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2. Berichterstatter: Prof. Dr. Jürgen Westermann
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Abstract. The immune system is crucially important for survival and develop-
ment of the human species, and many fundamental processes in this highly com-
plex system are not yet fully understood. In recent years, technological advances
like two-photon microscopy have yielded substantial new information, which par-
tially contradicts established immunological assumptions. Computational mod-
els and simulations play an increasingly important role in extracting new insights
and hypotheses from these data. This thesis investigates models of two important
immunological processes using techniques from theoretical computer science. A
main emphasis lies on obtaining qualitative and quantitative predictions from these
models, which we then go on to test against published experimental data within the
context of contemporary immunological research questions. The two objectives of
this approach are (1) a deeper understanding of the fundamental properties of the
investigated models, and (2) new immunological insights.

First, we investigate T cell immune surveillance. Because the number of T cells
that can detect a specific pathogen is very low, T cells continuously migrate within
secondary lymphoid organs (SLOs), and travel around once daily between differ-
ent SLOs. Whilst the inter-organ circulation has been investigated since the 1960s,
it only recently became possible to observe lymphocyte migration directly in tis-
sue. For a mathematical model that integrates these two scales, we derive the
optimal restart time: how frequently should a T cell travel between different SLOs
to ensure that localized infections are detected as quickly as possible? We validate
our result using several experimental datasets, and show that the predicted optimal
restart time indeed coincides with physiological values. This finding supports the
hypothesis that T cell migration is near-optimal for timely antigen detection.

Second, we investigate negative selection of T cells in the thymus. Negative
selection generates a T cell population that tolerates the components of its host
organism (self), and attacks only foreign substances (nonself). We re-consider an
existing string-based model called the negative selection algorithm (NSA) from the
perspective of algorithmic learning theory. We discuss relations between the NSA
and established learning theoretical models like inductive inference and version
space learning, and show how the algorithm employs inexact pattern matching to
generalize beyond input data. Moreover, we develop techniques based on string
processing and data compression methods to generate predictions from the NSA in
a computationally efficient manner (i.e., in polynomial time), which facilitates the
analysis of large proteomic datasets in a matter of minutes. By these means, we
show that a NSA based on the so-called r-contiguous matching rule is capable of
predicting the recognition of HIV peptides by CD8 T cells. This work represents
a starting point for a broader learning theoretical treatment of the immune system,
which, despite being one of the two important cognitive systems in the human
body, has received little attention from learning theorists so far.
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Chapter 1

General Introduction

Immunology and theoretical computer science are in the author’s biased opinion
the two most fascinating areas of contemporary science. This thesis aims at em-
ploying tools of theoretical computer science for addressing important problems
in modern immunology. Needless to say, these two disciplines could hardly dif-
fer more in their methods, styles, and cultures. The structural organization of this
thesis reflects and honors these differences and is, as a result, perhaps somewhat
unusual. In this introductory chapter, we explain the reasoning behind this design,
which reflects the scientific method of computational biology.

The thesis consists of two independent parts. In each part, we propose a model
of an important phenomenon in the immune system; then we investigate funda-
mental properties of the model using techniques akin to, say, the analysis of a
probabilistic algorithm; and finally, we apply the model in the context of a cur-
rent immunological research question by making quantitative and qualitative pre-
dictions, which we validate against published experimental data. The philosophy
behind this approach, which is the foundation of mathematical and computational
biology, is nicely summarized in Murray’s classical textbook [110, p. xii]:

“The art of good modelling relies on (i) a sound understanding
and appreciation of the underlying problem; (ii) a realistic mathemat-
ical representation of the important biological phenomena; (iii) find-
ing useful solutions, preferably quantitative; and what is crucially im-
portant; (iv) a biological interpretation of the mathematical results in
terms of insights and predictions. The mathematics is dictated by the
biology and not vice versa. Sometimes the mathematics can be very
simple. Useful mathematical biology research is not judged by math-
ematical standards but by different and no less demanding ones.”

In all due respect, we will take one of the above rules very liberally: The analysis of
our models will sometimes go beyond the extent necessary for addressing the mo-
tivating biological questions. The reasons for this choice are two-fold. First, it is
the author’s firm belief that a prerequisite for applying a formal model to a biolog-
ical question is a thorough understanding of the model’s basic properties. Murray
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2 CHAPTER 1. GENERAL INTRODUCTION

presumably did not emphasize this aspect as his book mainly discusses models
based on differential equations – these are rooted in a sophisticated, centuries-old
theory, and can be considered more “standard” than the models used here which
are of discrete, stochastic, and algorithmic nature. Second, formal models of bio-
logical processes also serve as a source of inspiration for computer science. Such
inspiration has lead, for example, to the development of neural networks [13], ge-
netic algorithms [73], and more recently, artificial immune systems [35]. In fact,
the model analyzed in the second part of this thesis was originally intended as an
immune-inspired algorithm for protecting computers and networks. Some of our
results have important implications for immune-inspired computing. Most notably,
our analysis in the second part solves as a by-product a problem that the field of
artificial immune systems had struggled with for several years.

The two parts of this thesis follow a common structure that reflects the gen-
eral approach outlined above. Each part is subdivided into two chapters. The first
chapter starts out with a short, gentle introduction to the immunological subject
at hand, continues with a definition of the proposed model, and then gives a de-
tailed account of the model’s formal properties. These chapters are written more
in the style of a computer science research work; they will assume no particularly
deep background knowledge in immunology, but familiarity with probability and
complexity theory is presupposed. The analysis concludes with a short epilogue
outlining potential uses in computer science, which we do not, however, explore in
detail. The second chapter will then state and investigate a contemporary research
question in immunology, and the model will be used within the scope of this inves-
tigation as a tool to make qualitative and quantitative predictions, which ultimately
lead to new insight into the problem at hand. These chapters are written in the
usual language and style of a biological research work: They follow the classical
structure of empirical science papers (introduction, results, discussion, methods),
and the main text adopts a higher level of immunological terminology, while math-
ematical formalisms are avoided to the largest possible extent, and are presented in
a separate methods section instead.

It is the author’s hope that addressing both intended audiences of this thesis in
their own language will help both to understand and appreciate our results. How-
ever, this thesis cannot provide the entire breadth of background information that
would be needed to enable all readers to follow every technical detail. For ex-
ample, standard experimental techniques like adoptive transfer or two-photon mi-
croscopy will not be explained, nor will an in-depth introduction to computational
complexity theory be provided. Even so, the biology chapters should enable all
readers to convince themselves that the proposed models are indeed firmly settled
in relevant questions of modern immunology; similarly, we hope that the computer
science chapters will convey at least a basic idea of our key techniques and argu-
ments to a broader readership. We alert those who will indeed read through all of
these chapters that there is some overlap especially between the introductory parts.
This overlap is intentional, and meant to ensure that each chapter is sufficiently
self-contained to be read on its own, with the other chapters being consulted for
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reference as appropriate.

1.1 Overview of Part I: T Cell Immune Surveillance

T cells are constantly motile cells that protect the body by migrating and circulating
through different tissues in search of foreign intruders. The major routes of T cell
circulation have been established since the late 1960s through a series of classical
experiments, which demonstrated that the cells complete one round of circulation
roughly once per day [158]. The migration of T cells was thought to be mostly con-
trolled by chemokines, chemical substances that guide cell migration to and within
different tissues [102]. More recently, it became possible to observe T cell migra-
tion directly within tissue by means of two-photon microscopy [146]. Surprisingly,
this technique revealed that T cell migration in tissue is mostly random. In light of
this new information, we designed a model of T cell circulation that comprises two
scales: macroscopic circulation between organs, and microscopic migration within
organs (Chapter 2). The model provides new insight into how these two scales
jointly facilitate timely detection of infections, including those that are localized to
small regions of the body (Chapter 3).

The modeling idea arose from a collaboration with Jürgen Westermann. A first
joint paper on the subject was published at the 6th International Conference on Ar-
tificial Immune Systems (ICARIS 2007) [148], where it received the Best Student
Paper Award. From this initial paper, two different lines of work emerged. First, we
initiated a collaboration with the group of Ulrich von Andrian at Harvard Medical
School in order to develop more sensible methods for analyzing two-photon mi-
croscopy data, which would put the conclusion that T cell migration within lymph
nodes is random on a firmer basis. This work is not part of the present thesis,
but has been published in the Proceedings of the National Academy of Sciences of
the United States of America [147]. The second line of work sought to integrate
two-photon data with classical data from cell migration experiments, and this goal
lead to the development of the model that is presented in this thesis. Several stages
of this work were presented as it progressed, including a poster at the meeting on
Lymphocyte Kinetics in Health and Disease organized by the Infectious Disease
Research Network (IDRN) in London, 2008; an invited talk at the annual meeting
of the Society for Mathematical Biology in Vancouver, 2009; and an invited talk
at the Institute for Theoretical Biology and Bioinformatics, University of Utrecht.
The talk at Utrecht lead to a 6-week research visit to the institute in autumn 2010,
funded by the Deutscher Akademischer Austauschdienst (DAAD), during which
the biological predictions and conclusions presented in Chapter 3 were developed
under supervision of Rob J. de Boer and Joost B. Beltman. The results were pre-
sented in a selected talk at the IDRN meeting on T Lymphocyte Dynamics in Acute
and Chronic Viral Infection in London, 2011, and a journal publication is being
prepared. The theoretical results presented in Chapter 2, which were developed
under supervision of Rüdiger Reischuk, were presented at ICARIS 2011 [122].
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1.2 Overview of Part II: Thymic Negative Selection

Thymic negative selection generates a population of T cells capable of recogniz-
ing and acting against foreign substances, while tolerating their host organism’s
domestic substances. Essentially, the body first generates a large random pool of
T cells, and then kills those that turn out to be auto-aggressive. Stephanie Forrest
and co-workers [55] proposed an algorithmic model of this process, which can be
understood as a classifier that learns from only negative examples. In Chapter 4, we
will formalize this algorithm, investigate the basic mechanisms by which it learns,
and develop methods to compute the classification outcome efficiently. The algo-
rithmic improvements facilitate new ways of generating quantitative predictions,
which will be made and tested in Chapter 5. We find that the negative selection al-
gorithm is among the best existing mechanistic (i.e., hypothesis-based) predictors
for determining which parts of HIV can be recognized by the immune system’s
CD8 T cells.

The work presented in Chapter 4 builds upon joint work with Michael Elber-
feld, with whom the author published a paper at ICARIS 2009 on the first poly-
nomial time string-based negative selection algorithm [42]. Because this solved a
problem that had been open for many years [139], and disproved a conjecture that
polynomial time negative selection algorithms do not exist unless P=NP [149],
our work received the Best Paper Award at the conference, and we were invited
to submit an extended version to the journal Theoretical Computer Science. This
extended version [43] contains completely redeveloped algorithms which run in
linear rather than cubic time. These algorithms were designed and implemented by
the author, and their correctness proofs (Lemma 4.62, Fact 4.63, Corollary 4.64,
Lemma 4.65, and Theorem 4.66) were joint work with Michael Elberfeld. All other
results in Section 4.7 were obtained by the author alone. Independently, the author
generalized the results of the ICARIS paper to arbitrary string-based pattern classes
and recast the algorithm in the formal framework of algorithmic learning theory.
These results were developed under the supervision of Maciej Liśkiewicz, and pub-
lished at the 12th Genetic and Evolutionary Computation Conference (GECCO
2010), where the paper was one of three nominees for the Best Paper Award of
the Genetics Based Machine Learning track [99]. For this thesis, the results of
that paper were mostly rewritten and merged together with some new results into
Sections 4.5 and 4.6. Finally, the ideas for the biological validation of the model
presented in Chapter 5 were developed and refined in discussions with Can Keşmir
and Jorg Calis during the author’s visit to Utrecht. These preliminary results have
not been published prior to this thesis.
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Chapter 2

Optimal Restart in a Stochastic
Model of Immune Surveillance

Summary. T cells perpetually circulate through the body in search of infections,
using the blood and lymph vasculatory systems as “highways” to travel between
different organs and tissues. The need to detect infections as quickly as possible
gives rise to an optimization problem: When should a T cell stop searching for
antigen in the current region, and invest the time to travel to another one? Here we
investigate this question using a simple stochastic model of T cell immune surveil-
lance. Using techniques akin to the analysis of randomized algorithms, we derive
the optimal behavior of a single searcher, which presents a surprisingly rich phe-
nomenology. We reveal a gradual transition between two characteristic regions
of the search parameter space, and show that the optimum is relatively stable to
parameter perturbations. Finally, we discuss potential applications of our results
for the analysis of stochastic search heuristics, for instance Las Vegas algorithms
with expensive restarts or agent-based intrusion detection systems.

2.1 Introduction

The T cells of the vertebrate immune system play a key role in detecting and clear-
ing infections. Each T cell is equipped with a highly specific receptor that detects
any given pathogen with a very low probability (≈ 10−5− 10−6 [15, 108, 113]);
conversely, the number of T cells in the body that can act against a given pathogen
is very low (estimates in mice range from 80-1200 [113]), and thus it is not possible
to provide a complete T cell repertoire for maximum protection in every region of
the body. To compensate for this, T cells circulate between different lymph nodes.
These small organs are distributed strategically across the body (Figure 2.1), and
provide hubs where the T cells can efficiently screen the interstitial fluids and pro-
teins of the surrounding tissue for signs of infection. T cells reach lymph nodes
from the blood, remain within a lymph node for several hours, and then egress to
the lymphatic vessels which ultimately drain back into the blood. One round of

7



8 CHAPTER 2. OPTIMAL RESTART TIME

Figure 2.1: Diagram of the lymph system in mice (Figure taken from Kawashima
et al. [84]). Left: tail side (caudal), right: head side (cranial). Lymph nodes
are placed strategically across the body to provide distributed protection against
localized infections; note especially the large cluster of cranial mesenteric (crm)
lymph nodes near the gut, which is prone to many infections.

recirculation takes approximately 24 hours [158]. Because lymph node entry and
egress are via two different vasculatory systems, the sequence of lymph nodes a
T cell visits is essentially random.

The lymph node residence time, i.e., the time a T cell should stay within each
lymph node, is subject to a trade-off: When the cell exits prematurely from the
current node, it risks missing an infection that might be present there. On the other
hand, if it remains too long in the current node, it might miss an infection that is
present somewhere else. In this chapter, we ask the following question: what is the
most appropriate time for the cell to return to the circulation? To investigate this
question mathematically, we will first need a simple but still reasonably realistic
model consisting of two components: (1) A model of T cell recirculation between
lymph nodes; and (2) a model of antigen scanning within lymph nodes.

2.1.1 Organization of this Chapter

This chapter is structured as follows. In the upcoming Section 2.2, we motivate and
define the two components of our model. Thereafter, in Section 2.3, we investigate
the fundamental properties of the hitting time, i.e., the time a circulating cell needs
to locate an infection, and provide both exact and asymptotic expressions for the
optimal residence time that minimizes the expected hitting time. In Section 2.4 we
briefly discuss how the hitting time is reduced by several independent searchers.
Section 2.5 wraps the analysis up by discussing some implications for our biolog-
ical applications of the model in the next chapter. As an epilogue, we sketch in
Section 2.6 how our work relates to the analysis of randomized search heuristics.
This is meant to provide a starting point for future work that might explore such
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blood
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lymph
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Figure 2.2: Diagram of the major recirculation pathways for immune surveillance.
Lymphocytes circulate via the two vasculatory systems of the body: the blood and
the lymphatic system. The spleen, which is the biggest lymphatic organ and har-
bors about 14% of all lymphocytes in humans [159], functions as a central guardian
against infections that spread via the blood, and lymphocytes enter and leave the
spleen mostly via the blood. In lymph nodes, on the other hand, lymphocytes enter
from the blood and exit to the lymphatic system. The lymph drains back into the
blood, mostly via the largest lymphatic vessel, the thoracic duct, which ends in a
junction with the left subclavian vein.
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connections in more detail.

2.2 Definition of Our Model

Consider an indexed set of compartments, which we call bags (these represent the
lymph nodes). Each bag may either be a good bag (an infected one) or a bad
bag (an uninfected one). Let ngood denote the number of good bags, and n be the
number of all bags. Then ρ := ngood/n gives the fraction of good bags.

We define a discrete-time search process with parameters1 ρ,α ∈ (0,1) and
R,T ∈ N as follows. The searcher starts in a bag chosen uniformly at random,
which is a good bag with probability ρ . Each time step, the searcher throws a
biased coin. If the present bag is a good one, the success probability of the coin
flip is α; otherwise, it is 0. After R time steps, the searcher moves to a new bag
chosen uniformly at random, and the transit to the new bag takes T time steps. This
process is iterated infinitely often. Let the random variable

H ∈ {0, . . . ,R−1}∪{T +R, . . . ,T +2R−1}∪ . . .

denote the the time of the first successful coin flip. We will show that despite its
simplicity, the model gives rise to a surprisingly rich phenomenology. Specifically,
we derive the following results:

• Expectation E[H] and variance Var[H] of the hitting time H (Proposition 2.1);

• Asymptotic expressions for E[H] for large and small R (Propositions 2.2 and
2.3);

• The optimal residence time Ropt for given T,ρ, and α (Proposition 2.4); and

• Asymptotic expressions for Ropt for two characteristic regions of the search
parameter space (Propositions 2.6 and 2.7).

Note that we represent the search for antigen in lymph nodes simply as drawing
with replacement. This choice is motivated by the finding that T cells apparently
screen lymph nodes by migrating along random paths [106, 145, 156]. Because
the lymph node environment is three-dimensional, the random walk search is well
approximated by drawing with replacement. For the interested reader, we provide
some detail below on how this approximation can be justified via well-known re-
sults from random walk theory. Our analysis will start thereafter in Section 2.3.

1The parameter ρ is mnemonic for recruitment (to good bags a.k.a. infected lymph nodes), and
α stands for activation (within infected lymph nodes).
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2.2.1 Modeling Antigen Search in Lymph Nodes

Two-photon experiments indicate that the search of T cells for antigen is essentially
a 3D random walk through the lymph node tissue [106, 145, 156]. It is not yet
entirely clear how this random walk comes about, but presumably the network of
resident fibroblastic reticular cells within the lymph node plays a role in guiding
the cell movement [5, 6, 109]. As they move along, T cells encounter so-called
dendritic cells (DCs), which present them protein samples from the surrounding
tissues2. If a DC presents a sample that the T cell recognizes as foreign, the two
cells establish a long-lasting contact that ultimately leads to activation of the T cell,
and thus potentially initiates an immune response. It was estimated, again using
two-photon microscopy, that a T cell scans several DCs per hour and needs on
average 8 hours to establish a successful contact to a DC [105]. In our model, we
approximate this scanning process by drawing with replacement with a constant
success probability α , with the two-photon estimate corresponding to α = 1/8h.

To justify this approximation, consider a random walk in the lattice Z3, and let
pn denote the probability that the site reached by the random walk in its n-th step
has been visited before. Let Sn denote the number of different sites covered within
the first n steps, and rn the probability that the random walk returns to its starting
point at least once within the first n steps. By reversing the random walk in time, it
is clear that pn = rn, and it is known that

r∞ := lim
n→∞

rn = sup
n∈N

rn = 1− 1
u(3)

= 0.3405373 . . . , (2.1)

which is Polya’s random walk constant. In this expression, u(3) stands for the
integral [60]

u(3) =
3

(2π)3

∫
π

−π

∫
π

−π

∫
π

−π

dxdydz
3− cosx− cosy− cosz

. (2.2)

Thus, we can approximate Sn as follows:

E[Sn]≈ (1− r∞) n . (2.3)

Every time a node is visited, we therefore have a chance of at least 1− r∞ = 66%
that it is a node we have not visited before. Now assume that targets are distributed
on the lattice such that every vertex is a target with probability c. We are interested
in the first hitting time, i.e. the number of steps it takes a random walk to hit a
target for the first time, denoted by H = H(c). Its expectation can be evaluated as
follows:

E[H] =
∞

∑
j=1

j ·Pr [H = j ] =
∞

∑
j=1

j · (Pr [H > j−1 ]−Pr [H > j ]) (2.4)

=
∞

∑
j=0

Pr [H > j ] =
∞

∑
j=0

E[(1− c)S j ] (2.5)

(2.6)
2Antigen presentation will be explained in more detail in Chapter 4.
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For c� 1, i.e. when (1− c)n decreases very slowly, the last expression can be
approximated by

E[H] ≈
∞

∑
j=0

(1− c)E[S j] ≈
∞

∑
j=0

(1− c)(1−r∞) j (2.7)

=
1

1− (1− c)(1−r∞) =
1

1− (1− c)0.659462670...
. (2.8)

This approximation, called the Rosenstock approximation [157], is known to give
good estimates for c < 0.05. In our case, c would denote the probability for each
DC to activate the crawling T cell; given that perhaps 150 DCs are contacted per
hour [11], and that the cell searches some hours before it is activated, c < 0.05 is a
reasonable assumption in our case.

Let t∞ = 1− r∞. Using a binomial series expansion, we obtain the following
for the step-wise success probability of the random walk:

1
E[H]

≈ 1− (1− c)t∞ = 1−
t∞

∑
k=0

(
T∞
k

)
(−c)k = c t∞−O(c2) . (2.9)

Comparing this random walk search to a systematic search of the lattice vertex by
vertex, which is equivalent to drawing with replacement, we see that both meth-
ods essentially give rise to a geometric hitting time distribution. For small c, the
systematic search outperforms the random walk in terms of expected hitting time
by a factor of at most 1.5. This efficiency is remarkable because the random walk
does not need any memory nor sense of orientation and is thus simple to perform.
On the other hand, it is hard to imagine how a cell could screen a tissue region
systematically. However, at least three spatial dimensions are needed to make the
random walk search competitive with the systematic search – the random walk
search strategy would be far less effective in a one- or two-dimensional environ-
ment: A random walk in less than three dimensions is recurrent (it returns to the
origin with probability 1), and thus the fraction of newly discovered sites converges
to 0 with time.

Even though our argument above is based on random walk on a lattice, the same
reasoning would hold for random walks on more complex topologies – averaged
over a large amount of steps, any random walk is eventually subject to the central
limit theorem and can then be approximated by a simpler random walk. Indeed, a
quite detailed, spatially explicit model of the T cell random walk by Beltman et al.
[11] has also predicted that 2/3 of the contacts between T cells and DCs should be
unique.

2.3 Minimizing the Hitting Time

In this section, we investigate some fundamental properties of our model. We start
out by stating the elementary moments of the hitting time distribution.
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Proposition 2.1. Let H denote the first hitting time of a search process according
to Section 2.2 with parameters R,T,α, and ρ . Then H has expectation

E[H] =
1−α

α
− 1−ζ

ζ
R+

(
1−ξ

ξ

)
(R+T )+1 (2.10)

and variance

Var[H] =
1−α

α2 −
1−ζ

ζ 2 R2 +
(

1−ξ

ξ 2

)
(R+T )2 (2.11)

where ζ = 1− (1−α)R and ξ = ρζ .

Proof. Let us call a sequence of searching a bag (which takes time R) and transiting
to the next bag (which takes time T ) a phase. Let U be a random variable denoting
the number of unsuccessful phases before the searcher finds a target in a good bag
in phase U + 1, and let S be the number of samples drawn in phase U + 1 before
the target is found. Then the hitting time is given by

H = (T +R) U +S +1 . (2.12)

Since U and S are stochastically independent, due to the linearity of expectation
and variance we get

E[H] = (R+T ) E[U ]+E[S]+1 and (2.13)

Var[H] = (R+T )2 Var[U ]+Var[S] . (2.14)

U is geometrically distributed with parameter ξ , hence

E[U ] =
1−ξ

ξ
and (2.15)

Var[U ] =
1−ξ

ξ 2 . (2.16)

S on the other hand has a geometric distribution that is “truncated” to the finite
support {0, . . . ,R−1}. With some algebra, it can be verified that

E[S] =
1
ζ

R−1

∑
k=0

k (1−α)k
α =

1−α

α
− 1−ζ

ζ
R , (2.17)

Var[S] =

(
1
ζ

R−1

∑
k=0

k2 (1−α)k
α

)
−E[S]2 =

1−α

α2 −
1−ζ

ζ 2 R2 . (2.18)

Putting S and U together, we obtain the result.

The above equations for expectation and variance are reminiscent of the fact
that our search process is a combination of two sampling processes with replace-
ment – the global search for a good bag, and the local search for a target in a good
bag.
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2.3.1 Asymptotics of the Expected Hitting Time

To understand the dependencies of the expected hitting time, we first analyze its
asymptotics for large and small R. For R≥M α−1 with M� 1, the term (1−α)R≤
e−M becomes very small, and thus ζ is close to 1. This results in the following
asymptotics.

Proposition 2.2. Let H,R,T,ρ,α be defined as above, and fix a large constant
M� 1 such that R≥M/α . Then

E[H] ≈ 1−α

α
+

1−ρ

ρ
(R+T ) ∈ Θ(R) . (2.19)

Hence, spending significantly more time searching a bag than the expected
hitting time α−1 for a good bag increases the overall hitting time linearly. On the
other hand, if R becomes too small, we get the following.

Proposition 2.3. Let H,R,T,ρ,α be defined as above, and fix some small nonzero
ε � 1 such that R≤ ε α−1. Then

E[H] ≈ 1
ρα

+
T

ρα
R−1−T ∈ Θ(1/R) . (2.20)

Proof. Since R ≤ ε α−1, one can use the approximation (1− α)R = 1− Rα +
O((Rα)2). This implies ζ ≈ α R and ξ = ρ α R, which upon insertion into Equa-
tion 2.10 gives the result.

The Θ(1/R) asymptotics for small R (i.e., halving an already small R almost
doubles the number of phases until a global hit occurs) can be intuitively explained
by noting that most of the time is spent in transit between bags, since the success
probability within a bag (≈ R ρ−1 α−1) is very low (Figure 2.3).

2.3.2 The Optimal Residence Time

Let T,ρ and α be given. What is the optimal choice for R, i.e., the one that mini-
mizes E[H]? Let us denote this value by Ropt. It is given by the following proposi-
tion.

Proposition 2.4. Let H,R,T,ρ,α be defined as above, Consider T,ρ,α as con-
stants, and E[H] as a function of R. Then E[H] is minimized by

Ropt = W−1

(
−(1−α)

T
1−ρ

e

)
1

ln(1−α)
− T

1−ρ
+

1
ln(1−α)

(2.21)

where W−1 is the non-principal branch of the Lambert W function [31].
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Figure 2.3: The expected hitting time E[H] as per Equation 2.10 and its asymp-
totics as per Propositions 2.2 and 2.3 as functions of the residence time R for the
parameters ρ = 1/3,T = 8h,α = 1/8h. Note the characteristic basin-like shape.

Proof. We have to solve d
dR E[H] = 0, which is equivalent to

0 =
d

dR

[
1−ζ

ζ
R+

1−ξ

ξ
R+

1
ξ

T
]

=
d

dR

[(
1
ρ
−1
)

R+T/(1−ρ)
1− (1−α)R

]
. (2.22)

Now, differentiating we get

0 = 1− (1−α)R +(R+T/(1−ρ)) (1−α)R ln(1−α) (2.23)

⇔
(

R+
T

1−ρ
− 1

ln(1−α)

)
(1−α)R =− 1

ln(1−α)
. (2.24)

This is a transcendental equation and thus cannot be solved for R using only
standard algebra. A tool for solving equations of this type, which arise in many
applications [31], is the Lambert W function defined by

x ex = y ⇔ x = W (y) . (2.25)

Using this function, we can solve equations of the type (x+b) ax = c as follows:

(x+b)ax = c

⇔ (x+b)ax+b = abc

⇔ (x+b) lnae(x+b) lna = ab c lna

⇔ x̂ ex̂ = ŷ

⇔ x̂ = W (ŷ)

⇔ x =
W (ŷ)
lna

−b . (2.26)

Inserting

a = (1−α) ; b =
T

1−ρ
− 1

ln(1−α)
; c =− 1

ln(1−α)
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in our case gives

ŷ = ab c lna =−(1−α)
T

1−ρ /e .

Because −1/e < ŷ < 0, the two branches W0 and W−1 of the Lambert W function
both solve the equation. In our case, the non-principal branch W−1 is the mean-
ingful one because it maps to the interval (−∞,−1), while W0 maps to [−1,0].
Inserting ŷ,a,b, and c into Equation 2.26 yields the claimed expression.

2.3.3 Asymptotics of the Optimal Residence Time

The exact solution given by Proposition 2.4 for the optimal residence time is rather
complex and yields little insight into the dependencies between Ropt and the pa-
rameters T,ρ, and α . Thus, we now turn our attention to two important regions
in the parameter space for which more illustrative asymptotic forms of Ropt can be
derived. For simplicity, we assume that α is moderately small (e.g., like our esti-
mation α = 1/8 for T cell activation in lymph nodes); a similar analysis is possible
without this assumption, but the asymptotic formulae become more complicated.

We will show the existence of two quite different parameter regimes. The
switching point between them is given by the following trade-off.

Definition 2.5. Let H,T,ρ,α be defined as above, and let α be moderately small
such that ln(1−α)≈−α . For

1
α
� T

1−ρ
, (2.27)

we call H transit dominated. Otherwise, if

1
α
� T

1−ρ
, (2.28)

then we call H locally dominated.

Note that the parameter ρ plays hardly any role in defining these two parameter
regimes as in the interesting cases, ρ is typically rather small (otherwise the search
problem would not be very different from a simple local search in one bag). Thus,
surprisingly, the transit time T is more important than the difficulty of the global
search problem, which can be measured by 1/ρ rather than 1/(1−ρ).

The upcoming two propositions yield interesting differences between transit
dominated and locally dominated settings.

