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Abstract

Magnetic resonance imaging (MRI) is a non-invasive imaging modality,
which offers high spatial resolution and excellent soft tissue contrast
without employing ionizing radiation. MRI is sensitive to a wide range
of contrast mechanisms that allow assessment of both morphology and
physiology, making it a modality of choice for many clinical applications.

A major limitation of MRI is that data acquisition is relatively slow,
which besides being unpleasant for the patient, can also seriously degrade
the image quality. Modern MR scanners are already operating at the
point where further improvements in data acquisition speed by means
of hardware and pulse sequence design are constrained by physical and
physiological limitations. With the advent of parallel imaging techniques,
this problem has partially been addressed. However, further reduction
of imaging time is desired, making the development of methods which
allow image reconstruction from reduced amount of data necessary.

Recently, a new sampling theory under the name compressed sensing
(CS) has emerged, suggesting that image reconstruction from reduced
amount of data can be achieved by exploiting the signal sparsity. The
ability to reconstruct images from small number of measurements pro-
vides a new method to accelerate the data acquisition in MRI. Initial
studies have shown that compressed sensing has a great potential to im-
prove the imaging speed in MRI.

This thesis explores and extends the concept of applying compressed
sensing to MRI. A successful CS reconstruction requires incoherent mea-
surements,signal sparsity, and a nonlinear sparsity promoting reconstruc-
tion. To optimize the performance of CS, the acquisition, the sparsifying
transform and the reconstruction have to be adapted to the application of
interest. This work presents new approaches for sampling, signal sparsity
and reconstruction, which are applied to three important applications:
dynamic MR imaging, MR parameter mapping and chemical-shift based
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water-fat separation.
A radial data acquisition scheme based on the golden ratio is explored

as a potential practical sampling approach for dynamic CS-MRI. This
acquisition scheme provides incoherent sampling with undersampling in
all spatial dimensions. It is of special interest in dynamic imaging because
it allows a lot of freedom in choosing the size and the position of the
time frames. No a priory planning of the dynamic scan is required and
the sampling scheme is appropriate for both periodic and non-periodic
dynamic applications.

A very sparse signal representation can be obtained if the sparsifying
transform is adapted to the signal of interest. In this work, a method
for designing a sparsifying transform, based on the knowledge of a signal
model, describing the data in MR parameter mapping is presented, which
achieves higher sparsity compared to other commonly used transforms
leading to an improved CS reconstruction.

The application of compressed sensing for accelerated chemical shift-
based water-fat separation is explored, in which the water and fat images
and the field inhomogeneity map are related to the corresponding k-
space data by a nonlinear transform. A reconstruction method based
on a nonlinear measurement model is presented, which allows integrated
compressed sensing reconstruction and water-fat separation.

The methods presented in this thesis allow to more fully exploit the
potential of compressed sensing to improve imaging speed. Future de-
velopment of these methods, and combination with existing techniques
for fast imaging, holds the potential to improve the diagnostic quality
of existing clinical MR imaging techniques and to open up opportunities
for entirely new clinical applications of MRI.



Zusammenfassung

Die Magnetresonanztomografie (MRT) ist ein nichtinvasives bildgeben-
des Verfahren, das eine hohe räumliche Auflösung und einen exzellenten
Weichteilkontrast ohne den Einsatz ionisierender Strahlung ermöglicht.
Die MRT verfügt über einer Vielzahl von Kontrastmechanismen, die die
Darstellung der Morphologie sowohl als auch der Physiologie ermöglicht.
Damit wird die MRT zu einer bevorzugten Modalität für viele klinische
Anwendungen.

Ein wesentlicher Nachteil der MRT ist, dass die Datenaufnahme rela-
tiv langsam erfolgt. Die relativ lange Messzeit hat negative Auswirkun-
gen auf den Patientenkomfort und den Patientendurchsatz und kann
die Bildqualität ernsthaft beeinträchtigen. Bei modernen MR-Scannern
sind weitere Verbesserungen der Datenaufnahmegeschwindigkeit mittels
Hardware Verbesserungen und Puls-Sequenz-Designs durch physikalis-
chen und physiologischen Grenzen beschränkt. Durch die Entwicklung
der parallelen Bildgebung konnte dieses Problem teilweise entschärft wer-
den. Jedoch eine weitere Reduzierung der Aufnahmezeit ist wünschenswert.
Deshalb ist die Entwicklung von Methoden, die die Bildrekonstruktion
aus einer reduzierten Datenmenge ermöglichen, von großem Interesse.

Die Entwicklung eines neuen Abtasttheorems das "Komprimierte Ab-
tastung" (engl. compressed sensing (CS))genannt wird, deutet darauf
hin, dass eine Signalrekonstruktion basierend auf einer reduzierten Daten-
menge durch die Nutzung der dünnen Besetzung und Komprimierbarkeit
der Signale erreicht werden kann. Die Fähigkeit somit Bilder aus einer
kleineren Anzahl von Messungen zu rekonstruieren bietet eine neue Mög-
lichkeit, um die Datenaufnahme in der MRT zu beschleunigen. Erste Stu-
dien haben gezeigt, dass die komprimierte Abtastung ein vielversprechen-
des Potenzial hat, um MRT Untersuchungen zu beschleunigen.

Diese Arbeit untersucht und erweitert der Anwendung der komprim-
ierten Abtastung in der MRT. Eine erfolgreiche Rekonstruktion erfordert
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die Komprimierbarkeit der Signale, eine inkohärente Messung und eine
nichtlineare Rekonstruktion die jene Komprimierbarkeit ausnutzt. Es ist
notwendig die Datenaufnahme, die Transformation zur dünnen Beset-
zung, und die Rekonstruktion an die entsprechende Anwendung anzu-
passen, um die Leistung der komprimierten Abtastung zu optimieren.
Die vorliegende Arbeit betrachtet diese drei Aspekte und stellt Methoden
für die Anpassung der CS-Grundsätze für die verschiedenen Anwendun-
gen vor.

Zunächst wird eine radiale Trajektorie, die auf den goldenen Schnitt
basiert, als mögliches praktisches Abtastmuster für CS-MRT untersucht.
Dieses Abtastmuster erlaubt ein inkohärentes Abtasten in allen räum-
lichen Dimensionen und ist von besonderem Interesse für die dynamische
Bildgebung, weil es viel Freiheit in der Wahl der Größe und der Posi-
tion der Zeitfenster ermöglicht. Somit ist keine vorhergehende detailierte
Planung des dynamischen Scans erforderlich. Dieses Abtastmuster ist
ebenfalls für nicht-periodische dynamische Anwendungen geeignet.

Eine gute, dünn besetzte Signaldarstellung kann erreicht werden, in-
dem die entsprechende Transformation an das Signal angepasst wird.
In dieser Arbeit wird eine Methode für die Entwicklung einer solchen
Transformation vorgestellt, die auf der Kenntnis eines Signalmodells für
die Daten in MR-Parameter-Bildgebung basiert. Diese neue Methode
verbessert den Grad der dünnen Besetzung im Vergleich zu anderen häu-
fig verwendeten Transformationen und erlaubt daher eine verbesserte CS-
Rekonstruktion.

Die Anwendung der komprimierten Abtastung für die beschleunigte,
auf der chemischen Verschiebung-basierende, Wasser-Fett-Trennung wird
untersucht. In der Wasser-Fett-Trennung hängen das Wasserbild, das
Fettbild und die der räumiche Verlauf der Feldinhomogenität durch eine
nichtlineare Transformation mit den entsprechenden k-Raum Daten zusam-
men. Eine Rekonstruktionsmethode die auf nichtlinearen Messungen
basiert wird vorgestellt, die eine integrierte komprimierte Abtastung und
Wasser-Fett-Trennung ermöglicht.

Die in dieser Arbeit vorgestellten Methoden ermöglichen eine bessere
Ausnutzung des Potenzials der komprimierten Abtastung, um die Bildge-
bungsgeschwindigkeit zu verbessern. Weiterentwicklungen dieser Meth-
oden und eine Kombination mit bestehenden Techniken zur schnellen
Bildgebung, haben das Potenzial die diagnostische Qualität bestehen-
der klinischer MR-Bildgebungsanwendungen zu verbessern und bieten
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die Möglichkeiten für neue klinische Anwendungen der MRT.
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Chapter One

Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging modality
based on the concept of nuclear magnetic resonance (NMR). Compared
to other imaging modalities, MRI has several unique advantages, which
make it preferable in many clinical applications. MRI offers high resolu-
tion and excellent soft tissue contrast without employing ionizing radia-
tion. MRI also provides cross sectional images with arbitrary orientation
as well as true three dimensional images. Unlike other modalities, MRI
is sensitive to a wide range of contrast mechanisms. These allow assess-
ment of both morphology and physiology, giving access of parameters
like flow, diffusion, perfusion, blood oxygenation, and many others.

A major limitation of MRI is that data acquisition is relatively slow.
A long scan time is undesirable because of patient discomfort. In addi-
tion it limits the clinical workflow and can seriously degrade the image
quality as a result of variations in the imaged object during the data
acquisition, for instance caused by motion or flow. Furthermore, it limits
the capability to temporally resolve dynamic processes such as cardiac
motion or contrast agent bolus in angiography.

Since MRI was first introduced in the early 1970s, imaging speed has
been improved dramatically. This has mainly been achieved by improve-
ments in hardware and pulse sequence design to achieve faster data ac-
quisition. Modern MR scanners are already operating at the point where
further improvement in data acquisition speed is limited by physical and
physiological limitations. However, in many clinical applications imaging
speed is still a limiting factor. An improvement in imaging speed might
significantly improve the quality and accuracy of clinical diagnosis.

Further improvements in imaging speed can be achieved by reducing
the amount of acquired data, required to perform image reconstruction
without degrading image quality. A recent development in MRI with
significant impact in improving imaging speed is parallel imaging, which
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applies simultaneous data acquisition with an array of independent RF
coil elements. The spatially variable reception sensitivities of the individ-
ual coil elements provide an additional signal encoding mechanism which
allows image reconstruction with reduced number of measurements.

Other methods for scan acceleration using reduced data sampling rely
on redundancies in the MR images. The associated reconstruction meth-
ods require some prior knowledge about the image. Methods in this class
include partial Fourier imaging, which exploits the conjugate symmetry
of k-space, and methods exploiting the spatio-temporal correlations in
dynamic imaging.

In 2004, a new sampling theory coined compressed sensing emerged,
suggesting that signal reconstruction from reduced amount of data can
be achieved by exploiting signal sparsity. The main idea of compressed
sensing is to acquire data in an efficient way, such that the number of
measurements is directly proportional to the signal’s information con-
tent. In the special case of MR imaging this implies that if an MR image
is compressible, which is to some degree true for all MR images, data
acquisition can be performed in a way that image compression is per-
formed already within the acquisition process. In compressed sensing
(CS), the data are acquired as a small set of incoherent measurements.
The image is then obtained by applying a nonlinear sparsity promoting
reconstruction. The ability to reconstruct images from reduced amount
of data and thus accelerate the acquisition has attracted a lot of interest
in the MR community, leading to active research in this area.

This thesis explores and extends the concept of applying compressed
sensing in MRI. A very sparse description of compressed sensing given in
just three keywords would be: Acquisition, Sparsity, and Reconstruction.
These three aspects refer to the following questions, which arise whenever
applying CS: How to acquire the data? How to find a good sparse signal
representation? How to reconstruct the image? Unfortunately, there is
no single answer to each of these questions that gives an optimal solution
for all cases. Instead, to optimize the performance of CS, the acquisition,
the sparsifying transform, and the reconstruction have to be adapted to
the application of interest.

The present work considers these three aspects and presents methods
for the adaptation of the CS principles to different applications.

Non-Cartesian data acquisition based on radial trajectories is inves-
tigated as a practical sampling pattern for compressed sensing, which
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allows undersampling in all spatial dimensions. Golden ratio profile or-
dering is applied to obtain incoherent and nearly uniform sampling. This
sampling pattern is of special interest in dynamic imaging, because it pro-
vides a lot of freedom in choosing the size and the position of the time
frame, which can also be done retrospectively.

Signals are often sparse in some transform domain. However, finding
the optimal sparsifying transform for a given signal requires some prior
knowledge. In this work, a method for designing a sparsifying transform
is presented, which is based on the knowledge of a model describing the
data in MR parameter mapping. The model-based sparsifying transform
achieves higher sparsity compared to other commonly used transforms
and leads to improved CS reconstruction.

Compressed sensing is based on the assumption of a set of linear
measurements. However, in some applications, the image of interest is
related to the measurements by a nonlinear transform. Therefore, the
application of CS for accelerated chemical shift based water-fat separa-
tion is explored, in which the measurements are considered as a nonlinear
transform, which maps the water and fat images and the field inhomo-
geneity map to the corresponding k-space data.

The outline of this thesis is as follows:
Chapter 2 provides a brief introduction to conventional MR imag-

ing. It introduces the principles of signal formation, data acquisition
and image reconstruction in MRI, necessary for understanding the MR
part of the thesis. The theoretical background of compressed sensing
and considerations of its application to fast MR imaging are presented
in Chapter 3. This chapter describes the basic implementation of CS
in MRI and gives a short overview of the state of the art in CS-MRI.
In Chapter 4 an incoherent non-Cartesian sampling based on the golden
ratio is explored as a potential practical sampling pattern in CS-MRI.
Examples for dynamic cardiac imaging and hand imaging are presented.
Chapter 5 presents a method for designing a sparsifying transform based
on a known data model. The method is considered for the application
of MR parameter estimation, in particular T1 and T2 mapping. Chapter
6 considers the application of CS for water-fat separation and presents
a reconstruction method based on a nonlinear measurement model. Fi-
nally, Chapter 7 contains a summary of the work presented in this thesis
as well as a discussion of possible future research directions.





Chapter Two

Principles of MRI

The list of potentially workable generalized Fourier
methods could go on indefinitely; there are an infi-
nite number of ways to scan the k domain which will
successfully place into the FIDs sufficient information
to permit image formation from the FIDs. Each of
these encoding schemes will have advantages and dis-
advantages in terms of quality of image information
it conveys, and in terms of ease of implementation of
its gradient program, and its sampling and decoding
(computational) procedures. Some of these unrealized
methods appear to offer significant performance advan-
tages.

— Donald Twieg

This chapter discusses the image formation principles of MRI. The main
focus is on the signals, on what they are, and on how are they gener-
ated and detected. The image formation process is viewed as a linear
system, the notion of k-space is introduced, discussing the limitations
and flexibility of k-space sampling.

2.1 Nuclear Magnetic Resonance

M
agnetic resonance imaging (MRI) relies on the quantum me-
chanical phenomenon of Nuclear Magnetic Resonance (NMR).
In clinical MRI, most commonly hydrogen nuclei (protons) are

imaged, because of their high natural abundance in the human body.
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The spin of an atomic nucleus can be characterized by its quantum
number, which for protons is 1

2
. The relationship between the spin and

the magnetic moment µ that arises from it can be described as:

µ = γS, (2.1)

where γ = e/2m is the gyromagnetic ratio of the considered atomic nuclei
(γ/2π = 42.57 MHz/T for protons in water), and S is the spin angular
momentum.

Under the influence of an external magnetic field B0 the magnetic
moments of the atomic nuclei with spin 1

2
can orient either parallel or anti

parallel to the magnetic field. For a nucleus with spin 1
2

these orientations
correspond to two distinct energy levels

E± = ±γ~B0

2
, (2.2)

where ~ is the Planck constant.
If electromagnetic radiation is applied to the aligned spins with an

energy equal to the energetic difference between the two states, or E =
γ~B0, a transition between the two energy levels occurs. The charac-
teristic resonance frequency of this transition is known as the Larmor
frequency:

ν =
ω

2π
=
E

h
=

γ

2π
B0. (2.3)

This resonance frequency can also be thought of as the frequency at
which the spins precess around the axis of the magnetic field B0. As seen
in the equation above, the Larmor frequency is directly proportional to
the magnetic field strength, and is specific to a given nucleus. The Lar-
mor frequency of the same type of nucleus also varies in different chem-
ical compounds. These variations are due to variations in the electron
distribution in chemical species, which cause slightly different magnetic
shielding resulting in differences in the local magnetic field. The rela-
tive difference in the resonance frequency of one species to a reference
resonance frequency is called chemical shift

δ =
ν − νref

νref

. (2.4)

As an example, the chemical shift between hydrogen nuclei in water and
in fat is about 3.35 ppm.
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Since the energy difference between the two energy states is small rel-
ative to the thermal energy at room temperature, the probability of the
nuclear spins occupying either orientation is nearly identical. However,
there is a slight excess of nuclear spins (few ppm) with parallel alignment,
which corresponds to lower potential energy. This small imbalance pro-
duces net magnetization (the volume average over the magnetic moments
of the spin system) in the direction of the external magnetic field, gov-
erned by the Boltzmann statistics, which is given by:

M = M0z =
γ2

~
2

4kBT
B0ρz, (2.5)

where kB is the Boltzmann constant and T is the temperature in Kelvin,
and the unit vector z gives the direction of the external magnetic field.
The spin density ρ is a characteristic of the object being imaged and
depends on its chemical content and structure.

The magnetization vector, as a macroscopic entity, can be tilted away
from the z-direction by applying a radio-frequency (RF) excitation pulse
(i.e. B1 field) of the appropriate resonance frequency orthogonal to the
z direction:

B1(t) =





B1x(t)
B1y(t)

0



 (2.6)

The application of the RF pulse results in time varying magnetization
in the transverse plane (x − y). This phenomenon is described by the
Bloch equation.

dM

dt
= γ (M × B) , (2.7)

where B is the total magnetic field. Equation (2.7) is a general form of the
equation of motion of the spin system that describes the precession of the
net magnetization vector about the z axis. Important corrections arise
from the interactions of spins with their surroundings, processes which
are referred to as relaxation phenomena. The Bloch equation describes
a left screw rotation about B with angular velocity given by the Larmor
frequency ω so that the angular velocity vector is pointing in the negative
z direction.

ω = −ωz (2.8)

The overall effect of the RF pulse is characterized by the flip angle α,
by which the equilibrium magnetization is rotated out of the z direction,
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according to the Bloch equation (2.7).

α = γ

∫ τ

0

|B1(t)|dt (2.9)

The magnetization vector immediately after an RF pulse with flip angle
α is:

Mz = M0 cos(α)

Mx = M0 sin(α) cos(−ωt)
My = M0 sin(α) sin(−ωt) (2.10)

The transverse component of M is often written as a single complex value
Mxy.

Mxy = M0 sin(α)e−iωt = M̂xye
−iωt (2.11)

2.2 Relaxation

After the RF pulse has been turned off, the magnetization vector starts
to return back to the direction of the static magnetic field. It is most
advantageous to analyze the magnetization and its differential equations
in terms of parallel and perpendicular components. For the case of non-
interacting spins, the corresponding components of the cross product in
the Bloch equation lead to two decoupled equations.

dMz

dt
= 0 (2.12)

and
dMxy

dt
= γMxy × B, (2.13)

where

B =





0
0
B0



 . (2.14)

The modeling of the spin interactions with their neighborhood leads to
additional terms in equations (2.12) and (2.13) which depend on decay
parameters, that are different in the two equations. This difference is
related to the fact that, in contrast to a given magnetic moment, the
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magnitude of the macroscopic magnetization is not fixed, since it is a
vector sum of many spins. The components of M parallel and perpen-
dicular to the external magnetic field relax differently in the approach to
their equilibrium values.

The magnetic moments will tend to line up parallel to the external
magnetic field in order to reach their minimum energy state. Since the
spins are considered to be in thermal contact with the lattice of nearby
atoms, the thermal interactions between the spins and the lattice present
a mechanism for energy transfer allowing the longitudinal magnetization
to return to its equilibrium state. The rate of change of the longitudinal
magnetization dMz/dt is proportional to the difference M0 −Mz. The
proportionality constant is empirically determined and represents the
inverse time scale of the growth rate.

dMz

dt
=

1

T1

(M0 −Mz), (2.15)

where T1 is the experimental ’spin-lattice relaxation time’. The relax-
ation of the longitudinal magnetization from Mz(0) immediately after
the RF pulse to the equilibrium value M0 is described by the equation:

Mz(t) = Mz(0)e
−t/T1 +M0(1 − e−t/T1) (2.16)

Spins experience local fields, which are combinations of the applied field
and the fields of their neighbors. Since variations in the local field lead
to different local precession frequencies, the individual spins tend to lose
coherence in time, reducing the net magnetization vector. The total
transverse magnetization is the vector sum of all the individual transverse
components. This process is characterized by another empirical value, the
spin-spin relaxation time T2. The differential equation (2.13) is extended
by the addition of the decay rate term

dMxy

dt
= γMxy × B − 1

T2

Mxy (2.17)

The additional term leads to an exponential decay of the magnitude of
the transverse magnetization.

M̂xy(t) = M̂xy(0)e
−t/T2 (2.18)
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Considering the relaxation processes described above, the final expres-
sions for the net magnetization after an α RF pulse become:

Mz(t) = M0 cos(α)e−t/T1 +M0(1 − e−t/T1) (2.19)

Mxy(t) = M0 sin(α)e−t/T2e−iωt = M̂xy(t)e
−iωt (2.20)

2.3 Signal detection, spatial encoding, and

k-space

If a receive coil is placed near the object, the oscillating magnetization
vector induces a voltage in the coil. This voltage is the MR signal that is
used for imaging. The complex MR signal, thus measured, is the volume
integral of the transverse magnetization in the entire object.

s(t) =

∫

C(r)Mxy(r, t)dr (2.21)

=

∫

C(r)M̂xy(r, t)e
−iω(r)tdr (2.22)

Here, C(r) represents the RF coil reception sensitivity, which depends on
the particular geometry of the coil and its position relative to the imaged
object. Inserting equation (2.20) in (2.22), the following expression is
obtained for the received signal:

s(t) =

∫

C(r)M0(r) sin(α(r))e−t/T2e−iω(r)tdr

=
γ2

~
2

4kBT

∫

C(r) sin(α(r))B(r)ρ̂(r)e−iω(r)tdr (2.23)

Here, ρ̂ denotes the signal density (extended spin density), which repre-
sents the spin density weighted by factors reflecting relaxation processes.
The aim of MR image reconstruction is to obtain the signal density ρ̂ at
every point of the imaged object. Except for ρ̂, all other three spatially
dependent functions in equation (2.23) are known or measurable and can
(in principle) be used for spatial encoding at different imaging stages. In
the most general case the spatial encoding function may be defined as:

E(r, t) =
γ2

~
2

4kBT
C(r) sin(α(r))B(r)e−iω(r)t (2.24)
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Thus, equation (2.23) can be simplified to:

s(t) =

∫

E(r, t)ρ̂(r)dr

= 〈E(r, t), ρ̂(r)〉 (2.25)

The measured signal can be interpreted as inner product between the en-
coding function and the signal density. The signal s(t) and the encoding
function E(r, t) are measured at discrete times tn. The signal density is
reconstructed at discrete space positions rn. The signal density, recon-
structed at these discrete positions is also known as the voxel signal, since
ideally it is the signal which will be represented in the volume element
∆V = ∆x∆y∆z at position r = (x, y, z). In the case of two dimensional
imaging, it is called the pixel signal.

