(70 d)

A 4.95 4.94 8.43 5.81

1000 B 4.71(80) 4.80(71) 8.04(160) 5.60(76)

C 1.86(80 d) 1.87(80 d) 2.12(70 d) 2.62(90 d)

A 4.76 4.69 8.13 5.27

2000 B 4.37(80) 4.55(78) 7.90(136) 5.03(101)

C 1.59(80) 1.61(80 d) 1.78(130 d) 2.18(60 d)
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Appendix

2 Part of the Selected Features

Table 2: The part of the selected features in Chapter 3.

Feature Formula

F(11) Energy E =
L−1
∑

i=0

[P (bi)]
2

F(12) Entropy H = −
L−1
∑

i=0

P (bi) log2(P (bi))

if P (bi) = 0 then P (bi) log2(P (bi)) = 0

F(25) Root Mean Square

(RMS) contrast RMS =

√

√

√

√

√

1

MN

M−1
∑

i=0

N−1
∑

j=0

(Iij − Ī)2

Gmn(x, y) =
∑

ξ

∑

η

I(x− ξ, y − η)g∗
mn(ξ, η)

F(26) Gabor feautre f(1) = µ00 =

∑

x

∑

y | G00(x, y) |
P ×Q

F(27) Gabor feautre f(2) = σ00 =

√

∑

x

∑

y(| G00(x, y) | −µ00)2

P ×Q

F(29) Gabor feautre f(4) = σ01 =

√

∑

x

∑

y(| G01(x, y) | −µ01)2

P ×Q

F(76) Gabor feautre f(51) = µ41 =

∑

x

∑

y | G41(x, y) |
P ×Q

F(77) Gabor feautre f(52) = σ41 =

√

∑

x

∑

y(| G41(x, y) | −µ41)2

P ×Q

F(78) Gabor feautre f(53) = µ42 =

∑

x

∑

y | G42(x, y) |
P ×Q
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