Proposition 2.6. Let H be transit dominated by T,ρ,α . Then

Ropt ≈
lnT − ln(1−ρ)+ lnα

α
. (2.29)
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Proof. We use the following power series expansion for W−1(y), which converges
quickly for 1/e� y < 0 [31]:

W−1(y) = λ1−λ2 +
∞

∑
k=0

∞

∑
m=1

ckm
λ m

2

λ
m+k
1

(2.30)

= λ1−λ2 +
t−1

∑
k=0

t−k

∑
m=1

ckm
λ m

2

λ
m+k
1

+O

((
λ2

λ1

)t+1
)

, (2.31)

where λ1 := ln(−y), and λ2 := ln(−λ1) = ln(− ln(−y)). The ckm are constants that
are not important for our analysis, since we asymptotically approximate W−1 for
y→ 0 by truncating the sum terms of the power series (t = 0). For our ŷ defined in
the proof of Proposition 2.4 this results in λ1 = T

1−ρ
ln(1−α)−1 and

W−1

(
−(1−α)

T
1−ρ

e

)
= λ1−λ2 +O

(
λ2

λ1

)
(2.32)

=
T ln(1−α)

1−ρ
−1− ln

(
1− T ln(1−α)

1−ρ

)
+O

(
λ2

λ1

)
. (2.33)

Inserting this asymptotic expansion into the closed form for Ropt given by Proposi-
tion 2.4, some terms cancel out and we arrive at

Ropt = − ln
(

1− T ln(1−α)
1−ρ

)
1

ln(1−α)
(2.34)

+ O
(

λ2

λ1 ln(1−α)

)
. (2.35)

In the region where T
1−ρ
�− ln(1−α)≈ α , the argument 1− T ln(1−α)

1−ρ
of the first

logarithm is much larger than 1 and can be replaced by T
1−ρ

(− ln(1−α)). This
gives the approximation

Ropt ≈
lnT − ln(1−ρ)+ ln(− ln(1−α))

− ln(1−α)
. (2.36)

which is valid for any α in a transit dominated setting. Substituting− ln(1−α) for
α yields the claimed expression.

To understand why this approximation eventually breaks down for α → 0, we
look more closely at the O-term of Equation (2.35) for Ropt:

Ropt =− ln
(

1− T ln(1−α)
1−ρ

)
1

ln(1−α)
+O

 ln
(

1− T ln(1−α)
1−ρ

)
T ln(1−α)2

1−ρ
− ln(1−α)

 (2.37)

Applying De l’Hôpital’s Rule it can be shown that Ropt without the O-term ap-
proaches a constant value for α → 0, whereas the O-term starts to dominate. This
limit takes us to the locally dominated regime, which we examine next.
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Proposition 2.7. Let H be locally dominated by T,ρ,α . Then we have

Ropt ≈

√
2T

(1−ρ)α
. (2.38)

Proof. In the transit dominated regime, the argument of W−1 in the closed form of
Ropt (Proposition 2.4) is close to −1/e, the branch point of the W function. Near
this branch point, the power series used in the proof of the previous result is no
longer useful (Figure 2.4A). From the results of Corless et al. [31] one can derive
an alternative power series expansion for W−1 near the branch point:

W−1(y) =
∞

∑
t=0

(ct)t =−1+σ − 1
3

σ
2 +

11
72

σ
3 + . . . (2.39)

In this expression, σ = −
√

2ey+2, and thus |σ | ≤ 1. Again the ct are constants
that are irrelevant for our purpose, since we truncate the series after t = 1 to obtain
an asymptotic approximation. Inserting again our ŷ from the proof of Proposi-
tion 2.4 yields

W−1

(
−(1−α)

T
1−ρ

e

)
=−1−

√
2−2(1−α)

T
1−ρ +O

(
1− (1−α)

T
1−ρ

)
, (2.40)

from which we get the following expression for Ropt:

Ropt =
−
√

2
ln(1−α)

√
1− (1−α)

T
1−ρ +O

((
1− (1−α)

T
1−ρ

)2
)

. (2.41)

By the definition of locally dominated parameters, we have T α/(1−ρ)� 1. Thus
we can substitute (1− α)T/(1−ρ) by 1− T α/(1− ρ). This yields the claimed
expression.

2.4 Searching in Parallel

So far we have only investigated the behavior of single searchers. However, the
optimality results of course carry over to populations of independent (non-com-
municating) searchers, because optimizing each searcher in such a population will
optimize the entire population. In this section, we will briefly investigate how much
the search is accelerated by m independent parallel searchers.

Let Hm denote the hitting time of such a parallel search. For values of m that
are significantly smaller than the expected hitting time E[H] of a single searcher,
the expectation of the m-parallel search can be approximated by

E[Hm]≈ E[H]
m

, (2.42)



2.4. SEARCHING IN PARALLEL 19

A B

-6

-4

-2

-1/e 0

W
-1

(y
)

y

W-1(y)
series for y near 0
series for y near 1/e 100

101

102

103

104

10-5 10-4 10-3 10-2 10-1

R o
pt

(c
, ν

, T
)

α

locally dominated appr.
transit dominated appr.

exact Ropt

Figure 2.4: (A) Illustration of the two different approximations (Equations 2.30 and
2.39) used for the Lambert W function in the proofs of Propositions 2.6 and 2.7.
(B) Transition of the optimal residence time between the two regions described
by Proposition 2.7 (densely dashed) and Proposition 2.6 (dashed) for T = 1000,
ρ = 0.1, and varying α . The square marks the point where T

1−ρ
= 1

α
.

since in this case the hitting probability of a single step grows approximately by
a factor m. This approximation becomes invalid for large m, because the bags
become saturated with searchers and thus additional searchers no longer yield sub-
stantial speedup. However, in the saturation limit it is possible to use the following
approximation instead:

E[Hm] =
1

1− (1−Rρ α/(R+T ))m . (2.43)

This approximation is obtained by noting that for a randomly chosen time step,
every searcher has an overall chance of Rρ/(R + T ) to be in a good bag, and
within a good bag the chance of finding a target is α . Assuming that the fraction of
searchers in good bags at every timestep is indeed equal to γ = Rρ/(R+T ) (rather
than a random variable with expectation γ), we can approximate the parallel search
by random sampling with replacement with a success probability of 1−(1−γα)m.
Note that for m = 1, the above equation is (up to the constant T ) equal to the
equation in Proposition 2.3 that describes the asymptotics of E[H] for small R.

Some simulation results on the speedup efficiency are displayed in Figure 2.5.
Notably, while for optimally tuned searchers the speedup is indeed well described
by the above equations that predict a linear speedup with saturation, for non-
optimal residence times it is possible to obtain a superlinear speedup by increasing
the number of searchers (e.g. in Figure 2.5, around m = 100 for R = 1 and around
m = 20 for R = 100).
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Figure 2.5: Speedup of the expected hitting time by m independent parallel
searchers. E[H] is plotted as a function of m for T = 10,ρ = 0.1, and α = 0.12591,
which gives Ropt = 10. For the optimally tuned population, the approximate ex-
pected hitting times predicted by Equations 2.42 and 2.43 are displayed, where
Equation 2.42 describes a power law with slope -1. Per data point we performed
1000 simulations, so that all standard errors of the mean were less than 2%.

2.5 Discussion

The asymptotic results from the previous Section 2.3 yield some important argu-
ments that our model is indeed suitable for use within our intended biological con-
text. First, Propositions 2.4, 2.7, and 2.6 jointly show that the optimal residence
time is hardly dependent on ρ as long as ρ is not close to 1. This is critical be-
cause in reality, we cannot assume that ρ is constant – infection is accompanied by
inflammation, which accelerates the recruitment of T cells to the infected area.

Second, in the next chapter we will investigate the hypothesis that evolution has
indeed optimized the lymph node residence time of real T cells. For this to be a rea-
sonable question to ask, it is crucial for the optimum not to change too drastically
when the search space parameters are slightly perturbed; during the lifetime of an
animal, it will encounter different infections that are not all equally severe, leading
to variations in α , and the parameters T and ρ will change as the animal grows,
shrinks, perhaps loses a lymph node or two due to severe illnesses, et cetera. Thus,
assume that we set our R to within a factor κ of Ropt, i.e., Ropt/κ < R < κ ·Ropt.
Then it follows from the results in Sections 2.3 and 2.3.1 that E[H] is also within
a factor κ of its optimal value. Combining this with the results from the previous
section, we may illustrate the effect of the perturbance by considering the two char-
acteristic parameter regimes: In the locally dominated regime (Proposition 2.7), we
have square root asymptotics for 1/α,1−ρ, and R, implying that E[H] would be
within factor

√
κ of its optimal value if one of these parameters is perturbed by

factor κ . Hence, the perturbation has sublinear impact. In the transit dominated
regime (Proposition 2.6), the effect of perturbing T and 1−ρ would even be merely
logarithmic; however, the effect of perturbing c in this regime would be linear. In
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either case, perturbing ρ instead of 1−ρ by a small factor κ has virtually no effect
if ρ is already small.

In summary, the optimum appears to be robust against mild parameter pertur-
bations. Taken together with our finding that even large proportional variations of
ρ do not matter as long as ρ remains well below 1, our analysis provided no argu-
ment that disqualifies our model from being applied to T cell immune surveillance.
One assumption that we will need to take care of is that T is a constant; in reality,
the time spent in circulation between different lymph node is of course a random
variable with considerable variance. Even though intuition seems to tell us that
this should not invalidate our results as long as the probability distribution is not
somehow degenerate or very skewed, future work is needed to put this intuition on
a firmer basis.

2.6 Epilogue: Connection to Stochastic Local Search

Optimization questions of the type studied in this chapter arise in many fields,
including the following:

• Security: Some distributed intrusion detection systems (e.g. [68, 66]) oper-
ate in a similar fashion like T cells: They consist of large numbers of agents,
each specialized to detecting a certain intrusion type, which continuously
migrate between different hosts in the network. This leads to exactly the
question considered here: Which strategy should the agents use to decide
when to migrate from the current host to another one?

• Economy: Some control procedures, e.g. quality control in companies or
control of goods transported across borders, rely on taking random sam-
ples because continuous supervision of the entire system is impossible. This
again leads to a trade-off between the need to investigate a single unit (com-
pany branch, truck at the border) as thoroughly as possible and the need of
controlling a reasonably large fraction of all units.

• Population Ecology: A foraging animal that searches for food in a patchy
environment (think picking apples from trees, or hunting in forests) needs
to ensure that it takes up sufficient energy over time. Because the animal
depletes its prey in the current patch (tree, forest), it will need to look for
a fresh food patch from time to time, and start doing so early enough that
sufficient energy is still left to find the next patch. When is the optimal time
to give up the current patch, and migrate to a new one?

• Algorithms: A Las Vegas algorithm is an algorithm with deterministic output
whose runtime is a random variable. Such algorithms can be accelerated by
restarting when an unfavorable region of the runtime distribution is reached;
a well-known example is Schöning’s probabilistic SAT solver [75]. When
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restarts are themselves expensive, one needs to balance between the time
needed to generate a new candidate solution and the expected time gain.

We wish to discuss the last two examples in some more detail. The subfield of
population ecology that is concerned with optimal behavior of foraging animals is
called optimal foraging theory (OFT) [135]. A key difference between OFT and the
model considered in this chapter, however, is the definition of the environment. In
OFT, different patches are defined by means of different energy uptake functions,
and the goal is to maximizing the cumulative energy uptake under the assumption
that the animal knows the uptake function for each patch it visits. In our case, the
“patches” are defined by two different probability distributions, between which the
migrating cell can not distinguish, and the goal is to minimize the expectation of H.
This means that the core theorem of OFT, the marginal value theorem [29], cannot
be applied to our problem.

In the field of randomized search heuristics, a theorem related to the work pre-
sented in this chapter is that of Luby et al. [100] on optimal restart of Las Vegas
algorithms. Luby et al. show that an optimal strategy for speeding up probabilis-
tic algorithms with finite expected runtime and a known runtime distribution is to
restart the algorithm in fixed time intervals. This nice theorem is however not appli-
cable to our case: Within bad bags the expected “runtime” (time until a successful
coin flip) is infinite, so our problem cannot be stated as a Las Vegas algorithm.
Moreover, Luby et al. assume that there is no “cost” associated with restarting the
algorithm, even though in practice this may be substantially larger than the cost of
a single search step [75]. For example, this is the case for suitably encoded ver-
sions of the traveling salesman problem (TSP): generating a starting point (a tour
with a reasonably low weight) takes substantially longer than a local search step in
the problem space (e.g. by locally modifying some edges). It remains to be seen
whether taking the restart time into account explicitly could lead to substantially
faster stochastic algorithms for such problems. In the terminology of the present
chapter, the “bags” for such a problem would be different starting locations in the
problem search space3, and we would need to generalize the local search process
from drawing with replacement to an arbitrary runtime distribution Pi(t), which
depends on the starting location i in the problem space.

Thus, an interesting question for future research would be to address how exist-
ing results on optimal stochastic search processes in computer science and nature
could be integrated into a common framework, and whether some results could be
transferred across these fields to provide new tools and insights.

3Note that our definition does not require that the bags be disjoint regions in the problem space.



Chapter 3

A Two-Scale Model of T Cell
Circulation, Recruitment, and
Activation

Summary. Lymphocytes survey the body for antigen by perpetually migrating
within and between different secondary lymphoid organs (SLOs). Upon infection,
the rare antigen specific T cells need to be recruited from the recirculating pool
into the immune response. The major routes of lymphocyte circulation between
SLOs have been mapped out since the 1960s, and are now well established. In the
past decade, technological advances like two-photon microscopy have provided
important new insight on lymphocyte migration within SLOs. Because both scales
of lymphocyte migration play important roles for timely detection and control of
infections, we are now facing the challenge of combining the established macro-
scopic information and the new microscopic data into a coherent two-scale model.
Here, we propose a simple model comprising T cell circulation, recruitment, and
activation. Our model provides quantitative and functional links between experi-
mental data obtained by diverse techniques like lymph cannulation, histology, two-
photon microscopy, and cellular barcoding. We show that these data are in good
mutual agreement, and they indicate that random recirculation of T cells combined
with draining lymph node (LN) enlargement is sufficient to explain the remarkable
efficiency of T cell recruitment. The model predicts that the LN residence time is
subject to a trade-off between local and global reliability of antigen detection, and
mathematical analysis of this trade-off reveals that physiologic LN residence times
coincide with the optimal range for timely detection of localized infections.

3.1 Introduction

Initiation of an immune response requires that rare antigen-specific lymphocytes
come together in SLOs. When an organism is challenged by a previously unseen

23
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pathogen, the number of immune cells in the host that are capable of detecting that
pathogen is extremely low – e.g., for CD8 T cells in mice, roughly 100-200 in a
pool of 2-4 · 107 [15]. Recruiting these rare specific cells, which are scattered all
across LNs, the spleen, and other places [159, 32], is often compared to finding a
needle in a haystack [129]. And yet, it was recently shown [153, 144] that T cell
recruitment is remarkably efficient: for systemic infections, most specific cells get
recruited in the first 72 hours post infection. Although it is not yet fully understood
how this comes about, it is clear that two different time scales play a major role.

The macroscopic scale of lymphocyte circulation and migration between or-
gans and tissues was intensively studied from the late 1960s to the early 1990s.
Using techniques like lymph drainage, cell counting in organ suspensions or his-
tologic analysis of microtome slices, the routes of lymphocyte circulation were
mapped out in detail [158, 162]. For many questions, e.g. the distribution of
lymphocytes in the body [58], the studies of that era still represent the most de-
tailed and thorough sources. However, one limiting factor was that it was seldom
possible to observe lymphocyte migration within SLOs (with a few notable excep-
tions [155]). This changed in the early 2000s with the advent of two-photon mi-
croscopy, which allowed imaging migrating lymphocytes directly in intact, living
organs [23]. Two-photon imaging has since generated valuable new information
about the microscopic kinetics of lymphocyte migration, antigen presentation, and
lymphocyte activation in tissue. These new data support a stochastic model of anti-
gen detection by migration along random paths [156], which seems to contrast the
prevailing view that chemokines play an important role in guiding lymphocytes
within LNs [102].

Lymphocyte migration research on both of these scales has been accompanied
by efforts to model and understand the data mathematically. The main goals of
macroscopic lymphocyte migration models [134, 132] were to explain the charac-
teristic lymphocyte distribution and recirculation patterns, and especially to rec-
oncile partially contradictory findings from cannulation experiments [133]. The
interest in mathematical and computational models of microscopic lymphocyte mi-
gration [52] was even larger, and several experimental groups have directly collab-
orated with modelers [11, 48, 123]. One of the many questions studied was how
the motility mode of lymphocyte migration could be inferred from two-photon
data [10]. While some models have attained a considerable degree of complex-
ity [41, 123, 98], we are not aware of any model so far that spans both scales of
lymphocyte migration.

In this work, we propose a simple model that comprises the following three
stages of T cell migration: Circulation between blood, LNs, and the spleen; re-
cruitment into a draining SLO post infection; and activation within the draining
organ. Our model brings together both old and new lymphocyte migration data on
different spatial and temporal scales. The main questions we investigate are: (i)
How does the immune system accomplish T cell recruitment with such a remark-
able efficacy? (ii) Which quantitative and functional connections can we establish
between the macroscopic and microscopic kinetics of T cell migration?
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3.2 Results

3.2.1 Simulating T Cell Circulation

Our model distinguishes between three compartments: the blood, the LNs, and
the spleen. Moreover, we will later distinguish between draining and non-draining
LNs. The T cell circulation pathway is illustrated in Figure 3.1: Cells start in the
blood, from where they are recruited into the spleen with rate ρS and to LNs with
rate ρLN. After traveling through the respective organ, cells return to the blood,
and a new round of circulation begins. The compartments are modeled as one-
dimensional rods. A cell entering a compartment from the blood is released in the
middle of this rod, and starts to migrate randomly until it reaches either end. Math-
ematically, this migration process can be formalized using a 1D diffusion equation,
and by solving this differential equation for compartment transit analytically (Sec-
tion 3.4.1), one can calculate diffusion coefficients that reproduce desired average
residence times. Thus, we set the lengths of the rods to 1, and introduced two pa-
rameters RS and RLN giving the average residence times in the spleen and in LNs,
respectively. The random walk diffusion coefficient within the compartments was
then adjusted to produce the desired average transit time RS or RLN (Section 3.4.1).
The differential equations that define the model can be converted to a simple rule-
based stochastic description of the cell trafficking process (Section 3.4.2). Simu-
lating the model stochastically instead of solving the differential equations allows
investigating the fates of individual cells, e.g., determining the range of times that
cells need to travel from one LN to another one.

This first component of our model is an adaptation of the model that Stekel et
al. [134] used to investigate lymphocyte circulation. The most important differ-
ences are that their model was deterministic rather than stochastic, and that they
modeled the compartment transit as directed rather than random migration. Pre-
sumably, they did so because at the time it was assumed that lymphocytes migrate
through SLOs in a directed fashion even in the absence of antigen. However, no
evidence has been found for such directed migration. Instead, it appears that lym-
phocytes migrate by default along random paths [106, 18, 156]. Despite this dif-
ferences, it turned out that the parameters used by Stekel et al., namely Rs = 6h,
R` = 13.5h, ρS = 1.0/h, and ρLN = 1.5/h [134], give fairly accurate predictions of
the cell distribution at steady state, blood transit time, and blood-to-lymph transit
time (Table 3.1). Therefore, we use these same values as defaults in the rest of this
chapter.

3.2.2 Kinetics of T Cell Recruitment After Infection

Using the “cellular barcoding” technique [125], van Heijst et al. [153] determined
the percentage of the specific T cells that get recruited into the immune response for
various systemic and local infections. For an intravenously administered listeria
monocytogenes infection, they found that recruitment was >95% at day 7 post
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blood

ρS = 1.0/h

ρLN = 1.5/h

spleen
RS = 6h

lymph nodes
RLN = 13.5h non-draining

draining

Figure 3.1: Basic model of T cell circulation. Our simple model of T cell transit
and recirculation considers three compartments: blood, lymph nodes (LNs), and
the spleen; for simulating local infections, we also distinguish between draining
and non-draining LNs. The diagram illustrates the flux of T cells between the
compartments: T cells start in the blood, from where they are recruited into LNs
with rate ρLN and into the spleen with rate ρs; these rate parameters also determine
the blood residence time, which is equal to 1/(ρLN +ρS). With our default param-
eters, they remain in the respective organ on average for RLN = 13.5h (LNs), or
RS = 6h (spleen), before recirculating to the blood. Compartment transit is mod-
eled as a random walk starting in the middle of the compartment, and the cell is
moved back into the blood when it reaches either end. The random walk diffusion
coefficient is set according to the desired mean residence time (Section 3.4.1).
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parameter value references

RLN LN residence time 13.5h [51]
RS spleen residence time 6h [50, 49, 51, 34, 115]
ρLN recruitment to LN 1.5/h
ρS recruitment to spleen 1.0/h

ρdLN recruitment to dLN 0.05–0.8/h [130, 92]
α activation in dLN 1/8h [105]

prediction value references

blood residence time 25 min [161, 14]
T cell ratio blood:spleen:LNs 3:23:75 [150, 120, 51, 159, 58]
blood-to-lymph transit time 21 h [161, 158]

Table 3.1: Model parameters and basic quantitative predictions. The T cell cir-
culation component of our model (Figure 3.1) has the four parameters RLN,RS,ρLN,
and ρS, for which we used by default the estimates obtained by Stekel et al. [134]
for a more complex circulation model with seven parameters. References that sup-
port these values are given where available. Although no direct estimates are avail-
able for recruitment to LN and spleen, the default values can accurately predict
the T cell distribution at steady state, the blood residence time, and the blood-
to-lymph transit time. For modeling localized infections with a non-draining and
a draining LN compartment, we used recruitment rates ρndLN and ρdLN, where
ρdLN +ρndLN = ρLN in the absence of infection. The increase of ρdLN post infection
was estimated based data from Iwasaki’s group [130, 92]. Finally, the parameter α

denotes the T cell activation rate in draining LNs, and the quoted value is based on
an estimate by Mempel et al. [105] of T cell activation times.
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infection (p.i.). Even when the infection was given together with an antibiotic
that limits T cell priming to the first three days p.i., the percentage of recruited
T cells was still >75%. To determine whether pure random T cell circulation is
consistent with these results, we assumed that the immune response to this blood-
borne bacterial infection was largely formed in the spleen. In the steady state
distribution of our model, the spleen harbors on average 23% of the T cells. With
default parameters, the model predicts that 90% of the circulating T cells have
visited the spleen by day 3 p.i. (Figure 3.2A). Hence, randomly circulating T cells
arrive at the spleen quickly enough to support activating most of the clone by day
3, provided that activation itself is efficient and timely.

For a local infection, the picture looks considerably different: Since the drain-
ing LNs (dLNs) form only a small fraction of all LNs, pure random circulation
would lead to very long cellular arrival times. Rodents typically have around 35
LNs [84]. For example, consider a local infection with 3 dLNs. One would expect
a fraction of only 1.5/2.5× 3/35 ≈ 4% of the cells leaving the blood to enter the
dLNs. Consequently, merely 1/3 of all T cells would have arrived by day 7 p.i.
(Figure 3.2a). However, van Heijst et al. [153] demonstrated that even for an in-
tranasally administered influenza infection, 2/3 of the specific T cells get recruited
into the immune response. To explain these data we must take LN enlargement
into account. Iwasaki’s group [130, 92] has obtained excellent data on LN enlarge-
ment: In an HSV-2 infection model, or even by merely injecting CpG, they found
that dLNs increased up to 10-fold by day 4-5 p.i., with the total number of T cells
in the dLNs by that time surpassing that of the spleen [130]. We incorporated this
information into our model by splitting the lymphoid compartment into a draining
and a non-draining part with corresponding recruitment rates ρdLN and ρndLN. In
the absence of infection, we set ρdLN + ρndLN = 1.5/h like in our previous model,
and LN enlargement was modeled by increasing ρdLN as a function of time. Soder-
berg et al. [130] showed that LN enlargement is roughly linear between day 1 and
day 4-5 p.i. Thus, we held ρdLN constant before day 1 and after day 4.5, and in-
creased it linearly in between. Increasing ρdLN from 0.05/h to 0.8/h in this fashion
(with ρndLN kept at 1.5/h−0.05/h= 1.45/h), we obtained a good fit to the HSV-2
LN enlargement kinetics by Soderberg et al. [130] (Figure 3.2B). With these phys-
iologic LN enlargement kinetics, our model predicts that 66% of all T cells have
visited the dLNs by day 4-5 p.i. (Figure 3.2A), which is consistent with the find-
ings of van Heijst et al. [153] for the influenza infection. Because the magnitude
of LN enlargement is presumably highly variable, we performed additional simu-
lations with varying increases of ρdLN. These simulations predicted that half of the
circulating cells are recruited before day 5 as long as ρdLN increases to 0.2, i.e.,
20% of the recruitment to the spleen, by day 4.5 (Figure 3.2C).

More recently, Stock et al. [144] determined the kinetics of T cell recruitment
in a localized HSV-1 infection indirectly by measuring the depletion of antigen
specific T cells from non-draining LNs. To determine how well these data are
in agreement with our model, we performed simulations where we assumed that
specific T cells are retained in dLNs, and thus effectively removed from the circu-
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Figure 3.2: T cell arrival kinetics. All simulations use standard parameters (Ta-
ble 3.1, text) unless otherwise stated. (A) T cell arrival at the spleen (red) and
draining LNs (5% of the LNs); green: without LN enlargement; blue: with en-
largement as described in the text and shown in (B). Dots indicate the percentage
of specific T cells that according to van Heijst et al. [153] get recruited into the
immune response. (B) Detailed kinetics of the cell distribution in our simulations
following a localized infection. LN enlargement was set to fit the data of Soder-
berg et al. [130], who counted the number of T cells in dLNs following intravaginal
HSV-2 infection (dots with error bars denoting standard error of the mean). Our
simulation results were converted into cell numbers assuming that a mouse harbors
roughly 108 T cells, a common estimate [15]. (C) Isoclines of the mean T cell ar-
rival time at dLNs as a function of the rate parameters for LN enlargement. The dot
indicates the default parameters used in (A), (B) and (D). (D) Depletion of specific
T cells from non-draining LNs according to Stock et al. [144] (dots and error bars)
compared to the prediction of our model (line). The depletion at day 7 p.i. is lower
than predicted because our model assumes that T cell priming goes on indefinitely
after infection.
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lation. These simulations predicted depletion kinetics that are in good agreement
with the data of Stock et al. until day 5 p.i. (Figure 3.2D), with the depletion at
day 7 p.i. being significantly lower in the data than in the model. This discrep-
ancy is probably because T cell priming (and thus trapping in the dLNs) stops at
some point after the infection. Judging from Figure 3.2D, this should occur after
4-5 days p.i., which is exactly what Stock et al. [144] estimated. Interestingly, the
percentage of T cells our model predicts to arrive in the dLNs by day 4 is close to
66%, which is also the percentage of specific T cells that van Heijst et al. [153]
found to be recruited into the localized influenza infection. Taken together, these
results show a good mutual agreement between our model, the barcoding data, the
LN enlargement kinetics, and the T cell depletion kinetics.

3.2.3 Modeling T Cell Activation in Lymph Nodes

To link the macroscopic kinetics investigated so far to microscopic T cell migration,
we next augmented our model with a simple representation of T cell activation in
LNs. Two-photon microscopy has provided invaluable information on this subject
[17], which lead to the current view that T cells scan dendritic cells (DCs) in the LN
paracortex in a mostly random fashion [156]. It was estimated that T cells screen up
to 150 DCs per hour in this manner [11], with 100 of these contacts being unique.
Indeed, mathematical results from random walk theory (Section 2.2.1) can be used
to show that the 3D random walk is a simple, but quite efficient search process:
Imagine a cell crawling through the LN in such a highly systematic fashion that no
DC is ever visited twice. This sophisticated cell would on average visit only 50%
more DCs per hour than a randomly moving one. Accordingly, a simple but quite
accurate way to model DC screening is to add a single additional parameter α ,
denoting the activation rate per hour (Table 3.1). One can envisage the augmented
model as follows: Within a dLN, the T cells flips a biased coin every hour, with α

being the probability of head coming up; if this happens, the T cell gets activated.
If the T cell fails to get activated by the time it reaches the exit of the LN, it egresses
and returns to the circulation just like in the basic model.

Recent two-photon results provide a basis for estimating α . In two elegant
studies, Mempel et al. [105] and Henrickson at al. [65] investigated the activation
kinetics of adoptively transferred T cells whose LN entry had been “synchronized”
by injecting an integrin blocking molecule shortly after transfer. Their findings
suggest a three-phase model of T cell activation: In phase one, the T cell makes
transient contacts to DCs which last a few minutes, but continues migrating. In
phase two, the cell establishes a long-lasting contact with a single DC that lasts
several hours. In phase three, the cell detaches from the DC and migrates away
rapidly, presumably in search for a LN exit site. We mapped this three-phase pro-
cess to our model by setting α to the inverse of the duration of phase one, which
based on the data by Mempel et al. [105], gives α = 1/8h. This defines T cell
activation as the initiation of a long-lasting contact, which prevents the T cell from
exiting the LN prematurely.



3.2. RESULTS 31

3.2.4 A Trade-Off Constrains Lymph Node Residence Times

By taking the stochastic nature of T cell activation into account, it becomes clear
that the LN residence time is subject to a trade-off with respect to the timely de-
tection of localized infections. If a T cell remains too long in a given LN, the risk
arises that an infection may occur somewhere else, where the cell would be needed
for defense. Conversely, if the cell egresses too quickly from its present LN, it
might fail to detect cognate antigen there. Thus the following question arises:
Which would be a good range of residence times that balance between these risks?