ρ̂ = ρ̂(rn) (2.26)

The discretized form of equation (2.25) is:

s =








s1

s2
...
sN








=








〈E1(rn), ρ̂(rn)〉
〈E2(rn), ρ̂(rn)〉

...
〈EN(rn), ρ̂(rn)〉








(2.27)

Here, the i-th row of the encoding matrix E represents the values of the
encoding function at time ti evaluated at the discrete space positions r.

Em,n = Em(rn) (2.28)

Writing equation (2.27) in compact matrix notation leads to:

s = Eρ̂ (2.29)

Equation (2.29) represents a generalized reconstruction problem, where
the entries of the encoding matrix E depend on the particular image
acquisition technique.

2.3.1 Gradient encoding

In conventional MRI, spatial encoding is achieved by applying spatially
varying magnetic fields on top of the static magnetic field B0(r). A spa-
tially uniform RF excitation field is applied to rotate the magnetization



12 2 Principles of MRI

vector by a flip angle α(r) = α0. A receive coil, which exhibits a spatially
homogeneous receive sensitivity, is used and the MR signal, detected ac-
cording to equation (2.22), is simplified to:

s(t) =

∫

ρ̂(r) exp−iω(r)tdr (2.30)

where the resulting constant factors are also included in the signal density
ρ̂(r).

The spatially varying magnetic field B(r) is generated by applying
magnetic field gradients in all three directions G = (Gx, Gy, Gz). The
magnetic field gradients are given by:

Gx =
dBz

dx
(2.31)

Gy =
dBz

dy
(2.32)

Gz =
dBz

dz
(2.33)

Here the static magnetic field is applied in the z direction. In the presence
of the magnetic field gradient G the local magnetic field is given by:

B(r) = B0 + Gr (2.34)

Three different types of spatial encoding are commonly used in MRI:
slice selection, phase encoding and frequency encoding.

Slice Selection. Magnetic resonance occurs only in a subvolume,
where the RF pulse matches the Larmor frequency. If a gradient in z
direction B = B0 + Gzz is applied during an RF excitation pulse with
single frequency ω, only a thin slice is selected at:

z =
ω − γB0

γGz

(2.35)

After the excitation pulse the detectable transverse magnetization in the
sample is essentially a two dimensional distribution.

Phase Encoding. If a gradient field in the y direction is applied for
a given time interval τ , the Larmor frequency will vary in this direction
during that time interval, so that the signal at different positions accu-
mulates a different phase. After the gradient has been switched off, the
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precession frequency returns to a constant value over the plane, while the
imprinted phase remains proportional to y. This process is called phase
encoding.

φ(x, y) = (ω(x, y) − ω0(x, y))τ = γGyyτ (2.36)

Frequency Encoding. If a constant gradient Gx is applied to the
sample, the frequency of precession will change linearly with location,
too.

ω(x, y) = γGxx (2.37)

If the signal is read out while this gradient is on, contributions from
different locations along the x axis will exhibit different frequencies. This
process is called frequency encoding, and the corresponding gradient is
called frequency encoding gradient, also sometimes referred to as read
gradient.

2.3.2 K-space

For a general gradient G, the phase accumulated in the received MR
signal at time t after the beginning of the gradient is given by:

φ(r, t) = γ

∫ t

0

G(τ)rdτ (2.38)

Using the following definition the k-space coordinate can be given as:

k(t) = γ

∫ t

0

G(τ)dτ (2.39)

and the induced signal (2.30) now reads:

s(k) =

∫

ρ̂(r)e−ikrdr. (2.40)

The vector quantity k defined as the integral of the gradients can also be
seen as a vector of spatial frequency coordinates. The idea of employing
the so called k-space to describe gradient encoding was introduced by
Twieg [1,2], and this convention greatly simplifies the concept of the time-
domain signal in MRI. Using the k-space notation, the spatial encoding
functions, generated by switched gradients, are given by :

Ek(r) = e−ikr. (2.41)
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The spatial encoding functions in conventional imaging are Fourier ba-
sis functions, hence, this type of spatial encoding is also called Fourier
encoding. Thus, the signal s(tn), sampled discretely in time, fills the
Fourier space (or k-space), and an image is reconstructed according to
Eq. (2.40) by applying an inverse Fourier transform to the acquired data
set (Figure (2.1)).

K−Space Image Domain

IFFT

Figure 2.1. Fourier Encoding. The image is reconstructed from the
measured k-space data by applying a discrete inverse Fourier Transform

ρ̂ = E−1s = F−1(s) (2.42)

This shows the sequential manner of conventional MRI (samples in k-
space are obtained at discrete times tn) that limits the image acquisition
speed. In the case of Cartesian k-space sampling, the Fast Fourier Trans-
form (FFT) algorithm can be applied for fast reconstruction.

2.3.3 K-space traversal in 2D Cartesian MRI

This section describes how the image acquisition is performed in stan-
dard 2D Cartesian MRI. A typical gradient echo sequence is used as an
example, which is schematically shown in Fig. 2.2.

An RF pulse is applied to tilt the magnetization away from the direc-
tion of the static magnetic field to the transverse x-y plane as described
in section 2.1. To select a 2D slice within the three-dimensional object
to be imaged, a constant gradient Gz is applied during the RF pulse.
To rephase the spins in the slice, a reversed gradient with half of the
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moment is applied immediately after the pulse [3]. Next, phase encod-
ing and read gradients have to be applied for the spatial signal encoding
within the selected 2D slice. Before application of these gradients, there
is no encoding in the kx-ky plane, which corresponds to the 2D k-space
origin kx = ky = 0. Applying a gradient in the read direction causes the
signal to dephase. For a constant gradient Gx this can also be seen as
movement in the kx direction of k-space.

Gz

RF

Gz

Gy

Gx

ADC

0
ky

kx

��� ���

Figure 2.2. Gradient echo experiment. (a) Schematic representation
of a gradient echo experiment. The top line shows the timing in the
transmit channel, followed by the slice, phase, and read gradients, and
the bottom is the acquisition channel. (b) Traversal of k-space for the
gradient echo sequence shown in a). The k-space is filled line by line.

kx(t) = γGxt (2.43)

In Fig. 2.2 a) a negative gradient is applied to move to −kx,max. Sim-
ilarly, applying a gradient in the ky direction corresponds to movement
in ky. The simultaneous application of these gradients leads to the di-
agonal traversal of k-space shown in Fig. 2.2 b). At this point in the
experiment, the magnetization has been prepared, and signal acquisition
can take place. During signal acquisition, a read gradient Gx is applied,
this time with positive sign. This gradient causes the magnetization to
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rephase, or in terms of k-space moves the signal toward the center of
k-space in the read direction. A complete rephasing of the spins results
in magnetization echo and the continued application of the read gradient
results in a further dephasing of the spins. The echo occurs at the point
where the gradient moments are completely compensated. For a readout
gradient with the same amplitude as the dephasing gradient which is
applied for twice the time, the echo is in the middle of the readout line.

In the described experiment only one line of k-space is acquired. In
order to obtain a full coverage of the 2D k-space, the experiment has to
be performed multiple times with different step in the phase encoding.
This is achieved by altering the amplitude of the phase encoding gradient
each time, which is indicated with multiple lines in the phase encoding
gradient in Fig. 2.2 a). For example, for a matrix size of 256 × 256,
256 data points have to be acquired in the read direction and 256 phase
encoding steps must be performed. Denoting the time between two sub-
sequent excitation pulses with TR (repetition time), the total time for
the experiment is equal to 256 TR.

In three dimensional imaging, the whole imaging volume is excited
and two phase encoding gradients and one read gradient are used for the
3D spatial encoding. For an imaging matrix of 256×256×256, 256×256
phase encodings must be performed, drastically increasing the imaging
time.

2.4 Restrictions and flexibility of data sam-

pling in k-space

2.4.1 Resolution and FOV

In the case of uniform Cartesian sampling, the k-space coverage is de-
termined by the Nyquist sampling theorem. For the case of a constant
read gradient Gx such sampling is achieved along the frequency encoding
direction by taking data at uniform intervals ∆t in time with the k-space
step

∆k = γGx∆t. (2.44)

The discrete uniform sampling of k-space results in periodicity of the
image space. The k-space sampling frequency determines the length of
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the period, or so called field of view (FOV).

FOV ∝ 1

∆k
(2.45)

This relation is illustrated in Fig. 2.3.
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Figure 2.3. Field of view and resolution in Cartesian sampling. The
FOV in the image domain is proportional to the inverse of the k-space
sampling interval. Denser sampling of k-space corresponds to larger
FOV. If the encoded FOV is smaller than the object to be imaged,
aliasing occurs. The image resolution is inversely proportional to the
maximum extent of the covered k-space.

The finite sampling of k-space results in a finite resolution of the
reconstructed image. The image resolution is given by the extent of the
k-space sampled:

∆x ∝ 1

2kx,max

(2.46)

Thus, to achieve a higher resolution, a larger area in k-space has to be
covered. Increasing the k-space sampling density results in a larger FOV.
If the encoded FOV is smaller than the object being imaged, the signal
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outside the FOV will fold back causing aliasing artifacts. Higher sampling
density in the frequency encoding direction does not cost additional time.
This is why oversampling in the frequency encoding direction is typically
applied to prevent aliasing.

2.4.2 K-space trajectories

Cartesian k-space sampling is the most frequently used sampling pat-
tern. One of its important advantages is that the image reconstruction
is a simple Fourier transform, which is easily implemented and very ef-
ficient. Cartesian sampling is also relatively insensitive to many system
imperfections. However, the acquisition of data in k-space is not limited
to the rectilinear Cartesian sampling. In fact, there is considerable free-
dom how to acquire data in MRI. By altering the encoding gradients in
an appropriate way one can achieve different trajectories to traverse the
k-space. A few examples of the most popular non-Cartesian trajectories
are shown in Fig. 2.4.

The most common non-Cartesian trajectory is the radial trajectory
[4]. The radial, also known as projection reconstruction (PR), trajectory
is advantageous because the center of k-space is often resampled during
the acquisition, making such a dataset relatively robust against motion or
flow artifacts [5]. Another common non-Cartesian trajectory is the spiral
sampling, which exists in several different variations [6–8]. K-space is
usually covered with a few interleaved spiral readouts, with longer read
duration. The PROPELLER trajectory [9] is a hybrid between Cartesian
and radial sampling and is advantageous because the overlapping central
parts of k-space can be used for motion correction. Other sampling
trajectories found in the literature are rosette [10], Lissajou [11] and
stochastic [12]. Many others can be imagined.

In an ideal imaging experiment, where the subject is exactly on res-
onance, the gradients do exactly what they should, there is no signal re-
laxation, and no subject motion, all different k-space trajectories should
work well and the only difference remains the image reconstruction. In
practice, these conditions do not hold and the effect of these imperfections
in the measured signal with different trajectories plays an important role
in the quality of the resulting image. Thus, different k-space trajectories
might be advantageous for different applications.

The Nyquist sampling theorem determines the sampling rate for a per-
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Figure 2.4. Non-Cartesian k-space trajectories.

fect reconstruction of a signal sampled uniformly on a Cartesian grid. For
nonuniform sampling, usually the Nyquist limit is applied to the largest
distance between two samples in k-space. Another generalization of the
sampling theorem for non-uniform sampling states that a band-limited
signal can be perfectly reconstructed from its samples if the average sam-
pling rate satisfies the Nyquist condition [13]. Therefore, although uni-
formly spaced samples may result in easier reconstruction algorithms, it
is not a necessary condition for perfect reconstruction. Undersampling
in non-Cartesian trajectories also leads to artifacts. However, these arti-
facts are often not as pronounced as in Cartesian sampling and in many
cases could be tolerable. Specifically for trajectories with variable sam-
pling density, such as radial, often very few artifacts are present. This
is because the k-space center, where usually most of the signal energy
is concentrated, is fully sampled. Radial sampling is often used with
undersampling to reduce the scan time [14].

2.4.3 Gridding

One disadvantage of non-Cartesian data sampling is the difficulty of re-
constructing the resulting data sets. If k-space data are acquired on a
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non-Cartesian grid the image reconstruction is not anymore as simple as
applying an inverse FFT. To be able to use FFT, a common approach
is to first resample the data to Cartesian grid points. There are several
different approaches to resampling. Here the convolution gridding will
be described, which is the most commonly used resampling method in
nonuniformly sampled k-space MR imaging.

Gridding is the estimation of a uniformly sampled rectilinear k-space
data set given the original non-uniformly sampled data (Fig. 2.5).

Figure 2.5. Gridding. The non-uniformly sampled k-space data are
interpolated to estimate the data values on a rectilinear grid

The gridding algorithm, adapted to MRI by O’Sullivan [15] and Jack-
son [16], involves convolving each non-Cartesian k-space sampling point
with a dedicated convolution kernel and resampling the result to the
appropriate Cartesian k-space grid locations. In variable density sam-
pling, the k-space data are corrected for their sampling density before
the interpolation. This procedure is given by equations (2.47) and (2.48)

M ′
s(ki) = Ms(ki)DCF (ki) (2.47)

M ′′
s (kj) = [M ′

s(ki) ∗ C(k)]X(kj). (2.48)

The k-space data Ms(ki) measured at non-uniform sampling locations
ki is first multiplied with the density correction function DCF (ki) (Eq.
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(2.47)). The density corrected data M ′
s(ki) is then convolved with the

gridding kernel C(k) and resampled on the Cartesian grid kj, which is
denoted as multiplication with the delta train X(kj). The convolution
with the gridding kernel C(k) in k-space leads to a multiplication of the
image with c(r) (the inverse Fourier transform of the kernel C(k)) in
image space (Eq. (2.49)). While O’Sullivan et al. [15] concluded that
the theoretically optimal gridding kernel is an infinite sinc function, its
application in practice is computationally infeasible.

m′′
s(rj) = F−1{M ′′

s (kj)} = ms(rj)c(rj) (2.49)

ms(rj) = m′′
s(rj)/c(rj), c(r) = F−1{C(k)} (2.50)

Therefore, gridding kernels with compact support in k-space are used
instead. This results in intensity variation (apodization) of the data in
the image domain. In a post-processing step, called deapodization, the
effect of the gridding kernel apodization in the spatial domain is removed
by division with the inverse Fourier transformed filter kernel as given by
Eq. (2.50).

When choosing a convolution function one has to consider the be-
havior of its inverse Fourier transform c(r). First, c(r) should have no
zeros within the FOV, because this will cause large artifacts in the im-
age. Second, if c(r) has significant energy outside the FOV, this energy
will fold back in the image. A common choice for the gridding kernel is
the Kaiser-Bessel window [16], which gives a good compromise between
computational complexity and reconstruction error.

2.5 SNR and imaging speed limitations

Two important limitations in MRI are the signal-to-noise ratio (SNR)
and the imaging speed. These will be briefly described in this section.

2.5.1 SNR

The SNR is an important indicator of the image quality in MRI. The
SNR can be defined as the signal level S divided by the standard devi-
ation of the image noise N .

SNR =
S

σ(N)
(2.51)
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Since the signal in MRI is proportional to the applied static magnetic
field one way to improve the SNR is by applying a stronger magnetic
field (high field MRI). The SNR can also be improved by using an array
of small surface coils placed close to the body. In a coil array, each coil
element captures a strong signal from a local region and the contribution,
to both signal and noise, from the rest of the sample is negligible. Thus,
coil arrays have the advantage of yielding higher signal-to-noise-ratio
(SNR) over a large FOV compared to whole body coils [17]. The MR
signal is also inversely proportional to the temperature, however there is
little we can do about the subject temperature in in vivo imaging.

Noise from a number of sources can enter into magnetic resonance
data acquisitions and can affect the quality of the reconstructed images.
Two principal classes of noise sources involve i) the radio-frequency (RF)
coil array and associated electronics used to acquire the MR signal, and
ii) the object or body being imaged. The balance of these noise sources
depends on a number of conditions (e.g. the magnetic field strength, the
size and number of detector coils, the performance of the preamplifier).
In modern MR scanners, coil noise is usually very small compared to the
noise from the imaged sample.

Besides the above mentioned noise mechanisms, the SNR can be af-
fected by the acquisition parameters. The received noise energy is propor-
tional to the square root of the acquisition bandwidth

√
BW = 1/

√
∆tx

at which the signal has been sampled. Large bandwidth reduces the
SNR, but allows faster imaging. The signal is proportional to the voxel
size ∆V = ∆x∆y∆z. Again here, there is a trade off, this time between
SNR and resolution.

A common method to improve the SNR is to use signal averaging.
Repeating the experiment several times the signal intensity increases by
the number of averages, whereas the noise increases by the square root
of the averages, leading to improvement of the SNR at the cost of an
increased acquisition time.

The SNR is a major limitation in MRI, because of the very small
signals being detected. There is a connection between SNR, image res-
olution and acquisition time and it is generally not possible to improve
the one without deteriorating one of the others. However, imaging speed
is a critical factor in many applications and in the case that the SNR is
high enough to accommodate such losses, possibilities for increasing the
imaging speed can be examined.



2.5 SNR and imaging speed limitations 23

2.5.2 Fast MR imaging

The total imaging time needed to form an image in MRI is given by
the number of required RF excitations times the repetition time TR. In
conventional MR imaging, often a single phase encoding line is acquired
after each RF excitation. This means that for a 3D experiment the total
acquisition time is

Tacq = NyNzNaTR, (2.52)

where Ny and Nz are the number of phase encoding steps in y and z
directions and Na is the number of averages.

From equation (2.52), it can be seen that one way to improve the
imaging speed is to decrease the repetition time TR. For the gradient
echo sequence shown above, the shortest TR possible is dictated by char-
acteristics of the applied gradients. In order to shorten the minimum
TR and keep the same FOV and resolution, stronger gradients have to
be applied for shorter time. A lot of work has been done in the past in
improving the gradient strengths and switching times, and modern MR
scanners often operate at the limits of gradient strength and slew rate.
Also, physiology provides a fundamental limit to gradient system per-
formance as high gradient amplitudes and rapid switching can produce
peripheral nerve stimulation [18]. This means that a further decrease in
the total scan time using faster gradients is not feasible.

One can also change the way the data are acquired in order to accel-
erate the scan. This can be achieved by acquiring more than one phase
encoding line after an RF excitation. An extreme case is single shot
EPI [19], where the whole k-space is covered after a single RF excitation.
Multi-echo measurements are affected by mixed contrast effects (the dif-
ferent k-space lines are acquired at different times and have different
contrast) and signal loss due to relaxation.

Another way to improve the imaging speed is to reduce the number
of phase encoding lines. This can be done by skipping the outer phase
encoding lines at the cost of reduced resolution or increasing the distance
between adjacent phase encoding lines, which decreases the FOV in the
phase encoding direction. Reducing the FOV leads to decreased SNR and
if the reduced FOV is smaller than the object to be imaged to foldover
artifacts.

In parallel imaging [20–22], simultaneous data acquisition with multi-
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ple coils in a coil array is used to accomplish part of the spatial encoding
traditionally performed by the gradient fields alone. This additional sen-
sitivity encoding allows to reduce the number of phase encoding lines
without reducing the FOV or image resolution. The achievable scan ac-
celeration factor in parallel imaging depends very much on the coil array
characteristics. Theoretically, if the coil array presents a set of orthog-
onal encoding functions, an acceleration factor equal to the number of
channels can be achieved. In practice, this is difficult to achieve. Large
coil arrays with up to 128 coil elements have been introduced in the
past [23, 24] to boost SNR and allow higher reduction factors. Limita-
tions of the acceleration factors using parallel imaging include on the one
hand rapidly decreasing SNR with increasing acceleration factors due to
numerical instabilities and on the other hand the difficulty in developing
coil arrays with large numbers of elements that are well decoupled and
have independent sensitivity patterns.

Finally, also prior knowledge can be used in the reconstruction to
reconstruct images from reduced k-space data. Probably the simplest of
these methods is partial Fourier imaging [10, 25, 26]. In partial Fourier
imaging it is assumed that the image phase varies slowly over the FOV.
Data acquisition is performed asymmetrically, covering a little bit more
than half of k-space. The image phase is estimated from a small part of
fully sampled data around the k-space origin and the conjugate symmetry
of the Fourier transform is used to estimate a real-valued image.

A number of reconstruction methods rely on prior knowledge of the
spatio-temporal correlations in dynamic MRI. Usually, the assumption
is that the dynamic information is mainly contained in the low resolu-
tion data. In the keyhole method [27, 28] low resolution information is
acquired during the dynamic scan and the high frequency information is
taken from a fully sampled reference image acquired in the beginning.
The RIGR method [29] applies the same sampling, however instead of
replacing the high frequency information, image reconstruction is per-
formed by fitting the measured data to a set of basis functions learned
from the fully sampled reference image. In methods like k-t BLAST, k-t
SENSE [30] and k-t PCA [31] also part of the high frequency information
is measured and the missing data are recovered using spatio-temporal cor-
relations learned from the low resolution data. Another reconstruction
method using prior knowledge, which is particularly suited for angiog-
raphy measurement is HYPR [32]. HYPR models the signal as high-



2.5 SNR and imaging speed limitations 25

resolution spatial prior (an image obtained over a longer time with no
temporal information) multiplied with low-resolution dynamic informa-
tion allowing to get better temporal dynamic information from a small
amount of data in each time frame.

The main focus of this work is on accelerating MR measurements us-
ing compressed sensing, which will be explained in more detail in the
next chapter. Compressed sensing exploits the signal sparsity to reduce
the number of acquired data points and to reduce in this way the imag-
ing time. This prior knowledge is very general and is not restricted to
a certain type of images. However, the image sparsity can vary a lot
for different applications and there can be different methods to invoke
sparsity in the image. Also, sometimes additional prior knowledge can
be applied to optimize the performance of CS for a given application.





Chapter Three

Compressed Sensing (in MRI)

One should not increase, beyond what is necessary, the
number of entities required to explain anything.

— Occam’s Razor: law of parsimony,

William Occam (14th century)

Compressed sensing (CS) is a new field which has seen enormous interest
and growth in the recent past. In many applications, the signals of
interest are compressible. In other words they can be represented in
a much more compact form than the one in which they are usually
acquired. Images and audio signals are a few of the many examples in
which we are using compression on a daily basis. CS suggests that the
signal compressibility can be exploited already in the data acquisition
to reduce the amount of data that need to be measured in the first
place. This concept has huge practical implications, in particular for
applications in which the measurements are expensive, the number of
sensors is limited, or the measurements are slow, as in MRI. In this
chapter the principles of compressed sensing will be described and those
will be considered especially for the application in fast MRI.

3.1 Introduction

C
ompressed sensing (CS) is an emerging area in signal process-
ing and information theory which has recently attracted a lot of
attention [33,34]. The idea behind CS is that sparse or compress-

ible signals can be acquired in an efficient way by applying compression
already in the data acquisition process.

The Nyquist sampling theorem, also known as Whittaker-Kotelnikov-
Shannon (WKS) theorem, states that a low pass signal is completely
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determined by a sequence of samples, obtained uniformly with the sam-
pling rate at least twice the highest frequency contained in the signal [35].
The theorem also provides a formula for the reconstruction of the original
signal (sinc-interpolation). The Nyquist sampling theorem is a sufficient
condition for perfect signal recovery. However, for the class of sparse or
compressible signals this condition is not necessary.

The idea of sampling below the Nyquist rate is almost as old as the
Nyquist theorem itself. Another result in sampling theory published in
1967 due to Landau [36] gives a lower bound on the sampling density
required for any sampling scheme (uniform or not) that allows perfect
reconstruction. This lower bound is given by the support of the Fourier
transform of the signal. For signals with sparse support of the Fourier
transform Landau’s bound is much lower than the Nyquist limit. Laun-
dau’s bound applies to an arbitrary sampling scheme and is achievable
for uniform sampling only for a very special case of multiband signals,
for which there is no overlap between uniform translates of the spectral
bands by multiples of a quantity smaller than the bandwidth. For all
other signals irregular sampling is required. With few exceptions [37–39],
methods for sub-Nyquist sampling based on Landau’s limit usually ex-
ploit prior information about the spectral support. Compressed sensing
is based on a similar idea, however it is generalized to sparsity in arbi-
trary transform domain and does not require explicit knowledge of the
signal support in that domain.

In many applications such as imaging, astronomy, geophysics, and
high-speed analog-to-digital conversion the signals we are interested in
are often sparse in a certain basis. For example, a typical image taken
with a digital camera, which has a few million pixels, can be very well
described by a few tens of thousand of wavelet coefficients with almost no
perceptual loss. In other words, the information content of a signal may
be much smaller than suggested by its bandwidth. One can design effi-
cient sampling or sensing schemes, which capture the useful information
in a number of measurements directly proportional to the signal’s infor-
mation content. For sparse or compressible signals the required number
of measurements is often much smaller than the Nyquist limit. These
measurements are non-adaptive but need to be obey certain conditions
in order to allow signal recovery. An example of sampling with provable
signal recoverability conditions is random sampling, in which the mea-
surements are performed by correlating the signal with a set of random
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vectors. However, other sampling schemes, such as randomized Fourier
samples, are also conceivable. The signal is then reconstructed from
what appears to be an incomplete set of measurements using a nonlinear
sparsity promoting reconstruction.

The application of CS to MRI is one special application of CS, which
has seen probably the highest growth so far. One reason for this is
that CS is particularly suited for MRI. The measurements in MRI al-
ready represent linear combinations of pixels (Fourier coefficients) and
the sampling of k-space is relatively flexible. Therefore, there is no need
for any hardware modifications in order to perform CS data acquisition.
Also, CS allows improvements of imaging speed, which is a crucial factor
in MRI.

3.2 CS basics

This section gives a short overview of the existing CS theory. The goal
is to sample a discrete signal x of length N . Without loss of generality,
in the following sections the signal of interest will be described as a
vector in an N dimensional space. Images can be brought in this form
by concatenating all columns of the image in one vector. The general CS
theory considers real signals (x ∈ R

N), although the extension to complex
signals is straightforward. Since this work considers MR images, which
are usually complex, it is assumed that all computations are performed
with complex data.

3.2.1 Sampling

Linear measurements of x can be described as an inner product of sam-
pling waveforms ϕm and x.

ym = 〈x,ϕm〉 , m = 1, ...,M. (3.1)

The measurement vector y is given as the product of the measurement
matrix Φ and the signal x

y = Φx, (3.2)

where the sampling waveforms are the rows of the matrix Φ. For an
orthonormal matrix Φ

ΦHΦ = I (3.3)
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the signal x can be recovered by simply applying ΦH to the measure-
ment vector y. In the case of oversampling M > N , where the number
of measurements is larger than the signal dimension, usually the least
squares method is applied to obtain a signal estimate

x̂ = (ΦHΦ)−1ΦHy. (3.4)

Instead, CS considers the case in which only a small number of measure-
ments are obtained M << N . In this case, Eq. (3.2) is an underde-
termined linear system and in the general case does not have a unique
solution. However, if the signal x is sparse and the measurement matrix
Φ satisfies certain conditions, CS suggests that the signal x can be recov-
ered from what appears to be a highly incomplete set of measurements.

The following consideration provides an intuitive explanation why this
is possible. Suppose that the signal x is S-sparse, that is it has only S
nonzero coefficients and all the rest is zero. If the locations of the nonzero
entries of x were known, the measurement matrix Φ can be reduced to an
N × S matrix ΦS by choosing only the columns corresponding to these
non-zero locations. Similarly the vector x can be reduced to a vector xS,
containing only the nonzero coefficients. This leads to a new system of
equations

y = ΦSxS, (3.5)

with only S unknowns. In this case M = S measurements would be suf-
ficient to recover the signal xS. The locations of the nonzero coefficients
in the original signal are generally unknown, so this type of reconstruc-
tion is unpractical. Instead, CS suggests that the sparse signal x can
be recovered "blind" (without knowledge of the signal support) from M
linear measurements, with S < M < N , by finding the sparsest solution
of the underdetermined problem.

3.2.2 Sparsity

The first fundamental premise in CS is the signal sparsity. Formally, a
signal is said to be sparse, if it has many zero and few nonzero coefficients.
Compressed sensing does not require sparsity in a particular domain.
The signal of interest can be directly sparse, or it can have a sparse
representation in some transform domain. A more realistic model for
real signals is that the signal is compressible, which means that the vast
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majority of the information in the signal is contained in a few coefficients.
The remaining coefficients are not exactly zero, but they are very small.
For such signals CS can not obtain exact reconstruction. However, if the
signal is well approximated by the taking the large coefficients only and
setting the small coefficients to zero, CS gives an accurate reconstruction
as well.

CS works on signals which are sparse or compressible. If such signals
were rare or unusual, the fact that they can be acquired more efficiently
might not be of very high relevance. But in fact, virtually all signals
we might need to measure can be represented in a compact form in
some domain. There is usually some pattern in the signal we want to
acquire, which allows such sparse signal representation. Sparse signal
representations have been extensively studied in the past and there are
many different transformations that can sparsify different types of signals.

A piecewise constant image, for example, can be sparsely represented
by applying a finite differences transform. This transform approximates
the first derivative of the image in both directions. Real-life or medical
images are rarely piecewise constant. However, in some cases (angiog-
raphy) most of the signal information is contained in few large intensity
changes and the finite differences transform can be useful. Transforms
like the discrete cosine transform (DCT) and the wavelet transform are
used in state of the art image compression [40, 41]. The raw images are
transformed, quantized and then compressed by keeping only the largest
coefficients. This is a standard compression approach which is used in
lossy image coders like JPEG-2000 [41]. It allows to save memory for
the efficient storage of images. Usually 5 to 10 fold compression can be
achieved without any perceptual loss. The diversity of possible structures
that can appear in an image is huge, therefore there is no single transform
that will sparsely represent all types of images. However, there are many
possible transforms to choose from as well as methods for designing a
transform that sparsifies the signals of interest.

The domain, in which a signal is sparse or compressible, is referred
to as the sparsity domain. The transform, which is used to sparsify the
signal will be referred to as sparsifying transform Ψ:

z = Ψx (3.6)

There are three domains of interest. The sparsity domain is where the
signal has a compact representation, i.e. the coefficient vector z is sparse.
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The signal of interest x is defined in the signal domain and the measure-
ment vector y is acquired in the measurement or sampling domain. These
domains and the transforms between them are illustrated in Fig. 3.1.
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Figure 3.1. Different domains in CS. Three domains are considered
in CS: the sampling or measurement domain, the signal domain which
is the signal representation of interest, and the domain in which the
signal has sparse representation.

Almost all the theory of compressed sensing has been developed for
classes of signals that have a sparse representation in an orthonormal
basis. However, for some signals there may not be any good sparsifying
orthonormal basis or no good orthonormal basis is known to exist. For
example, take a signal, which is a composition of two signals, the one
with a sparse representation in the canonical basis and the other with
sparse representation in the DCT basis (see Fig.3.2). A signal with sparse
representation in the one basis is necessarily dense in the other, so the
combined signal is not sparse in either basis. One can construct a so called
dictionary, which is a collection of signal prototypes or so called atoms
[42]. A dictionary is called overcomplete if the number of atoms is greater
than the signal dimensionality. Representing the signal with respect to an
overcomplete dictionary adds a lot of flexibility and significantly extends
the range of applicability. The signal is represented in the form

x = Dz (3.7)

where D is an N×L overcomplete dictionary in which there are possibly
many more columns than rows.

For the example above, a dictionary can be constructed as a concate-
nation of the two orthonormal bases. Clearly, a sparse representation in
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Figure 3.2. Sparsity in orthonormal bases and overcomplete dictio-
naries. A sparse signal in the canonical basis has a dense representation
in the DCT basis and a sparse signal in the DCT basis is dense in the
canonical basis. Therefore a composition of those two signals is dense
in both bases. However, it can be sparsely represented in a dictionary
constructed as concatenation of the two bases.

this dictionary exists, in which each part of the signal is described by
the appropriate basis. Larger dictionaries can be constructed by com-
bining more different orthonormal bases, expanding the range of signals
with sparse representation in these dictionaries. If prior knowledge about
the signal exists this could be included to design an appropriate dictio-
nary. Overcomplete dictionaries often allow much sparser signal repre-
sentations than orthonormal bases. Therefore, it is natural to expect
overcomplete representations to be helpful in compressed sensing prob-
lems. However, finding this sparse representation is more difficult. Since
the dictionary is overcomplete, finding the signal representation is an ill
posed inverse problem. The sparse representation problem is closely re-
lated to the compressed sensing recovery problem and similar algorithms



34 3 Compressed Sensing (in MRI)

are employed for obtaining the solution.

3.2.3 Incoherence

The second premise of CS concerns the mutual coherence between the
measurement and the sparsity basis. Assume that the measurement ma-
trix Φ and the sparsifying matrix Ψ are orthonormal bases in C

N . Here
the measurement matrix Φ corresponds to the classical sampling scheme
(full sampling) in time or space. The mutual coherence between the two
bases is defined as the maximal inner product between the vectors of the
two bases [33]:

µ(Φ,Ψ) =
√
N max

1≤k,j≤N
|〈ϕk, ψj〉| , (3.8)

where the vectors ϕk and ψj are normalized to 1 and
√
N is a normaliza-

tion factor such that µ can obtain values between 1 and
√
N . The mutual

coherence µ shows how correlated the two bases are. CS concerns pairs
with low coherence. The idea of incoherence is that signals having sparse
representation in a given transform domain Ψ must be spread out in the
domain they are acquired. This allows signal recovery from a small set
of samples, acquired non-adaptively in the sampling domain. The dense
representation in the sampling domain means that we don’t have to be
careful which samples are chosen, almost any set of measurements will
give a perfect reconstruction. Uniform undersampling, or measuring a set
of consecutive samples are exceptions, however considering the number
of all possible realizations of random sampling the probability of picking
exactly these patterns is extremely low. The mutual coherence suggests
a method to identify the domain in which the signal can be sparsely
sampled.

Random matrices have received a lot of attention in the CS literature
because they are largely incoherent with any other basis Ψ [33, 43–45].
Although random matrices are often used for theoretical proofs in the
CS literature, their practical applicability is limited. Purely random
measurement matrices are computationally inefficient, which is a limiting
factor for large scale problems. Also, performing random measurements
might not be trivial, and generally requires modifications in the data
acquisition hardware. Fortunately, random matrices are not the only
choice for data sampling in CS. The canonical basis and the Fourier basis
are an example of bases pair with maximal incoherence µ(Φ,Ψ) = 1.



3.2 CS basics 35

Noiselets [46] are incoherent with the canonical basis, the Fourier basis
and many wavelet bases.

3.2.4 Conditions for sparse signal recovery

In order to be able to recover the sparse signal from reduced number of
measurements, the sampling matrix has to obey the so called Restricted
Isometry Property (RIP). For signals, which are sparse in an orthonormal
basis Ψ, recovering the signal x is equivalent to recovering its sparse
representation z. In this case the condition is applied to the matrix
A = ΦΨH , which maps the sparse coefficients to the measurements.
Here the measurement matrix Φ is an M ×N matrix and Ψ is an N ×N
orthonormal matrix.

The RIP condition was introduced by Candes and Tao [47] as a mea-
sure of quality of the sampling matrix. The restricted isometry constant
δS is defined as the smallest quantity such that

(1 − δS) ‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δS) ‖z‖2
2 (3.9)

for all S-sparse signals z. The RIP condition requires that δS is small.
Good CS matrices have a δS close to 0. This prevents the sparse signal
z being in the nullspace of the matrix A, which assures that the signal
energy is approximately preserved when applying A to any S-sparse vec-
tor z. It further implies that every subset the matrix A, containing S or
fewer columns, is approximately an orthonormal matrix.

The restricted isometry constant of a matrix A is exceedingly hard to
evaluate and essentially requires the computation of the extreme eigen-
values of all submatrices with cardinality less or equal to S. So far there
is no explicit construction of matrices of any size which possess the RIP.
Instead, the most successful approach has been to consider families of ran-
dom matrices and determine bounds on S such that a matrix randomly
drawn from the family satisfies the RIP with overwhelming probability.
It is now known that many types of random measurement matrices have
small restricted isometry constants [33, 43–45]. These include matrices
with Gaussian or Benoulli entries as well as the matrix of randomly se-
lected vectors of a Fourier matrix. The last example is particularly useful
in MRI, since the measurements are performed in the spatial frequency
domain and also because it allows fast multiplication using the FFT.
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A related condition to the RIP is the so called coherence of the matrix
A. The coherence of a matrix A is defined as largest absolute offdiagonal
entry in the Gram matrix ATA [48]:

µ(A) =
√
N max

j 6=k
|〈aj, ak〉| (3.10)

where aj and ak denote columns of A. The matrix A is incoherent if
µ is small. The coherence shows the similarity between the columns of
A and is one of the few sparse-recovery metrics that can be computed
for a given matrix A in reasonable time. Similarly to the RIP condition,
low coherence ensures that the sparsest solution is unique and it could
be recovered by an appropriate reconstruction algorithm. Therefore, low
coherence is naturally required in CS.

All the considerations above hold for sparsity in an orthonormal basis
Ψ. For signals which are sparse with respect to an overcomplete dictio-
nary the signal representation in that dictionary is generally not unique.
Usually, in order to assure such unique sparse representation, the same
requirements are applied as for the case of orthonormal bases. In other
words, it is required that the dictionary D is also incoherent. Only very
recently it has been shown that exact reconstruction with CS is also
possible if the signal is sparse with respect to an overcomplete highly
coherent dictionary.

If two columns of the matrix D are closely correlated, it might be im-
possible to distinguish between them. For example, imagine a dictionary
which has two identical atoms. In this case the coherence is maximal.
If a signal x has to be represented with respect to this dictionary, it
can be explained equally good by the first or the second atom or by
any combination of the two. Therefore, there is no way to reconstruct a
unique sparsest solution z from a set of measurements y = Φx = ΦDz.
However, the goal is to reconstruct the signal x and not its sparse repre-
sentation z. If the dictionary is coherent, it is not possible to recover z,
but it is still possible to recover x = Dz from the measurements y = Φx.

In [49], a modified RIP condition is proposed analogous to the original
RIP. The restricted isometry property adapted to D (abbreviated D-RIP)
with constant δS states that

(1 − δS) ‖v‖2
2 ≤ ‖Φv‖2

2 ≤ (1 + δS) ‖v‖2
2 (3.11)

holds for all v ∈ ΣS, where ΣS is the union of all subspaces spanned
by all subsets of S columns of D. ΣS is just the image under D of all
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S-sparse vectors. Again, good sampling matrices have small restricted
isometry constant δS.

The D-RIP condition is exactly as difficult to verify as the RIP con-
dition. So far, it has been shown that certain random matrices satisfy
this condition. Without being mathematically precise, one can say that
in the case of CS with sparse representation with respect to overcomplete
dictionaries, the measurement matrix Φ needs to be incoherent, but this
does not necessarily hold for the dictionary D .

3.2.5 Reconstruction

CS suggests that the sparsest solution is the best one and it is the task of
the reconstruction to find this solution. A measure of the signal sparsity
is the `0 semi-norm which can be defined as:

‖x‖0 = lim
p→0

∑

i

|xi|p (3.12)

This norm simply counts the number of non-zero coefficients in a vector.
Therefore, finding the optimal solution for the signal x involves solv-

ing the `0 minimization problem

(P0) minimize ‖Ψx‖0 , subject to ‖y − Φx‖2 = 0, (3.13)

where Ψ is the sparsifying transform, y is the measurement vector, and
Φ is the measurement matrix. For noisy measurements, the equality
‖y − Φx‖2 = 0 can not be satisfied, therefore the optimization problem
(3.13) is modified to

(P0,ε) minimize ‖Ψx‖0 , subject to ‖y − Φx‖2 ≤ ε, (3.14)

where ε is related to the signal noise level.
The formulation of Eq. (3.13) and (3.14), where one seeks the signal x

whose transformed coefficients are sparse is called analysis-based model
[50]. In an alternative formulation one can also directly seek the sparse
coefficients that explain the measurements which can be writen as:

(P0) minimize ‖z‖0 , subject to ‖y − Az‖2 = 0, (3.15)

and
(P0, ε) minimize ‖z‖0 , subject to ‖y − Az‖2 ≤ ε. (3.16)
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Here A is the matrix mapping the sparse coefficients z to the measure-
ment vector y. This formulation is known as the synthesis model.

For orthonormal transforms Ψ with A = ΦΨH the synthesis and
analysis models are identical. But in general they lead to different solu-
tions [50,51].

While exact determination of the sparsest solution proves to be an
NP-hard problem [52], different techniques have been developed that
give a very accurate and sometimes even exact solution of (P0).

During the last years, many reconstruction algorithms for compressed
sensing have been proposed. A main class of sparse recovery algorithms is
related to the basis pursuit (BP) or basis pursuit denoising (BPDN) [53].
These methods suggest a convex relaxation of the problems posed in
P0 and P0,ε, by replacing the `0-norm with an `1-norm. If the isometry
constant is small and the signal sparse enough, the `1-norm minimization
provides an exact solution [54].

Another group of algorithms for solving P0 and P0,ε are greedy al-
gorithms like Matching Pursuit [55]. These methods involve the com-
putation of inner products between the signal and the columns of the
matrix A, and possibly deploying some least squares solvers or projec-
tions. Similar conditions for exact reconstruction have been derived for
these methods [56].

Minimization of non-convex `p-norms (0 ≤ p < 1) has been shown
to provide a potentially better recovery than `1 norms [57]. These al-
gorithms are usually based on the iteratively reweighted least squares
(IRLS) method [58]. Early work on IRLS methods apply `p norms with
1 < p < 2 [59, 60]. Extensions to non-convex optimization frameworks
were proposed in [57,61,62]. A similar reweighting approach for `1-norms
is proposed in [51].

Iterative shrinkage algorithms are relatively simple methods that could
approximate either `1 or `0 minimization problems [63–66]. These meth-
ods have relatively low computational complexity, which makes them
suitable for large scale problems.

In the following, these classes of algorithms will be briefly discussed.



3.2 CS basics 39

3.2.5.1 `1-minimization

The Basis Pursuit (BP) algorithm [53] relaxes the `0 minimization prob-
lem in P0 and P0,ε to an `1 minimization problem:

(P1) minimize ‖z‖1 , subject to ‖y − Az‖2 = 0, (3.17)

(P1,ε) minimize ‖z‖1 , subject to ‖y − Az‖2 ≤ ε, (3.18)

Although the `1 norm is different from the `0 norm, if the signal is suf-
ficiently sparse and the measurement matrix has small global restricted
isometry constants, the `1 minimization often finds the sparsest solu-
tion [33,67].

Equations (3.17) and (3.18) are convex optimization problems that
can be formulated as a linear program and a second order cone program,
respectively, and solved by conventional solvers [68]. Although standard
solvers can be used for the `1 minimization problem, solving large-scale
problems such as the problems arising in medical imaging is challeng-
ing. Since CS was introduced, there has been an increased interest in
developing special purpose algorithms for solving of the `1 minimization
problem and there is vast literature on this subject.

The `1 minimization can be alternatively formulated as an uncon-
strained problem using the Lagrange form:

argminz ‖y − Az‖2
2 + λ ‖z‖1 (3.19)

and solved using nonlinear conjugate gradients method [69]. Here the
regularization parameter λ determines the trade-off between the data
consistency and sparsity. Other methods that approximate the `1 - min-
imization include projection onto convex sets [70], iterative soft thresh-
olding [58], iteratively reweighted least squares [62], and homotopy [71].

Second-order methods such as interior-point methods [72, 73] offer
high accuracy, but need to solve large systems of linear equations to
compute the Newton steps, which makes them impractical for large-scale
problems. First order methods may be faster, but may require many
iterations to achieve high accuracy.

The `1-minimization approach provides uniform guarantees over all
sparse signals and also stability and robustness under measurement noise
and approximately sparse signals, but relies on optimization which has
relatively high complexity.
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3.2.5.2 Greedy Algorithms

Another main group of reconstruction approaches is using greedy algo-
rithms such as the Matching Pursuit (MP) [55]. These algorithms include
Orthogonal Matching Pursuit (OMP) [74], Stagewise Orthogonal Match-
ing Pursuit (StOMP) [75], Regularized Orthogonal Matching Pursuit [76]
(ROMP), and Compressive Sampling Matching Pursuit (CoSaMP) [77],
just to name a few.

Most of these approaches calculate the support of the signal itera-
tively. With the support Ω of the signal calculated, the signal can be
reconstructed from its measurements by a least squares fit. For the syn-
thesis model, the sparse vector z is computed as z = (AΩ)+y, where
AΩ denotes the matrix A restricted to the columns indexed by Ω and +

denotes the pseudoinverse.
Greedy approaches are relatively fast compared with the Basis Pur-

suit algorithm but most of them deliver smaller recoverable sparsity com-
pared to `1 minimization and most of them often come without provable
uniform guarantees and stability, with the exception of [76,77].

As an example of a greedy algorithm for sparse recovery the orthog-
onal matching pursuit (OMP) algorithm [55, 74, 78] is considered. OMP
works iteratively, in each iteration selecting the column of A having the
maximal projection onto the residual signal and adding it to the already
selected atoms. After a new column vector is selected, the representa-
tion coefficients with respect to the vectors chosen so far are found via
least-squares optimization.

Formally, given a measurement vector y and a matrix A with nor-
malized columns (in the matching pursuit literature such matrix is called
dictionary) the OMP algorithm performs the following steps to estimate
the sparse vector z.

Start by setting the residual r0 = y, the set of selected columns of A
Ω0 = ∅, and the iteration counter i = 1

1. Select the index of the next dictionary element by

ωi = argmax
j=1,...d

|〈ri−1, aj〉|

2. Augment the matrix of selected vectors and the selected set of
indices

AΩi
=
[
AΩi−1

aωi

]
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Ωi = Ωi−1 ∪ ωi

3. Update the current estimate

zi = argminz ‖AΩi
z − y‖2

2

4. Update the residual

yi = AΩi
zi

ri = y − yi

The algorithm can be stopped after a predetermined number of itera-
tions, hence after having selected a fixed number of atoms. Alternatively,
the stopping rule can be based on the norm of the residual.