To investigate this question, we simplified our model1 by holding the compart-
ment residence times constant (Section 3.4.3). This allowed us to clearly determine
the efficiency of specific residence times, which establishes a basis for reasoning
about the efficiency of physiologic ranges of residence times. Simulations of the
simplified model indeed predict that overly long or short residence times lead to de-
lays in T cell activation upon infection. For example, a residence time RLN = 13.5h
leads to activation of 60% of the specific T cells around day 4 p.i., whereas for
RLN = 72h, merely 40% of the cells would be activated by day 7 p.i. (Figure 3.3A).
This relation can be characterized by considering the expected activation time E[A]
as a function of RLN (Figure 3.3B).

To gain a deeper understanding of the dependency between RLN and E[A], we
derived the theoretically optimal LN residence time Ropt (Section 3.4.3). Surpris-
ingly, this analysis revealed that Ropt is hardly dependent on the dLN recruitment
rate ρdLN, and our simulations confirm this theory (Figure 3.3C). This leads to an
interesting conclusion: Evolution can independently optimize LN enlargement and
LN residence time; i.e., evolving a mechanism that benefits LN enlargement should
hardly affect the efficiency of LN residence times. The hypothesis that evolution
has indeed optimized LN enlargement is supported by the fact that several inde-
pendent pathways for LN enlargement exist [92]; whether LN residence time has
also been subjected by evolution, however, is less clear.

To shed some light on this question, we calculated Ropt a function of the T cell
activation parameter α . We found that LN residence times of 7-20h, as used by
Stekel et al. [134] and estimated in different thoracic cannulation experiments
[51, 161], are consistent with T cell activation times of about 5-30h (Figure 3.3D).
Strikingly, the T cell activation times (i.e., the duration of phase one in the three-
phase activation model) estimated by Mempel et al. [105] and Castellino et al.
[25] indeed fall within this range. However, Henrickson et al. [65] observed long-
lasting contacts already 1.5h after injection of DCs pulsed with an engineered high-
affinity peptide. The corresponding optimal residence time would lie outside the
usually estimated range, which suggests that this experimental setup may not re-
flect typical antigen presentation in localized infections.

Finally, we investigated the effect of transient lymph node shutdown [24, 103,
20] on the residence time trade-off. Transient LN shutdown inhibits cell egress

1 This simplification leads to the model studied in the previous chapter.
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Figure 3.3: A trade-off constrains the lymph node residence time. (A) T cell
activation kinetics for a localized infection with default LN enlargement and de-
fault activation rate α = 1/8h in the dLN. The default residence time predicts a
reasonably fast activation (>50% by day 4 p.i.), while a pathologically low (1h)
residence time would lead to slower activation because T cells exit prematurely
from dLNs. On the other hand, a pathologically large residence time (72h) would
slow down T cell transfer from the ndLNs to the dLNs. (B) Trade-off curves for
LN residence time versus mean T cell activation time. (C) Via mathematical anal-
ysis (Section 3.4.3), we determined the theoretically optimal LN residence time,
which surprisingly revealed that the location of the optimum is hardly dependent
on dLN recruitment rate (Section 2.5). However, note that overly large residence
times are penalized more when the dLN recruitment rate is lower. (D) Physiologic
LN residence times of 7-20h, which is the range used by Stekel et al. [134] and
estimated in several cannulation experiments [51, 161], are consistent with near-
optimal detection of localized infections when T cell activation time lies between
roughly 6-30 hours. The dots indicate experimental estimates by Henrickson et
al. [65], Mempel et al. [105], and Castellino et al. [25] of the duration of T cell
activation. The estimate by Henrickson et al. [65], which lies outside the consis-
tent range, was obtained by injecting DCs pulsed with an engineered high-affinity
peptide.



3.3. DISCUSSION 33

from dLNs during the first 12-18h p.i. We suspected that shutdown might counter
the effect of overly short residence times, because the few specific T cells that are
present in the LN at the time of infection are retained, which could make T cell
residence times in the absence of infection less relevant. However, T cell residence
times go back to normal soon after the shutdown period to prevent that the dLNs
become clogged with non-specific cells. According to our predictions above, the
large majority of T cells should arrive after the shutdown period. Indeed it turned
out that the trade-off curve is hardly affected when transient LN shutdown is in-
corporated into the simulation, and the expected hitting time decreased by less
than 1%. Hence, adjusting recruitment efficiency does not appear to be the main
purpose of transient LN shutdown. Recent results of Kumamoto et al. [92] demon-
strate a pathway of LN enlargement that depends on specific T cells; this could
give the few antigen specific T cells that are present in the dLN of the time of in-
fection a very important role, and the role of shutdown might thus be to accelerate
LN enlargement.

In summary, we can state that physiologic LN residence times are near-optimal
for timely control of localized infections with respect to physiologic T cell acti-
vation times. Moreover, note that the optimum is not a very “sharp” one (Fig-
ure 3.3C), such that a large range of LN residence times is admissible. This is
consistent with the hypothesis that T cells transit lymphoid organs by random mi-
gration, which leads to a rather wide distribution of residence times.

3.3 Discussion

In this chapter, we have proposed a model of T cell circulation, recruitment and
activation reflecting new information that has become available on these subjects
during the past decade. In particular, we have verified that random compartment
transit, which appears to be the default mode of T cell migration in SLOs in the
absence of antigen [106, 156, 9, 147], is consistent with realistic steady-state T cell
distributions across organs. Moreover, we investigated recruitment kinetics for
localized infections and the role of LN enlargement in this process, and revealed a
quantitative connection between T cell activation kinetics and LN residence time.
Our findings emphasize that a two-scale approach is necessary to fully understand
how the immune system detects and clears antigen in a timely and efficient manner.

The following anatomical factors were found to have key roles in efficient anti-
gen detection. (1) The spleen provides a central hub for systemic infections, and
its huge cell turnover yields T cell arrival kinetics that by far outperform those of
LNs. Patients without a spleen are facing an increased risk of bacterial infections,
one important reason being that the spleen harbors a unique B cell population that
produces pentameric IgM antibodies, which are important to clear encapsulated
bacteria like Streptococcus pneumoniae [39]. Our results indicate that the slower
T cell recruitment after spleen removal might be another, currently unappreciated
factor contributing to the partially impaired immunity in splenectomized patients.
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(2) LN enlargement is crucial for clearing localized infections. Without LN en-
largement, comprehensive T cell recruitment to the draining area would be a matter
of weeks and not days. Accordingly, recent data show that LN enlargement is me-
diated by several independent, both innate and antigen-specific pathways [130, 92].
(3) The three-dimensional LN microenvironment supports a simple and yet highly
efficient mechanism for T cell antigen screening. Mathematical considerations
(Section 2.2.1) show that a 2D environment would be far less effective,

Our model may help resolve some contradictions between experimental data.
First, the time required for T cells to establish long-lasting contacts to DCs varies
greatly between different experimental systems [17]. Our results show that some
of these results, which predict activation times of <2h, are not in agreement with
the assumption that T cell residence time in LNs is tuned for timely detection of
localized infections. Thus, these data may be less likely to reflect the average
physiologic situation. Second, it has been difficult to establish the kinetics of
T cell blood-to-lymph transit. While earlier experiments indicated a transit time
of roughly 24 hours and an LN residence time of 12-18 hours [51, 161], which is
consistent with T cell turnover rates measured in tissue [62], the data with the high-
est recovery rate so far of >90% [160] suggest a much larger mean blood-to-lymph
transit time of about 30 hours. Our predictions indicate that such a large residence
time would yield suboptimal T cell activation. One explanation for this discrep-
ancy is the hypothesis of Stekel et al. [134] that T cell recirculation kinetics are
density-dependent; this would cause the blood-to-lymph transit to slow down over
the course of a drainage experiment. Stekel’s hypothesis appears reasonable be-
cause drainage of T cells and lymph fluid presumably deflates the LN architecture
and slows down the flow of the remaining lymph. This effect should be strongest
in the most prolonged drainage experiments with the highest recovery rates.

Our mathematical analysis of the optimal residence time bears some similarity
to the subject of “Optimal Foraging Theory” [135], in which optimal migration
patterns of foraging animals in patchy environments (think picking apples from
trees) are investigated. This theory has received ample and partly harsh [118] crit-
icism for some of its assumptions, most notably (1) that the foraging animal is
able to determine the concentration of food in its current environment, and make
informed decisions accordingly; (2) that the spatial distribution of food is stable on
a long enough timescale for evolution to optimize the animal’s decisions accord-
ingly. We would like to point out that in contrast to this well-established class of
models, the assumptions of ours are much weaker: (1) we do not assume that the
T cell “knows” whether its cognate antigen is present in a dLN upon entry (oth-
erwise there would be no need for DC screening in the first place); and (2) we do
not assume that single T cells can make informed decisions on when to leave their
current LN. Instead, we assume that the residence time is determined globally, e.g.
by choice of LN size. Since the parameters of our model are mostly determined by
anatomical factors, it appears reasonable to hypothesize that LN residence times
have been subjected by evolution.

We based most of our model parameters on rat data, because rats were the
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most widely used animal model in classic lymphocyte migration studies. Most
of the modern two-photon results, however, are obtained in the mouse model, so
one limitation of our current approach is the assumption that lymphocyte migra-
tion in tissue is similar in mice and in rats. However, many aspects of lymphocyte
migration and distribution are known to be similar in most animal models [158],
which suggests that our model should be easily adaptable to other species. Further-
more, most of the recirculation and migration patterns discussed here apply also for
B cells, even though the kinetics are different. In this sense, a similar model as the
present one could be derived for B cells once B cell recirculation kinetics become
better understood than they are at present.

3.4 Methods

3.4.1 Modeling Compartment Transit by Random Walk

We represent the three compartments of our model – spleen, LNs, and dLNs – as
one-dimensional intervals [0,L] = {x ∈R : 0≤ x≤ L}. We assume that T cells en-
tering these compartments are released at position x = L/2, and migrate via Brow-
nian motion with unitary diffusion coefficient D = 1. Although T cell motility is
better described as a persistent random walk on a timescale of minutes [106], the
Brownian motion approximation should be sufficiently accurate for residence times
on the order of hours [147]. Once the cell reaches either end of the compartment, it
moves back into the blood. Thus, the probability distribution p for the cell position
is described by the differential equation

∂

∂ t
p =

∂ 2

∂x2 p (3.1)

subject to the initial condition

p(x,0) = δ (x−L/2) , x ∈ [0,L] , (3.2)

where δ (x) is the Dirac delta distribution, and the absorbing boundary conditions

p(0, t) = p(L, t) = 0 , t ∈ [0,∞) . (3.3)

This differential equation can be solved by standard methods [46]. The solution
can be expressed as a Fourier sine series

p(x, t) =
∞

∑
k=0

ak · exp

(
−
(

kπ

L

)2

t

)
· sin

(
kπ

L
x
)

with coefficients

ak =
2sin(kπ/2)

L
∈
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−2

L
,

2
L

}
.
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By integrating the solution over x ∈ [0,L], we obtain the function φ(t) giving the
probability that the cell is still in the compartment at time t:

φ(t) =
∫ L

x=0
p(x, t)dx =

∞

∑
k=0

ak ·
2kπ

L
· exp

(
−
(

kπ

L

)2

t

)
.

Now let R denote the residence time in the compartment, then 1−φ is the proba-
bility distribution of R. With some algebra2, one can show that

E[R] =
∫ ∞

t=0
t · (1−φ(t))′ dt =

L2

8
.

Hence, by setting the compartment length L to
√

8R one obtains a mean compart-
ment residence time R.

3.4.2 Stochastic Simulation of T Cell Circulation

Our stochastic simulations alternate between two different modes: (1) the recruit-
ment of cells from the blood to a lymphoid organ; (2) the transit through the lym-
phoid organ. In mode (1), a cell starts in the blood (B) at time t = 0. We define the
recruitment to lymphoid organs via the following master equation for the probabil-
ity B(t) that the cell is still in the blood at time t:

dB
dt

=−ρLNB−ρdLNB−ρSB .

This equation is identical to the corresponding one in the Stekel model [134], ex-
cept for the additional term−ρdLNB. The duration of phase (1) and the target com-
partment are determined by a simple stochastic simulation of this equation using
the kinetic Monte Carlo method [47].

In mode (2), the cell transit through a compartment is modeled as described
above using the initial-boundary-value problem defined by Equations 3.1-3.3. We
simulate these equations stochastically in a standard way [110] via a discrete-time
random walk with step increments drawn from an appropriately scaled normal dis-
tribution.

3.4.3 Simulating T Cell Activation

Based on the circulation model outlined above, we formulated a simplified discrete-
time stochastic model of localized infections that is defined by the following simple
rules; see the previous Chapter 2 for a detailed derivation. (1) A cell transits a
LN in exactly R hours. (2) Upon egress from a LN, it takes exactly R hours to
travel to the next one. T represents the time spent on average in the spleen and
in the blood between two LN visits. (3) In each round, the cell enters a dLN with

2 The key ingredient to this calculation is the identity ∑
∞
n=0((−1)n/(2n+1))3 = π

3/32.
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constant probability ρ and a non-draining LN with probability 1−ρ . In terms of
the parameters of our circulation model,

ρ =
ρdLN

ρdLN +ρndLN
.

(4) Per hour spent in a dLN, the cell is activated with probability α . For some
mathematical justification of step (4), see Section 2.2.1 in the previous chapter.

Thus, the two major simplifications of this model are that (1) T is a constant
rather than a random variable, and that (2) ρ is a constant rather than a function of
time. The fact that R is constant is not a simplification but a desired property, as
our goal is to determine the efficiency of specific residence times. We set T = 5.5h
according to the mean time between two consecutive LN visits in our stochastic
simulations with default parameters without LN enlargement. Taking LN enlarge-
ment into account would result in a small decrease of T . The optimal residence
time was determined according to Equation 2.21 in Chapter 2.
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Chapter 4

An Algorithmic Model of Thymic
Negative Selection

Summary. Thymic negative selection generates a population of T cells that tolerate
their host organism (self) and attack only foreign, potentially dangerous substances
(nonself). We re-consider an established algorithmic model of negative selection,
which we formalize using the notational framework of algorithmic learning theory.
The model can be understood as a classifier trained on negative examples, which
is based on a pattern matching rule that models antigen recognition by T cell re-
ceptors. We discuss how inexact matching enables negative selection algorithms to
generalize beyond input data, and point out a previously unappreciated sampling-
based generalization mechanism.

Although negative selection algorithms have been successfully applied to bi-
ological research questions, their exponential runtime has limited their practical
usefulness. We thus investigate methods to compute the classification outcome effi-
ciently. We precisely characterize the computational complexity of this task based
on properties of the matching rule, and show that for some matching rules there
exists no polynomial time solution unless P=NP. However, by taking advantage
of techniques from string processing and data compression, we obtain polynomial
time algorithms for some important matching rules, including the “r-contiguous”
rule for which negative selection had been conjectured to be NP-hard.

Our results demonstrate the usefulness of methods from learning theory in
studying the immune system. We hope that this will form a starting point for a
comprehensive learning theoretical approach to the immune system, which despite
being one of the two important learning systems of the human body, has so far
received little attention from learning theorists.

4.1 Introduction

In his PhD thesis on negative selection algorithms, Thomas Stibor came to the con-
clusion that “future work in this direction is not meaningful” [136, p. 118]. Then
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why do we devote the largest chapter of this thesis to the study of precisely such
algorithms? Historically, negative selection algorithms were designed for provid-
ing better protection to computer systems and networks [55]; Stibor argued that
existing machine learning techniques would probably be a better choice for this
application. Here however, our perspective is different: we use the negative selec-
tion algorithm as an algorithmic model of negative selection in the real immune
system, whose purpose is to derive testable predictions from formalized biological
assumptions. One example use case, which boils down to a one-class classification
problem, will be demonstrated in the next chapter: We are given an input dataset S
consisting of strings of length 6 over the amino acid alphabet – these represent the
protein chunks (peptides) that are normally present in the human body. Moreover,
we are given another input dataset X containing peptides from the HI virus. Now,
the task is to predict which of the strings in X will be recognized by the immune
system’s T cells. In the next chapter, we will use the results of the this chapter
to solve this problem, and demonstrate that the prediction is indeed significantly
correlated with the true recognition status (which is known for the HI virus).

Now, it is crucial to note the following. Of course we could also try to solve
our classification problem with a standard machine learning technique – say, a one-
class support vector machine (SVM) with a string kernel [126]. Presumably, with
enough tuning, the SVM prediction could yield at least as significant results as
our negative selection algorithm. Suppose, for instance, that an SVM would be
capable of predicting recognition status accurately in 99% of the cases. Now the
immunologist would ask: what does this result tell me? We would answer: it tells
you that, if the strings in S and X are mapped to a multidimensional space via a
custom-designed kernel function, then the recognized viral peptides can be roughly
linearly separated from the non-recognized ones and those in S. Now suppose we
could achieve a 70% accuracy with a negative selection algorithm. This would
tell the biologist that some of the viral peptides cannot be recognized because the
T cells that could potentially recognize them are all deleted during negative se-
lection. We hope that this example illustrates why, for the purpose of theoretical
immunology, we are not able to substitute the negative selection algorithm by an
arbitrary machine learning technique – the latter would give us purely data-driven
(phenomenological) predictions rather than hypothesis-driven (mechanistic) ones,
which would provide only very limited biological insight.

In summary, for the time being our goal is not to devise a general-purpose
classification algorithm that competes with one-class SVMs or kernel density es-
timators. Nevertheless, as a side-product, our analysis provides the first negative
selection algorithms that run in worst-case polynomial time, and thus we do solve
one of the problems that so far prevented the application of negative selection algo-
rithms large-scale machine learning problems [136]. For our purposes, these tech-
niques make it possible to perform the quantitative predictions in the next chapter
with reasonable computational resources (i.e., in a matter of minutes rather than
days).



4.2. A BRIEF PRIMER ON THYMIC NEGATIVE SELECTION 43

4.1.1 Organization of this Chapter

In the upcoming Section 4.2, we will briefly explain the immunology behind neg-
ative selection. In Section 4.3, we will introduce an algorithmic model of the neg-
ative selection process that was proposed by Forrest et al. [55], and describe appli-
cations of this model in the field of artificial immune systems and in computational
immunology. Section 4.4 will give formal definitions of general and specific neg-
ative selection algorithms using concepts and notation from algorithmic learning
theory. Based on these definitions we will then investigate the ways in which neg-
ative selection algorithms generalize beyond input data (Section 4.5).

The remainder of the chapter will be concerned with the computational com-
plexity of negative selection algorithms – or more precisely, the complexity of the
functions computed by such algorithms. We start in Section 4.6 with some general
techniques and theorems that provide upper and lower complexity bounds. Af-
ter that, in Section 4.7, we present a technique that can often be used to implement
efficient negative selection classifiers efficiently, namely pattern compression. Sec-
tion 4.8 then wraps up the chapter with a short discussion. In the epilogue (Sec-
tion 4.9), we discuss the implications of our results for future research on negative
selection algorithms as general-purpose machine learning techniques.

4.2 A Brief Primer on Thymic Negative Selection

The purpose of thymic negative selection is to generate a population of immune
cells that are capable of performing cognate self-nonself-discrimination. The pa-
radigm of self-nonself-discrimination is today the most widely accepted theory of
immune system function. A computer scientist once described it as a “nice hack
of nature” [86]: Since there is no simple way to discriminate benign or harmless
intruders (e.g., a donated organ or pollen) from malign ones, nature resorts to self-
nonself-discrimination as an approximation. Thymic negative selection produces
immune cells that will tolerate anything self, and attack anything nonself. In the
following, we give a brief overview of the immunological principles related to
negative selection.

4.2.1 T cells and Their Functions

Even though the immune system is a cognitive system, it functions independently
of the brain and the central nervous system. The two main cell lines that perform
cognitive tasks in the immune system are the B cells, named after the bursa of
fabricius where they develop in birds1, and the T cells, which develop in the thy-
mus. B and T cells are present in the body in almost equal numbers, and perform
different functions in the immune response. The entire set of B and T cells that
an individual possesses is called the repertoire. In the scope of this thesis, we will

1Coincidentally, B cells in humans develop in the bone marrow.
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restrict our attention mostly to T cells, and thus we shall refrain from a detailed
discussion of B cell functions; the interested reader is invited to consult an im-
munology textbook like the one by Janeway et al. [79] for further reference, or
perhaps Hofmeyr’s “interpretative introduction to the immune system” [70], which
is written for engineering and computer science audiences.

T cells interact with antigen via T cell receptors (TCRs), which are anchored
into the cell membrane. All TCRs carried by a given T cell are identical. The
molecular structures recognized by TCRs are called epitopes. The probability
that a given epitope will bind to a given TCR, called precursor frequency, is very
low. For example, the T cell precursor frequency in mice has been estimated to
10−5− 10−6 [15, 108]. Therefore, to provide reliable protection against the huge
potential number of pathogens, the T cell repertoire must be very large and diverse.
Evolution has found a simple and powerful way to achieve this: T cell receptors are
generated randomly by stochastic rearrangement of DNA fragments. It was esti-
mated [79, p. 151] that 1018 different TCRs can be produced in this fashion, which
is several orders of magnitude larger than the number of basepairs in the human
genome (≈ 3 ·109 [94]). Altogether, a repertoire of about 109 T cells is generated
in a mouse, such that an antigen should be detected by 100 T cells on average – a
number which of course varies considerably for different antigens [108, 113].

T cells do not interact directly with foreign entities like by bacteria or viruses.
They need to have the antigen presented to them in form of small chunks (pep-
tides) bound to MHC molecules on other cells. This may be compared to our eating
habits: we need to process our food in some way, e.g. by chopping and cooking,
before we can eat it – the MHC molecule can be seen as an analogue to a plate on
which food is served. There are two different pathways for antigen presentation
that are each tailored to one T cell subset. T cell subsets are phenotypically defined
by their expression of different surface molecules, called CDs (clusters of differen-
tiation). Of particular importance are two CD molecules associated with different
antigen presentation mechanisms – CD8, which is associated with the MHC class
I pathway, and CD4, which is associated with the MHC class II pathway.

4.2.2 The MHC Class I Pathway

The MHC class I molecule is expressed by every nucleated cell in the body, i.e., by
practically all cells except most importantly red blood cells. Peptides presented on
MHC class I are of intracellular origin. These peptides are derived from proteins
in the cytosol via the following pathway (Figure 4.1): Proteins in the cytosol are
continuously degraded (chopped into small pieces) in the proteasome, a molecule
that functions as the “waste recycling facility” of the cell. The protein TAP trans-
ports peptides from the cytosol into the lumen of the endoplasmatic reticulum (ER),
where they are loaded onto MHC class I molecules. In conjunction with peptides,
MHC class I molecules form stable peptide-MHC conjugates (pMHCs), which are
anchored into the cell surface. The peptides presented on MHC class I are about



4.2. A BRIEF PRIMER ON THYMIC NEGATIVE SELECTION 45

LPTPRGPD
R

PE
G

IE
EEGGER

D

RDRSI
R

LVNGSLA
LIWDDLRSLCLFSYHR

proteasome QMHEDIISL

KLTSCNTSV

KLTSCNTSV

KLTPLCVSL

MHC-I

KLTSCNTSV

MHC-I

TAP
=⇒

cytosol
ER

lum
en

cell membrane

T cell receptor

Figure 4.1: The MHC class I pathway for antigen presentation to CD8 T cells.

8-10 amino acid residues long, which apparently provides enough information2 for
discriminating self from nonself [21].

In this fashion, the MHC class I molecule provides a “window” through which
a CD8 T cell can see the interior state of a cell: In a normal physiological situation,
the peptides presented on MHC class I are just products of the cell metabolism.
If abnormal peptides are presented, this can indicate for example that the cell has
been infected by a virus and is now synthesizing viral proteins. The T cells that
screen MHC class I react to such a nonself signal by killing the screened cell, or
more precisely, by instructing it to undergo programmed cell death. CD8 T cells
are therefore called cytotoxic T lymphocytes (CTLs), or T killer cells.

4.2.3 The MHC Class II Pathway

The MHC class II molecule is only expressed by a few cell types including macro-
phages, dendritic cells, and also B cells. MHC class II is dedicated to the presenta-
tion of peptides of extracellular origin, e.g., peptides originating from bacteria or
parasites. The cells that carry MHC class II are so-called antigen presenting cells
(APC), which can internalize proteins or even entire microorganisms and digest
them using lysosomes in the cytosol. The MHC class II molecule binds to diges-

2Since there are 22 amino acids, this is comparable to a string of the same length in the Latin
alphabet. Coincidentally, a sample string of this size is often enough to discriminate between human
languages [40].
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tive products of the original proteins, which may be up to 25 amino acid residues
long, and forms pMHC complexes with these peptides. The pMHCs then migrate
to the cell membrane where they are presented to T cells.

In contrast to a cytotoxic CD8 T cells, the CD4 T cells do not take action against
the cell that is presenting the antigen (which would make little sense indeed), but
rather activate other lymphocytes such as B cells and instruct them to act against
the infection. For this reason, CD4 T cells are usually referred to as a T helper
cells. However, there also exist other types of T cells that express CD4, such as
regulatory T cells.

4.2.4 Positive and Negative Selection in the Thymus

Both MHC pathways for antigen presentation ultimately rely on the T cell to decide
whether the presented molecule is self or nonself, i.e., whether the immune system
should take an action or not. A newborn T cell with a randomly generated receptor
is unlikely able to make this decision. How do T cells then “learn” to detect only
foreign peptides, while steering clear of self?

The answer does in fact not involve much learning. Rather, T cells that detect
nonself are generated by a “trial and error” in the thymus. There, each newborn
T cell must prove its usefulness by passing two screening processes. First, during
positive selection, it is ensured that the cell is capable to bind to MHC molecules
and to scan the presented peptide. Second, during negative selection, the T cell is
confronted with normal peptides from self. Cells that bind too strongly to these
self peptides are killed in the thymus, because they would be harmful if allowed
to become part of the immune system. Those cells that survive both positive and
negative selection are thus capable of screening MHC and will bind only to pep-
tides that are not normally encountered in the host. Remarkably, 97% of the initial
T cell population die during this process [128]. Thus, forming a mature and im-
munocompetent T cell repertoire requires a large amount of resources and energy,
and takes several years in a human.

It has to be pointed out that negative selection is very likely not the only mech-
anism that prevents T cell autoreactivity. First, it is considered unlikely that all
proteins that could arise in the human body during the entire lifetime are present
in the thymus. Second, it is known that circulating T cells can under certain condi-
tions be tolerized, and switch to an anergic state in which they no longer respond to
their cognitive signals. Third, there is a subclass of T cells called regulatory T cells
whose role is thought to be the prevention of autoreactive helper or cytotoxic T cell
responses. In fact, mutations of the gene encoding for FoxP3, a molecule used
by regulatory T cells, leads to the rare disease IPEX that is associated with severe
systemic autoimmune reactions, which are mostly lethal during the first year of
life [164]. On the other hand, mutations in the gene AIRE, which partially inhibit
negative selection, cause the autoimmune disease APS1 [2], which is severe, but
not lethal. These facts indicate that the prevention of autoimmune reactions cannot
be solely due to negative selection, a fact that is often overlooked in the literature.
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4.3 The Negative Selection Algorithm

Despite the large required effort and energy, random generation of the T cell reper-
toire combined with negative selection achieves some remarkable properties in a
simple fashion:

• Diversity. Immune cell repertoires are extremely diverse both at the cell
level – a given immune cell is different from most other immune cells in
the same organism – and at the population level – each individual carries
its own unique set of immune cells. Both levels of diversity jointly make it
very difficult for pathogens to circumvent the immune system of a vertebrate
species, since in each new host they face a different environment.

• Robustness. Because there is no central point of control that coordinates
the actions of T cells, there is also no single point of failure: Many lym-
phoid organs, such as single lymph nodes, the spleen, the mandibular glands,
and the appendix can be removed without losing the system function (even
though removal of all lymph nodes is fatal). This is an evolutionary advan-
tage, because a central point of control would provide an obvious target for
pathogens.

• Protection against unseen pathogens. A large enough number of randomly
generated receptors provides protection against pathogens that have not been
encountered previously. The alternative strategy is to produce receptors that
are capable of detecting certain specific pathogen-associated molecular pat-
terns (PAMPs), e.g. polysaccharides that occur in the membranes of gram-
negative bacteria but do not normally occur in the vertebrate metabolism.
Although many cells of the unspecific (or innate) immune system do carry
such receptors as a means to quickly react to frequently occurring infections,
a host defense depending solely on such mechanisms would be too easily cir-
cumvented by evolution of mechanisms to hide the PAMPs.

In the 1990s, when the threat of computer viruses began to be widely recog-
nized as a major economical and infrastructural threat to the dawning network age,
Forrest and coworkers [55, 54, 53] looked at these features of the immune system
from a computer scientist’s perspective and found that in comparison, the software
employed to protect computers from security threats looked very immature. Com-
puter security systems like firewalls and signature based virus scanners had single
points of failure, lacked the capacity to react to threats they had not specifically
been programmed for, and were extremely homogeneous on a global scale – much
of this is still true at the time of writing. Could the immune system be exploited as
a source of inspiration for better protection of computers and networks?

In a first attempt to import an immunological paradigm into the computer se-
curity domain, Forrest identified thymic negative selection as a key process that
facilitates many of the important desirable features of the real immune system.
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Moreover, compared to other immunological phenomena, negative selection is rel-
atively well understood on an abstract conceptual level. These and other reasons
lead Forrest to propose an algorithmic framework called the negative selection al-
gorithm, which we adopt here as a model of negative selection in the real immune
system.

The basis of a negative selection algorithm is a shape space, i.e., an abstract
representation of T cell receptors and peptides. For example, one could represent
both receptors and peptides as points in a 2-dimensional space (Figure 4.2). Then
one defines a matching rule that determines whether a given receptor will bind to a
given epitope. For our two-dimensional space, the matching rule could simply state
that a receptor and an epitope match if their distance is lower than some threshold
(see middle panel in Figure 4.2).

The input of the algorithm is a set of self-peptides (which correspond to those
that T cells see in the thymus), and another set of peptides (often called monitor
set) that are to be classified as either self or nonself (corresponding to the peptides
that T cells see later in the tissue). The algorithm then proceeds in two phases:

1. Training phase: A set of receptors is generated randomly, and each receptor
is matched against all self-peptides. All receptors that match one or more
self-peptides are deleted.

2. Classification phase: The peptides in the monitor set are matched against
the remaining receptors. A peptide that is matched by at least one receptor is
classified as nonself (which would correspond to an anomaly), and otherwise
as self.

The algorithm works for all shape spaces and matching rules in the same fash-
ion. More complex matching functions have been designed to mimic the way that
T cells recognize their epitopes, which still is not completely understood. No-
tably, the r-contiguous bits rule designed by Percus, Percus, and Perelson [116]
was adopted in the first negative selection algorithms and has played an important
role ever since [139], even though the fact that it was (back in 1993) deemed bio-
logically plausible does not necessarily make it appropriate for use in a computer
security setting. The r-contiguous bits rule and several other matching rules will
be defined in Section 4.4.3.

4.3.1 Use in Theoretical Immunology

Boldly speaking, all attempts to design a productive computer security system
based on the negative selection paradigm failed, and some reasons why this hap-
pened will be explained in more detail later on. However, within the scope of
this thesis, we are more interested in the model from a theoretical immunology
perspective: how accurately does the model reflect negative selection in the real
immune system, and can we derive predictions from it that can be tested in real
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Figure 4.2: Example negative selection algorithm where both T cell receptors and
peptides are represented as points in a two-dimensional space, and a receptor is
defined to bind all peptides within a fixed distance. The space is assumed to be
pre-partitioned in two regions S (self) and N (nonself; left panel). The input to
the algorithm is a set of samples from the self region (thick dots in middle panel),
which represent the self peptides presented to T cells in the thymus. In the training
phase (which corresponds to negative selection in the thymus), receptors are gen-
erated randomly and those that match any of the given samples are deleted. This
results in a set of receptors (thin dots in middle panel) that do not match any of the
input points (circles in middle panel). This negatively selected receptor set is then
used to classify further elements (right panel). If the training phase is successful,
the region covered by the generated receptors (gray region in right panel) should be
similar to the underlying nonself region (gray region in left panel). Figure adopted
from Elberfeld and Textor [43].
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data? And more generally, how does the negative selection algorithm relate to
theoretical models of other learning processes?

In the literature, one finds a few notable examples of similarly motivated ap-
plications of the negative selection algorithm. Detours and Perelson [37] showed
that T cell alloreactivity3 can be explained as a consequence of negative selection.
Košmrlj et al. [90] used the algorithm with a refined matching function based on
biophysical amino acid properties. They predicted that certain MHC alleles can
lead to a rather narrow window for T cells to survive negative selection, and inter-
estingly, they found that this effect may be a possible explanation for elite control
of HIV infection [91]. This was perhaps the most successful application of a nega-
tive selection algorithm so far. Furthermore, negative selection algorithms are rou-
tinely used as components of complex agent-based simulations of entire immune
responses, e.g. by Chao et al. [27, 28] and Rapin et al. [121], to name only a few.
Such agent-based models are often of a more qualitative nature in the sense that
they reproduce emergent properties of the real immune system (e.g., a larger sec-
ondary than primary response), but because of their huge numbers of parameters
they are less suited for making quantitative predictions.

4.3.2 Use in Artificial Immune Systems

As explained above, the negative selection algorithm was originally conceived for
use in intrusion detection systems. For this application it is key to design an ap-
propriate shape space and matching function, which capture the essential features
of the data. An interesting idea pursued by Forrest’s group was to use sequences
of system calls from normally running UNIX processes to define a sense of self
for computers [54, 72]. The receptors (which they called detectors) are then es-
sentially patterns that match to small sets of system call sequences. With these
detectors one can monitor a running computer system for suspicious activity – for
example, unusual sequences of system calls, which may point to an intrusion or a
computer virus infection.

This simple algorithmic scheme does indeed achieve some degree of “biodiver-
sity” in computer systems: For example, what is a “normal” sequence of system
calls differs widely between hosts and networks, as do the randomly generated de-
tector sets. Forrest identified several further promising properties that would be
achieved by computer immune systems built on the negative selection paradigm
[53], such as straightforward parallelization – detectors can be distributed among
threads, processors, network switches and hosts. Forrest’s group built several
proof-of-concept software packages such as “process homeostasis” [131], which
is based on system call sequences, and “LISYS” [69, 71, 8], which is based on
TCP packages. However, despite these initially promising and influential4 results,

3Alloreactivity is the phenomenon that T cells to bind to foreign MHC molecules, e.g. from a
donated organ, much more strongly than could be expected.

4 At the time of writing, some of Forrest’s early papers have been cited more than 1000 times.
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negative selection based intrusion detection systems never made it beyond the pro-
totype stage.

Two main issues that impeded the progress of negative selection algorithms
were identified early on. One of these issues was the large computational cost:
The number of detectors needed to achieve acceptable coverage of the potentially
anomalous region is often prohibitively large [88]; in other cases, the dataset can
be conditioned in a way that makes it difficult to find any detectors at all that do
not match any element of the given self-set. While several algorithms were pro-
posed to generate detectors more efficiently than by pure random sampling, all of
them still suffered from exponential worst-case complexity. Stibor [143, 139] ap-
proached these difficulties by considering the following decision problem, which
we will later call the consistency problem: Given a self-set S, can any detector be
generated that does not match any element in S? While this is indeed exactly the
right problem to consider as we will see later, he did not prove the problem com-
plete for any “hard” complexity class. Instead, he showed how to convert instances
of the problem to instances of the boolean satisfiability problem in conjunctive
normal form (k-CNF-SAT), and then solved the resulting formulas using the DLL
algorithm and evaluated its runtime to reason about the complexity of generating
detectors. At first, Stibor explicitly acknowledged the limitations of this approach
by noting that [143]

“this not implies [sic] that finding a satisfying set for [the generated
formula] is an NP-complete problem.”

Nevertheless, he wrote two years later [137]:

“Recently, it has been shown that finding r-contiguous detectors is
equivalent [sic] to the problem of finding assignment sets for a Boolean
formula in k-CNF. This result explained the lack of efficient algorithms
for finding detectors.”

Similarly, in a joint work of his with Timmis, Hone and Andrews published in the
journal “Theoretical Computer Science” [149], it is concluded that

“the problem of generating detectors in a negative selection algorithm
turns out to be equivalent to an NP-complete problem.”

These and other similar statements [136, 138, 139] created an impression in
the community that the negative selection approach (rather than its existing im-
plementations) suffered from prohibitive computational complexity. For example,
Aickelin [1] wrote about negative selection algorithms:

“More recently, [...] theoretical proofs have been established regard-
ing their performance: [...] Negative Selection systems can never
scale to cover real-world multi-dimensional data [...]. ”
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Clearly this was a premature conclusion, and later in this chapter it will be shown
that the computational complexity issue can in fact be solved by approaching the
problem in a novel way.

The second issue brought up by Stibor was that negative selection algorithms
do not generalize well on some datasets that standard techniques, such as kernel
density estimation using Bernoulli kernels, handle relatively well [139]. This was
due to the pattern matching rule employed in most implementations of the algo-
rithm, the so-called r-contiguous bits rule – a rule that was originally designed as
a model for the way that real T cells scan peptides presented on MHC [116]. It re-
mains unclear why this rule was deemed appropriate for analyzing network packets
or other arbitrary data, but its inability to correlate data from non-contiguous posi-
tions soon proved to be a major obstacle. Techniques like permutation masks were
applied to try and overcome these obstacles, but again with limited success; an-
other modification introduced were the so-called r-chunk detectors. Finally, Stibor
described the problem as a failure of negative selection algorithms to generalize
properly beyond the training set – an essential feature of any machine learning al-
gorithm. Taken together with the computational complexity issues, he concluded
that Negative Selection is not appropriate at least for network intrusion detection
[141, 136]. In his dissertation, Zhou Ji [81, ch. 5] responded to some of his criti-
cism, arguing that many of these results can be tracked down to the incompatibility
of the matching rules (which assume correlation between adjacent string positions)
with the data representation (e.g., floating point numbers represented as binary
strings), where such a correlation cannot be expected to exist.

4.4 Formalizing Negative Selection Algorithms

The field of algorithmic learning theory investigates algorithmic models of learn-
ing processes in nature and in machines. For example, the seminal paper by Gold
[61] that laid the foundation for the inductive inference class of models aimed at
a formal understanding of how children can learn languages from only positive
examples. In this section and the upcoming ones, we settle the negative selec-
tion algorithm into the notational framework of algorithmic learning theory. This
means that we will drop the immunological terminology with which negative se-
lection algorithms are usually described in favor of using more technical terms. For
example, what is called a detector in the artificial immune systems literature will
here be called a pattern. This will make it easier to show what negative selection
algorithms really are, and how they relate to established models from algorithmic
learning theory.

4.4.1 Samples, Classification, and Anomaly Detection

Definition 4.1 (Samples). Let U be any set (universe). A labeled sample, or simply
sample, over U is a set S = {(x1, `1),(x2, `2), . . .} ⊆ U ×{+1,−1} of positively or



4.4. FORMALIZING NEGATIVE SELECTION ALGORITHMS 53

negatively labeled elements from U , such that for no x∈U , both (x,+1) and (x,−1)
are contained in S. A sample containing at most k positively labeled elements is
called a k-positive sample. A 0-positive sample is also called a negative sample.

Because we will be working with negative samples quite a lot, we will shorten
notation in some cases by omitting the negative labels. For instance, we will
sometimes write “let S ⊆ U be a negative sample” instead of the more formal “let
S⊆ U ×{−1} be a negative sample”.

As illustrated in Figure 4.2, a negative selection algorithm is essentially a clas-
sification algorithm that partitions a universe U into two classes based on the in-
formation in an input sample S. However, negative selection algorithms use only
samples from one of the underlying classes. Classifiers with this property are called
one-class classifiers [127], and are also sometimes referred to as anomaly detectors
or novelty detectors [136, 26]. Well-known examples include the one-class support
vector machine [126] and kernel density estimation [12]. Negative selection dif-
fers from these methods mainly in that it is not a statistical, but a combinatorial
technique.

Definition 4.2 (Classifiers, Anomaly Detectors). A classifier is an (in general prob-
abilistic) algorithm C(S,X) that, given a labeled sample S over U and a set X ⊆U ,
outputs for each x∈ X a labeling (x, `), `∈ {+1,−1}. If C outputs (x,+1) for some
x ∈ X, we also write “C positively labels x”; if it outputs the label (x,−1) for x, we
write that “C negatively labels x”. An anomaly detector is a classifier that accepts
only negative samples as input.

Anomaly detection problems appear very natural to humans. For example,
those of us with a reasonable command of the English language would not find it
very difficult to answer the following question: Which of the five text fragments

“j saed dau”, “el answere”, “nceits tha”, “matuod gin”, “re lies th”

were not extracted from a book written in English? Remarkably, we need not know
which language the non-English strings come from to answer this question. This
is analogous to what negative selection achieves for the immune system. We will
use this “language anomaly detection problem” as a running example to illustrate
some of the concepts introduced later.

4.4.2 Pattern Classes and Consistency

Definition 4.3 (Pattern Classes). A pattern class C = (U ,P,M) consists of a set
U (universe), a set P (patterns), and a polynomial time computable function5 M :

5We are being somewhat imprecise here, because later on we will mostly be concerned with the
universe Σ

∗. In that case, by “polynomial time computable” we formally mean that a Turing machine
can compute the desired output in time O(nc), where n is the amount of space required to store the
input and c is a constant. However, e.g. for real-valued inputs, which can not always be stored in
finite space, one would need to use a different model of computation.
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P×U →{+1,−1,⊥} (matching rule). IfM(π,x)=+1, we also write “π matches
x”; ifM(π,x) =−1, we write “π does not match x”; and ifM(π,x) =⊥, we write
“π and x are incompatible”.

The incompatibility symbol ⊥ may appear a bit unusual at this point, but it
will turn out very useful later on when we start reasoning about the computational
complexity of pattern matching.

As mentioned before, patterns are referred to as detectors in the negative selec-
tion algorithms literature, reflecting the analogy to T cells in the immune system.
In a learning theory context, we call a pattern instead a concept6, a pattern class
is called a concept class, and a matching rule is called a membership function.
Perhaps the most natural example for a pattern class is the following, which was
intensively investigated by Zhou Ji in his PhD thesis [81] where he called these
patterns “V-detectors”.

Example 4.4 (Hyperballs [81]). Let R∗ = ∪d∈NRd be the set of all real-valued
vectors with finite dimension, and let dim(x) = d denote the dimension of the vector
x ∈ Rd . Let ‖x− y‖ denote the Euclidean distance between x,y ∈ Rd . Let PBALL =
{(c,r) : c ∈ R∗,r ∈ R}. We define the pattern class BALL = (R∗,PBALL,MBALL)
where

MBALL((c,r),x) =


⊥ dim(c) 6= dim(x)
+1 dim(c) = dim(x) and ‖c− x‖ ≤ r
−1 otherwise .

In this example, the pattern (c,r) stands for the hyperball with center c and
radius r. More generally, any family of hypervolumes defined by a finite set of
real-valued parameters could be used as a pattern class in this fashion.

As has been illustrated in Figure 4.2, the essential step of a negative selection
algorithm is to generate a set of patterns that all match to a certain input. This
requirement can be connected to algorithmic learning theory via the following no-
tion, which will play a central role in our analysis.

Definition 4.5 (Consistency). Let C = (U ,P,M) be a pattern class and let S ⊆
U ×{+1,−1} be a labeled sample. A pattern π ∈ P is said to be S-consistent if
for every (x, `) ∈ S, M(π,x) = `. A pattern set P ⊆ P is called S-consistent if it
only contains S-consistent patterns. We write C[S] for the set of all S-consistent
patterns in P .

In particular, the empty pattern set ∅ is consistent with every negative sample,
but it is not consistent with any sample that contains a positive example. Returning
again to our hyperball example, given a set S of labeled points from Rd an S-
consistent set of hyperballs would be one that contains all positively labeled points
but none of the negatively labeled ones (see Figure 4.2).

6More precisely, a pattern is analogous to the representation of a concept.



4.4. FORMALIZING NEGATIVE SELECTION ALGORITHMS 55

A technical complication arises if the input set S contains two elements that
do not admit any consistent patterns for purely syntactic reasons. For example,
suppose that we would be given the input S = {((0,0),−1),((0,0,0),−1)} for our
hyperball patterns defined above. For the specific pattern classes that we analyze in
this thesis, such syntactic incompatibilities are trivial to detect, and there are only
finitely many syntactically compatible patterns for each universe element and vice
versa. This property can be formalized using the following technical notion.

Definition 4.6 (Layered Pattern Classes). Let C= (U ,P,M) be a pattern class and
let λ : U ∪P → N be polynomial time computable. Let U (L) = {x ∈ U : λ (x) = L}
and P(L) = {π ∈ P : λ (π) = L}. Suppose the following holds: (1) For all L ∈ N,
|U (L)| and |P(L)| are finite; (2) for all π ∈ P , x ∈ U , M(π,x) = ⊥ if and only if
λ (π) 6= λ (x). Then C is called layered and λ is called the layering of C.

4.4.3 String Patterns

The pattern class of a negative selection algorithm models the interaction between
a T cell receptor and an epitope. This is most commonly done by representing
both receptor and epitope as strings of a fixed length. Accordingly, we focus our
analysis here on classes of patterns where the universe is the set of strings over
some alphabet. Because unary alphabets are not interesting for our purposes, we
assume that all alphabets are at least binary.

Definition 4.7 (Alphabets, Strings, Languages). An alphabet Σ is a finite set of
symbols with |Σ| ≥ 2. A string s ∈ Σ∗ is a sequence of symbols from Σ with finite
length |s|. A language L is a set of strings. The string with |s| = 0 is called the
empty string. For i ∈ {1, . . . , |s|}, s[i] is the i-th symbol in s. For two indices i and j
with j ≥ i, s[i . . . j] is the substring of s with length j− i + 1 starting at position i,
and we write that s[i . . . j] occurs in s at position i. For j < i, s[i . . . j] is empty. For
i ∈ {1, . . . , |s|}, s[1 . . . i] is a prefix of s and s[i . . . |s|] is a suffix of s. A prefix or
suffix s′ of s is proper if 0 < |s′|< |s|.

The following definition contains two concepts that are stated separately be-
cause they are less common than those defined above.

Definition 4.8 (Sub-Languages, Avoided Strings). For two indices i and j, we
define S[i . . . j] = {s[i . . . j] : s ∈ S}. We say that S avoids a string d at position i if
d /∈ S[i . . . i+ |d|−1].

In this thesis we will investigate four specific string pattern classes. Figure 4.3
shows for each of these classes an example pattern along with a matching and a
non-matching string. In general, a string pattern class can be defined as follows.

Definition 4.9 (String Patterns). Fix a finite alphabet Σ. A string pattern class is
a pattern class C = (U ,P,M) with U = Σ∗ with the layering λ (x) = |x|. Hence,
U (L) = ΣL.
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contiguous patterns (CONT)

pattern syntax: ΣL×N
matching rule: contiguous
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1
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, 3pattern:
match:
mismatch:

chunk patterns (CHUNK)

pattern syntax: �i Σr �L−i−r

matching rule: all non-� chars
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hamming patterns (HAMMING)

pattern syntax: ΣL×N
matching rule: distributed
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wildcard patterns (WILDCARD)

pattern syntax: (Σ∪{�})L

matching rule: all non-� chars
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1
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�
0
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1
1
1

�
1
1

1
0
1

pattern:
match:
mismatch:

Figure 4.3: Illustration of the four string-based pattern classes that we consider in
this chapter. See the text for precise definitions of the matching rules used. For
each matching string, the letters that are relevant for the match are highlighted.

Our first pattern class is perhaps the most widely known one in the literature
on negative selection algorithms [139]. It was designed by Percus, Percus, and
Perelson [116] and is one of the oldest string-based models of T cell receptor–
epitope interaction.

Definition 4.10 (Contiguous Patterns [116]). The class of contiguous patterns is
defined as CONT = (Σ∗,Σ∗×N,MCONT) where

MCONT((π,r),x) =


⊥ |π| 6= |x|
+1 |π|= |x| and there exists an i ∈ {1, . . . , |x|− r +1}

where π[i . . . i+ r−1] = x[i . . . i+ r−1]
−1 otherwise

The r-contiguous pattern class thus defines a notion of imprecise matching that
does not rely on wildcard symbols, such that all positions in the two strings are
relevant for determining a match. Balthrop et al. [7] introduced a variant of the
above pattern class that allows for partial matching.

Definition 4.11 (Chunk Patterns [7]). Let � be a symbol that does not occur in
Σ. The class of chunk patterns is defined as CHUNK = (Σ∗,PCHUNK,MWILDCARD)
where

PCHUNK = {�iw� j : w ∈ Σ
∗, i, j ∈ N}
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and

MWILDCARD(π,x) =


⊥ if |π| 6= |x| ,
+1 if |π|= |x| and for all j,π[ j] = x[ j] or π[i] = � ,

−1 otherwise .

Hence, the wildcard � in a chunk pattern stands for a single arbitrary symbol,
and PCHUNK is the set of those patterns in which all non-�s form a contiguous
substring. In the literature, the chunk pattern �iw� j is usually written as the tuple
(w, i + 1) [7, 42]. Moreover, an asterisk ∗ is normally used instead of �, e.g. by
Esponda [44]. We prefer the symbol � because ∗ usually denotes an arbitrary string
of arbitrary length.

More recent models of theoretical immunology have often preferred the “sim-
ple” hamming distance to model TCR–peptide interaction [27, 28, 90, 91] over the
seemingly more complex r-contiguous rule. However, it will turn out later that
the r-contiguous rule is at least computationally more friendly than the Hamming
distance.

Definition 4.12 (Hamming Patterns [63]). The class of Hamming patterns is de-
fined as HAMMING = (Σ∗,Σ∗×N,MHAMMING) using the matching function

MHAMMING((π,r),x) =


⊥ |π| 6= |x|
+1 |π|= |x| and δH(π,x)≤ r
−1 otherwise

where δH denotes the Hamming distance δH(π,x) = |{i : π[i] 6= x[i]}|.

Note that the meaning of the parameter r, which is akin to a radius, is exactly
the opposite between Hamming patterns and contiguous patterns, which is a some-
what unfortunate historical artifact.

Finally, we suggest to consider the following pattern class. It has to our knowl-
edge not been used so far in negative selection algorithms, but formed the basis for
so-called learning classifier systems, which are a hybrids of pattern-based classifi-
cation schemes and genetic algorithms [74].

Definition 4.13 (Wildcard Patterns [74]). The class of wildcard patterns is defined
as WILDCARD = (Σ∗,Σ∗∪{�},MWILDCARD).

This pattern class is simply a general version of PCHUNK, in which wildcards
may occur in arbitrary positions. For the binary alphabet Σ = {0,1}, the pattern
class WILDCARD is equivalent to the class of Boolean monomials, i.e., formulas
consisting only of conjunctively joined literals. For example, consider the pattern
�01�: this would match all binary bitstrings described by the monomial x2x3.
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4.4.4 Restricted Patterns

We have so far treated the matching parameter (or “matching radius”) of our pat-
terns as a part of the pattern itself. Traditionally, the matching radius is considered
as a constant that is extrinsically defined. Or in other words, what is usually con-
sidered are restricted versions of our pattern classes.

Definition 4.14 (Restricted Patterns). A restricted pattern class C = (U ,P,M,ρ)
consists of a pattern class (U ,P,M) and a polynomial time computable function
ρ :P →N (restriction). Let S⊆U×{+1,−1} be a labeled sample, then we define
the set of S-consistent r-restricted patterns for C as r-C[S] = {π ∈ C[S] : ρ(π) = r}.

For a first intuitive example of restricted patterns, we turn again to the hyper-
balls in Euclidean space, where a natural restriction leads to fixed-radius hyper-
balls.

Example 4.15 (Hyperspheres with Radius r). For the pattern set PBALL and the
matching function MBALL from Definition 4.4, we define the class of restricted
hyperspheres as r-BALL = (R∗,PBALL,MBALL,ρr) where ρr(c,r) = r.

Similarly natural restricted equivalents exist for the string patterns defined in
the previous section. In all cases, we will use the notation r-C to refer to the re-
stricted version of the pattern class C.

Definition 4.16 (r-Contiguous Patterns [55]). The class of r-contiguous patterns
is defined as r-CONT = (Σ∗,Σ∗×N,MCONT,ρr) where ρr(c,r) = r.

For example, the contiguous pattern shown in Figure 4.3 is a 3-contiguous
pattern from the class from the class 3-CONT.

Definition 4.17 (r-Chunk Patterns [7]). The class of r-chunk patterns is defined as
r-CHUNK = (Σ∗,PCHUNK,MWILDCARD,ρ�) where ρ�(π) = |{i : π[i] = �}|.

For instance, �01� and 00�� are 2-chunk patterns over the alphabet Σ = {0,1}
but �0�1 is neither a 2-chunk pattern nor a chunk pattern. The 2-chunk pattern
�01� matches 0011 but it does not match 1100. The following two definitions use
the same restrictions ρr and ρ� as above.

Definition 4.18 (r-Hamming Patterns [63]). The class of r-Hamming patterns is
defined as r-HAMMING = (Σ∗,Σ∗×N,MHAMMING,ρr) where ρr(π,r) = r.

For example, the hamming pattern shown in Figure 4.3 is a 3-hamming pattern.

Definition 4.19 (r-Wildcard Patterns). The class of r-wildcard patterns is defined
as r-WILDCARD = (Σ∗,Σ∗∪{�},MWILDCARD,ρ�).

The wildcard pattern shown in Figure 4.3 contains three non-� letters, and thus
belongs to the class 3-WILDCARD. If we use the binary alphabet Σ = {0,1}, then
the class r-WILDCARD is equivalent to the class of Boolean monomials with ex-
actly r literals.
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Algorithm N(S,M).
Input: Negative sample S⊆ U ×{−1}, set X ⊆ U .
Output: For each x ∈ X , either (x,+1) or (x,−1).

training phase
1 P← some subset of C[S]

classification phase
2 for each x ∈ X do
3 if there exists a π ∈ P that matches x then
4 output (x,+1)
5 else
6 output (x,−1)

Figure 4.4: General outline of a negative selection algorithm as it is usually defined
[55, 149]. Adapted from Liśkiewicz and Textor [99].

4.4.5 Negative Selection Algorithms

We are now prepared to give a formal definition of the negative selection algorithm
that corresponds to the usual informal description [55, 149].

Definition 4.20 (Negative Selection Algorithm [55]). Let C = (U ,P,M) be a pat-
tern class over some universe U . A negative selection algorithm (NSA) using pat-
tern class C is a classifier N(S,X) that, on input of a negative sample S⊆U×{−1}
and a set X ⊆ U , does the following:

1. N generates some set P⊆ C[S] of S-consistent patterns (training phase).

2. For each x ∈ X, N outputs (x,+1) if there exists a π ∈ P that matches x, and
(x,−1) otherwise (classification phase).

Figure 4.4 shows a pseudocode equivalent of this definition. Crucially, note
that this general definition does not specify how the pattern set P is generated.
Most existing implementations perform either some kind of brute force search or
generate detectors randomly. We formalize these two basic approaches for im-
plementing the training phase by defining two corresponding special cases of the
generic negative selection algorithm. For simplicity, we define these special cases
only for layered pattern types. We also assume that the input sample S contains
only elements from a single layer U (L) of the universe; otherwise, no consistent
pattern would exist and the output would always be (x,−1) for all x ∈ X . More-
over, one can assume that the set X contains only strings from the same layer as
all other strings would always be labeled negatively. These “syntax checks” can be
easily performed in polynomial time.

First we consider the most extreme case of a brute force training phase, in
which the algorithm generates all consistent patterns.
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Definition 4.21 (Exhaustive Negative Selection Algorithm [99]). Let C=(U ,P,M)
be a layered pattern class. An exhaustive negative selection algorithm using pat-
tern class C is a negative selection algorithm N(S,X) that, on input S ⊆ U (L)×
{−1},X ⊆ U (L), in its training phase generates the pattern set P = C[S].

In general, exhaustive negative selection is impractical because C[S] is typically
too large to be explicitly generated. Nevertheless, it is a useful scenario to consider,
because we will later see that exhaustive negative selection can be simulated e.g. by
generating a compact representation of C[S] and using that for classification instead
of the pattern set itself. Moreover, it may be possible to achieve the classification
outcome of an exhaustive negative selection algorithm with a smaller pattern set.
Such a pattern set has been called perfect pattern set in the literature [82].

The second special case we consider is a Monte Carlo version of the negative
selection algorithm, which generates patterns by rejection sampling. For sake of
simplicity, we assume that only a single pattern is generated, which of course is
not the case in practice; however, an algorithm that generates several patterns can
be simulated by running our version several times. It is noted that we previously
used a similar definition where the number of patterns to be generated was given as
an additional parameter [99], which leads to some technical complications without
providing substantially more insight than the simpler definition given below.

Definition 4.22 (Sampling Negative Selection Algorithm). Let C = (U ,P,M) be a
layered pattern class. A sampling negative selection algorithm using C is a negative
selection algorithm N(S,X) that, given a negative sample S ⊆ U (L)×{−1} and a
set X ⊆ U (L), performs the following:

1. N iteratively samples a pattern π uniformly at random from P(L) until π is
S-consistent (training phase).

2. For each x ∈ X, N outputs (x,+1) if π matches x, and (x,−1) otherwise
(classification phase).

Note in particular that the sampling negative selection algorithm does not ter-
minate in the case that no S-consistent patterns exist.

While uniform sampling is possible for the pattern classes that we defined
above, it can become highly nontrivial for ambiguous pattern languages, i.e., pat-
tern languages where two different patterns can match exactly the same strings.
For example, consider boolean formulas: Two different formulas can have exactly
the same satisfying assignments. Uniform sampling from combinatorial structures
is a currently very active and growing field, and many approximate uniform sam-
pling algorithms have been obtained with the Markov Chain Monte Carlo method
(MCMC). Exact uniform samplers are known however only for a few structures
such as DNF formulas [80] and graph colorings [19].
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4.5 Learning in Negative Selection Algorithms

The negative selection algorithm can be understood as a computational model of a
learning process. Algorithmic Learning Theory is concerned with the development
and analysis of such models, and has established a rich taxonomy to characterize
algorithmic learners [3]. In this section we first describe some basic properties of
negative selection algorithms using this taxonomy, and thereafter we address in
some detail the aspect of generalization, i.e., the capability to infer an underlying
partitioning of the universe from a sample set.

4.5.1 Negative Selection in the Context of Learning Theory

The first essential property we wish to state follows directly from Definition 4.20:
Negative selection algorithms are consistent learners – an element whose label is
known from the input data is never assigned a different label. The consistency
requirement has been investigated in many contexts like inductive inference and
efficient PAC learning [3]. It is known that the consistency requirement sometimes
leads to an infeasible complexity of algorithmic learners; this issue will be investi-
gated in more detail in Section 4.6.