3.2.5.3 Nonconvex CS algorithms

Several other algorithms replace the `0 norm with an `p norm

‖x‖p =

(
∑

i

|xi|p
)1/p

(3.20)

In the Focal Under-determined System Solver (FOCUSS) [79], Lagrange
multipliers are used to convert the problem to an unconstrained optimiza-
tion problem, and an iterative method is derived based on the idea of it-
eratively reweighed least-squares that handles the `p-norm as a weighted
`2-norm. In FOCUSS, usually 1 ≤ p ≤ 2 is used. In [57, 61, 62], the
case p < 1 is considered. Another reweighted procedure is the itera-
tively reweighted `1 minimization [51] in which the solution of the `1
norm minimization is reweighted to approximate `0 minimization. The
minimization of the `p norm with p < 1 is closer to the original `0 min-
imization problem. However, the overall problem becomes non-convex
giving rise to local minima and the convergence to a global minimum
cannot be guaranteed. An alternative approach is to approximate the `0
norm by smooth functions [80].
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3.2.5.4 Iterative Thresholding/Shrinkage

An alternative class of numerical algorithms addressing the sparse re-
construction problem in a computationally efficient way is the class of
iterative shrinkage algorithms [58, 63, 65, 66, 81, 82]. These methods con-
sist of a multiplication by A and its adjoint and a shrinkage operation
on the sparse vector z.

A simple form of iterative shrinkage can be defined by the following
iterations:

zi+1 = Tλ(zi + AT (y − Az)) (3.21)

where the operator T is the shrinkage or thresholding operator and λ is
the threshold. If the thresholding operator is given by

Tλ(x)i =

{

sign(xi)(|xi| − λ), if |xi| ≥ λ;

0, if |xi| < λ;
(3.22)

Eq. (3.21) refers to iterative soft thresholding (IST) or if T is the hard
thresholding operator

Tλ(x)i =

{

xi, if |xi| ≥ λ;

0, if |xi| < λ;
(3.23)

(3.21) corresponds to iterative hard thresholding (IHT). There are the-
oretical results that give sufficient conditions for the IST algorithm to
converge to the solution of P1 [58] and for the IHT algorithm to a local
minimum of P0 [81]. There is a large variety of iterative shrinkage algo-
rithms as they are especially appealing for practical applications of CS.
A current review on iterative shrinkage methods can be found in [83].

3.3 CS for MRI

MRI is probably the most advanced technology so far with regards to im-
plementing compressed sensing. Shortly after the first theoretical works
on CS, MRI was identified as a potential application that could benefit
from the new sampling theorem [70]. This idea was later developed by
Lustig et al. [69], who considered practical issues of the acquisition and
reconstruction in compressed sensing MRI (CS-MRI). In recent years CS
MRI has been a very active research area as evidenced by the rapidly
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increasing number of conference contributions and journal publications.
This section will discuss some basic considerations of the application of
CS to MRI.

3.3.1 Sparsity of MR images

The reconstruction of a signal from undersampled linear measurements
with CS requires the signal to be sparse. Indeed, some images, like MR
angiograms, are already sparse in the image domain. This makes MR
angiography a favorable candidate for CS. Most MR images, however, are
not sparse in the image domain. In this case sparsity has to be created
by applying an appropriate sparsifying transform. Two commonly used
transforms in CS-MRI are the finite differences transform and the wavelet
transform. These are illustrated in Fig.3.3.
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Figure 3.3. Sparsity in different domains. Two sparsifying transforms
commonly used in CS MRI are the finite differences and wavelets. Piece-
wise constant signals such as the Shepp-Logan phantom are extremely
sparse in the finite differences transform. In-vivo MRI images are often
sparse in the wavelet domain.
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Although the finite differences transform truly sparsifies only piece-
wise constant images like the Shepp-Logan phantom, it is often useful
as additional transform in the reconstruction. There are many different
wavelet transforms that could be chosen [42], based on properties such
as orthogonality and number of vanishing moments or possibly based on
some prior knowledge about the class of signals of interest. Sparsity is
not limited to single images. In many MRI applications, there are addi-
tional signal dimensions in which sparsity can be exploited. This could
be a temporal dimension as in dynamic imaging, spectral dimension or
a parameter dimension as in MR parameter mapping.

CS allows exact reconstruction only for signals which are exactly
sparse. Practical applications deviate from this model in two aspects.
First, there is always some measurement noise and since noise is not
compressible it prevents the signal from being sparse. Second the signals
are often only compressible, which means that instead of zeros they have
many small coefficients. In the case of noisy or compressible signals the
reconstruction error is proportional to the sparse approximation error,
i.e the error obtained when the image is approximated by its S largest
coefficients and all the rest is set to zero. Therefore it is instructional to
look at the sparse approximation of such signals.

For sparse, but noisy signals setting the small coefficients to zero leads
to signal denoising. This is demonstrated on the Shepp-Logan phantom
shown in Fig. 3.4.

The sparse approximation of a compressible signal is shown for the
example of a brain image in Fig. 3.5. Setting the small wavelet coeffi-
cients to zero leads to an approximation error, however up to about a
10% compression this error is hardly perceivable. If too many coefficients
are set to zero compression artifacts become visible, which are typically
expressed as smoothing and appearance of blocky structures as it can be
seen in the image approximated with 5% of the wavelet coefficients in
Fig. 3.5.

3.3.2 Sampling and Incoherence in CS-MRI

As discussed in chapter 2, data in MRI are conventionally acquired in the
spatial frequency domain, known as k-space. Therefore the measurement
matrix Φ is an undersampled Fourier matrix. One could also consider
other types of encoding than in the Fourier domain that could possibly
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Figure 3.4. Sparse approximation of sparse noisy image. The Shepp-
Logan phantom with added Gaussian noise (σ = 0.03) is approximated
with 6% of its coefficients in the wavelet domain (Haar wavelet). The
approximated image has reduced noise.

improve the incoherence between the sampling and sparsity bases. There
are few works suggesting encoding with random matrices [84–86]. Non-
Fourier encoding is out of the scope of this thesis, but it should be kept
in mind as an alternative option.

There is a large variety of k-space sampling patterns that could be
potentially realized. However, practical considerations set some restric-
tions such as full sampling in the frequency encoding direction and rel-
atively smooth k-space trajectories due to hardware and physiological
constraints.

Because of the restriction to undersampling in the phase encoding di-
rection undersampling in 2D Cartesian imaging can be performed in one
dimension only and in 3D Cartesian imaging in two dimensions. Non-
Cartesian imaging like radial or spiral allow undersampling in all spatial
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Figure 3.5. Sparse approximation of compressible image. The brain
image is approximated by its largest wavelet coefficients (Daubechies
4 wavelet). Signal approximation with 10% of the largest coefficients
results in good image quality
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dimensions and could potentially allow higher undersampling factors.
Difficulties using non-Cartesian trajectories include increased computa-
tional complexity and higher susceptibility to imperfections in the acqui-
sition such as off-resonance effects, eddy currents and gradient system
imperfections.

3.3.2.1 Incoherence

From the theoretical point of view random Fourier measurements satisfy
the RIP with high probability, which means that if the image is sparse
enough it can be reconstructed from a small number of k-space mea-
surements chosen at random. These results are probabilistic, saying that
almost any set of k-space measurements will work for almost any signal.

Clearly, among the different realizations of random Fourier sampling
some sampling patterns will be better than others. For a fixed sampling
pattern (measurement matrix), one can compute the coherence which can
be used as the basis for comparison between different sampling patterns.
The coherence can also be related to the PSF as suggested in [69]. The
PSF for a given measurement matrix Φ is defined as:

PSF (i, j) = eH
j ΦHΦei (3.24)

where ei is the i-th canonical basis vector. For full sampling on a Carte-
sian grid, the matrix Φ is orthonormal and all pixels are uncorrelated
PSF (i, j) = δ(i, j). Undersampling causes aliasing, i.e. some of the en-
ergy of the main peak leaks to the sidelobes of the PSF . This aliasing
pattern shows the correlations between different pixels due to undersam-
pling. The maximum sidelobe-to-peak ratio SPR(i) was introduced by
Lustig [69] as a metric to characterize these correlations. It is defined as:

SPR(i) = max
i6=j

PSF (i, j)

PSF (i, i)
(3.25)

For sparsity in the transform domain Ψ, the PSF of the matrix A =
ΦΨH has to be considered, which is referred to as transform point spread
function TPSF in [69].

TPSF (i, j) = eH
j AHAei = eH

j ΨΦHΦΨHei (3.26)

The maximum SPR is equal to the coherence µ. The coherence is a
worst case criterion. It evaluates the maximum correlation between any
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two coefficients, so if a low coherence sampling is found it will work well
for all images. One can imagine a measurement matrix for which two co-
efficients are highly correlated and all the others are uncorrelated. Such a
measurement matrix makes it impossible to distinguish between the two
correlated coefficients. However, it is still possible to obtain a perfect
reconstruction for all images that do not contain these two coefficients
and leads to small reconstruction error for signals which contain these
coefficients, but they have small amplitude. On the other hand, for a
measurement matrix with the same coherence measure but high corre-
lations between all coefficients it will be impossible to obtain a good
reconstruction for any image.

Therefore a metric characterizing the complete aliasing effect pattern
might be useful. In this work the mean aliasing energy is intoduced as
such metric:

MAE(i) =
1

N

∑

i6=j

√

TPSF (i, j)∗TPSF (i, j)

TPSF (i, i)∗TPSF (i, i)
(3.27)

that also takes into account the total aliasing due to undersampling.
In the most general case one has to compute the TPSF for each

coefficient to obtain the coherence. Although this is much less computa-
tionally intensive than verifying the RIP, for typical image sizes it still
involves a large number of computations. For example, a relatively small
image of 256 × 256 pixels requires the computation of 2564 = 4 ∗ 109

coefficients. In the case of sparsity in the image domain, because of the
properties of the Fourier matrix the PSF needs to be computed only at
a single pixel, which greatly reduces the number of computations. In the
case of sparsity in the wavelet transform the SPR and the MAE are
constant within each subband, therefore computing the TPSF for one
coefficient from each subband is sufficient.

3.3.2.2 Incorporation of prior knowledge

Prior knowledge about the image can be used to design sampling patterns
that are appropriate for a given class of images. The maximum incoher-
ence between the canonical basis and the Fourier basis means that if the
signal is sparse in the image domain the signal energy is spread in k-space.
In this case uniform density random sampling in k-space is appropriate.



3.3 CS for MRI 49

However, most MR images are not sparse in the image domain, but in
some other basis, e.g. wavelets. Usually the significant wavelet compo-
nents are concentrated around the coarse scales, which are corresponding
to the low frequencies. In the Fourier domain this means that the signal
energy is usually highest around the k-space origin and decreases to-
ward the edges. This prior knowledge can be used in designing sampling
patterns by constructing random sampling patterns according to a prob-
ability density function (PDF) with higher density around the k-space
origin. In [69], a sampling density according to a power of a distance
from the origin was proposed, with density powers of 1 to 6 resulting in
greatly improved image quality compared to uniform random sampling.

Using a variable density sampling pattern does not necessarily im-
prove the incoherence. However it does change the correlations between
different coefficients. Fig. 3.6 shows an example of two random sam-
pling patterns, one with uniform density and one with variable density.
The TPSF was computed for each wavelet coefficient for the two sam-
pling patterns. The maximum SPR for each wavelet coefficient is shown
in Fig. 3.6. The coherence is µ = 0.116 for the uniform density and
µ = 0.149 for the variable density sampling. The mean aliasing energy
is MAE = 0.0475 and MAE = 0.0498 for the uniform and the variable
density case, respectively. Based on these metrics there is no reason why
variable density sampling should be preferred. The reason can better be
understood by looking at the distribution of the correlations between the
coefficients in the sparsity domain. It can be seen that in the uniform
density case the highest correlations are for the coarse scale coefficients,
while in the variable density case these are shifted to the fine scale co-
efficients. Although the coherence for the variable density sampling is
higher, since the high coherence is in the fine scale coefficients, it results
in smaller aliasing artifacts for an image with low energy in the fine scale
coefficients, like the brain image shown in Fig. 3.6. Therefore the vari-
able sampling density is advantageous only for signals corresponding to
the assumed distribution. An even more adaptive scheme was proposed
in [87] suggesting that the PDF is determined according to the energy
distribution of a separately acquired reference scan.
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Figure 3.6. Variable density sampling. Random sampling with uni-
form and with variable sampling density are considered. The distribu-
tion of the SPR in the wavelet domain shows that the uniform density
sampling pattern results in high correlations between the coarse scale
coefficients, while for variable density sampling the high correlations
are in the fine scale coefficients. Therefore for an image, in which most
of the energy is concentrated in the coarse scale wavelet coefficients, the
variable density sampling results in much less artifacts.
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3.3.2.3 How many samples to acquire?

Theoretical bounds on the number of samples that need to be acquired in
order to be able to reconstruct any S-sparse signal are derived in [34,54].
The two main factors influencing the number of required samples are the
signal sparsity and the sampling matrix coherence. In MRI the images we
are interested in are lying in a very small subspace of the high dimensional
space they are occupying. Often additional prior knowledge is used in
choosing the sampling pattern as described in the previous section. This
implies that the theoretical bounds do not strictly apply in this case,
because we are interested in reconstructing a given subset of images,
therefore the influence of the coherence is reduced. Empirical results
show that one can achieve a good reconstruction if 2 to 5 times the
number of sparse coefficients are acquired.

A fundamental lower limit of the number of samples that need to be
acquired is the number of sparse coefficients S. Even if the locations of
the sparse coefficients are known, one cannot reconstruct the image from
less than S samples. Since these locations are in general unknown and
have to be recovered by the reconstruction, at least 2S measurements
need to be performed. Depending on the reconstruction method, the
coherence of the sampling pattern, and on the accuracy of the prior
knowledge used some more measurements might be needed.

Therefore, the main factor which determines the number of necessary
samples is the signal sparsity. Usually MR images are not strictly sparse
but rather compressible in some transform domain. The signal sparsity
can be determined by the number of coefficients which are sufficient to
approximate the image without degrading its diagnostic quality.

3.3.3 State of the art in CS-MRI

Future acceptance of compressed sensing in MRI will depend on whether
it proves to be more efficient than other acceleration strategies. Likely,
this will only be achieved by combining compressed sensing with existing
acceleration strategies and specifically parallel imaging. Therefore, an
investigation of the synthesis of compressed sensing and parallel imag-
ing, and in particular how the two associated reconstruction methods
may efficiently interact with each other, is of high relevance. The scan
acceleration in compressed sensing and parallel imaging relies on com-
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pletely different principles. In parallel imaging, it is mainly determined
by the properties of the coil array, while in compressed sensing, it is
the compressibility of the images that plays the key role. In princi-
ple, both types of knowledge can be combined in the reconstruction to
reduce the required amount of data further. Several works have been
presented [88–92] proposing a combined CS-SENSE reconstruction by
adding an `1 regularization term to the iterative SENSE reconstruction.
Liang et al. [93] have proposed a two step approach, first performing CS
to obtain a set of uniformly undersampled images and as a second step
performing SENSE to reconstruct the final image. A combination of CS
with autocalibration parallel imaging reconstruction has been proposed
in [94,95].

Besides the reconstruction method, the sampling strategy is another
important issue in CS-PI. Uniform subsampling is usually employed in
the acquisition in PI, while an irregular subsampling is used in the ac-
quisition in CS. It has been shown that random sampling with more
regular distribution of the sampling points like Poisson disk sampling
works works well for both PI and CS [94]. There are also several works
applying randomized sampling for PI [87], or using `1 regularization in
regularly undersampled parallel imaging [96].

Accelerating the acquisition process is of major interest for various
MRI applications. CS is not intrinsically limited to a certain applica-
tion, however, its performance, i.e. the achievable scan time reduction,
strongly depends on the sparsity or compressibility of the acquired im-
ages, which can vary considerably between different applications. In this
chapter CS has been considered to speed up the acquisition of a single
2 or 3D image. However, some applications provide additional sampling
dimensions, for which different sampling strategies and sparsifying trans-
forms may be advantageous. This motivates considering CS separately
for each application.

One application of particular interest is contrast enhanced angiogra-
phy. Angiograms are already very sparse in the image domain and can be
sparsified further using a finite difference transform, enabling a substan-
tial acceleration of the measurement or improvement of the spatial and
temporal resolution, which is of high relevance especially in time-resolved
angiography [97].

Besides angiography, dynamic cardiac imaging is of great interest [98–
100]. Dynamic images are highly compressible in the temporal direction
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and in CS this compressibility is exploited for scan acceleration.
Relaxation parameter mapping is also of interest because of its often

long acquisition times. Similarly to the temporal dimension in dynamic
imaging, the parameter dimension provides an additional sampling di-
mension, which can be used for undersampling. Works in this field in-
clude [101–104].

Similar methodology can be employed for scan time reduction in dif-
fusion spectrum imaging [105,106], phase contrast imaging [107,108] and
Fourier velocity encoded MRI [109], among others.

Compressed sensing is also of considerable interest in hyperpolarized
MRI. A major difficulty in hyperpolarized imaging is the short acquisition
time restricted by T1, which limits the spatial resolution. Compressed
sensing allows improving the spatial resolution without decreasing the
coverage. Hyperpolarized 13C MRSI with CS has been presented in
[110, 111] hyperpolarized 3He lung MRI has been considered in [112].
CS has also been applied for chemical shift based water-fat separation
[113,114].





Chapter Four

CS with golden ratio radial
sampling

Geometry has two great treasures: one is the theorem
of Pythagoras, the other, the division of a line into
extreme and mean ratio. The first we may compare to
a measure of Gold; the second we may name a precious
jewel.

— Johannes Kepler

Low coherence sampling trajectories are favorable in CS. In Cartesian
k-space sampling, incoherence can be accomplished by randomly un-
dersampling the data in the phase encoding direction(s). Therefore,
the undersampling is limited to one direction in 2D and two directions
in 3D sampling, which limits the achievable acceleration factor. Under-
sampling in all spatial directions can be achieved using non-Cartesian
trajectories. One practical non-Cartesian trajectory, which has low
coherence, is radial sampling. In radial sampling, data are usually
acquired along lines passing through the k-space origin with uniform
angular spacing. This chapter considers CS reconstruction using a ra-
dial sampling trajectory with non-uniform angular spacing, in which
data are acquired according to the golden ratio. The golden ratio ra-
dial sampling reduces the symmetry of the PSF in radial sampling and
furthermore allows great flexibility in dynamic imaging.
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4.1 Introduction

I
n radial MRI (or projection reconstruction (PR)) data are obtained
along lines passing through the k-space origin. It was the first tra-
jectory to be used in MRI by Lauterbur in his seminal paper [4].

Recently, radial imaging has gained new interest for applications like
angiography [14,32] and ultra-short echo time imaging [115].

One advantage of radial sampling is that it is relatively robust with
respect to undersampling. In radial undersampling the aliasing appears
as slight streaking and increased pseudo-noise, whereas in Cartesian un-
dersampling it results in severe ghost artifacts. Extending the radial
sampling to 3D is even more advantageous, because the aliasing energy
is distributed over the entire imaging volume leading to lower aliasing
amplitudes [14]. Radial trajectories are relatively insensitive to motion
because of the frequent resampling of the k-space origin. They are also
valuable for imaging tissues with short T2 relaxation times, because they
can be performed with no gradient encoding before the data acquisition
begins, starting in the k-space center [116].

These properties of radial sampling are used, among other approaches,
for accelerated k-space sampling [14]. Undersampled radial trajectories
are often used in dynamic applications to achieve high temporal and
high spatial resolution, while tolerating some artifacts. In high contrast
applications, such as angiography, the streaking is less prominent and
even higher acceleration factors can be achieved [117,118].

The aliasing in undersampled radial imaging can be reduced by ap-
plying prior knowledge about the measured signal in the reconstruction.
Highly constrained backprojection for time resolved MRI (HYPR) [32]
uses prior knowledge of a high resolution image with no temporal in-
formation and the assumption of low resolution dynamic information
(i.e. the signals in neighboring pixels have very similar temporal evolu-
tion). This helps reducing the aliasing in each radially undersampled time
frame, allowing to improve the temporal resolution in MR angiography.
Compressed sensing [33, 34], on the other hand, applies more abstract
prior knowledge about the signal such as sparsity or compressibility and
is therefore applicable to a broader class of applications.

As discussed in section 3.3.2.1, CS requires a sampling pattern, re-
sulting in incoherent noise like artifacts. Practical schemes for low co-
herence data sampling in MRI can be achieved by randomly skipping
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phase encoding lines as proposed by Lustig et al. [69]. Such a sampling
scheme is easy to implement and refers to the major part of MRI scans,
namely Cartesian. However, in Cartesian sampling, the aliasing energy
is distributed only in the phase encoding directions (one dimension for
2D and two dimensions for 3D sampling), which is restricting the ac-
celeration factor. Non-Cartesian trajectories, on the other hand, can be
applied to achieve undersampling in all measured directions. There are
many known non-Cartesian k-space trajectories (see section 2.4.2) and
possibly others can be designed that could be considered as potential CS
sampling trajectories. Undersampled variable density trajectories like
radial and variable density spiral are of special interest, because they
naturally provide a variable density k-space coverage. This is often de-
sired because most of the signal energy is usually concentrated near the
k-space center (see 3.3.2.2). This work focuses on radial sampling as one
of the oldest and most well explored sampling trajectories that is inher-
ently well suited for undersampling. In this chapter, a special case of
radial sampling is assessed as a candidate for a practical non-Cartesian
CS sampling scheme.

The radial sampling pattern considered here is based on a golden ratio
concept. Golden ratio sampling results in a more irregular sampling
pattern which can be favorable in CS. It also allows greater freedom
in the choice of the time frame in dynamic imaging. With golden ratio
sampling the frame length can be adapted to the signal kinetics and could
also be determined retrospectively [119]. As an example, the application
of compressed sensing for 2D dynamic cardiac imaging and 3D imaging
of the hand will be considered.

4.2 Golden ratio radial sampling

A uniformly undersampled radial trajectory achieves undersampling in
all measured dimensions. The uniform radial sampling results in a point
spread function with oscillatory behavior and peak aliasing amplitude
occuring at concentric rings, with radii determined by the maximum dis-
tance between two points in the radial k-space trajectory. However, the
aliasing amplitude is small, which makes radial sampling a good can-
didate for a practical CS trajectory. Randomizing the angles at which
radial profiles are acquired can be used to obtain a more irregular sam-
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pling scheme, and to reduce the symmetries of the uniform radial PSF .
However, a purely random distribution of the radial profiles tends to
build clusters of closely spaced profiles and large gaps between samples,
which could increase the aliasing energy of the sampling pattern. In this
work, an irregular radial sampling pattern with nearly uniform angular
distribution of the radial profiles is considered, which is based on the
golden ratio concept.

4.2.1 The golden ratio

The golden ratio can be defined by partitioning a line segment, such that
the ratio of the longer to the shorter partition is equal to the ratio of the
initial segment to the longer partition:

a

b
=
a+ b

a
= ϕ (4.1)

From equation (4.1) follows that the golden ratio ϕ can be determined
as the positive root of the quadratic equation

ϕ2 − ϕ− 1 = 0,which is (4.2)

ϕ = 1+
√

5
2
. (4.3)

The golden ratio can be used to determine the locations of a series of
points on a line segment as shown in Fig. 4.1. The location of the n-th
point on the segment is determined as the modulo of nϕ. The pattern
thus obtained has the property that at arbitrarily chosen time intervals
the sampling points are distributed almost uniformly on the line segment.
The golden ratio often occurs in nature as in growing patterns of flowers,
shells, and galaxies, and is referred to symmetry of growth, because it
allows adding a new element to an already existing arrangement, while
preserving the symmetry [120]. Fig. 4.1 (a) illustrates this property
by showing the distribution of different number successively selected of
points on a line segment, obtained according to the golden ratio. Com-
pared with uniform density random distribution Fig. 4.1 (b) the golden
ratio results in more uniform pattern.