One key difference between the negative selection algorithm and many models
considered in algorithmic learning theory is the learning goal. For example, the
learning goal of an inductive inference machine [61] or a PAC learner [152] is to
infer a certain concept from the shown examples (up to a modest error in case of
PAC learning). In our case, this would correspond to assuming that the “anoma-
lous” region of the universe can be described by a single pattern from our pattern
language, and that all elements of the sample S are strings that are not matched by
this pattern. Kearns et al. [85] have shown that for such a case, exponentially many
examples would be needed for any pattern class subsumed by the Boolean mono-
mials. However, in our case the learning goal is not explicitly specified, as we make
no assumption on how the underlying bipartitioning of the universe, according to
which our examples are labeled, is generated. Indeed it is a defining assumption of
anomaly detection problems that we have no a priori knowledge on the structure of
the anomalies [26], and that the anomaly detection system should be free of such
assumptions; otherwise, we would potentially provide attackers with an easy way
to circumvent the system. In this regard, negative selection differs from models
like PAC learning or inductive inference.

Version space learning [107] is another family of learning algorithms that are
more similar to negative selection. Here the learner maintains a description of
all hypotheses that are consistent with the labeled examples, which is called the
version space. This can be mapped as follows to our terminology: A single S-
consistent pattern would be one element of the version space (hypothesis), and
the entire version space would correspond to the set of all S-consistent patterns.
Hence, an exhaustive negative selection algorithm is indeed identical to a version
space learner that is given only negative examples. This connection will be em-
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phasized again later on when we characterize the computational complexity of
exhaustive negative selection via the consistency problem – the same characteri-
zation has been performed for general version space learning algorithms by Hill et
al. [67], even though we cannot directly use their results due to our restriction to
negative examples. Finally, however, note that in version space learning the goal is
usually defined as pruning the version space down to a single hypothesis, while in
negative selection we use the version space simply as a description of a subset of
the universe.

4.5.2 Coverage and Generalization

The classification outcome of a negative selection algorithm can be described via
the following term.

Definition 4.23 (Coverage and Maximal Coverage). Let C = (U ,P,M) be a pat-
tern class. The coverage of a pattern set P⊆ P is the set

L(P) = {x ∈ U : there exists a pattern π ∈ P withM(π,x) = +1}

of elements that are matched by the patterns in P. A pattern set P has maximal
coverage with respect to a sample S if it is S-consistent and there exists no other
S-consistent pattern set P′ such that L(P) ( L(P′). In particular, the pattern set
C[S] has maximal coverage.

The symbol L was chosen to denote coverage because for string-based pattern
classes it is natural to think of the coverage of a pattern set P as the language of
all strings described by the patterns in P. We refer the reader to Figure 4.5 for an
illustration of a negative sample S along with all its S-consistent 3-chunk patterns
and the induced coverage. The precise relationships between maximal coverage
and the classification outcome of exhaustive and sampling negative selection algo-
rithms are given by the following two observations.

Fact 4.24 (Maximal Coverage and Exhaustive Negative Selection). Let N(S,X) be
an exhaustive negative selection algorithm using pattern class C. Then for every
x ∈ X, N(S,X) outputs (x,+1) if and only if x ∈ L(C[S]).

Fact 4.25 (Maximal Coverage and Sampling Negative Selection). Let N(S,X) be a
sampling negative selection algorithm using pattern class C. Then for every x ∈ X,
Pr [N(S,X) outputs (x,+1) ] > 0 if and only if x ∈ L(C[S]).

In Figure 4.5, the maximal coverage L(C[S]) is highlighted in gray. The gen-
eralization performed by the classifier corresponds to the strings that are labeled
negatively even though they do not occur in the sample S (non-bold strings with a
white background). Somewhat misleadingly, such strings have been called holes
in the negative selection literature. In immunology, holes are regions of the pep-
tide shape space that cannot be detected by immune cells. Hence, pathogens can



4.5. LEARNING IN NEGATIVE SELECTION ALGORITHMS 63

(abbbb,−1)
(aabbb,−1)
(baaaa,−1)
(baaab,−1)
(baaba,−1)
(babba,−1)
(bbbbb,−1)

negative
sample S

aaa��
bba��
�aba�
�bab�
��abb
��bab

aba��

�baa�
�bba�
��baa

aaaaa
aaaab
aaaba
aaabb
aabaa
aabab
aabba
aabbb

abaaa
abaab
ababa
ababb
abbaa
abbab
abbba
abbbb

baaaa
baaab
baaba
baabb
babaa
babab
babba
babbb

bbaaa
bbaab
bbaba
bbabb
bbbaa
bbbab
bbbba
bbbbb

3-CHUNK[S] L(3-CHUNK[S])

Figure 4.5: A negative sample S ⊆ {a,b}∗×{−1} (left) along with the set of its
S-consistent 3-chunk patterns 3-CHUNK[S] (middle) and the induced maximal cov-
erage L(3-CHUNK[S]) (right) consisting of the strings that are positively labeled
by the patterns in 3-CHUNK[S] (strings with shaded background). The maximal
coverage induces a bipartitioning of {a,b}5, in which the negatively labeled par-
tition consists of the given samples (bold strings) and the generalization region
(non-bold, non-shaded strings). Figure adapted from Elberfeld & Textor [43].

use these holes to evade recognition by the immune system (e.g. by evolving their
proteins such that they lie within the holes). In a somewhat ad-hoc fashion, the
existence of “holes” in a negative selection algorithm was – and is still today –
considered as a “problem” [83]. In fact, as Stibor correctly pointed out [142], holes
are a necessary property of the algorithm: Without holes, the algorithm would do
nothing but memorize the training data and label everything else positively, which
would hardly be interesting. In machine learning terms, the set of “holes” corre-
sponds to the generalization region of the classifier, i.e., the subset of the universe
that is inferred to be the source of the examples. The capability to perform such
generalization is essential for a learning algorithm. In the following sections, we
discuss how generalization is performed in negative selection algorithms.

4.5.3 Generalization in the Exhaustive, Unrestricted Case

It has been conjectured that maximal coverage is a desirable feature of a negative
selection algorithm: “A perfect detector set, which recognizes all nonself strings
that can be covered [...] is what we hope for” [82]. This would lead to think that
exhaustive negative selection should be superior to sampling negative selection.
However, it turns out that when using unrestricted pattern classes, maximal cover-
age can lead to a meaningless classification. This case can be characterized via the
following property.
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Definition 4.26 (1-Slicing). A pattern class C = (U ,P,M) is called 1-slicing if
for every x ∈ U , P contains a pattern that matches only x.

Proposition 4.27. Let N(S,X) be an exhaustive negative selection algorithm using
a 1-slicing pattern class C. Then for all x ∈ X, N outputs (x,+1) if and only if
(x,−1) /∈ S.

Proof. The exhaustive negative selection algorithm uses the pattern set C[S]. For
each x ∈ U \ {s : (s,−1) ∈ S}, there exists a pattern πx ∈ C[S] that matches only x.
Thus x ∈ L(C[S]) and the proposition follows from Fact 4.24.

Thus, exhaustive negative selection algorithms (that use “perfect” detector sets)
based on 1-slicing pattern classes do not generalize at all. In particular, we now
show that this is the case for most pattern classes that involve Boolean formulas.

Definition 4.28. A pattern class D1 = (U ,P1,M1) is said to subsume another
pattern class D2 = (U ,P2,M2) over the same universe U if for every π1 ∈ P1,
there exists a π2 ∈ P2 such that for all x ∈ U ,M1(π1,x) =M2(π2,x).

Corollary 4.29 (of Proposition 4.27). Any string-based pattern class subsumed by
WILDCARD, CHUNK, HAMMING or CONT is 1-slicing.

Proof. Every string s ∈ Σ∗ is a pattern from the class PWILDCARD that matches only
itself. Similar arguments hold for each of the other pattern classes.

As noted in Section 4.4.3, if Σ = {0,1}, then WILDCARD is equivalent to the
class of Boolean monomials, i.e., formulas consisting only of conjunctively joined
literals. Hence the corollary implies that exhaustive negative selection with a pat-
tern class based on Boolean formulas will give useless results. However, we will
see in the following that using Boolean patterns may be reasonable (but not neces-
sarily computationally tractable) for sampling negative selection algorithms.

4.5.4 Generalization by Restriction

Because the combinatorial power of many unrestricted pattern classes leads to
meaningless classification, a straightforward approach to obtain generalization is
to restrict the set of valid patterns. This type of generalization in negative selection
algorithms has been discussed in the literature [7, 142, 136]. The degree of gen-
eralization is controlled by the restriction parameter r (Figure 4.6): For example,
consider the r-chunk patterns from the layer L. If we set r = 0, then the only pat-
tern π ∈P(L)

chunk contains nothing but wildcards and matches all strings in ΣL. Thus,
the algorithm cannot generate an S-consistent pattern, and labels strings negatively.
Obviously this is a too permissive generalization (top left panel in Figure 4.6). On
the other hand, if we set r = L, the pattern (π,r) matches only the string π , and no
generalization is performed as all strings except those from S are positively labeled
(overfitting [127]; bottom right panel in Figure 4.6). The in-between values of r
ranging from 1 to n−1 provide varying degrees of generalization.
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Figure 4.6: Illustration of generalization by restriction in a negative selection al-
gorithm with r-chunk patterns. For the input sample S ⊆ {a,b}5 from Figure 4.5
(bold strings), the classification outcome of an exhaustive negative selection algo-
rithm with r-chunk patterns is shown with r ranging from 0 (top left) to 5 (bottom
right).
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To illustrate restriction-based generalization, let us come back to the analogy of
detecting foreign languages mentioned in Section 4.4.1, and consider the following
toy problem (which is not unlike the application we will pursue in Chapter 5). We
trained an exhaustive negative selection algorithm with r-contiguous patterns on
an a dataset S ⊆ {a, . . . ,z, }10 obtained by extracting non-overlapping substrings
of length 10 from the first two pages of Hermann Melville’s classic novel “Moby
Dick” [104]. This yielded 403 strings for the input sample S. To generate the input
data X , we applied the same procedure to the first chapter of the Book of John in
the English language (495 strings) and in the Hiligaynon7 language (708 strings).
Hiligaynon uses only the letters from the modern Latin alphabet (including “y”)
without accents, ligatures, or other special symbols – if this were not the case,
then the anomaly detection problem would be trivial. Now, ideally our negative
selection algorithm should negatively label all English (“normal”) strings in X ,
whereas the Hiligaynon (“anomalous”) strings should be positively labeled.

To evaluate the performance of the exhaustive negative selection algorithm on
this problem, we generated ROC curves (receiver operating characteristic). A ROC
curve visualizes the trade-off between sensitivity and specificity: For every value
of r, one determines the false positive rate

FPr =
# normal instances labeled with +1

# normal instances

and the true positive rate

TPr =
# anomalous instances labeled with +1

# anomalous instances
.

The ROC curve is then given by the points (FPr,FPr) for all possible values of
r. The larger the area under the ROC curve (AUC), the better the performance of
the classification algorithm. The ROC curve of a “classifier” that tosses a coin to
determine the label of each x∈X is a diagonal line from the origin to the point (1,1)
with an AUC of 0.5. The ROC curve of a meaningful classifier should thus lie well
above the diagonal and have an AUC higher than 0.5. A near-perfect classifier,
which assigns almost all labels correctly for almost all parameters, has an AUC
close to 1. The results of the ROC analysis applied to our language classification
example are shown in Figure 4.7. The performance is hardly better than that of
random coin tossing (AUC= 0.59). For comparison: A one-class support vector
machine [127] using a kernel based on the edit distance achieves an AUC of 0.73
on this dataset.

Our ROC analysis and Figure 4.6 jointly point to an obvious problem with re-
striction based generalization: The range of values for r that give acceptable clas-
sification results is typically very small, and possibly empty. This can be explained
by noting that for the pattern classes we defined, the probability that an r-restricted
pattern π matches a randomly generated string of the same length falls exponen-
tially to 0 for increasing r, and rises exponentially to 1 for decreasing r. These limit

7Hiligaynon is an austronesian language spoken in the Philippines.
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Figure 4.7: ROC curve for restriction-based generalization in an exhaustive neg-
ative selection algorithm with r-contiguous patterns. The algorithm was trained
on a sample S of 403 lowercase strings (with all punctuation replaced by a single
blank space) of length 10 extracted from Melville’s “Moby Dick”, and then given
an input dataset X consisting of 495 strings extracted in the same manner from the
English Bible plus 708 strings from the Bible in the Hiligaynon language. False
and true positive rates were then determined for r ∈ {0, . . . ,10}.

cases both give rise to meaningless classification, because either “almost none” or
“almost all” strings are assigned the label +1. The effect of this can be witnessed
in our language classification example: The classification is only (very slightly)
nontrivial for r = 1,2; however, r = 1 severely overfits (low detection rate) while
r = 2 severely underfits (high detection rate, but unacceptable false positive rate).

4.5.5 Generalization by Pattern Sampling

Negative selection in the real immune system is most likely not exhaustive. The
number of different T cell receptors that a mouse can generate has been estimated
to 1015 [36], and the number of T cells that survive negative selection in a mouse
is roughly 108 [15]. Even if one considers that roughly 95% of the T cells are
deleted during negative selection, this still shows that only a very small fraction
of the potential T cells are actually generated. We now show that this in fact need
not be a disadvantage, as the stochastic nature of incomplete repertoire sampling
leads to a previously unappreciated type of generalization in the negative selection
algorithm. This type of generalization was first pointed out by the author in 2010
[99], and formalized via the so-called pattern sampling distance.

The idea behind the pattern sampling distance is to consider an algorithm that
generates S-consistent patterns by rejection sampling (Definition 4.22), as it is done
in the real immune system and also in most existing applications of the negative
selection algorithm [149, 139]. The probability that an element x is classified as
nonself with respect to the sample S is related to the difficulty of sampling an
S-consistent pattern that matches x. If x is “far away” from S in the universe U



68 CHAPTER 4. NEGATIVE SELECTION ALGORITHMS

(where the precise meaning of “far away” is induced by the matching rule), then
the number of consistent patterns that can match x is larger than if x is “near” to
S. These differences lead to a notion of similarity between S and x, which can take
values between 0 and 1. Formally, we define the pattern sampling distance as the
probability with which a sampling negative selection algorithm positively labels an
input element.

Definition 4.30 (Pattern Sampling Distance). Let C = (U ,P,M) be a layered pat-
tern class. Let x ∈ U (L), and let π be a pattern sampled from P(L) uniformly at
random. The pattern sampling distance ∆C(S,x) is defined by

∆C(S,x) =

{
Pr [M(π,x) = +1 | π ∈ C[S] ] |C[S]|> 0
⊥ otherwise .

Fact 4.31. If ∆C(S,x) 6=⊥, then

∆C(S,x) =
|C[S∪{(x,+1)}]|

|C[S]|
. (4.1)

Fact 4.32. If ∆C(S,x) 6=⊥, then the sampling negative selection algorithm N(S,{x})
(Definition 4.22) using pattern class C terminates and ∆C(S,x) is the probability
that it outputs (x,+1). Otherwise, N(S,{x}) does not terminate.

The sampling distance is thus intimately related to the detection outcome of
stochastic negative selection algorithms: Consider a generalized version of our
sampling negative selection algorithm that generates N patterns rather than just
one. Then the algorithm will label an input element x ∈ X positively if N is at least
on the order of 1/∆C(S,x). Thus, by adjusting N, one can control the degree of
generalization. This is orthogonal to the restriction-based generalization explained
in the previous section.

We can not only predict the outcome of a sampling negative selection algo-
rithm N(S,X) by computing ∆C(S,x) for each x ∈ X , but also use these values
directly for threshold-based classification. In fact, for classification purposes it is
sufficient to compute only the cardinality of C[S∪{(x,+1)}], as the denominator
in equation 4.1 does not depend on x. For ROC analysis, we can define a threshold
θ ∈ N and assign the label +1 to those x ∈ X where |C[S∪ ({(x,+1)}]| ≥ θ ; the
ROC curve is then obtained by determining the resulting true positive rates TPθ

and false positive rates FPθ for all possible values of θ . Note that TPθ and FPθ

are monotone increasing functions of θ . Figure 4.8 illustrates the results of such a
ROC analysis for our running example. Threshold-based classification via ∆C(S,x)
or |C[S∪ ({(x,+1)}]| can be understood as a generalization of exhaustive nega-
tive selection, which would correspond to the special case θ = 0. Therefore, one
could say that sampling based generalization simply introduces a further classifica-
tion parameter. This explains why sampling based generalization should normally
yield a better classification result than merely restriction based generalization, as
witnessed by comparing Figure 4.7 and Figure 4.8.
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Figure 4.8: ROC curve for generalization via pattern sampling. For the sample S
and input data X from Figure 4.7, the pattern sampling distance ∆r-CONT(S,x) was
computed for every x∈ X , and the ROC curve was determined by ranking the x∈ X
accordingly.

For sampling based generalization to be meaningful, different patterns from
the same layer should match at least approximately the same number of strings; in
other words, ∆C(∅,x) should be roughly the same for all x ∈ U (L). Otherwise, the
algorithm will suffer from a built-in classification bias. Formally, one could require
the pattern class to fulfill the following property at least approximately.

Definition 4.33 (Uniformly Layered Pattern Classes). Let C = (U ,P,M) be a
layered pattern class. Then C is called uniformly layered if for every layer L ∈ N,
the following holds: For all π1,π2 ∈ P(L), |L(π1)|= |L(π2)|.

In summary, we can state that generalization via the pattern sampling distance
is a more fine-grained version of restriction-based generalization, which could al-
leviate the built-in tendency [137, 138, 139] of restriction-based generalization to
over- or underfit the input sample.

4.5.6 Beyond Consistency: The Matching Profile

The fact that negative selection algorithms are consistent learners should seem bad
news from a machine learning perspective, because consistent learners have in-
herent difficulties in dealing with noisy data – unfortunately, most real-world data
is noisy. Before turning our attention to computational complexity questions, we
wish to briefly outline a technique that can be used to build non-consistent nega-
tive selection algorithms. For pattern classes with a built-in matching radius, like
r-contiguous or r-hamming patterns, this technique can be obtained as follows.

Definition 4.34 (Matching Profile). Let C = (U ,P,M,ρ) be a layered, restricted
pattern class where P = Σ∗×N. Let S ⊆ ΣL×{−},x ∈ ΣL. Then the matching
profile Πr-C(S,x) is defined by

Πr-C(S,x) =
(

Π
(1)
r-C(S,x), . . . ,Π(L)

r-C(S,x)
)
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where
Π

(r′)
r-C (S,x)) = |{(π,r) ∈ r-C[S] :M((π,r′),x) = +1}| .

We can envisage the components of the matching profile as asymmetric ver-
sions of the pattern sampling distance. In particular, Π

(r)
r-C(S,x) is the denominator

of ∆r-C(S,x). More generally, Π
(r′)
r-C (S,x) is the number of patterns π with the prop-

erty that (π,r) does not match any s∈ S, but (π,r′) matches x. Hence, the matching
radius used for training and classification are no longer the same.

The matching profile has numerous applications. For instance, one may wish
to rank the elements in X by their pattern sampling distance to S as we have done
above (this will also be our goal in Chapter 5). Then it often is desirable to avoid
ties in the ranking, e.g., if one wants to perform non-parametric statistical tests.
Given the matching profiles of two elements x,y ∈ X with ∆r-C(S,x) = ∆r-C(S,y),
which implies that Π

(r)
r-C(S,x) = Π

(r)
r-C(S,y), the tie can be broken by comparing

Π
(r−1)
r-C (S,x) to Π

(r−1)
r-C (S,y), then Π

(r−2)
r-C (S,x) to Π

(r−2)
r-C (S,y), and so forth until a

difference is found.
Moreover, one can directly base the classification on some element Π

(r′)
r-C (S,x)

of the matching profile rather than the pattern sampling distance. For r′ ≤ r, this
yields a non-consistent classifier, which may be more robust towards noisy data.
Let us illustrate this fact using again our language classification example, where
our training set S consists of 406 strings of length 10 from “Moby Dick”, and the
normal instances in our test set X are 495 strings from the English Bible. Now,
suppose an adversary would sneak some anomalous strings into our training set S.
No matter how small the number of such strings would be compared to the size of
S, a classifier based on the pattern sampling distance would always consider them
as normal.

This is not the case if we use the matching profile for classification. As an
example, suppose we now use only the first 7 strings of the Hiligaynon Bible as
anomalous instances, and perform a classification based on, say, Π

(2)
7-CONT instead of

the pattern sampling distance. This gives an AUC value of 0.8 (p = 0.006). Now,
we inject the 7 Hiligaynon strings into S. While our pattern sampling distance
based algorithm would now classify all of them as normal, the matching profile
is not so easily fooled, and seems to detect that these strings are really outliers
(AUC= 0.74, p = 0.03). This effect appears to warrant further investigation, which,
however, will not be accomplished within the scope of this thesis. Thus, let us leave
it at this basic example and turn our attention to the computational complexity of
negative selection.

4.6 The Computational Complexity of Negative Selection

One can view a negative selection algorithm as a specific way of computing a cer-
tain function. Even though this specific implementation might be very inefficient,
other algorithms might exist that compute the desired function more quickly. In
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the standard black box approach to computational complexity, one thus seeks to
prove upper and lower bounds for the complexity of any algorithm that computes
the desired function. In this section, we investigate upper and lower complexity
bounds for the functions computed by negative selection algorithms.

It was long thought that the negative selection algorithms suffer inherently from
prohibitive computational complexity [136, 139]; however, this turns out to be true
only for naive implementations of the scheme that Forrest et al. [55] originally
proposed. In fact, the classification outcome of negative selection algorithms is
often computable in polynomial time; whether this is possible or not depends on
the employed pattern matching rule. We will give examples for some matching
rules that allow efficient implementations, but also provide hardness results for
some cases where this is unlikely to be possible.

Our analysis will again be concerned with the two special cases of negative se-
lection algorithms that we defined in Section 4.4.5 – exhaustive negative selection
and sampling negative selection. We will show that the computational complexity
of the function computed by an exhaustive negative selection algorithms is tightly
bounded by the complexity of an associated formal decision problem, the con-
sistency problem. For sampling negative selection, we can provide upper bounds
for the computational complexity of the probabilistic function computed by a sam-
pling negative selection algorithm through the complexity of computing the pattern
sampling distance, which leads to (slightly generalized) counting problems.

4.6.1 Computational Complexity Tools

To provide evidence for the computational hardness of decision problems, we use
the standard notion of NP-completeness. Informally, a decision problem is NP-
complete if it is roughly as hard as finding a satisfying assignment for a formula
in propositional logic – it is conjectured, although not proved, that no efficient
algorithm (i.e., with polynomial runtime) exists for this problem. For formal defi-
nitions of Turing machines, polynomial time computability, NP-completeness and
other standard notions of computational complexity, see the textbook by Garey and
Johnson [59].

Furthermore, we will discuss the computational complexity of rational-valued
functions ϕ : Σ∗ → Q. For these functions we will either show that they can be
computed in polynomial time, or are hard for the complexity class #P introduced
by Valiant [151] in the sense that we define as follows.

Definition 4.35 (The Complexity Class #P [151]). Let M be a nondeterministic
Turing machine with input alphabet Σ. Let #accM denote the function that maps
every string x ∈ Σ∗ to the number of accepting computation paths of M on input x.
Then

#P = {#accM |M is a polynomial-time nondeterministic Turing machine} .

To show that rational-valued functions are hard for #P, we use the following
reduction. We assume that rational numbers are encoded as pairs of integers.
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Definition 4.36 (#P-Hardness of Rational-Valued Functions). For two functions
f ,g : Σ∗ → Q, we write that f is polynomial-time one-Turing reducible to g if
there is a pair of polynomial-time computable functions R1 : Σ∗ → Σ∗ and R2 :
Σ∗×Q→ Q, such that for all x we have f (x) = R2(x,g(R1(x))). We say that a
function ϕ : Σ∗ → Q is #P-hard if every function in #P is polynomial-time one-
Turing reducible to ϕ .

#P-hardness of a function ϕ provides strong evidence about its intractability:
For every problem Π from the polynomial hierarchy [114], there exists a deter-
ministic Turing machine M solving Π in polynomial time using a single query to
a ϕ-oracle. In this sense, #P is a “harder” complexity class than NP, which is the
first level of the polynomial hierarchy.

4.6.2 Complexity of Exhaustive Negative Selection

The computational complexity of the function computed by an exhaustive negative
selection algorithm (Definition 4.21) can be precisely characterized by a related
formal decision problem: the well-known consistency problem from learning the-
ory.

Definition 4.37 (Consistency Problem). Let C = (U ,P,M) be a pattern class.
Then the consistency problem for C is defined as follows: Given a sample S ⊆
U ×{+1,−1} as input, reject if C[S] is empty, and accept otherwise. Accordingly,
the restricted consistency problem for a restricted pattern class C is defined as
follows: Given a sample S⊆U ×{+1,−1} and a number r ∈N as input, accept if
and only if r-C[S] is not empty. We say that a consistency problem is k-positive if it
is only defined for k-positive samples.

Proposition 4.38 (Exhaustive Negative Selection and the Consistency Problem).
Let N(S,X) be an exhaustive negative selection algorithm using pattern class C =
{U ,P,M). The function ϕN : (S,X) 7→ N(S,X) where S ⊆ U ×{+1,−1} and
X ⊆ U is polynomial time computable if and only if the 1-positive consistency
problem for C is polynomial time decidable.

Proof. According to Fact 4.24, N(S,X) positively labels exactly the elements of
L(C[S]). Hence, every x ∈ X is negatively labeled if and only if there exists no
S-consistent π ∈ P that matches x. This means that to determine the label assigned
to x, we only need to check whether C[S∪{(x,+1)}] > 0. Thus we can simulate
N(S,X) by solving |X | instances of the 1-positive consistency problem for C.

For the other direction, suppose we can compute the output of N(S,X) in poly-
nomial time. Then we can answer whether C[S∪{(x,+1)}] > 0 in polynomial time
by inspecting the output of N(S,{x}).

The consistency problems plays a key role in consistent learning algorithms in
general, and the first instance of an NP-complete consistency problem was given in
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1988 by Pitt et al. [119]: Given a sample of labeled bitvectors, is it possible to con-
struct a 3-term DNF formula that is consistent with the sample? Hirsh et al. [67]
showed that solving the consistency problem is essential for many operations in
version space learning – in this sense, Proposition 4.38 can be understood as a spe-
cialization of their result to negative selection algorithms. However, the hardness
results obtained by Hirsh et al. for various consistency problems do not carry over
to negative selection – a consistency problem may become much easier if we allow
only one positive sample. This is the case for the 1-slicing pattern classes defined
in the previous section (Definition 4.26), for which we saw that they are inappro-
priate for exhaustive negative selection algorithms because the resulting algorithm
does not generalize. Thus it is not surprising to obtain the following proposition,
which we state here only to emphasize that consistency problems often become
substantially easier in the 1-positive case.

Proposition 4.39. Let C = (U ,P,M) be a 1-slicing pattern class layered by λ .
Then the 1-positive consistency problem for C is polynomial time decidable.

Proof. If there exists a pair of samples (x1, `1),(x2, `2) ∈ S with λ (x1) 6= λ (x2),
then there can be no pattern consistent with both and we can reject the input up-
front. This can be tested in polynomial time. Otherwise, there exists a pattern that
matches the unique positive example (x,+1) in S and does not match any of the
negative examples in S, and we can accept the input.

Remember that most pattern classes involving Boolean formulas are 1-slicing,
including the 3-term DNF formulas for which the general consistency problem is
NP-complete [119]. Moreover, all pattern classes we defined in Section 4.4.3 are
1-slicing. Therefore, it is only of interest to study the consistency problems for
the restricted versions of these pattern classes: For some of these, the consistency
problem is efficiently solvable, while for others we can prove it NP-hard. We start
out with the tractable cases. To avoid unnecessary technicalities, we assume from
now on that for layered pattern classes, input samples are “syntactically valid”, i.e.
they contain only strings from a single layer U (L); recall that this was also assumed
in the definition of the exhaustive negative selection algorithm (Definition 4.21).

Proposition 4.40 (Tractability of r-Chunk Patterns). The 1-positive restricted con-
sistency problem for r-CHUNK is polynomial time decidable.

Proof. Let (s,+1) be the single positively labeled example in the input S ⊆ ΣL×
{+1,−1}. We simply need to verify that for all i ∈ {1, . . . ,L− r +1}, it holds that
s /∈ S[i . . . i+ r−1]. If that is the case, we accept the input, and reject it otherwise.

The proof of the following theorem is somewhat intricate and is thus postponed
to Section 4.7, where we will have more sophisticated string processing tools avail-
able. The theorem is a direct consequence of Lemma 4.62 and Lemma 4.65. We in-
clude the 0-positive restricted consistency problem in this case because it is equiv-
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alent to the “detector generability” problem considered by Stibor [143], which was
conjectured to be NP-complete [149].

Theorem 4.41 (Tractability of r-Contiguous Patterns). The 0- and 1-positive re-
stricted consistency problems for r-CONT are polynomial time decidable.

For the remaining two of our string-based pattern classes, we will now show
that the 1-positive restricted consistency problems are NP-complete. Therefore, the
outcome of an exhaustive negative selection algorithm is unlikely to be polynomial
time computable8.

Theorem 4.42 (Intractability of r-Wildcard Patterns). The 1-positive restricted
consistency problem for r-WILDCARD is NP-complete.

Proof. The proof is a straightforward reduction from the set cover problem. The
set cover problem is defined as follows: Given L sets X1,X2, . . . ,XL ⊆ {1, . . . ,n}
and a number k, can we choose k of the given sets such that their union contains
all numbers from 1 to n? We can reduce an instance of set cover to an instance
of the 1-positive restricted consistency problem for r-WILDCARD as follows. Set
Σ = {a,b}. Create negative examples (si,−1),si ∈ ΣL,1≤ i≤ n, such that si[ j] = b
if i ∈ X j and si[ j] = a, otherwise. Then create a positive example s0 = (aL,+1).
Now let π be any S-consistent pattern with k non-� symbols. All of these non-
� symbols must be the letter a. Let {i1, . . . , ik} be the indices of these symbols,
then Xi1 , . . . ,Xik is a solution to the set cover instance. Conversely, if Xi1 , . . . ,Xik is
a solution to the set cover instance, then the pattern with the letter a at positions
{i1, . . . , ik} and the symbol � everywhere else is S-consistent.

Theorem 4.43 (Intractability of r-Hamming Patterns). The 1-positive restricted
consistency problem for r-HAMMING is NP-complete.

Proof. The 0-positive consistency problem for r-distributed patterns can be equiv-
alently stated as follows: Given a set S of strings of length L, find a string π such
that δH(π,s) > r for all s ∈ S, where δH denotes the Hamming distance. This is the
well-known farthest string problem [93], which is NP-complete. For the 1-positive
consistency problem, we have the additional constraint δH(d,x)≤ r, where x is the
unique positive example. It is easy to show that despite the additional constraint
the problem remains NP-hard.

4.6.3 Complexity of Sampling Negative Selection

The counterpart of the consistency problem for a sampling negative selection algo-
rithm is the pattern sampling distance (Definition 4.30) ∆C . Via computing ∆C , a
sampling negative selection algorithm can be simulated in polynomial time.

8 As a side note, we conjecture that the 0-positive restricted consistency problem for this class
admits a pseudo polynomial time algorithm. In this case it is unlikely to be NP-hard.
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Proposition 4.44 (Efficient Simulation of Sampling NSA). Let C = (U ,P,M) be
a layered pattern class and let N be a sampling negative selection algorithm using
C. If ∆C is polynomial time computable, then there exists a probabilistic algorithm
A(S,X) with expected polynomial runtime such that for each x ∈ X we have

Pr [N(S,X) outputs (x,+1) ] = Pr [A(S,X) outputs (x,+1) ] .

Proof. To simulate N(S,X), we simply calculate p = ∆C(S,x) for each x ∈ X and
output (x,−1) if p =⊥; otherwise we output (x,+1) with probability p or (x,−1)
with probability 1− p. To output things with these exact probabilities using a
Turing machine that is only allowed to throw fair coins, one can use rejection sam-
pling, which yields the desired output probability distribution in expected polyno-
mial time [80].

Computing ∆C(S,x) however provides much more information than any single
run of the sampling NSA. Consequently, the computational complexity of calculat-
ing the pattern sampling distance provides only an upper bound for the complexity
of sampling NSA, and the following theorem shows that this upper bound is not
tight.

Theorem 4.45 (Efficient Sampling NSA Without Counting Patterns). There exist
pattern classes C for which (1) computing ∆C is #P-hard, and (2) there exists a
sampling NSA using C with expected polynomial runtime.

We first prove the following technical lemma.

Lemma 4.46 (Embedding an Additional Object into a Uniform Sampler). Let X
be a finite set of unknown cardinality |X | > 1, and suppose that there exists an
algorithm A with expected polynomial runtime that generates an element from X
uniformly at random. Let x∗ /∈ X. Then there exists an algorithmA∗ that generates
an element from X ∪{x∗} uniformly at random in expected polynomial time .

Proof. Let n denote the unknown cardinality of X . Our procedure A∗ works as
follows: (1) A∗ samples an element a uniformly at random from X . (2) A∗ repeat-
edly samples a tuple (x,y) uniformly at random from X2 until (x,y) 6= (a,a). (3) If
x = a, then A∗ outputs x∗. Otherwise, A∗ outputs a. Now the probability that A∗
outputs x∗ is

n−1
n2−1

=
1

n+1
,

and thus the output probability distribution is uniform over X ∪{x∗}. The lemma
now follows by noting that because |X | ≥ 2, step (2) above terminates after a con-
stant expected number of iterations.

Now we are prepared to prove Theorem 4.45.
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Proof of Theorem 4.45. We need to define a pattern class C such that (1) computing
∆C is #P-hard, but at the same time (2) it is feasible to sample exactly uniformly
from C[S] for negative samples S. To this end, we will encode a combinatorial
problem into our pattern class that has a #P-hard counting version even though one
can sample uniformly from the solution space. The first problem that was shown to
have this property is DNF satisfiability [80]. However, it does not appear feasible
to express an arbitrary DNF formula in terms of a 1-positive consistency problem,
which has the form of a conjunction of constraints. Instead, we use here the graph
coloring problem.

Let us denote the set {1, . . . ,n} ⊆ N by [1,n. We recall that a k-coloring of a
graph G = (V,E) is a mapping C : V → [1,k], and it is called valid if C(v) 6= C(w)
for all {v,w} ∈ E. Counting the k-colorings of a graph with maximal degree κ

is #P-hard for all constants k,κ ≥ 3 [19]. Still, we can sample exactly from the
valid k-colorings as long as k > κ(κ + 2) [77]. Below, we assume that κ ≤ 3 and
k ≥ 15. Note that a graph of maximum degree 3 is always 15-colorable, such that
the decision version of the graph coloring problem is trivial for these constants.

To make the proof more palatable, we proceed in two steps. First we show
that there exists a pattern class C for which determining |C[S]| is #P-hard, even
though we can sample exactly uniformly from C[S], where S is a 0-positive sample.
This is not yet exactly what we need because |C[S]| is only the denominator of the
pattern sampling distance ∆C (see Equation 4.1); it may in principle be infeasible
to calculate the denominator, but feasible to calculate the entire fraction. This can
however be dealt with rather easily, as will be shown in our second step.

Step 1. We define a layered pattern class GCOL = (UGCOL,PGCOL,MGCOL) as
follows. Our universe is a set of graphs of the form

U (L)
GCOL = {(V,E,ρ) : V = [1,L], ρ ∈V, E ⊆ {{ρ,v} : v ∈V \{ρ}}, |E| ≤ 3} ,

i.e., rooted star graphs with at most 3 edges. Figure 4.9 shows three examples s1,
s2, and s3 (with roots ρ in bold).

Our pattern language and matching function will now be defined in such a
way that a negative sample S ⊆ UGCOL ×{−1} encodes an induced graph G(S);
hence, counting G(S)-consistent patterns will be equivalent to counting the valid
k-colorings of G(S). To this end,

P(L)
GCOL = {(V,E,C) : V = [1,L], E ⊆ {e⊆V : |e|= 2}, C : V → [1,k]}

is simply the set of all arbitrarily k-colored graphs (the coloring need not be valid).
The matching function is defined as follows:

MGCOL

(
(V,E,C),(V ′,E ′,ρ)

)
=



⊥ V ′ 6= V
+1 (1) E ′ * E

or (2) E \E ′ contains a ρ-adjacent edge
or (3) C is no valid coloring for (V ′,E ′)

−1 otherwise



4.6. COMPUTATIONAL COMPLEXITY OF NEGATIVE SELECTION 77

Consider now a negative sample S, and suppose there does not exist an S-
consistent pattern π = (V,E,C). This may occur only if one of the following
holds: (1) S contains two elements from different layers; (2) there exist two sam-
ples (V ′,E ′1,ρ1),(V ′,E ′2,ρ2) ∈ S and an edge {ρ1,v} ∈ E ′1 such that {ρ1,v} /∈ E ′2
and ρ2 ∈ {ρ1,v}. In other words, once an edge {u,v} appears in one sample graph
(in which either u or v is the root), it has to appear in every sample graph in which
either u or v is the root for there to be an S-consistent pattern. Both cases, and thus
the 0-positive consistency problem for GCOL, can be verified in polynomial time.

Consider now a negative sample S = {((V ′,E ′1,ρ1),−1), . . . ,((V ′,E ′n,ρn),−1))}
for which at least one consistent graph pattern π = (V,E,C) exists. We define the
induced graph G(S) by G(S) := (V,∪iEi). Then G(S) has maximum degree κ ≤ 3.
The definition of MGCOL ensures that (1) G(S) has maximum degree κ ≤ 3; (2)
every S-consistent graph π ∈ PGCOL contains G(S) as a subgraph, and (3) C is a
valid coloring of G(S). Edges whose endpoints do not appear as roots in S may or
may not be present in π (dashed edges in the consistent graph π in Figure 4.9), and
nodes that are not adjacent to any of the sample edges (like the top left and bottom
left nodes in the consistent graph in Figure 4.9) may be assigned an arbitrary color.

Let #χ(G(S)) the number of valid k-colorings of G(S) = (V,E(S)). Denote the
roots of the star graphs in S by ρ(S). Then, assuming |GCOL[S]|> 0, we have

|GCOL[S]|= #χ(G(S)) ·2ε ,

where

ε =
δ 2−δ

2
, δ = |V |− |ρ(S)| ,

is the number of edges missing in G(S) that are not adjacent to some root from S,
which may or may not be present in S-consistent graphs.

Now suppose we had an algorithm for computing |GCOL(S)|. Then we could
determine the number #χ(G) of valid k-colorings for an arbitrary graph G of max-
imal degree κ as follows: Decompose G = (V,E) into star graphs by creating for
each node v ∈ V a sample graph consisting of the root v and its adjacent edges
in G. Label all these samples negatively, which gives a negative sample S. Then
G(S) = G, and

#χ(G) =
|GCOL[S]|

2ε

gives the number of valid k-colorings of G (recall that for our values of k,κ , it is
guaranteed that #χ(G) > 0). Because ε can be computed in polynomial time from
G, computing |GCOL[S]| must thus be #P-hard for k,κ ≥ 3.

Conversely, given an arbitrary negative sample S over U , we can sample from
GCOL[S] as follows. First check whether |GCOL[S]| = 0 as discussed above, in
which case the output is not defined. Otherwise, compute the induced graph G(S)=
(V,E), and sample a valid coloring of G(S) at uniform using Huber’s algorithm
[77], which runs in expected polynomial time for k > κ(κ +2). Next, consider ev-
ery missing edge {u,v} ⊆V where none of the endpoints appear as roots in S, and
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sample s1 sample s2 sample s3
induced

graph G(S)
consistent
graph π

Figure 4.9: Illustration of the universe and pattern class from the proof of Theo-
rem 4.45. The definition ofMGCOL ensures that an edge {u,v} that occurs in some
sample si must also occur in every other sample where u or v is the root, otherwise
there exists no S-consistent pattern. For example, if the common edge of sample
s2 and s3 were missing in one of these samples, then there would be no pattern
consistent with both (s2,−1) and (s3,−1). In this fashion, the negatively labeled
samples from S describe an induced graph G(S). The pattern language PGCOL is
the set of all colored graphs, and a graph π ∈ PGCOL is S-consistent if and only if it
contains all edges of G(S) and its nodes are validly colored with respect to G(S).
Edges missing in G(S) may or may not be present in π unless they do not touch
a node that appeared as a root in a sample from S, like the dashed edges in the
rightmost graph.

insert {u,v} into E with probability 1/2. The resulting graph is sampled at uniform
from GCOL[S]. An example result of this process is depicted as the rightmost graph
in Figure 4.9.

Step 2. So far we have only provided a pattern class GCOL for which com-
puting |GCOL[S]| is #P-hard, even though we can sample from GCOL[S] uniformly
at random in expected polynomial time. Now we augment GCOL as follows: For
each layer L, we insert a special pattern π̂(L) into P(L)

GCOL and a special element
x̂(L) into U (L)

GCOL such that π̂(L) matches only x̂(L) and vice versa. From now on, let
GCOL denote this augmented pattern class. Suppose we had access to an oracle for
computing ∆GCOL(S,x). Then we could use this oracle to count the k-colorings of a
graph G = (V,E),V = [1,L], as follows: We generate as explained above a negative
sample S with G(S) = G. Then

∆GCOL(S, x̂(L)) =
1

1+#χ(G)2ε
.

Hence, we could compute #χ(G) from ∆GCOL(S, x̂(L)) by rearranging the above,
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which implies that computing ∆GCOL(S, x̂(L)) is #P-hard in the sense defined at the
beginning of this section.

However, we can sample from the S-consistent patterns of any negative sample
S, and thus implement a sampling negative selection algorithm (Definition 4.22)
in expected polynomial time. To show this, we need to distinguish two cases: If
S contains x̂(L), then π̂(L) is not S-consistent, and we output a pattern sampled at
uniform from GCOL[S]. Otherwise, π̂(L) is S-consistent, and we apply Lemma 4.46
to sample a pattern at uniform from GCOL[S]∪{π̂(L)}.

Even though we have now seen that the complexity bound provided by Propo-
sition 4.44 is not sharp, the bound is still very useful: For many important pat-
tern classes we can compute the pattern sampling distance and thereby effectively
derandomize the corresponding sampling negative selection algorithms. This in-
cludes the r-chunk and r-contiguous patterns, for which we have already solved the
consistency problems efficiently. Because generalization via the pattern sampling
distance is even possible for the 1-slicing, unrestricted versions of these pattern
classes, it would also be useful to determine the complexity of the corresponding
unrestricted counting problems. However, we limit our proofs here to the restricted
versions; our efficient algorithms for computing the restricted pattern sampling dis-
tance can be easily adapted to computing the general version because they all in-
volve computing |C[S,r]| and |C[S∪ (m,+),r]|, which then can be summed over all
matching radii r. As usual, we assume all input samples to be syntactically valid
by containing only strings of equal length.

Theorem 4.47 (Tractability of r-Chunk Patterns). The sampling distance ∆r-CHUNK

is polynomial time computable.

Proof. For all negative samples S⊆ ΣL×{−1} and all strings x ∈ ΣL,

∆r-CHUNK(S,x) =
|{i ∈ {1, . . . ,L− r +1} : S avoids x at position i}|

∑
L−r+1
i=1 |Σ|r−|S[i . . . i+ r−1]|

.

The equation is correct because a string x can match at most one r-chunk pattern per
index i ∈ {1, . . . ,L− r + 1} (numerator), and the number of S-consistent r-chunk
patterns per index i is equal to the number of strings of length r that do not occur
in any s ∈ S at position i (denominator).

As in the exhaustive case, the proof of the following theorem is postponed to
Section 4.7.

Theorem 4.48 (Tractability of r-Contiguous Patterns). The pattern sampling dis-
tance ∆r-CONT is computable in polynomial time.

For the other two string pattern classes from Section 4.4.3, the pattern sam-
pling distance is unlikely to be polynomial time computable because an algorithm
that computes it could be used to solve the corresponding 1-positive consistency
problem.
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Proposition 4.49. Let C be any pattern class for which the 1-positive consistency
problem is NP-hard. Then there exists no polynomial time algorithm for computing
∆C unless P=NP.

Proof. We can use a ∆C-oracle for solving the 1-positive consistency problem as
follows. Given the input S∪{(x,+1)}, compute d := ∆r-WILDCARD(S,x). If d =⊥,
then reject the input (there is no S-consistent pattern). Otherwise, reject the input
if d = 0 (there is no S-consistent pattern matching x) and accept otherwise.

In particular, this yields the following two negative results.

Corollary 4.50 (of Proposition 4.49 and Theorem 4.42). There exists no polyno-
mial time algorithm for computing ∆r-WILDCARD unless P=NP.

Corollary 4.51 (of Proposition 4.49 and Theorem 4.43). There exists no polyno-
mial time algorithm for computing ∆r-HAMMING unless P=NP.

4.7 Efficient Negative Selection By Pattern Compression

Our computational complexity analysis in the previous section was not concerned
with negative selection algorithms themselves, but rather with the complexity of
the functions computed by such algorithms. We argued that the algorithms them-
selves are (for most pattern classes) inherently inefficient, as they will typically
need exponentially many patterns to achieve a sufficient coverage of the universe.
In this section, we discuss a general technique that can be applied to overcome this
limitation while still preserving the general structure of the algorithm, namely pat-
tern compression. Using this technique, we can construct compact representations
of the pattern sets P used by negative selection algorithms, and use these for classi-
fication instead of the patterns themselves. Typically, our goals will be to construct
this representation in polynomial time in the training phase, and to achieve at the
same time a fast (ideally: linear time) classification of each input element in the
classification phase. Our representations will also allow to efficiently perform sev-
eral operations on the pattern set itself, like counting the number of S-consistent
patterns, removing or inserting patterns, computing the union or intersection of
two pattern sets and so on. This can be very useful especially in semi-supervised
learning algorithms that use feedback mechanisms to tune a pattern set for optimal
classification performance, as it is done for example in learning classifier systems
[73] that are similar to negative selection algorithms.

We illustrate this technique using the restricted pattern types r-CHUNK and r-
CONT defined in Section 4.4.4. For r-CONT in particular, the solution is rather
intricate, and requires using some advanced string processing techniques. We thus
start by defining the components of our string processing toolkit.

4.7.1 String Processing Tools

For our general terms related to strings and substrings, see Definition 4.7.
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a b

a ab

Figure 4.10:
A prefix DAG

Definition 4.52 (Prefix DAGs). A prefix DAG D is a directed
acyclic graph whose edges are labeled with symbols from Σ such
that for all σ ∈ Σ, every node has at most one outgoing edge la-
beled with σ . In analogy to trees, a root in the prefix DAG is a
vertex with indegree 0, and a leaf is a vertex with outdegree 0.
We write s ∈ D if there is a root ρ and a leaf λ in D with a path
from ρ to λ such that s is the concatenation of the labels on the
path. Given root ρ ∈D, the language L(D,ρ) contains all strings
s where s[1 . . . i] ∈ D for some i≥ 1. If D has only one root ρ , we
write for short L(D) instead of L(D,ρ).

a
a
b

Figure 4.11:
A prefix tree

For the prefix DAG D displayed in Figure 4.10, which has
two roots, we have for example aa,ba,ab ∈ D, but bb /∈ D. If
we denote the upper root vertex of D by ρ , then L(D,ρ) consists
of all strings starting with aa. A special case of prefix DAGs are
prefix trees. For the prefix tree T shown in Figure 4.11 to the right,
L(T ) is the language of all strings that start with either a or ba.

Definition 4.53 (Deterministic Finite Automata (DFA)). A finite automaton is a
tuple M = (Q,qi,Qa,Σ,∆), where Q is a set of states, qi ∈ Q is the initial state,
Qa ⊆ Q is the set of accepting states, Σ is an alphabet, and ∆ ⊆ Q×Σ×Q the
transition relation, which is deterministic: for every q ∈Q and every σ ∈ Σ there is
at most one q′ ∈ Q with (q,σ ,q′) ∈ ∆. M can be represented as a graph with node
set Q and labeled edges (a σ -labeled edge from q to q′ if (q,σ ,q′) ∈ ∆). M is said
to accept a string s if there exists a path (which need not be simple) from qi to some
q ∈ Qa whose concatenated edge labels equal s. The language L(M) contains all
strings accepted by M.

Note that every prefix tree or prefix DAG can be turned into a DFA by setting
one of its roots as the initial state, setting Qa to the set of leaves, and adding self-
loops to every leaf for every σ ∈ Σ.

Definition 4.54 (Mealy Automata). A Mealy automaton M is defined as a tuple
M = (Q,qi,Qa,Σ,∆,Ω,ω) where (Q,qi,Qa,Σ,∆) is a finite automaton, Ω is the
output alphabet, and ω : ∆→Ω is the output function. Let m∈ Σ∗ and t1, . . . , t|m| ∈
∆ be the sequence of transitions made by M for input m, then the output of M on
input m is the string ω(M,m) = ω(t1) . . .ω(t|m|) ∈Ω∗. If Ω is a set of numbers, we
define the accepted language L(M,r) to be the set of strings m ∈ Σ∗ where there
exists an i≤ |m| with ∑

i
j=1 ω(M,m)[ j]≥ r.
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a p1

a p-1

b p2

Figure 4.12:
A Mealy
automaton

Note that the accepted language of this Mealy automaton does
not depend on the accepting states, but only on the outputs of the
transitions. Like a DFA, a Mealy automaton can be represented by
a graph where every edge label is a pair of the symbol triggering
the corresponding transition and the output of the transition. For
the Mealy automaton M displayed in Figure 4.12 to the right, we
have ba ∈ L(M,2) and a ∈ L(M,1), but a /∈ L(M,2). For a more
detailed discussion of automata-based string processing, we refer
to the textbook of Crochemore, Hancart and Lecroq [33].

4.7.2 Compressing r-Chunk Patterns

Since an r-chunk pattern (π, i) is simply a fixed-length string π that does not occur
in the input sample S at position i, a compressed representation of r-chunk patterns
is easily constructible. The results in this section are thus straightforward examples
for the pattern compression approach and its applications; for the r-contiguous pat-
terns in the next section, we will require substantially more intricate constructions.

As in the previous section, we assume that input samples contain only strings
of equal length L; recall that for all string pattern types layered by λ (x) = |x| (see
Definition 4.6), including r-chunk and r-contiguous patterns, no consistent patterns
exist for samples containing two strings of different lengths.

Lemma 4.55 (Compressing r-Chunk Patterns). For every r ∈N and every negative
sample S⊆ ΣL×{−1}, one can construct in time O(|S|Lr |Σ|) a set of prefix trees
Ti, i ∈ {1, . . . ,L− r + 1}, with the following property: For every w ∈ Σr, �iw� j ∈
r-CHUNK[S,r] if and only if w ∈ L(Ti).

Proof. A string �iw� j,w ∈ Σr, is in r-CHUNK[S,r] if and only if S avoids w at
position i+1. Hence, for each prefix tree Ti we simply need to ensure that L(Ti)∩
Σr = Σr \S[i . . . i+r−1]. Each prefix tree Ti is constructed as follows: We start with
an empty prefix tree and insert into it every s ∈ S[i . . . i + r− 1]. Now we “invert”
the resulting tree as follows: for every non-leaf node n and every σ ∈ Σ for which
no edge with label σ starts at n, we create a new leaf n′ and an edge (n,n′) labeled
with σ . Finally, we delete every node from which none of the newly created leaves
is reachable. The claimed runtime follows because each Ti can be constructed in
time O(|S|r |Σ|).

See Figure 4.13 for an example of this construction. Using the prefix trees Ti,
we can compute the pattern sampling distance for r-chunk patterns in a straightfor-
ward fashion.

Theorem 4.56 (Computing the r-Chunk Pattern Sampling Distance). There exists
an algorithm that, given the input S ⊆ ΣL×{−1},X ⊆ ΣL,r ≤ L, for each x ∈ X
outputs the r-chunk pattern sampling distance ∆r-CHUNK(S,x) in time O(L) per x ∈
X after an O(|S|Lr |Σ|) preprocessing time.
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(abbbb,−1)
(aabbb,−1)
(baaaa,−1)
(baaab,−1)
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sample S
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prefix tree
for S[3 . . .5]

prefix tree
for Σr \S[3 . . .5]
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Figure 4.13: Illustration of the prefix tree construction in Lemma 4.55 for Σ =
{a,b},L = 5,r = 3: First all substrings of length 3 are inserted into an empty prefix
tree, such that each string corresponds to a path from the root (level 0) to a leaf on
level r− 1 (dashed gray lines and open circles). These trees are then inverted by
creating for each missing outgoing edge at a non-leaf node a new edge with an
attached leaf (black solid lines and filled circles). The resulting prefix trees encode
the S-consistent 3-chunk patterns. Note that the inverted trees can have leaves on
levels above r−1.
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Proof. According to Theorem 4.47, the pattern sampling distance is computed by
counting the indices i ∈ {1, . . . ,L− r +1} where x[i . . . i+ r−1] ∈ L(Ti) and divid-
ing the result by ∑

L−r+1
i=1 |L(Ti)∩Σr|. Because the latter term does not depend on

x, it can be computed after constructing the Ti according to the fact that

|L(Ti)|= ∑
l is a leaf of Ti

|Σ|(r−1)−level(l) ,

where level(l) denotes the distance of the leaf l from the root of Ti ranging from
0 to r− 1. Hence computing |L(Ti)| requires just one traversal of Ti. After this
preprocessing, ∆r-CHUNK(S,m) can be computed for each x ∈ X in time O(L).

If we are not interested in the pattern sampling distance but only in simulating
a negative selection algorithm N with maximal coverage, we can weave the prefix
trees together into a finite automaton that simulates the classification outcome of
N in merely linear time per element to classify.

Theorem 4.57 (Computing the Maximal Coverage for r-Chunk Patterns). Given
any S ⊆ ΣL×{−1} and r ∈ {1, . . . ,L}, a finite automaton M with L(M)∩ΣL =
L(r-CHUNK[S]) can be constructed in time O(|S|Lr |Σ|).

Proof. First we again construct the prefix trees Ti of Lemma 4.55. We construct
an automaton by inserting failure links [33] between the prefix trees of adjacent
levels, similar as in the well-known algorithm of Knuth, Morris and Pratt [89]. The
idea is as follows: If a mismatch occurs in a prefix tree Ti at a position k, then we
need not restart from the root of tree Ti+1, but can go directly to the node in Ti+1
that corresponds to the last k−1 symbols read. By inserting the failure links from
right to left, turning the prefix trees into a prefix DAG D, we can inductively ensure
that either such a node exists or there is no match at all.

We start by letting D be the disjoint union of T1, . . . ,TL−r+1. Then we process
the levels from i = L− r down to 1 iteratively as follows: Consider every node n
from Ti and every symbol σ ∈ Σ where Ti has no outgoing edge with label σ . Let
s be the string on the path from the root of Ti to n. Let s′ = sσ and let n′ be the
end node of the path from the root of Ti+1 that is labeled by s′[2 . . . |s′|]. If this n′

exists, we insert an edge from n to n′ with label σ . By induction one can show
that after every iteration i we have L(Ti)∩ΣL−i+1 =L(r-CHUNK[S[i, . . . ,L]]). This
construction is illustrated in Figure 4.14.

Finally, we turn D into a finite automaton with the claimed property by making
all leaves accepting states with self-loops for all σ ∈ Σ and setting the initial state
to the root ρ1.

As mentioned above, each prefix tree Ti can be constructed in time O(|S|r |Σ|).
The failure links between each pair of adjacent levels i and i+1 can be inserted in
time |S|r|Σ| by a simultaneous recursive traversal of Ti and Ti+1. Since the number
of levels is L− r +1, we obtain the claimed runtime.

This construction gives us the following version of Theorem 4.56, which yields
a better runtime for simulating exhaustive negative selection.
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Figure 4.14: Illustration of the insertion of failure links (dashed edges) between ad-
jacent prefix trees in Theorem 4.57 for the set of trees from Figure 4.13. The DAG
with failure links can be turned into a finite automaton M by turning all leaves
(filled black circles) into accepting states with self-loops for all σ ∈ Σ. For this au-
tomaton, we then have L(M)∩ΣL = L(3-CHUNK[S]). Thus, we can subsequently
simulate the output of a negative selection algorithm with 3-chunk pattern in linear
time O(L) per input string.
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derivation of contiguous pattern
from the highlighted path:

3-chunk patterns aba��
from the path �bab�

��abb
3-contiguous pattern ababb

aaa��

aba��

bba��

�aba�

�baa�

�bab�

�bba�

��abb

��baa

��bab

Figure 4.15: For the negative sample from Figure 4.13, this figure shows how one
can construct 3-contiguous patterns from overlapping 3-chunk patterns. The 3-
chunk patterns are arranged in levels and there is a directed edge from a pattern π

in level i to a pattern π ′ in level i + 1 if π[i + 1, . . . , i + r−1] = π ′[i, . . . , i + r−2].
Every path from the leftmost to the rightmost level of the graph corresponds to a
3-contiguous pattern. Figure adapted from Elberfeld and Textor [42].

Corollary 4.58 (Simulating Exhaustive Negative Selection with r-Chunk Patterns).
There exists an algorithm that, given the input S⊆ ΣL×{−1},X ⊆ ΣL,r ≤ L, pro-
duces the output of an exhaustive negative selection algorithm using r-chunk pat-
terns in time O(L) for each x ∈ X after an O(|S|Lr |Σ|) preprocessing time.

4.7.3 Compressing r-Contiguous Patterns

For r-contiguous patterns, the construction of a compressed representation is sub-
stantially more difficult since the r-contiguous matching function combines locally
overlapping substrings, in contrast to the r-chunk matching function which is a sim-
ple substring test. It had even been thought that constructing a single r-contiguous
pattern for a given negative sample S is an NP-complete problem [149]. Fortu-
nately, this turns out not to be the case,

The key idea behind our construction is that any S-consistent r-contiguous pat-
tern is composed of a set of overlapping S-consistent r-chunk patterns. If we ar-
range all S-consistent r-chunk patterns in a graph with edges between adjacent
overlapping patterns (Figure 4.15), an r-contiguous pattern corresponds to a path
from the leftmost to the rightmost level in this graph. This graph has elsewhere
been called the crossover closure [45, 139]. We based preliminary versions of the
algorithms presented in this section on the crossover closure [42, 99] because we
anticipated that they would then be more easy to understand by the artificial im-
mune systems community. However, these constructions result in rather slow al-
gorithms and are not easily generalizable beyond binary alphabets. For this reason
the algorithms presented in this section are again based on prefix trees.

Formally, we can express the correspondence between r-chunk and r-contig-
uous patterns via the following terms.

Definition 4.59 ((S,r)-Avoiding Completions of Chunk Patterns). Let S⊆ ΣL, r ≤
L. Let π = �iv� j with |v| ≤ r and i+ j + |v|= L be an S-consistent chunk pattern.
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The chunk pattern πr = �ivw,w ∈ Σ j, is called an (S,r)-avoiding right-completion
of π if for all k ∈ {i+1, . . . ,L− r +1}, there exists some r′ ≤ r such that S avoids
π[k, . . . ,k + r′− 1] at position k. Similarly, the chunk pattern πr = uv� j,u ∈ Σi,
is called an (S,r)-avoiding left-completion of π if for all k ∈ {1, . . . , i− 1}, there
exists some r′ ≤ r such that S avoids π[k, . . . ,k + r′−1] at position k.

For instance, consider the pattern π = �bab� in Figure 4.15. Then �babb
is an (S,3)-avoiding right-completion of π and abab� is an (S,3)-avoiding left-
completion of π . Directly from this definition, we obtain the following.