4.2.2 2D Golden ratio sampling

A 2D radial trajectory based on the golden ratio was proposed in [119] as
an optimal radial view order in dynamic imaging. Data in successively
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Figure 4.1. Dynamic symmetry of golden ratio sampling. Partitioning
according to the golden ratio is shown for a line segment in (a). A new
point is always placed on one of the largest segments, such that a nearly
uniform distribution is attained at all times. A set of randomly chosen
points according to a uniform distribution tends to build clusters and
larger gaps, as shown in (b).

measured radial profiles are acquired at a constant incremental angle
based on the golden ratio. The golden angle is determined as 180◦/ϕ ≈
111.246◦. This sampling attains a nearly uniform distribution of the
radial profiles in 2D k-space for an arbitrary set of successively acquired
profiles. Applied to dynamic imaging, this enables variable frame lengths,
which could be determined and selected after the data are measured, as
well as arbitrary positions of the time frames.

The distribution of radial profiles in golden ratio sampling is not per-
fectly uniform, which reduces some of the symmetries of uniformly under-
sampled radial sampling. This can be seen in Fig. 4.2, which shows the
PSF for uniformly undersampled radial sampling and golden ratio sam-
pling with the same number of profiles. For the example shown Fig. 4.2
the mean aliasing energy for the golden ratio sampling is MAEgr =
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3.446×10−5 and for the uniform radial sampling MAEur = 3.451×10−5.
The maximum sidelobe to peak ratio is SPRgr = 0.030 and SPRur =
0.0345 for the golden ratio and the uniform radial sampling, respectively.
The uniform radial sampling provides lower coherence compared to the
golden ratio sampling within a circular FOV, which corresponds for full
sampling. However, for a larger FOV (i.e. in case of undersampling), the
mean aliasing energy and the maximum sidelobe to peak ratio are lower
for the golden ratio sampling. The angular distances between neighbor-
ing profiles in golden ratio sampling are concentrated around 3 different
angles (or 2 if the number of profiles equals a Fibonacci number), which
similarly to the uniform radial sampling results in oscillatory behavior of
the PSF, but the aliasing amplitude is decreased.

(a) (b)

Figure 4.2. Undersampling of radial trajectories. The PSF is shown
for (a) uniformly undersampled radial sampling and (b) golden ratio
sampling with the same number of radial profiles. The aliasing pattern
of the golden ratio radial trajectory is less structured and the aliasing
energy is more uniformly distribured over the FOV. The images are
enhanced by a factor of 20 for better visualization.

4.2.3 3D Golden ratio sampling

Distributing the radial profiles in three dimensions could potentially allow
for higher acceleration factors. A 3D radial sequence that aims for a
quasi-isotropic distribution of radial profiles in 3D k-space over the total
duration of a scan as well as over an arbitrary time window extracted
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from scan for dynamic imaging can be achieved by using the golden ratio
in two dimensions.

An extension of the golden ratio to multiple dimensions, derived from
the extended Fibonacci series, was presented in [121]. The two dimen-
sional golden ratio is determined by two coefficients α = 0.4656 and
β = 0.6823, which can be used to distribute a sequence of points on a
plane using the coordinates mod(nα) and mod(nβ).

The 3D radial trajectory based on the golden ratio is determined
by distributing the tips of the radial profiles on the spherical surface
according to the two dimensional golden ratio. This can be achieved by
using the increments ∆kz = 2α and ∆ϕ = 2πβ for successively measured
profiles, where ∆kz is the increment of kz and ∆ϕ is the increment along
the polar angle of the projection in the kx-ky plane [122]. The 3D golden
ratio radial sampling is illustrated in Fig. 4.3. A similar trajectory, for
which the profile tips are distributed on a half sphere, is presented in
[123].

4.3 Reconstruction

As described in section 3.2.5 the CS reconstruction problem can be for-
mulated as an `1-norm regularized least squares problem:

argmin
x

‖y − Φx‖2
2 + λ ‖Ψx‖1 , (4.4)

where y is the vector of the measured data, x is the unknown image, Φ
is the sampling matrix and Ψ is the sparsifying transform.

The sampling matrix is the operator, which maps the image x to the
acquired k-space. One can think of the radial MR acquisition as a system,
evaluating the radial Fourier transform of an object and the task of the
reconstruction is to invert this transform. Using a matrix notation, the
forward transform is given by:

y = Frx, (4.5)

where Fr is the radial Fourier transform. The radial Fourier transform
can be directly computed as a discrete Fourier transform on the radial
grid. For any practical application this approach is too computationally
intensive, therefore an approximation using the FFT is used instead. The
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Figure 4.3. 3D golden angle sampling. Successive radial profiles are
acquired ťwith increments ∆kz and ∆ϕ, determined by the 2D golden
ratio coefficients α and β.

forward transform is computed by applying an FFT of the image x and
then interpolating the k-space data from the Cartesian to the radial grid
using a convolution kernel as described in section 2.4.3. The effects of the
convolution with the gridding kernel are compensated in a deapodization
step before the FFT. This procedure is sometimes referred to as inverse
gridding (the gridding reconstruction is described in section 2.4.3).

If sufficient data are collected and the matrix Fr is invertible, the
image reconstruction from radial data can be obtained as:

x = F+
r y =

(
FH

r Fr

)−1
FH

r y, (4.6)

where FH
r is the Hermitian radial Fourier transform, consisting of convo-

lution interpolation from the radial to the Cartesian grid, inverse FFT
and deapodization. In the gridding reconstruction described in section
2.4.3, the explicit inversion of the matrix

(
FH

r Fr

)
is avoided by applying
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a preconditioner derived from geometrical reasoning (the density com-
pensation function), which makes the forward transform approximately
orthonormal. The reconstruction problem can also be solved iteratively,
without using the density compensation function.

In 2D uniform radial sampling, usually π
2
N radial projections with

N samples each are sufficient to assure adequate reconstruction of an
N ×N image using conventional reconstruction. This can be related to
the Nyquist criterion, applied for the maximum distance between two
samples in the radial k-space trajectory. If less samples are acquired,
this problem becomes ill conditioned and some additional information is
needed to obtain a proper solution.

In this work, compressed sensing is applied for the reconstruction of
undersampled radial data, exploiting the signal sparsity to constrain the
solution, and the reconstruction problem is formulated as:

argmin
x

||y − Frx||22 + λ||Ψx||1. (4.7)

For data acquired with multiple receive coils, Eq. 4.7 is extended to:

argmin
x

∑

i

||yi − FrCix||22 + λ||Ψx||1, (4.8)

where Ci denotes the receive sensitivity of the i-th coil element and yi

denotes the acquired data from that element. The problems in Eqs. (4.7)
and (4.8) can be solved using nonlinear conjugate gradients algorithm as
described in [69].

In radial sampling, deviations between the ideal and actual trajectory
due to system imperfections (e.g. eddy currents) lead to serious image
artifacts, as the signals from different radial profiles do not add coherently
at the k-space center. Therefore, the data need to be corrected for k-
space misalignments prior to the reconstruction. Misplacements of the
trajectory along the readout direction lead to a linear phase in image
space. This could be estimated from radial profiles acquired in opposite
or approximately opposite directions [124].
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4.4 2D golden ratio dynamic cardiac imaging

4.4.1 Experiments

Dynamic cardiac data of a healthy volunteer were acquired with 2D
golden ratio radial sampling using a Steady State Free Precession (SSFP)
sequence (TR = 2.59 ms, FOV = 350 × 350 mm2, 192 × 192 matrix, 8
mm slice thickness, flip angle 60◦, 5 element cardiac receive coil) on a
1.5T clinical scanner. Data were collected during free breathing for 10 s.

To determine the necessary temporal resolution, a series of images
with varying temporal resolution were reconstructed from the data using
conventional gridding reconstruction as illustrated in Fig. 4.4. The se-
lected time frame contained 32, 55, 89, 144, and 233 projections, resulting
in a temporal resolutions of 83, 142, 230, 373, and 602 ms, respectively.
To obtain images at different time points the frame can be shifted in
steps of one or more TR.

Based on the selected temporal resolution, the dynamic dataset was
divided in time frames containing 32 radial profiles each, which corre-
sponds to temporal resolution of 83 ms. The images for each frame were
reconstructed with gridding reconstruction and with CS. In the CS re-
construction, the finite differences transform was applied as a sparsifying
transform in the image domain. Sparsity in the temporal domain was
introduced using temporal differences operator, which computes a differ-
ence between the image in the current time frame and an image from a
larger time frame centered at the same position (see Fig. 4.4 (b)). The
reconstruction was performed by solving the minimization problem:

argmin
x

∑

i

||yi − FrCix||22 + λ1||Dx||1 + λ2||x − x0||1, (4.9)

where D is a finite differences transform and x0 is a temporal average
image, obtained from a larger time frame around the current time frame.

An estimation for the relative coil sensitivities was obtained similarly
to the method described in [125] by reconstructing images using the com-
plete dynamic dataset for each coil element and dividing each image by
the combined sum of squares image. Alternatively, coil sensitivity esti-
mates can be obtained from the central part of k-space, or from a separate
reference scan.
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Figure 4.4. Temporal resolution in golden ratio sampling. (a) The
temporal resolution in golden ratio sampling can be adjusted retrospec-
tively by varying the width of the time frame used in the reconstruction.
The frame position and frame width can be varied in steps of one or
more TR. (b) The image in the current time frame can be sparsified
by subtracting a temporal average image obtained from a larger time
centered at the same position.

4.4.2 Results

Figure 4.5 shows the images for the systolic (a) and the diastolic (b)
phase with different temporal resolutions reconstructed with gridding re-
construction and combined using the estimated coil sensitivities [17]. At
high temporal resolution, the images accurately depict the actual cardiac
phase. However, they are corrupted by streaking artifacts due to under-
sampling. Increasing the frame length results in reduced aliasing, but
the reconstructed images exhibit temporal blurring over many cardiac
phases. Thus, the image content can significantly deviate from the car-
diac phase, at which the frame is centered. This effect is stronger in the
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systolic phase due to the faster cardiac motion. Therefore, for accurate
imaging of the cardiac motion, it is necessary to use a short frame length
to freeze motion sufficiently. For the given dataset a temporal resolution
of 83 ms was chosen.

(a)

(b)

�T = 83ms �T = 142ms �T = 230ms �T = 373ms �T = 603ms

Figure 4.5. Temporal resolution and aliasing in golden ratio sampling.
(a) a selected systolic and (b) diastolic cardiac phase (short axis view)
is shown, reconstructed from frames with different lengths ∆T . Using a
short frame length allows more accurate depiction of the actual cardiac
phase at the cost of streaking artifacts.

Images from the dynamic dataset, reconstructed at a temporal reso-
lution of 83 ms, for different cardiac phases are shown in Fig. 4.6. Fig-
ures 4.6 (a) and (b) show the images obtained with gridding reconstruc-
tion and with CS reconstruction, respectively. The images, reconstructed
with CS show significant reduction of the streaking artifacts, improving
the image quality.

4.5 3D golden ratio sampling

4.5.1 Experiments

To illustrate the capability to resolve motion in volumetric data, 3D
radial data with golden ratio sampling were acquired during continuous
hand motion using the following parameters: TE = 0.87 ms, TR = 4.0
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(a)

(b)

T0 T0 +83 ms T0 +166ms T0 +249ms T0 +332ms

Figure 4.6. Reconstruction of dynamic cardiac data at high temporal
resolution. Images of the dynamic dataset reconstructed at temporal
resolution of ∆T = 83 ms are shown obtained with (a) gridding re-
construction (b) compressed sensing. The CS reconstruction shows
improved image quality.

ms, flip angle 10◦, FOV 256 × 256 × 256 mm3, matrix 128 × 128 × 128.
Data were acquired on a 1.5T clinical scanner and partitioned in frames
with 1365 profiles each, corresponding to a temporal resolution of ∆T =
5.4 s. Images from each time frame were obtained with conventional
gridding reconstruction and with CS using finite differences and wavelets
(Daubechies 4) as a sparsifying transform.

Furthermore, to study the ability of undersampling in 3D radial mea-
surements, a full 3D dataset of a static hand was acquired with golden
ratio sampling. The dataset was retrospectively undersampled by taking
a subset of successively measured radial profiles. The images were recon-
structed with gridding reconstruction and with CS for several different
undersampling factors.

For imaging of tissues with short T2 components the data acquisition
has to be performed as early as possible after excitation. Ultrashort echo
time (UTE) sequences [126, 127] allow echo times substantially shorter
than 1 ms. With these sequences short T2 tissues like tendons and liga-
ments can be visualized. To avoid slice selection problems for ultrashort
echo time imaging 3D radial sequences are employed [115]. To highlight
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the fast relaxing components, data at two different echo times are ac-
quired (one dataset is acquired at an ultrashort echo time and the other
at a longer echo time at which the signal from the short T2 tissues has
decayed) and as a post processing step a difference image is computed.
To avoid errors due to chemical shift, the second echo time is selected
such that water and fat spins are in-phase.

The 3D golden ratio radial sampling was applied for the acquisition
of UTE data of a hand, using the following parameters: TE1 = 74 µs ,
TE2 = 4.5 ms (corresponding to water-fat in-phase at 1.5 T), TR = 7.1
ms, FOV = 256 × 256 × 256 mm3, matrix 128 × 128 × 128 α = 10◦, sin-
gle channel head coil. Images with different undersampling factors were
reconstructed with gridding reconstruction and with CS, applying finite
differences (TV) and wavelets (Daubechies 4) as sparsifying transforms.

4.5.2 Results

A selected slice from the 3D images obtained from the reconstruction of
the dynamic dataset is shown for several time frames in Fig. 4.7. Each
image is reconstructed from a set of sequentially acquired profiles, with
a reduction factor of 19. The images, obtained with CS reconstruction
show significantly improved image quality compared to the gridding re-
construction. The streaking artifacts are suppressed, and structures in
the images are preserved. A 3D surface rendered image of the hand,
obtained from the CS reconstructed dataset, is shown for better visual-
ization of the hand motion.

The results of the undersampling experiments of the static hand im-
age are shown in Fig. 4.8. Figure 4.8 shows images reconstructed from
undersampled data using gridding and CS as well as fully sampled low
resolution images from the same amount of k-space data. In the im-
ages reconstructed with CS, streaking artifacts that are prominent in the
gridding reconstruction images are significantly suppressed. Up to an
undersampling factor of approximately 20, image resolution is relatively
well preserved. With increasing data reduction factors the local contrast
is decreased, which might result in a loss of low contrast features.

Results from the UTE undersampling experiments are shown in Fig.
4.9. Similarly to the results shown in Fig. 4.8, the CS reconstruction
shows decreased streaking for all reduction factors, improving the visu-
alization of the tendons.
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Gridding CS 3D surface

Figure 4.7. 3D golden ratio sampling dynamic hand imaging. The
results of conventional gridding reconstruction and compressed sensing
are shown for selected time frames using an undersampling factor of
19. Additionally, 3D surface rendered representations of the 3D CS
reconstructed images are shown for better visualization of the hand
motion. The CS reconstruction results in suppressed streaking and
improved image quality.



70 4 CS with golden angle radial sampling

Reduction
Factor 4               6                  10              20               30           

Gridding

Low resolution

Compressed
Sensing

Figure 4.8. 3D golden ratio undersampling. A slice, selected from
the 3D images reconstructed from reduced k-space data is shown for
different reduction factors. The cutting plane consists of fingers and the
major palm muscle structures. CS results in reduced aliasing and high
image quality for modest reduction factors. At very high accelerations
there is decrease in local contrast and resolution.
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length. This is a desirable property in dynamic imaging, allowing ret-
rospective adjustment of the frame length and position according to the
necessary temporal resolution of a dynamic scan. CS using golden ratio
sampling was demonstrated in 2D and 3D dynamic imaging experiments
with high undersampling factors. The improvement in image quality fa-
cilitates high temporal resolution in dynamic imaging, which is otherwise
compromised by streaking artifacts.

In the 2D dynamic cardiac imaging experiments temporal resolution
of 83 ms was achieved maintaining a good image quality. The ability of
3D radial sampling to support undersampling in all three spatial dimen-
sions furthermore leads to a better aliasing distribution and and thus to
higher achievable undersampling ratios. Dynamic imaging of the hand
was obtained with a temporal resolution of 5.4 s.

Although the presented results are encouraging, there are several is-
sues that might be limiting for the practical application. CS in 3D ra-
dial sampling is challenging because of the high memory requirements
and long reconstruction times. The reconstruction times for the exam-
ples considered in this chapter were about 30 s for a single frame in 2D
imaging and 1 hour for a single 3D image. The 2D experiments were
performed with multi-coil acquisition and combined parallel imaging -
CS reconstruction. In 3D radial sampling a combination with parallel
imaging is currently infeasible because of the long reconstruction times.
Fast reconstruction algorithms and dedicated hardware are therefore nec-
essary to address this problem.

Another issue in radial sampling is that due to system imperfections
the actual measurements can deviate from the desired trajectory. This
is especially apparent in the k-space center, which is resampled in each
radial profile. This problem is partly addressed by applying a phase
correction before the image reconstruction to correct for profile misalign-
ments. However, more accurate knowledge of the trajectory can further
improve the reconstruction.



Chapter Five

CS parameter mapping

The sciences do not try to explain, they hardly even try
to interpret, they mainly make models. By a model is
meant a mathematical construct which, with the addi-
tion of certain verbal interpretations,describes observed
phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to
work.

— John von Neumann

Signal sparsity is a crucial factor in CS, which determines the achievable
undersampling factor. MR images are usually not sparse in the image
domain, so a sparsifying transform has to be applied in the CS recon-
struction. Prior knowledge about the images is available in many MR
applications, which can be exploited to find a sparsifying transform
that is tailored to the specific application. In this work it is shown
that such prior knowledge permits designing a model-based sparsify-
ing transform that exploits the signal compressibility in MR parameter
mapping. The model based transform is applied in compressed sens-
ing reconstruction to accelerate the measurements in MR parameter
mapping. The method is presented and evaluated in simulations and
in-vivo measurements, exemplified for T1 and T2 mapping experiments
in the brain. Accurate T1 and T2 maps are obtained from highly re-
duced data. This model-based reconstruction can potentially also be
applied to other MR parameter mapping applications like diffusion and
perfusion imaging.

Based upon: M. Doneva, C. Stehning, J. Sénégas, P. Börnert, H. Eggers and A. Mertins,
“Compressed Sensing Reconstruction for MR parameter mapping”, Magn Reson Med,
published online.
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5.1 Introduction

D
ifferent tissues in the human body can be distinguished in MRI
by their intrinsic MR parameters, such as proton density, longi-
tudinal (T1) and transversal (T2) relaxation times [128]. By al-

tering the scanning parameters, such as repetition time (TR), echo time
(TE) and flip angle (α), the combined effect of the MR parameters on
the image can be changed to obtain different image contrasts. However,
such an approach is purely qualitative. Direct quantification of the local
MR parameters often provides more accurate and reproducible diagnos-
tic information [129]. MR parameter mapping is, therefore, of interest in
a wide range of clinical applications including oncology, neurology and
cardiology [129–131].

A major concern in MR parameter mapping is the often long scan
time. This has led to an estimation of T1 and T2 relaxation times from
three or even only two data points, which entails poor accuracy and does
not give any indication of multi-compartmental signal behavior. Higher
numbers of measurements are necessary to cover a large dynamic range
of tissue parameters relevant in clinical applications [132, 133] and also
to improve the accuracy of the fit and the SNR.

This chapter presents a technique for reducing the acquisition time in
multi-point MR parameter mapping experiments, which is inspired by the
theory of compressed sensing. By exploiting the inherent compressibility
of MR images, CS allows data reduction without significantly compro-
mising image quality [69]. The compressed sensing recovery algorithms
are generic in the sense that they do not assume any other structure in
the signal besides its sparsity in some transform domain. The underly-
ing sparsifying transforms are often chosen with very little assumptions
about the MR signal. Finite differences and wavelet transforms assume,
for instance, that most medical images are piecewise smooth or have
sparse wavelet representations. Although these transforms are useful for
many signals, they generally allow only modest signal compression, and
therefore limited data reduction when used in CS.

The reconstruction could be better tailored to the specific problem if
data-specific transforms were used. For example, in dynamic imaging,
data are acquired in k–t space to obtain a series of images of a dynamic
process. Such data are often highly compressible in the temporal dimen-
sion. Sparsity along the temporal dimension is promoted by subtracting
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a composite image [134] or applying a Fourier transform [98] in case of
periodic motion. Related works have been presented for the application
in cardiac and functional brain imaging [98,99,135].

In this work, the prior knowledge of the data model in MR parameter
mapping is used to design a sparsifying transform, which is applied to
sparsify the data in CS image reconstruction. Two different model-based
sparsifying transforms are presented. The first transform is an orthonor-
mal basis, constructed using principal component analysis (PCA) [136].
The second is an overcomplete dictionary, learned from the data model
using a method for overcomplete dictionary design called K-SVD [137].
The proposed method is applicable for MR parameter mapping mea-
surements of T1 or T2 relaxation times and diffusion coefficients, among
others. The method is not restricted to exponential models and could po-
tentially be applied to more complex processes like contrast agent uptake
and perfusion, in which the signal may also be described by a model.

5.2 Signal model and training data

In the following, the framework of a generalized MR parameter map-
ping problem will be considered. Given an underlying model f(p; θ), a
spatially resolved estimation of the parameters of interest θ requires the
acquisition of several images at different values of the encoding parameter
p. A typical data acquisition scheme with Cartesian sampling is shown in
Fig. 5.1. This measurement space will be referred to as k–p space. Scan
time reduction can be achieved by undersampling in the phase-encoding
(ky) and parameter-encoding (p) dimensions.

Knowledge of the data model allows generating a set of signal proto-
types by evaluating the model for a discrete set of parameters. This set of
prototype signals characterizes the data dependencies within the model
and could be used as a training set to design a model-adapted sparsi-
fying transform. Generating the training set requires only knowledge of
the model and the expected range of the parameters, but no previously
measured data are necessary.

Fig. 5.2 illustrates how the training data set is formed. Given a set of
sampling locations along the encoding parameter p and a sample value
of the parameters θ a signal prototype s can be generated by evaluating
the function values f(p; θ) at the given parameter values. Performing
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Figure 5.1. Data acquisition in Cartesian k–p space. (a) Conventional
sampling where a full Cartesian dataset is acquired for each acquisition
parameter value p. (b) Incoherent sampling for compressed sensing,
achieved by variable density random undersampling of phase encodes
with higher density near the k–space origin. In this way the data ac-
quisition time can be reduced.

such an evaluation for different parameter values θ provides a set of
prototypes (examples) sj(i) = f(pi,θj) , which can be grouped in the
matrix S. Each column of the matrix S forms a discrete signal prototype.
Training data S can be generated based on a uniformly distributed set
of parameter values in the expected range. For instance, the range of T1

and T2 in biological tissue is known and determines also the measurement
parameters. Alternatively, the training parameter values could be drawn
from a given probability distribution, if such information is available.

5.3 Model-based reconstruction using PCA

5.3.1 Sparsity: Model-based Transform

One possible way to define a model-based sparsifying transform is to use
the principal component analysis (PCA). PCA is a classical tool for data
analysis, visualization and compression [136]. It represents the data as
a linear combination of the vectors called principal components, corre-
sponding to orthogonal directions maximizing the variance in the data.
Dimensionality reduction is achieved by considering only the principal
components corresponding to the largest eigenvalues. Often just a few
principal components are necessary to achieve a good signal approxima-
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Figure 5.2. Construction of a training data set for a model-based
sparsifying transform. A set of general signal prototypes is obtained
by evaluating the model at the sampling locations p for a large set of
parameter values θj .

tion. Also, for a linear approximation with M out of N vectors and
multivariate Gaussian statistics, the PCA basis is the transform that
shows the minimal approximation error among all orthogonal bases [42].

The model-based sparsifying transform is obtained as follows. Train-
ing data S are generated as described in section 5.2. Next the singular
value decomposition (SVD) of the correlation matrix R = SSH is com-
puted.

R = SSH = UΣUH (5.1)

The matrix UH , taken from the singular value decomposition of the
correlation matrix, defines the PCA transform. A multiplication with
UH rotates the data into a new coordinate system, such that the most
significant information is contained in the first few dimensions. Dimen-
sionality reduction could be achieved by approximating the signal in these
few dimensions and cropping all the rest. The full matrix UH , without
cropping, is an orthogonal linear operator which achieves a sparse rep-
resentation of the training set and also of any other signal, described by
the model in the given parameter range.
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5.3.2 Sampling and Incoherence

The sampling pattern considered in this chapter is illustrated in Fig. 5.1b.
Random undersampling in ky–p (on a Cartesian grid) is performed with
variable sampling density in ky, taking into account that most energy
of MR images is concentrated in the low frequencies, and with uniform
density in p. This choice is mainly motivated by its compatibility with
multi-echo acquisition sequences. Alternatively, the sampling density in p
can be adapted to the signal distribution. Incoherence plays an important
role in CS and sparse signal approximation. Low coherence guarantees
that sparse recovery algorithms can exactly recover any sufficiently sparse
signal and that this solution is unique.

The coherence of the PCA transform can be assessed by means of the
transform point spread function (TPSF ) (Eq.(3.26)). The PCA trans-
form is a 1D transform along the temporal direction and the measurement
is represented by a 2D or 3D undersampled Fourier transform applied in
the spatial directions

TPSF (i, j) = ejU
HFH

u FuUei. (5.2)

Here ej is a vector in the sparsifying transform domain with a single
non-zero element of 1 at position j, UH and Fu denote the PCA trans-
form and the undersampled Fourier transform operators. An example
of the aliasing pattern for a given sampling pattern and PCA transform
is shown in Fig. 5.3. Figures 5.3(a) and (b) show the aliasing in the
PCA coefficients along the parameter direction (a) and along the phase
encoding direction (b). The example is given for a single PCA coefficient
placed in the center of the image. For the same sampling pattern, the
aliasing in the image domain is significantly higher as seen in 5.3 (c) and
(d).

5.4 Model-based reconstruction using over-

complete dictionaries

5.4.1 Sparsity: Model-based Transform

Most commonly, orthonormal bases are applied as sparsifying transforms
for CS. However, representing a signal with respect to an overcomplete
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(a) (b)

(c) (d)

Figure 5.3. Coherence of the PCA transform. The aliasing pattern
for random undersampling in the ky-p domain is shown in the PCA
transformed data in the parameter direction (a) and in the phase en-
coding direction (b). The aliasing pattern in the image series is shown
in the parameter direction (c) and in the phase encoding direction (d).
The red line in (c) is the original signal, corresponding to a single PCA
coefficient. Due to random undersampling in the parameter direction
the aliasing in the PCA domain is significantly decreased compared to
the image domain.
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dictionary adds more flexibility in the signal representation and could
significantly improve sparsity. A dictionary is a collection of discrete-time
signal prototypes (atoms) and is overcomplete if the number of atoms is
greater than the signal dimensionality. Large data-adapted dictionaries
allow for accurate data description with just a few atoms and in this way
achieve much sparser representations compared to orthonormal bases.

Mallat et. al [55] compare signal decomposition in an orthonormal
basis and in an overcomplete dictionary to a text written with a small
and large vocabulary. While a small vocabulary might be sufficient to
express an idea, it requires the use of large sentences for missing words.
Similarly, large data-adapted dictionaries allow for accurate data descrip-
tion with just a few atoms and in this way achieve much more compact
representations compared to orthonormal bases.

Finding an overcomplete dictionary that sparsely describes the sig-
nal is not a trivial task. One possibility is to use a pre-specified set of
functions to form a dictionary, e.g by concatenating vectors of different
bases such as wavelets, curvelets, delta pulses, etc. In this way, differ-
ent signal characteristics like edges or point-like singularities could be
sparsely described by the atoms from different bases. Choosing a pre-
specified transform matrix is appealing because it is simpler. Also, in
many cases it leads to simple and fast algorithms for the evaluation of
the sparse representation. This is for instance the case for overcomplete
wavelets, curvelets, contourlets, short-time-Fourier transforms, and more.
Typically, tight frames are preferred that can easily be pseudo-inverted.
Better results can be obtained if the dictionary is adapted to a given set
of signal examples.

An overcomplete dictionary that sparsely represents the training data
can be designed by the K-SVD method proposed by Aharon et al. [137].
The K-SVD algorithm works iteratively, applying two steps in each iter-
ation:

1. in the sparse coding step, the dictionary D is fixed, and a sparse
representation with respect to that dictionary is obtained;

2. in the dictionary update step, the dictionary columns are updated,
one column at a time to minimize the approximation error of the
training data.

The learned dictionary is optimized for a signal approximation with at
most K atoms. The value of K is chosen as small as possible, such
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that the approximation error in the learned dictionary is below a given
threshold, e.g. 10−5. Finding a signal representation of a signal x with
respect to a dictionary D with at most K coefficients requires solving
the problem:

minimize ‖x − Dz‖2 , subject to ‖z‖0 ≤ K. (5.3)

This problem is solved at each iteration of the K-SVD algorithm, which
motivates the use of efficient algorithms such as the orthogonal matching
pursuit (OMP) [78].

The model-based dictionary is applied in the parameter - encoding
dimension p. However, each one-dimensional signal in the parameter di-
mension is related to the complete k–p dataset, requiring joint estimation
of the complete dataset. Further sparsity in the image domain can be
imposed by applying wavelets or finite differences.

5.4.2 Sampling and incoherence

To obtain a unique sparse representation the dictionary D has to be inco-
herent. If the dictionary D is coherent, the matrix A = ΦD mapping the
sparse coefficients z to the measurement vector y, y = Az will also be
coherent, which is compromising the CS reconstruction of the sparse rep-
resentation. Therefore, it is natural to require that the complete matrix
A = ΦD is incoherent. However, if we are only interested in the image
x and not in its sparse representation z, the coherence of the dictionary
might not be necessary.

If two columns of the dictionary D are closely correlated it will be
impossible in general to distinguish if the signal energy is coming from
the one or the other. For example, if two atoms of the dictionary are
identical, a signal x = Dz can be explained with the first or the second or
any linear combination of the two atoms. Thus, the sparse representation
of the vector x with respect to the dictionary D is not unique. However,
finding any of these possible representations will lead back to the signal
of interest x = Dz.

In the considered application of MR parameter mapping, the measure-
ment matrix Fu (related to the sampling in k–p space) is incoherent as it
has been shown in Fig. 5.3. The proposed sampling pattern in k–p space
results in noise-like artifacts in both the image and the parameter di-
mensions, which can be removed in the reconstruction. The model-based
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dictionary may have high coherence, caused by the correlations between
signals with different parameters values. However, the large correlation
between columns in D does not impose a problem. Although that makes
it impossible to obtain a unique reconstruction of the coefficient vectors
z, which is not the goal, it does not compromise the estimation of the de-
sired vector x. As it will be shown in the experiments, the model-based
dictionary allows obtaining a very accurate signal approximation with
just a few atoms for signals drawn from the data model. Because of the
high redundancy, also signals with parameter values not included in the
training set are described very sparsely. On the other hand, the dictio-
nary is very discriminative and gives a very poor representation of signals
unrelated to the model as well as noise. This enables efficient reduction
of the incoherent artifacts in the image series in the reconstruction.

5.5 Reconstruction

A POCS algorithm is chosen for the reconstruction for its simplicity. The
algorithm is described here for the case of sparse representation in an
overcomple dictionary. It can be easily modified for the PCA transform.

Given a measurement vector y in k–p space, the goal is to reconstruct
the image series x, consisting of L images xl at parameter - encoding
values pl, l = 1, ..., L. The signal in the parameter dimension at voxel n
is denoted with xn, where n = 1, ..., N , and N is the number of voxels.

The sparsity parameter K in the dictionary representation is esti-
mated during the dictionary training phase and is fixed. The K-term
estimate is obtained using OMP. The complete data x are jointly recon-
structed, applying the following iterative procedure:

Set y(0) = y, x(0) = 0. For iteration i:

1. Apply x
(i)
l = FH

u y
(i−1)
l for l = 1, .., L

2. Compute the K-term estimate x
(i)
n = Dz

(i)
n , ||z(i)

n ||0 = K, n =
1, ..., N

3. Compute y
(i)
l = Fux

(i)
l for l = 1, .., L and insert the measured data

at the sampling locations y(i) = y|acq

4. Repeat steps 1-3 until the change of energy in x gets smaller than

a given threshold ||x(i)−x(i−1)||
||x(i)|| < ε
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Here Fu is the undersampled Fourier operator and H denotes the
Hermitian conjugate. The algorithm can also be used with the PCA
transform. In this case, the OMP in step 2 can be replaced by soft
thresholding.

Additional sparsity in the images can be exploited, for instance, by
including the following step, denoted as

2′. Compute x
(i)
l = Ψ−1T (Ψx

(i)
l , tl), l = 1, ..., L, where T is the soft

thresholding operation and Ψ is a wavelet transform.

The extended algorithm applies steps 2 and 2′ alternately during the
iterations. The threshold t is determined according to estimation of the
signal sparsity.

To evaluate the proposed model-based sparsifying transforms, the fol-
lowing reconstruction variants were studied:

A. Apply the model-based PCA transform in the parameter-encoding
dimension and wavelets (Daubechies 4) on the images;

B. Apply only the PCA transform in the parameter-encoding dimen-
sion;

C. Apply the model-based dictionary in the parameter-encoding di-
mension and wavelets (Daubechies 4) on the images;

D. Apply only the dictionary in the parameter-encoding dimension;

E. Apply wavelets on the images and in the parameter-encoding di-
mension.

Variants A and C are the recommended approaches for application
of the two model-based transform. Variants B and D show the per-
formance of each model-based transform used alone. Variant E is the
classical approach, using a general wavelet transform instead of model-
based transform and is used as a reference.

5.6 Application to T1 and T2 mapping

5.6.1 Data Model

In this work, model-based CS reconstruction is applied to accelerate T1

and T2 measurements. The detectable MR signal M in these and some
other measurements (e.g. diffusion) can be generalized to the exponential
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model

M(p) = α + β exp(−p/τ), (5.4)

where τ denotes the tissue parameter in question and α and β are complex
parameters, which are also estimated in the fit. For estimating these
parameters spatially resolved, k-space data need to be acquired at several
different values of the acquisition parameter p. The sampling locations
of p are determined by the expected range of the relaxation parameters.
Uniform sampling with pmax about two times the target value of τ is a
common choice.

5.6.2 Simulations

To demonstrate the ability of the model-based transforms to sparsely
represent data and account for the effects of noise, a computer model
was implemented mimicking a T2 mapping experiment. The simulated
phantom data shown in Fig. 5.4 consisted of 32 images with echo time
spacing of 12.5 ms, matrix size of 256×256, containing five compartments
with different T2 values (12 – 250 ms). Gaussian noise with σ = 0.02
(SNR = 50) was added to simulate noisy data.

A training set of 1000 exponentials was generated with decay coeffi-
cients uniformly distributed between 1 and 300 ms. The training data
were used to determine a PCA transform UH and an overcomplete dic-
tionary D. A dictionary with 100 atoms was learned using K-SVD, opti-
mized for a support K = 3. The T2 values of the phantom data were not
contained in the training set. A signal approximation with respect to the
two model-based transforms was obtained for different numbers of sparse
coefficients. The signal approximation with respect to the PCA trans-
form was obtained by thresholding. The approximation with respect to
the dictionary was obtained using OMP. The normalized RMS error was
used as a quality measure of the approximation.

NRMSE =

√
∑N

i=1 |xi − oi|2
∑N

i=1 |oi|2
(5.5)

where xi denotes the i-th voxel of the approximated images and oi the
corresponding voxel in the original images. The sum runs over the entire
image series.
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Figure 5.4. The simulation model of T2 data. A simple numerical
phantom was generated consisting of five compartments with different
time constants (12 – 250 ms). In total, 32 images were generated along
the parameter dimension.

The simulation data were undersampled with various reduction fac-
tors (2 to 8) and reconstructed with each of the reconstruction variants,
described above. Parameter maps were obtained from the set of images
on a voxel-by-voxel basis using the Levenberg-Marquardt algorithm.

5.6.3 Measurements

The reconstruction technique described above was further demonstrated
for the application of T1 and T2 mapping in vivo. T1 and T2 data in
the brain were acquired in four healthy volunteers. Measurements were
performed on a 1.5T clinical scanner.

For T1 mapping, inversion recovery data were acquired with a Look-
Locker sequence including a correction for apparent T1 values. The fol-
lowing parameters were used for the measurement: 40 inversion times
with increment ∆Ti = 72 ms, inversion repetition time 3 s, FOV 250×250
mm2, 7 mm slice thickness, 224×224 matrix. Data at each inversion time
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Figure 5.5. Approximation error of the model-based transforms. The
NRMSE is plotted as a function of the number of principal components
((a), (c)) and dictionary atoms ((b), (d)) used in the approximation.
Both transforms achieve a very good signal approximation of noiseless
data with few coefficients (a), (b). Applied to noisy data, most of the
signal is contained in the first few coefficients and the noise is (partly)
approximated by adding further coefficients (c), (d). The dictionary
representation results in much smaller error in both the noiseless and
the noisy case.
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were acquired with a segmented gradient echo sequence (TE = 1.9 ms,
TR = 3.8 ms, flip angle 10◦).

For T2 mapping, multi-spin-echo measurements were performed with
the following parameters: 32 echoes, 5 ms echo spacing, TR = 1 s, FOV
250 × 250 mm2, 6 mm slice thickness, 256 × 256 matrix.

The datasets were undersampled retrospectively with reduction fac-
tors of 2, 4, 6, and 8 for the T1-dataset and 2, 3, 4, and 5 for the T2-
dataset. The undersampled data were reconstructed with each of the five
variants described above. A PCA transform and a dictionary consisting
of 100 atoms were trained for each model. The training dataset for the
T1 model consisted of 2500 exponentials corresponding to apparent T1s
between 0.2 and 500 ms. The dataset for the T2 model consisted of 1000
exponentials with decay constants between 1 and 300 ms.

Parameter maps were obtained from the reconstructed image series
and compared to the true parameter map. The reconstructed image
series and the resulting maps were compared to the full sampling case.
To assess the reconstruction quality, the NRMSE was calculated for the
reconstructed image series and the corresponding parameter maps.

5.7 Results

5.7.1 Simulations

The approximation error as a function of the number of coefficients in
the sparsifying transform (PCA and dictionary) is shown in Fig. 5.5. In
the noiseless case, both transforms give a very accurate approximation
with two or three coefficients and an exact signal representation with less
than 10 coefficients (Fig. 5.5 (a, b)). The approximation error using the
model-adapted dictionary is much smaller compared with the error using
the PCA transform (note the difference in the scales of the NRMSE in
Fig. 5.5).

In the presence of noise, the PCA transform approximates most of
the exponential signal in the first two or three coefficients, and adding
more components essentially adds only noise (Fig. 5.5 (c)). The dictio-
nary is very discriminative to noise. With increasing number of atoms
some of the noise is approximated, however, a large portion is discarded
(Fig. 5.5 (d)). In both cases the dictionary gives a much more accurate
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Figure 5.6. Signal approximation of noisy data with PCA transform
(top) and model-adapted dictionary (bottom). The signal in the tempo-
ral dimension and its approximation with three and twenty coefficients
for low and high T2 values is shown in (a) and (d). The corresponding
images for TE = 250 ms are shown in (b) and (e) for an approximation
with three coefficients and (c) and (f) with twenty coefficients, for the
PCA and the dictionary, respectively.

representation of the original signal.

The denoising effect of the sparse approximations is illustrated in
Fig. 5.6. Figures 5.6 (a) and (d) show the signal approximation in the
parameter direction for the two sparsifying transforms using three and
twenty coefficients compared to the original signal. The signal in the
parameter dimension is given for a short and a long T2 value. The ap-
proximation with three coefficients already gives a good approximation of
the exponential decay. Adding more coefficients approximates also some
of the noise. Figures 5.6 (b), (c), (e), and (f) show the signal approxi-
mation in the image domain for a given echo time (TE = 250 ms). Since
in CS reconstruction small coefficients are penalized, it is expected that
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Figure 5.7. T2 parameter map CS reconstruction of simulated noisy
data using a PCA model-based transform. The maps obtained from
reconstruction variant A are shown in (a) for different undersampling
factors. For comparison, the NRMSE with respect to the ideal map
for reconstruction variants A (PCA and wavelets) and B (PCA only)
is indicated below the maps. The difference images between the maps
shown in (a) and the ideal map are shown in (b).

there will be a denoising effect in the reconstructed image series.
In the following figures, the images from the undersampling exper-

iments for the two recommended reconstruction variants A and C are
shown.

Figures 5.7 and 5.8 show the maps obtained from the CS reconstructed
image series of the simulation dataset. Figure 5.7 shows the maps ob-
tained using the PCA transform and wavelets (variant A). The maps
obtained with variant B show larger error. This can be seen in the
NRMSE with respect to the ideal map, which is indicated for recon-
struction variants A and B below each map. Figure 5.8 shows the maps
obtained using the dictionary and wavelets (variant C). The NRMSE for
reconstruction variants C, D and E is given for each reduction factor.

Accurate parameter maps were obtained for all reduction factors. The
error for a reduction factor of 6 in reconstruction variant C (Fig. 5.8) and
a reduction factor 2 in reconstruction variant A (Fig. 5.7) is about the
same as for the map, obtained from 32 fully sampled echoes (NRMSE =



90 5 CS parameter mapping

����� ����� ����� �����

�

	
	����	
	����	
	�� 	
	����	
	����	
	��� 	
	����	
	����	
	��� 	
	����	
	����	
	���

�

	
	����	
	����	
	�� 	
	����	
	����	
	��� 	
	����	
	����	
	��� 	
	����	
	����	
	���

Figure 5.8. T2 parameter map CS reconstruction of simulated noisy
data using a model-based dictionary. The maps obtained from image
series reconstructed with the proposed model-based reconstruction (re-
construction variant C) are shown for different undersampling factors
in (a). For comparison, the NRMSE with respect to the ideal map
for reconstruction variants C (dictionary and wavelets), D (dictionary
only) and E (wavelets in all directions) is given below the maps. Note
that a conventional parameter mapping reconstruction using fully sam-
pled data results in a NRMSE of 0.0179 because of the finite SNR in
the data. The corresponding error maps are shown in (b).

0.0179) as a consequence of the finite SNR. The denoising effect of the re-
construction results in decreased errors for lower reduction factors. With
increasing reduction factor the error in the maps changes from noise-like
to localized (artifacts). Reconstruction variant C gives the best results
in both NRMSE and visual quality for all reduction factors.

5.7.2 Measurements

Figures 5.9 and 5.10 show selected results from the in vivo T1 mapping
experiments. A single image picked from the acquired image series is
shown for full Nyquist sampling (R= 1) and for CS reconstruction with
reduction factors of 2 to 8 in (a). As expected, a slight denoising is
observed in the CS reconstructed images. All aliasing artifacts in the
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images, resulting from the undersampling, could be removed for a reduc-
tion factor up to 6 for the dictionary and up to 4 for the PCA transform.
For higher reduction factors some residual aliasing as well as blurring is
observed in the reconstructed images. The resulting T1 maps are shown
in Figs. 5.9 (b) and 5.10 (b). The quality of the maps corresponds well
to the quality of the image series. The model-based dictionary (variant
C) results in slightly better reconstruction than variant A.
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Figure 5.9. CS reconstruction of T1 mapping data applying a model-
based PCA transform. (a) The image for TI = 1.65 s and full sampling
(R=1), as well as CS reconstruction with various reduction factors. (b)
the resulting T1 maps do not show any visible differences compared to
the reference map up to a reduction factor of 6. The normalized RMS
error with respect to the fully sampled map is given below each image.
The color-coding bar indicates the T1 times in ms.

Results from the T2 mapping experiments are shown in Figs. 5.11 and
5.12. Accurate reconstruction was achieved for data reduction factors up
to 4. For higher reduction factors, the image quality is visibly decreased.

Also here, the model-based CS reconstruction results in maps very
close to the full sampling map. Variants A and C show very similar
results with a slight advantage for variant C.



92
5

C
S

p
aram

eter
m

ap
p
in

g

�
��
��

�
��
��

�
��
��

�
��
��

�
	�




��
	�
�
�
��
	�

�

�
	�
�
�
��
	�
�

��
	�
�
�

�
	�
�
�
��
	�
�


��
	�
�


�
	�
�
�
��
	�


�
��
	�
�
�

�
��
��

�

�
	�




��
	�
�
�
��
	�

�

�
	�
�
�
��
	�
�

��
	�
�
�

�
	�
�
�
��
	�
�


��
	�
�


�
	�
�
�
��
	�


�
��
	�
�
�

�

�
	�


�
��
	�




��
	�
�
�

�
	�
�
�
��
	�
�
�
��
	�
�


�
	�
�
�
��
	�
�
�
��
	�
�
�

�
	�
�
�
��
	�
�
�
��
	�
�
�

F
ig

u
re

5
.1

0
.

C
S

recon
stru

ction
of

T
1

m
ap

p
in

g
d
ata

ap
p
ly

in
g

a
m

o
d
el-

b
ased

d
iction

ary.
(a

)
Im

ages
for

T
I
=

1
.6

5
s

an
d

fu
ll

sam
p
lin

g
(R

=
1)

an
d

C
S

recon
stru

ction
s

w
ith

variou
s

red
u
ction

factors
(R

=
2
,...,

8).
S
ligh

t
d
en

oisin
g

is
ob

served
in

th
e

C
S
-recon

stru
cted

im
ages.

(b
)T

h
e

resu
ltin

g
T

1
m

ap
s

d
o

n
ot

sh
ow

an
y

v
isib

le
d
iff

eren
ces

com
p
ared

to
th

e
referen

ce
m

ap
u
p

to
a

red
u
ction

factor
of

6.
T

h
e

N
R

M
S
E

w
ith

resp
ect

to
th

e
fu

lly
sam

p
led

im
age/m

ap
is

given
b
elow

each
im

age/m
ap

for
th

e
recon

stru
ction

cases
C

/D
/E

.
T

h
e

color-co
d
in

g
b
ar

in
d
icates

th
e

T
1

tim
es

in
m

s.

Im
ages

for
all

fi
ve

recon
stru

ction
varian

ts
are

sh
ow

n
in

F
ig.

5.13
for

th
e

ex
am

p
le

of
R

=
3.

T
h
e

recon
stru

ction
varian

ts
u
sin

g
on

ly
a

P
C

A
tran

sform
in

th
e

p
aram

eter
d
irection

(varian
t
B

)
an

d
w

avelets
in

th
e

im
-

age
an

d
p
aram

eter
d
irection

(varian
t
E

)
sh

ow
sign

ifi
can

t
artifacts

alread
y

at
R

=
3.