Corollary 4.60. Let S⊆ΣL, r≤ L. A pattern π ∈ΣL is an S-consistent r-contiguous
pattern if and only if there exists a decomposition π = uvw, 1 ≤ |v| ≤ r, such that
π ′ = �iv� j, i = |u|, j = |w| is an S-consistent r-chunk pattern, �ivw is an (S,r)-
avoiding right-completion of π ′, and uv� j is an (S,r)-avoiding left-completion of
π ′.

This observation enables us to weave the prefix trees that we constructed to
represent S-consistent r-chunk patterns together in such a way that a prefix DAG is
constructed that represents the S-consistent r-contiguous patterns.

Definition 4.61 (Leveled Prefix DAG). A leveled prefix DAG is a prefix DAG D
with k ordered roots ρ1, . . . ,ρk such that for all j≤ k, it holds thatL(D,ρ1)[ j . . .k] =
L(D,ρ j)[1 . . .k− j +1]. We write for short L(D) instead of L(D,ρ1).

Lemma 4.62 (Leveled Prefix DAG for r-Contiguous Patterns). Given any S ⊆
ΣL×{−1} and r ∈ {1, . . . ,L}, a leveled prefix DAG D with roots ρ1, . . . ,ρL−r+1
can be constructed in time O(|S|Lr |Σ|) such that the following holds: For every
i ∈ {1, . . . ,L− r +1}, we have L(D,ρi)∩ΣL−i+1 = L(r-CONT[S])[i . . .L].

Proof. The construction of D is done in four phases, presented and discussed in the
next four paragraphs. While the following proof text explains the basic ideas and
their correctness, the detailed computational steps are shown by the pseudocode in
Figure 4.18.

Construct prefix trees: For every i ∈ {1, . . . ,L− r +1}, let Ti be the prefix tree
with L(Ti)∩Σr = Σr \S[i . . . i+ r−1] from Lemma 4.55.

By definition we know that for every r-contiguous pattern π and every i ∈
{1, . . . ,L− r + 1}, π contains a string at position i that is in Ti. However, con-
versely there may be strings in Ti that do not occur in any r-contiguous pattern at
position i. Those are precisely the strings whose corresponding r-chunk patterns
have no (S,r)-avoiding left-completion or no (S,r)-avoiding right-completion. We
will remove these strings in the upcoming two steps. For the correctness of this
process, the following property of pairs (Ti,Ti+1) of adjacent trees is crucial.

Fact 4.63. Let (Ti,Ti+1) be a pair of prefix trees on adjacent levels i, i + 1 from
Lemma 4.55. For each s ∈ Ti with |s| ≥ 2, if there is no path from the root of Ti+1
labeled with s[2 . . . |s|] then s[2 . . . |s|] /∈ L(Ti+1).
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Proof. Suppose the converse, i.e., s[2 . . . |s|] ∈ L(Ti+1) and there exists a proper
nonempty prefix s′ of s[2 . . . |s|] with s′ ∈ Ti+1. The way that Ti was constructed
ensures that all proper prefixes of every s ∈ Ti occur in S at position i. This implies
that s′ occurs in S at position i+1, which contradicts s′ ∈ Ti+1.

Trim the trees in a right-to-left pass: We trim the trees T1,. . . ,TL−r+1 to obtain
new trees T (R)

1 ,. . . ,T (R)
L−r+1 where every T (R)

i contains exactly the strings from Ti

that have (S,r)-avoiding right-completions. This already holds for all strings from
the rightmost level (for which there is nothing to complete), so T (R)

L−r+1 = TL−r+1.
We trim the other trees in a right-to-left pass from i = L− r down to 1. Each
time we initialize T (R)

i to be the empty prefix tree. Then we consider every string
s ∈ Ti and insert it into T (R)

i if s[2 . . . |s|] is a prefix of some s′ ∈ T R
i+1. There are

two potential reasons for a string s ∈ Ti not to be contained in T R
i : (1) It may

be the case that no string from Ti+1 starts with s[2 . . . |s|]. Then, due to Fact 4.63
above, s[2 . . . |s|] occurs in S at position i + 1 because s[2 . . . |s|] /∈ L(Ti+1). Hence
(s[2 . . . |s|], i + 1) has no (S,r)-avoiding right-completion and thus, also (s, i) has
none. (2) The second possibility is that there is a string starting with s[2 . . . |s|]
in Ti+1, but not in T (R)

i+1 . By induction, one can prove that this is again because
(s[2 . . . |s|], i + 1) has no (S,r)-avoiding right-completion and, therefore, also (s, i)
has none. On the other hand, if s ∈ Ti is also contained in T (R)

i , there exists an
(S,r)-avoiding right-completion of (s, i) consisting of overlapping strings from the
trees T R

i , . . . ,T R
L−r+1. Thus, precisely those strings from Ti that have (S,r)-avoiding

right-completions end up in T (R)
i .

Trim the trees in a left-to-right pass: Our next step is to construct a set of
prefix trees T (L)

1 , . . . ,T (L)
L−r+1 containing only those strings that have both left- and

right-completions by an analogous left-to-right pass. For these trees it holds that
L(T (L)

i )∩Σr = r-CONT[S][i . . . i+ r−1].
Weave the trees together into a prefix DAG: Finally, we weave the trees together

into a prefix DAG as follows: For the rightmost level i = L−r+1, we set DL−r+1 =
T (L)

L−r+1. This gives L(T (L)
L−r+1)∩Σr = r-CONT[S][L− r +1 . . .L].

Now we prove the lemma by decreasing induction on i going from i = L− r
down to 1. For the induction step, assume we have a prefix DAG Di+1 with
L(Di+1)∩ΣL−i = r-CONT[S][i+1 . . .L]. For s ∈ T (L)

i , let n′ denote the correspond-
ing leaf in T (L)

i . Let n′′ denote the end node on the path from the root of T (L)
i+1 with

label s, which exists by induction assumption because s[2 . . . |s|] is a prefix of some
d ∈ r-CONT[S][i + 1 . . .L]. Create a new edge (n,n′′) labeled with σ , where n is
the parent of n′. Then delete the leaf n′ and the old edge (n,n′). After all leaves
have been iterated through, let Di be the resulting graph. Let d ∈ r-CONT[S][i . . .L].
Then d starts with a prefix from T (L)

i and, thus, d[2 . . . |d|] ∈ L(Di+1). Hence,
d ∈ L(Di) by construction. Conversely, let d ∈ L(Di) with |d| = L− i + 1. Then
d starts with a nonempty prefix that has both an (S,r)-avoiding right-completion
and an (S,r)-avoiding left-completion. Furthermore, d[2 . . . |d|] ∈ L(Di+1). Hence
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d ∈ r-CONT[S][i . . .L]. Now by setting D = D1 we obtain a leveled DAG with the
properties claimed by the Lemma.

The runtime of the construction can be determined from the pseudocode given
in Figure 4.18. As stated in Lemma 4.55, constructing the prefix trees in lines 1
and 2 takes time O(|S|Lr |Σ|). The inner loops in the right-to-left passes in lines 3–
7 and 13–19 as well as in the left-to-right pass in lines 8–12 can be implemented by
a simultaneous recursion through the trees on adjacent levels in time O(|S|r |Σ|) per
iteration. This yields a worst-case runtime of O(|S|Lr |Σ|) for each of the passes
and, hence, of the overall algorithm.

The leveled prefix DAG can now be used in several ways. The most obvious
one is to turn it into a finite automaton whose accepted language is the set of r-
contiguous patterns.

Corollary 4.64 (Compressing r-Contiguous Patterns). Given any S ⊆ ΣL×{−1}
and r∈{1, . . . ,L}, a deterministic finite automaton M withL(M)∩ΣL = r-CONT[S]
can be constructed in time O(|S|Lr |Σ|).

Proof. Use the prefix DAG from Lemma 4.62 and turn it into a finite automaton
with initial state ρ1.

The prefix DAG constructed in Lemma 4.62 also yields a straightforward algo-
rithm for deciding membership of a string m ∈ ΣL in the set L(r-CONT[S]) in time
O(Lr): For each index i ∈ {1, . . . ,L− r + 1}, check whether m[i . . . i + r− 1] lies
in L(D,ρi). If one index exists for which this is true, then m lies in L(r-CONT[S]).
Again we can speed up the classification to linear time O(L) using failure links
and by extending our prefix DAG with edge outputs, which turns it into a Mealy
automaton.

Lemma 4.65 (Mealy Automaton for Maximal r-Contiguous Coverage). There ex-
ists an algorithm that, given a negative sample S⊆ ΣL×{−1} and r ∈ {1, . . . ,L},
constructs a Mealy automaton M with output alphabet Ω = {−r, . . . ,r} such that
L(M,r)∩ΣL = L(r-CONT[S]) in time O(|S|Lr |Σ|).

Proof. Let M be the finite automaton constructed in the proof of Corollary 4.64
and let ρ1, . . . ,ρL−r+1 be the roots of its underlying graph. We turn M into a
Mealy automaton with output alphabet Ω = {−r, . . . ,r} such that L(M,r)∩ΣL =
L(r-CONT[S]) holds. We describe the main ideas of the construction and discuss
its correctness. For a presentation of the detailed computation steps, we refer to the
pseudocode in Figure 4.19.

We start by assigning to all existing transitions of M the output 1. Our aim is to
transform M in a right-to-left pass that inductively ensures the following property:
Let m ∈ ΣL and let 1≤ i≤ j ≤ L. Let k ≥ 0 denote the length of the longest suffix
of m[i . . . j] that is also a suffix of some d′ ∈ r-CONT[S][i . . . j]. If k ≥ r− L + j,
then there exists a path from ρi for m[i . . . j], and the sum of outputs on this path is
equal to k. Otherwise there is no such path. Hence, if such a path exists and we
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Figure 4.16: Illustration of the four phases of the algorithm from Lemma 4.62
(Figure 4.18) that creates a leveled prefix DAG D with L(D) = r-CONT[S] for the
negative input sample S from Figure 4.13 with r = 3.
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have k≥ r, then m ∈L(r-CONT[S]); otherwise, k is the length of the longest partial
match between m[i . . . j] and some d ∈ r-CONT[S][i . . . j] that can still be extended
to length ≥ r.

The property already holds for i = L− r +1. For i decreasing from L− r to 1,
we iteratively transform the graph of M as follows: For every node n in M that is
reachable from ρi, but not from ρi+1, consider all σ ∈ Σ where n has no outgoing
edge labeled with σ . Let s be the string on the path p from ρi to n, w be the total
weight on p, and s′ = sσ . If there exists a path p′ labeled with s′[2 . . . |s′|] from
ρi+1, let w′ denote the sum of weights on this path. Create an edge from n to the
last node of p′ and label it with w′−w. Now there is a path from ρi labeled with s′

with weight w′, satisfying the required property. The correctness of this procedure
can be proved by induction, and we obtain a Mealy automaton whose r-threshold
language has the desired property.

Similarly as in Lemma 4.62, the described transformation can be implemented
in time O(|S|Lr |Σ|) by simultaneous recursive descent into the prefix trees on ad-
jacent levels.

We can now use the previous two Lemmata to easily prove Theorem 4.41 from
the previous section.

Proof of Theorem 4.41. The theorem stated that the 0- and 1-positive restricted
consistency problems for r-contiguous patterns are solvable in polynomial time.
For the 0-positive problem, we are given the input S ⊆ ΣL and construct the pre-
fix DAG D from Lemma 4.62. We accept the input if this D contains at least one
path of length L. For the 1-positive problem, we are additionally given an ele-
ment x ∈ ΣL. To determine whether x is matched by an S-consistent pattern, con-
struct the Mealy automaton M from the previous Lemma and determine whether
x ∈ L(M,r).

Since the Mealy automaton M allows us to solve the 1-positive restricted con-
sistency problem, we can use it to simulate exhaustive negative selection with r-
contiguous patterns in polynomial time. This result disproves the claim by Tim-
mis et al. that negative selection with r-contiguous patterns is “equivalent to an
NP-complete problem” [149]. We obtain a linear-time classification phase after a
polynomial time training phase. Table 4.1 compares the runtimes of the exhaustive
negative selection algorithms obtained so far to previous results from the literature.

Theorem 4.66 (Simulating Exhaustive Negative Selection With r-Contiguous Pat-
terns). There exists an algorithm that, given a negative sample S ⊆ ΣL×{−1}, a
set X ⊆ ΣL, and a number r ≤ L, simulates an exhaustive negative selection al-
gorithm using r-contiguous patterns in time O(L) per x ∈ X after an O(|S|Lr |Σ|)
preprocessing phase.

Finally, we discuss how to use the prefix DAG constructed in Lemma 4.62 to
compute the r-contiguous pattern sampling distance in polynomial time. To this
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r-chunk pattern- asymptotic runtime
based algorithms training phase classification phase
Stibor et al. [140] (2r + |S|)(L− r +1) |P|L
Elberfeld, Textor [42] |S|(L− r +1)r2 |S|L2 r
Present paper |S|Lr L

r-contiguous pattern- asymptotic runtime
based algorithms training phase classification phase
D’haeseleer et al. [38] (linear) (2r + |S|)(L− r) |P|L
D’haeseleer et al. [38] (greedy) 2r |S|(L− r) |P|L
Wierzchón [163] 2r (|P|(L− r)+ |S|) |P|L
Elberfeld, Textor [42] |S|3 L3 r3 |S|2 L3 r3

Algorithms in this chapter |S|Lr L

Table 4.1: Comparison of the runtimes obtained for exhaustive negative selection
using the techniques in this chapter to those of previously published algorithms.
All runtimes are given for a binary alphabet (|Σ| = 2) since not all algorithms are
applicable to arbitrary alphabets. The parameter |P| denotes the number of patterns
that are generated in the training phase, which is bounded by the runtime of the
training phase. For the algorithm of Wierzchoń [163], |P| is an input parameter.
Table adapted from Elberfeld & Textor [43].
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end, we first prove the following lemma that gives an algorithm for contiguous
matching to strings in this DAG.

Lemma 4.67 (Counting Partial Matches in a Prefix DAG). Let L∈N,r∈{1, . . . ,L}
and let x ∈ ΣL. There exists an algorithm that, given the prefix DAG D constructed
in Lemma 4.62 for a negative sample S ⊆ ΣL×{−1}, determines |{π ∈ L(D) :
MCONT((π,r),x) = +1}| in time O((|V |+ |E|)r).
Proof. The algorithm proceeds by computing for each vertex v a set of indices
Pi(v) and another index C(v). Intuitively, the Pi(v) (partial matches) count the
strings on paths to v that do not yet match s sufficiently, while C(v) (complete
matches) counts the strings that already match s in ≥ r contiguous positions, and
can thus be arbitrarily extended.

More precisely, let v ∈ V , and let s′ denote the prefix of s that has the same
length as the strings on the paths from the root ρ1 to v (which by construction of D
are all equally long). In the following we do not distinguish between a path and the
string resulting from concatenating the labels on this path. The index Pi(v) denotes
the number of paths p from ρ1 to v for which the following holds: (1) The length
of the longest contiguous match between p and s′ is less than r; and (2) the length
of the longest common suffix of s′ and p is i. C(v) denotes the number of paths
from the root ρ1 to v that match s in at least r contiguous positions.

The Pi(v) and C(v) are computed as follows. For the root ρ1 on level 0, we set

P0(ρ1) = 1 ; P≥1(ρ1) = 0 ; C(ρ1) = 0 .

Now we iterate through the graph in breadth-first order. Denote by l ∈ {1, . . . ,L}
the current level in this breadth-first order, i.e., the distance of the current vertex v
from ρ1. The construction of D ensures that every incoming edge e adjacent to v
is labeled with the same symbol σ . We need to distinguish two cases: (1) The last
symbol does not match the input string, i.e. σ 6= s[l], in which case

P0(v) = ∑
(u,v)∈E

r−1

∑
i=0

Pi(u) ; Pj≥1(v) = 0 ; C(v) = ∑
(u,v)∈E

C(u) ;

and (2) the last symbol matches the input string, i.e., σ = s[l], such that

P0(v) = 0 ; Pj≥1(v) = ∑
(u,v)∈E

Pj−1(u) ; C(v) = ∑
(u,v)∈E

C(u)+Pr−1(u) .

These definitions are illustrated in Figure 4.17, where case (1) corresponds to the
dashed edges, and case (2) to the solid edges.

After the indices Pi(v) and C(v) have been computed for all leaves of D, we can
determine the total number of strings in L(D) that match s in at least r contiguous
positions through the following formula:

|{π ∈ L(D) :MCONT((π,r),x) = 1}|

= ∑
v is a leaf of D

[
|Σ|L−level(v) +

r−1

∑
i=0

Pi(v) ·Fr(L− level(v), i)

]
(4.2)
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where Fr(n, j) denotes the number of possibilities to extend the string from ρ1
to v, whose suffix of length j is equal to the corresponding symbols of s, with a
string of length n in such a way that the resulting string matches s in at least r
contiguous positions9. Computing Fr(n, j) is more complicated than one would
perhaps expect; it boils down to a generalization of the so-called k-step Fibonacci
numbers. A recursive form for Fr(n, j) is easiest found in terms its dual F∗

r (n, i)
giving the number of possible extensions that do not fulfill the required properties:

Fr(n, i) = |Σ|n ·F∗
r (n, i) .

The recursive expression for F∗
r (n, i) is found through combinatorial arguments.

We start with the special case F∗
r (n,0). We can assume without loss of generality

that the input string s has the form σL, with σ ∈ Σ arbitrary but fixed (otherwise
we relabel each edge from D accordingly). Then computing F∗

r (n,0) leads to the
question: How many strings in Σn do not contain the substring σ r? The answer for
n > 1 can be expressed recursively as

F∗
r (n,0) =

r

∑
j=1

(|Σ|−1)F∗
r (n− j,0)

with the termination conditions

F∗
r (n,0) = 0 for n <−1 ; F∗

r (−1,0) =
1

|Σ|−1
; F∗

r (0,0) = 1 .

For |Σ| = r = 2 the above expression gives the Fibonacci numbers shifted by two
indices to the left, i.e., F∗

2 (n) is the (n + 2)th Fibonacci number. More generally,
for |Σ| = 2 the expression gives the r-step Fibonacci numbers shifted by r indices
to the left.

Now we generalize to arbitrary i, which leads to the question: How many
strings s ∈ Σn exist such that the string σ is does not contain the substring σ r with
arbitrary but fixed σ ∈ Σ? The answer is

F∗
r (n, i) =

r−i

∑
j=1

(|Σ|−1)F∗
r (n− j,0) .

Thus, we now have fully defined Equation 4.2. To obtain the claimed runtime, the
values Fr(n, i) have to be calculated upfront for all n ≤ r (note that leaves in D do
not appear before level L− r).

The above lemma immediately leads to a polynomial time algorithm for com-
puting ∆r-CONT, which is however substantially less efficient than the one for decid-
ing membership in L(r-CONT[S]) (Theorem 4.66). We leave it as an open problem
to improve the time and space bounds given by the following corollary.

9Note that this problem bears some similarity to a well-known problem in probability: how large
is the probability to obtain r consecutive heads when tossing a coin n times?
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0,1,0 p0 2,0,0 p0

1,0,0 p0 0,0,1 p0 0,2,0 p0 2,0,0 p0

3,0,0 p00,0,2 p1 0,2,0 p0

2,0,0 p0
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b
a a

b a a
b

b

a a b a

a

Figure 4.17: Illustration of the partial match indices defined in the proof of
Lemma 4.67. The shown prefix DAG encodes the language 3-CONT[S] for S =
{(ababb,−1),(ababa,−1),(abbab,1))}, and the shown indices are computed with
respect to the input string abaab. The left parts of the vertex labels denote the in-
dices Pi(v), and the right parts denote the index C(v). For example, the label 0,0,2
p1 in the leftmost leaf vertex means P0(v) = 0,P1(v) = 0,P2(v) = 2, and C(v) = 1.
The definition in Lemma 4.67 can be understood by noting that along solid edges
(which match the input string), the indices are “shifted” one position to the right
(because all partial matches are extended by one symbol), while along dashed
edges (which do not match), the indices “collapse” back to P0(v) (because all the
partial matches are interrupted).

Corollary 4.68 (Computing the r-Contiguous Pattern Sampling Distance). There
exists an algorithm that, given the input S ⊆ ΣL ×{−},X ⊆ ΣL,r ≤ L, outputs
for each x ∈ X the r-contiguous pattern sampling distance ∆r-CONT(S,x) in time
O(|S|Lr |Σ|).

Moreover, because the prefix DAG D constructed in Lemma 4.62 allows to
compute partial matches with respect to an arbitrary matching radius r, it is also
possible to compute the entire matching profile (Section 4.5.6) for each x ∈ X in
polynomial time. This will be used in Chapter 5.

Corollary 4.69 (Computing the r-Contiguous Matching Profile). There exists an
algorithm that, given the input S⊆ ΣL×{−},X ⊆ ΣL,r≤ L, outputs for each x∈ X
the matching profile Πr-CONT(S,x) in time O(|S|L3 |Σ|).

4.8 Discussion

In contrast to the first part of this thesis where we proposed a new model, in this
part we have investigated a model introduced almost two decades prior to the time
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of writing [55], for which a large body of previous work exists. However, the
perspective we have taken in our investigation differs from this previous work in
three ways. (1) We considered the negative selection algorithm as a model of an
immunological process rather than a general purpose machine learning technique.
For this reason, (2) we formalized the negative selection algorithm using a no-
tational framework akin to algorithmic learning theory. Finally, (3) our analysis
distinguishes between the algorithm itself and the classification outcome of the
algorithm.

We have seen that the negative selection algorithm is closely related to consis-
tent learning [3] and version space learning [107]. We have also shown that a nega-
tive selection algorithm can generalize beyond the input data in two different ways:
(1) by a parameterized restriction of the pattern class; (2) by pattern sampling and,
more generally, via the matching profile. The second mechanism was previously
unappreciated in the literature, and certainly plays a role in the real immune system,
which generates T cells at random and in limited numbers. Generalization by re-
striction might be one of the factors that determine the length of the peptide chains
that are presented on MHC molecules; at least for MHC class I, it has indeed been
argued that this length provides just about enough information to discriminate self
from nonself [107]. Our computational complexity analysis showed that negative
selection algorithms using the classes of r-chunk and r-contiguous patterns, which
are based on an abstract model of T cell antigen detection [116], can be simulated
efficiently. This result will be exploited in the next chapter to generate testable
quantitative predictions from the assumption that the r-contiguous matching rule is
indeed a meaningful description of TCR-antigen binding.

We would like to point out two main directions for future work. First, we have
shown the simulation of negative selection algorithms to be NP-hard for Hamming
distance based patterns (Definition 4.12). These patterns are important for the-
oretical immunology as they have been used in more recent models like those of
Košmrlj et al. [90, 91]. Thus it would be desirable to develop methods that allow to
generate predictions efficiently despite the NP-completeness. An obvious approach
would be to investigate whether the pattern sampling distance can be at least ap-
proximately computed. Moreover, for sampling negative selection one could drop
the requirement that detector sampling has to be exactly uniform. For practical ap-
plications, approximately uniform samplers (with polynomially bounded error) are
perfectly fine: the difference between both cannot be determined by an experiment
of polynomially bounded duration [80]. We conjecture that if we allow for approxi-
mately uniform sampling, then the complexity bound provided by Proposition 4.44
would become a sharp one because approximate counting and approximate sam-
pling are mutually reducible [80].

Second, our initial approach to non-consistent versions of negative selection
algorithms (Section 4.5.6) should be investigated in more detail. Consistency im-
plies that the frequency with which elements appear in the input sample is irrel-
evant: consistency with an input sample that occurs only once is considered just
as important as consistency with an input sample that occurs many times. Most
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biological processes are somehow stochastic, and it is reasonable to assume that
this also holds for antigen presentation in the thymus – hence, it can be expected
that a T cell does not always see each and every antigen in the thymus before it is
allowed to leave. For this reason, we base our predictions in the next chapter on
the matching profile rather than the sampling distance. Further refined negative se-
lection algorithms could take the frequency with which samples appear in the input
data explicitly into account, and relax the consistency requirement accordingly. A
similar idea underlies the popular PAC learning model [152].

4.9 Epilogue: Negative Selection in Machine Learning

Thomas Stibor wrote in the conclusion to his PhD thesis [136, p. 118]:

“From the point of view of the author, the negative selection was thor-
oughly explored and has no potential for becoming a robust and use-
ful [...] anomaly detection technique. We therefore believe that future
work in this direction is not meaningful. ”

We wish to conclude this chapter by stating why we largely disagree with this
conclusion. Although it is absolutely possible that negative selection may turn out
to be less generic, less robust, or less widely applicable than other techniques such
as one-class support vector machines [126], there is no firm theoretical basis to
back up so broad a claim.

Let us review the evidence given by Stibor to support his conclusion. We fo-
cus on what he called “Hamming Negative Selection”, which refers to negative
selection with r-chunk and r-contiguous patterns. There appear to have been two
major criticisms. (1) “The complexity to generate and to store a sufficient number
of detectors is infeasibly high when applied to real-world (network) intrusion de-
tection problems” [136, p. 116]. This statement is now disproved (Theorems 4.56
and 4.68), although we did see that there exist other pattern classes for which such
a claim could be made. (2) The second issue raised was that negative selection
algorithms generalize poorly on some example datasets. Although we have not
explored this issue in great detail, we tend to agree that restriction based general-
ization (Section 4.5.5), which Stibor investigated, is presumably neither robust nor
powerful. In Stibor’s words, “the r-chunk length [restriction parameter] cannot be
arbitrarily chosen, as it must capture the semantical representation of the elements”
[136, p. 71]. In Section 4.5.5 we argue that the range of restriction parameters that
give a meaningful generalization should typically indeed be very small. However,
with sampling based generalization we have demonstrated a completely orthogonal
mechanism, which has so far not been investigated in “applied” negative selection
research. Judging from the results of our toy problem (Figure 4.7 and 4.8) and the
results that will be presented in the next chapter, we would fathom a guess that sam-
pling distance based generalization could turn out to be far more robust and flexible
than exhaustive negative selection combined with restriction based generalization,
which is simply an extreme special case of the former.
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A last argument of Stibor that we wish to respond to is that learning methods
based on statistical techniques should provide more robust results. We agree with
this assessment; combinatorial learning techniques like negative selection usually
have difficulties with erroneous labels, or when the underlying structure of the
problem space is very complex or unknown, such that it is difficult to describe
combinatorially (e.g., by a suitable pattern matching function). This problem could
be addressed in part by relaxing the consistency requirement via the matching pro-
file or other techniques – as mentioned previously, an approximately consistent
version of negative selection would presumably be less prone to noise. One po-
tential advantage of negative selection algorithms over many statistical anomaly
detection techniques [26] is their ability to natively process string data – statistical
techniques often require string data to be mapped to a metric space via appropri-
ate feature extraction or kernelization techniques. Such a mapping can be difficult
to construct, and some important information might be lost when projecting the
strings to a real-valued space. Thus it may be more natural to think of the problem
at hand as a pattern matching problem and construct an appropriate matching rule
for negative selection.

In summary, we believe that our work has opened some promising new direc-
tions for applying negative selection to practical problems. Because such work
would potentially also yield more insight into the model itself or more efficient
algorithms for applying negative selection to large datasets, it would not be with-
out purpose even if negative selection turns out to be an uncompetitive technique,
because negative selection algorithms are in any case important in theoretical im-
munology. Finally, we point out that some of the most successful models of
learning theory (e.g., inductive inference) have never yielded competitive machine
learning techniques, but still their study has provided tremendously useful results.
Even though we agree that “there is nothing more practical than a good theory”
[154], it is too narrow a view that only a practical theory is a good one.
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Algorithm CONSTRUCT-CONTIGUOUS-PATTERN-DAG(S,r)
Input: Sample S⊆ Σl×−, number r ∈ {1, . . . ,L}
Output: Prefix DAG D with roots ρ1, . . . ,ρL−r+1

such that L(D,ρ j)∩ΣL = r-CONT[S][ j . . .L]

Construct prefix trees:
1 for i = 1 to L− r +1 do
2 Ti← prefix tree with L(Ti)∩Σr = Σr \S[i . . . i+ r−1]

Trim the trees in a right-to-left pass:
3 T (R)

L−r+1← TL−r+1
4 for i = L− r down to 1 do
5 T (R)

i ← empty prefix tree
6 for each string s ∈ Ti do
7 if there exists s′ ∈ T (R)

i+1 such that s[2 . . . |s|] is a prefix of s′

8 then insert s into T (R)
i

Trim the trees in a left-to-right pass:
9 T (L)

1 ← T (R)
1

10 for i = 2 to L− r +1 do
11 T (L)

i ← empty prefix tree
12 for each string s ∈ T (R)

i do
13 if there exists s′ ∈ T (L)

i−1 such that s′[2 . . . |s′|] is a prefix of s
14 then insert s into T (L)

i

Weave the trees together into a prefix DAG:
15 DL−r+1← T (L)

L−r+1
16 for i = L− r down to 1 do
17 Di← disjoint union of Di+1 and T (L)

i ; ρi← root of T (L)
i

18 for each string s ∈ T (L)
i do

19 (n,σ ,n′)← last labeled edge on the s-path from ρi in T (L)
i

20 n′′← end node of the s[2 . . . |s|]-path from ρi+1 in Di+1
21 delete edge (n,σ ,n′) from Di and insert edge (n,σ ,n′′)

Output final prefix DAG with roots ρ1,. . . ,ρL−r+1:
22 output D← D1

Figure 4.18: For a given negative sample S ⊆ ΣL and number r ∈ {1, . . . ,L},
this procedure constructs a leveled prefix DAG D with roots ρ1, . . . ,ρL−r+1 such
that L(D,ρi)∩ΣL−i+1 = r-CONT[S][i . . .L] for every i ∈ {1, . . . ,L− r + 1} in time
O(|S|Lr|Σ|). Thus, in particular we have L(D,ρ1)∩ΣL = r-CONT[S]. Pseudocode
adapted from Elberfeld and Textor [43].
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Algorithm CONSTRUCT-CONTIGUOUS-MEALY-AUTOMATON(S,r)
Input: Sample S⊆ ΣL×−, number r ∈ {1, . . . ,L}
Output: A Mealy automaton M with L(M,r)∩ΣL = L(r-CONT[S])

1 M← Finite automaton for r-CONT[S] from Corollary 4.64
2 assign output 1 to all transitions in M
3 ρ1, . . . ,ρL−r+1← root nodes of M’s graph

Insert failure links with outputs in right-to-left pass:
4 for i = L− r down to 1 do
5 for each node n reachable from ρi but not from ρi+1 do
6 for each σ ∈ Σ where n has no outgoing σ -edge do
7 p← path from ρi to n ; s← string on p ; s′← sσ

8 if there exists a path p′ for s′[2 . . . |s′|] from ρi+1 then
9 w← sum of outputs on p
10 w′← sum of outputs on p′

11 n′← end node of p′

12 create a transition (n,σ ,n′) with output w′−w
13 output M

Figure 4.19: The algorithm sketched in the proof of Lemma 4.65, which transforms
the finite automaton M constructed in Corollary 4.64 into a Mealy automaton with
L(M,r)∩ΣL = L(r-CONT[S]). Note that the language L(M,r), formalized in Def-
inition 4.54, depends solely on the output of M, and not on M’s accepting states.
Pseudocode adapted from Elberfeld and Textor [43].