T
h
e

im
ages

recon
stru

cted
w

ith
th

e
d
iction

ary
on

ly
(varian

t
D

)
h
ave

a
go

o
d

im
age

q
u
ality.

T
h
ey

ap
p
ear

m
ore

grain
y,

com
p
ared

to
th

e
case

w
h
en

w
avelets

in
th

e
im

age
d
om

ain
are

ap
p
lied

ad
d
ition

ally
(varian

t
C

).T
h
e

recon
stru

ction
varian

t
C

,ap
p
ly

in
g

learn
ed

d
iction

ary
in

th
e

p
ara-

m
eter-en

co
d
in

g
d
im

en
sion

an
d

w
avelets

in
th

e
im

age
d
im

en
sion

,
sh

ow
s

th
e

sm
allest

N
R

M
S
E

in
all

ex
p
erim

en
ts.

A
p
p
ly

in
g

th
e

d
iction

ary
alon

e



5.8 Discussion 93

����� ����� ����� �����

�	���
�	��� �	���
�	��� �	���
�	��� �	��
�	���

����

�

�	���
�	��� �	���
�	��� �	���
�	��� �	��
�	���

�

�	���
�	��� �	���
�	��� �	���
�	��� �	��
�	��

Figure 5.11. CS reconstruction of T2 mapping data with PCA trans-
form. (a) Image for TE = 20 ms and full sampling (R = 1) and CS
reconstructions with reduction factors 2 to 5. b) The corresponding T2

maps. The color-coding bar indicates the T2 times in ms. The NRMSE
error for reconstruction variants A (PCA and wavelets) and B (PCA
only) is given for each undersampling factor.

results in similar reconstruction quality for most of the cases. Significant
improvement of using both transforms together has only been achieved in
the phantom experiments. In all experiments, the standard reconstruc-
tion (variant E) shows artifacts for a reduction factors of 3 and higher.
The number of required iterations was between 6 and 35 depending on
the reduction factor. The computation time for one iteration was about
29s for a 256 × 256 × 32 matrix (Matlab, 2.2GHz CPU).

5.8 Discussion

Prior knowledge of the signal model was incorporated in the CS recon-
struction by applying a sparsifying transform, learned from the data
model. Two different transforms were considered which sparsify the data
in the parameter direction: an orthonormal transform, obtained by PCA,
and an overcomplete dictionary. The model-based transforms were ap-
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Figure 5.12. CS reconstruction of T2 mapping data with model-based
dictionary. (a) Image for TE = 20 ms and full sampling (R = 1) and CS
reconstructions with reduction factors 2 to 5. (b) The corresponding T2

maps. The color-coding bar indicates the T2 times in ms. The NRMSE
error for the three reconstruction variants C (dictionary and wavelets),
D (dictionary only) and E (wavelets in the image and the parameter
directions) is given for each undersampling factor.

plied in the CS reconstruction of undersampled T1- and T2-mapping data,
achieving accurate reconstructions with acceleration factors of about
4−6. The overcomplete dictionary results in sparser data representation
and leads to better CS reconstructions compared to the PCA transform,
when these transforms are used alone. Enforcing additional sparsity in
the wavelet domain can further improve the reconstruction. This im-
provement is significant mostly for the PCA transform, while for the dic-
tionary the improvement is noticeable only for images with very sparse
wavelet representation.

The best reconstruction in the numerical phantom experiments was
obtained applying the overcomplete dictionary and wavelets. Variant C
also yielded very good results in the in vivo experiments. However, the
results aobtained with the PCA transform and wavelets A are also very
similar. The achievable reduction factors may vary for different datasets
depending on data compressibility, data size, sampling pattern, SNR or
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A B C D E

Figure 5.13. Comparison of CS reconstructions of T2 mapping data
with different sparsifying transforms. T2 mapping data with an un-
dersampling factor of three is shown for all considered reconstruction
variants A (PCA transform and wavelets), B (PCA transform only), C
(learned dictionary and wavelets), D (learned dictionary only), and E
(wavelets in the temporal and image domain). An image for TE = 20

ms (top) and the T2 map (bottom) are shown for all reconstruction
variants.

potentially deviations from the model.

The sparsity of the signal representation with respect to an overcom-
plete dictionary depends on the training data and on the dictionary size.
Generally, the sparsity can be improved by increasing the dictionary size
but this also increases the computational burden and the dictionary co-
herence. Although the model-based dictionary may have high coherence,
a surprisingly good sparse signal approximation was obtained with OMP,
and as a consequence a good CS reconstruction. Similar observations
have been reported in a recent work by Wright et al. [138], showing clear
advantage of coherent dictionaries in the signal recovery from randomly
corrupted images. A heuristic explanation of this may be that the signal
of interest spans a small portion of the space and the learned dictionary
represents that space well, while rejecting signals outside of it. One can
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think of the orthonormal PCA transform as an incoherent dictionary.
The orthogonality of the PCA transform assures that the signal repre-
sentation in this transform domain is unique. It has also been shown
that random sampling in the k-p space leads to reduced coherence in
the PCA transformed domain compared to the image domain, because
it makes use of the additional parameter dimension p, while the images
in the image series are decoupled.

In a dictionary with infinitely many atoms, the signal can be ulti-
mately represented by a single atom. This is equivalent to fitting the
signal to the model. Thus, another possible reconstruction approach
would be to fit the undersampled data to the model at each iteration
and subtract the artifacts from the resulting signal approximation. An-
other related approach would be to combine the CS reconstruction with a
nonlinear inversion approach like the one presented in [139], jointly esti-
mating the images and the parameter map. These two approaches could
be an interesting alternative to the one proposed here, however they in-
volve nonlinear sparsifying transforms or nonlinear measurements, which
are not considered in the existing CS theory. Furthermore, there might
be difficulties regarding the numerical stability due to the nonlinearity
and multiple local minima as well as increased computational complexity.

In practice, the tissue in each voxel is not always homogeneous, and
tissues with different parameters could contribute to the signal by means
of partial volume effects. Multi-exponential fits can be applied in this case
to decrease errors due to partial volume effects and to characterize multi-
compartmental relaxation curves [140]. Multi-exponential analysis have
been applied to identify and characterize multiple water compartments
in normal and pathologic tissue in different anatomies [141–146]. Some of
these works consider measurements of T2 spectra/distributions in tissue
acquiring several thousand echoes [144–146]. The presented model-based
transforms do not restrict the signal to a single exponential. In fact, the
reconstructed signal is a linear combination of multiple exponentials, so
the reconstruction is also compatible with a multi-exponential fit.

Model-based CS reconstruction was demonstrated here for the appli-
cations of accelerated T1 and T2 mapping in the brain. However, there are
also other applications, in which the same approach is applicable. The
signal model in diffusion measurements is also exponential, equivalent
to the T2 mapping model, so the same reconstruction is also applica-
ble for diffusion measurements. One could also apply the model-based
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transforms for more complex MR tissue signal models, as for instance
perfusion.

Several other methods exist to speed up sampling in MRI. Such meth-
ods, for instance, are partial k-space sampling, exploiting the conjugate
symmetry of the Fourier transform of real images, and parallel imaging.
A combination with these methods could potentially allow even higher
data reduction and thus higher acceleration factors.





Chapter Six

CS for chemical shift-based
water-fat separation

The devil has put a penalty on all things we enjoy in
life. Either we suffer in health or we suffer in soul or
we get fat.

— Albert Einstein

Multi-echo chemical shift-based water-fat separation methods allow for
uniform fat suppression in the presence of main field inhomogeneities.
However, these methods require additional scan time for chemical shift
encoding. This chapter presents a method for water-fat separation from
undersampled data (CS-WF), which combines compressed sensing and
chemical shift-based water-fat separation. Undersampling is applied in
k-space and in the chemical shift encoding dimension to reduce the to-
tal scan time. The method can reconstruct high quality water and fat
images in 2D and 3D imaging from highly undersampled data. As an
extension, multi-peak fat spectral models are incorporated into the CS-
WF reconstruction to improve the water-fat separation quality. In 3D
MRI, reduction factors of above three can be achieved, thus fully com-
pensating the additional time needed in triple-echo water-fat imaging.
The method is demonstrated on knee and abdominal in vivo data.

Based upon: M. Doneva, P. Börnert, H. Eggers, A. Mertins, J. Pauly, and M. Lustig
“Compressed Sensing for Chemical Shift based Water-Fat Separation”, Magn Reson
Med 2010.
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6.1 Introduction

I
n vivo MR images usually contain signals from several chemical spe-
cies, of which water and fat are the most prominent ones. Fat often
appears rather bright in MR images and may obscure underlying

pathology, degrading their diagnostic value. To overcome this problem,
reliable fat suppression methods need to be applied. Common fat sup-
pression techniques include fat saturation [147], spectral-spatial water
selective excitation [7], and short-TI inversion recovery [116]. However,
these techniques have certain limitations such as high sensitivity to B0

inhomogeneities, RF inhomogeneities, or low SNR.

Water-fat separation methods based on chemical shift-induced phase
differences allow for fat suppression in a more robust way, since field in-
homogeneities can be estimated from the data and taken into account
in the water-fat separation. Early works on chemical shift imaging in-
clude the two-point Dixon method [148] and the multi-point spectro-
scopic approach proposed by Sepponen et al. [149]. Many variations
of these multi-point water-fat separation methods have later been de-
rived [150–153], which exploit the potential to correct for field inhomo-
geneities. Multi-point methods deliver high SNR due to the internal
signal averaging in the reconstruction. A further advantage of water-
fat separation over other fat suppression techniques is that it delivers a
fat image in addition to the water image, which can provide additional
diagnostic information [92].

Chemical shift-based water-fat separation methods require the acqui-
sition of two or more images at different echo times, which prolongs the
total scan time. The acquisition of several 3D images may take too long
to be performed within a single breath-hold, causing inconsistencies be-
tween the images at different echo times as well as motion artifacts. To
improve the imaging efficiency, multi-echo techniques, measuring a num-
ber of echoes after each RF excitation, can be used for chemical shift
encoding [154,155]. However, their sampling efficiency might not be suf-
ficient to compensate for the extra time needed. To further decrease the
scan time, parallel imaging is often applied [154,156].

In this chapter, a method combining compressed sensing (CS) with
water-fat separation is described, which compensates for the additional
time needed for chemical shift encoding. CS has previously been applied
to accelerate MR image acquisition in different applications [69,98,110].



6.2 Water-Fat Separation 101

Incoherent sampling, signal sparsity and a nonlinear, sparsity promoting
reconstruction are the key elements of a successful CS reconstruction.
Carefully choosing these for a given application is important to obtain
good reconstruction performance. In chemical shift imaging, additional
subsampling in the chemical shift dimension can be employed, resulting
in subsampling a higher dimensional space, and thus improved incoher-
ence. Applying a sparsity constraint in the water and fat images effec-
tively exploits this additional subsampling dimension. In this chapter,
an integrated CS water-fat separation is proposed (CS-WF), which si-
multaneously recovers the missing k-space data and performs water-fat
separation.

6.2 Water-Fat Separation

6.2.1 The Signal Model

Chemical shift-based water-fat separation methods are often based on
the assumption of known and discrete resonance frequencies for water
and fat [148]. The acquisition of multiple images at different echo times
allows for recovery of the signal from each species. Denoting the k-space
data acquired at echo time tl with yl, the total measurement vector is
given by concatenating all data in the column vector y = [y1; ...;yL].
The number of required echo times L depends on the complexity of the
applied model. Three-point measurements are considered in this work,
from which complex water and fat images and a field inhomogeneity map
are obtained.

The k-space data acquired at echo time tl are described by the model:

yl = F{(ρw + ρfe
2πi∆ftl) · e2πiφtl} (6.1)

Here ρw is the water image, ρf is the fat image, ∆f is the chemical shift
between water and fat, φ is the field map, and F is the spatial Fourier
transform. The vectors ρw, ρf , and φ are of length N , N being the
number of voxels. Grouping all the unknowns together in one column
vector x =

[
ρw; ρf ; φ

]
, the signal model can be written in the concise

form y = g(x), where g() is the nonlinear operator mapping the water,
fat and field map to the acquired k-space locations.

The goal of the reconstruction is to find x from the measurements y
according to the given signal model y = g(x).
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6.2.2 Multi-Peak Fat Model

The fat spectrum contains multiple resonance frequencies, which con-
tribute to the measured signal. The relative amplitude of the different
fat peaks depends on the MR acquisition parameters and could vary for
different sequences. This could lead to incomplete water-fat separation
if not taken appropriately into account [157].

The simple single-peak fat model can be extended by considering
several dominant peaks in the fat spectrum. Recent studies show that
the fat spectrum in in vivo human studies can be considered as spatially
invariant [158]. Using the assumption of multi-peak spatially invariant
fat spectrum the signal model becomes

yl = F{(ρw + ρf

M∑

m=1

αme
2πi∆fmtl) · e2πiφtl}, (6.2)

where the chemical shifts ∆fm for each fat peak are known a priori. The
relative amplitudes of the fat peaks αm with

∑
αm = 1 could be obtained

in a separate calibration scan or by a self-calibration procedure [157].
This allows the incorporation of multi-peak fat models without increasing
the number of echoes.

For simplicity, all derivations to the rest of the paper will be given
for the single-peak fat model. The extension to a multi-peak fat model
is straightforward, by simply replacing the exponential factor in front of
the fat term with the sum of exponentials as shown above.

6.2.3 Water-Fat Separation Methods

In the case of full sampling, the water-fat decomposition problem is sepa-
rable and can be solved voxel-by-voxel. Denoting the image at echo time
tl with sl = F−1{yl}, a single voxel from the image sl with spatial index
r can be described by the simplified model

sl(r) = (ρw(r) + ρf (r)e
2πi∆ftl)e2πiφ(r)tl (6.3)

Here ρw(r), ρf (r) and φ(r) denote the values of the water, fat and field
map signals at the corresponding voxel.
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The water-fat separation at a voxel with index r can be obtained by
minimizing the cost function

J(x(r)) = ||





e2πiφ(r)t1 0 0
0 e2πiφ(r)t2 0
0 0 e2πiφ(r)t3





︸ ︷︷ ︸

D(r)





1 e2πi∆ft1

1 e2πi∆ft2

1 e2πi∆ft3





︸ ︷︷ ︸

A

[
ρw(r)
ρf (r)

]

︸ ︷︷ ︸

ρ(r)

−s(r)||22 (6.4)

where s(r) = [s1(r), ..., s3(r)]
T , the vector ρ(r) contains the water and fat

images at voxel r, A is the chemical shift mixture matrix, and D(r) is a
diagonal matrix comprising the field inhomogeneity terms. The IDEAL
method [152] solves the problem by using a nonlinear least squares esti-
mation, iteratively repeating two steps: field map estimation with fixed
ρ(r) and estimation of the water and fat signals with fixed field map.
IDEAL gives the maximum likelihood estimate for the water-fat decom-
position and allows for arbitrary echo times. A major difficulty in the
reconstruction is the estimation of the nonlinear parameter φ(r), since
the cost function is non-convex and has multiple local minima.

In case of water-only or fat-only voxels, there are two equivalent local
minima, which presents an inherent ambiguity of the water-fat separation
problem. In practice, most of the voxels contain one dominant species,
so a voxel-by-voxel solution could lead to errors in the decomposition in
some voxels. In the case of constant echo spacing ∆TE the cost function
is periodic with period 1/∆TE, which may cause additional difficulty in
the case of large field inhomogeneities and long echo spacings.

Spatial smoothness of the field map is commonly imposed as a prior to
address this problem. Methods enforcing field map smoothness include
filtering the field map [152], applying a region growing algorithm [159],
and applying a smoothness constraint in an iterative water-fat separation
algorithm [160], among others. In the presence of multiple local minima,
descent-based approaches find the closest minimum in the descent direc-
tion from the initial value. Therefore, a good initialization is crucial for
the success of these algorithms.

A more robust approach is to locate multiple local minima for each
voxel and to apply a smoothness constraint to obtain a field map from the
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possible solutions [161–163]. An exhaustive search through all possible
solutions takes prohibitively long. However, different heuristics such as
region growing/merging [161, 162] or graph cut algorithms [163] can be
applied to find a good solution. Methods for locating the multiple local
minima proposed in the past include Golden section search [161] and
the algebraic approach proposed in [162]. In the latter approach, the
global minimum is obtained for voxels containing both water and fat, and
several possible solutions are computed for voxels containing one species
only.

In this chapter, a simple method is suggested, which provides an
analytical solution and includes all local minima as possible candidates
for the field map. The method is related to the one proposed in [162], but
allows the computation of all local minima, independent of the number
of species in each voxel. To derive this solution, the cost function J is
represented in terms of the field map only by replacing the vector ρ(r)
with its least squares estimate

ρ̃(r) = A+D−1(r)s(r) (6.5)

as described in [157] and make a change of variables:

J(φ(r)) = ||(AA+ − I)





1 0 0
0 e−2πiφ(r)(∆TE) 0
0 0 e−2πiφ(r)(2∆TE)



 s(r)||22

= ||B





z0

z−1

z−2



 ||22, (6.6)

where
A+ = (AHA)−1AH (6.7)

is the pseudoinverse of A,

B = (AA+ − I)diag(s(r)), (6.8)

with diag(s(r)) being a diagonal matrix containing the elements of vector
s(r) in its main diagonal. The cost function can be represented as a two-
sided polynomial

J(φ(r)) =
2∑

n=−2

βnz
n, (6.9)
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where z = e2πiφ∆TE and the coefficients βn are obtained as a sum of the
diagonals of the matrix BHB. The computation of the coefficients βn is
shown in Fig. 6.1.
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Figure 6.1. The coefficients βn are computed as sum of the diagonal
elements of the matrix BHB as illustrated in the figure.

The extrema of J(φ(r)) can be found by setting its first derivative to
zero

G(φ(r)) = dJ(φ(r))/dφ(r) =
2∑

n=−2

2πin∆TEβn(e2πiφ(r)∆TE)n = 0.

(6.10)
The roots of G(φ(r)) are the same as the roots of the one-sided polyno-
mial

G∗(φ(r)) =
4∑

n=0

β∗
n(e2πiφ(r)∆TE)n, (6.11)

obtained by multiplying G(φ(r)) with (e2πiφ(r)∆TE)2. This is a fourth-
order polynomial in terms of e2πiφ(r)∆TE, and therefore, J(φ(r)) has four
extremal points within a single period, maximally two of which are min-
ima. The minima could be found by checking the second derivative or by
probing the neighborhood to determine the type of the extremal point.
To obtain the final field map from the multiple local minima, a region
growing algorithm was applied, similar to the one described in [161].
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6.3 Compressed Sensing for Water-Fat Sep-

aration

Compressed sensing [33,34] allows for signal reconstruction from a small
set of random linear measurements by exploiting signal sparsity. As-
suming that the signal is sparse in some known transform domain, the
sparsest solution agreeing with the given measurements is with very high
probability the correct solution.

A naive approach to combine CS and water-fat separation is to per-
form CS reconstruction on each individual echo data set and do the
water-fat separation in a second step. This means that for each individ-
ual echo image sl the following optimization problem is solved

argmin
sl

||Ψsl||1, s.t.||Fusl − yl||22 < ε, (6.12)

where Fu is the undersampled Fourier matrix corresponding to the ap-
plied sampling pattern, Ψ is the sparsifying transform, and the parameter
ε is related to the noise level and the accuracy of the measurement. Subse-
quently, water-fat separation is applied on the data, recovered by the CS
reconstruction. This approach is convenient because the CS reconstruc-
tion is performed independently of the water-fat separation. However, it
does not use the full potential of CS, because it does not account for cor-
relations between the images at the different echo times. Furthermore,
in such decoupled reconstruction the water-fat separation is performed
on the data obtained from the CS reconstruction and does not have ref-
erence to the original data. Thus, potential errors generated in the CS
reconstruction might be amplified in the water-fat separation.

To achieve better data consistency and use the full potential for data
undersampling, the CS water-fat separation is formulated as a sparsity
constrained nonlinear inverse problem, in which the water and fat im-
ages and the field map are the parameters x = [ρw; ρf ; φ], and the
signal model, mapping x to the k-space data y = g(x) (see Eq. [1]),
is interpreted as a nonlinear measurement operator. The integrated CS
water-fat reconstruction problem can formally be written as:

argmin
x=[ρw,ρf ,φ]

{||Ψwρw||1 + ||Ψfρf ||1}, s.t.||g(x) − y||22 < ε, (6.13)

where Ψw and Ψf are sparsifying transforms applied to the water and
fat images. In other words we are looking for the sparsest solution for the
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transformed water and fat images Ψwρw and Ψfρf , which is consistent
with the acquired k-space data and the signal model. CS and water-fat
separation are simultaneously performed jointly for all voxels.

6.3.1 Sparsity

Three-point water-fat separation already exploits sparsity in the spectral
domain to reduce the number of measurements. This is implied by the
signal model, which restricts the signal spectrum to two spectral peaks,
one for water and one for fat. This converts the otherwise spectroscopic
problem of water-fat separation to the inverse problem of finding the
signal amplitudes for the given frequencies. The (transform) sparsity in
the water and fat images could be used in a CS reconstruction to achieve
further data reduction. Similarly to other medical images, the water and
fat images can be sparsified by a finite differences or wavelet transform,
or because most voxels are either fat or water by imposing image sparsity
as well. In contrast to the sequential reconstruction, which exploits the
sparsity of three individual echo images, containing both water and fat, in
the integrated reconstruction the data from the three echoes are combined
into the water and fat images, reducing the number of sparse coefficients.
Often the water and fat images contain less structure and can be better
sparsified than the combined echo images.

6.3.2 Sampling

Incoherent sampling is very important in CS. Variable density random
sampling of k-space has been shown to work well for MR CS reconstruc-
tion, because most of the signal energy is concentrated around the k-space
origin [69]. In chemical shift imaging, additional random subsampling in
the chemical shift encoding dimension can be employed resulting in un-
dersampling in a higher dimensional k−TE space and thus in improved
incoherence. The signal distribution in this dimension is quite uniform,
so uniform density sampling is a valid choice.

Two possible randomized k-space sampling patterns have been consid-
ered: Poisson-disk sampling [164] and random sampling. Full sampling
around the central part of k-space is applied to account for the image
energy distribution. A fully sampled central k-space is also advanta-
geous, because it can be used for low-resolution field map estimation,
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Figure 6.2. Incoherent sampling pattern for CS-WF. a) Incoher-
ent sampling in the phase encoding and temporal dimensions can
be achieved with Poisson-disk or random sampling. Both sampling
schemes show similar aliasing patterns in the water/fat images. The
maximum aliasing amplitude and the mean aliasing energy are 0.114
and 0.0018 for the Poisson-disk sampling, and 0.121 and 0.0026 for
random sampling, respectively. Poisson disk sampling shows better
uniformity and lower aliasing. b) The aliasing pattern for a single im-
age with Poisson disk sampling with the same undersampling factor
(the sampling pattern for the first echo of the sampling shown in a)
is used here) shows higher aliasing. The maximum aliasing amplitude
and mean aliasing energy are 0.197 and 0.0066, respectively.
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as well as for auto-calibration in case of parallel imaging reconstruction.
The two types of sampling are illustrated in Fig. 6.2. Although an inco-
herence analysis is difficult because of the nonlinearity of the model, a
simple comparison of the sampling patterns can be made by comparing
the aliasing patterns in the water and fat images caused by the under-
sampling for a fixed field map. Fig. 6.2 a) shows the aliasing pattern of
the two sampling schemes for a single water voxel. This is obtained by
computing the "point spread function" (PSF ) of the system:

ρ̂ = AHDHFH
u (1/Θ)FuDAρ. (6.14)

Here ρ is a vector of length 2N with a single voxel in the water image
ρ(j) set to one, Fu is the undersampled Fourier operator of the corre-
sponding sampling pattern, Θ is the sampling density, A and D are the
chemical shift and field map matrices, respectively, defined for the com-
plete image as block diagonal matrices. The maximum aliasing amplitude
maxi6=j |ρ̂(i)| and the mean aliasing energy 1

N

∑

i,i 6=j ρ̂(i)H ρ̂(i), where N
is the total number of voxels, are given in Fig. 6.2. While both sam-
pling patterns show similar incoherence, the Poisson-disk sampling has
some advantages in terms of better sampling uniformity, which results in
decreased aliasing energy and could also be useful for a later extension
to parallel imaging. In the sequential reconstruction CS is performed
on each individual echo image and the sampling pattern can be charac-
terized by the corresponding PSF for a single echo ŝi = FH

u (1/Θ)Fusi.
Fig. 6.2 b) shows the aliasing pattern in the first echo for the Poisson
disk sampling pattern used in a). The aliasing in the echo images is sig-
nificantly higher (factor 1.7 in the amplitude) compared to the aliasing
in the water and fat images. An intuitive explanation for the decreased
aliasing in the water and fat images is that combining the three echo
images with different undersampling has an averaging effect, similar to
noise averaging, so incoherent aliasing cancels out in the combined im-
ages. The reduced aliasing in the water and fat images suggests that the
integrated CS-WF reconstruction is advantageous compared to a sequen-
tial reconstruction. If the same undersampling pattern is applied for all
echoes, noise averaging still appears in the water and fat images, but the
aliasing adds up coherently and is not reduced.

One potential sampling scheme for a 3D measurement with under-
sampling in ky − kz − TE is schematically shown in Fig. 6.3.

A randomized multi-echo acquisition can be performed in a similar
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Figure 6.3. Schematic pulse sequence for three-point 3D water-fat
chemical shift encoding using bipolar gradients for efficient data acqui-
sition. Additional blips can be applied in Gy and Gz (see zoomed area)
to achieve a random undersampling in the 3D ky − kz − TE space.

way as described in [110]. For example, the multi-gradient echo sequence
shown in Fig. 6.3 could easily be modified by adding gradient blips (see
zoomed area in Fig. 6.3) to shift the successive readouts in the phase
encoding directions. Other schemes for 3D undersampling, like multi-
echo acquisition with flyback gradients or single echo per TR are also
conceivable.
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6.3.3 Reconstruction

To jointly reconstruct the water and fat images and the field map from
the undersampled data, the method proposed here applies a regularized
nonlinear inversion. The combined CS-WF reconstruction problem can
formally be defined as:

argmin
x=[ρw,ρf ,φ]

{||g(x)−y||22 +λw||Ψwρw||1 +λf ||Ψfρf ||1 +λφ||Φφ||22} (6.15)

The first term accounts for data fidelity, where g(x) is the nonlinear op-
erator mapping the water and fat images and field map to the measured
k-space data. Minimizing this term delivers the least squares solution,
equivalent to the IDEAL reconstruction. The following two terms apply
sparsity constraints on the water and fat images, which is the CS part
of the reconstruction. The last term is a smoothness constraint applied
on the field map. Different sparsifying transforms Ψw and Ψf can be
applied on the water and fat images (e.g. wavelets for water and finite
differences for fat) to account for the different structure in the images.
In some cases, fat images are already sparse in the image domain and no
additional transforms need to be applied (e.g. in the brain). Variations
in the regularization parameters λw and λf could be used to improve the
reconstruction for a given application. For instance, if the fat image is
much sparser than the water image, a larger λf could be chosen. For
simplicity, the general case is considered here, in which such prior infor-
mation is not available and the same sparsifying transform and regular-
ization parameter for the water and fat images (Ψw = Ψf and λw = λf )
are applied. The second and third term can be combined as λρ||Ψρ||1,
where ρ contains both the water and fat images.

The proposed reconstruction approach applied to solve the problem
in Eq. (6.15) iteratively approximates the nonlinear operator g(x) with
its linearized version, in a similar way as in the Gauss-Newton algorithm.
At every iteration g(x) is linearized around the current estimate xn

g(xn + dx) ≈ g(xn) + dg(xn)dx, (6.16)

where dg(xn) is the Jacobian of g(x) at the point xn. The modified
problem

argmin
dx=[dρw,dρf ,dφ]

{||g(xn)+dg(xn)dx−y||22+λρ||Ψ(ρn+dρ)||1+λφ||Φ(φn+dφ)||22}

(6.17)
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is then solved for the update dx. A nonlinear conjugate gradient al-
gorithm is used to solve Eq. (6.17). In the classical Gauss-Newton al-
gorithm, the update is given by xn+1 = xn + dx. The update dx is a
descent direction, but could be too large, resulting in a non-monotonic
convergence of the algorithm. To assure monotonic convergence, the up-
date xn+1 = xn + tdx is used, where the step size t is determined by a
backtracking line search.

The initialization of the algorithm has a twofold purpose. First, the
problem is nonlinear and non-convex, so in the general case it is not
guaranteed that a gradient-based method will lead to the correct solution.
Second, starting with a good initial guess for the field map, the problem
becomes "almost linear", and just a few iterations are sufficient to obtain
a good solution. This is because the water-fat separation problem is linear
when the field map is known.

A low-resolution initialization can be obtained by computing low res-
olution echo images from the fully sampled central part of k-space, per-
forming conventional water-fat separation on these data, and interpolat-
ing the resulting images to the full resolution. Such low resolution initial-
ization is usually good enough to lead to the correct solution. However,
a large number of iterations may be necessary for the reconstruction.
A high-resolution estimation can be obtained by using the decoupled re-
construction (performing CS in each individual echo image, followed by a
conventional water-fat separation reconstruction) discussed above. This
reconstruction shows some errors for larger reduction factors, but gives
a good initialization of the CS-WF reconstruction greatly reducing the
number of iterations.

In both cases, a reliable initial field map estimation is desirable. Pos-
sible values for the field map are obtained by an analytical determination
of the minima of the voxel-wise cost function given in Eq. (6.6) through
the roots of the polynomial G(φ(r)) = 0, as described in the previous
section. This results in two candidate maps for one period. Depend-
ing on the range of expected field variations one or several periods are
considered.

The field map estimate is obtained by choosing values from the can-
didate maps under a local smoothness constraint. A region growing al-
gorithm, similar to the one described in [161] is applied in this work.
After obtaining the field map, the estimation of ρ is obtained by solving
Eq. (6.1).



6.4 Experiments 113

The data consistency of the reconstruction can be improved by enforc-
ing the k-space data at the sampling locations to be equal to the originally
acquired data at these locations in the last iteration. This way, the CS
reconstruction is effectively used only to recover the missing data and
is not allowed to modify the acquired data. Enforcing consistency with
the measured data can recover some small coefficients that might be lost
in the reconstruction and also recovers some of the noise of the original
data. Since CS reconstruction also performs signal denoising, recovering
some of the noise is often also perceived as visual improvement.

The CS-WF reconstruction is summarized below:

1. Initial field map estimation

(a) extract low-resolution image or perform CS reconstruction for
each echo

(b) compute possible field map values for each pixel and estimate
initial field map using region growing

(c) estimate initial water and fat images using the results of (a)
and (b)

2. Iteratively and simultaneously update the water and fat images and
the field map, using the update given in Eq. (6.17)

3. Given the final estimate xn, compute a projection on k-space yn =
g(xn), set the measured data at the sampling locations yn = y|acq

and perform one last iteration.

6.4 Experiments

The proposed algorithm was implemented in C using the FFTW3 library.
A second-order finite differences transform was used as a smoothness
constraint on the field map. First-order finite differences (TV) were used
as a sparsifying transform for the water and fat images. The raw data
were normalized in the beginning of the reconstruction to make the choice
of the regularization parameters insensitive to the data scaling. The
empirically determined regularization parameters λρ = 0.02 and λφ =
10−4 were used in the reconstruction. To reduce computation time and
the effect of the noisy regions on the regularization parameters, the initial
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field map was computed only in regions with a signal amplitude above
a certain threshold, determined by the estimated noise level (e.g. 1%).
In the single-peak model the chemical shift of fat relative to water was
assumed to be −220 Hz. For the multi-peak reconstruction, a three-peak
model for fat was used. Frequencies of (−30Hz,−165Hz,−210Hz) with
relative amplitudes (0.15, 0.10, 0.75) at 1.5 T were used in the model as
suggested by Brodsky et al. [165].

In vivo knee and abdominal data were acquired in healthy volunteers
with their informed consent on a 1.5 T clinical scanner.

A 2D multi-slice turbo spin echo (TSE) sequence was used to image
the knee with the following parameters: TR = 500 ms, TE = 21 ms,
FOV= 160 × 160 mm2, matrix size 256 × 256, 16 slices, slice thickness 3
mm, voxel size 0.6 × 0.6 × 3 mm3. Images were acquired at echo times
of −0.4, 1.1, and 2.6 ms relative to the spin echo.

3D multi-gradient echo measurements were performed in the abdomen
with the following parameters: TE1 = 1.8 ms, ∆ TE = 1.66 ms, TR = 6.9
ms, α = 15◦, FOV = 400× 320× 216 mm3, 240× 192× 54 matrix, voxel
size 1.6×1.6×4 mm3, sampling bandwidth 833 Hz/pixel. Before the data
were passed to the reconstruction, inconsistencies between the odd and
the even echoes were corrected using reference data measured just before
the scan [154]. Using bipolar gradients, the chemical shift in even and
odd echoes appears in opposite directions along the readout. However,
with the acquisition bandwidth chosen for these measurements, this shift
is in the sub-pixel range (0.26 pixels) and can be neglected. For larger
shifts correction in k-space as suggested in [165] can be applied.

The data were retrospectively undersampled with several different
reduction factors using Poisson disk sampling. Water-fat separation was
performed using the CS-WF reconstruction for each reduction factor. In
the case of full sampling, the sparsity transform regularization parameter
was set to zero.

6.5 Results

The water and fat images and the field maps of the knee, obtained
with CS-WF reconstruction at different reduction factors, are shown in
Fig. 6.4. Uniform water-fat separation without any water-fat swaps was
obtained at all reduction factors. High quality images could be obtained
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with up to a reduction factor of 2 in this two-dimensional case. A resid-
ual fat signal is seen in the water image due to the incomplete water-fat
separation using the single-peak model.

�
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Figure 6.4. Water-fat separation with CS-WF in 2D knee data. (a)
Water images, (b) fat images and (c) field maps reconstructed with
CS-WF with reduction factors of 1, 2, and 2.65. The scale for the field
map is given in Hz.

Figure 6.5 shows the water images obtained with sequential recon-
struction and CS-WF reconstruction for a reduction factor of two. The
sequential reconstruction shows some residual artifacts in the low signal
regions, whereas the CS-WF reconstruction results in an improved image
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quality. Note that the difference image for CS-WF (Fig. 6.5d) contains
mostly noise, which could be explained with the denoising effect of CS
reconstruction.

� �

� �

Figure 6.5. 2D CS water-fat separation with R = 2. The water image
obtained with sequential reconstruction (CS on each echo, followed by
water-fat separation) shows some residual artifacts, which are visible in
the bone marrow (a). The image obtained with the integrated CS-WF
reconstruction has an improved image quality (b). Difference images
(amplified by a factor of 10) with respect to the fully sampled water
image are shown in (c) and (d).

Fat appears very bright in TSE imaging [166], and the incomplete
separation using a single-peak fat model leads to a decreased contrast
in the water image. Reconstruction with a multi-peak fat model for an
acceleration factor of 2 is shown in Fig. 6.6. The residual fat signal in the
water image is significantly decreased, and the field map shows improved
homogeneity (the jump at the water-fat interfaces is decreased).

Figure 6.7 shows the separated water and fat images for sample trans-
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Figure 6.6. 2D CS-WF reconstruction with R = 2 and multi-peak fat
modeling. Multi-peak fat modeling results in a significant improvement
of the water-fat separation, especially in the case of high intensity fat
signal, as typical e.g. in TSE imaging.

versal and coronal slices of the 3D abdominal data. Images for full sam-
pling and a reduction factor of 3 are shown, as well as difference images.
An excellent image quality with uniform water-fat separation was ob-
tained for the complete 3D dataset. The field map is shown for the
coronal slice, which shows the highest field variations (feet-head gradi-
ent). The difference images show that the difference to the fully sampled
image is small at relatively homogeneous regions with small variations of
the water/fat content and is higher at the boundary regions. One rea-
son for this is the smoothness constraint applied on the field map, which
modifies the field map especially in these regions where discontinuities
may occur. Another reason is that the `1 minimization penalizes large
coefficients more than small ones causing larger errors in regions with
large intensity variations, compared to more homogeneous ones.

Figure 6.8 shows the water images for another transversal slice of the
abdominal 3D dataset, obtained with the CS-WF method for reduction
factors of 3, 4 and 5. With increasing reduction factor, low contrast
features gradually disappear (arrows). The loss of local contrast with in-
creasing reduction factor is a known artifact of CS, caused by the loss of
small coefficients in the transform domain, also reported in other works
on CS [69]. With a low-resolution initialization, about 50 Gauss-Newton
iterations are usually required. In the reconstruction of the images pre-
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Figure 6.7. CS-WF reconstruction of 3D abdominal data with R = 3.
Separated water and fat images with full sampling and a reduction
factor of 3 are shown for a transversal (a,b) and a coronal slice (c,d)
from a 3D abdominal dataset. The field map for the coronal slice is
shown in (e). Difference images are amplified by a factor of 10 for
better visualization.
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sented above, high-resolution initialization was used, reducing the num-
ber of iterations to 5. With the current implementation, the computation
time for one Gauss-Newton step for the 3D data is 9 min (CPU 2.4 GHz,
16 GByte RAM).

����� ���������� �����

Figure 6.8. CS-WF reconstruction of 3D abdominal data with differ-
ent reduction factors. Water images obtained with CS-WF for reduction
factors of 3, 4 and 5 are shown. Increasing the reduction factor results
in loss of contrast (arrows) and eventually residual aliasing artifacts.

6.6 Discussion

In this chapter, a method for water-fat decomposition from undersampled
data was presented, which simultaneously recovers the missing k-space
data and performs a water-fat separation. The method was demonstrated
on in vivo 2D turbo spin echo knee data and 3D multi-gradient echo ab-
dominal data. A reduction factor of 3 can be achieved for 3D measure-
ments facilitating water-fat separation with three-point measurements in
a total scan time that could be comparable or even less than the time for
acquiring a single 3D image.

The reduced aliasing with randomized sampling in the chemical shift
encoding direction and better sparsity in the water and fat images al-
low an improved performance of CS if these are exploited in the recon-
struction. This improvement of the CS-WF reconstruction over sequen-
tially applying CS and the water-fat separation, gained by exploiting
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the chemical shift encoding dimension in the reconstruction, has been
demonstrated on in vivo data.

An efficient multi-gradient-echo scheme with bipolar gradients was
considered in this work, which allows short TR and inter-echo spacing.
While this sampling is highly efficient and allows a short scan time, some
issues such as trajectory misalignment due to gradient delays and op-
posite chemical shift artifacts in the even/odd echoes might arise, and
appropriate corrections for differences in the k-space trajectories in the
even/odd echoes [154, 155] and compensation for the chemical shift ar-
tifacts in k-space [165, 167] should be applied, where necessary. Other
sampling schemes like multi-echo sampling with flyback gradients or sin-
gle echo sampling can avoid some of the previously mentioned problems
at the cost of longer scan time.

An extension to parallel imaging could further improve the imaging
speed. Several works have proposed a combined CS parallel imaging
reconstruction by either incorporating the sensitivity encoding matrix
in the reconstruction or by using auto-calibration methods [93, 94]. The
different principles of parallel imaging and CS cause different problems at
high accelerations. The acceleration in parallel imaging is mainly limited
by SNR. CS reduces noise, but at high accelerations starts to lose small
coefficients. A combined CS-PI reconstruction allows higher acceleration
than each of the methods alone [93,94]. Therefore, a fully integrated CS-
PI-WF reconstruction is expected to provide the highest acceleration for
this problem. A combination with parallel imaging for 3D reconstruction
might be challenging in terms of memory requirements and computation
speed, especially for large number of coil elements. Applying parallel
computing using multiprocessors or dedicated hardware systems could
be helpful to address this problem. These investigations are subject of
future work.

Reliable water-fat separation is a difficult problem because of the in-
herent ambiguity in the field map estimation, and the CS-WF reconstruc-
tion must also deal with these difficulties. A field map estimation, ob-
tained by explicitly locating the possible field map values has been shown
to yield a more robust solution than descent based methods [161–163].
We have shown that such an approach provides a good initialization for
the CS-WF reconstruction, avoiding swaps of water and fat in the sep-
aration. Furthermore, field map smoothness and data consistency are
utilized during the CS-WF reconstruction.
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An extension to a multi-peak fat model shows improved water-fat
separation as expected. The multi-peak fat model also improves the data
consistency, which is advantageous for the stability of the reconstruction.
In this case, the water and fat images are almost complementary, which
might potentially be used to formulate an additional constraint in the
reconstruction. For anatomies in which the fat image is very sparse (e.g.
brain), it might be useful to apply a sparsity constraint directly in the
image domain. However, for large reduction factors this constraint might
bias very small fat fractions toward zero.

The CS-WF method was demonstrated for three-point measurements
acquiring complex water and fat images and a field map. The method is
generally applicable for different number of echoes. For two-point mea-
surements, the additional chemical shift encoding direction is reduced
to only two echoes. Therefore, it is expected that the advantage of a
joint reconstruction as proposed here over a sequential reconstruction
will be reduced. Another possible difficulty is that the signal model
in two-point water-fat separation methods is less accurate, which could
reduce the performance of the reconstruction. Increasing the number of
echoes might improve the data consistency by incorporating a more com-
plex data model, e.g. a multi-peak fat model, in which the amplitudes
at different resonance frequencies are estimated in the reconstruction.
For a higher number of echoes, one could also consider a spectroscopic
approach, which is linear and would allow using a different type of recon-
struction like the one presented in [168]. Such spectroscopic approaches
will generally require more measurements, but might be more robust in
terms of field map estimation.





Chapter Seven

Summary and Outlook

It is typical of the unintelligent man to insist on assem-
bling complete sets of everything. Imperfect sets are
better. In everything, no matter what it may be, uni-
formity is undesirable. Leaving something incomplete
makes it interesting and gives one the feeling that there
is room for growth.

— Keiko, Essays in Idleness, 14th century

7.1 Summary

R
ecent advances in sampling theory, known as compressed sensing,
have shown a great potential to exploit the inherent redundancy
of signals to improve sampling efficiency. The ability to acquire

reduced amount of data without significantly decreasing image quality is
of significant importance in MRI since imaging time is a critical factor
in many MRI applications.

A generalized approach for the application of CS in MRI, which fo-
cuses on the acquisition of a single image using a general purpose spar-
sifying transform usually provides only a limited sampling acceleration.
The pursuit for maximum acceleration, measuring as few data as possi-
ble, requires optimization of the data acquisition and the applied spar-
sifying transform to the specific application. The wide variety of MR
applications, presenting different types of contrast and structures in the
images, as well as additional sampling dimensions, such as temporal,
parametric, or spectral dimensions, require the development of methods
that efficiently exploit the data redundancy and the higher dimensional
sampling.
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This thesis presented new methods for the application of CS in MRI,
which allow to better exploit the potential of CS to improve imaging
speed of MRI.

Radial sampling with golden ratio profile ordering was suggested as
a practical trajectory for CS that allows undersampling in all spatial di-
mensions. Golden ratio radial sampling achieves more incoherent aliasing
than uniform radial sampling. Furthermore, it provides a nearly uniform
profile distribution for any arbitrary selection of data from a dynamic
acquisition. This allows for retrospective adjustment of the temporal
resolution and position of reconstruction time frames according to the
actual temporal dynamics of the signal, without the need for prior plan-
ning. CS in combination with parallel imaging and golden ratio sampling
has shown potential for improving the temporal resolution in dynamic
imaging.

Training a sparsifying transform for a specific application results in
better sparsity and therefore higher achievable acceleration factors in CS.
A method for training a model-based sparsifying transform in MR pa-
rameter mapping was presented, which allowed a significant reduction
of the required data without compromising the quality of the parameter
maps. The method was demonstrated for the example of in vivo re-
laxation parameter mapping. Further studies are needed to expand the
scope of possible MR parameters (e.g. diffusion, perfusion) that can be
addressed with this new concept.

A new reconstruction method for integrated CS and water-fat separa-
tion (CS-WF) was presented as an example for reconstruction based on
nonlinear measurements. Its feasibility was demonstrated in three-point
measurements performed in 2D and 3D in vivo applications. The CS-WF
reconstruction offers a promising framework for scan time reduction in
water-fat separation applications that are not SNR critical. This can be
interesting for a couple of clinical applications.

7.2 Outlook

This thesis demonstrated the feasibility of the proposed methods in simu-
lations and in experiments with volunteers. Further research is necessary
before these approaches can be adopted in clinical practice. An impor-
tant step for the future development of the methods presented in this
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work, as well as CS-MRI in general, is the reduction of the reconstruc-
tion times. This goal can be pursued both in terms of faster algorithms
and by using multi-processors and dedicated hardware.

The idea of adapting the acquisition and reconstruction to a specific
application can be exploited in multiple ways. This could be achieved for
instance by applying further prior knowledge in the reconstruction, e.g.
in the form of initialization. Another option is tailoring the sampling
density according to statistics over previously acquired training data.
The prior knowledge used in the reconstruction should be specific to the
application, but as general as possible, to avoid undesired errors in the
image due to the reconstruction.

Furthermore, combination of CS with other methods for fast imaging,
such as parallel imaging, is of great importance. Although methods for
combined CS and PI reconstruction already exist, it is subject of future
research to gain better understanding of how the additional encoding in
parallel imaging combines with sparsity driven reconstruction.

Iterative reconstruction methods as the ones in CS-MRI rely on the
consistency of the measured data with the measurement model. There-
fore, the accuracy of the reconstruction depends on the knowledge of the
sampling trajectory. Applying an accurate information about the actual
sampling trajectory is especially important in non-Cartesian imaging and
improvements in this field could be very advantageous for the application
of non-Cartesian trajectories in CS.

An important step toward the clinical applicability of CS-MRI is iden-
tifying clinical applications that could benefit from CS and validating the
methods on clinical data.

It is difficult to predict the future of CS and its applications in MRI.
This very young theory has gained the attention of many researchers and
we are witnessing an amazing development of both theory and applica-
tions in parallel. What is clear is that CS has awaken a new interest
in irregular sampling patterns, in iterative reconstruction methods, and
in methods applying prior knowledge in the reconstruction. The ability
of these methods to improve image quality and their potential for faster
imaging are expected to be highly valuable in improving diagnostic imag-
ing.
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