Chapter 5

Predicting Recognition of CD8
T Cell Epitopes

Summary. CD8 T cells (or “T killer cells”) are essential for controlling viral
infections. Infected cells present viral peptides (epitopes) on surface-bound MHC
class I molecules, and CD8 T cells that recognize these peptide-MHC complexes
kill the infected cells, preventing further spread of the virus. The development of
an anti-viral immune response is subject to two rate-limiting steps: (1) not all
viral peptides can be cleaved in the proteasome and bind to an MHC molecule;
(2) not all MHC-presented viral peptides trigger a strong enough T cell signal to
elicit a response. Knowing which peptides are able to elicit T cell responses is
essential for vaccine design and for understanding control of infection. Computer
algorithms have been developed that can predict the outcome of step (1) – peptide-
MHC binding – with high accuracy. However, there has been limited success so
far in identifying the factors that determine the outcome of step (2).

Here, we investigate two predictors based on the hypothesis that self-similar
epitopes are less likely to be recognized by T cells. The predictors measure self
similarity in two different ways: directly, by comparing self and nonself epitope
sequences, and indirectly, via a model of thymic negative selection. By analyz-
ing publicly available data, we show that both methods give significantly accurate
predictions of recognition status as well as recognition frequency of HLA-A2 re-
stricted HIV epitopes. These findings demonstrate that combinatorial restriction
of the CD8 T cell repertoire through thymic negative selection is an important de-
termining factor for epitope recognition. Our methodology provides a quantitative
framework for testing the biological validity of string-based models of T cell re-
ceptor cross reactivity.

5.1 Introduction

Anti-viral CD8 T cell mediated immune responses are triggered by small chunks
of foreign protein, called epitopes, that are displayed on MHC class I molecules.

101
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The need to understand disease progression and immune control of notorious vi-
ral epidemics like HIV, as well as ongoing efforts to design vaccines against such
pathogens, have given rise to the problem of epitope prediction: Given a set of
viral or other pathogenic protein sequences, identify those peptides that will bind
to MHC class I molecules and, thus, be presented to CD8 T cells. With predictors
reaching accuracies of >95% [96] and several tools freely and publicly available
[96, 112, 22, 111, 117, 64], this can almost be considered a solved problem. Such
tools can substantially reduce the amount of required experimental work for identi-
fying new epitopes, since MHC class I molecules are highly specific and only bind
to around 1% of all possible 9-mers [95]. Typically, epitope predictors are based
on artificial neural networks trained on datasets of MHC binders and non-binders
[22]; because peptide-MHC binding can be studied in vitro, a large amount of such
data is available. However, only about half of all MHC-presented peptides are
recognized by CD8 T cells [57], and these peptides are further subdivided into a
hierarchy of immunodominant, weakly recognized, and hardly recognizable (cryp-
tic) epitopes. Because T cell recognition and immunodominance are the outcome
of a highly complex process compared to the “simple” chemical reaction that is
peptide-MHC binding, the factors that determine recognition and immunodomi-
nance of T cell epitopes are still poorly understood.

One important early result on this subject was obtained by Frahm et al. [56],
who found that sequence entropy and proteasomal cleavage likelihood significantly
correlate with HIV peptide recognition frequency. However, these metrics can-
not discern whether increased recognition is due to improved cognate detection
by T cells, or can rather be explained by MHC binding alone. What was needed
were mechanistic factors for predicting recognition, which would shed light into
why certain peptides are recognized and others are not. One possibility to obtain
such metrics is to consider biochemical properties of T cell receptors (TCRs) and
epitopes. However, in a study of vaccinia infection in mice [4], Assarsson et al.
concluded that “neither peptide-binding affinity, nor complex stability, nor TCR
avidity, nor amount of processed epitope appeared to strictly correlate with immu-
nodominance status”; similar negative results were very recently obtained by Leger
at al. for HSV in mice [97]. Thus, the biophysical characteristics alone do not
seem to provide enough information for predicting peptide recognition. Another
approach is to consider the similarity of viral epitopes to the human proteome (self
similarity), because more self-similar epitopes should presumably be more difficult
to recognize. Rolland et al. [124] and Frankild et al. [57] investigated such similar-
ity measures. The similarity measure by Rolland et al. [124] was based on simple
string matching, while Frankild et al. [57] took amino acid similarity into account
using a substitution matrix. However, neither of these studies demonstrated a con-
vincing correlation between recognition status and the proposed metric.

In this chapter, we will re-consider the similarity measure defined by Frankild
et al. [57], and show that it can be improved in a biologically motivated fash-
ion. The improved measure will be shown to provide significant predictions for
both status and frequency of TCR recognition of HLA-A2 restricted HIV epitopes.
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Moreover, we propose a new metric based on a simple model of TCR cross re-
activity combined with a simulation of thymic negative selection, which provides
significant results in a mechanistic fashion.

5.2 Results

5.2.1 Improving the Metric by Frankild et al.

Frankild et al. [57] defined a similarity measure between amino acid sequences
based on the BLOSUM matrix (Section 5.4.3), with which they investigated T cell
cross-reactivity and “holes” in the T cell repertoire. For each protein from the HIV
HXB2 consensus sequence, they predicted 9-mers that would be presented on the
HLA-A2 molecule using the software NetCTL (Figure 5.1A). The resulting collec-
tion of 9-mers will be called the nonself epitopes in the following (Figure 5.1B). For
each predicted epitope, Frankild et al. searched the Los Alamos National Labora-
tory (LANL) HIV database [165] to verify whether the epitope had been confirmed
to be detectable by CD8 T cells. This was the case for around 1/3rd of the predicted
epitopes (highlighted 9-mers in Figure 5.1B). Frankild et al. hypothesized that the
non-confirmed epitopes should be more similar to self epitopes from the human
proteome, and thus fall within “holes” of the T cell repertoire. To test this hypoth-
esis, they generated a set of self epitopes by running the NetCTL software on the
entire human proteome (Section 5.4.2). For each nonself epitope, they determined
the maximum similarity to a self epitope. Their expectation was that, on average,
this maximum self similarity should be lower for the confirmed epitopes than for
the non-confirmed epitopes. However, they did not find a significant difference
between the self similarity of confirmed and non-confirmed epitopes.

We repeated their experiment using the exact same methodology on current
data (Section 5.4.2), and evaluated the predictive power of their self similarity mea-
sure using a “receiver operating characteristic” (ROC) analysis. A ROC curve is
generated by determining sensitivity and specificity of a threshold-based predictor
for all possible thresholds. In our case, this means that we set a self similarity
threshold and define all epitopes above that threshold as detectable; then, we test
this prediction against the information from the LANL database. The resulting
sensitivity and specificity correspond to one point of the ROC curve, and the entire
curve is obtained by repeating this process for all possible self similarity values.
The power of a predictor can be quantified by integrating the area under the curve
(AUC): if the AUC is 0.5 (corresponding to a diagonal ROC curve), then the pre-
diction is equivalent to random guessing, while an AUC of 1.0 would correspond
to perfect prediction. This fact forms the basis of a non-parametric statistical test
whether the classifier is better than random guessing. For the self similarity mea-
sure proposed by Frankild et al., we obtained an AUC value of 0.43, and no signif-
icant difference to random guessing (p = 0.26; Figure 5.2A).

We hypothesized that the low predictive power of the metric by Frankild et
al. [57] could be due to two issues with their similarity measure. First, not all
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A >sp|P04601|NEF HV1H2 Nef protein
MGGKWSKSSVIGWPTVRERMRRAEPAADRVGAASRDLEKHGAITSSNTA
ATNAACAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLE
GLIHSQRRQDILDLWIYHTQGYFPDWQNYTPGPGVRYPLTFGWCYKLVP
VEPDKIEEANKGENTSLLHPVSLHGMDDPEREVLEWRFDSRLAFHHVAR
ELHPEYFKNC

B AAVDLSHFL AIVALVVAI ALFLGFLGA ALQDSGLEV ALTEVIPLT
ALVEICTEM ALVEMGVEM AMSQVTNSA AVAEGTDRV AVLSIVNRV
ELADQLIHL EMMTACQGV FIMIVGGLV FLGAAGSTM FLQSRPEPT
FLREDLAFL GAASMTLTV HLEGKVILV IIAIVVWSI IIVQLNTSV
ILDLWIYHT ILGQLQPSL ILKEPVHGV ILVESPTVL IVFAVLSIV
IVGAETFYV IVTDSQYAL KALTEVIPL KLLRGTKAL KLLWKGEGA
KLTPLCVSL KLTSCNTSV KLVGKLNWA KQMAGDDCV LIVTRIVEL
LIWDDLRSL LLLIVTRIV LLNATAIAV LLQLTVWGI LLQYWSQEL
LLTQIGCTL LLWKGEGAV LQYLALAAL LTFGWCYKL LVITTYWGL
LVVAIIIAI MIVGGLVGL NITNWLWYI NTVATLYCV NVWATHACV
QILVESPTV QIWNHTTWM QLQARILAV QLTEAVQKI QMHEDIISL
RAMASDFNL RILAVERYL RILQQLLFI RIVFAVLSI RLRDLLLIV
RLVNGSLAL RMYSPTSIL RVIEVVQGA SINNETPGI SLAEEEVVI
SLLNATAIA SLQTGSEEL SLVKHHMYV SLWNWFNIT SLYNTVATL
TLNAWVKVV TLNFPISPI TLYCVHQRI TMGAASMTL TMLLGMLMI
VITQACPKV VIYQYMDDL VLAEAMSQV VTVYYGVPV VVAIIIAIV
WLWYIKLFI WQVMIVWQV WTLELLEEL YIEAEVIPA YIKLFIMIV
YLALQDSGL YLGRSAEPV YMDDLYVGS YQLEKEPIV YQYMDDLYV
YTAFTIPSI

Figure 5.1: Epitope prediction. (A) For each investigated protein from the HIV
and human proteomes (the sequence of the Nef protein from HIV is shown), the
location of HLA-A2 epitope nonamers (highlighted) was predicted using the soft-
ware NetCTL (Section 5.4.1). In the Nef protein, three epitopes were identified.
(B) On average, around 1% of all nonamers bind to HLA-A2 [95]. For the entire
HXB2 proteome, which consists of 14 proteins and around 3000 amino acids, 91
nonamers are predicted to be HLA-A2 epitopes. Less than half of these (high-
lighted) are known to be detectable by CD8 T cells according to the LANL HIV
database [165]. Our task in this chapter is to determine factors that distinguish the
recognized from the non-recognized epitopes.
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Figure 5.2: Predicting T cell recognition status. We used different metrics to
predict which HLA-A2 epitopes can be recognized by CD8 T cells (i.e., our aim is
to discern the emphasized strings in Figure 5.1B from the non-emphasized ones).
This figure shows ROC curves for each predictor’s performance. A diagonal ROC
curve (gray triangles) would correspond to pure random guessing. The shown p-
values are based on a statistical test of the null hypothesis that classification is
purely random. (A) Prediction based on the method proposed by Frankild et al.
[57] is not significantly different from random guessing. (B) With some biolog-
ically motivated improvements to the metric by Frankild et al. [57], one obtains
a substantially improved prediction. (C) Using a negative selection (NS) algo-
rithm, we can directly simulate combinatorial restriction of the T cell repertoire,
and thereby predict a detection probability for each given 6-mer. However, the
result is not significantly better than guessing. (D) Using amino acid grouping
(Figure 5.3), the matching function employed by the NS algorithm can be made
more realistic, and then it does give meaningful predictions.
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residues in MHC-bound 9-mers carry the same amount of information: For HLA-
A2 epitopes, the anchor residues at position 2 and 9 are bound to the “pockets”
of the peptide binding groove of the MHC molecule. These positions in the 9-
mer are restricted to only a few amino acids, and less likely to be in contact with
the T cell receptor [101]. Thus, it is conceivable that the 6-mer from residue 3 to
residue 8 is most important for determining TCR recognition. Although there is a
small overlap at the 6-mer level between human and pathogenic proteomes [21],
this overlap is almost non-existent if only HLA-A2 epitopes are considered rather
than the entire proteome – in our case, only one of the nonself epitope 6-mers is
also found in the set of self epitopes. Second, the way that Frankild et al. calculate
peptide similarity leads to a heavy positional bias in sequences containing rarely
substituting amino acids such as tryptophan. This positional bias can be removed
by performing the similarity calculation in a simpler fashion, which weighs all
positions equally (Section 5.4.3). Jointly, these modifications to the approach by
Frankild et al. indeed lead to a significant1 prediction (AUC= 0.65, p = 0.0238;
Figure 5.2B).

5.2.2 The Negative Selection Algorithm

In contrast to the self similarity metric considered above, which directly compares
the self and nonself epitope sequences, we will now investigate whether it is also
possible to predict epitope recognition in an purely mechanistic fashion using a
model of thymic negative selection, the so-called negative selection algorithm [55].
The negative selection algorithm is based on a string-based model of T cell cross-
reactivity. While several such models are conceivable (Section 4.4.3), we limit our
discussion here to an established model by Percus et al. [116], which is based on
r-contiguous string matching.

5.2.3 The r-Contiguous Model of T Cell Cross-Reactivity

In the r-contiguous model, a TCR is represented as a pair of a string and a number.
The string in this pair defines the amino acid sequences to which the receptor binds,
and the number controls the degree of cross-reactivity: the lower the number, the
more cross-reactive the TCR. In the simplest case, the number is equal to the length
of the string, e.g.

(ITTYWG, 6)

would represent a TCR that binds only to the 6-mer ITTYWG (recall that since we
consider HLA-A2 epitopes, we disregard the residues 1,2, and 9). More generally,
a number k states that the TCR binds any epitope that is identical to the TCR string
in at least k contiguous positions. For example, the receptor

(ITTYWG, 4)

1 We use the significance threshold p < 0.05.
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would bind to all epitopes of the form

��TYWG, �TTYW�, or ITTY��,

where � stands for an arbitrary amino acid.
Based on this matching function, we simulated thymic negative selection as fol-

lows2: We generated all possible TCR strings, and matched them against the self
epitope strings using the matching parameter k = 4. Those receptors that matched
a self epitope were deleted, and the remaining set of receptors formed the TCR
repertoire. Now, we matched each nonself epitope to each TCR using parameter
k = 6 (i.e., a perfect match), and ranked the nonself epitopes according to the num-
ber of matching TCRs. Ties were resolved by counting for each epitope the number
of TCRs that match with parameter k = 5; remaining ties were then subsequently
resolved by considering the parameter k = 4; and so forth until k = 1. The result-
ing rank of each epitope can be considered as a distance from self: the larger an
epitope’s rank, the stronger a TCR can bind to the epitope, and the more TCRs are
able to bind to it3.

A ROC analysis of this prediction method on the LANL HIV data resulted in
AUC = 0.61 at p = 0.0794 (Figure 5.2C). Hence, although the result is slightly
better than for the original Frankild et al. metric, the difference is not significant.

5.2.4 Amino Acid Grouping

We reasoned that a main problem with the r-contiguous model of TCR cross-
reactivity is the fact that it does not take amino acid similarity into account. For
example, it is conceivable that a 6-mer differing from another one only by sub-
stitution of a leucin (L) for an isoleucin (I) could still be recognized by the same
TCR. One possibility to make the matching more realistic would be to use a scoring
matrix, as does the Frankild et al. metric. However, the resulting negative selec-
tion algorithm is computationally very expensive4. A simpler method is to identify
some pairs of amino acids that are roughly equivalent, and can thus be treated
as equal. Using information from the literature on physicochemical properties and
substitution likelihoods (Figure 5.3), we identified the following amino acid groups
for this purpose: (D,E); (R,K); (T,S); (A,G); and (I,L,V). Hence, an alanine (A) and
a glycine (G) at the same position of a 6-mer were considered identical, as were
an arginine (R) and a lysine (K) and so forth. Indeed, this modification of the neg-
ative selection algorithm lead to a substantially improved predictive performance
(Figure 5.2D) with an AUC of 0.74 (p = 0.0002).

2 Note that not all these steps were in fact explicitly performed; this would have been computa-
tionally very demanding due to the large number of string comparisons required for generating the
repertoire alone (≈ 1012). However, some data compression tricks from computer science can be
used to speed this process up, as discussed in Chapter 4.

3 Formally, we ranked the epitope strings by lexicographically comparing their matching profiles
Π4-CONT (Section 4.5.6).

4 In the language of Chapter 4: The resulting pattern class would be a generalization of r-
HAMMING, for which the consistency problem is NP-complete.
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Figure 5.3: Grouping the most similar amino acids. To incorporate a notion of
amino acid similarity into our negative selection algorithm, we aimed to identify
the structurally and functionally most similar pairs of amino acids. To this end,
we adopted a textbook categorization of the 20 amino acids into eight different
groups according to their physicochemical properties [76]. Within each group, we
identified pairs of amino acids that easily substitute according to data by Bordo and
Argos [16]. Lines are drawn between each pair of acids that Bordo and Argos found
to occur significantly more often in protein sequence alignments than it would be
expected for random substitutions, and the thickness of the lines is proportional
to the number of occurrences of each pair. All pairs linked in this fashion also
have positive substitution scores in the BLOSUM matrices [57], which are based
on similar data, but do not contain information on statistical significance.
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5.2.5 Predicting Recognition Frequency

Because the immune response is a highly stochastic process, not all epitopes that
can in principle be recognized by CD8 T cells will in fact be recognized in every
infected individual. In a comprehensive in vivo study, Frahm et al. [56] tested CD8
T cell recognition of overlapping peptides (OLPs) from the 2001 HIV-B consensus
sequence in 150 HIV-positive individuals of various ethnicities. The 410 tested
OLPs varied in length from 15 to 20 amino acids and spanned the entire HIV-B
proteome. The results of their study are freely available for download from the
LANL HIV Immunology Database [165]. Their data associates each OLP with
the percentage of patients in which the OLP elicited a detectable response. Frahm
et al. [56] identified three factors that significantly correlated with recognition
frequency: sequence entropy (ρ = −0.25), the fraction of amino acids that are
rarely seen at the C termini of CTL epitopes (G, P, E, D, Q, N, T, S, and C; ρ =
−0.21), and the proteasomal cleavage score predicted by the tool NetChop (ρ =
0.18; NetChop is also a part of NetCTL). However, note that the latter two factors
are actually closely related. We were interested in whether our metrics would also
be able to partly explain recognition frequency, and how the results would compare
to those of Frahm et al.

To this end, we used NetCTL to generate a set of nonself epitopes from the
2001 HIV-B consensus sequence used by Frahm et al. (Section 5.4.2), which is
slightly different to the version that we downloaded from UniProt. We then as-
signed to each epitope the average recognition frequency of the OLPs in which
it occurs, and calculated our metrics as described above. This time we evaluated
performance non-parametrically using the Spearman rank correlation coefficient
ρ , as Frahm et al. did in their study; a ROC analysis was not appropriate as the
prediction in this case is not verified against a binary value (i.e., recognition vs.
non-recognition), but needs to be correlated with an ordinal value (i.e., the per-
centage of detection). The results are shown in Figure 5.4. Again, the original
metric by Frankild provided no meaningful prediction (ρ = −0.01, p = 0.9), but
the modified version did (ρ = −0.46, p < 10−5). Notably, the latter correlation
was significantly stronger (p = 0.04) than the correlation reported by Frahm et al.
[56] for their entropy measure (ρ =−0.25), which to our knowledge had been the
strongest correlation ever reported in the literature. Both versions of the negative
selection algorithm also yielded significant correlations of ρ = 0.21 (p = 0.045)
and ρ = 0.3 (p = 0.004), respectively, with the stronger correlation again provided
by amino acid grouping.

It is important to note that these results are not simply a different statement
of those in the previous section. Most importantly, in the previous section we
did not distinguish at all between different recognition strengths. Moreover, only
14% of the predicted epitopes for the Frahm et al. dataset are found in OLPs
that elicit no response at all, which is a much lower percentage than that of non-
confirmed epitopes in the previous section (66%). This may be for two reasons:
(1) Some of the non-confirmed epitopes may actually turn out to be epitopes in the
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Figure 5.4: Predicting epitope recognition frequency. We investigated the corre-
lation between the recognition frequency of HIV peptides in a study on 150 patients
by Frahm et al. [56] and the two prediction measures defined in the text. Corre-
lation was determined non-parametrically as the Spearman coefficient ρ , which
measures linear correlation between ranks rather than absolute values. To enable
comparison, the plots thus show rank-transformed measurements. In such a plot,
a perfect correlation corresponds to a diagonal line with slope 1. (A) The self
similarity metric in the version of Frankild et al. [57] yields no meaningful pre-
diction. (B) The simplified version of the Frankild measure is inversely correlated
with recognition status. The correlation in (C) is significantly stronger (p = 0.04)
than the best predicting factor reported by Frahm et al. for their complete OLP
dataset (N = 401), which was sequence entropy (ρ = −0.25). (C) The negative
selection algorithm without amino acid grouping gives a moderate, but significant
correlation. (D) Again, amino acid grouping improves the results of the negative
selection algorithm.
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future; and (2) the recognition frequency of the OLPs is aggregated information
for the MHC supertypes in all patients rather than only HLA-A2. Finally, the virus
sequence used by Frahm et al. is slightly different from the consensus sequence
we downloaded from UniProt (Section 5.4.2), and thus 33 predicted 9-mer epitopes
are not found in the nonself epitope dataset used in the previous section.

5.3 Discussion

Our results improve upon the previous work by Rolland et al. [124] and Frankild
et al. [57], and now provide, to our knowledge for the first time, mechanistic
predictions of T cell recognition that are significantly correlated with experimental
findings. Importantly, our results are not the product of sophisticated machine
learning algorithms or of careful parameter tuning, but are all grounded in relatively
simple, reasonable biological hypotheses and assumptions.

Both the improved version of the Frankild et al. model and the negative se-
lection algorithm assume some degree of TCR cross-reactivity, albeit in different
manners (amino acid similarity vs. inexact matching). The fact that these two
metrics give significant predictions, whereas the purely string-based calculations
by Rolland et al. [124] do not, appears to confirm that this is indeed an essential
property. This finding has some implications for interpreting previous studies that
investigated self-nonself overlap at the proteome level. For example, Burroughs et
al. [21] stated that the average overlap between the human and various pathogen
proteomes is less than 0.2% at the 9-mer level. This most likely holds only at the
string level, and due to TCR cross reactivity, the effective overlap should be much
larger.

A key insight obtained from our findings is that the effects of combinatorial
T cell repertoire shaping by thymic negative selection correlate not only with epi-
tope recognition status, but even with recognition frequency. This is a remarkable
result because, as mentioned previously, the capability to be detected by a TCR is a
necessary, but not a sufficient condition for a peptide to elicit an immune response.
One would expect biochemical factors, affinity-driven competition between T cell
clones, and host-virus co-evolution (especially in HIV) to blur out the effects of
thymic negative selection. Still, our negative selection based predictions are sig-
nificant while a correlation between T cell recognition and any biochemical epitope
property could, thus far, not be demonstrated. It is conceivable that a combination
of biochemical epitope properties and repertoire shaping models could in the future
be used to unravel the extent to which biochemical properties determine recogni-
tion status.

So far, our findings hold only for a single virus (the one for which most in-
formation is available) and only a single MHC supertype (the one that is most
thoroughly researched). Obviously, it is highly desirable to generalize our results
to more viruses and more epitope types, which could no longer be achieved within
the scope of this thesis. Furthermore, our investigation on the predictive perfor-
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mance of the negative selection algorithm only scratched the surface. Previous uses
of similar algorithms have proved conclusive, most notably in studies by Košmrlj
et al. [90, 91]; however, these studies used different matching functions than ours,
which employ more sophisticated notions of amino acid similarity. Unfortunately,
we have shown in the previous chapter that a generation of predictions from their
similarity metric (which is a generalized version of the Hamming distance) is not
straightforward. Further development of our algorithmic techniques would thus
be important, because the predictive capacity of our approach could presumably
benefit from a more fine-grained notion of amino acid similarity.

5.4 Methods

5.4.1 Epitope Prediction

Epitope prediction is the task of determining which chunks of a protein can be pre-
sented on an MHC class I molecule of a given supertype. The input to an epitope
predictor is a set of protein sequences (e.g., given as a FASTA file), and its output
is a set of substrings of fixed length from these proteins (k-mers). We used the
software package NetCTL, version 1.2a, by the Technical University of Denmark
[95, 96]. Because most MHC class I epitopes are 9-mers [165], NetCTL outputs
only 9-mers as potential epitopes. Using artificial neural networks, NetCTL assigns
a real-valued score to each 9-mer of the input protein. The NetCTL score com-
bines predictions for proteasomal cleavage [87], TAP transport efficiency [117],
and MHC binding [22, 112]. We used the default settings of NetCTL, which define
all 9-mers with a score of at least 0.75 as epitopes. All predictions were performed
for the HLA-A2 supertype of MHC class I, which is most common in humans in
North America, Europe, and Northern Asia [56].

5.4.2 Datasets

Proteomes

The human proteome was downloaded from the Uniprot database [78, 30] on the
21st of June, 2011. Only proteins labeled as “reviewed” were used, which was the
case for 20229 out of 51661 proteins. The epitope prediction method explained
above identified 137499 9-mers from these proteins as potential HLA-A2 self epi-
topes. The nine proteins (counting Gag as one polyprotein) of the human immun-
odeficiency virus type 1 group M subtype B (isolate HXB2) were downloaded from
the UniProt database on the same day. The HXB2 sequence commonly serves as
the reference sequence for HIV [165].

Los Alamos HIV Dataset

The Los Alamos HIV Database list of HIV epitopes was accessed on the 21st of
June, 2011, at which time the database contained 1305 epitopes with evidence for
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T cell recognition. Out of these, 175 were human HLA-A2 epitopes.

Frahm et al. HIV Dataset

In a comprehensive in vivo study, Frahm et al. [56] tested CD8 T cell recognition
of overlapping peptides (OLPs) from the 2001 HIV-B consensus sequence in 150
HIV-positive individuals of various ethnicities. The 410 tested OLPs spanned the
entire HIV-B genome and were between 15 and 20 amino acids long. We down-
loaded their results from the LANL HIV Immunology Database [165]. To locate
HLA-A2 epitopes within the OLPs, we applied NetCTL to their HIV-B sequence
as described above. In this fashion, 92 nonamers were identified as epitopes, and
each of those 9-mers was assigned the average recognition score of all OLPs (either
1 or 2) in which it occurred.

5.4.3 Self Similarity Measure by Frankild et al.

Frankild et al. [57] defined their similarity measure σself(S,x) between a set of self
epitopes S and a nonself epitope x as follows. For a,b ∈ Σ, where Σ is the alphabet
of amino acids, let W (a,b) be a function denoting the similarity of a and b (they
used the BLOSUM 35 matrix). An unnormalized similarity score σ(x,y) between
two sequences x,y ∈ ΣL is given by

σ(x,y) =
N

∑
i=1

W (x[i],y[i]) . (5.1)

Frankild et al. defined a normalized version of σ as

σ̂(x,y) =
σ(x,y)−σmin(x)
σmax(x)−σmin(x)

(5.2)

where
σmax(x) = max

x̄∈ΣL
σ(x, x̄) = σ(x,x)

and
σmin(x) = min

x̄∈ΣL
σ(x, x̄) .

Finally, the self similarity σself(S,x) is defined as

σself(S,x) = max
y∈S

σ̂(x,y) . (5.3)

This definition ensures that 0 ≤ σself(S,x) ≤ 1. However, the normalization in-
duces several problems. First, σ̂ is not symmetric. Second, σmax(x) and σmin(x)
may vary greatly with x, and especially the appearance of rarely substituting amino
acids in x (where W (x,x) is very large and W (x,y) is very small for y 6= x) substan-
tially weakens the contribution of the rest of the sequence to the score, inducing
positional bias.
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To remove these issues, we substituted σ̂ for the simpler σ in Equation 5.3.
Although we did not really see a need to normalize the resulting values to the
interval [0,1], this could be done in a non-biasing fashion using

σ̂(x,y) =
σ(x,y)−σmin

σmax−σmin

where
σmax = max

x,y∈ΣL
σ(x,y)

and
σmin = min

x,y∈ΣL
σ(x,y) .
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